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Those of us involved In the creation of the Handbook of Artificial intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artif icial Intelligence research accessible to a broad scientific and engineering audience.
Currently, Aj work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing Interdisciplinary interest and practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists in other fields, and our own computer science colleagues.

In the Handbook we intend to cover the breadth and depth of AL presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep In mind the reader who is not a
specialist in Al.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical “cores”
to structure calculatlonal use of the computer. Such areas will Inevitably be served by
symbolic models and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that It is
urgent for Al to “go public” In the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden’s
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. in addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
of Al , for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas, to present brief explanations of the Important ideas and techniques, and to
review the forty or fifty most important Al systems.

- -------~, The Handbook contains several different types of articles. Key Al ideas and techniques
are described in core articles (e.g., basic concepts in heuristic search, semantic nets).
Important individual AL programs (e.g., SHROLU) are described In separate articles that
‘Indicate, among other things, the designer’s goal, the techniques employed, and the reasons
why the program is important. Overview articles discuss the problems end approaches in
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying Issues that motivate Al research.~~_

Eventually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as Al, It Is important that Its practitioners alert us to important
developments, so that future editions will reflect this new material. We Intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
In Al at Stanford University, with assistance from graduate students end Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
UniversIty, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this report, which contains the section of the Handbook describing
research on applying Al techniques to systems in science and mathematics, are James

Bennett. Bruce Buchanan, Paul Cohen, and Fritz Fisher. Others who contributed to or
commented on earlier versions of this section Include Randall Davis, Daniel Doleta, Richard

Dude, Robert Engelmore, Peter Friedland, Michael Genesereth, Douglas Lenat, and Glen Ouchi.
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Foreword

Those of us Involved in the creation of the Handbook of ArtIficial Intelli genc e, both
writers and editors, have attempted to mAke the concepts, methods, tools, and main results
of artificial intelligence research accessible to a broad scientific and engineering audIence.
Currently, Al work Is familiar maInly to Its practicing specialists and other interested
computer scientists. Yet the field Is of growing interdisciplinary interest end practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scientific Issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep In mind the reader who is not a
specIalist in Al.

As the cost of computation continues to tall, new areas of computer applications
become potentially vIable. For many of these areas, there do not exist mathematical “cores”
to structure calculatlonal use of the computer. Such areas will Inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbolic

- r computation have been speaking largely to themselves for twenty years. We feel that It Is
urgent for Al to “go publIc” In the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
end have attempted to help fill the vacuum. Lay revIews, In particular Margaret Boden’s
Artificial intelligence and Natural Man, have tried to explain what Is Important and
Interesting about Al, and how research in Al progresses through our programs. In addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
of Al, for the serious student of computer science. But no textbook can hope to describe all

* of the sub-areas, to present brief explanations of the important ideas and techniques, and to
- ~

- review the forty or fifty most important Al systems.

- :  The Handbook contains several different types of articles. Key Al Ideas and techniques
are described in core artIcles (e.g., basic concepts in heuristic search, semantic nets).
Important Individual Al programs (e.g., SHROLU) are described in separate articles that

‘Indicate, among other things, the designer’s goal, the techniques employed , and the reasons
why the program Is Important. OvervIew articles discuss the problems and approaches in
each major area. The overview artlcl.a should be particularly useful to those who seek a
summary of the underlyIng issues that motivate Al research. -

- __________
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Eventually the Handbook will contain approximately two hundred articles. We hope that
• the appearance of thIs material will stimulate Interaction and cooperation with other Al

research sites. We look forward to being advised of errors of omission and commIssion. For a
field as fast moving as Al, it Is important that its practitioners alert us to important
developments, so that future editions will reflect this new material. We Intend that the
Handbook of Artificial Intelligenc e be a living arid changing reference work.

The articles In this edition of the Handbook were written primarily by graduate students
In Al at Stanford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
UniversIty, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this report, which contaIns the section of the Handbook describing
F research on applying Al techniques to systems in science and mathematics, are James

Bennett, Bruce Buchanan, Paul Cohen, and Fritz Fisher. Others who contributed to or
commented on earlier versions of this section Include Randall Davis, Daniel Dolata, Richard
Dude, Robert Engelmore, Peter Friedland, Michael Genesereth, Douglas Lenat, and Glen Ouchi.

Avron Barr Stanford University
Edward Feigenbaum July, 1919
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A. OvervIew

Within the past decade, ArtIficial Intelligence (Al) techniques have been applied to the
development of Expert systems , computer systems Intended to assist researchers solve
complex problems In their scientific or medical speciality. These systems are most strongiy
characterized by their use of domain knowledge, gleaned from experts, In the problem-solving
tasks.

The systems described here were originally designed to be applicd in their intended
communities, and all but a few are In consistent use. Most of the systems are still being
researched and developed. The emphasis In this chapter Is on a description of the
applications and research of Al techniques on real-world problems.

A layman or general researcher is distinguished from a specialist In a scientific or
technical domain by the vast amount of empi rical knowledge that the expert has amassed
during the course of his profession. This task-specific knowledge Is, of course, based on any
conceptual or theoretIcal knowledge that underlies problem solving In the domain. Any so-
celled knowledge-based system designed to assist users in the domain at this expert level
requires both the empirical and the theoretical knowledge. Developing representational
vehicles that are able to encode this partly public, partly private knowledge of the domain
has occupIed the Al researchers during the construction of all these systems.

Using representations of domain-specific knowledge, artificial intelligence research has
yielded systems wIth significant problem-solving abilities, at times better than the abilities of

• the human experts. In addition to developing adequate representations of this domain-
specific knowledge, research has emphasized the development of various reasonIng and
explanation procedures that manipulate this knowledge. In particular, much emphasis has
been placed on the development of methods of Inexact reason ing sInce for many of these
domaIns , notably medicine , the experts ’ appraisal of the problem sItuation cannot always be
certain.

The major domains of expertise that have been developed as applications systems
include the diagnosis end treatment of various diesses (see section Me~c:ns.C1), the design
of computer assisitants for both the analytic and synthetic aspects of organic chemistry
(see section Cl), interactIve tutoring systems in education (see section Edu.catiorL0verview),
and assistants for performing advanced mathematics (see article 02). A number of other
notable applications have been developed IncludIng applIcations of Al to database Information
retrieval problems (see article E4) and a geological assistant (see article E2). There are a
host of recent applications as well that do not have articles in this chapter, such as SACON,
a system for advising structural engineers In the use of a large finite-element analysis
program used to model various mechanical structures (Bennett et al., 1978); PUFF, a system
for diagnosing a patient with various pulmonary dysfunctions (Felgenbaum, 1977); and
HEADMED, a system for diagnosis and treatment of psychiatric patients (Ilelser, 1977,
1918).

Typically, these systems are considered Intelligent If they meet the followIng criteria:
The system gives correct answers or useful advice, and the concepts and reasoning
processes that the system uses to solve the problem resemble those that the user might
employ. This last concern has motivated the design of systems capable of explaining their
reasoning about a case, capable of maintaining a focused dialogue with a user when pursuing 

~~•~--~ ~~-- - - - -~~--~~~--•~~~~~~~~~~~~~~~~ 



2 Appllcst ions-orie nted Al Research: Science and Mathematics

relevant facts and Inferences about the user ’s case, and capable of using knowledge at the
conceptual level of the user when solving and explaining both the problem and the system’s
solution. Achieving these primarily human-engineering concerns has required many advances
In artificial intelligence. These abilities and developments are detailed for each system In the
following articles.

Evolution of Expert Systems

Work - In Al during the I 960s identified and explored general-purpose problem-solving —

techniques that would be applicable in a large number of problem-solving situations. This
research Introduced and refined the concept of heuristic search (see Seerth) as a
mechanism of problem solving. These ideas and developments were embodied In such
systems as GPS, REF-ARF, QA4, PLANNER. etc. These systems dealt with problems in domains
such as chess, robot planning, and blocks-world manipulations, as well as the classic
problem-solving situations found In puzzles such as the Tower of Hanoi and The Mlssonaries
and Cannibals.

During the mid- 1960s, the first expert systems were developed, including DENDRAI.. and
MACSYMA. In 1965, the Heuristic Programming Project at Stanford University begen to apply
these search techniques to the design of an intelligent assistant to aid chemists in
elucIdating the structure of unknown chemical compounds. Motivated by Interest in modeling
ttie thought process of research scientIsts, Edward Feigenbaum and Joshua Lederberg of the
DENDRAL project began to emphasize and use large amounts of domain-specific knowledge In
the solutIon of thIs major real-world problem.

These systems were designed to manipulate and explore large, symbolically expressed
problems that were known to be difficult for human researchers to solve. These problems
were characterized by the fact that as their specifications grew In complexity, so did the
number of solution posslbilltes that had to be examined. The larger the size of the problem
specification (e.g., size of the molecule in atoms/bonds or complexity of the expression to be
intergrated), the more diffIcult it was for human researchers to discover solutions or be
confident that all valid solutions had been found. This combinatorial explosion in the solution
search space easily outstripped the abilities of most human researchers. The ability of these
applications systems to deal with the larger solution spaces extended the limit on the types
of problems capable of solution with the present conceptual tools.

More recently, the motivation for constructing these knowledge-based systems
includes a number of other factors. These expert systems promise to have significant
economic and social Impact. (See especially the articles on Synthesis and PROSPECTOR).
For example, the organic synthesis systems are used actively by drug and chemical

• manufacturing companies to uncover inexpensive methods of synthesizing various
compounds. In medicine, these systems have the capability to examine all possible diseases
that might be afflicting a patient. In addition, the ability to codlfly the expertise in a domain

• makes these systems potentially available for tutoring and assessment purposes.

For a system to achieve broad applicability within a speciality and to remain complete
and correct in its search for problem soiutions, large amounts of domain-specific knowledge
have had to be represented and handled. Thus, while heuristic search management is still a
major concern in the construction of any expert system, the large amounts of expert 
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A OvervIew 3

knowledge required to achIeve an adequate, efficient solution to these problems have
fostered problems in the construction and maintainence of these knowledge bases. The
concerns of effective representation and management of the large, domain-specific
knowledge bases have shifted attention away from development of programs designed to
solve large combinatorial pr oblems, such as those that prompted the DEP4DRAL programs, to
those that require more empirical knowledge for their solution. Current research emphasizes
not only the representational adequacy of the existing formalisms but also such Issues as
the appropriate grai n size of the knowledge (see article Ruprusn.tion.B) end Improved
explanation, inference, and acquisition abIlitIes (B).

Dimensions of Applications

Most of the application systems described In this chapter can be viewed as consultants
that formulate opinions or as models about cases that give advice to their users. The tasks
these consultants are designed to perform are typically repetitive end sometimes beyond
human abilities--problems that require knowledge of facts and relationships known only by
specialists. A consultation system interacts with the user during the problem-solving task.
The current systems emphasize the cognitive abilIties that support this Interaction such as
the abilities to explain tines of reasoning or to Interactively acquire new domain knowledge.
This Is especially true for the medical and educetionsi systems where much research has
gone Into the design of well-engineered, responsive, user interfaces.

The Al research conducted for these application systems Is different from other
• mainstream Al research such as that on speech or vision. Applications research does not

concentrate on developing models of the various physiological functions that are of interest
In these other areas. The cognitive abilities required by the current applications are primarily
conceptual in nature and do not depend on sophisticated perceptual capabilities in order to
be performed. Research concentrates Insteed on the requirements for systems to utilize
developed human expertise. This expertise is typically at a high conce~tuel level and is easily
encodeble in the symbolic representational formalisms that have been developed.

Representational adequacy. Applications research has proved a valuable testing
ground for the techniques developed In other areas of Al research. In addition to the
augmentation of heuristic search methods by domain-specific knowledge, representation
formalisms developed for modeling psychological aspects of cognition--such as semantic nets
(see article Repreeentetion.C2) and production systems (see article Representetion.C3)--
have been used ubiquitously In the applications described in this chapter. Techniques
developed In the course of natural language research (see chapter Nati.rel Language, Natural
Language) have been used to achieve the effective men-machine interface required of
these interactIve consultant systems.

DomaIn-Independence of the systems. As part of the research on the adequacy of
• these representational formalisms, a number of these systems have attempted to maintain a

strict separation between the domain-specifIc knowledge supplied by the expert and the
domaIn-independent knowledge and capabilities of problem solving that the systems

- 
• intrInsically possess. The task of determining what abilities and what knowledge constitutes

an effective domaIn-independent system occupies much of the Al research in applications.
For example , the EMYCIN system consists of the basic control structure found In the MYCIN
system (see artIcle M.cJcins.C2) with the Infectious disease knowledge base removed ; this

________________ ••-
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“empty MYCIN ’ system retains the capability to interact with the user during a case, to
explain its reasoning, and to answer questions about a case In a new domain of expertise.
This system has been used successfully to develop the applications In pulmonary
dysfunction, structural analysis, and psychiatric diagnosis mentioned in the beginning of this
overview. Numerous other systems similar to the EMYCIN system era being developed, such
as the IRIS system (see article Me~ cirie.C?); these domain-independent consultation
systems are a major product of this applications research.

Explanation and the opacity of knowledge. As mentioned previously, a major design
Issue for some of these systems, for the consultants in particular, is whether the system
needs to explain Its reasoning to a user. This capability is implemented primarily in the effort
to convince users that the system’s reasoning Is appropriate and that Its conclusions about a
case are reasonable. In some cases , however, the problem-solving expertise used by the
system is in a form that Is not at all similar to the expertise that an expert user would use to
obtain the solution. For example, in the case of the DENDRAL programs, the generator of
chemical structure solutions uses a procedure for exhaustively producing solutions based on
various graph theoretic notions that the average organic chemist u sing the system is unlikely - -

to know or care about. Thus a major portion of the DENDRAL expertise resides In a procedure
that is conceptually opaque to the normal user. The generator was developed because it was
discovered that the method used by the chemist to generate solutions is Incomplete and the
method used by the DENDRAL program has been mathematically proven complete. A similar
situation exists in the MACSYMA system, which uses the Risch algorithm for evaluating

- 
various types of Integrals. While mathematically correct, it is rarely employed by human
mathematicians because of its complexity. The correctness and continued success of the

F programs serve as their primary form of explanation: The user community Is thus convinced
that the performing system is both acceptable and useabie.

in contrast, systems such as MYCIN and PROSPECTOR have been designed to represent
and explain the reasoning process used by the system in a manner that is understandable to
the knowledgeable user. These systems require a representational formalism capable of
supporting the reasoning and explanation abilities that would closely approximate the
conceptual structure of expert and user. Since most of these scientific and technical
domains have a well-defined set of concepts that their practitioners use consistently, the
systems designers have capitalized on this consistency and have designed the programs to
accept and reason with knowledge using these concepts.

Assuming a system has an explanation facility, the system designer feces another
Issue: Should the system reason and apply the expertise In a manner that resembles the
methods employed by the human expert? in MYCIN, for example, no claim Is made by the
designers that the simple backward chaining reasoning methodology has any strong
resemblance to the methods actually employed by human physicians performing infectious
disease diagnosis. Although the medical concepts employed by the system are familiar to
most physicians, the method of inferring the Infections and causal organisms, while
understandable by a physician, bears little resemblance to a doctor’s norma l diagnostic
reasoning. By contrast, the PIP and INTERNIST systems emphasize the similarities of their
diagnostic procedures to those used by physicians.

knowledg. acquisition. During the development of the knowledge base, the expert Is
H unlikely to present all of the relevant facts and relationships that are requIred for expert

performance In the domain. Being human, experts tend to forget or simplify details about their 
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knowledge, requiring the system to be able to augment its knowledge at a later time. Since
the knowledge Imparted to the system Is largely empirical and the domains are themselves
rapidly developing, it Is necessary that the system be able to perform these changes easily
and In an incremental or modular fashion. Thus, most of the recent applications systems have
emphasized the use of representation vehicles that allow for the Incremental construction of
the knowledge base.

Many researchers use producti on rules to perform this Incremental construction. Each
rule and rule set represents a “chunk~ of domain expertise that is communicable to the user
end that can be added or extracted with relative ease. Thus the performance of the system
can be improved by modifyIng the knowledge base with new rule sets that deal with new
domaIns or subdomalns. Furthermore, the production ru!~ formalism can directly accommodate
the concepts of the domain expert and thus Is more easily communicable to both the user
and the expert.

The Future

A primary research activity In the near future will be the develop ment of f acilities f or
acquiring the domain concepts and the empirical knowledge that these systems require. At
present thIs is a painful process Involving many indIviduals, including both domain experts and
computer scientists who together construct the knowledge base. More efficient Interfaces
for acquirIng this domain-specific knowledge, along the lines of the TEIRESIAS system (see
article B) and the methods used by the Meta-DENORAL system (see article C2c), need to be
developed before significantly larger expert systems can be constructed.

While the domains and methods that have been developed are interesting and
challenging in their own right, they represent only a small fraction of the total cognitive or
even conceptually cognitive abilities that a human possesses. These abilities are for the
most pert as yet undefined in current cognitive research; If they were, they would probably
be the subjects of further Al research.

The size of current systems Is typically given in terms of some convenient
measurement of the domain-specific knowledge contained by the system. For example, the
MYCIN system contains approximately 450 rules and a similar number of clinical parameters
that it uses to diagnose and prescribe treatments for patients with bacteremla, cystitis, and
meningitis. The SYNCHEM system contains approximately 390 transforms that it uses to
construct plausible organic synthesis routes. The order of magnitude of expert knowledge

• has been primarily a function of expert involvement and effort. These systems can
potentially support larger knowledge bases but there has been no effort yet to construct
these more comprehensive systems. At present, only selected subdomains are actually
represented and used. -

it Is clear that Al and computer science will have to develop new techniques for
handling the truly large-scale knowledge bases that will exist In the future. A step in this

-‘ direction has been taken with the development by Davis (1976) on a representation for
knowledge about domain knowledge or mete-knowledge. This domain-specific knowledge is
used to determIne the consistency and approprIateness of various knowledge sources
developed end used by the system. The use of mete-knowledge Is one of the ways
knowledge can be organized both dynamically and statically so that It is comprehensible not
only to the machine but also to the human user and expert.



_________ • 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

—.—.- 

~~~~~~~~~~~~~~~~~~~~~~

6 Applicat ions-oriented Al R•searc h~ Science and Mathemat ics

An Application Article

An article on the Individual applications systems in this chapter will attempt to cover
the followin g topics:

A descrlpticn of the problem domain (e.g., chemistry, InfectIous disease ,
etc.), the particular task the application system was designed to perform
(e.g., elucidate chemical structures, diagnose and treat a patient with an
infectious disease , etc. ), and the major motiviations behind the system’s

- design, both for Al and for the task domain.

A description of the task-specific knowledge used by the system to
perform the problem-solving task (e.g., knowledge about probable bond
breaks for a compound in a mass-spectrometer , knowledge about possible
Infections and their causal organisms, etc.).

A description of the particular Al methods that were used to represent this
‘knowledge and a description of how the represented knowledge Is used to
reason about a particular case. This description sometimes includes an
annotated sample interaction between a user and the system.

An indication of the current level of expertise of these systems and an
indication of their present status and possible future development.

Throughout these articles, emphasis is placed on illuminating the major issues dealt with, and
contributions made to Artificial Intelligence by the design of these systems.

References

Feigenbaum (1977) gives a short review of this area of research. The textbook by
Winston (1977) also reviews this area briefly. Recent work on some of the important
systems Is described In a special issue of the Journal of Artificial Intelligence (Sridharan,
-1978). 
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B. TEiRESIAS--Issues In Expert Systems Design

1 TEIRESIAS is a system for facilitatin g automatic acquisition and maintenance of the
large knowledge bases used by expert systems. Although TEIRESIAS Is not itself ar
application of Al to some domain, it deals with many Important issues in expert systems
design that are relevant to all of the programs described in this chapter. The system was
developed by Randall Davis as part of his doctoral research at the MYCIN project at

- ;~ 
Stanford, and this artIcle assumes some familiarity with MYC1N’s rule-based knowledge

- :- - representation scheme and its backward-chaining control structure (see Article Medicine.C2).
However, the Ideas and techniques that TEIRESIAS uses are not necessarily limited to
MYCIN’s domain of infectious diseases or to the production-rule formalism used by MYCIN.

Knowledge-based Programs

As discussed In the Overview, systems that achieve expert-level performance in
problem-solving tasks derive their power from a large store of task-specific knowledge. As a
result, the creation and management of large knowledge bases and the development of
techniques for the informed use of knowledge are now central problems of Al research.

- ~
- TEIRESIAS was written to explore some of the issues involved in solving these problems.

Most expert programs embody the knowledge of one or more experts in a field, like
infectious diseases, and are constructed In consultation with these experts. Typically, the
computer scientist mediates between the experts and the program he is building to model
their expertise. ThIs Is a difficult and time-consuming task, because the computer scientist
must learn the basics of the field In order to ask good questions about what The program is
supposed to do.

TEIRESIAS’s goal Is to reduce the role of the human intermediary in this task of
knowledge acquisition. by assisting In the construction and modification of the system’s
database. The human expert communicates, via TEIRESIAS, with the p erformance p rogram
(e.g., MYCIN), so that he can discover, with TEIRESIAS’s help, what the performance program
is doing and why. TEIRESIAS offers facilities for modifying or adding to the knowledge base
to correct errors: Using TEIRESIAS, the human expert can “educate’ the program just as he
would tutor a human novice who makes mistakes. Ideas about how this wdebugglngM process
Is best carried out are at the core of TEIRE’AAS’a success.

TEIRESIAS also recognizes the Inexact, experiential character of the knowledge that is
• often required for knowledge-based systems and (as examples below will illustrate) offers

the expert some assistance in formulating new Nchunks of knowledgeTM of this sort. Another
major aim of the system was to provide a mechanism for embodying strategic information.
Mete-rules (discussed below ) are used to direct the use of object-level rules in the
knowledge base and to provide a mechanis m for encoding prab~em-so1vlng strategIes.

Interactive Transfer of Expertise.

It is an established result that an expert knows more about a field than he is aware , or
capable of articulatin g completely. Thus, askin g him a broa d question like TMTeII m~ everythin g
you know about staph-i nfect ions TM wiN yield only a fract ion of his knowledge. TE1RESIAS’s

Hi 
_ _ _ _  
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approach Is to present the expert with some errors made by an already established, but still
Incomplete, knowledge-based p rogram and to ask a focused question: “What do you know that
the program doesn’t know, which makes your expert diagnosis different in this case?”

This interaction is called transfer of exper tise: TEIRESIAS incorporates into the
performance program the capabilities of the human expert. TEIRESIAS does not attempt to
derive new information on Its own but, instead, tries to “listen” as attentively and
InteThgentiy as possible, to help the expert augment or modify the knowledge base.

Interactive transfer of expertise between an expert and an expert program begins
when the expert identifies an error In the performance of the program and invokes TEIRESIAS
to help track down and correct the error. Errors are manifest as program responses that the
expert would not have made or as “lines of reasoning” that the expert finds odd,
superfluous, or otherwise Inappropriate. The first kind of error might be, for example, a
wrong conclusion about the Identity of a bacteria. On the other hand, the performance
program may just ask the expert, during a consultation, a questIon that, In the expert’s
opinion, does nothing to resolve the identity of the bacteria. This is an example of the “line
of reasoning” type of error.

Both kInds of error are assumed, by TEIRESIAS, to be indicative of a deficit, or “bug,” in
the performance program’s knowledge base. Transfer of expertise begins when TEIRESIAS Is
called upon to correct the deficit. TEIRESIAS fixes bugs In the knowledge base by:

1. Stopping the performance program when the human expert Identifies an error.

2. Working backwards through the steps in the performance program that led to
the error, until the bug Is found.

3. Helping the expert fix the bug by adding or modifying knowledge.

To identIfy faulty reasoning steps In the performance program, the expert can use the WHY
end HOW commands to ask TEIRESIAS to back up through previous steps, explaining why they
were taken. The same explanatory abilities can also be used when there Is no bug, to help
the user follow the system’s line of reasonIng. Since many large performance programs carry
out very complex inferences that are essentially “hidden” from the person using the program,
this is a valuable facility.

Mete-level Knowledge

One of the principal problems of Al Is the question of appropriate representation and
use of knowledge about the world (see Representation). Numerous techniques have been
used to represent domain knowledge in various applications programs. A central theme of the
research on TEIRESIAS is exploring the use of meets-knowledge. Mete-level knowledge is
simply the representation In the program of knowledge about the program Itself--about how
much It knows and how It reasons. This knowledge Is represented using the same
representation techniques used to represent the domain knowledge, yielding a program
containing object-level representations describing the external world and mete-level
representations that describe the interna l world of the program , its self-knowled ge. For
example , many Al programs use the notion of a frame to represent the knowledge used by the
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8. TEIRESIAS--Issues in Expert Systems DesIgn

TEIRESIAS is a system for facilitating automatIc acquisition and maintenance of the
large knowledge bases used by expert systems. Although TEIRESIAS Is not itself an
application of Al to some domain, it deals wIth many important issues in expert systems
design that are relevant to all of the programs described in this chapter. The system was
developed by Randall Davis as part of his doctoral research at the MYCIN project at
Stanford, and this article assumes some familiarity with MYCIPI’s rule-based knowledge
representation scheme and Its backward-cha ining control structure (see Article Medicine.C~).
However, the ideas and tech niques that TEIRESIAS uses are not necessarily limited to
MYCIN’s domain of Infectious diseases or to the production-rule formalism used by MYCIN.

Knowledge-based Programs

As discussed in the Overview, systems that achieve expert-level performance in
problem-solving tasks derive their power from a large store of task-specific knowledge. As a
result , the creation and management of large knowledge bases and the development of
techniques for the Informed use of knowledge are now central problems of Al research.
TEIRESIAS was wrItten to explore some of the Issues involved In solving these problems.

Most expert programs embody the knowledge of one or more experts In a field, like
infectious diseases, and are constructed in consultation with these experts. Typically, the
computer scientist mediates between the experts and the program he Is building to model
their expertise. This is a difficult and time-consuming task, because the computer scientist
must learn the basics of the field in order to ask good questions about what the program Is
supposed t .~ do.

TEIRESIAS’s goal is to reduce the role of the human intermedIary in this task of
knowledge acquisition , by assisting In the construction and modification of the system’s
database. The human expert communicates, via TEIRESIAS, with the performance p rogram
(e.g., MYCIN), so that he can dIscover, with TEIRESIAS’s help, what the performance program
Is doing and why. TEIRESIAS offers facilities for modifying or adding to the knowledge base
to correct errors: Using TEIRESIASI the human expert can “educate” the program just as he
would tutor a human novice who makes mistakes. Ideas about how this “debugging” process
Is best carried out are at the core of TEIRESIAS’s success.

TEIRESIAS also recognizes the Inexact, experiential character of the knowledge that is
• often required for knowledge-based systems and (as examples below will Illustrate) offers

the expert some assistance In formulating new “chunks of knowledge” of this sort. Another
major aim of the system was to provide a mechanism for embodying strategic information.
Mete-rules (discussed below) are used to direct the use of object-level rules in the
knowledge base and to provide a mechanism for encoding problem-solving strategies.

interactive Transfer of Expertise.

It Is an established result that an expe rt knows more about a fIeld than he is aware, or
capable of articulatin g completely. Thus, asking him a broad question lIke “Tell m~ everything
you know about staph-Infec tions” will yield only a fraction of his knowledge. TEIRESIAS’s
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approach is to present the expert with some errors made by an already established, but still
Incomplete, knowledge-based program and to ask a fo cused question: “What do you know that
the program doesn’t know, which makes your expert diagnosis different In this case?”

This Interaction Is called transfer of expe rtise: TEIRESIAS Incorporates into the
performance program the capabilities of the human expert. TEIRESIAS does not attempt to
derive new Information on its own but, Instead, tries to “listen” as attentively and
Intelligently as possible , to help the expert augment or modify the knowledge base.

Interactive transfer of expertise between an expert and an expert program begins
when the expert identities an error In the performance of the program and invokes TEIRESIAS
to help track down and correct the error. Errors are manifest as program responses that the
expert would not have made os as “lines of reasoning” that the expert finds odd,
superfluous, or otherwise inappropriate. The first kind of error might be, for example, a
wrong conclusion about the Identity of a bacteria. On the other hand, the performance
program may just ask the expert, during a consultation, a question that, in the expert’s
opinion, does nothIng to resolve the identity of the bacteria. This Is an example of the “line
of reasoning” type of error.

Both kinds of error are assumed, by TEIRESIAS, to be IndIcative of a deficit, or “bug,” in
the performance program’s knowledge base. Transfer of expertise begins when TEIRESIAS is
called upon to correct the deficit. TEIRESIAS fixes bugs in the knowledge base by:

1. Stopping the performance program when the human expert identifies an error.

2. Working backwards through the steps in the performance program that led to
the error, until the bug is found.

3. Helping the expert fix the bug by adding or modIfying knowledge.
- - To identify faulty reasoning steps In the performance program, the expert can use the WHY

and HOW commands to ask TEIRESIAS to back up through previous steps, explaining why they
were taken. The same explanatory abilities can also be used when there is no bug, to help
the user follow the system’s line of reasoning. Since many large performance programs carry
out very complex inferences that are essentially “hidden” from the person using the program,
this is a valuable facility.

Meta-level Knowled ge

One of the principal problems of Al is the question of appropriate representation and
use of knowledge about the world (see Representation). Numerous technIques have been
used to represent domain knowledge In various applications programs. A central theme of the
research on TEIRESIAS is exploring the use of mete-knowledge. Mets-level knowledge is
simply the representation in the program of knowledge about the program itself--about how
much It knows and how It reasons. This knowledge is represented using the same
representation techniques used to represent the domain knowledge, yielding a program

-; containing object—level representations descrIbIng the external world and melts-level
representat ions that describe the internal world of the program, its self-knowledge. For
example , many Al programs use the notio n of a fra me to represent the knowledge used by the 
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system (see Article Rspreesntetlcn.C7). One can Imagine a mets-level frame that describes
the structure of all frames In the system or one that denotes the different classes of frames
used In the system. One of TEIRESIAS’s representations is very close to this notion, the
schema described below.

Mets-level knowledge has taken several different forms as its uses have been
explored, but It can be summed up as “knowing about what you know.” In general, it allows
the system both to use Its knowledge directly and to examine It, abstract it, and direct Its
applIcation. The capabilities for explanation, knowledge acquIsition, and strategic reasoning
In TEIRESIAS Inspired the incorporation of explicit meta-level knowledge, and these
capabilIties are based on the use of that knowledge.

Explanation

There are two Important classes of situations where expert systems should be able to
explain their behaviour and results. For the user of the system who needs clarification or
rea~suyance about the system’s output, the explanation can contribute to the transp aren cy
and thus the acceptance of the system. The second major need for explanation is in the
debugging process described above, where a human expert uses the system’s explanations
of why It has done what It has done, In order to locate same error In the database. The first
of these applications of explanation has been explored in the question-answering facility of
the MYCIN system; the explanation capability in TEIRESIAS has explored both uses but has
concentrated on the latter.

The techniques used In TEIRESIAS for generating explanations are based on two
assumptions about the performance program being examined, namely, (a) that a
recapitulation of program actions can be an effective explanation, as long as the correct
level of detail Is chosen, and (2) that there is some shared framework for viewing the
program’s actions that will ma-ks them comprehensIble to the user. In the MYCIN-like expert
systems that use production-rule knowledge bases, these assumptIons are valid, but it is
easy to imagine expert systems where one or both are violated. For example, the first
assumption simplifies the explanation task considerably, since It means that the solution
requires only the abIlIty to record and play back a history of events. This assumption rules
out, In particular, any need to simplify those events. However, It Is not obvious, for instance,
that an appropriate level of detail can always be found. Furthermore, it is not obvious how
this approach of recapitulation, which often offers an easily understood expianatlbn in
programs that reason symbolically, would be applied to expert systems that perform primarily
numeric computations.

- . A sImple recapItulation will be an effective explanation only if the level of descriptive
- - detail is constrained. It must be detailed enough that the operations the system cites are

comprehensible; the conceptual level must be high enough that the operations are meaningful
to the observer, so that unnecessary detail is suppressed; and It must be torn p lete enough so
that the operations cited are sufficient to account for all behavior.

The second assumption concerns the user’s comprehension of the expert system’s
activity, which depends on the fundamental mechanism used by the program and the level at
which It is examined. Consider a program that does medical diagnosis using a statistical
approach based on Bayes’s Theorem. it Is difficult to Imagine what explanation of Its actions 
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the program could give If it were queried about computed probabilities. No matter what level
of detail is chosen, such a program’s actions are not (nor were they intended to be) a model
of the reasoning process typically employed by physicians. Although they may be an
effective way for the computer to solve the diagnosis problems, there Is no easy way to
interpret these actions in terms that will make them comprehensIble to humans unacquainted
with the program.

Thus, the lack of mechanisms for simplIfyIng or reinterpreting computation means that
TE1RESIAS’s approach Is basically a first-order solution to the general problem of explanation.
But, in the context of a MYCIN-iike expert system, for which TEIRESIAS was designed, the
simple AND/OR goal tree control structure offers a basis for explanations that typically
needs little additional clarification. (The operation of TEIRESIAS’s explanation facility is
Illustrated In the sample protocol at the end of this article.) The Invocation of a rule is taken
as the fundamental action of the system. This action, within the framework of the goal tree,
accounts for enough of the system’s operation to make a recapitulation of such actions an
acceptable explanation. In terms of the constraints noted earlier, it is sufficiently detailed--
the actions performed by a rule In making a conclusion, for instance, correspond closely
enough to the normal connotation of that word--that no more detailed explanation is
necessary. The explanation Is stIll at a high enough conceptual level that the operations are
meaningful and the explanation Is complete enough--there are no other mechanisms or
sources of Information that the observer needs to know in order to understand how the
program reached Its conclusions.

Knowledge-acquisition: Rule Models and Schemata

When the expert has identified a deficit In the knowledge base of the performance
program, TEIRESIAS questions him In order to correct the deficit. This process relies heavily
on meta-level knowledge about the performance program, encoded In rule-models and
schemata. In other words, TEIRESIAS knows about what the performance program knows.

The mets-level knowledge about objects in the domain includes both structural and
organizational information and Is specified In data structure schemata. Acquisition of knowledge
about new objects proceeds as a process of Instantiating a schema--creating the required
structural components to buIld the new data structure and then attending to Its interrelations
with other data structures. By making inquiries in a simple form of English about the values
of the schema’s components, this knowledge acquisition process is made to appear to the
expert as a natural, high-level Inquiry about the new concept. The process Is, of course,
more complex, but the key component Is the system’s description of Its own representation.

TEIRESIAS’s rule models are em~irIcal generalizations of subsets of rules, indicating
commonailties among the rules In that subset. For example, In MYCIN there Is a rule model for
the subset of rules that conclude affirmatively about organism category, indicatIng that most - -
such rules mention the concepts of culture site and infection type in their premise. Another rule
model notes that those rules that mention site and infection type in the premise also tend to
mention the po rtal of entry of the organism.

This knowledge about the contents of the domaIn rules Is used by TEIRESIAS to build
expectations about the dialogue. These expectations are used to facilitate the process of
translatIng the English statements into the performance program’s Internal representat ion
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and to Identity information missing from the expert ’s entry. An example of TEIRESIAS ’s use
of rule models in its knowledge acquisition dialogue is given In the sample protocol below.

Meta~rules and Performance Strategies

In performance programs with sufficiently smaii knowledge bases (like MYCIN’s),
exhaustIve invocation of the relevant parts of the knowledge base during a consultation is
still coinputatlonally feasible, In time, however, with the inevitable construction of larger
knowledge bases, exhaustive Invocation will prove too slow. in anticipation of this
eventuality, m.ta-rules are implemented In TEIRESIAS as a means of encoding strategies that
can direct the program’s actions more selectively than can exhaustive Invocation. The
following mete-rule Is from MYCIN’s infectious disease domain:

METARULE Ui
1) the infection Is a pelvic-abscess , and -

2) there are rules which mention In their
premise ent.robacteriac.ae, and

3) there are rules which mention In their
premise gram positive rods,

Then There is suggestive evidence (.4) that the rules
dealing with snterobacterlaceae should be evoked
before those dealing with gram positive rods.

This rule suggests that since enterobacter%aceae are commonly associated with a pelvic
abscess, It Is a good Idea to try rules about them first, before the lass likely rules mentioning

• gram positive rods. Note that this mete-rule doss not refer to specific object-level rules.
t Instead it specifies certain attributes of the rules It refers to, for example, that they mention

In their premise enterobacteriaceae.

An Examples TEIRESIAS in the Context of MYCIN

We wIll now illustrate TEIRESIAS’s operation In at fillatlon with the MYCIN system (see
Article Medicins.C2), paying particular attention to TEIRESIAS’s explanation and knowledge
acquisition facilities. MYCIN provides the physician with advice about the diagnosis and drug
therapy for bacterial Infections. The system asks questions about the patient, the infection,
the cultures grown from specimens from the patient, and any organisms (bacterium) growing
in the culture. (Typically, of course, the exact Identity of the organism Is not yet known.)

MYCIN’s database Is composed of rules that specify a situation (involvIng Information
about the patient , culture , and organism) and the conclusions that can be drawn in that
situation. For example, to conclude whether a patient suffers from a bacteria In the
entero bacter iaceae category , MYCIN invokes Rule 95 of its knowledge base:

~ ___________________ ______________ _____ _________ 
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Rule 895

IF the site of the culture is blood, and
the gram stain is positive , and
the portal of entry Is gastrointestinal tract, and
(A-the abdomen is th. locus of infection , or
B-the pelvis Is the locus of Infection]

THEN there Is strongly suggestive evidence that
enterobacterlacece Is the class of organisms for
which therapy should cover.

MYCIN asks questions of the physician to determine whIch rules are applicable In the current
case--i.e., to determIne the “situation” To determine If the organism is of type - -

eritarobacterlaceas, MYCIN would inquire whether each clause In Rule 95 were true.

The procedure of working backwards from the conclusIon to the situation that would
make the conclusion true is called backuard chaining and Is MYCIN’s fundamental control
structure. Backward chaining can go “several levels deep,” meaning that the clauses in a
situation that must be true (for the conclusion to be true) might themselves be conclusions of
other rules. For example, a condition on the identification of enterobacteriaceae Is that the
infectIon be localized In the abdomen or the pelvis; but this condition Is Itself a conclusion,
end it Is only true if its conditions (that the culture from these places Is recent, and is
therapeutically significant) are true. Furthermore, the condition of therapeutic significance
has its own conditions, and so on. Here Is a protocol showing MYCIN’s basic style of
interaction, the human expert’s responses are prefixed with ~“: 

Patient 281 
1) Patient’s name:
~ Albert Hall
2) Sex:
*~ Male
3) Age:
** 34
4) Have you been able to obtain positive microbiological

information about a possible Infection of Albert Hall?
** Yes 

Infection 1 
5) What s the infectIon?
** Prlmary-Bacteremla
6) Please state when signs and symptoms of infection-i fIrst appeared:
** 15-Dec-75 12:00 

Culture I 
7) From what site was the specimen for culture-i taken
** Blood
8) Please give the date and time when this blood culture was obtained:
““ 15-Dec-75 12:00
The first significant organism from this blood culture will be

L 
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_ _ _  _ _



—-~~~~~— —~~ 1w~ - •
~~~~

•
~~~~~~~ 

—
- -

-

B TEIRE BIAS--issues in Expert Systems DesIgn 13

referred to as: 
OrganIsm- 1 

9) Enter the identity of ORGANISM- I
““ Unknown
10) Is ORGANISM-i a rod, or coccus, (etc.):
““ Rod
11) The gram-stein of ORGANISM-i:
““ Gram negative
12) DId ORGANISM-I grow in the aerobic bottle?• ““ Yes
13) Did ORGANISM-i grow in the anaerobic bottle?
““ Yes

My therapy recommendations will be based on the following probable
Infection(s) and potential causative organism(s): -•

INFECTION-i is PRIMARY-BACTEREMIA
- (Item-i) E.COLI (ORGANISM-i]

Cltem-2) PSEUOOMONAS-AERUG1NOSA (ORGANiSM-I]

FIGURE 1. PART OF A DIAI.OGUE WITH MYCIN.

In sum, MYCIN constructs a goal trse (see Article Sserch.A2) of questions that must be
- • resolved in the course of the consultation to conclude the identity of a bacteria. When it

cannot resolve a question by inference from what It knows already, it asks the respondent to
provide an answer. Each node of the goal tree has subnodes that result from the application
of a rule:

Enterobac eriac.ae

/ / \ \
site’ gras.’ portal, locus.
blood posItIve g.I.tract abdomen or

pelvi s

Rule 821

recent cu lture iherap.utically
• significant

Rule 054 ,/ ,/‘ \

\sterile significant non—
method of number of sterile

collection organisms site

FIgure 1. A MYCIN Goal Tree

_ _  _ _ _  _ _  __  
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Explanation: HOW and WHY. Suppose that during a consultation with MYCIN the
clinician wants an explanation of the reasoning behind some question that MYCIN has asked
him. The explanation given by TEIRESIAS in response to the physician’s question, WHY,
Involves backIng up the goal tree to the previous node and presenting the rule used to
derive the subnode from its ancestor:

MYCIPd: What Is the suspected portal of entry of ORGANISM-i into
thIs sterile site?

Doctor: WHY
TEIRESIAS: (i.e. why Is ‘t Important to determine the suspected

portal of entry of ORGANISM-i Into this sterile site?]

(3.O].Jn order to find out about an organism or class
of organisms for which therapy should cover.

It has already been established that
(3.1] the site of the culture is blood
(3.2] the stain of the organism Is gram posItIve

Therefore If:
[3.3] the portal of entry of the organism Is g.I.
[3.4] [Abdomen is the locus of Infection, or

Pelvis is the locus of Infection] - 
-

Then
There Is strongly suggestive evidence (.9) that
enterobacteriaceae is the class of organisms for . -

which therapy should cover.
(Rule 095]

In contrast to WHY, which spells out “hIgher” nodes in the goal tree, the HOW command
asks TEIRESIAS to explain the nodes that have been or Wil l be expanded lower down the
tree. For example, in the following exchange, the expert asks how MYCIN will determine
whether the abdomen or peM~ Is the locus of infection:

Doctor: HOW(3.4] note: 3.4 ii the prefix of the statement
of Interest in the exchange above

TEIRESIAS: (I.e. how were you determining that the Abdomen is the
locus of Infection, or that the Pelvis is the locus of infectiOn?)

[4.0] At that point Rule 021 was being used.

if the doctor now wants to see Rule 021, he asks TEIRESIAS to explain HOW it was used,
referring to the prefix (4.0) of the statement In which it was mentioned:

Doctor: HOW (4.0]

TEIRE$lA$: (I.e. how was Rule 021 used?]

[6.0] it has already been established that
(5.1) the culture Is recent.

_____— — - _1 
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Therefore if:
(5.2] there is therapeutically significant disease
assocIated with the occurrence of this organism

then
It Is definite (1.0) that the site of the Culture is
the locus of infection in the patient.

The explanation facilities of TEIRESIAS involve climbing up and down MYC1N’s goal tree
explainIng WHY questions are asked and HOW they are answered. If MYCIN makes a
mlsdiagnosis, these same facilities are used (either by the expert or TEIRESIAS, at the
choice of the expert) to back up through the rules that achieved the diagnosis until the
expert has found the faulty one or determined that one is missing. TEIRESIAS is then used to
expedite the alteration or construction of rules by the expert.

Knowiedge acquisition. TEIRESIAS is able to help an expert formulate rules in English
because It has expectations about what rules “look like.” The expectations are stored
internally In the form of rule models that are formed automatically by examining all the rules in
the knowledge base. TEIRESIAS knows, for example, that there is a class of rules that have

-
- 

- as their conclusions the probable identity of a bacteria and that these rules typically have
as conditions (a) the site of the culture, (b) the stain of the culture, and (c) the probable

I - portal of entry of the bacteria. These rule models help TEIRESIAS translate English versions
of new rules Into a machine representation acceptable to MYCIN.

- 
- 

- To Illustrate TEIRESIAS’s debugging and correction facilities, we will continue with the
consultation from Figure i. Suppose that after MYCIN presents the expert with its diagnosis,
TEIRESIAS steps In and checks whether the expert agrees:

MYCIN: My therapy recommendation will be based on the following
probable Infection(s) and potential causative organism(s):

- - 

INFECTION-i Is PRIMARY BACTEREMIA
<Item-i) E.COLI [ORGANISM-i] -
<ltem-2> PSEUDOMONAS-AERU*3INOSA (ORGANISM-i]

Now TEIRESIAS steps tn.

Are all these Identities correct?

The expert ’s response, marked with **, is No.

““ No,
Are there any Identities missing?
** Yes.
WhIch ones?
** KLEBSIELLA-PNEUMONIAE, PROTEUS-NON-MIRABIL1S

-

~ I Are there any Identities which shouldn’t have appeared?
““ yes

_  _  _  

a ,
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Which one(s)?
** PSUEOOMONA8-AERUGINOSA

Do you want to
1] track down the problem yourself, or
2] allow me to guide the debugging, or
3] Ignore it for now and fix It another time.

Tjpe 1,2, or 3.

2

If the expert had typed 1, he would have used the HOW and WHY commands to debugthe p roblem, as discussed above.

We’ll start with PSEUDOMONAS-AERUGINOSA first:

TEIRES1AS starts debugg ’ng by trying to f ind out why an inappropr Iat e diagnosisoccurred. Fre quently solving a p roblem will make others go away ” as well.

The following rules were used in deducIng that the Identity of
ORGANISM-i is PSEUDOMONAS..AERUGINOSA:

Rule 184

Since
(1.1] the category of ORGANISM-i is not known
(1:2] the gram stain of ORGANISM-i Is gram negative
(1.3] the morphology of ORGANISM-i Is rod
[1.4] the aerobiclty of ORGANISM-i Is facultative

There is weakly suggestive evidence (.3) that the identity of
- • - 

ORGANISM-i is PSEUDOMOI4AS-AERUGI$OSA

Is this rule correct

Not. that this rule, which resulted in th. wrong conclusion, is not necessarily an incorrect- 

- rule. It might be (and In fact is) the case that U was Incorrec tly invoked because one ormore of Its condition., are true when they should be fa lse.

The expert says the rule is correct.

Should its premise have failed for this case?
** Yes

• ~~~~~~ —~ - &w_-.~-
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Which clause of the premise should have failed?
~~* Clause 1. -

,

The expert believes that MYCIN should have known the .~ategory of ORGANISM-i.
MYCIN failed to establish the category, causing Rule 184 to be used.

— Should it have been possible to conclude a category?
““ Yes
WhIch one?
** Enteeobacterlaceae

Our old friend. But recall that MYCIN ’s rule 095 about enterobacteriaceae requires a
positive gram stain , but it can be seen from F ir. I that it has a negative gram stain. Thus ,
Rule 95 was never evoked. In th. course of more debugging, it transpires that MYC1N
has a couple other rules dealing with this caugor, of bacteria, but they weren’t evoked
either. The expert decides that another rule is required, and we pick up the dialogue
where h. is proposing one to TEIRESIAS:

If: 1 ““ THE PATIENT’S INFECTION IS PRIMARY-BACTEREMIA
2 ““ THE SITE IS ONE OF THE STERILE SITES

Then: ““ THERE IS EVIDENCE (.8) THAT THE CATEGORY IS ENTEROBACTERIACEAE

TEIR ESIAS parses this rule Into Us internal representation and then translates U back
- 

- into English, so the expert can check U. We pick up the dialogue after the expert has
agreed on the p arse. TE1RES1AS is app lying Us ride model.

I hate to crItIc ize, Dr. Davis, but did you know that moat rules about
• what the category of en organism might be, that mention-

the site of a culture
the Infection

ALSO mention-
(A]- the portal of entry of the organism

Shall I try to write a clause to account for [A]?
““ Yes.

Here we see one of the utilities of the rule model. TE1RESIAS prompts the expert to add
— a bit of knowledge that is tyficlall, found In rides lik, these and offers to f ix  the ride

itself. This completion Is accomplished by looking at other rides that f i t  the same ride
model, to find the most likely portal of sets, claw.

- 
~~~~~~
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how about -
[A] The portal of entry Is gastrointestinal. Ok?

** Yes.

TE1RESIAS now does some f inishing up: checking the complete rule with the expert for
f inal app roval and asking the expe rt to write a brief description (for bookkeeping
purposes ) of why Me rule was needed. Finally, it reruns the consultation internally, using
the responses from Fig. I . which it has stored. It turns out that adding the r ide above did.
in fact, cure the other problems with Me f irst consultation, and this time the diagnosis is

- satisfactory to the expert.

Summary: TEIRESIAS and Expert Systems

TEIRESIAS aids a human expert In monItorIng the performance of a knowledge-based
system. When the human expert spots an error In the program’s performance, either in the
program’s conclusions or Its “line of reasoning,” TEIRESIAS assists in finding the source of
the error In the database by explaining the program’s conclusions--retracing the reasoning
steps until the faulty (or missing) rule is IdentIfied. At this point, TEIRESIAS assists in
knowledge acquisition , modifying faulty rules or adding new rules to the database. Meta-level
knowledge about the kinds of rules and concepts In the database Is used to build
expectations in TEIRESiAS’s model-based understanding process. Meta-level knowledge Is also
used to encode problem-solving strategies, In particular, to order the invocation of rules so
that those that are most likely to be useful (given the current knowledge of the program) are
tried first.

References

The principal reference on TEIRESIAS Is the doctoral dissertation by Davis (1976).
Uses of mets-knowledge In expert systems are dIscussed In DavIs and Buchanan (1977).
Also see Oavls (1977) and Davis (1978).
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C. ApplIcations in Chemist ry

Cl. Chemical Analysis

Computer programs have been developed to aid in almost every aspect of chemistry.
As evidenced by recent articles in two journals devoted to uses of computers for chemical
problems, Computers and Chemistry and Journal of Chemical Information and Computer
ScIence , most of the computer programs have focused on numeric problems of data
acquIsItion, data reduction, complex electronic energy calculations, ~nd the like. By contrast,
Al methods have found application In two major classes of nonnumeric chemical reasoning
problems: (a) determining the molecular structure of an unknown organic compound, the

“analys is0 or “structure determination” problems; and (b) planning a sequence of reactions
In order to synthesIze organic chemical compounds, the Msyntheslsu problems (see Article
C4).

Structure ElucIdation

The elucidation of molecular structures is fundamental to the application of chemical
knowledge to important problems in biology and medicine. Some ~f the areas in which
chemists maintain active Interest include: (a) Identification of naturally occurring chemical
compounds isolated from terrestrial or marIne organisms; (b) verification of the identity of
new synthetic materials; (c) IdentIfication of drugs and their metabofttes in clinical studies;
and (d) detection of metabolic disorders of genetic, developmental, toxic, or Infectious
origins through the identIficatIon of organIc constituents excreted in abnormal quantities in
human body fluids.

In many circumstances, especially in the areas of interest mentioned above, the
powerful techniques of x-ray crystallography and x-ray fine-structure analysis may not be
applicable (see article C3), and chemists must resort to structure elucidation based on data
obtained from a variety of other methods. Foremost among them historically Is mass
spectrometry (discussed in detail In the next section). If a chemist wants to determine the
molecular structure of an unknown chemical compound, he first Isolates a sample of the
compound that Is pure--i.e., contaIns no other compounds. Two questions must then be
answered:

1. What are the atoms in the compound?

2. How are the atoms arranged (joined together) In a three-dimensional
structure?

The latter question I. addressed by structure elucidation programs. It Is relatively simple to
determine th• constituents of the molecule (the first question), but the enormous number of
possible three-dlmesnionai arrangements makes the second question especially difficult to
answer. If the unknown substance is a crystal, or can be crystalized, then x-ray
crystallography can be used to determine the exact locations end connections of atoms in a

• molecule in space. If this technique cannot be used and x-ray fine-structure analysis
techniques cannot be applIed , then the chemist must take a more complicated approach to
structure elucidation. No other tests are available to tell the chemist the exact structure of
his molecule; at best he can use tests that help hIm discover small connected clusters of 

~~~• --•—-•~~~~~ ~~ • -- - - - 
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atoms, called molecular fragments , which are either present or absent in the compound.
Therefore, although the chemist may not know the structure of the molecule, he does know
some of Its subparts. From the fragments identIfied as present in the compound and those
known to be absent, the chemist can derive a set of constraints. A constraint can be thought
of as a piece of a graph that either must occur or must not occur in the final graph of the
molecule. This Is how constraInts are represented In the structure elucidation programs that
we will discuss.

- Using the known constraints about a given molecule, it Is often possible to generate the
graphs of all molecules that adhere to those constraints. An algorithm was developed by
Lederberg (1964) to generate all possible acyclic molecular structures from a set of atoms;
and Brown, et al. (1974) developed an algorIthm without the acyclic constraint. Thus it is
now theoretically possible to generate every possible molecular structure containing known
subparts, but It is often prohibitively expensive to do so. However, the exhaustive
generation algorithm can often be constrained to produce a relatively small set of molecular
structures, one of which is the unknown molecule.

If the number of atoms In an unknown molecule Is relatively small and the number of
known constraints is large, a chemist can figure out the molecular structure by hand.
.However, the manual approach has been significantly augmented by computer programs
developed In the DENDRAL project at Stanford University. These programs do not generate
all the possible moelcular structures and then discard structures according to the
constraints; rather, they use the constraInts to Insure that only a small subset of the
theoretically possible structures are ever actually generated.

Structure Elucidation with Constraints from Mess Spectrometry

As we mentioned above, structure elucidation programs are designed to help organic
chemists determine the molecular structure of unknown compounds. Experimental data from
the unknown may be gathered from many different analytic techniques Including mass
spectrometry (MS), nuclear magnetic resonance spectroscopy (NMR), infrared spectroscopy
(iR), ultraviolet spectroscopy (liv), and “wet chemistry” analysis. Mass spect rometry is still
a new and developing technique. It Is particularly useful when the quantity of the sample to
be Identified is very small; mass spectrometry requires only micrograms of sample.

A mass spectrometer bombards the chemical sample with electrons, causing
fragmentations and rearrangements of the molecules. Charged fragments are collected by
mass. The data from the Instrument, recorded in a histogram known as a mass spectrum,
show the masses of charged fragments plotted against the relative abundance of the
fragments at a given mass. Although the mass spectrum for each molecule may be nearly
unIque, it is still a difficult task to Infer the molecular structure from the 100-300 data points
in the mass spectrum; not only does a spectrum contain “noise peaks” and overlapping peaks
-origInating from many parts of the molecule, but the theory of mass spectrometry Is not
complete.

Throughout this section the following terms will be used to describe the actions of
molecules In the mass spectrometer:

Fragmentation--the breaking of a connected graph (molecule) Into fragments by
breaking one or more edges (bonds) withIn the graph.

— - • - --‘- — __ -___ _•_• .~~__ •~_ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ -- ~-
••. - ..———•‘~~ -



- ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ - • -

p~~~~~~~ T ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
- -  

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

ci ChemIcal AnalysIs 21

Atom migration--the detachm ent of nodes (atoms) from one fragment and their
reattachment to other fragments. This process alters the masses of all of
the fragments.

Mess spectral process-- a fragmentatIon followed by zero or more atom
migrations.

Other analytic techniques are commonly used in conjunction with, or Instead of, mass
spectrometry. Some rudimentary capabilities exist In structure elucidation programs to
interpret proton NMR and Carbon 13 (13C) NMR spectra. For the most part, however,
interpretation of other spectroscapic and chemical data has been left to the chemist. The
programs still need the capabIlity to integrate the chemist’s partial knowledge Into the
generation of structural alternatIves.

We will now consider two programs that utilize mass spectrometry constraints in the
elucidation of organic compound structures: DENDRAL and Meta-DENDRAL.

_ _ _ _-  
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C2. The DENDRAL Programs

C2a. DENDRAL

in 1964 Joshua Lederberg developed the DENDRAL algorithm, which produces all
possible acyclic (unringed) molecular structures, given a set of atoms. This algorithm
enabled an exhaustive approach to structure elucidation. In 1966 the DENDRAL project
started at Stanford. One intent of the project was to show that algorithmic programs that
produce results exhaustIvely and at enormous expense could be augmented by some of the
heuristic knowledge used by experts to produce much the same results with a fraction of the
effort. The Heuristic DENDRAL Program achieved this objective by augmenting the DENDRAL
algorithm with a set of rules, those used by expert chemists to Infer constraints on molecular
structures from mass spectrographic information about the molecule. Unfortunately, pressing
expert chemists to formulate rules about mass spectrometry was an arduous process. The
theory of mass spectrometry was incomplete, and the rules about It were inexact and
heuristic, in 1970, the Meta-DENDRAL project addressed the problem of Inf erring the rules
of mass spectrometry from two sources of information: molecular structures, and their mass
spectra. Meta-DENDRAL is a continuing project. —

In 1976, the CONGEN program became the center of attention In the DENDRAL project.
This program replaced Lederberg’s original Heuristic DENDRAL acycllc structure generator
with a generator without Its limitation. COl4GEN is discussed In a separate article (C2b)
because It has been used as a stand-alone system by research chemists.

DENDRAL

- The Heuristic DENDRAL program was desIgned to find a relatively small set of possible
molecular structures, given the atoms In the molecule and the mass spectrum of the molecule.

— 
The limitations of the DENDRAI. algorithm were such that Heuristic DENDRAL could generate
only acyclic (unrlngad) structures: Ketones, alcoho ls, ethers , thlols, thioethers, and amines.

The program has three functional parts: Plan, generate, and test.

1. PLAN: Planning in this context means redefining the problem in terms that will reduce
the effort of the problem solver--e.g.,redefine the problem of finding all possible
combinations of a set of atoms to the problem of finding all such combinations
consistent with constraints derived from mass-spectrometry. AutomatIc inference
of these constraints is the planning part of Heuristic DENDRAL. The list of
constraints has two parts: a list of molecular fragments (clusters of atoms) that
must be in the final molecular structure and a list of fragments that are forbidden

• to appear in the final structure.

2. GENERATE: This part uses these constraints to prevent the DENDRAL algorithm from
generatIng structures that include forbidden subparts or that exclude mandatory
subparts. The generator was originally derived from Lederberg’s algorithm. When
CONGEN was implemented as a stand-alone system, these constraints were
provided by the chemists using the program, not by the planning part.

3. TEST: This part ranks the resulting list of candidate structures by simulating its
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-a—- - aAI~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- • -i~ - . - r- )-,~~~:2 7 t#~~ 



r~~ ~~~~ 
-

~~
- -

~~~~~~~~~~~~~~
-- 

~~~~~~~~~~~~~~~~~~~~~~ 

-

C2a DENDRAI. 23

behavior in a mass spectrometer. The structures resulting In simulated spectra
close to the empirical one are ranked high.

Heuristic DENDRAL thus has two sets of rules that encode the mass spectrometry
knowledge: a) rules used during planning that interpret mass spectral data and infer
molecular fragments, and, b) rules used during testing that simulate the action of the mass
spectrometer on the structure(s) proposed by CONGEN and that predict peaks which should
be observed In the spectrum of the molecule.

Plannin g: InferrIng Constraints From The Mass Spectrum

Heuristic DENDRAL has available to it the mess spectrum and the atomic constituents of
a molecule. From the latter It can Infer the molecular weight, M, of the molecule. Many of the
rules for interpretIng mess spectra include M; for example, the following nile:

If the spectrum for the molecule has 2 peaks at masses
xl and x2 such that

a. xl +x2~~M+28,and
b. xl - 2~ is a high peak, and
c. x2 - 28 is a high peak, and
d. at least one of xl or x2 Is high, and

Then the molecule contains a ketone group.

Ri Ri (xl) Ri

0 fragments Into 0 ~ and/or 0 a c

& i!t2 R2

Intensity

- This piece of knowiedge about mass spectrometry allows Heuristic DENDRAL to constrain its
structure-generating algorIthm to produce molecules with a keton• group as a mandatory

• constituent. This rule, In addition to many similar rules, significantly constrains the number of
- 

• molecules generated by the structure generator. For example, given the spectrum for a
molecule containing 8 carbons, 18 hydrogens , and 1 oxygen, the constraint-generating
program can eliminate from consideration (i.e., place on a list of forbidden structures called
BADLIST) cii possIble structures except those contain ing ethyl ketone 3, which reduces the
number of generated molecular structures from the topologically possible 790 to a
constrained set of 3 (called the G000L$8T).
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The Generator

The algorithm for generating molecular structures Is complicated and has no Al content;
we will discuss it only in general terms and refer the reader to Buchanan, Sutherland,
Felgenbaum, 1969, for a detailed discussion. The followIng article (C2b) discusses the
current CONGEN generator.

There are several design characteristics of the generator that are related to the
enormous number of molecules combinatorially possible in an analysis problem. First, the
generator must be p roved to be complete--It must be able to generate all topologically
possible molecular structures. it should also be non redundant, that is, it should generate
each structure only once. Redundancy was a problem for structures with rings, because
1.ederbecg’s algorithm treated symmetrical molecules as unique structures. A third
characteristic Is that the generator should be flexible enough to be focused by constraints
from the planning part. It should not blindly generate all possible structures, but only those

- fulfilling the constraints. If 600DLIST and BADLIST are empty, It should generate all isomers
(structural variants) of the given composition.

Some simple checks are made by the generator. The composition should be compatible
with the constraints inferred from the spectrum, and the structures generated should have
only the types and amounts of atoms specified in the composition. Finally, the generator
should not produce a structure known by DENDRAL to be unstable.

The structure generator essentially Ngrowsn molecules, starting with a small fragment
of the molecule and adding pieces of the composition to it. At any point in the growing
process, there are numerous atoms or molecular fragments that can be added to the growing
structure, and there are many places where these parts can be attached. But generally the
constraints offered by G000LIST and BADLIST limit the number of possible structures that
might be grown at any point in the growing process.

The Test ing and Ranking Programs

The programs MSPRUNE and MSRANK (Varkony, Carhart , and Smith, 1977) use a large
amount of knowledge about the process of molecular fragmentation in a mass spectrometer
to make testable predictions from each plausible candidate molecule. Predicted data are
compared to the data from the unknown compound, and some candidates are thrown out,
while others are ranked.

MSPRUNE works with: (a) a list of candidate structures from the structure generator,
and (b) the mass spectrum of the unknown molecule. it uses a fairly simple model of mass
spectrometry (encoded in rules) to predict commonly expected fragmentations for each
candidate structure. Predictions that deviate greatly from the observed spectrum are
considered prima fade evidence of Incorrectness, and the corresponding structures are
pruned from the list. MSRANK then uses more subtle rules of mass spectrometry to rank the
remaining structures according to the number of predicted peaks found (and not found) in the
observed date, weighted by measures of importance of the processes producing those
peaks.
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Research Results

The Heuristic DENDRAL project, from 1966 to the present, and including CONGEN, has
produced a number of results of significance to chemists. The effort has shown that It is
possible to write a computer program that equals the performance of experts in some vary
speciallzeØ areas of sclencv Published papers on the program’s analysis of aliphatic
ketones, amines, ethers, alcohols, thtols, and thioethers (Duffield at al. 1969; Schroll et al.,
1989; Buchs et at., 1970) make the point that although the program does not know more than
an expert (and In tact knows tar less), It performs well because of Its systematic search
through the space of possibilities and Its systematic use of what it does know. A paper on
the program’s analysis of estrogenic steroids notes that the program can solve structure
elucidation problems for complex organIc molecules (Smith et ci., 1972). Another paper, on
the analysis of mass spectra of mixtures of estrogenic steroids (without prior purification).
establishes the program’s ability to do better than experts on some problems (Smith et al.,
1973). WIth mIxtures, the program succeeds where people tall; the task of correlating data
points with each possible fragmentation of each possible component of the mixture is too
difficult for people to do. Several articles based on results from CONGEN demonstrate Its
power and utility for solving problems of medical and biochemical Importance (Smith, 1976;
Smith and Carhart, 1978; Buchanan, 1976; Mitchell, 1978; and Varkony, Carhart, and Smith,
1977).

DENDRAL programs have been used to aid In structure determination problems of the
• following kinds:

terpenoid natural products from plant and marine animal sources,
marine stero ls,
organic acids in human urine and other body fluids,
photochemical rearrangement products,
Impurities in manufactured chemicals,
conjugates of pesticides with sugars and amino acids,
antibiotics ,
metabolltes of microorganisms, and
insect hormones and pheremones.

CONGEN (discussed next) has also been applied to published structure elucidation problems
by students in organic chemistry classes to check the accuracy and completeness of
published solutions. In several cases, the program found structures that were piauthble
alternatives to the published structures (based on problem constraints that appeared in the
article). This kind of Information served as a valuable check on conclusions drawn from
experimental data.

References

See Lindsay, Buchanan , Feigenbaum, and Lederberg (forthcoming) for a thorough and
current treatment of the DENDRAI. programs. Buchanan and Felgenbaum (1978) is a recent,
short description of the programs. Also see Buchanan, Sutherland , and Feigenbaum (1969)
and Lederbe rg (1964a).
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C2b. CONGEN and Its Extensions

CONGEN: Interpretation of Constraints

CONGEN (for CONstrained GENerator) is a program that was designed in 1976 to
replace the old DENDRAL generator of acyclic structures. It has proved a powerful stand-
alone program to assist the chemist In determining the molecular structure of unknown
compounds. Its objective was twofold: (a) to allow the user to interactIvely specify certain
types of structural information determined from any of several sources (e.g., spectroscopy,
chemical degradation, method of isolation, etc.); and (b) to generate an exhaustive and
nonredundant list of structures consistent with this Information, Unlike the original Heuristic
DENDRAL program, It does not infer constra ints from mass spectra, but allows the chemist to
specify them. Another difference between CONGEN and Heuristic DENDRAL is that the former 

—

can generate cyclic as well as acyclic molecular structures . The generation Is a stepwise
process, and the program allows Interaction at every stage. Based upon partial results, the
chemist may be reminded of additional information that he can specify, thus limiting further
the number of structural possibIlitIes.

CONGEN breaks down the problem statement given by the chemist in several different
ways , for example: (a) hydrogen atoms are omitted until the final steps of processIng;
(b) parts of the graph containing no cycles are generated separately from cyclic parts (and
combined at the end,; (c) cycles containing only unlabeled nodes are generated before the
nodes are labeled with the names of chemical atoms (e.g., carbon or nitrogen); and (d) cycles
containing only three-connected nodes (e.g., nitrogen or tertiary carbon) are generated
before two-connected nodes (e.g., oxygen or secondary carbon) are mapped onto the edges.
At each step, several constraints may be applied to limit the number of emerging chemical
graphs (Carhart at si , 1975).

There are two algorithms at the heart of CONGEN whose validity producing
nonredundant structures has been mathematIcally proven (Brown & Maslnter, 1974; Masinter
et al., 1974) and whose computer ImplementatIon has been well tested. Combined, they are
designed to determine all topologically unique ways of assembling a given set of atoms, each
with an associated valence, Into molecular structures. The atoms may be chemical atoms
with standard chemical valences, or they may be names representing molecular fragments
(superat oms) of any desired complexity, where the valence corresponds to the total number
of bonding sites available within the superatom. The algorithms can be thought of as

• p erf orming prob lem reduct ion, and reconstruct ion or sub p roblem recom position on molecula r
structures. The first, part itioning, algorithm breaks down the problem of finding a complete
molecular structure into subproblems; for example, to find the structures of the ringed and
non-ringed components of the molecule. The second, embedding. algorithm combInes the
substructures , found by partitioning, into complete molecular structures. Clearly, neither
partItIoning nor reconstruction can be unconstrained processes because of the combinatorics
involved: There are simply too many possible subproblems to solve, and each of them may
have many solutions. Consequently, combining subproblem solutions exhaustively Is not
feasible. In both algorithms, constraints are brought to bear to limit the size of the problem.
Three types of constraints are:
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- 1. Graph theoretic: Symmetric structures are not considered unIque.

2. Syntactic: Structures are constraIned by the valences of the constituent
atoms; for example,

C

is ImpossIble because oxygen is blvalent, i.e. has only two bonding sites.

3. <Semantic>: The chemist provides additional informatIon about the molecule
— that will help to determine Its structure.

Substantial effort has been devoted to modifyIng the two basic procedures, particularly
the structure generation algorIthm--allowing It to accept a variety of other structural
information (constraints) and using It to prune the list of structural possibilities. Current
capabilities include specification of good and bad substructural features, good and bad ring
sizes, proton distributions and connectlvities of lsoprene units (Carhart and SmIth, 1976).
Usually the chemist has addltlbnai Information (If only some general rules about chemical
stability) of which the program has little knowledge, which he can use to limit the number of
structural possIbIlitIes. For example, he may know that the chemical procedures used to
isolate the compound would change organic acids to esters; thus, the program would not

- need to consider structures with unchanged acid groups. In CONGEN, he is given the
facilities to Impart this knowledge interactively to the program.

To make CONGEN easy for research chemists to use, the program has been provided
wIth an interactive “front end.” ThIs interface contains EDITSTRUC, an interactive structure r
editor; DRAW, a teletype-oriented structure display program; and the CONGEN “execut ive ”

I program, which ties together the individual subprograms and aids the user with various tasks
such as defining superatoms and substructures1 creating and editing lists of constraints or
superatoms, and saving and restoring superatoms, constraints, and structures from
secondary storage (dIsc). Recently CONGEN was rewritten to search depth f irst  so that

I 
examples could be produced right from the beginning of the computation. This often allows
the chemist to see that a particular problem has been poorly or Incorrectly constrained and
to stop the computation early, saving large amounts of expensive computer time.

The current system is running on the SUMEX computing facility at Stanford anlI is
available nationwide over the TYMNET network. It has recently been completely re-written In
the BCPL programming languag. to run on a variety of other machines.

Limitations and ExtensIons

I 
Although computer programs, includIng CONGEN, now exist to assist chemists in

I constructing structural Isomers based on information about partial structures, the programs
I have one serious, common limitation. Each program must use non-overlapping structural
I . fragments as building blocks. This limitation leads to at least two important problems. FIrst,
1 the chemist using such a program must select non-overlapping partIal structures; otherwIse

an incom plete set of structures wIll result. This procedure, done manually, is time-consuming

L—
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and prone to error. Second, as a consequence of the first step, problems are solved less
at ficlently by the programs because a detailed envIronment of fewer atoms has been
specif led--to ensure the absence of overlaps.

The GOODLIST INTERPRETER is a first attempt to remove this limitation by simulating the
manual procedure that the chemist uses to arrive at a set of non-overlapping constraints. It
is designed to make more efficient use of information about required (GOODLIST plus
superatoms) structural features of an unknown. Some early successes have demonstrated
that new problems are brought within the realm of solution by the GOODLIST INTERPRETER
that are Impossible in CONGEN alone, due to the constraints on computational resources.

Stereochemistry —

One of the most important new additions to CONGEN deals with the problem of
enumerating all the stereoisomers of a given compound.

The mathematical problem of enumerating stereolsomers was solved by Jim Nourse.
Considerations of symmetry as embodied In the mathematical theory of groups played a
decisive role in the solution. Coupled with the stereoisomer generator, and given an empirical
formula and a number of constraints, CONGEN can generate all the stereoisomers that are
possible solutions to the unknown target molecule to be elucidated.

While the solution to the enumeratIon of stereolsomers uses very little, if any, Al
techniques, It solves a problem that human beings find very difficult to solve. Chemists
usually learn to solve this problem by using visual intuition. The mathematics involved are
deep enough so that the average chemist will not have the patience necessary to learn
enough about the algorithm to use Its InsIghts in enumerating stereoisomers. One of central
problems for Al work I~ chemIstry now is how to use this new facility in structure elucidation.

EXAMINE

Often in the course of a structure elucidation problem, a large number of candIdate
structures , perhaps a hundred or more, are generated; and additional constraints must be
derived, either from further data analysis or from new experiments. The EXAMINE function
wrItten by Neil Gray is used from within CONGEN to survey, classify, display, or discard
structures. This function Is very useful to the chemist who is searchIng for features common
to a large number of the structures or for features that are unique to certain structures. The

• Insights gained from using EXAMINE can be used in planning new experiments or in further
-
~ data analysis. In pursuIt of these objectives, the chemist can define functional groups and

-
• other structural features, or he can work with a predefined library of them. The EXAMINE

function is then called, and it examines the lIst of candidate structures for the presence or
absence of these features.

For example, the chemist can ask EXAMiNE to look for all Structures with exactly one
labile proton. (A labile proton Is a hydrogen atom attached to a nitrogen atom or a hydrogen
atom attached to an oxygen atom.) The chemist can represent this structure in EXAMINE as
an exclusIve OR statement: exactly one hydrogen attached to an oxygen atom In the
structure OR (exclusive) exactly one hydrogen attached to a nitrogen atom in the structure.

L ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~.:•~~~~~~~~~~~ - -
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The user can then request EXAMINE to draw those structures that have this
characteristic and those that do not, In order to produce summary statistics on its frequency
of occurrence or to discard those structures with or without it. While CONGEN is always able
to discard or prune away structures that do not satisfy certain constraints, EXAMINE
provides the Interactive ability to develop boolean combinations of constraints for pruning,
substructure search, or subsequent classification.

REACT

Before spectroscopy became a major too: of the structural chemist , all structure
elucidation had to be done by means of reaction chemIstry, and it is still a major tool in
solving structures. REACT Is an interactive program written by Tomes Varkony, Dennis Smith,
and Carl Ojerassi (Varkony, Smith, end D)erassi, 1978). Although it is a close relative to the
synthetic programs described below (see article C4), Its purpose is to aid chemists in the
structure elucidation task rather than to aid them In finding new synthetic routes.

To show how REACT can be used to reduce the number of candidate structures found
by CONGEN, consider the following example. A dehydration reaction can be expressed as a
p.oduction rule of the form: “if you see the pattern C-C-O, convert it to the pattern C C . ”
We now suppose that a dehydration reaction was applied to the unknown in question and
yielded three distinct structures, which happened because the pattern C-C-O occurred in
the molecule In three different places. This Information can be used to eliminate structures
from those under consideration: The structure list generated by CONGEN is passed to REACT;
the dehydration reaction is defined by the user and then applied to all the candidate
structures; those that do not yield exactly three products can be eliminated from
consideration as candidate structures.

Although REACT does not contain stereochemlcai information, conformational information,
or electronic information (the electro-negativities of its atoms and groups), it still can be
used reliably in its structure elucidation function. Reactions used for structure determination
tend to have high yield, to be reliable, and to involve simple separations. The reactions
operate under a wide varIety of conditions and usually Involve rather simple changes to the
unknown molecule. Thus, the perception routines do not need the sophisticated
stereochemical , conformationai, and electronic information of the organic synthesis programs
discussed above.

Summary

Research In the DENDRAL project has followed two themes: To build a performance
program for analysIs of molecular structures, and to explore some problems of scientific
inference using Al methods. The performance of Heuristic DENDRAL has been evaluated In the
same way as that of a research chemist: by publications. (See the conclusIon of the article
C2s on DENDRAL for references.) In addition, CONGEN is used daily by chemists to aid In
solving structure elucidation problems.

Because of the comblnatorlc size of analysIs problems, exhaustive problem-solving
methods were not an option, and much thought was given to the knowledge that enabled
chemists to solve these problems. DENDRAL was one of the first programs to demonstrate

_______

~~~~~



— - —  ‘- --
~

.---

~

30 Applications-oriented Al Research: Science and Mathem atics

the power of encoding domain-specific, heuristic expertise, and was therefore one of the
fIrst projects to recognize knowledge acquIsition as a major problem in Al (Buchanan,
Sutherland , and Peigenbaum, 1969; Davis, 1976). The next article (C2c) discusses
automatic inference of rules as one solution to the knowledge acquIsitIon problem.

References

In addition to the DENDRAL references in the previous article, the following may be of
Interest: Brown, Maslnter, and Hjelmeland (1974), Brown and Maslnter (1974), Carhart et al
(1976), Carhar~ and Smith (1976), Masinter et al (1974), Shelkh et al. (1970), and Smith

and Carhart (1978). 
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C2c. Meta-DENDRAL

The domain-specific rules that constitute DENDRAL’s knowledge about mass
spectrometry were derived from consultation with experts In that field. Since the
consultation process is time consuming, two alternatives to “handcrafting” knowledge bases
were explored. One Is Interactive transfer of expertise (see article B). The other is
automatic theory formation. Meta-DENDRAL Is a program of the latter type. The rule formation
task that Meta-DENDRAL performs is similar to the task of grammatical inference, sequence
extrapolation, and concept formation (Hunt, 1975; Hedrick, 1974; WInston, 1970). Programs
that perform these tasks can all be thought of as HInductionn programs because they
formulate general rules (or concepts, or patterns) from examples.

Meta-DENDRAL Is designed to infer theories (ruleseta) for the HeurIstic OENDRAL
program (see article C2e), which represents knowledge about mass-spectrometry as
production rules. Automatic rule formation was chosen as a paradigm for Meta-DENDRAL for
two general reasons. First, this design poses interesting eplstemologlcal questions, and,
second, it is an arduous task to derive rules from human consultants, especially when the
task-domaIn has only a small number of experts (as is the case in mass-spectrometry).

Representation of Knowledge about Mass spectrom.t ry

In DENDRAL, knowledge about the fragmentation processes In a mass spectrometer is
represented In the form of production rules. Each rule specifies a bond f r agmentation In a
particular context in a molecule. These rules are used by DENDRAL during its test phase to
predict mass spectral data points, given a certain molecular structure. For example, one
simple rule is:

(Al) N - C - C - C  ----> N - C ” C - C

Rules are Interpreted for each molecule in the followIng way:

(1) Find all pieces in the molecule that match the subgraph expressed by the left-
— hand side of the rule.

(2) For each match, break the molecuie at the bond marked with an asterisk In the
right-hand side of the rule and save the fragment associated with the atoms to the
left of the asterisk.

(3) Record the mass of all saved fragments.

- 
- Note that no migration of atoms between fragments Is predicted by (Ri).

The language of processes (right-hand sides of rules) Is relatively simple: One or more
bonds from the left-hand side may break and zero, one, or more, atoms may migrate between
fragments. The interpretation of rule Al In the above example Is straightforward: if a
molecule contains a nitrogen atom and three carbon atoms bonded as N-C-C-C, then it will
fragment In the mass spectrometer between the middle two carbon atoms, and the N-C
fragment will be recorded In the spectrometer as a peak at the point In the spectrum
correspondIng to the molecular weight of this fragment.

- -  

-
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Formation of Mass Spectral Rules

The task of Meta-DENDRAL is to infer rules (like Ri above) from empirical date. Mete-
DENDRAL Is provided with descriptions of the structures of a related set of molecules, and
with the set of peaks produced by the fragmentation of each molecule In the mass
spectrometer. From these data it Infers a small and fairly general set of mass-spectral rules
to account for the fragmentations of the molecules and the corresponding spectral peaks.

Training instances. In order to learn rules, the Meta-DENDRAL program is presented
with many examples of actual I/O pairs from the mass spectrometer. Each I/O pair
represents a molecular graph structure, together with a single data point from the mass
spectrum for that structure. The rules to be learned constitute a representation of the
relevant fragmentations In the mass spectrometer. Typically, the program starts with a
training set of six to ten related molecuies and their associated spectra, each containIng
50-150 date points--peaks markIng the masses of recorded fragments (and the relative
abundance of fragments at those masses).

In a large molecule, rule (RI) may apply more than once. For example, the spectrum of
CH3-CH2-CH2-NH-CH2-CH2-CH2-CH3 will contain data points at masses 72 and 86
corresponding to the two fragments derived from the application of this rule:

CH3-CH2-CH2-NH-CH2

- 
and 

-

~~~~

- CH2-NH-CH2-CH2-CH2-CH3

For a number or reasons, data poInts are not assocIated uniquely with a single fragmentation
and atom migration process (rule). For example, a single process may occur more than once
In a molecule (as above), or more than one process may produce identical fragments,
producing peaks at the same mass points in the spectra.

Spectral Data Points and Mass-s pectral Processes:
Statistical and Semanticall y Constrained AssocIations

Purely statistical learning programs (Jurs, 1974) fInd associations Indicated by the
data wIthout judging the meaningfulness of these assocIations. This feature can be
advantageous; at times an Investigator ’s bIas InhIbits his seeing assocIations, or an

Investigator may be lookIng for all possible associations. But it is a disadvantage when the
number of associations Is so large that the meaningful ones, unmarked, get lost In the crowd.

in contrast to statistical approaches, Meta-DENDRAL utilIzes a semantic model of the
domain. This model has been Included for two important reasons. First, It provides guidance
for the rule formation program in a space of rules that Is much too large to search
exhaustively and in a domain of Input data that Is often ambIguous. Second, it provides a
check for the meaningfulness of associations produced by the program, in a domain where
the trivial or meaningless associations far outnumber the Important ones.
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SemantIc model of the domain. The base-level, or zero-order, theory of mass
spectyometry states that every subset of bonds within a molecule may break and that the
resulting fragments, plus or mInus migrating atoms, will all be recorded. This zero-order model
of mass spectrometry Is not specific enough to effectively constraIn the rule search.
Therefore, some general guIdelines have been imposed on it, the so-called half-order theory.

The half-order theory asserts that bonds will break and atoms will migrate to produce
data points. This theory orders the break-and-migrate process according to the foilowing
constraints:

Constraints on fragmentations:
Double bonds and triple bonds do not break. -

No aromatic bonde break.
Only fragments larger than 2 carbon atoms show up in the data.
Two bonds to the same carbon atom cannot break together.
No more than 3 bonds break in any one fragmentation.
No more than 2 complete fragmentations occur in one process.
At most 2 rIngs fragment in a multiple-step process.

Constraints on atom migration:
At most 2 hydrogen atoms can migrate after a fragmentation.
At most 1 H20 unit Is lost after any fragmentation.
At most 1 CO unit is lost after any fragmentation.

One of the most helpful features of this model is Its f lexibility: Any of the parameters can be
easily changed by a chemist with other preconceptions; any of these assumptions can be
removed and, as discussed in the following section, additional statements be substituted or
added. This power to guide rule formation results in the program’s discovering only rules
wfthin a well-known framework; on the other hand, it also results automatically In rules
meanIngful to the domain.

A chemist will often know more about the mass spectrometry of a class of molecules
than is embodied In the half-order theory. it is Important then to be able to augment the
program’s model by specifying class-specific knowledge to the program. This capability
provides a way of forming new rules In the context of additional intuitions or biases about
mass spectrometry. A chemIst can thus see the “most Interesting” rules (as defined by the
augmentatlons) before the other rules. For example, one might be Interested first in rules
that mention at least one nitrogen atom before the numerous (and generally less interesting)
rules that mention only carbon and hydrogen substructures.

Learning strategy. The Meta-DENDRAL program is based on a generator of production
rules that uses predetermir~ed syntax operating under the constraInts of a semantic world
model. The operation of Meta-DEP4DRAL can be summarized as follows:

Input

a. the structure of each of a set of related molecules (recall that Meta-DENDRAL
is not a structure elucidation program but infers rules of mass spectrometry, which
associate molecular structures and their mass spectra),

b. the spectral data points (peaks) for each of the molecules, and

- I 
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c. the half-order theory (or some semantic theory to constrain the generation of
rules).

Step 1, (INTSUM)

For each molecule, explaIn each peak in its spectrum by finding one or more
fragmentation processes that would account for the peak. The number of plausible
fragmentation processes is limited by:

a. considering only the fragmentations which are allowed by the half-order theory
(e.g., no spectral peak can be explained by a fragmentation process that Involves
breaking a double bond), and

b. considering only fragmentations which produce fragments with a molecular
weIght corresponding to the weight represented by the peak. (Recall that each peak in
a mass spectrum represents a number of molecular fragments of a given mass.) For
example, If the total weight of the molecule under inspection Is M, and the spectrum
has a large peak associated with a molecular weight of M-47 mass units, then the only
fragmentation processes considered as explanations for thIs point would be those that
produce a fragment with a molecular weight of M-47. The tens, or hundreds, of other
processes that fragmentations are consistent with the half-order theory, like cleaving
off a hydrogen atom, are not even considered.

After each data point In the spectrum for each molecule has been explained by a
plausible fragmentation process, the list of processes Is summarized, since the same
fragmentation processes will often be found to account for many spectral data points.
The final product of INTSUM Is a list of fragmentation processes with the total evidence
for each such process.

Step 2. (RULEGEN)

The rules provided by INTSUM each account for a single fragmentation process in
the context of a single molecule. As such, they are not general. The problem with
general rules, on the other hand, is that a single one may subsume several of 1NTSUM’s
very specific fragmentations, but also fragmentations not represented in the set
produced by INTSUM. That Is, a general rule may correctly explain many date points In
mass spectra, (positive evIdence), but may also predict points that do not occur in any
of the spectra (negative evidence). The purpose of RULEGEN Is to find a set of rules
which ~re more general then those of INTSUM, using positive evidence as a criterion of
success. Negative evidence introduced by these rules is handled by a later step,
called RULEMOD.

RULEGEN works by “growing” a tree of fragmentation rules, starting with one that
Is overly general and adding features to It so that it becomes more constrained. The
rule that RULEGEN starts with is X “ X, that is, the bond between any atoms will break,
and the mass of fragment X will be recorded In the mass spectrometer as a peak.
Obviously, every fragmentation rule Is a specialization of this one, and it Is too general
to be $nte~restIng. But by specifying values for four features--the Identity of X, the

Li number of non-hydrogen neighbours X has, the number of hydrogen neighbors X has,
and the number of doubly bonded neighbors X has--the general rule X * X can be
“grown” into something more InterestIng. 

~~ ---~ .---~~~ 
-- ---- ~~~~~~ -- - - - - - -~~-- ~~

- - - . - - 



- 

—
~ - ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

C2c Mete-DENDRAL 35

Step 3. (RULEMOD)

RULEGEII can generate rules that predict nonexistent data points In the mass-
spectral data. This negative evidence is the cost of the coarse method used by
RULEGEN to find general rules. RULEMOD “tidies up” the rules produced by RULEGEN by
merging rules, elimInating redundancies, and making rules more specific or general. In
addition, If a rule has been used succesfully for a time, but an Instance is found in
which It is inappropriate, RULEMOD can modify the rule accordingly.

Output.

Output is a set of mass spectral fragmentation rules whIch are speclailzed enough
to be interestIng, but general enough to be efficient and nonredundant.

The Meta -DENDRAL program

The program itself Is organized as a series of plan—generate-test steps, as found in many
Al systems (Feigenbaum, Buchanan, and Lederberg, 1971). After pre-scanning a set of
several hundred molecular structure/spectral data-point pairs, the program searches the
space of fragmentation rules for plausible explanations and then modifies its rules on the
basis of detailed testing. When rules generated from a training set are added to the model
and another block of data is examined, the rule set is extended and modified further to
explain the new data. The program iteratively modifIes rules formed from the initial training
set (adding to them); but It Is currently unable to “undo” rules.

Integrating Subsequent Data. A requirement for any practical learning program is the
ability to integrate newly acquired data in an evolvIng knowledge base. New data may
dictate that additional rules be added to the knowledge base or that existing rules be

- modified or eliminated. New rules may be added to the rule base by running RULEGEN on the
new data and then running RULEMOD on the combIned set of new and previously generated
rules.

When an existing rule is modified , It is important to maintain the integrity of the modified
rule over past training Instances. Consider the following example: A new training instance is
acquired and, after credit assignment questIons are resolved, It is decided that rule R was
incorrectly “triggered” by some situation S. The left-hand side of rule R must be modified so
that It will no longer match S. In general, there would be many changes bossibie to R that
would kill the match to 5, but some are better than others. The correct changes to R are
those that do not alter past correct applications of A. Of course there is no way of knowing
which of the possible changes to A will turn out to be correct for future data; and once a
change Is selected, the possibIlIty still exists for backtracking at some future point.

A method has been developed for representing all versions of the left-hand side of a
rule that are consistent with the observed data for all Iterations thus far (Mitchell, 1977).
This representation is referred to as the version space of the rule. By examining the version
space of A, one can answer the question “Which of the recommended changes to A will
preserve its performance on past instances?” The answer Is simply “Any changes that yield
a version of the rule contained in the version space.” Using version spaces avoids the
problem of selecting a single unr.tract able modification to R and therefore eliminates the

- - 
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need for backtracking. For example, all the elements of the version space that match some
negative instance S are eliminated. Similarly, when new data are encountered in which a
situatIon 5’ is found to correctly trigger A, only those elements of the version space that
match S’ are retained.

Results

One measure of the proficiency of Meta-DEPIDRAL Is the ability of a DENDRAL program
using the learned rules to predict correct spectra of new molecules. One of the DENDRAL
performance programs ranks a list of plausible hypotheses (candidate molecules) according
to the similarity of their predictions (predicted spectra) to observed data. The rank of the
correct hypothesis (i.e., the molecule actually associated with the observed spectrum)
provides a quantitative measure of the “discrimInatory power” of the rule set.

The Meta-DENDRAL program has successfully rediscovered known, published rules of
mass spectromatry for two classes of molecules, including the aliphatic amines used as
examples above. More importantly, it has discovered new rules for three closely related
families of structures for which rules had not previously been reported. These are the
mono-, di-, and tri-keto androstanes which share the common structural skeleton shown in
Figure 1.

R”

. Figure 1. Structural Skeleton for Three Classes of Androstanes.

Meta-DENDRAL’s rules for these classes have been published In the chemistry literature
(Buchanan et al., 1976). Evaluations of all five sets of rules are discussed in that publication.
This work demonstrates the utility of Meta-DENDRAL for rule formation in mass spectrometry
for classes of structures.

The reosnt — -app,ication of Mets-DENDRAL has been to a second spectroscopic
technique: Z IC-nuckar svzgneuc resonance spectroscopy (Mitchell, 1018). This new version
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provides the opportunity to direct the induction machinery of Meta-DEPIDRAL under a model of
I 3C-NMR spectroscopy. It generates rules that associate the resonance frequency of a
carbon atom In a magnetic field with the local structural environment of the atom. Note that
for 1 3C-PIMR spectroscopy there Is no requirement for a halt-order theory since there is no
equivalent to the fragmentation processes which occur in mass spectroscopy. Each data
point is assigned to a unique atom In the molecule prior to the Meta-DENDRAL run. Thus there
Is no analog of the INISUM phase which is required by the mass spectroscopy version.
Instead, an assigned spectrum (atoms to data points) is given directly to RULEGEN.

1 3C-NMR rules have been generated and used in a candidate molecule-ranking program
simIlar to the one described above. 1 3C-NMA rules formulated by the program for two
classes of structures have been successfully used to IdentIty The spectra of additional
molecules (of the same classes, but outside the set of training data used in generating the
rules). The rule-based molecule-ranking program performs at the level of a well-educated
chemist in both the mass spectral and 1 3C-NMR domains.

References

See Lindsay, Buchanan, feigenbaum, and Lederberg (forthcoming) for a thorough and
current treatment of the DENORAI. programs. Buchanan and Feigenbaum (1978) is a recent,
short description of the programs. The thesis by Mitchell (1078) Is also recommended.
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C3. CRYSALIS

The CRYSALIS system, which Is still In the development stages, is an attempt to apply
Artificial Intelligence methodology to the task domain of protein crystallography. Although the
computer has been en essential tool In x-ray crystallography research for many years, nearly
all its applications have been In the areas of data collection, data reduction, Fourier analysis,
graphics, and other essentially numerical tasks (Feigenbaum, Engelmore, and Johnson, 1977).
Those aspects- of - molecular structure Inference that require symbolic reasoning or that use a
significant amount of judgmental -knowledge have traditionally been performed manually. A
prime example is the task of electron densit, map Interpretation.

In the course of deriving a protein structure, the crystailographer generates an
electron density map, a three-dimensional description of the electron density distribution of a
molecule. Due to the resolution imposed by the experimental conditions, the electron density
map is an Indistinct image of the structure that does not reveal the positions of Individual
atoms. The crystallographer must interpret the map In light of auxiliary data and general
principles of protein chemistry in order to derive a complete description of the molecular
structure. The goal of the CRYSALIS system Is to integrate these diverse sources of
knowledge and data to try and match the crystallographer’s level of performance in electron
density map interpretation. Automation of this task would shorten the time taken for protein
structure determination by several weeks, to months, and would fill In a major gap In the
construction of a fully automated system for protein crystallography.

Description of the problem

When crystaliographers use the term “electron density map,” they usually have in mind
some pictorial representation of the electron density defined over a certain region of space.
The most commonly used representation Is a three-dimensional contour map, constructed by
stacking layers of conventional two-dimensional contour maps drawn on transparent sheets.
By carefully studying the map, the experienced protein crystaliographer can find features
that allow him to Infer approximate atomic locations, molecular boundaries, groups of atoms,
the backbone of the polymer, etc. After several weeks (or months), he has built a model of
the molecular structure that conforms to the electron densIty map and Is also consistent with
his knowledge of protein chemIstry, stereochemlcal constraints, and other available chemical
and physical data (e.g., the amino acid sequence). Figure 1 shows a portion of a protein
structure and the associated electron density map from which It was inferred.

- - 
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The automation of this task would requIre a computational system that could generate

Its own structural hypotheses, as well as display and verify them. This capability requires:
(a) a representation of the electron density function suitable to machine Interpretation, (b) a
substantial chemical and stereochemical knowledge base, (c) a wide assortment of model-
building algorithms and heuristics, Cd) a collection of rules and associated procedures for
using this knowledg, to make inferences from the experimental data, and (e) a problem-
solving strategy for applying the knowledge sources (KSs) effectively, so that the
appropriate procedures are executed at the times that they are most productive.

Protein crystailographers who build models move continually across a large field of
basic facts, special features of the data and lmphcations of the partial model(s) already
built, looking for any and all opportunities to add another piece to their structure. There are
several desiderata to working in this “opportunistic” mode of hypothesis formation: (a) The
Inference-generating rules and the strategies for their deployment should be separate,
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(b) the rules should be separate from the mechanics of the program in which they are
embedded, and (c) the representation of the hypothesis space should be compatible with the
kinds of hypothesis-generating rules available. The modularity of such a system would allow
users to add or change rules for manipulating the database, as well as to investigate
different solution strategies without having to make major modifications to the system.

The CRYSALIS Architectural The Blackboard

A problem-solvIng paradigm that meets the above specifications, to a large degree, is
that of HEARSAY-li (see article Speech.02)--specIfically with respect to the issues of
knowledge Integration and focus of attention. In Hearsay-li, an “iterative guess-building”
process takes place: A number of different knowledge sources (facts , algorithms, heuristics)
cooperate when working on various descriptions of- the hypothesis. In order to use the
knowledge sources efficiently, a global database--the “blackboard”--$s constructed that
contains the currently active hypothesis elements at all levels of current description. The
decisIon to activate a particular knowledge source is not preestabiished but depends on the
current state of the solution and what available knowledge source is most lIkely to make
further progress. The control Is, to a large extent, determined by what has just been
learned: A small change in the stat! of the “blackboard” may provide the preconditions to
InstantIate further knowledge sources (en Illustration of this process in the context Of
electron density map interpretation Is gIven below).

- 
. Figure 2 shows the types of data and hypotheses that are used In CRYSALIS. As in

Hearsay-Il, the hypotheses are represented In a hierarchical data struct~ - e. In our case the
different information levels can be partitioned into three, distinctly different “panels,” but
the concept of a globally accessible space of hypotheses Is essentially the same for both
systems. Figure 2 also Illustrates how knowledge sources (only a small subset Is shown)
play the same role as In Hearsay-li: adding changing, or testing hypothesis elements on the
blackboard. Further explanation of these diagrams Is given in Engelmor. and Nh , 1977. The
processes of generating or modifying hypotheses and of invoking knowledge sources is
nearly Identical to those described for the AGE system (Nil and Alello, 1976).

Representation of Know ledge in the System

As mentioned above, there are many diverse sources of information used in protein
structure Inference. The problem of representing all the knowledge in a form that allows its
cooperative and efficient use in the search for plausible hypotheses is of central concern to
the developers of CRYSALIS. The system currently under development draws upon many
concepts that have emerged in the design of other large knowledge-based systems--e.g.,
the use of production rules and blackboards. We describe here how these concepts have
been adapted to our particular task.

C 

- 

-

~~

--- - -

~~~~~~~~~~~~~~~~~~~~~~~~ - -- - -~~~~~~ ~ - —~ ~~-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~

—-—

~~~~~~~~ 
- ——



_______ - — — -—- --—-- —.- —.--——--—--“ .——. ., - - .. —~~
-. -——-.-

~~~~_w, 
~r~ -- ~~ TE~ 

.—- .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.--

~~

----—  - 

- ~~~~~~~
. —

~

C3 CRYSAUB 41

r - 

- 
Stereotypic

Superatomic

5

______ _____ 
Atomic

MODEL PLAJ(E

- 2

Topo].ogical

3 6 
-

~

Compositional

. 

CHEMICAL PLANE

- :~ Topographical Knowledge Soi~rces

1. Peak finder
2. Heavy atom hypothesizer

Skeletal. 3. Heavy atom verifier
—~~~~~~~~ - 

)i. Co—factor hypothesizer
5. Co—factor verifier

N dal 6. Co-factor location0 
~rerifier

1 
Parametric

D~E2fSITY PL.ArIE

Figure 2. Panels of the CRYSALIS blackboard, and examples of the application of
knowledge sources.
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Knowledge consIsts of facts, algorithms, and heuristics (rules of good guessing). Facts
required for protein structure Inference are general physical, chemical, stereochemical, and
crystallographic constra ints. Typical factual knowledge stored in the system includes physical
properties of the elements commonly found in proteins, the molecular structure and chemical
properties of the twenty amino acids, the bond lengths, and the symmetry properties of
various crystal structures. These facts are encoded as tables or as property lists attached
to specIfic structural entities.

Algorithms and heuriltics comprise both the formal and informal knowledge that
generates or verifies hypothesis elements. The representation of this type of knowledge in
CRYSALIS follows two general principles:

1) Decompose identifiable areas of knowledge into elementary
units, where each unit Increments the hypothesis when specified
preconditions are met.

2) Represent the elementary unIts as situation-action rules.

To illustrate:

IF: the name of the current-residue is GUi, and
the shape of the subgraph is forked, and
the length of the aubgraph Is between 40 and 75, and
the number of associated peaks of the subgraph Is

greater than 1

THEN: conclude that the subgraph is matched, and
generate a new superatom on the blackboard, - 

-
- - with the following properties: -

Type Is ‘side-chain
- Belongs to current-residue

Data-link to subgraph with certainty factor 600

Note that several actions may be performed for a given situation. Not shown here, but
present In the LISP Implementation of these rules, is a position in the rule for variable
bindings, to avoid repetitious calculation of pørameters appearing in several situation-action

- - clauses. Also note that at least one of the actions of each rule Is to place a token on an
event list. In the actual Implementation, the syntax of the “action” clause is represented as a
single function. An example follows:

syntax: (<Inference type> (element being changed> (att-value pairs))

example: (SUBGRAPH.MATCHED (GENSUPATOM)((TYPE ‘SIDECHAIN)(BELONGSTO
CURRENT.RESIDUE)(DATALIP4K (SUBGRAPH . 500))))

In this example, an event, SUBGRAPH.MATCHED, will be generated and queued on the event
list. The event-list is used by the interpreter (discussed In the next section) to determine
what to do next, that Is, which set of knowledge sources to invoke after the current event
has been processed.
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Event-driven control

The CRYSALIS system uses an event-driven control structure. In this scheme, the current
state of the hypothesis space determines what to do next. The monitor continually refers to
a list of current events--the event-list--that Is used to trigger those knowledge sources
most likely to make further headway. As a knowledge source makes a change in the current
hypothesis, It also places an item on the event-list to signify the type of change made.
Thus, as events are drawn from the event-list for processing, new events are added, so that
under normal conditions the monItor always has a means for choosing Its next move.

The normal iterative cycle of problem solving uses the event-list to trigger knowledge
sources, which create or change hypothesis elements and place new events on the event-
lists. The system’s behavior is opportun ist ic : it Is guided primarily by what has been most
recently discovered, rather than by the requirement to satisfy subgoals. An event-driven
control structure was chosen partly to be efficient In selecting appropriate knowledge
sources, and partly to conform with the structure-modeling process normally employed by
protein crystallographors.

F Rules

L ~ . The formal and informal procedures that comprise our knowledge sources are
expressed as rules, as discussed above. These rules are collected into sets, each sel
being judged appropriate to use when particular types of events occur. The events
generally reflect the level at which the inference is being made, which In turn reflects the
model’s level of detail. The correspondence between event classes and rule sets is established
by another set of rules, the task rules. The task rules are used to decide which KS or
sequence of KSs to call In order to perform one of the typical tasks in building the structure-
-e.g., tracing the protein backbone between two anchor points. The decision Is based on the
state of the blackboard and the items on the event list. - The task rules thus form a second
layer of rules, which directs the system’s choice of knowledge sources for a given event,
reflecting the system’s knowledge of what It knows.

Once a task is either completed or fails, the system looks to a higher level of control to
determine what to do next. At this higher level--the strategy level--the structure-building
process can either try to solve the current subproblem by another method or shift attention
to another region of the structure. Strategy level decisions are also expressed as rules and
make use of the current state of the blackboard and event list. For example, one strategy
rule is:

IF: the initIalization task is complete, and
the locations of two or more atoms are known

(also called ‘toeholds’), and
these toeholds are separated by less than 6 residues

in the amino acid sequence, and
none of the Intervening residues are IdentIfied from the data,

THEN: select the two-point chain-tracing task and focus on the
subsequence bounded by the toeholds.
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The part of the monitor that interprets and obeys the event rules may be likened to a
middle-level project manager who knows which specialists to call in as new, partial solutions
to a particular problem are discovered. Continuing the analogy, the middle-level manager
occasionally gets stuck and needs help from higher level management. As mentioned earlier,
some high-level decision (such as merging two or more events to produce a new event or
shifting attention to another part of the blackboard), Is required. This level of decisIon making
is embodied in a set of strategy rules, which are used to direct the top-level flow of control.
We thus have a completely rule-based control structure that employs three distinct levels of
rules (or knowledge): the specialists, commonly called the knowledge sources; the task
rules, representing knowledge about the capabilities of the specialists; and the strategy
rules, which know when to use all available knowledge to solve the problem. Although this
pyramidal structure of rules and mete-rules could continue indefinitely, the flexibility of
knowledge deployment offered by our three-tiered system appears sufficient for this
problem-solving system. Similar ideas in a simpler context have been explored by Davis,
1976 for the MYCIN system.

System Performance -- An Example

To give some indication of the system ’s current level of performance , we present an
annotated typescript in which a typical hypothesis formation task is completed. The example
Is the subproblem of extending the model from an “island of certainty,” or anchor point, by
using the crytallographlc data to determine where to extend the model In space and by using
the amino acid sequence to generate expectatIons of features that ought to be present in
that region. The knowledge sources invoked in this example use an abstraction of the
density map called a subgvaph. A subgraph Is a collection of segments obtained from a
skeletonized density map, which hopefully matches an identifiable substructure in the
protein--e.g., a side chain. The amino acid sequence assumed here is METhionine, LYSine,
LYSine, TYflosine, etc. (the example uses data from the protein Rubredoxin). The example
starts after passing control to a knowledge source called ANCHOR.TOEHOLD. The toehold of —

interest in this case Is the sulphur atom in the methionine sidechain. This toehold is Just a
point In space and must be connected to the skeleton.

- 

iNFERENCE: EVENT-i BY RULE 1 IN RULESET ANCHOR.TOE1IOLD

EVENT NAME: TOEHOLD.ANCHORED
CURRENT HYPOTHESIS ELEMENT: SA2
NEW PROPERTIES: - ((TYPE SIDECHAIN) (BELONGSTO (MET . 1))
(SEGS (((1 SEG240). 100) ((1 SEG23S). 100))) (MEMBERS (A3)))

The ANCHOR.TOEHOLD knowledge source has found subgraphs of the skeleton, but its
limited knowledge cannot assign much certainty to the inference. The “real” matching of
skeleton parts with expected residue Is accomplished by MATCH.SDCHN. This knowledge
source uses the shape of the subgraph, Its length, the number of peaks associated with the
candIdate subgraph, and their heights. If a certainty factor (CF) of 500 or more is assigned,
the sidechain is considered located (CF’s have a range of -1000 to 1000; the CF combining
function being the same as that used by MYCIN; see article M.~cins.C2).

INFERENCE: EVENT-2 BY RULE 3 IN RULESET MATCH.SDCHN

4-
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EVENT NAME: TOEHOLD - -

CURRENT HYPOTHESIS ELEMENT: SA3
NEW PROPERTIES: (SEGS (((1 SEG238) . 823) ((1 5EG240) . 655))))

If a sidechain is found, the trace tries to find the alpha carbon location by finding a peak of a
certain type near the root of the sldechain. The KS used to propose an alpha carbon position
is called POSSiBLE.CALPHA. The system assumes that the location of this peak is a more - 

-

accurate guide than the skeleton for iocating this class of atom.

INFERENCE: EVENT-3 BY RULE 5 iN RULESET POSSIBLE.CALPHA

EVENT NAME: C.ALPHA
CURRENT HYPOTHESIS ELEMENT: A4
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (MET . 1))

(D.PEAKS ((PKO7O . 500))))

Once the toehold has been anchored, this trace becomes essentially a generate-and-
test search, heavily constrained by the sequence. The basic control cycle for the trace is:
Propose a sidechain, match it; propose a peptide, match that; and loop until a match fails.
Sometimes the carbonyl group present in each peptide will appear as a small sldechain. If
this happens, the proposed peptide will extend only from the last sidechain up to this
psaudo-sldechain, and the peptlde will fall to match. This faIlure prompts the system to try
matching the “sidechaln” as a carbonyl. Success of this match would mean that only half of
the peptide has been found; the system can Then propose a larger peptide, which contains
the old one, and proceed as before.

INFERENCE: EVENT-4 BY RULE 4 iN RUIESET MATCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SA4
NEW PROPERTIES: ((TYPE PEPTIOE) (BELONGSTO (MET . 1))

(SEGS (((SEG6 SEG8) . 84))) (PEAKS (PK076 PK078)))

INFERENCE: EVENT-S BY RULE 6 IN MULESET MATCH.CARBONYL.SC

EVENT NAME: CARBONYL.FOUND
CURRENT HYPOTHESIS ELEMENT: AS
NEW PROPERTIES: ((TYPE CO) (NAM~ CARBONYL) (BELONGSTO (MET. 1))(SEGS (((1 SEG5) . 581))) (PEAKS (PK036)))

INFERENCE: EVENT-C BY RULE 4 IN RULESET MATCH.PEPT1DE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SM
NEW PROPERTIES: ((SEGS (((SEGB SEG8 SEGIO) . 420)))

(PEAKS (PKO?6 PKO?8 P1(038)))

INFERENCE: EVENT-? BY RULE F IN RULESET MATCH.SDCHN

-S
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EVENT NAME: SIDECHAIN
CURRENT HYPOTHESIS ELEMENT: SAC
NEW PROPERTIES: ((TYPE SIDECHAIPI) (BELONGSTO (L.YS . 2))

(SEGS (((1 SEG242) . 62?))))

INFERENCE: EVENT-8 BY RULE 5 IN RUIESET POSSIBLE.CALPHA

EVENT NAME: C.ALPHA
CURRENT HYPOTHESIS ELEMENT: AG
NEW PROPERTIES: ((TYPE C) (NAME CA) (BELONGSTO (LYS . 2))

(D.PEAKS ((P1(078 . 500))))

INFERENCE: EVENT-9 BY RULE 4 IN RULESET M*TCH.PEPTIDE

EVENT NAME: PEPTIDE
CURRENT HYPOTHESIS ELEMENT: SAC
NEW PROPERTIES: ((TYPE PEPTIDE) (BELONGSTO (LYS . 2))

(SEGS (((SEG232 SEG1 6) . 600))) (PEAKS (PKOI? P1(126)))

(Three more events, similar to those p receding, have been omitted.)

INFERENCE: EVENT-i 3 BY RULE 6 IN RULESET MATCH.SDCHN

EVENT NAME: SIDECHAIN
CURRENT HYPOTHESIS ELEMENT: SA9
NEW PROPERTIES: ((TYPE SIDECHAIN) (BELONGSTO (TYR . 4))

(SEGS (((6 SEG21 2 SEG4O SEG3G SEG35 SEG228) . 502))))

The matching cycle termInates in one of two ways. If the skeleton becomes so
overconnected that the access function cannot propose the next subgraph (sidechain or
peptide), the trace falls; or if the certainty of a match is too low and there are no rules to
save the situation, the trace faiis. Upon termination, one final knowledge source Is called to
link together hypothesis elements belonging to the same residue, creating an organIzing
“backbone.”

INFERENCE: EVENT-14 BY RULE 3 IN RULESET TRACE.CLE*P4UP

EVENT NAME: LINK-CA-TO-PEPTIQE
CURRENT HYPOTHESIS ELEMENT: 5*4
NEW PROPERTIES: ((MEMBERS (*4)))

(Two more events, like the preceding one are omitted here.)

INFERENCE: EVENT-I 7 BY RULE 7 IN RULESET TRACE.CLEANUP
71

EVENT NAME: BACKBONE
CURRENT HYPOTHESIS ELEMENT: STI
NEW PROPERTIES: ((TYPE BACKBONE) (CF 611) (DIRECTION 1)

(RANGE (1 . 4)) (MEMBERS (SAl 8*2 8*3 8*4 SA5 SAC SAT NIL))
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Summary

At the present time, CRYSALIS Is capable of performing only a small portion of the total
task of electron density map interpretation. The develppment and implementation of .11 the
knowledge sources required for the complete task is a long-term effort. CRYSALIS currently
contains a relatively small knowledge base that permits the interpretation of portions of hIgh-
quality, high-resolution (2.0 Angstroms or better) electron density maps. The system is
expected to evolve toward an extensive knowiedge-based problem solver capable of
complete interpretation of medium-quality, medium-resolution (2 to 2.6 Ang.) electron density
maps. Although CRYSALIS is not yet worthy of serious attention by the protein-
crystallographic community, its defects lie primarliy in Its relatively meager knowledge base
and not In Its design. As new knowledg. sources are added to the system , its level of
performa nce Is expected to rise to the point where its use will be a sign ifican t aid In the
determination of new protein structures.

Ref ersnces

See Engelmore and Nil (1077), Engelmore and Terry (1978), and Feigenbaum,
Engeimore, ~nd Johnson (1977).
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C4. Organic Synthesis

The synthesis of organic compounds is central to the creation of new chemical products
and more efficient processes for manufacturing old products. However, the synthesis
process for a particular product is typically very expensive to run and very hard to design.
Therefore, there is great Interest among both academic and industrial chemists In new tools
to aid in finding new synthetic routes.

A synthesis problem begins with the structural description of a compound that someone
wants synthesIzed, often because the compound has useful properties (e.g., a drug or a
vitamin). Synthesis can also be a definitive confirmation of a postulated structure for an
unknown compound In an analysis problem, since the synthesized compound and the unknown
compound will, If identical, produce identical test results.

Chemists use the computer and Al techniques to systematically explore the synthesis
tree and to help organize the immense body of available knowledge about chemical reactions.
This approach of exhaustively exploring the interesting branches of the synthesis tree was
called the logic-centered approach by Corey and Wipk., who first explored computer-aided
organic synthesis. “Interesting” branches are those most likely to produce the desired
result. “Interesting” is an extremely difficult concept to define and to cast into an algorithm,
therefore, for now, the search must be guided interactively by the chemist. Some of the
relevant considerations are: the efficiency of a reaction, the cost of materials, and the
difficulty of meeting the experimental conditions that support a reaction.

The chemist represents the “target” structure graphically and relates It to simpler
chemicals via known chemical reactions. He relates those to still simpler ones, until he
reaches a set of commands, comparable to starting materials readily available from chemical
supply houses or which can be easily synthesized in a few steps in the laboratory. One plan
for synthesizing the compound, called a “synthetIc route,” may involve dozens of sepa’ate
reactions. It the molecule Is at all complicated there are an immense number of distinct
synthetic routes. For example, a simple steroid composed of about 20 atoms has over
2.4 x 10~ possible direct routes .

Synthetic routes can be visualized using an AND/OR tree (see section Seerch.A2). The
tree descends from the goal node, the target molecule, to the terminal nodes, equivalent to
the starting materIals. The branches connecting the nodes are chemical reactions. Since a
synthesIs plan Involves combining compounds in reactions, the AND-links of the tree are
present in any one synthesis route; alternative ways of making a compound anywhere within
the plan are represented by OR-nodes.

The Three Major Programs

There are three major programs in computer-aided organic synthesis. The earliest Is
IHASA (Logic and Heuristics Applied to Synthetic Analysis), which was written by Corey and
Wipke at Harvard and Is maintained at Harvard by Corey and his research group. SECS
(Simulation and Evaluation of Chemical Synthesis) is an outgrowth of LHASA, written by Wlpke
and maintained by Wlpke and his research group at the University of California at Santa Cruz.
It extended the LHASA paradigm by the inclusion of stereochemlcal and conformationai
Information into all aspects of the computer program. The third major program Is SYNCHEM

_ _ _ _ _  
_ _ _ _  
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(Synthetic Chemistry), written and maintained by H. L. Geiernter and his research group at
the State University of New York at Stony Brook. The main features of these three programs
are summarized in Table 1.

1.

Table 1
Chemical Synthesis Programs

I

Principal
Program Designer Main Features

LHASA E. J. Corey Large procedural knowledg, base of transforms.
Interactive, high-performance.

SECS W. T. Wlpke Separate knowledge bass of many “transforms ”with specia l Interactive language for defining
-
I new ones (ALd EN). Interactive graphics, and

high-performance.

SYNCHEM H. Gelsrnter Motivated by Al search problems. Evaluation
during search done by the program , not by a chemist.

Since SECS was designed to extend the methods In LHASA, much of the discussion of
SECS is true of LHASA. However, SECS has additional features that are of interest to
computer scientists. 01 the three, only SECS Is demonstrably machine independent.

Two DIfferent Approaches

A major distinction between SECS (and IHASA) and SYNCHEM Is that the former is
- oriented to high performance, while SYNCHEM is oriented more to Al issues. As a

consequence of this fact and the fact that chemists’ intuitions about “interesting” pathways
are hard to define, SECS relies on a chemist’s interacting with the program. SYNCHEM, on
the other hand, searches the space without interactive guidance from a chemist. (This Is not
to say that SECS and 111*5* lack Interest or that SYNCHEM is Incapable of high
performance.)

In operatIonal terms, the main difference Is whether the evaluation function for the
search procedure Is explicitly given to the program end used without guidance from the
chemist (SYNCHEM) or whether the evaluation function Is not explicitly given to the program
(SECS and LI4ASA). These are called the noninteractive and interactive approaches below.
SECS can be reconfigured to run nonlnteractively, although a chemist’s guidance tends to
give better results.

_ _ _  _ _  
_ _ _ _ _ _  ‘4
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The Chemical Knowledge Base

The prImary Item of knowledge In chemical synthesis is the chemical reaction--a rule
describing a situation in which a change can occur (to a molecular structure) plus a
-dgscrlption of that change. For example, the reaction shown In FIgure 1 describes a change
to a molecule containing the substructure O~C.C-CtO in the presence of the reagent oxalyl
chloride. -

0=C-C-CzO + Oxalyl Chloride ) O:C-C~C-CL

Figure 1. Graphical representation of a chemical reaction.

To design a aynthesls route from starting materials to target molecule, knowledge of
reactions can be used in either of two ways:

1. Forward direction: Apply known reactions to starting materials, then to the
products of those reactions, the products of products, etc., Until the target is
reached. The comblnatorics of this approach make it impossible in practice
because there are thousands of possible startIng compounds and only one target.

2. Reverse directIon: Starting with the target molecule, determine which
reactions might produce it. Then look for ways to make the precursors, and the
precursors of precursors, etc., untIl starting materials are reached. Storing the
reactions in the reverse direction makes it easier to search the tree of possible
pathways.

All three programs have a large knowledge base of reverse chemical reactions celled
transforms--production rules of the condition-action form, with the left-hand side being a
substructure pattern to be matched in the target structure (or intermediate structure) and
the right-hand side being a description of precursors that will produce the goal structure
under specified reaction conditions. Each of the three projects have dealt with the problems
of constructing a knowledge base in very different ways.

1. The IHASA knowledge base Is a set of procedures. Although It contains very
sophisticated chemistry knowledge, it is difficult to modify.

2. The SECS knowledge base contains about 400 separate transforms. New
transforms can be defined by users and entered into the knowledge base
without changes to the program. Because of iti clarity, it Is used for
illustration and is discussed In detail below.

3. The SYNCHEM knowledge base is a library of reactions that can be updated by
chemists without reprogramming. Each reaction is automatically complied into
a reverse reaction. In addition, the knowledge base contains a large library of
starting compounds that are available commercially. 

-

Each of the SECS transforms is stored on external stora ge independent of the SECS
program; this feature enables the knowledge base to be tailored to a specific problem
domain. Further, the number and complexity of transfor ms is not limited by the size of core
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memory. A simple, flexible language, called ALCHEM, Is provided in which chemists can enter
new transforms Into the knowledge base.

ALCHEM embodIes a model of what information is needed in order to adequately
descrIbe a reaction. According to this model, a transform consists of the following six
sections:

(1) Transform name.

(2) Substructure key or pattern to be matched.

(3) Character--used to help judge the relevance to strategic planning.

(4) Scope and limitations.

(5) Reaction conditions--which must not be violated by the remainder of
the molecule containing the substructure key.

(6) Manipulation statements--describing the graph transformations to be
performed.

This will be clarIfied below with an example.

In the reaction shown in Figure 1, one of the Oxygens double-bonded to Carbon Is
replaced by a single bond to a Chlorine. To go from a graphical representation of a synthetic
reaction to the graphical representation of a SECS transform, we reverse the left- and
right-hand sides and specify additional important conditions. Using the AICHEM language, the
Chemist could interactively enter the following representation of this transform.

Comment: Chloroenones, O~C-CsC-CL goes to ONC-CBC-CL 
-

Reagent: Oxalyl Chloride
Ref: Heathcock and Clark (1976).

Transform name: CHLOR-ENONE
Substructure key: 0~C-C~C-CL (1 ~ 2 • 3 • 4 - 5>
Priority: 100

Character: CHARACTER ALTERS GROUP

Scope IF ACID IS OFF PATH THEN KILL
and Limitations: IF ESTER IS OFF PATH THEN KILL

IF HYDROGEN iS ALPHA TO ATOM 4 THEN
BEGIN
IF HYDROGEN IS ALPHA TO ATOM2
THEN SUBTRACT 75 FROM PRIORITY
DONE

Manipulation: BREAK BOND 3
Statements : DELETE ATOM 6

ADO 0 OF ORDER 2 to ATOM 4

_ _  _
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In the act ual reaction , of course , the chlorinated compound
comes from the prec u rsor.

Referring,to the manipuiation statements, “BREAK BOND 3” refers to the third bond from the
left In tile substructure key; the double bond between the two carbons Is reduced to a single
bond. Shnllarly, “DELETE ATOM 6” refers to the Chlorine atom CL, the fifth atom from the left.
When the program is actually run, a compiler called SYNCOM translates the ALCHEM
statements into machine readable form before the program is run.

A Brief Descript ion of SECS

SECS and LHASA have been designed to divide the work between the chemist and the
computer in the most optimal way. in a recent paper Wlpke et al. (1977), explain their
philosophy.

Our performance goal for the program was that the program should be
able to help a chemist find many more good and innovative syntheses
than the chemist could working alone. Because of the complexIty of
the problem domain, we felt the chemist and computer working

- together with each assigned tasks for which they are best suited, and
with efficient Interaction between the two, would be more effective
than either workIng alone. Our goal was not to replace the chemist,
but to augment the chemist’s probiem solving capabilities.

Graphics. The chemist communicates with the SECS program using a graphics terminal
with a CRT, a mini-computer, a keyboard, and a light pen. Using the pen, the chemist draws
on the screen the graphical structure of the “target” molecule to be synthesized. Much
effort has gone into human engineering. The SECS graphics routines are designed to be as
near as possible to the chemists’ normal modes of thought, which Is the structure diagram or
the molecular model. There are similar facilIties In LHASA. By convention, hydrogen atoms are
suppressed, as discussed above. Another convention is that only noncarbon atoms (called
“heteroatoms”) are labeled. This convention Is useful since the majority of nonhydrogen
atoms in organIc molecules are carbon.

Application of a Transform. Applying a transform is not simply a matter of matching
the substructure key to a molecule and, If the subgraph fits, executing the graph
manipulation statements. The scope and limitations determine much of the context in which
the transform will be applicable. Also, It Is necessary to check three-dimensional information
and electronic environment Information (that Is, the tendency of the atoms in the molecuie to
be positively or negatively charged) In order to make an accurate assessment about whether
a transform is applIcable. A common situation in synthetic chemistry Is that we have a
functional group to modIfy and a reagent to change It, but the functional group is hindered
(spatially) by another functional group or another portion of the molecule, in such cases, the
reagent molecules cannot react with the group and change it; although they might ;n other
spatial contexts. -

Without the three-dImensional informatIon given by the so-called “model-building”
routines, the program has no way of knowing that the transform cannot apply. After the
spatial modeling has been done, the program can perceive that even though the required

L
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functional group is present, the transform cannot be applied directly because It is
Inaccessible to the reagent molecules. if the transform Is very high priority, a men”. nnd
analysis can be done to find ways of altering the molecule, so that the given functional group
is accessible.

A Brief DescrIption of SYNCHEM

The aims of Geiernter ’s group on SYNCHEM are stated very clearly in Geiernter et al.,
1977:

Extraordinarily rapid progress during the early stages of an attack on
a new problem area Is a rather common occurrence in Al research; it
merely signifies that the test cases with which the system has been
challenged are below the level of difficulty where combinatorial
explosion of the number of pathways in the problem space sets in....lt
is the goal of Al research to move that threshold higher and higher on
the scale of problem complexity through the Introduction of heuristics-
-heuristIcs to reduce the rate of growth of the solution tree,
heuristics to guide the development of the tree so that it will be rIch
in pathways leading to satisfactory problem solutions, and heuristics
to direct the search to the “best” of these pathways. F

SYNCHEM Is noninteractive. The molecule to be synthesized is input, and the program uses
heuristic search to look for the best synthetic route. The program decides which node of the
tree to develop further, by estimating the “cost” of reaching the goal from That node plus the
estImated “cost” of reaching that node from starting materials. One of the interesting Al
Issues is that the program’s definition of “cost” depends on the context of the problem as
well as on static features such as efficiency of reactions, the monetary cost of materials,

- etc. For example, costs are measured differently In an exploratory research context than in
an Industrial production context.

The long-range hope of the SYNCHEM group Is that the study of Al In thIs domain will
lead to new insights in Al and also eventually to a noninteractive system that will be of use
to chemIsts.

SYNCHEM Solution Evaluation. The following quotation (Gelernter et ai., 1977)
illustrates the difference between organic synthesis and a more familiar domain such as
theorem proving.

Unlike much of the earlier work in problem-soiving....where any valid
sequence of transformations from premises to goal provided an
acceptable solution, we were not to be satisfied by an indicated
synthesis route of very low yield, or one requiring difficult or
inefficient separations of goal molecules from by-products along the
way, at least not before the machine had tried and failed to find a
more efficient procedure of higher yield....lt is the question of relative
merit of proposed solutions under the constraints of the problem that
represents a substantial departure from most of the work reported in
the literature of artificial Intelligence. 

~~~~~~~~~~~ -
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The complexities of the domain are highlighted by the fate of one of the most
signIfIcant results produced by the program. SYNCHEM proposed a synthetic route for a
naturally occurring antibiotic that was at that time under development by A. R. Rineha,t’s
group at the University of IllInois. The route was considered Interesting enough to merit a
laboratory investigation. However, the laboratory attempt failed. One of the crucial steps in
the synthesis route could not be accomplished In the laboratory and the proposed route had
to be reluctantly abandoned. No successful routes to the molecule have yet been found. All
synthetic routes, whether proposed by a computer program like SYNCHEM or by a person, are
provisional until they can be verified by experiment.

SYNCHEM Search Strategy

SYNCHEM S search strategy algorithm first expands the goal node to find all its
precursors. Next it computes the cost of reaching the target molecule from the precursors,
taking into account the efficiency and difficulty of the reactions. It also estimates the
difficulty of synthesizing the precursor nodes from the available starting materials. Subgoal

4 selection criteria are a function of both the accumulated heuristic estimates of reaction merit
and yield along the path from subgoal to goal, and of a prediction of the probable reaction
merit and yield along the best path from startIng materials to the subgoal. SYNCHEM updates
the merit ratings with information associated with each intermediate structure. Merit, as

mentioned above, is based on most recent estimates of compound complexity (i.e., difficulty
in synthesizing It) and reaction path merit (yield, cost, etc.) after each cycle of subgoal
generation. The selection of a new subgoal always begins with a new scan of the tree from
the top. Thus the search is performed In a best-first manner: If newly acquired Information
changes the ratings for subgoals, the next subgoal selected can lie on a completely different
branch of the tree. In this way, the program will never develop an unfortunate choice
(pathway down to starting materials) before backtracking and exploring more fruitful
branches.

Summary

Computer-aided chemical synthesis Is a potentially powerful new tool for both research
and Industrial chemists. The utility of any of the programs discussed here critically depends
on the size and accuracy of their knowledge base of organic chemical reactions. Although
far from complete, the knowledge bases now contain highly detailed descriptions of numerous
synthetic reactIons. All of the programs have convincingly demonstrated their ability to find
plausible synthetic routes for important organic materials, often in less time than chemists
working alone. The SECS program has a user community of chemists in Europe and North
American, who add new transforms as well as use the program for synthesis planning. The
effort spent on human engineering for chemists has made it possible for chemists to use the
program effectively (and want to use it) and independently of the program’s designers. One
of the long-range hopes of chemists and computer scientists working in computer-aided
organic synthesis Is that this work on knowledge bases will lead to an improved classification
of chemical reactions.

Because the heurIstic search paradigm fits the synthesis plannIng problem .well, Al
research has had much to offer. In addition, current Al work on knowledge-based expert
systems provIdes concepts and tools for representatIon and management of th~~~ large,
ever changing sets of chemical facts and relations. 

_ _ _ _ _
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0. ApplicatIon s in Mathematics

0i. AM

AM Is a computer program written by Douglas Lenat (1976) that explores the field of
elementary mathematics, enlarging its vocabulary of objects and operators by defining new
ones, gathering empirical data about the concepts It possesses, and making conjectures to
connect some of these mathematical entities.

The program began Initially with a collection of one hundred concepts selected from
finite set theory, and In a couple hours it had defined about three hundred new concepts,
half of which were quite well known in mathematics. One of the synthesized concepts was - 

-

equivalent to natural numbers. AM rated this highly and spent much time developing
elementary number theory, including conjecturing the fundamental theorem of arithmetic
(each number has a unique prime factorization). This is of course much better behavior than
one could expect from blind search through the space of legal mathematical definitions and
propositions. In AM search Is not blind; At any moment It can justify its current efforts merely
by printing out the symbolic reasons for the task it is working on.

The design of AM is a blend of four powerful methods: frame representation, heurist ec
search , production systems, and best-first search. The concepts that AM discovers and
explores are represented as frames (see article Reprseentetion.C7), each containing slots
that are appropriate to the type of concept. ‘or example, mathematical op erations such as
Addition have a Domain/Range slot that would be absent in frames that represent
mathematical obje cts like Sets or Bags. The goal of AM is to develop its knowledge of
mathematics by filling In empty slots in a concept and, occasionally, by defining new
concepts. These tasks are suggested and performed by heuristic rules, represented as
productions (see article Repreaentetion.C3). AM Is constrained by these rules to explore
potentially interesting concepts and aspects (slots) of concepts. After a heuristic has
suggested that a slot be filled or a concept created, the suggested task must compete with
Qthers on an agenda , a job-list of plausible tasks. Each task is supported b~ a set of symbolic
reasons and has a numeric weight representing its “lnterestingness.” At each moment, AM
directs Its attention to the task with the highest weight.

The significance of the project lies both in the architecture of the program and in the
fact that the program behaves well: AM is an existence proof that open-ended math
research--theorem proposin g not theorem proving--can be adequately represented (and
automated) as a heuristic search. It is worth noting that the ultimate impediment to AM’s
progress was Its inability to discover new heuristic rules, as it had discovered new
mathematical concepts. By constructing and experimenting with the program It became clear
where the next research thrust should be: along the direction of automating the discovery
and evaluation of heuristics.

In the rest of this article, the nature of mathematical discovery is discussed. These
ideas are then carried over into a description of the desIgn of AM. The methods of knowledge
representation and control are covered in depth, and special attention is given to the tasks
that AM performs. An excerpt from a sample run of AM is given iilustrating its discovery of
prime numbers and perfect squares. Finally, AM Is evaluated as a mathematician , and its
limitations are noted.

L -
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A Model of MathematIcal Research

Lenat’s thesis was concerned with the mechanization of a particular type of
mathematical activity (apart from theorem proving): the definition of new concepts and the
recognition of plausible conjectures. The AM system has no proof capabilities. Below Is the
model of math research that AM was based upon, pieced together from the writings of
Poincare, Poiya, Lakatos, Hadamard, and others:

1. The order in which a math textbook presents a theory Is almost the exact opposite
of the order in which It was actually discovered and developed. In such a text, new
definitions are presented as they are needed, with little or no motivation to state the
next big theorem, whose proof then magically appears. In contrast , a mathematician
doing research examines some already known concepts and tries to find some
regularity In experimental data involving them. The patterns that he notices are the
conjectures that he must Investigate further, and these relationships directly
motivate him to make new definitions.

2. Each ste,i that the researcher takes while developing a new theory involves choices
from a large set of “legal” alternatives. The key to keeping the search from
becoming blind and explosive Is the proper use of evaluation criteria. Each
mathematician uses his own personal heuristics to choose the “best” alternative
available at each moment.

3. Non-format criteria (aesthetic interestlngness, inductive inference from empirical
evidence, analogy, and utility) are much more Important than formal deductive
methods in developing mathematically worthwhile theories, and in avoiding barren
diversions.

4. It is sufficient, and pragmatically necessary, to have and use a large set of informal
heuristic rules that direct the sequence of the researcher’s activities, depending on
the current situation. in addition, these rules can be assumed to superimpose: The
combined effect of several rules is just the sum of the individual effects.

5. The necessary heuristic rules are virtually the same in all branches 3f mathematics
and at all levels of sophistIcation. Each specialized field will have some of its own
heuristics; those are normally much more powerful than the general-purpose
heuristics.

6. For true understanding, the researcher should grasp--that is, have access to, relate
to, store, be able to manipulate, be able to answer questions about, etc.--each
concept in several ways, declaratively, abstractly, and operationally, and should
know its relevance and examples of It.

Discovery in Mathematics

Before discussing the s,nthesis a new mathematical theory, we consider briefly its
analysis , or how to construct a plausible chain of reasoning that stretches from a given
dIscovery all the way back to well-known concepts.
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One can rationalize a given discovery by working backwards , by reducing the creative
act to simpler and simpler creative acts. For example, consider the concept of prime
numbers. How might one be led to define such a notion if one had never heard of it before?
Consider the following plausible strategy:

If f is a function which transforms elements of A into elements of B,
and B is ordered, then consider just those members of A which are
transformed into extremal elements of B. This set is an interesting
subset of A. Name It and study it.

When f(x) means “divisors of x” and the ordering is “by length,” this heuristic directs
one to consider those numbers that have a minimal number of factors--that Is, the primes. So
this rule actually reduces our task from proposing the concept of prime numbers to two more
elementary problems: (a) discovering ordering-by-length and (b) inventing divisors-of.

Now suppose we know this general rule: “if f  is an interesting function , consider its
I n verse.” it reduces the task of discovering divisors-of to the simpler task of discovering
multipiication. Eventually, If followed far enough, this task reduces to the discovery of very
basic notions like substitution, set-union, and equality. To explain how a given researcher
might have made a given discovery, such an analysis must be continued until the inductive
task is reduced to “discovering” the notions that the researcher started with, which were
his conceptual primitives.

Syntheses of Discoveries

Suppose a large collection of these heuristic strategies has been assembled (e.g., by
analyzing a great many discoveries and writing down new heuristic rules whenever
necessary). Instead of using them to explain how a given idea might have evolved, one can
imagine starting from a basic core of knowledge and “running” the heuristics to generate new
concepts. It Is simply the reversal of the process described In the last section: not
explanation , but generation.

Notice that thIs forward search is much “bushler”--i.e., more branches or paths to foilow-
-and much more explosive than the backwards analysis previously described. it Is a much
harder task to actually make a discovery than to rationalize--by hindsight--one already
made.

Unconstrained forward search is too explosive (see Combinatorial Explosion in article
Seerch.Overview); thus, we can hypothesize that the scientist employs some kind of Informal
rules-of-thumb or heuristics to constrain It. That is, he doesn’t really follow rules like “Look at
the inverse of each known function f ”, because that would take up too much time. Rather, his
heuristic rules might be more naturally stated as productions (condition/action rules) like: 1f

f  ii I—I and Ran ge(f) << Domain(f) , Then look at f -inverse.” Henceforth, heuristic rule will mean
such a conditional rule-of-thumb. In any particular situation some subset of these rules will
“trigger ” and suggest a manageable space of plausible activities to perform. After exploring
that space for a while, the situation will have changed and the cycle will begin anew.

----
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Design of the AM Program

Mathematical Inductive syntheses are precisely what AM does. The program consists
of a large corpus of primitive mathematical concepts, each with a few associated heuristics.
Each such heuristic is a situation-action rule that functions as a local plausible move
generator. Some suggest tasks for the system to carry out, some suggest ways of
satisfying a given task, etc. AM’s activities all serve to expand AM itself , to enlarge upon a
given body of mathematical knowledge. AM uses Its heuristics as judgmental criteria to guide
development in the most promising direction.

Representation. Each concept is represented as a frame-like data structure with 25
different facets or slots. The types of facets Include: EXAMPLES, DEFiNITIONS,
GENERALIZATIONS, DOMAIN/RANGE, ANALOGIES, $NTERESTINGNESS, CONJECTURES and many
others. Modular representation of concepts provides a convenient scheme for organizing the
heuristics; for example, the following strategy fits Into the EXAMPLES facet of the
PREDiCATE concept:

it, empirIcally, 10 times as many elements FAlL some predicate P, as
SATISFY It, then some generalization (weakened version) of P might be
more interesting than P.

AM considers this suggestion after trying to fill in examples of each predicate. In fact ,
after AM attempts to find examples of SE T-E~VALITY , so few are found that AM decides to
generalize that predicate. The result Is the creation of several new predIcates, one of which
happens to mean “Has-the-same-length-as,” that Is, a rudimentary precursor to natural
numbers.

Below is part of a typical concept, PRIMES, In a state long after AM defined and
explored it.

..
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NAME: Prime Numbers
DEFINITIONS :

ORIGIN: Number-of-divlsors-of(x) s 2
PREDICATE-CALCULUS : Prlme(x) • (Yz )(z lx ‘ zzl ~fl 

zax)
ITERATIVE: (for x)1): For I from 2 to Sqrt(x), ~(ilx)

EXAMPLES: 2, 3, 5, 7, 11, 13, 17
BOUNDARY: 2, 3
BOUNDARY-FAILURES: S 1
FAILURES: 12

GENERALIZATIONS: Nos., Nos. with an even no. of divisors, Nos. with a
prime no. of divisors

SPECIALIZATIONS: Odd Primes, Prime Pairs, Prime Uniquely-addables

CONJECS: Unique factorizatlon , Goldbsch’s conjecture , Extremes of
Number-of-divisors-of

ANALOGIES :
Maxima l ly divisible numbers are converse extremes of

Number-of-divisors-of
Factor a non-s1mp~e group into simp’e groups

INTEREST: Conjectures associating Primes with TIMES, end with Divisors-of

- WORTH : 888

Creating a new concept is a well-defined activity: It Involves setting up a new data
structure like the one above and filling in entries for some of its slots. Filling in a particular
slot of a particular concept is also quite well defined and is accomplished by executing a
collection of relevant heuristic rules.

Control. AM is initially given a collection of 115 core concepts, with only a few slots
filled In for each. its sole activity is to choose some slot of some concept end fill in that
particular -slot. In so doing, new notions wIll often emerge. Uninteresting ones are forgotten,
mildly interesting ones are kept as parts of one slot of one concept, and very interesting
ones are granted full concept-module status. Each of these new modules has dozens of blank
slots, hence the space of possible actions (blank slots to fill in) grows rapidly. The same
heuristIcs are used both to suggest new directions for investigation and to limit attention,
that is, both to sprout and to prune tasks on the agenda.

The fundamental kInd of task that AM performs, Is filling in a given facet of a given
concept. To decide which such task to work on next, AM maintains an agenda of tasks, a
global Job-list ordered by priorIty. A typical task is “F UI-in examples of P rimes”. The agenda

[ may contain hundreds of entries such as this one. AM repeatedly selects the top task from
r the agenda and tries to carry it out. In addition, AM creates plausible new tasks to place on

the agenda and decides which task wIll be the best to execute next and how to carry it out. 

~t . 
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If the task is “F ill in new Algorithms for Set-union”, then saJisfying It would mean actually
synthesizing some new procedures, some new LISP code capable of forming the union of any
two sets. A heurIstic rule is relevant to a task if and only it executing that rule brings AM
closer to satisfying that task. Relevance is determined a priori by where the rule is stored.
A rule stored wIth the Domain/Range facet of the Compose concept would be presumed
relevant to the task “Check the DomalniRange of Ins.rt-o-Dekte”.

Once a task Is chosen from the agenda, AM gathers some heuristic rules that might be
relevant to satisfying that task. They are executed, and then AM picks a new task. While a
rule is executing, three kinds of actions or effects can occur:

1~ Facets of some concepts are filled In (e.g., examples of primes may actually be
found and added to the “Exampi~s” facet of the “Primes” concept). A typical heuristic rule
that might have this effect is:

To fill in examples of X, where X is a kind of V (for some more general
concept V)1 check the examples of Y; some of them may be examples
of X as well.

For the task of filling In examples of Primes, this rule would have AM notice that Primes is a
kind of Number and therefore have it look over all the known examples of Number. Some of
those would be primes and would be transferred to the Examples tacet of Primes.

2. New concepts can be created (e.g., the concept “primes which are uniquely
representable as the sum of two other primes” may somehow be deemed worth studying). A

• typical heuristic rule that might result In this new concept is:

If some (but not most) examples of X are also examples of V (for some
concept Y), create a new concept defined as the intersection of

- those 2 cOncepts (X and Y). -

Suppose AM has already Isolated the concept of being representable as the sum of two
primes In only one way (AM actually calls such numbers “Uniquely-prIme-addable numbers”).
When AM notices that some primes are in this set, the above rule will create a brand new
concept defined as the set of numbers that are both prime and uniquely prime addable.

3. New tasks can be added to th. agenda (e.g., the current activity may sug~e.’~lthat the following task Is worth considering: “Generalize the concept of prime numbers”). A
typical heuristic rule that might have thIs effect ii:

It very few examples of X are found, then add the following task to
the agenda: “Generalize the concept X.”

Of course, AM contains a precise meaning for the phrase “very few.” When AM looks
I or primes among examples of already known kinds of numbers, It will find dozens of
nonexampies for every example of a prime that It uncovers. Very few” is thus naturally
implemented as a statIstIcal confidence level.

The concept of an agenda Is certainly not new. Schedulers utIlizing this concept have
been around for a long time. But one important feature of AM’. agenda scheme is a new

it 
_ _ _ _ _  _ _ _  _ _

_ _  - 
. ~~~~~~~~~~ — - .~~ , - - ~~~~~~ ~~~~~~~~~~~~ J



— 
. .. ,—

~

-,.-..-—.-.--—------ - — - -—-
~ —T ~:z ..~

62 Applications-oriented Al Research: Science and Mathematics

Idea: attaching to each task a list of quasi-symbolic reasons that explain why the task Is
worth considering, why it’s piausib le. I r is the res p onsibility of the heuristi c rules to Include
reasons for any tasks they p ropose. For example, reconsider the heuristic rule mentioned In (3)
above. It actually looks more like the following:

If very few examples of X are found, then add the following task to
the agenda: “Generalize the concept X,” for the following reason--
“X’s are quite rare; a slightly less restrictive concept might be more
interesting.”

it the same task Is proposed by several rules, then several different reasons for it may
be present. In addition, one ephemeral reason also exists: Focus of attention. Any tasks
that are similar to the one last executed get “Focus of attention” as a bonus reason. AM
uses all these reasons to decide how to rank the tasks on the agenda. The “intelligence”
AM exhibits Is not so much “what it does” as the order in which it arranges its agenda. For
example, in an experiment carried out with AM In which a randomly chosen task was
alternated with the “best” task (the one AM chose to do), the system was only slowed down
by a factor of 2; yet this behavior totally destroys it. credibility as a rational researcher, as
Judged by the human user of AM.

AM uses the list of reasons in another way: Once a task has been selected, the

quality of the reasons Is used to decide how much time and space the task will be permitted
to absorb, before AM quits and moves on to a new task.

A crucial heritability property holds: Any method for filling In facet f of concept ( . v

also work for filling in facet f of any specialization of C. Thus, when the task “Fill In examples
of SET-EQUALITY” is chosen, AM asks each general ization of SET-EQUALITY for help. It
asks for ways to fill in examples of any Predicate, any Activity, any Concept, and finally of
Anything. One such heuristic rule known to the Activity concept says: “Actually execute the
activity on some random members of its domain.” Hence, to fill in examples of SET-
EQUALIT Y, its domain facet is Inspected, and AM sees that it takes a pair of objects as its
arguments. Then AM accesses the Examples facet of the concept OBJECT , where it finds a
large list of objects. Obeying the heuristic rule, AM repeatedly picks a pair of objects •t
random and sees If they satisfy SET-EQUALITY (by actually running the LISP function
stored In the Algorithms facet of SE T-E QUALITY) . While this step will typically return False,
it will occasionally locate--by random chance--a pair of equal sets. 
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Figure 1. Partia l path of property Inheritence for Concepts In AM

Other h uristics, added to other generalIzat ions ot SET-EQUALiTY, provide additional
methods for executing the task “Fill in exampl es of SET-EQ UALI TY.” A heuristic stored on
the concept ANY-CONCEPT says to symbolically instantiate the definition. A bag of tricks
Is provided for this purpose , one of which (“instantiate the base step of the recursion”)
works nicely on the recursive definition provided for SET-EQUALITY. Notice that, as one
might expect , the more general the concept is, the weaker (more tIme-consuming) its
heuristics are. For this reason, AM consults each concept ’s rules in order of increasing

• generalIzatIon.

Executing a task Is achieved by locating relevant rules-of-thumb and evaluating them.
The location is performed efficiently because all the concepts are related by
gensr&lzatIon/speclallzation links and because the above “heritability” property holds.

Notice the omnipresent reliance upon heuristic guidance. Heuristics propose the tasks
(and associate reasons for them) for the agenda; they propose new concepts to be defined;
they discover (by search, synthesis, or analysis) entries that can be put into specific facets
of specifIc concepts. There are even heuristics for naming new concepts (based on how
they were formed).

An Excerpt

To convey a bit of AM’s flavor, we present a brief excerpt of It in action. Alter reading
through It, the reader should be convinced that AM Is neither proving theorems nor random ly
manipulating entries In a knowledge base, nor Is it exhaustively manipulating or searching. AM
Is carefully growing a network of data structures representing mathematical concepts, by
repeatedly using heuristics both (a) to guide the choice of what task to work on next and
(b) to provide method. to satisfy the chosen task.

Although AM appears to have reasonable natural language abilities, very llttl. effort
was expended in this area. All text was generated using simple, stored patterns assocIated
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with the heuristic rules. A few of the lines have been anglicised (e.g., the addition of “e.g.”),
and some of the concepts had previously been renamed by the user (the human observor of
the system). Otherwise, the excerpt is Just as AM typed it:

TASK 65: Fill in Examples of the con cept Divisors-of.

3 Reasons: (1) No known examples of Divisors-of so lar.
(2) TIMES, which is related to Divisors-of, is now very

interesting.
(3) Focus of attention: AM recently defined Divisors-of.

28 examples found, In 9.2 seconds. E.g., DIvisors-of(6)~(1 2 3 8).

TASK 66: Consider numbers having small sets of Divisors-of .

2 Reasons: (1) Worthwhil e to look for extreme cases.
(2) Focus of attention: AM recently worked on Divisors-of.

Filling in examples of numbers with 0 divisors.
0 examples found, In 4.0 seconds.
Conjecture: no numbers have precisely 0 divisors.

Filling in examples of numbers with 1 divisors.
1 examples found, in 4.0 seconds. e.g., Divisors-of(1)” (1).
ConJecture: 1 is the only number with precIsely 1 dIvisor.

Filling in examples of numbers with 2 divisors.
24 examples found, in 4.0 seconds. e.g., Divleore-of(13) ” (1 13).
No obvious conjecture. May merit more study.

— Creating a new concept: “Numbers-wlth-2-divisors”.

Filling In examples of numbers wIth 3 divIsors.
11 examples found, In 4.0 seconds. e.g., Dlvisors-ot(49) ~ (1 7 49).
All numbers with 3 divisors are also Squares.
Definitely merits more study.
Creating a new concept: “Numbers-wtm-3-dlvtsors”.

TASK 67: Consider the square-roots of Numbers-wIth-3-dlv iso rs.

2 Reasons:
(1) Numbers-wlth-3-divisors are unexpectedly aiso Perfect Squares.
(2) Focus of attention: AM recently worked on Nos-wlth-3-dMsors.

All square-roots of Numbers-wIth-3-divisore seem to be
Numbers-with-2-divisors.
E.g., Divlsors-of(Square-,oot(169)) Divisors-of(13) (1 13).

Even the converse of this seems empiricaliy to be true.
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I.e., the square of each No-wlth-2-divtsors seems to be a
No-with-3-divisors.
The chance of coincidence is below acceptable limits.

Boosting the interestlngness rating of each of the concepts involved.

USER: Renams Numbers-v,lt*-2-dtvisors as Pr imes

TASK 68: Consider the squares of Numbers-with-3-div isor ;,

3 Reasons: (1) Squares of Numbers-w ith -2-div lso rs were interesting.
- (2) Square-roots of Numbers-with-3-divlsors were interesting.
(3) Focus of attention: AM recently worked on

Nos-wlth-3-dlvlsors.

Results: AM as a Mathematician

Here we will review the mathematics that AM explored. Thoughout, AM acted alorn’.with a human user watching it and occasionally renaming some concepts for his or her own
benefit. Like a contemporary historian summarizing the work of the Babylonian
mathematicians, current terms are used and criticism is by current standards.

AM began Its investiga tions wIth scanty knowledge of a few set-theoretic concepts.
Most of the obvious set-theory relations (e.g., de Morgan’s laws) were eventually
uncovered; since AM never fully understood abstract algebra, the statement and verification
of each of these was quite obscure. AM never derived a formal notion of Infinity, but it
naively established conjectures like “a set can never be a member of Itself,” and procedures
for making chains of new sets (“Insert a set into Itself”). No Sophisticated set theory (e.g.,
diagonallzatlon) was ever done.

After this initial period of exploration, AM decided that “equality” was worth
generalizing and thereby discovered the relation “same-size-as.” Natural numbers were
based on this discovery, and, soon after, most simple arithmetic operations were defined.

Since addition arose as an analog to union, and multiplication as a repeated
substitution, It came as quite a surprise when AM noticed that they were related (namely,
P4 + N ~ 2 x P1). AM later rediscovered multiplication In three other ways: as repeated
addItion, as the numeric analog of the Cartesian product of sets, and using the cardinality of
the power set of the union of two sets.

Raising to fourth-powers and fourth-rooting were discovered at this time. Perfect
squares and perfect fourth-powers were isolated. Many other numeric operations and kinds
of numbers were found to be of Interest: Odds, Evens , Doubling, Halving, Integer-square-root,
etc. Although it isolated the set at numbers that had no square root, AM was never close to
discovering rationale, let alone Irrationals. No notion of “closure” was provided to--or
discovered by--AM.
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The associativity and commutativity of multiplication indicated to AM that it could
accept a BAG of numbers as its argument. When AM defined the inverse operation
corresponding to “Times”, this property allowed the definition to be: “Any bag of numbers
(>1) whose product Is x.” ThIs was just the notion of factoring a number x. Minimally
factorable numbers turned out to be what we call primes. Maximally factorable numbers
were also thought to be interesting.

Prime pairs were dIscovered In a bizarre way: by restricting the domain and range of
addition to primes (i.e., solutions of p + q” r in prImes).

AM conjectured the fundamental theorem of arithmetic (unique factorlzation into primes)
and Goldbach’s conjecture (every even number >2 is the sum of two primes) in a surprisingly
symmetric way. The unary representation of numbers gave way to a representation as a bag
of primes (based on unique factorlzation), but AM never thought of exponential notation.
Since the key concepts of remainder, greater-than, gcd, and exponentlation were never
mastered, progress in number theory was arrested.

When a new base of geometric concepts was added, AM began finding some more
general associations. in place of the strict definitions for the equality of lines, angles, and
triangles came new definitions of concepts comparable to Parallel, Equal-measure, Similar,
Congruent, Translation, Rotation; together with many that have no common name (e.g., the 

-

relationship of two triangles sharing a common angie). A cute geometric interpretation of
Goidbach’s conjecture was found: Given all angles of a prime number of degrees,
(0,1,2,3,6,7,1 1,...,179 degrees), then any angle between 0 and 180 degrees can be
approximated (to within I degree) as the sum of two of those angles. Lacking a geometry
“model” (an analogic representation like the one Ge)ernter, 1963 employed), AM was doomed
to propose many implausible geometric conjectures (see Artiice Repr.eentetion.C6).

It Is important to ask how general the program Is: Is the knowledge base “just right”
(i.e., finely tuned to elicit this one chain of behaviors)? The answer is nO: The whole point of
this project was to show that a relatively small set of general heuristics can guide a
nontrivial discovery process. Keeping the program general and not finely tuned was a key
objective. Each activity or task was proposed by some heuristic rule (like “look for extreme
cases of X”) that was used time and time again, in many situations. It was not considered
fair to insert heuristic guidance that could only “guide” In a single situation. For example,
the same heuristics that lead AM to decompose numbers (using TIMES-Inverse) and thereby
discover unique factorization, also lead to decomposing numbers (using ADD-Inverse) and the
discovery of Goldbach’s conjecture.

ResuPis : Limitations of AM

Although AM fared well according to several different measures of performance, users
of thIs handbook may better utilize knowledge of its limitations.

As AM ran longer and longer, the concepts It defined were further and further from tlw
prImitives It began with, and the efficacy of its fixed set of 260 heuristics gradually
declined. The key deficiency was the lack of adequate mela-rules (Davis, 1976, Lenat, 1976,
Laing, 1971); heuristics that could cause the creation and modification of new heuristics.
ThIs lack is strongly felt in a boot-strapping, open-ended task environment such as math

- - research.
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Many concepts that one mIght consider “primitive” are missing from AM: proof, tricks
for finding counterexamples, numbers, etc. Very few of them are ever discovered by AM.
and even those that are discovered will not have any powerful heuristics filled in for them.
The limitations of a small knowledge base can be overcome only by investing additional time
to enlarge It. With a learning system like AM, one can spend a couple man-hours wrestling
with each new concept or let the program squander a greater amount of its time until it has
discovered and mastered that concept to the same level of proficiency. It is a trade-off
that almost always argues for the system-builder to spend more time enlarging the
knowledge base by hand.

Analogies in general were underutilized. Specifically, analogies between heuristics were
never even considered. If one characterizes an analogy as a (partial) correspondence
between two collections of objects and operators, then it is a small conceptual Step to
imagine heuristic rules that look for and develop such mappings: The Image of partial
matching comes ImmedIately to mind. AM possessed a few such domain-independent rules,
and they managed to produce some analogies (e.g., between multiplication and addition;
between sets/union/same-size and numbers/add/equality), but the overall results were
quite meager in this area.

Conclusions -

The AM project stands as a working demonstration that a few hundred general heuristic
rules suffice to guide a searcher--an automated math researcher--as it exp!ores and
expands a large but incomplete base of math concepts. AM shows that creative theoretical
research can be effectively modeled as heuristic search, just as Meta-Dendral (see article

t C2c) established a similar hypothesis for the more constrained, real-world field of mass
spectroscopy.

t - The main successes were the few relatively novel ideas it came up with (including a
- - result in number theory, dealing with numbers having very ~~~~ divisors), the ease with

which new domains were discovered (e.g., number theory) or introduced by hand (plane
geometry), and the apparently rational sequences of behavior that AM exhibited.

The continuation of thIs line of research by Lenat is the EURISKO program. The
hypothesis being explored is that the meta-ievel knowledge required to synthesize and
reason about heuristics is a subset of the knowledge already In AM about synthesizing and
reasoning about concepts. That is, EURISKO’s meta-rules are merely some of the very
general rules that AM already had. The only real change, then, from AM to EURISKO is to
recode each heuristic from LISP code as a full-fledged concept with facets. The heuristics,
which deal with facets of concepts, will then be capable of dealing with each other. This
work is currently in progress at Stanford UnIversity.

j 
Future AM-like programs may serve as assistants to scientists and engineers,

synergetlcally collaborating with them In the conception, planning, and execution of their
research and development activities.
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D2, MACSYMA

MACSYMA is a large, interactive computer system designed to assist mathematicians,
scientists, and engineers In solvIng mathematical problems. It has a wide range of algebraic
manipulation capabilities, all working on symbolic Inputs and yielding symbolic results, as well
as an extensive numerical subroutine library (IMSL) and plotting package.

MACSYMA Is used extensively by hundreds of researchers from government
laboratories, universities, and private companies throughout the United States. Many of
these users spend a substantial portIon of every day logged In. Currently, the system runs
exclusively on a Digital Equipment Corporation KL-10 at MIT and Is accessed through the
ARPA Network; however, there are plans to distribute It to other sites in the near future.
MACSYMA’s funding is supplied almost exclusively by its user community.

The original design for MACSYMA was laid out by Carl Engleman, Bill Martin, and Joel
Moses in ¶968. They built on their previous experience with the Mathlab 68 system and the
theses of MartIn and Moses. Martin had constructed an algebraic manipulation system to
solve certain problems in applied mathematics. Moses had produced a program that was able
to do indefinite Integration about as well as a typical graduate student. The system had its
first users in 1971 and has undergone continuous development since then, a total of about
46 man-years of effort.

The implementation of MACSYMA is based on the belief that the way to produce a high-
performance program for general mathematics is to “build in” a large amount of knowledge.
This approach to system construction Is often called “knowledge-based programming.”
MACSYMA is an extremely large system, as algebraic manipulation systems go; at present, It
can perform at least 800 dIstinct mathematical operations, includIng differentiation,
integration, solution of equations and of systems of equations, Taylor series expansions,
matrix operations, vector algebra, order analysis, etc. The current system consists of about
230,000 words of compiled LISP code and an equal amount of code written In the MAC SYMA
programming language. About half of this code was written by MACSYMA staff members; the
rest was contributed by various users.

The primary goal of algebraic manipulation research has been the invention and analysis
of new mathematical algorithms and the extension of previously known numerical algorithms
to symbolic manipulation.

While most of the algorithms Incorporated In MACSYMA were known to mathematicians
prior to Its construction, a substantial number came about as a result of this research. The
last decade has brought the discovery of new algorithms for finding the greatest common
divisors of polynomIals (Brown and Traub, 1971; Moses and Yun, 1973), factoring rational
expressions (Musser, 1975; Wang and Rothschild, 1975), sum simplification (Gosper, 1977),
symbolic integration (Moses, 1971; Norman, 1975; Risch, 1969; Rothstein, 1977; Trager,
1978), and asymptotic analysis (Fateman, 1976; Norman, 1975; ZIppet, 1976). The nature
of this work has been largely mathematIcal; and, although Artificial intelligence was
instrumental In providing the environment in which MACSYMA was created, It has made little
direct contribution since then.

Knowledge-based programming does, however, engender a number of difficulties for
which Al techniques offer partIal answers. Two general types of difficulties are discussed
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here, namely, user education and the handling of mathematical problems not amenable to
algorithmic solution.

Non-algorithmic procedures in MACSYMA

One of the most pressing problems in algebraic manipulation is simplification. Symbolic
algorithms often generate large, Unwieldy expressions that must be simplified Into smaller,
more meaningful forms. (Generally, the size of .expressions Is the most important criterion for
simplicity, with standard formats and particularly revealing forms taking precedence.) To help
users simplify their results, MACSYMA provides a variety of explicit expression
transformation commands (such as expansion, factorizatlon, partial fraction decomposition,
etc.) and a simplifier that automatically applies a set of mathematical “rules” to every new
expression as it Is constructed. Examples of these rules are:

x ” x -.

sin(x+n/2) -
~ cos(x)

log(a ”b) -, iog(a)+Iog(b)

The user can, of course, define new commands and new rules. 9
Semantic Pattern Matching

In applying a simplification rule, MACSYMA utilizes a “semantic pattern matcher ” to find
instances of the rule’s pattern. The matcher Is “semantic” in that it uses knowledge about
the operators and constants in an expression to find nonsyntactic matches. For example,
the paktern a”x2 

+ b”x + c, where a, b, and c are pattern variables free of x, will match the
expressions 4”x2 

+ 4”x + 1, x2 . x .  1, x2, and (x + 1)2, In defining -a rule, the user may
specify arbitrary conditions (in the form of procedural predicates) on the pattern variables.
For example, determining whether en expression matches the above pattern, MACSYMA
would call a user-specified function to check that any tentative assignments for a, b, and c
are free of x. As a result, the pattern would not match 4”x2 

+ 3”x + sin(x).

One problem with this pattern matcher is that the user is unable to control how much
“semantics ” the system uses In finding a match. In the very near future, a new pattern
matcher will be released In which the user will be able to specify a set of identities to use In
attempting to Identify instances of patterns. For example, while it Is often desirable that the
matcher use inverses, In some situations a user might prefer a simpler matcher, lest the rule
a”b -> c apply to every lone a and b, as in b -) c/a. With the new pattern matcher, the user
will be able to specify when he wants the inverse axioms to be used.

Simplification by Hiliellmblng

While size of an expressions is not the sole criterion for its simplicity, It Is a useful
guideline. For those applIcations in which the user desIres the smallest possible form for en
expression, MACSYMA provides a search-oriented simplifier called SCSIMP. Given an
expression and a set of rules, SCSIMP applies each of the rules to the expression, In turn,
and retains the smallest result. if any such substitution leads to an expression smaller than
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the original, the process Is repeated. For example, given the Identities below, SCSIMP will
convert the first expression into the last.

— 2 2 2 2
K + 1  g i  N -II “ 1

2 2  2 2 2  2 2 2  2 2 2 2
First expression: K N • K N 11 - K I N - K I N N

4 2 2  4 2
Intermediate : K N N • K N substituting for L

4 4
Final Expression: K N substituting for N

Note, however, that because SCSIMP is a hlliciimbing algorithm it is not guaranteed to
produce the smallest answer. For example, it would not perform the simplification shown
below.

2 2  2 2
First expression: K N • I N

2 2  2 2  2
Intermediate form : K N - K N + N substituting for I

2 2
Simplest form: K + N substituting for N

The reason for not performing this simplification Is that in order to arrive at the simplest
form, a larger Intermediate expression would have to be generated. Due to the
combinatorics Involved In generating arbitrarily large Intermediate forms, this technique has
not been- incorporated in the current version of SCSIMP.

The Relational Database and Inferen ce

in certain problems, the symbols in mathematical expressions have restrictions on their
ranges or on other properties that are useful in simplification. In order to allow the user to
specify such properties, MACSYMA maintains a relationa l database of facts about symbols,
stored in the form of a semantic network. For example, a user can declare (via the DECLARE
command) that the symbol n Is restricted to Integer values, and MACSYMA can then simplify
cos((2”n + 1 )“n)  to 0. SImilarly, one can specify (via the ASSUME command) that x (r y,
y (~ z, and z (“ x; and MACSYMA can then deduce that x ~ y ~ z (using the algorithm
described below).

The database retrIeval routines are supplemented by a fast but limited inference
algorIthm called CPM (Genesereth, 1976), which performs taxonomic deductkjns, property
Inheritances, set Intersections, and other simple inferences. For example, given the facts
that X is an Integer, that integers are rational, and that the real numbers are partitioned Into
ratlonals and Irrationals, CPM automatically deduces that X Is not an irrational. Given the
fact that a rational can be written as an Integral numerator over an integral denominator,
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CPM automatically deduces that X can be so written. The CPM inference algorithm was
developed to enhance the retrieval capabilities of a high-level database system organized
as a semantic network. it Is an elaboration of Grossman’s work (Grossman, 1976) on
constraint expressions but has been carefully restricted so as to be susceptible to
implementation on parallel hardware. The algorithm is a highly “complIed” form of domain-
indep endent constraint p ropagation in which constraints, represented by “labels” on the nodes
of the network, propagate across links to other nodes according to the laws of logic. It can
perform certain inferences much more efficiently than their straightforward implementation in
procedural problem-solving languages like CONNIVER. For further details on the CPM
algorithm, the reader should consult Genesereth, 1976. In addition, Fahlman (1977) has
described how such a constraint propagation algorIthm can be Implemented in parallel
hardware for even greater efficiency.

Heuristic Problem Solving

MACSYMA also includes a number of specialized procedural problem solvers; for
example, the first phase of the integration routine (Moses, 1971), the commands for
performing root contraction and logarithmic contraction, the inequality theorem prover, and
others.

User Education

The advantage of a large knowledge-based system like MACSYMA over a smaller.
sparer system like REDUCE (I’iearn, 1973) Is that MACSYMA has more mathematical
knowledge built in (I.e., it is larger and can do more). As a consequence, the user is not
forced to communicate as much mathematical knowledge to the system. The disadvantage is
that MACSYMA can be more difficult to understand and to use. The user mIght, for example,
be unaware of the capabilities available or not know the commands, or he might get an
unexpected result that he cannot explain.

To minimize these difficulties, MACSYMA offers a wide range of on-line user aids
(Genesereth, 1977; LewIs, 1977), including a frame-oriented Interactive primer (similar to
PLATO), an information network, and an automatic program for searching the reference
manual. In addition, some of MACSYMA’s commands are able to explain their progress in a
fashion that can be comprehended by the user. For example, If the VERBOSE option is,
selected, the POWERSERIES command prints out the goals and subgoals that it generates
while working on an expansion.

Even with these provisions, users occasIonally encounter difficulties due to their lack
of knowledge of the system. Furthermore, such users are often unwIlling to learn more about - 

-

MACSYMA than is necessary to solve an immediate problem. The simplest way for such a
user to acquire Just the information he needs is to ask a consultant for help. Then, armed
with the consultant’s advice, he can surmount the difficulty and solve the problem.

Consultation is a method wIdely used In computer centers as well as in domains like
business, law, and medicine; and, as computer technoiogy becomes more pervasive and
computer systems become more complex, the need for consultation grows. Unfortunately,
human consultants are a scarce resource and quite expensIve. Currently, work is underway
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on an automated consultant for MACSYMA novices, called the Advisor. it is a program distinct
from MACSYMA, with its own database and expertise. The Advisor accepts a description of a
dIfficulty from its user and tries to reconstruct the user’s “ plan” for solving his problem.
Based on this plan and its knowledge of MACSYMA , the Advisor then generates advice
tailored to the user’s specific need. For a description of the Advisor’s operation, the user
should see Genesereth, 1978.

Future Plans

In addition to the features described above, several other Al-related capabilities are
under development in MACSYMA. Two of these are mentioned here, namely a new
representation for algebraic expressions using data abstractions and a knowledge-based,
plan-based mathematician’s (or physicist’s or engineer’s) “apprentice.”

Recently, David Barton has designed a radically new scheme for representing algebraic
expressions. MACSYMA has two major representations, the general representation that uses
LISP’s traditional prefix format and the rational representation that uses a canonical form for
polynomials and rational functions. The rational representation has become unwieldy over the
years, as extensions to the system have changed Its specifications. For example,
coefficients of polynomials were orIginally assumed to be integers and were later generalized
to Include floatIng point numbers. A new representation was desired to handle “Taylor
series,” which contains rational number exponents, since the former representation, while
relatively close to the rational representation, could not be retrofitted onto the rational
representation. Barton’s approach alleviates these dIffIculties and provides a capability for
future generalization. The approach used Is, furthermore, a natural one for abstract algebra.

Consider, for example, a 2 X 2 matrix whose elements are Laurent series in y
(truncated at y2), whose coeffIcients are polynomials In x, whose coefficients are rational
numbers. In order to add such a 2 X 2 matrix to another 2 X 2 matrix, one needs to know
how to add the elements. One approach would be to design a general addition routine that
would check the types of each argument and finally perform the appropriate addition. This
approach Is similar to the one previously taken by the rational function representation. In a
symbolic system, and, In fact, in most applications, the type of object is IntImately related to
a set of operations that can be performed on it. in the MACSYMA context, these operations
include addition, subtraction, multiplication, division, differentiation, substitution, coefficient
extraction, and GCO computation. Barton’s approach Is to attach a tree of vectors to ea-ch
expression. The tree corresponds to the gross structure of the expression. For example,
each subexpression, an element In the matrix, has a vector corresponding to it. The vector ’s
elements are in a fixed order and contain pointers to the procedures that perform the
corresponding operation on the type of the subexpression.

Barton’s approach permits expressions to be composed of arbitrarily nested types.
This is a critIcal requirement In an interactive symbolic system. Preliminary tests of
expressions represented in this manner indicate that common manipulations are not much
slower and often faster than in the former implementation. The reason for a speed-up is that
less type-testing Is needed in this approach.

Work has also begun on the design of an “apprentice” for the MACSYMA user. At
present, MACSYMA Is used mostly a. a “symbolic calculator,” with the user directing its



74 App lication s-oriented Al Research: Science and Mathematics

actions line by line and keeping track of the meaning of each result. The goal of the
apprentice is to relieve the user of much of this drudgery. The approach being taken
involves two components, namely knowledge about the user’s domain and the use of a high-
level problem-solving plan formalism.

Currently, most symbols In MACSYMA have no special meaning, and they can take on
arbitrary values. In particular problem areas, however, certain symbols have particular
interpretations and range restrictIons. For example, the symbol MASS has a very special
meaning to physicIsts and an obvIous range restriction (nonnegative). A physicist’s
apprentice should know this range restrsction and be able to use It; for example, in discarding
negative roots or performing Integrations. Similarly, practitioners in certain fields like to see
their expressions written In standard formats, determined by the interpretation of the
constituent symbols. For example, electrical engineers usually prefer resistance (Ri) and
capacitance (Ci) expressions wrItten as f(R1, R2, ... , Rn)”g(C1, C2, ..., Cn) rather than having
the RI and Ci Intermixed.

Another way that an apprentice could be of use in MACSYMA Is by keeping track of the
user ’s pla n for solving his problem. if the apprentice knows the steps involved and the
significance of various results, it co’2ld Inform the user of potential errors, make suggestions,
and in many cases carry out steps by itself. The apprentice can gain familiarity with the
user ’s plan in various Ways: It may be a well-known mathematical procedure (e.g., some
standard technique for solving partial differential equations or perturbation problems), the
user may have described his intentions before beginning his MACSYMA session, or the user
may re-apply some prevIous plan. it is expected that thIs notion of a problem-solving pian
will play an extremely important role in the next generation of algebraic manipulation
systems.

Refe rences

Unfortunately, there Is no good introductory reference on the structure of MACSYMA.
The reader is referred to the MACSYMA manual (Mathiab Group, 1977) and the primer
(Moses, 1975) for an introduction to its use. -

See also Brown end Traub (1971), Fahlman (1977), Fateman (1972), Genesereth
(1970), Genesereth (1977), Genesereth (1978), Gosper (1977), Grossman (1976), Hearn
(1973), - LewIs (1977), Moses (1971), Moses and Yun (1973), Musser (1975), Norman
(1976). Risch (1969), Rothsteln (1977), Trager (1978), Wang and Rothschild (1975), and
ZIppel (1970).
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E. Other Scientific Applications

El. The SRI Computer-based Consultant

A Computer-based Consultant (CBC) is a computer system that contains a body of
specialized knowledge about a particular task domaIn and which makes that knowledge
conveniently available to users working in the domain. This article describes some research
done at SRI on a computer-based consultant designed to help a novice mechanic work with
electromechanical equipment. The goal of this research Is to buIld a system that
approximates a human consultant In its communication, perceptual, and reasoning skills.

The consultant was designed to answer spoken English questions from the user and to
monItor the user’s progress on the task, offering advice end reminders where necessary . To
fit the needs of Individual users, it is essential that the system be able to provide advice
about the task at several levels of detail. in order to determine the appropriate level of
detail, the CBC must form a model of the user, monitor his performance as he executes the
task, and update Internal modeis to reflect the current state of the task environment.

Design of the Computer-based Consultant.

The task of the SRI computer-based consultant Is to help an inexperienced mechanic
• repair and modify complex electromechanical equipment. The mechanic works on a piece of

equipment in a special “work station” where he Is provided with a headset that enables him
to talk to the system and to receive spoken replies, both in natural language. A commercially

• avaIlable phoneme synthesizer Is used by the system to give “spoken” responses to the
user, and a commercially available phrase recognizer is used to “understand” his speech.
There is a televIsion camera and a laser rangetlnder that provl4e the visual component for
the system. The laser rangefinder can also be used as a visual pointer so that the system

- t can answer questions such as “Show me the pressure switch” by illuminating the pressure
switch wIth the laser beam. -

Requests for information by the user are translated Into an internal representation or
“model” by the natural language and visual components of the system. These models are
used to structure communIcatIons with the user as he performs the task. For example, a
question about the location of a part (“Where Is the pump brace) is answered by reference
to a stored geometric model that keeps track of the spatial relations between the pa~ts.
Other models are necessary for the natural language components of the system; for
instance, a discourse model is needed to understand a spoken utterance.

Planning a sequence of constructions

The user of the CBC can ask it to plan a sequence of assembly steps and relate this
sequence to him for execution. The CBC has a planning component for composing assembly
and disassembly sequences. It has received much attention in recent research efforts.
There are several types of knowledge that are important in the planning process. First,
there Is the model of the air compressor itself, which Is essentially a graph whose nodes
correspond to the parts of the compressor and whose arcs correspond to the mechanical
connection between the parts. Second, each type of connection has associated with It a
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set of procedures that tells how that connection Is physically established. Third, each of
these procedures may contain calls to other procedures that elaborate, in more detail, how a
Job is done. This hierarchy of procedural krtowkdge forms the basis for producing plans that can
be given to the user at several levels of detail. This procedural model is used by the
planning program to determine the order In which parts should be assembled. The planning
program Initially assumes that the parts can be connected in any order. By checking
precondItions and the effects of performing each ctep, it reorders the steps in the plan to
eliminate conflicts. For exampie, the pump can be Installed only If there is no pulley on its
shaft. The planner recognizes this tact and imposes an order on the plan so that the pump
will be installed before Its pulley is placed on the shaft. When eli the conflicts have been
resolved, the remaining steps of the plan can be solved in any order. This ability, to
recognize alternative orderings In a plan, Is Important for a computer-based consuitant: The
user may take the Initiative and proceed with certain steps of the assembly on his own, and
the planner must recognize If the steps being taken are valid.

The plan is represented as a structure called a procedural net; a sample net is shown
in FIgure 1 (Hart, 1975). Each node corresponds to an assembly step at some level of detail.
The procedural net is actually a hierarchy of plans, all of which accomplish the same task,
but at varying levels of detail. The ith row In the net corresponds to a plan specified at the
ith level of detail. Notice that the plan splits into two paths at level 2, indicating that the
two subplans can be performed In either order. The branching verticie lines indicate the
expansion of a step into a more detailed subpian.
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assemble
LEVEL I air

compressor

/ \N
install Install InstallLEVEL 1 motor pump

/
_

• / \ / \ ait. r~~~~~r~ elbowJ__J

- 

• 

- / \
FIgure 1. A fragment of a procedural net.

The procedural net Is useful for the spec ification of plans at the var ious levels of detailt required by the user. The net Is also used during planning to represent partially formed
plans , so that the planner can be restarted during execution to modify an existing plan if
new information requiring replanni ng Is discovered as the assembiy proceeds.

The system keeps an internal model of the “ con nectedn ess ” of the different
components of the air compressor as it is being assembled or disassembled. It also contains
a graphical model of th. locations of the different components of the air compressor. For

I
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example, the graphical model knows about the pump, motor, pressure switch, etc.; and the
connectivity model knows about all the visIble components.

Interfacin g to the real world: Vision and Dialogue

Vision is a difficult problem in the domain of electromechanical machinery because the
equipment and its components usually have only a limited range of color and texture for a
great variety of possIble shapes. Shadows and highlights also depend on the stage of the
assembly process. For these reasons, an approach has been taken that capitalizes on prior
knowledge of visual appearances end geometric relations: There is a “tool recognizer” that
accepts a limited semantic description of a tool, builds a model of the tool from this
description, and uses this model to differentiate the tool from the set of probable —

alternatives.

There are two other vIsual modules, both of which rely on stored geometric models of
the equipment. The first module allows the CBC to answer user questions of the form “Show
me the X.” it points at X with the laser rangefinder, which Is accomplished by locating the
outline of the visible surface of X. The second module allows the user to ask “What part is
this?” while he is pointing at the unknown part with a wand equipped with a small light at the
tip. A ray in space Is defined by the wand tIp and the camera lens. The ray Intersects a
geometric model of the equipment, providing the answer to the question.

The following is a portion of a dialogue between a novice mechanic and the CSC on the
task “Assemble the air compressor.” The example is taken from Hart, 1975.

Try to achieve assembled aircompressor.
““ How?
The top lóvel plan is .. Install pump ...
Install pumpbrace ... install pumppulley
Install belt ... Install belthouslngcover
Ready for questions.
““Show me the pump.

Laser beam moves to point at pump.

Ready for questions.

““Whet is this?

User p oints with wand at tank platform...

Tank platform.
Ready for questions.
“ “ None. -

Install pump.
““ How?
Connect pump to platform.
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““How?
Get 4 1&1/4-lnch 5/16 hexagonal bolts and
4 9/16 flat washers and 4 size 6/16 hexagonal nuts.

Summary

The main goal of the research on the SRI computer-based consultant was to create the
fundamental technology needed to build such consultant systems. Much at this technology is
independent of the particular consultant system being built or of the details of the task
environment. Work on the electromechanIcal CBC described here was stopped in April , 1975.
Since then a new consultant project has been begun at SRI extending many of the ideas
from the 1975 system and adding new features.
The new consultant system is being used in two entirely different domains: mineral
exploration (se. article E2) and agricu ltural pest management. It appears that comppter
consultants are lIkely to remain both a fruitful area for ArtIficial IntellIgence research and a
practical means of deploying knowledge to people working in the specific task domains .

Ref erencss

See Hart (1975) and NIIS*On (1QTS).
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E2. PROSPECTOR - -

PROSPECTOR (Duda at al., 1978) Is a computer-based consultation system that is being
developed to aid geologists working on certain problems in hard-rock mineral exploration.
LIke other expert systems, such as INTERNIST (see article Me6cine.C4) and MYCIN (see
article Medicir,e.C2), PROSPECTOR attempts to represent a significant portion of the
knowledge and the reasoning processes used by experts working in a specialized domain.
The Intended user of this program is an exploration geologist who Is in the early stages of
investIgating an exploration site or prospect. We assume that he or she has a professional
understanding of geology but, nevertheless, wants the assistance of a specialist in
evaluating the findings.

In an attempt to keep the PROSPECTOR system fairly domain independent, the system
maintains a clear separation between the geological knowledge base and the mechanisms
that use this knowledge. Nevertheless, characteristics of the problem domain have certainly
influenced the design of the system.

Expressed abstractly, the main function of PROSPECTOR is to match data from a
particular situatIon against “models” that describe a moderately large number of disjoint
classes of situations. In PROSPECTOR’s domain, the models are formal descriptions of the
most important types of ore deposits, and the data are primarily surface geological
observations. The available data are assumed to be uncertain and Incomplete, so that the
conclusion is a probability or a degree of match. In addition, the program alerts the user to
different possible Interpretations of the data and identifies additional observations that
would be most valuable for reaching a more definite conclusion.

A typical consultation session with PROSPECTOR begins with the user giving the system
the information about the most significant features of his prospect: the major rock types,
minerals, and alteration products. The program matches these observations against its
models and, when the user is finished volunteering information, proceeds to ask the user for
additional information that will help confirm the best matching model. At any time during the
consultation, the user can Interrupt to volunteer new information, change previous
statements, or request an evaluation. Thus, PROSPECTOR operates as a mixed-initiative
system.

The following edited excerpt from a PROSPECTOR run iilustrates many of these ideas.
The data for the run describe a fictItious porphyry copper deposit that has some, but not all,

- - 
of the desired characteristics. We begin at the point where the user starts volunteering
Information to the system. In this excerpt, the user’s answers are always given in
emboldened upper case , the system ’s comments are In regular type, and explanator y

~~~~ comments are in Italics.

- - 
- 

1: THERE IS QUARTZ MONZONITE

QUARTZ MONZONITE (5)

2: THERE IS A CRETACEOUS DIKE

CRETACEOUS DIKE (5)

3: THERE IS SERICITE AND PYRITE 
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SER1CITE (5)
PYRITE (5)

5: THERE MAY BE BIOTITE

BIOTITE (2)

6: DONE

These simple assertions describe the most prominent rocks, minerals, and alteration
products in the target area. The system indicates Its recognition of each state~nent by
echoing the statement and appending an assigned certa inty. Certa inty factors range from
—5 (positIve Mat a situation does NOT hold) to S (~osUive that U does hold). 411
assertions made by PROSPECTOR have associated certainty factors. The program now
enters Me consequent mode of reasoning.

Presently, the models In PROSPECTOR and their scores are:

1 Komatiitlc nickel sulfide deposit -- KNSD (0.0)
2 Type-A porphyry copper deposit -. PCDA (0.0) ““current hypothesis””3 Kuroko-type massive sulfide deposit -- MSD (.001999) -

4 Western-states-type sandstone uranium deposit -- WSSU (0.0)
5 MissIssippi-Valley-type lead/zinc deposit -- MVTD (-4.8)

Which of the above would you like to rule out? NONE

The volunteered information was sufficient to rule out one of the models, but was not
nearly specific enough to establish any of the others. The choke of the second modet as the

- 
- - current hypothesis was based not on its certainty, but on thr number and types of

- 
connections between U and the volunteered statements. To avoid a possibly fruitless
investigatIon of unpromising models, the system gives the user the opportunity to exclude
models 

~f 
lesser interest, in this case, the user allows all of the models to be explored, and

the system begins with the current h,pothstls.

I am considering the possibility of a
( Type-A porphy ry copper deposit -- PCDA )
in the target area.

The following questions are Intended to establish the nature of the
- 

- 
petrotectonic setting. 

-

1--To what degree do you believe that:
(the target area is In a continental margin mobile belt)? —2

This It a discourag ing answer for the PCDA model, and It removes a context needed for
the InvestIgation of other properties of the continental margin mobile belt.

The following questions are intended to determine the nature of the
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regional environment.

2--To what degree do you believe that:
( there are granitic intrusives In the region)? 5

3--To what degree do you believe that:
( the region contains an abundance of small stocks)? -3

8--To what degree do you believe that: —( igneous rocks in the region have porphyritic texture)? WHY

I am trying to establish whether some of the intrusive rocks in your
area have textures suggestive of a hypebyssal to subvolcanic environment.
Porphyry textures resulting from the rapid cooling and crystallization
of a silicate melt which contaIns large mineral grains are suggestive
of relatively shallow levels of emplacement.

Like MYCI N , PROSPECTOR prov ides a variety of commands for doing such things as
requesting a summary, changing previous answers, or volunteering additional formation.
The above resp onse to a WHY command Is not automatically generated f rom the rule but
is merely stored text associated with the space.

8--To what degree do you believe that:
(Igneous rocks in the region have porphyritic texture)? 5

My certainty In (the texture and morphology of the Intrusive system
suggest a subvolcanic (hypabyssal) regional environment ) is now: 4.924 -

Do you want to pursue this further? NO

At this po int the system noted that the certainty for the hypothesis about a hypabyssal
environment was above 4.5, and U also noted that If the rema ining rules were answered in
the most unfavorable way possible, the certainty could not fall below 4.5. To save time, it
let the user decide whether or not to continue working on this subgoal.

The questioning continues as above until I t becomes necessary to consider prop erties that
vary within Me target area. Thus, for the f irst time it becomes necessary to be able to use
the rules more than once, and a communication convention must be established to
distinguish different spatial locations.

Porphyry copper deposits are often composed of characteristic zones of
alteration and mineralization. (In some cases these can be looked upon a.
different stages superImposed upon one another.) I shall call the most
prominent such zone Zone 1. Even though you may have already identified
this zone as, say, the propyiltic zone or the serlcitic zone, I need to
consider other possibilities as well. Thus1 the following questions are

— 
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Intended to determine the possibilit ies for Zone 1.

25--To what degre e do you believe that:
( there are fresh-looking feldspars in Zone 1)? -5

Questioning continues in this manner. Eventually, PROSPECTOR establishes that two
zones exist in the region of Interest , and after examining each In detail, it concludes that
their geologic makeup supports the hypothesis that Type-A porphyry copper exists I n the
region

On a scale from -5 to 5, my certainty that ( there are alteration zones
that are favorable for a Type-A porphyry copper deposit ) Is now 4.833

There are two favorable factors; in order of importance:

2.3.1: 1. there is a sericitic zone in Zone 1 (4.834)
~ establishes 2.3.1 ~

2.3.1: 2. there Is a potassic zone in Zone 2 (4.499)

There are many factors that would have been unfavorable, had no favorable
factor existed to override them; In order of importance:

2.3.1: 3. there is a barren-core zone In Zone 1 (-5.0)

2.3.1: 4. there I~ a potasslc zone in Zone 1 (-5.0)
S

- 1 2.3.1: 6. there is a propyiit ic zone In Zone 1 (-5.0)

2.3.1: 6. there is a ser lcitlc zone in Zone 2 (-5.0)

2.3.1:?. there i~ a propyhtic zone In Zone 2 (-4.989)

2.3.1: 8. there is a barren-core zone in Zone 2 (-4.495)

For which of the above do you wish to see addItional information?

L 
_ _ _ _ _ _ _ _ _ _
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Knowledge representation

The network structure that is used to represent the geological knowledg~i embodied In
PROSPECTOR Is called the inference network, whIch guides the plausible reasoning
performed by the system. The nodes In this network correspond to various assertions, such

as “There is pervasively biotized hornbiende” or “There Is alteration favorable for the
potessic zone of a porphyry copper deposit.” In a particular run, any essertson may be known
to be true, known to be false, or suspected to be true wIth some probability.

Most of the arcs in the inference network define inference rules that specify how the
probability of one assertIon affects the probability of another assertion. For example, the
presence of pervasIvely biotized hornblende suggests the potassic zone of $ porphyry
copper deposit, and the absence of any biotized hornblende is very discouraging for that
conclusion. These inference rules correspond to the production rules used in MYCiN. The
remaining arcs indicate that an assertion Is the “context” for another assertion, preventing
conclusions from being drawn until the right contexts are established. For example, one
should establish that hornblende has been altered to biotite before asking about the degree
of alteration.

The primary task confronting a geoioglst who wants to prepare a new model for
PROSPECTOR Is the representation of his or her model as an Inference network. The current
system contains models of five different types of deposits, developed In cooperation with
five different consulting geologists. The following statistics give a rough indication of the
size and complexity of these models.

Number of Number of
Model Assertions Rules 

—

Koroko—type massive sulfide 39 34
Mississippi—Valley—type lead/zinc 28 29
Type—A porphyry copper 187 91
Komatilt ic nickel sulfide 75 49
Roll—front sandstone uranium 212 133

Total: 541 327

To allow certain kinds of logical reasoning by the system, each assertion is
represented as a “space” in a partitioned semantic network (Hendrix, 1 975a). A typical
space asserts the hypothetIcal existence of physical entities having specific properties
(such as being composed of biotlte) and participatIng in specific relations (such as an
alteration relation). In addition, a large taxonomIc network describes Important
element/subset relations among the terms mentioned, such as the fact that blotlte is a mica,
which in turn Is a silicate, which in turn is a mineral.

The articulation of assertions as a set of relations allows the system to recognize
subset/superset connections between pairs of assertions. For example, the assertion that
“There is pervasively biotized hornbiende” Is clearly related to the assertion that “There is
mica ”; assertion of the first also asserts the second, and denial of the second denies the
first. This kind of recognition Is used in two main ways. First, It provides Important intermodel
and intramodel connections beyond those given explicitly by the Inference rules. Second, It 
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allows the system to recognize connections between Information volunteered by the user and
the coded models.

Probabilistic reasoning

Some of the logical constraints that exist between spaces have probabilistic
implications. In particular , If A is an Instance of (subset of) B, then the probability of A can
never exceed the probabilIty of B. We maintain this constraint by automatically generating
certain inference rules. For example, if evidence E could raise the probability of A above the
probability of B, then we generate a rule from E to B that will increase the probability of B
sufficiently to just satisfy the constraint. The exact procedure used here Is described in
Dude at al., 1977.

Since the various inference rules interconnect to form an Inference network, when the
user provides some evidence this Information can change the probabilities of several
hypotheses, which in turn can change the probabilities of hypotheses that depend upon
them. The probability formulas determine exactly how these probability changes propagate
through the inference net. (The reader might also refer to the handbook articles on IRIS and
CASNET for other discussions of propagation.)

Control

As mentioned earlier, PROSPECTOR is a mlxed-initia lve system that begins by allowing
the user to volunteer information about the prospect. This volunteered information is
currently limited to simple statements In constrained English about the names, ages, and
forms of the rocks and the types of minerals present. These statements are parsed by
LIFER--a natural language interface facility developed by Hendrix (1977)--and represented
as partitIoned semantic networks. A network matching program compares each of these
volunteered spaces against the spaces in the models, noting any subset, superset, or
equality relations that occur.

If a volunteered space is exactly equal to a space In a model, the probability of the
model space is updated and that change is propagated through the inference network. If a
volunteered space is a subset of a space In a model and if It has a higher probability than
the model space, then once again the probability of the model space is updated and’ that
change Is propagated through the inference network.

Unfortunately, If the volunteered space matches a superset of a model space (which
usually occurs), no probability change can be made unless the user expresses doubt about
the sItuation. For example, if the user mentions biotlte, the probability of the space that
asserts that there Is pervasively biotized hornbiende is unchanged, unless the user has said
that he or she doubts that there is any biotite. However, it Is obvious that the system may
want to follow up this observation, and the existence of the connection to the model is
recorded.

When the user has finished the Initial volunteering, PROSPECTOR scores the various
models on the basis of the number and types of connections that have occurred and selects
the best matching model for further Investigation. Here the basic control strategy is MYCIN-
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like backward chaining or consequent reasoning. At any given time there Is a current goal space
whose existence is to be determined. The initial goal space is the one that corresponds to
the best matchIng model. The various spaces In the models either represent evidence that
can be sought from the user (are NeskabteN) or internal hypotheses that are to be deduced
from evidence (are Nunaskabiew) Naturally, the inItial goal space is always unaskable. if the
current goal space has any unestablished context spaces, they are pushed on the goal
stack and one of them becomes the new current goal.

If the current goal is askable and has not been asked before, the user Is asked about
it; the effects of the answer are propagated through the inference network; and the process
is repeated. If It Is unaskable, it must be eIther the consequence of one or more inference
rules or a logical combination of one or more other spaces. in the former case, the rules are
scored to determine their potential effectiveness in Influencing H, and the antecedent of the
best scoring rule becomes the next goal. In the latter case a predetermined supporting
space becomes the next goal. In either case the same procedure is repeated until either:
(a) The top-level goal becomes so unlikely that another top-level goal is selected, (b) all of
the askable spaces have been asked, or (C) the user interrupts with new volunteered
Information.

Summary

This brief overview covers the basic knowledge representation and inference
mechenlsm~ used in PROSPECTOR. Many aspects of the system have not been mentioned,
such as the treatment of quantitative evidence, the matching procedure, the use of graphical
input, the inference network compiler, the explanation system, model acquisition aids, and
the test and evaluation effort.

The five models in the current system are but a fraction of what is needed for
comprehensive coverage, and even these models have only recently achieved the degree of
completeness requIred for doing meaningful evaluations. Limited Initial tests have shown very
close agreement between the evaluations provided by the system end the evaluations of the
model designers, using data from actuai deposits of the types modeled. More Information on
the system, the extent of its geological knowledge, Its performance on known deposits, and
Its possible applications can be found in Duda at ai., 1978.

References

See Dude, Hart, and Nilsson (1976), Duds at ~i. (1977), Duds at al. (1978), Hendrlx
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