
AD A076 bile STANFORD UNIV CALIF DEPT OF COMPUTER
AUTOMATIC PRO*R
AUG 79 R EL$CH

EASSIFI
C!7! 756

~~~~~~~~~

4 1r M!903S77!0!2

Ia
“p‘p
I



10
_____ 

2 2

~ 
L. L 2 01•1 L

____  

L.

~1IIH’ 25 
~iii~~ r

NAIIONAi O&~ tAU Of
c~ . .tW~ ~~~~ I ~ C.~~i



Stanford Heuristic Programmrng Project August 1979
Memo HPP-79-24

* 

;~ ~
‘ 
i c11~~~L

~~~~
I4

Automatic Programmin g
by

Robert Elschiager end Jorge Phillips

D D C

~çj’J ~~~i9T9
a ssc tèon of the

Handbook of Artificiel Intelligence E
•d~ted by

Avron Barr and Edward & F.i~.nbaum

COMPUTER SCIENCE DEPARTMENT
School of Humar~ties end Sciences

— STANFORD UNIVERSiTY

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘ ? ‘ . •~~~~~, ~~. ~~~~~~~~~~~~~

- I 
~~~~~~~~~~~ ~~ — _ _ _

.

~~~~t .-
.
-

~~~

.)
~

79 1 1 1 4 4
— •1-1, . _

I~~
, -

~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~---—- - —~—-------——-- -~ — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -_ --_ _- — _-- -—- — ___ - ---.-_---—--- - ---_ - — — --——— —- _ 
______



UNCLASSIFIED 
- -

~~

‘ 0 ~ i 0 4 7~~ ( t £S~~~’ I ( A T 0 ( ~ 04 0 1 , 4 0 %  A ~~~~~~~ t0o~0 ? . 0 4 ~~~~.I)

REPORT DOCUMENTATION PAGE

* ,~,7Tho i ~ 
— 

lTiZvy aGc*~~iOs NO I . j fsL~~ ~ ~~A T A L O ~.N UMUI. N

1: i~ 
- - - 

- I - Y
• ‘ I t t _ I (.~ .I s ,~~, . .s . j  -

~~~ 
S ~ Y (~O~ HtPO~~T & PIA100 Co £0

.A~~° ~r . ’t r ~~~~~~~~~~ ~a—..e44.ft- of. %be
or iC~e! !Yrte’1Ug~~~m)~

technical , A~igust i~i:”~
I P I R rO RH* N c . ONO ~~(Poia, 0~u.i1FR

HPF-’l 4-:J4 ~STA!~-C~ -7 ..- 75S)
P. Au I M~~iW.I / S C oNTRAC I Ok C.IIAMT

/ ‘ ~~t er ~ ~~Ia~cr .Jorge Phillipe - ~~~~~~~~~ ML&.)03-77-C-Q~~:.
— -

- Efl-h}~-OC7~ 5-~X
A . 1’ e lg er i i au m , ed i to rs)

,
~~I~~ I)K~lINC. O*~.A N I Z £100,, N A M I A N D ADDNV%% ID P N O C . R A N i L L M I W 1 . eRoiccy . t ASK

ANI A S W ORk UNIT NI PP *5Department of Computer Science
Stanford Univers ity ‘

Stanford . Cal i fornia 9L4305 USA -

* 1 ~~~~~ 1 . . c o o , , c t A ND £0001155 ‘3 ~~t PONY OA T S
Defense Advanced Research Projects A9ency ,, A~~—~’-~7~ ______Informat i on Processing Techni ques Office ol wu us t * b(es i .ocs

—______

1400 Wilson Ave. . Arl ington , VA 22209 r1’
113011T011001C. ac.r,,c , NAMS S ADDI4 ~ SS(.0 ~~~~~~~~ V..,. C.., t,atSI’.~~ Oil ..) IS %t C U~~I Ty C L A S S (.1 iS.. ~~~~o’.i)
Mr. P h i l i p Surra , Resident Representative

Office of Naval Research , Durand 165 UnclassIfied
Stanford University

~~~~~~~~~~~~~~~~~~~~~~~~

II t ; * S T N i I I o , Y I~~.’. S l  £ ‘  I 44 1 04 7 (‘ 1 •  ~~~~~~~~~~ - _______________ —

Rop roduct ion in whole or in part is permitted for any pu rpose of the
U.S . Government.

I ?  D*S t~~ II• ‘ c ’  * 7 0 1 4 1 0 4 7  (.1 •‘ . 4 ’ .f . .~ 0 ,i~ p.S I., PIo.S ~O. Si dii*...,.I S.... . R.p...f)

__________ ____________________

S S U~~
0 ~ M [ . . ’ a 0 4 y P 4 O ’ t %  

——___________ _______________________

tI~ K I Y  ..ooo rs~ ~~~~~~~~~~~~ .. .05.  .~ .o. o~~v ~ .4 Id,..OIVy S~ W.cS ~~~~~~~

,.~~.... .4.  If ..c..i .y .d iiS.~~tIi p I, SS.cb ~~~ oS~~)

(see reverse side)

DD 
~~~~~~~~~ ~473 50,11001 0’ ‘ NOV55  IS OPSOttYC UNCLASSIFIED “ 

—

*tCu*ItV CI. A$$I?ICATION O~ tiltS PA 1 (~~~SN 0.1. (05.1. 0

V

-- -;; -
~~~~~~~

-V
~~~ 

- -

L. — — —- -~ --- --~~~ . - - -~~ ---- _ - ---- -——. - -~~
—---- ——

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —



~~-- •-~~~~- .—,- 

UNCLASS IFIED 
—~~~

& i ’ . . I~~ Ct  A - .~ . 0 . ~~t t  -, o , i  tpn . I A ~~~~~~~’, . • . 0

Those of us Involved in the creation of the Handbook of Artificial Intelligence, both
writers and editor s, have attempted to mak• the concepts, methods, tools, and main results
of artificial intelligence research accessible to a bro d scientific and engineering audience.
Currently. Al work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing interdisclpiiflsry Interest and practical
Importance. With this book we •re trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of Al. presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep In mind the reader who is not a
specialist in Al .

As the cost of computation continues to fell, new areas of computer applications
become potentIally vIable. For many of these areas , there do not exist mathematical “cor.s
to structure calculational use of the computer. Such areas will inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that It Is
urgent for Al to ~go public In the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews. in particular Margaret Boden’s
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about At . and how research in Al progresses through our programs. in addition.
there are a few textbook s that attempt to present a more detailed view of selected areas
of Al . for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas , to present brief explanations of the Important ideas and techniques, and to
review the forty or f i f ty most Important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described In core articles (e.g . basic concepts in heurIstic search, semantic nets).
Important Individual Al programs (e.g.. Sl-4RDLU) are described in separate articles that
Inclacato , among other thIngs, the designer’s goal, the techniques employed, and the reasons
why the program is Important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying Issues that motivate Al research.

Eventually the Handbook will contain approximately two hundred articles. We hope tha t
the appearance of this material will stimulate Interaction and cooperation with other Al
research s ites. We look forward to being adv ised of errors of omIssion and commission. For a
field as fast moving as Al . It is important that its practit ioners alert us to important
deve lopments , so that futur e editions will reflect this new mater ial. We intend that the
Handbook of ArtIficial Intelligence be a living and changing reference work.

The article s In this edit ion of the Handboo k we re written prImarily by graduate students
in Al at Stanford University, with assIstance from graduate students and Al professionals at
other Inst Itut ions. We wish partic ularly to acknow ledge the help fr om those at Rutgers
Universi ty, SRI International , Xerox Palo Alto R•ssa rch Center , MIT . and the RAND
Corporation.

The autho r s of this cha pter on Automat ic Program ming research are Robert Elsch lager
and Jorge Phillips. They have worked from material supplied by the AP research. rs

~~~~~~~~~~~~~ .- .
~~~~~, :~c~ ~~ Li:q-: . -i ~~~~~ 

• 
~~~~~ ~..i ~~~~~ ~ei c..dir~an , ~-eorge ;ie~ ~~ yr. , 

r. ’u. , ... har ~‘- tJ.:.~~ , ~~~~~ ~~~~ , ~~~~ r . P -.~~., Jc~~ r~ Wa1d iz~ :cr , and
Ric.~ard Waterr .

UNCLASSIFIED
$ P C U *i t y C L A S S I Y I C A T I 3 N OF TNi$CAGF(w p ... fl.. . Iro ,...~~

— —~~~
. . , .- -

- —

—V. . _~~~~ . ___ .
_
~~~~~__~~~~~ _!• _.~~~~~~~ —_------~~~~~~~~~~ . -- - - - -— - - -.



r 
- . --—

~

---—-,-----————

~~~~~~~

—

~

----—- - -

Automatic Programming
by

Robert Elschlagsr and Jorge Philhps

a sect ion of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward & Felgenbeu.

This research was supported by both the Dofenac Advanced Rssearch Projects Agency
(ARPA Order No. 3423. Contract No. MOA 003-77-C-0322) and the Nationa l InstItutes of
Health (Contract No. NIH RR-OO 786-OS). Jorge Phailpa’ work was support ed lii part at the
Stanfor d Al Lab (ARPA Order 2404. Cont ract MDA 0O3-78-C-0200). The views and
conclusions of this document should not be interpreted as necessarIly representing the
official policies, either express or ,~ of the 0.? ense Advance d Reeaarch Projects
Agency , the National Institutes of Health, or the United States Government.

Copyright Notice: The aterl& herein Is copyright protected. Permission to quote or
reproduce in any form must be obtained from the Editors. Such permission is hereby granted
to agencies of the United States Qovsrnaset.

V
_ 0. • • . .-- .

~~~~~~~
— — . •  -

— — V  .- -___



FT

Autometic f~ogramming

Table of Contents

A. Plethods of Spec ificatio n 1B
B. Basic Approaches 16
c.~~sI 28
D. SAF E 37
(. Progr a q r ’s Apprent ice 43
F. PECOS 
G. DEDALUS 55
H. PROTOSYSTEN I 63
I. NLPQ : Natu ral Language Progra lng f or  Queuing Simulat ions 68
J. LIBRA 73

R.ferenc.s

~~~~~~~ 1I~ T~ 

~~

- —~ • . . —
— - . -—- - — -— . - . V

p ~~—~— ‘—‘ . —~ —
- ---_-

—V. .==~:~~~i~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ =-:.=:

Foreword

Those of us Involved in the creation of the Handbook of Artificial IntellIgence, both
writers and editors, have attempted to make the conce pts , methods, tools, and main results
of artificial intelligence research acc.ss ible to a broa d scientific and engineering aud ience.
Current ly . Al work is familiar mainly to its practic ing specia lists and other interested
com puter sc ientists. Yet the field Is of growing Interdisc iplinary Interest and practical
Import ance. WIth th is book we are trying to build bridges that are easily crossed by
engineers. sc ient ists In other fields, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scIentific Issues , as weil as detai led discussions of particular techniques
and important Al systems . Throughout we have tried to keep in mind the reader who is not a
specialist in Al.

As the cost of com putat ion continues to fa il , new areas of computer applicati ons
become potentia lly v iable. For many of these areas , there do not exis t mathematical Ncores*
to structure calcu latio nal use of the computer. Such areas will inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbo lic
com putati on have been speaking largely to themse lve s for twenty years. We feel that It Is
urgent for Al to go pub llc In the manner intended by the Handbook .

Several other wr iters have recogn ized a need for more wides pread know ledge of Al
and have attem pted to help fill the vacuu m. Lay reviews, In particular Margaret Boden’s
Artificial Intelligence and Natural Man , have tried to explain what is importa nt and
Interesting abou t Al . and Piow research In Al prog resses through our programs. In add ition,
there are a few textbook s that atte mp t to present a more detaile d view of selected areas
of Al , for the ser ious student of computer science. But no textboo k can hope to desc ribe all
of the sub-areas , to present brief explanat ions of the importsnt i d a s and techniques, end to
review the forty or fifty most import ant Al systems .

The Handbook contains several different types of articles, key Al Ideas and techn iques
are described In core articles (e.g., basic concepts in heuristic search , semantic nets).
Impo rtant Individual Al programs (e.g., SHROLU) are described in separate artic les that
Indicate , among other things, the designer’s goal, the techni ques employed , end the reasons
why the program Is important. Overview articles discuss the problems and approaches In
each major area. The overview srticles should be particularly useful to those who seek a
summary of the underlying Issues tha t motivate Al research.

— . . -__ —- . -

— , -

____ ____ ~~—~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ,. •- - --.-- • —- •— -~~~ .-~~~ ,—- - . — -

- . - -——-— —V~~~~~~-----VV . -..----- -- -- -

Eventually the Handbook will contain approximately two hund,~d a,ticles. We hope tha t
the app earance of this material will stimu late Inter act ion and coo perat ion with other Al
research sites. We look forward to being adv ised of errors at omission and commission . For a
field as fa s t moving as Al , It Is important that Its practitioners alert us to important
deve lo pment s, so that futu re edit ions wi ll reflect th is new material. We intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The arti cle s In this edItion of the Handbook were written prim arily by greduate students
In Al at Stanfo r d University, with ass istanc e from graduate student s and Al profess ionals at
other Institut ion.. We wish part ic ularly to acknowledge the help from those at Rutgers
University, SRI Int ernat iona l, Xerox Palo Alto Research Center , MIT , and the RAND
Corporat ion.

The authors of this chapter on Automat ic Programming research are Robert Elsch lager
and Jorge Phill ips. They have worked from material supp lied by the AP researcher s:..~~ ~~~~~~~~~~ ine1 ,

~i:~,.~ ~.a. x i riars ’ ~~ ~~~r~~ex i Jreen , ~eii Uoluman , ~e . r r;~ ~~~ .
~~~~~~~~ ::~t.i. ’ , ~~~ Manzia , ~r1~in ~~~~~~~ . r e~~ r:, ~u Li i , kUch ard W a.ldiriger, ~~~~

Avron Ban Stanford University
Edward Feigenbaum July, 19T~

—~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~

V .. .~ :.

_ _  -~~~~~~~~~



~~~--- ---- ..~~~~~~— .-.-- - - - — -V

Han~ ook of Artificial InteUigenc

Topic Outline

Volumes I and II

Introduction

The Handbook of Artificial Intelligence
Overv iew of Al Research
History of Al
An Introduction to the Al LIterature 3

Search

Overview
Problem Representation
Search Methods for State Spaces, AND/OR Graphs, and Game Trees
Six Important Search Programs

Representation of knowledge

Issues and Problems In Representation Theory
Survey of Representation Techniques
Seven Important Representation Schemes

Al Programming Languages

Historical Overview of Al Programming Languages
Comparison of Data Structures and Control Mechanisms In Al Languages
LISP

Natural Language Understand ing

Overview - History and Issues
Machine Translation
Grammars
Parsing Techn iques
Text Generat ion Systems
The Early NI Systems
Six Important Natural Language Processin g System.

Speech Understand ing Systems

Overv iew . History and Design Issues
Seven Major Speech Understanding Projects

I

_ _ _ _ _ _ _ _ _ _

V

•V~
—

~~
V V ~~~~ . —

-—-V
~_V-V~~~~~V_

~ ~~~ — , ~~~~~~~~~~~~~~~~
—V. __—V —, — —V_V.-— . - —-V.,

-‘r ’ ‘___
~~~~~~~~~~~~ 

—V.—- 
_______ 

- 

Appllcations .orj ented Al Res.arct , -- Part I
Overview
TEIRESIAS - Issues in Expert Systems Design
Research on Al Applications In Mathematics (MACSYMA and AM)Miscellaneous Applicat~~~ Research

App tic ations .orlent ed Al Res earch -- Part 2: Medicine
OvervIew of Medical Applicationg Research
Six Impor tant MedIcal Systems

ApplIc ati on$~oriented Al Research -- Pert 32 Chemistry
Overview of Appllcs?ions In Chemistry
Appkcet~ q~s In Chemical Analysis
The DENDRAL Programs
CRYSAI, IS
Applications in Organic Synthesis

AppllcatlOfl s .oqlented Al Research -- P*rt 4: Education
HistorIcal Overvi ew of Al Research in Educational ApplicationsIssues in ICAI Systems DesIgn
Seven Important ICAI Systems

Autom atic Programm ing

Overview
Techniques for Program SpecIf ication
Approaches to AP
Eight Important AP Systems

The f o1los~tri~ iectWnj of the HsndMM are ill/I In prep.r.røn and aPt!! .pprsr In the thirdVOIt~Ni,.’

Theorem Proving
VI*Ion
Robotic s
Information Processing Psychology
LearnIng and Inducti ve Infer ence
Planning and Related Problem-so lving Techniques

---—-a
— — 

- . - —.. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ “~~~~~~~~~~~~~



Automatic Programming (AP) Is a new, dynamic, and not precisely defined area of
artIfIcial intellIgence. ThIs overview discusses the definitions, history, motivating forces and
goals of automatIc programming and Includes a brief description of the basic characteristics
and central Issues of AP systems. The article begins with a section discussing the various
possible definItions of automatic programming, the background in which It has achieved
exIstence , as well as some of its general motivating forces and goais. The next section
describes four characteristics of all AP systems: the method by which a user of such a
system specIfies or describes the desIred program, the target language in which the system
writes the program , the problem or appl icat ion area to which the system Is addressed. end
the approach or operational method employed by the system. Next , a section discusses four
basic Issues , one or more of which concern all AP systems: the representation and
processing of partial or Incomplete information; the transformation of structures, and
especially the transformat ion of program descriptions Into other descriptions (in this chapter ,
th. term program description Includes the user ’s specification of the desired program, any
Internal representations of the program, as well as the target language Implementation); the
efficiency of the target language Implementation; and the system’s capabilities for aiding in
the understanding of the program.~~oiiowlng this overview , the reader will find articles on the
methods of specifying programs A~”#~P systems , on some of the basic operational method s
employed In such systems , and then ~1ght articles descr ibing most of the major AP projects.

DefInition

The bulk of the research in AP has appeared in the iQTOs, and it Is not surprising that
there Is lack of agreement as to the definItion, scope, and direction of the endeavor .
Several brief definItions of automatic programming have been suggested in the literature , but
considering the newness of the area , one should not expect these definitions to be precise.
One definitIon says sImply that AP is something that will save people the chores of
programming (B.ermann , 1978.). Another states that an AP sys tem carr ies out part of the
programming actMty currently performed by a human In constructing, a program written in
some machu e executable language, given the definItion of the problem to be solved; here,
the essence of en AP system i~ that it assumes some responsibilities otherwise borne by a
human , and thereby reduces the person’s task (Hammer & Ruth , 1979). Yet another states
that AP means having the computer help w rite Its own programs (Heldorn, 1977). AP is the
application of a computing system to the problem of effect ively utilizing that or another
computing system in the performance of a task specified by the user (Batzer , 19?3b).

To summ arize, perha ps we can define AP here as an automat ion of some part of the
program-wrItIng act Mtt es that current ly are typical ly performed by people and not yet
perfo rmed by machine. Therefore the definition excludes such systems and software
environm ents as assemb ly lang uages and high-level languages such as FORTRAN. COBOL .
P1/ i . ALGOL , or LISP; and such programming aids as symbol tables , cross reference
generat ors, text edItors, and debugging systems.

Other more extensive definit ions have been suggested. One definItion (Balzer, 1 973b)
•rate s• AP systems according to a measure of merit, which Includes the following factors:

(a) the amoun t of time and effort needed by the programmer to fo rmulate and
specify the desired program;

~ 

_ V . :~~~~~~~~~~~ -
- - __ ---- -.- ——_ .—--- ——. --V.-- -V-V - -- -V-



2 Auto mat ic Programming

(b) the efficiency of the decisions made by the system in desIgning the program,
and consequently the overall efficiency of the program that is produced by
the system;

(c) the ease with which future modifications can be incorporated in the program;

(d) the reliability and ruggedness of the program;

(e) the amount of computer resources, including time and memory, used by the
system to produce that program; and

(I) the range, as well as the complexity, of the tasks that can be handled by the
system.

Notice that , according to such a moasure. a FORTRAN language compiler would rank as
an AP system. However , it. rank would be significantly less than the potentia l of curre nt AP
research projects.

Another source (see article 03) lists some specific factors that bear on factor (a)
above, the factor concerned with the effor t required of the programmer. The specific
factor s are informality, language level, and executability. An AP system Is informal to the
degree that the user can be ambiguous (various interpretations of the specification are
possible) and partial or Incomplete (pieces of information, including perhaps Information about
ref erenclng end sequencing, have been omitted). Language level refers to the degree to
which the AP system can accept specifications In a terminology natural to the problem area
under consideration Executability refers to the degree to which the system can achieve a
desired program state on the basis of a descript ion of that state , that is , the degree to
which the user need only specify what is wa nted rather that how to obtain It,

Another definition of AP can be obtained by defining the development phases of a
software system (software development refers to the creation of a program or collection of
programs , from their inception to the completed product). On this basis, it would follow that
AP ass Ists the programmer with one or more of these phases. For example, in a later article
that describes the PROTOSYSTEM research project 07, the development of data-processing
systems (programs) Is seen as passing through five phases. First , the programming problem
Is defined by clearly IdentIfying and understanding what the desired software is to
accomplish; second, what the program Is to do In order to alleviate this problem Is clearly and
precisely determined; third, the organization, f low of control, and data representation s are
selected from standard Implementation possibIlItIes; fourth, this very high-level specIficatIon
In terms of standard implementations Is transformed Into code In some high-level language;
and fIlth, this code Is complied.

These , then , are some of the more detailed defi nitions that have been presented for
AP. Altogether, they define a somewhat amorphous direction of research ; there Is still no
widespread agreement as to exact ly what constitutes AP.

.
~~~

____________ ~~
.

Automatic Programming 3

Background

The present period is not the first time the term automatic programming has been used.
The term was employed once before, abou t twenty years ego, to mean writing a program sri a
high-level language (e.g., FORTRAN) end having a compiler transform the program Into machine
language code. Thus , one finds “A utomatic Codlng,N Franklin institute , January 19 57 (see
Automatic CodIng, 1951), or Tue Ann ual Review of Asdona tst’ Prog ramn: ng , first appearing in
1 959 (see The Annual Review in Automatic Programming. 1960). At that time , when “real”
programming referred to writing a program in machine or assembly language, AP meant writing
a program in FORTRAN. Today, when most programming is done in high-leve~ languages. AP
means programming in a software environment much more advanced than the ones created by
these high-level languages.

T hough the early meaning of the term automatic programming differs from the current
meaning, nevertheless , at both times AP meant assisting and automating the process of
writing programs.

In a general way, the for ces responsible for AP twenty years ego are ~*~ ilar to those
responsible for Its appearance today. At both times there was a feeling that programmers
wore burdened with the need to specify many details , with the need to keep track of the
many relations between these details , and with a programming environment that was not .
perhaps, nat ural to the way in which they thought about the problem. At both times there
was a feeling among some that new programming environments might be within grasp (twenty
years ego the new environments were high-level languages) and that the sof tware
technologies required to realize such environments might be feasible. Out of the desire for
new programming environments and out of the feeling that these new environments might be
attaInable, there appeared , in each period, an endeavor called AP.

The current motivations for AP, while similar to those twenty year s ago, are mor e
intense. Today software Is costly and unreliable. Much time, money, end ef for t is c ur. ~~~
being expended, with even greater expenditures forecast for the future. Software is ‘~c’~ii ,m
produced within budget or on time. Quite often the supposedly finished product , when
delIvered, fails to meet specificat ions. As programming applications of Increasingly greater
complexity are addressed , not only does reliability become more difficult to attain , hut the
costs of software , in terms of time , money, and effor t , spiral upward.

To help alleviate these problems, AP aims at a general goal: To restyle the way in which
the programmer specifies the desired program. This restyling should allow the programmer to
think of the problem at a higher and more natural level. AP would like to relieve the
programmer of mundane portions of programming, that is, the need to keep track of inordinate
amounts of detalis. By changing the programming envIronment, AP could allow programmers tu
construct, with greater ease and with greater accurscy, the programs of the present and the
more complex programs of the future.

This goal circles back to a succinct definItIon of AP: The computer Is used as a tool
that automates part of the programming process. That is, the computer performs a por t ion of
the program-writing activities. NeIther the goal nor this definit ion are especially precise, but
the next sections are more specific . They describe the common characteristics and primary
issues of AP systems..mark Characteristics Of AP Systems

fl r
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 Auto mat ic Programming

All AP systems have a specification method, a target language, a problem area , and an
approach or method of operation .

Specification method Users of an AP system must be given some means or method for
conveying to the system the program that they desire. This mean. is referred to as the
3~~~~J ? 1COtU5fl met flod of the AP system As will be seen in the remainder of this chapter , AP
systems possess a variety of specification methods. Formal specification methods are those
that might be considered to be tier~ k ig h.-lvtvl programming languages. In general, the syntax
and semantIcs of such methods are precisely and definitely defined. Formal methods also
tend to be cam pi ety ; that is , the specification will completely and precisely indicate what It Is
that the program is to accomplish, t hough, of course , the specifIcation may not indicate the
form of the program or how the program is to accomplish it. On the one hand, many formal
specif ication methods are not usually s ’i te r acIstv . which Is to say, the system does not
inte ract with the user In order to obtain missing information, to verify hypotheses , or to point
out Inconsistencies in the specification For example , it Is comparable to the passive
acce ptanc e of a program’s spe cIfication by a compiler of a high-level language (e.g .
FORTRAN). On the Other hand, there are some formal specification methods th at are
interacti ve (see McCune , 1978 , which emphasizes interactive formal specification
techniques as a natural extension of incremental compiling)

A different method of specification Is by examples Here the user specifies the desired
program by simply giving examples of what the desired program Is to do; the AP system
would then construct the desired program The specificat ion might consist of examples of
thp input /output behavior of the desIred program . or It might consist of traces of the desired
program ’s behavior (a trace Is an exam pie showing how the program should process a given
input) Specificat ion by exam ples (or t races)  is certainl y not complete: The examples do not
fully describe in all cases the behavior of the desired program.

Natural language (e p.  English) is another method of specification The user specifies
in natural language what the desired program is to do. This method is often Interactive (cf
articles on PSI and NGPS). checking hypotheses, pointing out Inconsistencies, and asking for
further information

A mor e detailed discussion of specificat ion. ir cludir~g some advantages and
dw~advantsqes of the various met hods , Is presented sri the article on program specification.
L xamplps of program specificat ion are found in most of the remaining articles of this chapter.

Target language The specification method refers to the Input to the AP system . and
t h e  target language is concerned with the system ’s output of the finished program The
lanqu agp in which the AP writes the finished program, or parts of the finished program, Is
ca lled the ta’~’it la i guagv. The target languages of the AP syste ms described in this chapter
are high-level languages such as LISP, P1/I , or GPSS. As an exam ple. su ppose that the
target  language of an AP system were LISP. The user , possibly employing a very high-level
language , or examples , or natural language, would specif y to the AP system what the des ired
program is to do. Then the AP system would eventually output a LISP program to do j ust that.

It is possible to view specIficatIon method and target language as relative terms. In an

AP system that carries the process of writing programs through several phas es , the Input
language for each phase could be thought of as a specif icat ion method, and the out put
specification as being written in a target language , which then becomes the input 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _


Programming 5

specif icat ion method to the next phase. Howeve r , in this cha pter , target language is usually
reserved for the language In which the output program of the whole AP system is written.

Problem area Another characteristic of an AP system is its problem area or area of
intended application. Problem area , problem domain, appli cat ion area , and application domain
are syrionomous terms. For som e AP system s , the scope of its problem area Is relatively
precise; for exam pl e, the problem area of the NIPO system is simple queuing problems, while
the problem area of the PROIOSYSIEM project is input/output intensive data-processing
systems . Including inventory control, payroll, and other record-keeping systems. On the other
hand, the problem area of ~..,me AS’ systems can be relatively large ; the application domain of
the PSI system is symbolic computation, includIng list processing, searching and sorting, d a t a

storage and retr ieval , arid concept formation. The problem area of a system can have a
bear ing on th. method of specification, introducing rele vant terminology, influencing the
method of operation or approach used by the AS’ system , etc.

Method of operation The fourth characterIstic of PiP systems Is the approach or
method of operation AP Ii too new for there to be very many clear-cut categories of
methods of operation. The appro.ch(es) of most systems is not easily categorized. A
separate article on basic approaches discusses some of the more clear-cut methods.
including theorem proving, program formation, knowledge engineering, automatic data
selection, tradItional problem solving, and Induction.

In the theorem-proving approach, the user specifies the conditions that must hold for
the Input data (to the desired program) and the conditions that the output data should
satisfy: The conditions are specified in some formal language, often the predicate calculus. A
theorem prover Is then asked to prove that , for all given inputs, there exists an output that
satisfies the output conditions. The proof , then, yields a program. The desired program can
be extracted from the proof.

The program transformation approach refers to transforming a specification or
description of a program into an equivalent description of the program. The reason for the
transformation might be to convert a specification that can be easily written and read into
one that is mor e complicated but more efficient; alternatively, the goal might be to convort a
very high-level description of the program into a description c loser to a target language
Implementation.

~riowIedge engineering (so. Ap~ caboris cha pter), applicabl e to many areas in addition
to AP , r e f er s to IdentIf ying and explIcating knowledge; arid It often means reallzingN the
knowledge as specific rules that can be added to or removed f rom the &iww~edge bare of a
system.

Traditional problem solving (see sect ion Smsrcts), also applicable to many areas , refers
to the use of goals to direct the choice and application of a set of operators.

These approaches or paradigms overlap, and many systems util ize a method that may.
In part , draw on elements from .ev.r.l. While it is herd to categ or ize the approaches of AP
systems , there are now enough systems so that It is possible to Identify soe~e common
Issue s, and thes e are the topic of the next sect ion.

-~~
, -.. — —.—.—

e Automatic Programming

Basic Issues

In the article on basic approaches and in all the articles describing the individual
research proj ects , the reader will find one or more of several explicit basic Issues
addressed: partial information, transformation, efficiency, and understanding.

Partial Info rmat ion Partial information pertains to systems whose methods of
specific ation allow for partial or fragmentary descriptions of the desired program: Not all of
t he required information Is present In the specIfication , or, where it Is present , it may not be
explicit. Since the problem of partial information does not apply to systems that have
complete methods of specification, systems such as DIDALUS, PROTOSYST E M I , LIBRA , and
PE COS are not concerned with this problem On the other hand , systems that accept
Incomplete specIfIcatIons, especially natural language specifications, are very much
concerned with partial inf ormation. The Nt P0. PSI, arid SAFE systems fall in this category. A
classification of the different kinds of missing information that might occur in a natural
language specification Is given In the SAFE article

Usually going hand In hand with the problem of partial information is the problem of
consistency. Incomplete methods of specif ication often permit inconsistency between
diff erent parts of the same specificat ion. In such cases, the system must check for
InconsIst encIes and, If they are found, res olve them.

In trying to fill in missIng information in one part of the specification or checking for
consistency between different parts and resolving any discovered Inconsistency, the s y s t e m

may use Infor mation that occurs ptthpr explicitly or Implicitly In other parts of the
specificat ion. Al so, It might utilize s knowledge base containing Information about the problem
area Finally, the system may consult the user in an attempt to gain the sought-for
information . One of the explicIt devices for utilizing such information Is c o nj t r a ln fs . For
examples of these , seti the article on PSI end especially the arti cle on SAFE.

Transformation Another Issue addressed by AP systems is transformat ion. The term
refers, simply, to transforming a program description, or part of a program description, into
anot her form All AP systems use transformat ion, if only to transfor m an Internal description of
the program into a target language implementation (description) Even a compiler of high-
level languages (e g . FORTRAN . Pt f l~ Al GOL) will often transform a program description
seve ral times , taking it through several internal representations, the lest of which is the
machine language description However , a compiler differ s from an AP system In that it
applies the transformations in a rigid, pr edetermined manner; In an automatic programming
system there might be no predetermined way to apply the transfocmations. the application
depending on an analysis and exploration or the results of applying various transformations.
System s . such as DI.DALIJS and PECOS, that lice extensive transformat ion on the program
description have a know’edge base containing many transformation rules that convert parts
of a higher level description into a Iow~r level description, closer to a target language
implementation . Such rules are repeatedly applied to parts of the program descrIption with
the goal of eventually producing descriptions within the target language. These systems
develop a tree of possIble descrIptIons of the program , with each descendant of a node
being the result of a transformation. One of the goals, then, in developing the tree Is to find a
descrIption that Is a target l•nguage Implementation of the desired program. Another goal
might be to find an effIcIent target language implementation.

_ _ _ _ _ ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~ .

F” ‘• ‘
~~~~~~~~~~~~~~~~~~~~~ . .L.~~~~~~~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

— —

~~
-—- -

~~ 
=— - — - —-——-- - — .

Automatic Programming

Other AP systems may use transformation rules in va rious ways. For instance, the NLPO
system uses transformat ion rules to parse the natural language input from the user , to
generate natural language output to the user , and to generate the target language program
froa~ an Internal descr ipt ion.

Eff iciency Another concern of AP systems is the if ficiency of the target language
implementat ion . The two project s that dealt with this issue are PROTOSYSTEM I and the PSI
subsystem LIBRA. While the PROTOSYSTEM approach to creating efficient programs combines
artIficial intelligence wIth the mathematical technique of dynam ic programming, the LII3RA
appr oach uses a more extensiv e range of artif icial intelligenc, techniques, employing a
variety of heur istics, estImates , and kinds of know ledge to guide Its search for an efficient
program.

When It Is said that an AP system optimizes a program for efficiency, it does not moan
that the system finds the abso lute ly most effic ient Implementation ; combin atorial explosion
makes  such a t a sk  impossible. Instead, optimizing means making some reasonable choices In
the Implementation so as to achieve a reasonably efficient program.

Understanding The basic concern of one of the systems below , PROGRAMMER’S
APPRENTICE, pertaIn more to ‘understanding” the program than it does to the basic concerns
of partial Information, transformation, or efficiency. In this situation, understanding a program
mIght be defined as that which enables a system to talk about, analyze, modi fy, or write
parts of a program. It Is the Intention of the PROGRAMMER’S APPRENTICE , though it should be
kept In mind that at present this system Is not yet operational, to realize program
understanding through the explicit use of plani . A plan represents one particular
understanding or way of viewing a program, or part of a program (for a more detailed
explanation, see the articl, on PROGRAMMER’S APPRENTICE). Understanding in The other
systems Is relatively implicit and does not res ide In any one particular class of
structures.

Overv iew o f the ~vste~ s Art I c l c ’ g
The projects described in the system articles cover much of the current resea rch in

AP, Including the four basic issues just discussed: transformation rules , search for efficiency,
handling partial “iformation, and explicIt understanding.

The NL.PO system Is the first PiP system to utilize natural language dialogue as a
specificat ion method . The user specifie s part of a sim ple queui ng simulation problem in

English. and then the system , as Is necessary, answers questions posed by the user , as well
as queries the user In order to com plete missing Information or to resolve Inconsistencies.
The partial knowledge that the system has obtained about the desired program is
represented as a semantic net that Is eventually used to generate the program In the t arget
language GPSS. Transformation or production rules analyze the user’s natural language
specif icatIon , build and modify the semantic net, produc e natural language responses , and
fina lly generate the target language program.

The PSI system is mor e recent and consists of many subsystems ; It stresses the
Int egration of a number of different processes and sources of k now ledge. The problem
application area is symbolic programming, Inciudln g Info rmation retr ieval , sim ple sor ts . and
concept formation. The user can specIf y the desired program with a mixture of eKamples
and mIxed -Initiat ive natural language dialogue; for an easier and more natural Interaction with
the user , the system mainta ins and uti lizes a tree of the topics that occur during the

..
~ 

. -



• Automatic Programming

specification dialogue. Through such a dialogue, PSi creates a complete , consistent
description of the desired program. In the last phase, the system ex plores repeated
application of transformation rules In order to convert the description into a target language
implementation. This last phase, the synthesis phase, is carried out by two subsystems:
PECOS provides suitable transformation rules and tIBRA direct , and explores the app licat ’~n
of the rules, with the goal of obtaIning an efficient target implementat ion . PECOS and t lfl RA
are described In separate articles.

Roth PECOS and DEOA&. IJS are examples of full-fledged, dynamic transformation
systems. They each start out with a complete specification of the desired program Each has
a knowledge base of many transformation rules that are repeatedly applied to the
specif ication These repeated applications produce a sequence of specifications that
eventually terminate with a specification that is a target language implementation . Because
more than one transformation rule can apply in some cases , ea ch system actually develops a
tree of specifications (descriptions), with eventually one or more of the final nodes of the
tree being a program implementation within the target language. Part of the differences
betw~ pn these two systems lies in the fact that OFOAI.US is concerned with the logic of
such programming concepts as recursion arid subroutine. On the other hand , PECOS is more
concerned wIth the multiplicIty of implementations of very high-level programming constructs
and operations, because that is its task within the PSI sy stem , Though PECOS stresses
knowledge of various implementations and DEDAtUS st resses knowledge of programming
constructs , both are systems where transformation is the primary emphasis.

The SAF E system article contains an extensive description of constraints and their use
In handling partial information. SA~F processes a variety of different kinds of constraints, in
order to flU in different kinds oI m It.: meaiori in the specification of The desired program . and
employs different methods of processing these constraints. There are constraints related to
type of object referenced In the specification, as well as related to sequencing of steps.
Constraints are processed by backtracking and by carrying out a form of symbolic execution.

One of the Ideas of the SAFE proj ect is that a Completely specified program satisfies a
very large number of constra ints Information in the user ’s partial , fragmentary specification
(partial and fragmentary since the specification does not ment ion all objects explicitly, or
partia ll y mentions other obj ects and may not contain explicit sequencing of actions)
combined w ith the many constraints that a formal program satisfies (and possibly with
Information from a knowledge base of the application area or . In special cases , from
information obtained from queries to the user). taken together, fully det ermine a complete
and formal description of the program. No other system deals in so central a way wIth p.rtial
Information and constraints as does the SAF E system .

Thp LIRRA and PROTOSYSTEM I projects are t,oncerned with efficiency of the target
language implementation. LIBITA uses an artif icial intelligence approach, while PROTOSYSTEM
I is~ es a combination of seine artificial intelligence with primarily the mathemat ical approach
nf dynamic programming. Oynamlc programming, modifIed by approx imat ions and heuristics,
produi.e’i en optimized target language implementation . On the other hand, LIRRA guides the
application of the transformation rules furnished by the PECOS subsystem of PSI and directs
tIle growth of the resulting tree (see above discussion of PICOS) with the go.l of finding an
efficient target linpiementation. LIBRA determines and utilizes estimates of wl~at It is likely to
achieve by exploring the development of a particular node. LIBRA has knowledge about how
Ita own allocation of space and time should influence Its strateg y In searching for an effic ient

.
~~~

—
~~~~~~

- - —-.- -—---,
~~

-,-- ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  
-

~~~~~
--- - .

~
-
~~
.- -

~~~
-——-

~~

Auto matic Programming 9

Implementat Ion . Though both LIBRA and PROTOSYSTEM I are concerned with producing
efficient implementat ions, they approach the problem in different contexts. The first
explores configuration, of a data-proc.s.ing program and the second exp lores app lication s
of transforma tion rules.

The PROGRAMMER’S APPRENTICE Is not necessari ly Intended to write the program, but
Instead to function as an apprentice to the user , with the user writing none, ~‘ime, or all of
the program and the apprentic e assisting with such tasks as writing parts of the program .
checking for consistency, explaining pieces of program, and helping the user modify
programs. The central concern of this p’olec( is undevnands vmg. through the explicit device of
plani . A plan may be thought of as a template that ex pre sses a viewpo int. Matching the
plan to a part of a program description corresponds to understanding the part in that way.
Several plans can match the same part of a program , corresponding to different ways of
under standing that part . Plans can also be built up In a hiorarchical fashion. The goal Is that
the PROGRAMMER S APPRENTICE, w ith the understand ing atta ined through the use of plans.
can assIst the programmer with correcting mistakes , writing parts of the program, and
effecting modifications.

All of these are research projects : At present none has been responsible for an AP
production system. Much research remains before most of these syst ems can be of use to
programmers.

References

See The Annual Review In Automatic Programming (1960), Automatic Coding (1957),
Balzer (1973a), Baizer (19?3b), BaIz.r (1973c), $lermann (1976a), Hammer (1977), Hammer
& Ruth (1979), Heidorn (1976), Heldorn (1977), and McCune (1976).

Further reference, for specific research areas are listed with the other article s In thés
chapter.

I

.. - in.
-.-

Lu ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~ .... - - - -
~~~~~~~~~~

- — -
~~-~ ----~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~ .—- . --.— —

____ — - .~~~~ .- -‘

10 Automatic Programming

A. Methods of SpecifIcatIon

There must be som e means or method by which the user conveys to the AP system the
kind of program that he wants. This method is called the program specIfi catIon . It might enta il
fully specifying the program in some formal programming language at possibly Just specifying
certain properties of the program. It might invo lve giving examples of the Input and the
output of the desired program, giving formal constra ints on the program In the predicate
calculus, or giving Interactiv e descript ions of the program at increas ing levels of detail in
English. (SpecIfIcatIon Is introduced in general terms in the overview artIcle.)

Formal SpecIficatIons

One method of formal specificatIon is that used with the basic approach of theorem
proving (see below for this basic approach). Here one might specify a program as

(1) V sl (P(sl) ~ 3.2 0(sl ,s2))

where si are the input varlabies, and s2 are the output variables. P(sl) is the input
predicate (or Input specification); it gives the conditions that the inputs, ii , can be
expected to satisfy at the beginning of program execution. 0(s2) Is the output predicate
(specification); it gives the condi t ions that the outputs. s2, of the desired program are
expected to satisfy.

ExpressIon (1) states that for all ii , the truth of P Implies there is en s2 such that
O(si .s2) Is true. If there are no restrictions on the inputs, one may simply w rite

V sI 3.2 Q(sl ,s2)

For example, a program that computes the greatest common divisor of two Integers x
and y might be specified by taking P(x ,y) as the condition that x and y are posItive , and
O(x ,y,z) as the condit ion that z is the greatest common divisor. P(* ,y) could be wrItten as

x) 0 and y) 0

and Q(x ,y ,z) could be written as

dlv$de(z,x) and div$de(z,y) and
Vr ((r>O and dlv$de(r,x) and div$de(r,y)) ~ z ~

The expression

V a y 3 z (Na y) • Q(x .y.z))

would tlmnn state that for aN posit ive integers * and y, there Is a a such that a is their
greatest common divisor .

In the basic approach for this kind of specIfIcation, the above expression Is given to a
theorem prover that produces a proof from which a program can be extracted (see buic

— -~~~ ,

— .--.- .—.

_ _ __ _ _ _

A Methods of Specificat ion I I

approach of theorem proving below). One Is required to give to the theorem prover enough
facts concerning any predicates and functions that occur in P and 0 so that (1) is provable.
Thus, In the above , one would have to specify a number of facts concerning the predicates
Udividew (~ , and � over the integers.

Another very simi lar method of specif ication is that used with the basic approaches of
program transformat io n and of very high-level languages. This specification me t hod stresses
the use of entitie s that are not immediately implementab le on a computer , or at least not
implementable with some desired degree of efficIency. There Is considerable leeway In this
classification. For instance, in some program transformetr- i systems the entities employed
may be quite abstract , without any hint of the desired algorithm. In other systems the
algorithm most natural ly suggested by the specification of the program could be Inefficient,
but the AP system will produce an efficient but perhaps convoluted program.

One example of a specification used with program transformat ion is (see article 06)

gcd(x ,y) - t ’np iae max (2: divide(z,x) and divide(z ,y))
a and y are nonnegative Integers greater than zero

This expression states that the gcd (greatest common divisor) of x and y is the
maximum of all those z such that a divides x and y. Furthermore, it Is assumed that x and y
are nonnegative integers one of which is nonzero. By successive transformations of this
defInItion of gcd, the system would produce an efficient recursive program. Another example
(Darlington & Burstail, 1973. p. 280) is

lactorlal(x) :~~ if x u0 then I else times (x .factor lal(x -1))

The system , then , by var ious transform ation s produces a more eff icIent nonrecur sive , though
more tortuous, program.

Advantages and Disadvantages of Formal SpecIf icat ion s

The first specification method, that Involving the input and the output predicates and
based on formal logic , is completely general: Anything can be specIfied. On the other hand .
the user must have a sufficient understanding of the desired behavior of the program in
order to give a full formal description of the input and output. This understanding can
sometimes be difficult , even for simple programs. Also, the present form of theorem provers
and problem reduction methods makes synthes is of longer programs difficult.

The second type of formal specifIcation does not have such arbitrary generality, but
the termino logy used in the specificat ion often Ii closer to our way of thinking abou t a
particular sub j ect , and so It should be easier to create such specifications.

Even though some of the above formal methods are arbitrarily general and ot hers are
not, they all are complete: The specIfIcatIon of the desired program fully and completely
specIfIe s what the program Is to do. This Is not true of some of the other methods dIscussed
below, where the specIfication doss not uniquely determine what the program is to do. With
such methods It becomes a concern whether the program produced by the system Is actua lly

— . -

-~~~I. ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
—

12 Automatic Programming

what the user desires. Sometimes a system employIng such a method may need to verify
whether th, program it produces Is the program that the user wants. On the other hand , with
the specification methods discussed here, there is no such prob lem. For further reading on
thIs subject, see Slbel , Furbach , & Schrelber (1 978).

Specification by Example s

Some sim ple programs are most easily described using examples of what the program Is
sup posed to do.

Examples of input/output pairs In this specification method, the user gives exampio~of typical Inputs and the corresponding outputs. Consider specIfying or describing a
concatenation of lists to someone who Is unfamilIar with the term concatenation. It might
be most straightforward to use an example:

concat ((A B C), (0 E)] • (A B C 0 F)

which states that when the Input of the function concar consists of the two lists (A B C)
and (D E). then the corre spond ing output is (A B C 0 F).

Given certain commonsense assumpti ons , this exampl e input/output pair should suffice
to specif y what It is that the desired program is to do. in more complicated cases , where the
commonsense assumptions are not suffic ient, more examples must be given in ord er to
specify the program uniquely. For instance, the above example could be misinterpreted as a
co nstant program that always gave (A B C 0 F) as output:

conc at (x ,y) ‘ (A B C 0 E)

In such a case, giving an additIonal example

• coricat ((I. M),(N 0 P)J • (I. N N 0 P)

would proba bly clear up any Confusion.

Another instan c e of this method Is the specIficat ion of the function prlme’ by a set of
input/output pairs:

preme(1) . 1
prlme(2) • 2
prime(3) • 3
prlme(4) • 8
prime(6) • 7

prlme(6) • 11

Generic example s of input/output pairs in certain cases, generalizations of specific
example , or gener ic examp les are mate useful in order to avoid the problems inher ent In
partia l specificat ions. For Instan ce, the generic example

rever.e [(X1 X2 X3 ... *n)) .(Xn ... X3 *2 X1)

—

- .—~~~— — —— .—..—-—— — -

A Methods of Specif ication 13

des cribe. a Net reversal function. Here, the X 1 X2,.,.,Xn are variables which may be
anything. This specification Is stIll parti l but Is more complete than any specIfication of this
function given by example of Input/Output pairs.

Program traces Traces allow more imperative specifications than do example pairs. A
sorting program may be specif led with Input/output pairs (e.g., Green et al. 1974):

sort ((3 14 2)] ’ (12 3 4)

but It would be hard to specify an Inserti on sort program in the same way. Yet , a program
trace could express such a progr am as follows:

sort ((3 1 4 2)) --> ()
(1 4 2) --) (3)

(4 2) --) (1 3)
(2) --) (1 3 4)
U --) (1 2 3 4)

Another example of specIfication by traces might be

gcd(12,18) -)
(8,12) -)
(0,6) -)

B

for the specificat ion by trace of the Euc lidean algorithm that com putes the greatest common
divisor. An exam ple of using a t race to specify part of a concept format ion program Is
presented In 02.

More formally, a trace may be def ined as follows. A programming domain can be thought
of as consIsting of a set of abst ract objects , a set of possible representat ions (called da(a
struc n~r es) for these abstract objects, a basic set of operators to transform these
repr esentation s , and a class of questions or predicates that can be evaluated on these data
structures. A progvannang domwi thus characterizes a class of programs that might be
constructed to operate on representatio ns of the set of abstract objects In the domain. For
a given program operating on some data ob jects in the domaIn, a tracs is a sequence of
changes of these data struc t ures and control flow decis ions thet have caused t hese
change s during execut ion of the program.

ira ces are usually expressed In terms of doma in operators and tests (or funct ional
compositions of these). Traces are classified as cempI.t. if they carry all Information about
operators applied, data structures changed. control decis ions taken, etc. ; otherw ise , they
are called fficompI.fr. An Interest ing subclass of the latter is the class of prW.cais, In which
all data modifIcatIons are explicit but aN control Information (e.g. , predicate evalua t ions that
determine control flow) Is omitted. A protoco l Is then a sequenc e of data struc ture state
sna pshots and operation applications (for a more complete definition see Art llce
aplapproache a-P??).

Generic traces Illi e generic examples of input/Output paws, these may also be
useful . In generel, there Is s whole spectrum of trace specifications,. :~dlng on how uch

14 Automat ic Programming

imperative information and descriptive Information Is present in th. trace. For instance , the
trace above is completely descr ipt ive; traces that conta in function appl icat ions and/or
sequencing informat ion tend to be more Imperative.

Advantages and Disadv antages of Specif icat ion by Examp les

As stated above, generic examples are less ambiguous than non-generic examples.
Traces are less ambiguous than input/output pairs , but the user Is required to have in mind
some Idea of how the desired program is to funct ion. On the other hand, traces do allow
some imperatIve specifIcation of the flow of control.

Specification by examples can be natural and easy for the user to formulate (Manna,
197 7). Examples have the limitations inherent to informal program specifications : The user
must choose examples so as to unambiguously specify the desired program. The AP system
must be able to determine when the user’s specif icat ion Is consistent and complete and that
the system ’s modei of what th. user wants Is indeed the right program.

Natural Language Specifications

Given an approprIate conceptual vocabulary, English descriptions of algorithms are
often the most natural method of spectf,c.tlon. Part of the reason Is that natural language
allows great er flexIbility In dealing with bas ic concepts than do. say, very high-level
languages. This flexibIlity requires a fairly sophIsticated representational structure for the
model, with capabilities for represent ing the partial (incomp lete) and often ambiguous
descriptions that users provide. In addition. it may be necessary to maintain a database of
domain-dependent knowledge for certain applications. E xperience with implemented
systems , such as SAFE (Balzer , Goldman, & Wile, l g 77a; see also 03), suggests that the
relevant Issu es are not In the are . of natural language process ing but In how t he
specifications are modeled In the system and what progr amnwng know$edge the system
must have.

Mix ed-Initiative Natural Language Dialogue

More versatile, this specIfication method Involves interaction between the user and the
system as the system builds and tries to fill In the details In its model of the algorithm, in
addition to maintaInIng a model of the algorithm, such systems sometimes will even maintain a
kind of model of the user to help the system tailor the dialogue to a particular user ’s
Idlosyncracies. Various techniques mentioned prev iously, such as examples or traces , could
be used In the dialogue as a description of som e part of the algorithm. The system might be
designed so as to allow users to be as vague or ambiguous as they please; the system will
ultimately ask them enough to fill In the model.

This method Is probably the c losest to the usual method of program specification used
by people, allowing both the specifier and the programmer to meke comments and
suggest ions. Users do not have to keep every detail In mind, nor do they have to present
them in a certain order. The syste m will eventually quest ion the user for missing details or
ambiguous specif icat ions. On the other hand, this method requires a system that deals with

~~

A Method s of SpecifIcation 16

many problems of natural language translation, generat ion, and representat ion. A
representatIon Is also required for the system ’s model of the algorithm.

The PSI sys tem (Green, 1976b; see also 02) and the NIPO system (Heidorn, 1974; see
also 08) use this method of program specification. Floyd (1972). and Green (1977), give
hypothet ical dialogues wi th such a system , illustrating the problems that researchers have
encountered with this appro ach .

References

See Siermann (1976.) and Heidorn (1977). For examples of individual specification
methods see the remaining articles of this chapter.

- -

-
—

16 Automat Ic Programming

B. Basic App roaches

The following are som e of the basic approaches used in Automatic Programming (AP)
systems to synthesize desired programs from user specifications. There is not always a
clear dist inction between syn thesis and specification . Furthermore , as will be seen from the
later articles, sonic systems employ primarily one approach while others employ more
elaborate paradigms that use several approaches. (Synthesis and specification are
introduced In the overview article.)

Theorem Proving

The theorem-proving approach is used for the synthesis of programs whose input and
output conditions can be specified In the formalism of the predicate calculus. As stated in
the section on formal specifications, the user specifies the desired program for the theorem
prover as an assertion to be proved. ThIs assertion usually takes the form Green (19fi9):

V si (P(sl) ~ 3 s2 Q(sl ,s2))

where sl is one or more Input variables . s2 Is one or more output variables , P is the
predicate that si Is expected to satisf y, and 0 is the predicate that s2 is expected to
satisfy after execution of the desired program In addition to the above expression, the
theorem prover must also be given enough axioms to make the above expression provable.

From the proof produced by the theorem prover , a program is extracted. For ins tance.
certain constructs In the proof will produce conditional statements ; others, sequential
statements; and occurrences of Induction axioms may produce loops or recursion. There are
several variant methods of accomplishing these results (see Waid ingar & levitt , 1974,
kowalski, 1974 . Clerk & Slckel, 1977) .

Although any interesting example would be far too long to work out In all of its detail
here , it may be worthwhile to show how such a problem is set up. The interested reader is
referred to Green, 1969, for a more complete development of the following example.
Consider the very simple problem of sorting the dotted paIr of two distinct numbers, in LISP.
The ax ioms that would prove useful for this synthesis would be:

1) x car (cons(x ,y))
2) y ‘ cdr (c ~x ,y))

3) x . nil ’ conot ..,y.z). z
4) x } nil ’ cond(x .y,z) s y

6) Vx ,y (lessp (x ,y) } nil’. x (y)

The specification of the des ired program, and the theorem to be proved, would be:

Y x . 3y. (car(x)<cdr(x)~~ ysz] A
[car(x)?cdr(x). cer(x).cdr(y) A cdr(x).car(y)J

which says that for every dotted pair Input x , there is a dotted pair output y such that If x is

- -.--- - --
~
- .

~~ ~~_:a~mi. ~~~~~~~~~~
.-~ -~~

B Basic Approaches 1 7

already sorted, then y Is the same as x , and If x is not sorted, then y is the interchange of
the two elements of x. Using the techniques of resolution theorem proving (see Theorem
ProvinQ.C), we would obtain the following program:

ys cond(Iessp(car(x),c d r (x)) ,x ,cons(cdr(x),ca r (x)))

In general , programs to be synthesized will not be as simple as the one above. One of
the major problems that more complicated programs introduce is that they require some form
of Iteration or ‘ecursion for solution. ‘to form a recursive program, one needs the proper
Induction axioms for the problem. A general schema to.’ the induction axiom sufficient for
most programs is Green (1909):

[F’(h(nII),ni l) ~ Y x [A T O M (x) A P(h(cdr (x)), cdr(x)) ‘ P(h(x), x))J
Yz [P (h (z) . z)]

where P Is any predicate and h is any function. Somehow this predicate and function
must be determined Requiring the User to supply the induction axioms for each program to be
syntheslsed somewhat defeats the purpose of the synthesis, yet having the system
generate induction axioms until one of them works takes up fa r too much time and memory.
Systems that determine the P and h usually use various heuristics to limit search.

There are several constraints inherent to the approach of theorem proving. First , for
more complicated programs , It Is often more difficult to correctly specif y programs in the
predicate calculus than it is to write the program itself. Second . the domain must be
axIomatIzed completely, that Is, one must gIve enough axioms to the theorem prover so that
any statement that Is true of the various functions and predicates that occur in the
specification of the program can actually be proved from the axioms”-otherwise, the theorem
prover may fall to produce a proo f , and thereby fail to produce the program. Third, present
theorem provers lack the power to produce proofs to.’ the specification of very complicated
programs. To summarIze , the user must fully and correctly specif y the desired program, the
theorem prover must be given enough axioms so that the specification is provable, and the
theorem prover must be stron g enough to prove the specification .

It should be noted that this approach does not allow partial specification : Users cannot
specify the program partially, with the system helping them to fill in details. On the other
hand , when a theorem prover does succeed In producing a proof of the specification, the
correctness of the extracted program is guaranteed. Thus, AP systems might incorporate
theorem provIng where it 5 either conve nient or where correctness is an important requisite.

Program TransformatIon

The transformat ion appr oach is used to auto matica lly convert an easily written, easIly
understood LISP function Into a more efficient, but perha ps convoluted program. One such
system , descrIbed In O.rllngton & Burstall (1973). performs recur sion removal, the elimination
of redundant computation, expansIon of procedure calls, and reuse of discarded list cells.

-1 . -
~~~~~

— . ._
—

~~~~~~~~~~~~~~~~
—-

~~~~~~~~~
--- -- —- 

-- 
.~~~~~~-



1$ Automatic Programming

The recursion removal transforms a recursive program into an iterative one, which is
generally more ci flclent , avoiding the overhead of the stacking mechanism. Candidates for
recursion removal are determined by pattern matching the parts of the program against a
recursive schema input pattern. If the match is successful and if certain preconditions are
met , then the program is replaced by an iterative schema. A simple example of such a
transformation rule is:

Input pattern: 1(x) : : v If a then b else h(d .f( e));
precondition: h Is associative, x does not occur free in h,
result pattern: f (x ) : :~ If a

then result - b
else begin

result —
x — e ;
whIle not a -

do begin . 
-

result — h(resuit ,d),
x - e  

. , 

-

and.
result h(result ,b)
end

where a , b , d , e , I, and h in the input pattern are matched against arbitrary express ion s
in the candidate functions, For example , the function,

FACTOR 1A[(x) ::‘ If( x v i )  then I else TIMES (x , FACTORIAL (x -1))

would mat ch the above Input pattern with I - FACTO RIAL , a- (xvi), b . 1 . h — TIMES , d
x , and e • (x-1) . The resulting program would be the resulting pattern with these values

substItuted for a, b, d, e, f , and Pi.

ElimInating redundant computations Includes traditional subexpression elimInation as
well as combining loops that iterate over the same range. The latter Includes Implicit
iteratIon. Thus, if A, B, and C are represented as linked lists, the sequence:

X • INTERSECTION (A ,B)
V - INTERSECTION (A ,C)

Is really two implicIt Iterations, each over the set A. A suitable transformation rule would
convert these into a single Iteration over the set A.

Expanding procedure calls generally involves substItuting the body of a procedure for
each of the calls to it. The potential benefit arises from simpiif lcatlons made possible by use
of the .cal context. This technique Is the starting point for a general class of
transformat ions exp lored In Bursta ll & Darllngton. 1976, and Wegbrelt . 1976a .

Program transformation is also used to convert very high-level specifIcations Into
target language implementations (see 06, 06, as well as summar ies of these art icles In A).

. ,,a.
__ 

- —

— -~~~~~~~~-~~~~—--~~— ,
-
---

~~
---- -- . ——. — ---~~— — -



B Basic Approaches 19

knowledge EngineerIng

AP systems are said to be k nowl edge-based ” when they are built by Identifying and
codlfy~ng the knowledge that Is appropriate for the program synthesis and understanding
(i .e., ability to manipulate and analyze programs) and by embedding this knowledge In some
representation. Many of these systems use large amounts of many kinds of knowledge to
analyze , modify, and debug large classes of problems. While the dIstinctIon Is relative, it is
possible to divide this knowledge into two types: programming knowledge and domain
knowledge.

Programming knowledge includes both p u~(1d WIIit V1g language k nowledge , which is
knowledge about the semantics of the target language in which the system will write the
desired program , and 

~~~~~~~ 
p ro gvan~ung knowled ge . which Is knowledge about about such

things as generators, tests , InItializatIon, loops, sorting, searching, and hashing. Programming
knowledge Includes: (a) opt imization techniques. (b) high-level progr amming constructs
(loops, recursion, branching), and (c) st rategy and planning techniques.

Domain knowledge Is what Is necessa ry for a system to Infer how to go from the
problem descj lptlon or specification of a program In a certain program class (for example
symbolic computation) to what needs to be done to solve the problem. ihia know-how
Includes how to structure the concepts in the domain or problem area and find
Interrelat ionsh ips among them. It must also include knowledge about how to achieve certaIn
results in the problem domaIn (ci.. HACk ER’ s learning of procedures Protism Soiving.B8).
Moreover , It should be able to define the problem In alternative ways and find alternative
ways to solve the task- -such knowledge represents an understanding of the domain.

knowledge-based systems need a method of reasoning. Since they are not restricted
to using the tradItional formalisms of logic, they often supply their own flexible reasoning
techniques for guiding the synthesis. Some of these techni ques include Inference , program
sImplifIcation, Illustration and sim plifi cat ion for the user , decision trees , problem-solving
techniques, and refinement

The basic concern in representing the knowledge is that the knowledge be structured
in such a way that the search for relevant facts not cause a combinatorial explosion.
Various representations employed include:

-- PLANNER-like procedural experts (Al Len~.,agse.Ci),
Refinement rules (05),

-- Modular , frame-lIke experts (OWL (Mart in, 1974)
and BE INGS (t enat , 1976)).

- - Semantic nets (06), and
- - Amorphous systems that try several ad hoc techniques

((Blg gersta f f , 1976)).

Methods of accessing knowledge bases Include: pattern Invocation (ArtIcle 05), vwhen
needed (Suss man , 1975); fr ame relat ions and assertIons, including filling In process models
(Mart in , 1974; Green, 1909; Lenat, 1976; see Art icles 06, 02. and 03); and subgoal or case
analysis (Green, 197? , and see 06).

20 Automatic Program ming

Automatic Data Selection

This approach røf.rs to the selection of efficient low-level data-structure
implementations for a program specified In terms of high-level abstract information structures
(e.g., sets). Generally, programming languages containing abstract data types have del cult

representations that are a compromise between all likely uses of the structures; these data
types ev e typ ically Is, from eff icient in any one particular program. But a system with
automatic data selection would choose, from a collection Of possible implementations, an
implementation more efficient for the particular program under consideration . for example.
the abstract data type set could be represented in low-level implementations as a linked list .
a binary tree , a hash table, a bat string, or as property list markings. Var ious operations on
sets are easier in one representation than in enother--e g. set Intersection using bit strings
Is simply a logical AND operation, while iteration over a set Is easier when it is represented
as a linked list--and some representation s may not even be applicable in a given case (e g.,
bit strings require that the domain of set elements be f ixed and reasonably small, since one
bit posItion Is used for each possible element) . Also, some representations may not permit all
needed operations (e.g., the only way to enumerate the Items in a set represented with
property markings is to enumerate all atoms in the system) By tailoring the representation to
the particular programmer ’s Intention, it is possible to produce much better code.

One such system performing data-structu re selection for the user Is Low , 1974 , and
Low , 1978 This system handles simple programs written in LEAP , a sublanguage of SAIL . It
selects representat ions for sets , sequences, and relations from the fixed libra ry of low-level
data structures available in LEAP . The selection is guided by the goal of minimizing the
product of the memory and tIme required to execute the resulting program.

The system begins with an information-gathering phase that sear ches out the relevant
chara cterist ics of the program’s data structu res , such as their expected size, number , the
operations performed on them, and their interactions Some of this information Is obtained by
questioning th~ user. and some Is obtained by monitoring the actual execution of the program
on typic a l da ta , using def ault representat ions for each structure. Then the system partitions
into equivalence classes the variables whose values wiiI be Of the same type of data
structure. The system employs a method similsr to bill climbing (see Artic le S.erch,Overview)
in order to determine a good assignment of data structures to the equivalence classes (i.e.,
the representations assigned to the equivalence classes are repeatedly va ried, one at a
time, to see if an improvement will result). Foe further details , see the above references.

Other AP systems are also concerned with the selection of an efficient set of data
structures or file structures, but this concern is part of the general goal of writing in
efficient program (see Articles 07 and 09).

Traditional Proble m Solv$ng

Traditional problem solving refers to using goals to direct the application of operations
in a state space (see Search). The Heuristic Complier (Simon, 1972) regards the task of
writing a program as a problem-solving process using heuristic techniques, like those of GPS
(see Arti cle S rct~,02). This pioneering work recognized the valu , of both a state language.
to describe probtom states and go.ls, and 5 ~t.t(iCSI3 language, to represent the solver ’s
actions.

B Basic Approaches 21

In the Heuristic Compiler , the State Deicript wn C~’mp iIer Is quite similar to later work on
synthesis from examples. The program being synthesized is defined by specifying
Inpot /output conditions on the memory cells that it a f fec ts . The difference between the
current state and the desired state Is looked up in a table that specifies which operators to
apply to transform the contents of the cells appropriately. The Funasonal Des c r ip t ion
Coin pu rr is an important precursor to later work in automatic modification and debugging of
programs. it uses a means-ends analysis to transform a known (compiled) routine into a new
(desired) routine

HACKER , a system described by Sussman (1975), adds to Simon’s work , detecting and
generalIzing new differences (bugs) and defining appropriate operators to resolve them
(patches). This system uses many signIficant Al techniques and language features- learning
through practice how to write and debug programs; modular, pattern-Invoked expert
procedures (chunks of procedural knowledge); and hypothetical world models for subgoal
analysis Sussman ’s emphasis on generalizing f rom experience (trying old techniques In new
situations), acceptance of the fact that users have an Incomplete understanding of the
desired program, and his goal-purpose annotation technique are all Interesting directions In
the development of Automatic Programming.

However , HACK ER’ s preference for ruthless generation of “buggy” code without
detailed planning has led to inadequate handling of subgoal conflicts. ihe user must
carefully schedule the training sequences and be ready for the combinatorial explosion as
the system exhaustIvel y searches Its base of world facts and programmIng knowledge. Such
systems must constrain the search problem of large knowledge bases. Other attempts to
distribute knowledge among Interacting specialists have encountered the same difficulty
(Lenat , 1975).

We fInd that systems such as HACKER , which have been designed to operate like
human programmers, promIse a moderate degree of success compared to knowledge-
Impoverished formal methods. However , these systems are stIll of ten hampered by the rigid
formalism that governs their application: In what order are operators to be applied? How
can domain-specific Information be specified as di fferences? The formalisms used to
incorporate the various knowledge sources in these systems seem too methodical; the
method Is space and time bound because It is based on search.

Induction

Induction or inductive inference refers to the system ’s “educated guess ” at what the
user wants on the basis of program specifications that only partially describe the program’s
behavior Such specifications are often the examples of Input/output pairs and program
traces. in both regular and generic form (8). For each of these kinds of specification, the
corresponding AP system must determine the general rules on the basIs of a specification
that contains only a few exam pl es (or in the generic specifications, a limited class of
exam p les) of the program behav ior .

The work In progtam sy ntk esls from spi ’clJkatton b~ mm pies had Its origin In research
dealing with grammatical inference, where the objective was to infer a grammar that
described a language , given several exam ples of strIngs of the language (Feldman , Gips ,
Horning. & Reder , 1959, and Biermann $i Feldman, 1070). in a natural way, this research was

22 Automatic Progr amming

associated with the inference of finite-state machines from the sequence (string) of states
that the machine passes through during execution. Ihe association was natural since finite- —

state machInes are intimately related with the grammar that generates the strings of states
that represent legal behavior of the machine (Biermann & Krishnaswamy, 1974). This
research was the basis for two new avenues of investIgation: synthesis from examples and
synthesis from traces.

The crucial Issue for program synthesis from examples is to develop a generalized
program, that is, one that can account for more than the examples given in the program
specification. To do this, these programs break down the Input, looking for recursively
solva ble subparts (Shaw , Swartou t , 8. Green, 1975) or computatIon repetItIons that can be
fitted into a known program scheme (Hardy, 1975).

The work in prog iam syn thes is from trac e sp ecifications seeks to invert the transformation s
observpd in a trace protocol to c reate abstract ions that generalize into loops and variables
(Bauer, 1975). Of all the Induction-based synthesis paradigms, it is the one that Is closest
to grammatical inference. Biermenn 8 Kr*shnaswamy (1074) has built a system that
interprets traces as directions through a developing flowchart. Phillips (1977) has
implemented a system for the inf erence of very high-level program descriptions from a
mixture of traces and example pairs in the context of a large automatic programming system
cia

All inductiva inference systems are dependent upon a good ax u’maruat,on of ope ’a twns.
In other words, the system mu s t know about all of the possIble primitive operations that can
be applied to the data structures if it Is to hope to construct , by composition of t~iese
primitives , the desired program Furthermore, a harmonious relation between the nature of
the constructs in the specification and the most basic constructs In the target lanaue’ie 1$
essential ; for example , in Sikiossy & Sykes . ¶ 975 , the tasks of tree t raversal and repc’litive
robot maneuvers are directly translatable Into LISP recursion Moreover, these programs are
required to know quite a bit about generalization. After synthesizing the program, they test
it on other examples, sometimes by generating test cases and sometimes by asking the user
for approval. For certain classes of programs , examples and traces provide a natural way for
the user to specif y what the desired program is to do.

Induction For Input/Output Pairs

The !Iynthesls of programs from a specification consistIng of instances of Input/output
pairs Is strongly related to the problem domain to which these programs belong (e.g., sorting,
conce pt format ion). A set of program schemata characterize the entire class of programs for
the domain. These schemata are like program skeletons and define the general structure of
• program, omitting some details The synthesis of a program thus amounts to (a) selecting
a given schema that is representative of the program specified by the set of exam ple pairs,
and then (b) using t hce information prisent In the exam ples to instantIate the unfIlled slots of
the schema So, there are two ste ps a classification process , which selects the genera l
structurr (schema) of the target program, and an ins tantiation process, which com pletes the
detaIls of the target program.

What does the classification process require? (very schema defines a subclass of
programs In the problem domain. (very set of sxam ple paws def ines a family of programs In


~~~~~~ - -~~~~—~~~~ - .~~- .--~~ - - -~~--—--~. - - -~~~~ - - -~~~~..-~- -- .~~-

I
B Basic Approaches

the domain. Thus, the classification proc ess must associate this set of exam ple pair s with
one of th. subclasses of programs in the domain. In order to accom plish this task , a set of
characteristics Is associated with each schema (subclass ) that . if present in the set of
example pair s , guarantees that the set specifies a program of this type. Usu.liy this task is
accomplished by (a) providing a set of dsfferenci meas ures to be appl ied to the inputs and
outputs of en example pair , as well as to different exam ple pair s in the Input collection (if It
consists of more than one), and (b) providing a set of heuristics for each program schema
that determ ine a fit measure of the exam ple set that accom panies it The task of classIfying
the example set Is then simply reduced to choosing the schema with the highest fit value.

During the Instantiation process , in addition to the difference fit measures described
above, every schema has an associated set of rules for filling its empty slots through the
extraction of necessary fea tures  from the examples. For instance , in the domain of list
manipulation funct ions, cases where the output list contains all elements In the input and
cases where the output list contains only every other element . etc. , suggest difln’nnt
methods of constructing the output Incrementally f rom the input. In the first ca~ i the
function maps down the input list; In the second case , it maps down the input using the LISP
CDDR function . Slots are instantiated by these rules in terms of primitive operators of the
domain and their functional composItions (in the above case , the basic LISP functions ant~
their compositions).

Once a schema has been se lected and Instant iated , the synthesis algorithm must
validate Its hypothesis . This task Is usuall y done either by generating some new exam ples for
the program, evaluating the synthesIzed program on the example set , and checking the
results w i th  the user; or by presenting the program to the user and letting him/her verify Its
co rrectness.

In summary , the basic algorithm is:

(1) Apply the difference measu res to the example set.

* 
(2) Based on this application, classIfy the set into a particular schema class.

(3) UsIng heuristics assoc Iated with the part icul ar schema , hypothesize a
com plete InstantIation of the selected sche ma.

(4) ValIdate this hypothesis.

In this basic algorithm, if there Is a single I/O pair in the specIficatIon, the differenc e
measures are Just a set of feature-detecting heuristics. If there Is more than one pair , the
pairs may be ordered accor ding to the complexity of the Input. Difference measures will fall
Into two classes: those that associate the structure of a pair with a schema class , and
those that find differences between pairs. The latter are perhaps more crucIal In the
Inference of a program. From these differ ences , a theory for the operat ion of the program is
inductively inferred or , what is the same, a formation rule is derived. This operat ional theory
alight take the form of a certaIn schema class or of a recurrence equation that, in turn,
specIfIe s a schema class . In the classificatIon phase it may be necessary to apply the
classification rule to all pairs In order to Infer the corresponding schema correctly. When
several different sch emes Mv been inferred, a decision rule Ia required to select the
correct one .

~~~ _~ _~ _ .
_
t

~~~~~~~~~~ 
.-



24 AutomatIc Programming

An alternative approach Is to reduce the whole problem to another paradigm for
synthesizing programs. For example , If the problem domain has been formalized, so that there
Is a set of o perators for the domain . it is possible to use a traditional problem solver to
generate a solution to the Input/output pair (considered as in it ial-state , goal-state ) in the
form of a sequence of operators that carry the Input Into the output. The solution so
obtaIned can be considered a t race of the program to be synthesized and a trace-based
paradigm may be employed.

Specification by examples Is suitable for synthesizing a program only In those cases
where the task domaIn is small and easily axiomatized. It may also be a feasible approach in
the case where the domaIn Is repetitious enough that a small set of pairs is sufficient to
specify the program. whIch Is almost never the case in practical programming domains. Such a
specIfication method tends to be quite limited and does not lend itself to useful
generalIzation to large domains. Nevertheless, the power of examples for clarifying concepts
Is unquestionable. It seems that the main application that this specification formalism will
have In future automatic programming systems is restricted to the annotation and clarification
of more formal program descriptions.

Indu c tion From Traces

Inferring a program from a set of traces is, as mentioned earlier , very similar to inferring
a description of a finite-state machine from • set of sequential states that the machine
might pass through. The basic approach for synthesIzing a program from a set of traces is to
generate , in order of Increasing complexity, the possible programs constructed from the
programming-domaIn operators, tests, and their functional compositions; then, after each new
program is generated , to validate the given traces against the program. If the generated
program accounts for the traces, then it Is the required solution. Notice that some kind of
complexity measure Is needed for the enumeration, for example program size (eg. , number of
Instructions in the program).

This basic approach suffe rs from the problems Inherent to search in a large search
space and thus admits Improvements in the form of reduction of the combinatorial explosion
by the use of heuristics to prune and guide the search process. It Is thus not generally
practical and Is suited only to the inference of small programs in very simple domains.
Nevertheless, It has been appl ied with moderate success to the inference of programs from
memory traces. Usually consisting of register assignments, tests, and memory modification
Instructions, such programs and their traces are not very complex. Programs as complex as
Hoare’s FIND algorithm have been sy nthesized In this manner (Petry Ii Biermann, 1976).
Though these systems tend to be knowledge-lmpoverlshed, Phillips (1977) exh ibits a
methodology to com pensate for this by utilizing problem-domain or domain-s pecific know ledge
in the Inference process. There are certain other special Inference paradigms for particu lar
trace classes.

Program inference from protocols Usually , traces mix Information about operations
appli ed ‘~~ data obj ects , results of tests as to whether pred icates hold at certain points
during program execut ion , state sna pshots of data value s , and other information. Different
classes of traces arise If restrictions are placed on the kind of information that may appear
in them. Protocols are one such class, In which only operation applications and data structure
changes may appear and In which there is no Information about control decisIons that have

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - -



_ _ _ _ _  —~~~

B Basic Approaches 25

been taken during the particular program execution reflected in the trace. An example of a
typical protocol tar s function that reverses a list would be:

Input X
X • (A B C)
V s (A)
X (B C)
V s  (B A)
X • (C)
V • (C B A)
output V

Notice that the only information present in the protocol Is operation applicati on s and variable
state changes. Al l control information is omitted.

The inference of a program from a collection of protocols Involves two phases: (a)
constructing a program description that captures the nature of a program and ‘which could
ha ve generated a subset of the input protocols, end modifying the program description; and
(b) modIfying the program description as more protocols become avaIlable in order to
validate them.

A natural algorithm would then be to hypothesize, by some feature classification
process or with the aid of a domain knowledge base , an initIal description and then debug it
by forcing a unIfIcation of the protocol family with the descr ipt ion. The construction of the
Initial program descri pt ion can be descr ibed as foliows~

(1) Match the protocols, that is, f ind common segments as well as differences by
matching their structure.

(2)  FInd substItutions that unify these protocols. Protocols may differ In variables
that have different names , In the same data objects (at the same place In
the protocols) having different values, and in differences In the operations
that occur . The matching phase produces a set of such differences. The
SubstItution phase finds substItutions that remove these differences. For
example , If two protocols refer with different variable names to the same
data ob j ect, thIs phase would propose a common name for the two variables.
Such substitutions usually take the form constant -) variable or variable -
name -) variable-name.

(3) Inductively form loops by detecting repeated equivalent subprotocols. Loop
formation Is the basic inductive step of this approach.

For example,

protocol string . A O C  D A B C D
hypothesIzed loop:

while (condition)
do begIn

A;
B;
C;

end

— —.
~ • ‘ s, 

— —  

—

~~ !~~~~~~~ .. - - - -~- - -  —.-
~~ 

- -___.
*~ .—-



7 ~~~~~~~~ ~~~~~~~~~~~~~~~

_ _- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-. -

~~~~~~~~~~~~~~~~~~~~~~~~~

.

28 Automatic Programming

Since there are infinitely many loop hypotheses for a given protocol, one of
the tasks of the system designer Is to provide a good set of heur ist ic s to
guide the search process during loop formation. For example , one such
possIble heuristic could be to consider first the loops with minimal nesting
level.

(4) Generalize remaining consta nts to variables.

At thIs stage, then, a description has been generated where all data object snapshots
have an assocIated variable name , and where loop structures in the program have been
inf erred. The result of this matching, unification, and abstraction (general ization ) process Is
a semantic net representation of the program.

The next stage is to verify that the hypothesIzed program description agrees with any
additional protoco ls , and If this is not the case , to modify it. This correction (debugging)
phase can be described as fo llows :

(1) Try to validate new protocols ag inst the program representat ion--i.e., to
symbolically execute the program descri ption to see if it can account for
the given protocol.

(2) Find any differences between predicted and actual protocol. The symbolic
evaluation process generates a set of differences that are due to the
protocol’s not matching the program description. This set of difterences
suggests the kinds of modifications that must be done to the description.

(3) Form a theory for the difference. That is, hypothesize a suitable change to
the program descript ion, which removes the partic ular di fference. One way
of accomplishing this result Is to use a classif ication process similar to the
basic algorithm for inferenc e from examples.

(4 ) Modify program representation accord ingly .

This synthesis paradigm works only tar complete protoc ols, that is , protocols where all
data structure changes appear explicitly. PhIllips (1977) has proposed a procedure for
handling Incomplete protocols in a unified framework for sy nthesis f rom exam ples and
synthesis from traces or protocols. This procedure Is basically as follows: For those
segments of a protocol whe re operations are missing, that is where two states of a data
structure appear without intervenIng operations , the examples component of the system
Infers a piece of program descr ipt ion (I.e., a sequence of operations) that can take the data
object from one state to the other. This program description Is nothing but the sequence of
mIssing operation applicat ions. Merging all such sequences with the original Incomplete
protocol, transforms It into a com plete protoc ol, and the above algorithm for dealing with
complete protocols can be used.

Problem-solver generated traces If the domain Ia fully axiomatized, as may be the

. •• m’~~~ 
—

L ~~
_ —_----- .--—_ . — —  ~~~~~~~~~~~~~ ~~~~~~ . ._ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - --—


-- .

B Basic Approaches 27

case for simple domains like those for robots, It may be possible to synthesize programs from
exampl e paIrs by using a probiem solver that produces a solution to the input pair in the form
of a trace.

(1) Synthesize trace fr om example pair via problem solver.

(2) Using the trace , a set of program schemes for the domain, and a set of
schema selection and instantiation heuristics that operate on trace steps ,
produce a program In terms of domain operators and domain predicates that
explain the exam ple pair .

All these paradigms work only for complete traces end protocols. The problem of
progr am Inference from incomplete specIfications Is still under investigation. It is possible
that the techniques outlined may be extended to cover the incomplete ca se by coupling the
program synthesizer to a domain-based theory formation module that could, so to speak , Nf ill
In N the mIssing elements from the original specification. At thIs point, then , the methodology
discussed above could be used.

Traces have the limitations Inherent to Informal program specIficat ions, namely, the
difficulty of specifying the required program uniquely with respect to the limited amount of
Information conveyed to the synthesizer. Thus, the problem of choosIng a good descrIption Is
left , as a burden, to the user. This problem might be alleviated by the use of greater domain
expertise--to produce the program that more nea~v resembles the user ’s desired result.

Traces , and informal specification methods, will be useful for algorithm description end
correction In future automatic programming systems. Clearly, the reason for this I s th a t these
methods closely reflect the form In whIch we humans understand and describe programs.
Curr ent applicat ions Include the synthesIs of calculator-like programs from memory-register
tra ces (Blermann & kr ish naswamy, 1974).

References

For theorem proving, see Green, 1969. Waldlnger & Levitt , 1974 , Kowalski, 1974, Clark
& SIckel, 1977; for program transformation, (Darlington & Burstall, 1973), and (Wegbreit .
1976a); for knowledge engineering, (Martin, 1974) , (lenat, 1976) , (Blggerstaff . 1976),
(Sussman, 1075), and (Green, 1977); for automatic data selection, low (1978); for
traditional problem solving, (Simon, 1972), (Sussman, 1975); for Induction from Input/output
pairs Amarel (1972), Green (1975a), Hardy (1975), Shaw , Swartou t , & Green (1975),
Siklossy & Sykes (1976), and Summers (1977); for induction from traces, B.auer (1976),
Blermann (1972 a), Blermann (IQTØ a), Petry & Blermann (1976), Phillips (1977), and Siklossy
& Sykes (1975); and for Induction f rom examples, Biermann 8 Feldm an (1970), and Feldman ,
Gips, Horning, & Reder (1969).

1, •

~~ ~~~—.~———-~ — -- — ~~~~~~
-

-~~~ —~~~~~~~~~ - ——-— . — - - —-- —~—~~~~~~~~ - —-

- .- - -

~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- -

28 Automatic ProgrammIng

c. PSl

The PSI system Is being developed by Cordell Green and his colleagues at SystemsControl, Inc., and at Stanford; people who contributed ideas and actually worked on the
proj ect Include David Barstow , Avra Coiwi, Richard P. Gabriel, Jerold Ginspsrg, Ilasne Kant ,
Beverly I. kedzierskb , Juan ludlow, Bruce Nelson, Tom Presaburger , Jorge V. Phillipc . Louis
SteInberg, Steve T. Teppol, Ronny Van Den Heuval, and Stephen J. Westlold. The goal of
the system is the Integrati on of the more specialized methods of automatic programming into
a total sy stem. This system then would incorporate specificat ion by examples, by traces , or
by inter active natural language dialogue; knowledge engineering; model acquisition; program
synthesis , and efficiency analysis. Research objectives include the organization of such as~’stem, the determination of the amount and type of know ledge such a system would requ ire ,
and the representation of this knowledge.

The program Is speclf led by means of an Interactive , mixed-initiative dialogue , which
may include as a subpar t the specification by example of a trace. Plans are also underway
to add spe cIficatIon by moans of a loose, very high-level langua ge. The different
specification methods can usually be Intermixed.

When the specIfication Is interactIve natural language dialogue, the user furnishes both
a description of what the desired program Is to do and an Indication of the overall control
Structure of the program.

Tho problem area of PSI is symbolic computation, including hat processing, searching
and sorting, data storage and retrieval , and concept formation.

The overall operation of the system, Illustrated In FIgure 1, may be divided into twophases acquisition of a description of the program , end synthesis of the program. During the
acquisition phase, severa l modules of the system--including the parser/Interpreter.exa mple/trace , explainer , and moderator--will jointly Interact with the user to obtain and
construct a net , called the program net, that describe s the desired program. Then the
program model-builder module converts the net into a complete and consistent description of
the program Afterwards , during the synthesis phase, the coding and efficiency modules,
interacting with each other , convert the program model, through the use of repeated
transformations, into an efficient program written in the target language.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ .— -~~~~~~~~~~~
-- - -

~~~~~~~~~~~~~~~~~~~~
.
~

- -



C PSI 29

USER

ENGLISH LOOSE , VERY HIGH—LEVEL INPUT—OUTPUT PAIRS
SENTENCES LANGUAGE STAT EMENTS AND TRACES 

Loose , very
Parse r . .   high— level /

language
expert //.. Trac e and e~a4’iple

PARSES inference exper t

Interpreter

\~~~ / Oomaln
/ expert 

(xp~alner 

(4
/
f

PROG AM N 

Program mode l builder

PROGRAM MOOEl

Coder 

Eff iciency expert
HIGH—LEVE L ANGUAGE PROGRAM 

Convent$ona~compiler

MACHINE LANGUAGE PROGRAM

FIgure 1: MaJor paths of Information flow In PSI

There were three reasons for separating the operat ion into acquisition and synthesis
phases. First , the probl ems of designing such a system are more tractable because of the
separation. Second, It was envisioned that code generators for different target languages
and domain expert s for different problem areas could be implemented to result In a versatIle
modular system. Third, acquisition requires interaction with the user , whereas, In PSI,
synthesis does not.

In the overa ll operat ion, two of the primary Interfaces within the PSI system are the



30 AutomatIc Programming

program net and the program model. Both are very high-level program and data structure
description languages. The program net forms a looser description of the program than does
the program model. Fragments of the program net can be accessed in the order of
occurrence In the dialogue, rather than In execution order , which allows a less detailed, local,
and partial specification of the program. Since these fragments correspond rather closely to
what the user says , they ease the burden of the parser/inte rpreter as well as the
example /trace inference module. As opposed to the program net , the program model includes
complete , consistent, and interpretable very high-level algorithmic and information structures.
Further description of the program model occurs in the section below on the program model
builder.

The remainder of this article briefly describes the PSI modules, presents the status of
PSI, and then describes several examples (Figures 2 through 6) from the acquisition phase.
The latter Includes a specification by interactive natural language dialogue, the resulting
program net and model, and a specification by trace .

Ex perts

PSI is a knowledge-based system organized as a Set of closely interacting modules,
also called experts These experts include:

par ser/interpreter expert, explainer expert ,

dialogue-moderator expert,

applications domain expert, exam pl e/trace inference expert ,

program model-building expert , coding expert , and the

algorithm analysis snd efficiency experts.

Parser/Interpreter

In the acquisition phase , the parser/inte rpreter expert (Glnsparg, 1978) first parses
sentences and then interprets these parses into less linguistic and more program-oriented
terms , which are then stored In the program net. This expert efficiently handles a very large
Inglish grammar and has knowledge abou t data Structures (e.g., sets , records), control
structures (e.g., loops, conditionals, procedures), and more com plicated algorithm ideas (e.g.,
Interchanges between the user and the desired program, set construction, quantification).
The parser/inter preter can sometimes assign a concept to an unknown word on the basis of
the context In which the word appears.

DIalogue Moderator Expert

This expert (Steinberg, 1976) models the user , the dialogue, and the state of the
system and selects appropr iate quest ions and statements to present to the user. It also
determines whether the user or the expert has the Init iat ive , and at what level on what



C PSI 31

subject , and attempts to keep PSI and the user In agreement on the current topic. It
provides review and preview when the topic changes. This expert decides which of the
many questions being asked by the other experts should be passed on to the user. Since
experts phrase questions In an Internal form basea on relations , the dialogue-moderator
expert gives questions to the explainer expert which, in turn , converts them into English and
gives them to the user.

Explainer Expert

The explainer expert , developed by Richard Gabriel , phrases questions in terms that
the user finds meaningful (i.e. , In terms related to the problem domain and the previous
sentences in the dialogue), rather than using the more programming-oriented terms used in
the program net or by the model builder. For example, rather than asking for the definition of
“AOOiS , m PSI asks what does it mean for *a scene to fit a concept. TM The explainer also
generates English descriptions of the net.

Example /Tr lce Expert

PSI also allows specification by traces and examples , since these are useful for
inf erring data structures and simple spatial transformations. This expert Phillips (1977)
handles simple loop and data structure Inference and uses several of the techniques
discussed in in the last three articles. The final section of this article Illustrates how the PSI
user can specify part of a program using traces.

DomaIn Expert

The domain expert , developed by Jorge Phillips, uses knowledge of the application area
to help the parser/Interpreter and example/trace experts fill In missing information in the
program net.

Model BuIlder

The program model-building expert McCune (1977 ) applies knowledge of whet
constitutes a correct program to the conversion of the program net into a complete and
con~c~ctent program model, which then will be transformed during the synthesis phase Into the
target language implementation. The model-buIlding expert completes the model by filling in
the various pieces of required InformatIon and by analyzing the model for consistency; it
checks to see that its parts are legal both wIth respect to each other and with respect to
the semantics of the program-modeling language. Information Is filled in either by default , by
Inference mechanisms (which are in the form of rules and which make use of consistency
requirements), or by queries to other experts, which may eventually result In a query to the
user. As an example, suppose that the program net contains “x part of y” and that the model
builder needs to fIll in whether part of N Is to mean set membershIp, subset inclusion,
component of y. the Image of * under some correspondence relation with y, or whether there
mIght be an unspecified intervening subpart . Such Information may be deducible from the
structures of x arid y, if t h•se struc t ures are known or when they become known.

k . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ~~
— -— .

~~~~~~~~~~~~ — - - .—


32 Automatic Programming

The model builder also corrects minor inconsistencies , adds cross-references, and
generalizes parts of the program description so that the synthesis phase has more freedom
In looking f or a good implement ation . Thu s , if the program net specifies that a certain object
is to be a set of ordered pair s , the program model may, If appropriate, Indicate that the
object is to be a correspondence (I.e., a f unc t ional mapping).

Coding and Efficiency Experts

These two experts are responsible for the synthesis phase. The coding expert’s
knowledge base contains rules that transfor m parts of a program description to forms closer
to the target language. I t is the goal of the eff iciency expert to guide the choice of the
different rules so that an efficient target language Implementat ion eventual ly results. These
two experts, also known as the systems LIBRA and PECOS, are discussed more explicitly In
articles devoted to their description. See the articles 0905.

Status

The entire PSI system can now be used by a knowledgeable user. PSI has
successfully produced LISP code that Implements the specifications given in English
dialogues for four variants of CLASS , • simple pattern classification program. In addition.
other tasks are handled by individual experts In a stand -alone mode ; see , for example , 05
09.

The next section concludes this artIcl, by describing examples of PSI at work.

Exam pl es

Figure 2 Illustrates an int eractive natural language dialogue held with the PSI system in
which the user specIfies a simple program, to be called CLASS. CLASS includes many
programming constructs necessary for more complex programs

—

~

.. ~~~~~~~ .-.--- .—-- .----

F ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

c psi 33

What Is the name of the program you want to write?
“ CLASS.

Doss CLASS have a special program type?
“ ClassIfIc atIon ,

Please describe CLASS.
~ CLASS first inputs a concept. Then It repeate dly accepts an input
“ scene from th e user , class if ies it based on wh ether 0’ not It fits the
“concept , and outputs this c lassificat io n to the user .

What is the structure of the concept?
‘ A concept is a collect ion of relations, Each relation is j ust a string,

What Is the exit test of the loop?
“ Stop when the user typ es MOUITI instead of a scene.

What Is the structure of the scene?
“ The same as the concept.

Please define what it means for a scene to fit a concept.
•‘ A scen e fits a concept if all the relations in th e concept are
“ In the scene.

What is the format of the class if icat~~ output?
•~ Output NFITW If the sc ene fit , “DIDN’T FIT” If It didn’t.

Are we finished?
“ Yes,

r igure 7 Specifica~i~~ by inte ract ive natur al language dialogue CLA SS

•
~~

34 Automatic Programming

ihe user intends that the CLASS program Input a sample set of items (e.g . a list of job
qualifications) and then repeatedly Input a trial set (e.g., the qualifications of an applicant).
each time testing whether the sample set (required qualifications) is a subset of the trial set
(applicant qualifications) and printing “FIT” or OIDN’T FIT ,” accordingly. The user further
in tends t h a t a per son will be able to terminate CLASS simply by typing the word “OUIT ,”
instead of a trial set.

Based upon Its understanding of the dialogue, the parser/Interpreter expert produces
the program riot , whIch Is summarized in Figure 3 (the algorithmic part of the net is shown in
an ALGOL-like notation). Then the program model-building expert crea tes the very high-level
complete and consistent model of Figure 4. After repeated applicat ion of transformation
rules during the synthesis phase , the coding and effic iency exp erts will convert this model
into an efficient target langu age Implementation.

A2 is either a set whose generic element is a string or a string whose
value is “01.111”.

A l is a set whose generic element isa string.
A4 i~ the generic element of Al.
A3 is either IHUE or FALSE .

131 is a variable bound to A2.
02 is a variable bound to Al .
133 3 a variable bound to A4.

CLASS
PHINT(”Heady for the CONCEPT”)
Al - RI AD()

LOOP I
PHINT(”Ready for the SCENE”)
A? - FIIAD()
IF EOUAL.(A2 ,”OIJIT”) THEN GO TO EXiT 1
A~~~ FlT (A2 ,A l)

—

CASES IF A3 THEN PR1NT(”FIT”)
ELSE IF NOT(A3) THEN PRINT(”DlOtd’T FIT”)

GO TO LOOPI

E X I T 1

FIT(Bl .82)
FOR ALL 83 1MPL lE S(MEM&R(B,3,82),MEMBER(83,Bl))

FIgure 3. Summary of the program nat.

PSI

program CLASS;
ty pe

aOO) 2 : set of string ,
aOO~ J : alternative of (<string u >“QUIT” . a0032);

vera
aOOIl , a0014 , a0035 , a0036 aOO.32
aOO~~ , w,0080 : a0053 ,
m0095 : string s “DIDN’T FIT”
m0092 : st ring a “ FIT”
“i0091 : Boolean ,
MOOSi string • “QUIT”

proc edure a006?(a0036 , a0035 : a0032) Boolean
aOO)

~ K aOOIâ
procedure aDO63(aOO3~ : aOO.~3) : Boolean ;

a0055 s “QUIT”
begIn

aOO1~ — anp us (a OO) 2 , user READY FOR CONCEPT”
“Illegal input. Input again: “)

until .4OO~~~l

repeat
begin
nOOSO - inp ut(a00 33 , user , “READY” , “Illegal Input.

Input again: “);
If cOOo~~(nO OSO) then ai:rr: rxit con du&os (AOO3/)

a0014 -
n OOQI .. a0067(a.0014 , aOO!l)
case
& MOOQ! : Enforai uui(”DIDN’T FIT”)
wiOO9~ : inform usrr(”FIT”);

endcase
end

finally
A0031
endloo p

end ;

Figure 4. The program model.

Trace s are another method of specIfication allowed by the PSI system. Figure 6 shows
the use of a trace to specIfy part of the behavior of a program called TF (“Theocy
Format ion”). A ‘ implified version of Pat Winston’s concept formation prngram,(Winston, 1975),
TF builds and updates an Internal model of a concept. A concept is a collection of “may” and
“must” conditions. TF builds and updates the model by repeatedly reading In a scen e,
guessing wh ether the scene is an Insta nce of the con cept, verify ing with the person using
TF whether the guess was cor rect or Incorrect , and updating the model of the concept
ac cord ingly. The trac e in Figure 6 shows the specification for only a part of the behavior of
TF , the part that deacr tbes how fl is to update the model , given th at a scene does or does
not fIt a concept. The other part s of TV can be specified by trace or by Interactive natural
language dialogue.

~? ~~~~~~ ~..f ~~~~~~~~~~

-~~~~~~~ .~~~~~~~~ -~~-~~~~~~~~~~~~~ -~~ ---- ~~~~~-

36 AutomatIc Programming

Concept: C]
Scene: ((bloc k a)(block bXon a b))
Result of fit: True
Updated concept: (((block a) may)((block b) mayX(on a b) may)]

Concept: (((block a) may)((block b) mayX(on a b) may))
Scene: [(block a)(block b))
Result of fit : False
Updated concept: [((block a) mayX(block b) may)((on a b) must))
Concept: (((block a) may)((block b) mayK(on a b) must))
Scene: [(block aRbioc k bXbloc k cXon a b))
Result Of fit: True
Updated conce pt: (((bloc k a) may)((block b) mayX(block c) may)

((on a b) must)]

FIgure 6. A specificat ion by trace.

From this specification, the example/trace inference expert generates the following
information about the desired program: If the scene fits the concept , then add all relations in
the scene but not present In the concept to the conce pt and mark them with “may.”
Otherwise, II th e scene doesn’t fit the concept , then change the mark ing of all relations
marked “ may ” In the concept and not appearing in the scene from “ may ” to “must.”

References

See Barstow (197? a) . Barsto w (1977b), Barstow (1977c), Barstow & kant (1977) ,
Gins parg (1978), Green (1976.), Green (19751,), Green (1976.), Green (197Gb), Green
(1976 c), Green (1977), Green (1978). Green & Barstow (1976). Green & Barstow (1917.),
Green & 8srstow (1977b), Green 1 Barstow (1978), kant (1977), kant (1978), UcCune
(1977), Phalip, (.1977), and Shaw, Swartout, & Green(1976).

_ _ _ _ _ _

- ..- I

o SAFE 37

0. SAFE

The SAFE system, developed at USC Information Sciences Institute by Robert Baizer ,
P4eIl Goldman. David Wile, and Chuck Will iams (with the recent addition of Lee Erman and Phil
London), accepts a program specification consisting of pre-parsed English, with limited
syntax and vocabulary, Including terms from the problem domain. The phrases and sentences
of this specIfication, however , may be ambiguous and may fail to explicitly provide all the
Information required in a formal program specification. Therefor e, using a large number of
built-In constraints (that must be sat isfied by any well-formed program), any specified
constraints on the problem domain, and an occasional interaction with the user , SAFE resolves
ambiguities, fills in missing pieces of information, and produces a high-level, complete program
specification. To decide on missing pieces of information, SAFE uses a variety of technIques,
Including backtracking (see article Al Langi.mgea) and a form of symbolic execution.

The SAF E system views the task of Automatic Programming as the production of a
program from a descript ion of the desired bvhauli,r of that program. There are four major
differences between a conventionally specified program and a program described in terms of
its desired behavior .

InformalIty: The behavioral description Is informal. It contains ambiguity
(alternative interpretation s yielding distinct beha viors) and “partial”
constructs (constructs missing pieces of Information that must be supplied
before any interpretation is possible). A conventionally specified program, on
the other hand, is formal; its meaning is completely and unambiguously delined
by the semantics of the programming language.

Vocabulary: The primitive terms used in the behavioral description are those of
the problem domaIn. General-purpose programming languages , on the other
hand, provide a primitive vocabulary that is significantly more independent of
particular problem area s.

Executablllty: Informality aside, it is possible , and sometimes desirable, to
describe behavior in terms of relatlOnsh4ps between desired end achieved
states of a process , r a t h er than by rules that specify how to obtain the
desired state. Conventionally specified programs must specify an algorithm
for reaching the desired state.

Eff iciency: Conventionally specified programs contain many details of operation
beyond the desired Input /output behavior . Among these are data
representatIon, Internal communication protocols, store-recompute decisions,
etc., that affect a program ’s efficiency (utilization of computer resources and
time). in general, these details should not appear In the description of
Input/output behavior .

When one writes a program in the conventional manner , one must formalize the
behav ioral specif icat ion , translate the terms of the problem domain Into those of a general
programming language , guarantee that the specIfied algorithms actually achieve the desi red
results , and make a myriad of decisions for the sake of an eff ic ient Impiementation .

_ _ _ _ _ _ _ _ _ _ _ _ _ — —--- ~~~~ --

.-.
~ . . --~~~ --~~

38 AutomatIc Programming

The 1St group has attempted to split the task of creating a program Into two separate
parts by desIgning a formal, complete specificat ion language (Balzer & Goldman, 1979) that
allows behavioral specIfications to be stated in terms specific to the problem domain while
avoiding efficiency and repr esentational concerns. This formal specification language acts as
an interface between two projects that deal res pect ively with the first Issue, tr ans lat ion
from inform*l to formal specifications, and the last issue, optimization of a formal
specification. The former project is the subject of this article , while the latter Is described
elsewhere (Balzer , Goldman , & Wile , 1976). The other Issues, domain-specifIc vocabulary
and executability, are addressed within the formal specification language.

The SAFE proj ect has concentrated on only the first of the above specification Issues:
automatically producing a formal description from an inf ormal description. It Is not, therefore,
a complete automatic programming system. The user of the SAFE system provides a
behavioral description In a pre-parsed . lImIted subset of English, Including terms from the
problem area. SAFE then seeks to determine a way of resolving all ambiguities and of filling In
all missing Information in a way that satisfie s SAFE s knowledge of the constraints that all
programs must satisfy. The result is a com plete , unambiguous , very high-level program
specification In a language called AP2.

Partial Descri ptions

After studying many examples of program specificat ion s written in English, the SAFE
research group concluded that the main semantic difference between these specifications
and their formal equivalent is that partial descriptions rather than complete descriptions
were used When such partial descriptions were used, It was because the missing
information could be determined from the surrounding context. These partial descriptions
possess some of the useful properties of natural language specification s that are lacking In
formal languages. They focus both the writer ’ s and reader ’s attention on the relevant Issues
and condense the specification Furthermore, the extensIve use of context almos t totally
eliminates bookkeeping operations from the natural language specIfIcation .

A partial description may have zero or one or more valid interpretations in a given
context. If a single valid inter pretat ion Is found for a description, It Is unambiguous in that
context. Multiple valid interpretations indicate that there is riot sufficient Information from
the context to complete the descript ion and that interaction with the user Is required to
resolve the ambiguity. If a partial description possesses no valid interpretation, It Is
Inconsistent within the exIsting context.

The SAFE system incorporates the most prevalent forms of partial descriptions found In
natural language specifications:

Partial sequencing: Operations are not always described in the order of
execution. While sequencing may sometimes be described explicitly. It Is
frequently implicit In the relat ionships between operat ions. Examp le : “Output
generated whil e compiling Is sent to a scratch file. This file must be opened In
cr1:, only mode . (file should be opened before compiling commences).”

Missing oper ands: The operands of operations are frequ.ntty omitted because
they are recoverable from context. Recovering them may involve consideilng

- - - —~~~~~~~~~~ ---- ~~----- .---~. —.— . ---~~.—
, ..

~~
— ----.. -

~~~~~~~
-,——-

--- .—



0 SAFE 39

the operation’s definition, other operands, and the procedural context.
Example: “Do not mount a ta pe for a job unless the tape drive has been
ass igned (to that j ob).”

Incomplete reference: A description of an object (s ) may match several objects
whereas it was intended to refer to only one or possibly a subset of these
objects. A complete description may be recovered by methods similar to that
for missing operands. Example: MWhen the mail program starts , it opens the
file named M SSAGE (in the director y of the job running the program).”

Type coercions: Often , people using natura l language do not precisely specify
the object intended, but  instead specif y an assoc iated object or a subpart of
an object. This situation can be recognized by a mismatch between the type
of object actually specified and the type of object expected. Example :
“Information messages are copied to each logged-In user (to the terminal of
the job of each logged-in user).”

Operation of SAFE

The goal of SAFE Is to complete the various partial descriptions in the user ’s
specification of the desired program so as to produce a formal specification of the whole
program. SAFE goes through several phases , but in all phases the system uses a variety of
constraints to achieve the goal of completing the partial descriptions. These include built-in
criterIa that any formal program must meet (e.g., information must be produced bef ore it Is

consumed), built-in heuristics that “sensible ” programs will meet (e.g., the value of a
conditional must depend on the program data), as well as any known or discovered
constraints particular to a program’s domain (e.g.. each file in a directory has a distinct
name). In fact , since programs are highly constrained objects , there are a large number of
constraints that any “well-formed” program must satisf y, and this is one reason programs are
hard to writ e.

In general , each partial description has several diffe rent possible completions. Based
on the partial description end the context in which it occurs, an ordered set of possible
completions is created for it But one decision cannot be made in isolation from the others;
decIsions must be consistent with one another and the resulting program must make sense as
a whole, satisfying all the criteria of well-formed programs.

The problem of finding viable completions for a collection of partial descriptions
provides a classical backtracking situation, since there are many interrelated individual
decis ion s that , In combInation, can be either acce pt ed or rejected on the basis of the
constraints. SAFE uti lIzes the constraints so that early rejection possIbIlities can be realized.

The operation of SAFE consists of th ree sequential phases: the linguistics, planning.
and meta-evaluatlon phases. The cumulative effect of these phases Is to produce a formal
specification that Is composed of declaratIve and procedural port ions. The declarative pert ,
or domaIn model, specIfies the typ s of objects manipulated by the process, the var ious
ways they may relate to one another , the actions that may be performed on var ious object
types, and other global regularities of the problem domain. The procedural portion specif ies
the controlled applicat ion of act ions to ob jects .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~



40 Automatic Programming

The linguistic phase, using production rules, transforms the parse trees of the English
specification Into fragments thet retain the semantic content while discarding th. syntactic
detail. The production rules capture many context-sensitive aspects of natural language
such as various uses of the verb “be ” and of quantifiers. The production rules may also add
declara’ons to the domain modal, with user appr oval , when this is required for Inter pretation
of the Input. This procedure is accomplished by distinguishing two sets of conditions on each
rule: those relating to the linguistic form of the phras, being processed, and those relating a
form to the domain model. If the linguistic form condit ions are not satisfied (e.g., a clause
using a transitive verb) but the domain model conditions are (e.g.. the verb names an action
in the problem domain that has operands of types compatible with the verb arguments ), then
the domain model conditions are assumed.

The planning phase determines the overall sequencing of the operat ions in the program.
It also determines wh ich fragments belong together and how they are to interact. It does
this by using explicit sequencing Information In the description, such as “A is executed
Immediately after B,” “A Is invoked whenever the condition C becomes true ,” as well as
static f low constraints on well-formed processes such as:

Before information Is consumed (used by one fragment ), it must be produced
(created by the same or another fragment ).

Expected outputs of the who le program or of a subprogram must be produced
somewhere within that program.

The results of each described operation must be used or referenced somewhere.

The final phase, meta-evaluation, uses dynamic constraints to help determine the
proper completion of partial descriptions. Dynamic constraints are those that apply, or at
least relate to, the program during execution. Examples of such constraints are:

It must be pos sible (in general) to execute both branches of a conditional
statement (otherwIse why would the user have specified a condi t ional ).

The constraintir of a domain must not be violated.

Since no actual input data Is available for testing the execution of the program and
since the program must be well-formed for all allowable inputs, Inputs are represented
symbolically. Instead of actual execution, the program is symbolically executed on the Inputs ,
which provides a much stronger test of the constraints than would execution on any
partIcular set of inputs. The result is a database of relat ionsh ips between the symbolic
values and, implicItly, a databas. of relat ionsh ips betw een program variables that s ic bound
to these values.

All decisions concerning the proper Interpretat ion of partial descript ions that affect the
com putation to some point In the execution (but not beyond) must be made before these
dynamic .rlterla can be tested at that point in the execution. Thus , decisions are made as
they are needed by the computat ion of the program, and the symbolic state of the program Is
examined at •ach stage of the computation. This arrangement allows the dynamic state-of -
computat ion criteria to be used to obtain early reJection of Infeasible alternatives.

~~~~~~-- -. ~~~~~~~~~~~~~~~~~ .— .- ~~~~~~~~~~~ ~~~~~.- ~~~~~ - --- - —-.- .- - - —-—


-~~~~~~~~~ - —~~~~~
. - - -~~~~~— --.~~~~~ ~~~

0 SAFE 41

There Is an additional point worth noting. Representing the complete state of a
computation during symbolic execution Is very difficult (e.g.. It Is quite hard to determine the
state after execution of a loop or cond it ional statement) and more detailed than necessary
for testing the con straints. Therefore, the SAFE system uses a weaker form of symbolic
Interpretat ion called Mete-Evaluation , which only partially determines the program’s state as
the computation proce eds (e.g., loops are executed only once for some “generic” element).

Notice that symbolic execution requires that the sequential relationships between the
fragm ents be known; therefore the meta-evaluat lon phase must follow the planning phase.

Finally , the global referencing constraints (such as “The body of a procedure must
make use of the procedure ’s parameters ”) test the overall use of names within the program
and, thus, cannot be tested until all decisions l’iavs bean made. These criter ia can be tested
only after the Meta -E valuation is complete.

Status

Thee prototype system has successfully handled the 75-200 word specifications of
three quite distinct programs. In these cases the SAFE output of a completed specification,
Including domain structure definition, requires approx imately two pages. One example
concerned part of a sys tem for scheduling transmissions in a communications network. Given
a table (SOt) containing entrIes for various network subscribers and for various unassigned
time slots (RATS), a schedule of absolute times when a particular subscriber could broadcast
on the network was tab ulated. The Input specification to SAFE Is:

((THE SOt)
(IS SEARCHED)
FOR
(AN ENTRY FOR (Tl* SUBSCRIBER)))

(IF ((ONE)
(IS FOUND))

((THE SUBSCRIBER’S (RELATIVE TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO (“FORMULA-i”)))

((THE SUBSCRIBER’S (CLOCK T RANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO (‘FORMULA-29))

WHEN ((THE TRANSMISSION TIME))
(HAS BEEN COMPUTED))

((I T)
(IS INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMISSION SCHEDULE))))

FOR (EACH RATS ENTRY)
(PERFORM)
(: ((THE RATS’S (RELATIVE TRANSMISSION TIME))

(IS COMPUTED) ACCORDING TO (“FORMULA-i”))

—4
- 6.&_ _________________ - - .

-~~~ ---~
-.—— ~~~ - --~~~~~~~~~~~~~~~~~~ - -_ —-—- —— ~~~~~~~~~~~

- -

42 Automatic Programmin g

((THE RATS’S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING TO (“FORMULA-2”))J)

((THE RATS (TRANSMISSION TIMES))
— (ARE ENTERED)

INTO (THE SCHEDULE))

Figure 1. Actual Input for link scheduling example.

In formalizing this descr ip t ion, SAFE encountered and reso lved the following
characteristics of n~ormal specifications:

number of mIssing operands • 7

number of incomplete references • 12
number of ImplicIt type coercions • 3
number of Implicit sequencing decisions • 4

Robustnes s of the system has been Increased by processing a number of
perturbat ions of each of the major exam ples. These have Involved specify ing the same
process but vary ing the syntax and vocabulary used , the part ial descr iptions used , and the
formal knowledge provIded about the problem doma in.

Future Developments

The key technical restrictions of the prototype sy stem appear to be (a) the sequential
applIcation of the three phases, which prohibits adequate Interactions between the
expertise embodIed In each , and (b) the backtracking within the meta-ev aluat lon phase.
which corresponds to restarting the symbolic execut io n from an earlier point, which can lead
to much unnecessary search. To correct these IinWtations, a refornwlatlon of the System
architecture within a framework derived from the HEARSAY II speech understanding system
(see article Sps~~h.C) Is currently In progress. This framework consists of a number of
cooperating experts interacting via a “blackboard” database.

Simultaneously, the system Is being sca led up to handle larger practical specificat ions
(appr oximately 20 pages). Later , the project will consider the formalization of Incrementa l
informal specifications so that It can also provide help during both specification formulation
and maintenance activ itIes.

Ref erences

See B.lzer , Goldman, & WIle (1070), Balzer, Goldman, & WIle (1977.), Belier, Goldman,
& Wile (978), and B lzsr & Goldman (1979).

____ 1
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~



E Progra mmer ’s ApprentIce 43

E. Programmer ’s Appr entice

The Programmer ’s Apprentice (PA) Is an Interactive system for assisting programmers
with the task of programming. l( Is being designed and implemented •t MIT by Charles Rich.
Howard Shrobe, and Richard Waters . Currently, most, but not all, of the modules that
comprise the PA system are running. It should be kept in mind that the scenario descrsued
here Illustrates the projected operation of the system , not the pre sent operation. The Intent
of the PA Is that the programmer will do the hard parts of design and implementation, while
the PA will act as a )unior partner and critic , keeping track of details and assist ing the
programmer In the documentation, verification, debugging, and modification of his program. In
order to cooperate with the programmer in this fashion, the PA must be able to “understand”
what Is qorn g on. From the point of view of Artificial Intelligence , the central development of
the Programmer ’s Apprentice project has been the design of a representation (,~~i, ’d a
“pl an ”) for progr ams and for knowledge about programming that serves as the basis for (his
“understanding.” Developing and reasoning about plans is the central activity of the PA.

The “plan” for a program represents the program as a network of operations
interconnected by links explicitly representing data f low m d  control flow. The advantage of
thIs aspect of the plan formalism is that it abstracts away from the specific syntactic
constructs used by various programming languages in order to implement control flow and
data flow. T he most novel aspect of the plan formal ism is that It goes beyond this level in

order to create a vehicle for expressing the logi cal interrelationships in a program. First , a
plan is not j ust a graph of prImitive operations. Rather , it is a hierarchy of segments within
segments , where each segment corresponds to a unit of behavior and has an Input/output
specification that describes features of this behavior . The plan specifies how each
nonterminel segment i~ constructed out of the segments contained within it. This
segmentation Is important because it breaks the plan up Into localities that can be
understood In Isolation from each othe r. Secon d . the behavior of a segment is related to the
behavior of Its subsegments. This InterrelatIonship Is represented by explicit dependency
links that record th. goal-subgoal and prerequisite relationships between the input-output
specification for a segment and those for its subsegments. Taken together , the links
summar ize a proof of how these specifIcations for a segment follow from the specifications
of Its subsegments and from the way the subsegments are Interconnected by control flow
and data f low. A final aspect of the plan formalism Is that there may be more than one plan
for a given segment of a program, with each plan representing a different point of view on
the segment. The data structures used by a program are represented by specifying their
parts , propertIes, and the relationships between them In a method similar to data
abstractions (ZlIIes, 1976; L.lskov, 1977).

Knowledge about programming in general Is also represented using plans and data
structure descriptions, This knowledge Is stored In the PA In a database of common
algorithms and data structure implementations called the “plan library.” The PA’ s
“understand ing ” of a program is embodied In a hierarchical plan for It. In general, the subpian
for each individual segment In terms of Its subsegments will be an Instance of some plan
stored In the plan library. This structure gIves the PA access to all of the Information stored
In the plan library about the particular .ubplan as soon as it can make a guess as to what ~he
subplan is.

— — - -~~~~ ~~~~~.. .~~ .,~~~~~~~~ . -



~~~~~~~~~~~
-

~~
-———-—--—- -. ,. .

~~~~~~~~~ 

44 AutomatIc ProgrammIng

A Scenario of Use of the Programmer ’s Apprentice

The following imagined conversation between a programmer and the PA is presented in
order to illustrate the Intended operation of the system. (Comments discussing the scenario
are printed In italics.) The scenario illustrates the following four basic areas in which the PA
can assist a programmer:

(1) Documentation: One of the primary services the PA provides is automatic ,
permanent , and In-depth documentation of the program. The PA remembers
not only explicit commentary supplied by the programmer with the code, but
also a substantial body of derived Information describing the logical
structure underlying the program, such as the dependency relationships
between parts of the program.

(2)  VerIf ication: The development of a program is accompanied by the
construction of a sequence of plans at various levels of abstraction . At
each step, the PA attem pts to verIfy that the current plan is both
consistent and sufficient to accomplish the desired goal. As more
information is specified, the PA ’s reasoning about these plans approaches a
complete verification of t h e  program.

(3) DebuggIng: Any discrepancy between the PA’s understanding of the
programmer ’s intent and the actual operation of the program Is reported to
the programmer as a potential bug.

(4) Managing Modification: Perhap s the most useful aspect of the PA is that it
can help a programmer modify his program without introducing new bugs.
Based on Its knowledge of the logical relationships between parts of a
program , the PA is able to determine what parts of a program can be
affected by a proposed change, and how they can be affected , It can use
this information to warn the programmer of Impend ing difficulties.

The scenario traces the design, coding, and subsequent modification of a program that
deletes an entry from a hash table. The scenario picks up in the middle of a session, at a
point where the programmer has already made many design choices and conveyed them to
the PA. In particular , he has stated the input-output specifications for the subroutine
DELETE and chosen the basic data structures to be used. The hash table is Implemented as
an array of linked lists called “buckets. ” Each of the entries In a bucket Is a dotted-pair
whose CAR is the key for the entry.

Programmer: The plan for the routine DELETE has three main steps: The
first one hashes the Input key to get an index; the second one fetches the
bucket corresponding to that index f rom the table ; and the third splices
out the entry in the bucket whose key part Is equal to the input key.

Thy only feature of this scenario that Is nat a current research goal of the Progiaminer’s
Apprentice project is the use of natural Eng lish dialogu e. Althosigh the ys:em should be
able to support a sophasticaud natural Ian g’aage “frciu-end. no effort has ken apended
in this direction to date. As a res.dt, the propamner would act sally type In something
“he.

“I,

— -—— ~~~ - ~~~~~~~~~~ 
- -

~~ 
—.-

~~
-- -  -.- 

. - .— ----- —- —-—- .----. ,- 
—



E Programmsr ’s Ap prentice 46

“(subsegments-of-DELETE step l-step2-step3)
(specIf IcatIons-for-step I (inputs-key I) (outputs-Index)

(assert-(N_ lndex~(hash_key1 ) ) ) )  N

The PA uses the programm er ’s outline of ii,. desi gn In order to build a pla n rep resenting
i/ic p rogram ’s intended stru cture References to basic p ro gramming techniques suc h as

sp l i c ing oui (deleting elements fr om a linked l ist ) trigge r the retr ieve..! of plans from the
plan hb,art.

PA: I can ’t verify that this plan satisfies the specifications for
DELETE. In particular , when the input key Is equal to the key part of
the first entry in a bucket , I can ’t prove that the entry Is no longer In
the table after DELETE is executed. Nate that in this sItuation, the
bucket alter splicing out entries has a different initial cell from the
bucket before splicing out entries, and that therefor e the table Isn’t
changed.

After c on st r uct i n g a plan , i/ic PA uses i ti  reasoni ng abi l i t i es in order to check for bugs.
At’oz’e, the PA finds one and rep orts it to the pr og ramm er In general , it is the
respon s ib i l i ty of the pro gr ammer to suppl y correctio ns. Below , the pro grammer corrects i / ic
plan b’y issuing semantica!i~ based editing commands to the PA

Programmer: Modify the plan as follows. Add a final step that compares
the bucke t af te r  splicIng with the bucket before splicing and stores the
new bucket In the table under the Index if the two Initial cells are not
identical.

PA: OK, the plan now seems correct.

The p rogrammer then types in the code for DELETE in cases where the progra ’nwier
speci fies the plan for a pro gram as comple tely as he does here , he could ask the PA to
write the code it is expected that the prog rammer will actually only wri te code in
si tuation s where It is easier to write the code than to fully explai n the plan.

Programmer: (DEFUN DELETE (KEY); hash table delete rout ine.
(PROG (B1(TI 81(12)

(Silo BKTI (181. (HASH KEY)) 81(12 (81(1-DELETE KEY BKTI))
(COND ((NOT (EQ BKT I 8kT2))

check If first ent ry In bucket deleted.
(STOI~E (Tel. (HASH KEY)) BKTI)))))

The PA analyze; Me code written by the programmer in order to con .itruct a plan for a.
Comparin g this plan with the plan directly described by the programmer, the PA discovers
an implem en:auon bu g: In the last line of code the user probably meant to store into the
hash table not the first bucket , Lk~TI, but th , second bucket , 8KT2.

PA; This code is not consistent with your plan. When the first entry Is
deleted , the code stores the bucket before splicing, rather than the

~~~~~~~~~~~ i
_ _~_ . _

1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

46 Automatic ProgrammIng

bucket af ter splicing. Did you mean

“(S lORE -(T BL-(HAS H-KE Y))-81(T2)”?

Programmer: Yes , f ix the code. Also , use the standard list deletion
algorithm to code 81(1-DELETE so that it splices out of the bucket all
entr ies whose key equals the indicated value.

PA (DEFUN 81(1-DELETE (K EY BUCKET) ; list deletion routine coded by the PA.
(PROG (CURRE NI PREVIOUS)

(Si TO CURRENT 8UC1(I T PREVIOU S NIL)
LP (COND ((NULL CURRENI) (RETURN BUCKET))

((EQUAL (CAAR CURRENT) KEY)
if keypart equal , splice out entry.

(COND (PREVIOU S (RPLACD PREVIOUS (COR CURRENT)))
(T (SilO BUCKE T (CUR BUC KET)))))

;spec.al if f irst element deleted.
(1 (Si lO PREVIOUS CU RRENT)))

(SE TO C URRENI (CUR CURRENT))
(GO LP)))

1 / ic P.4 i s able to code a p r og r am l i ke th i s i tsel f , even thoug h the pro g r am m er did not
s f’ e~. i ‘i a pla n for it , I”.r~ause i t i s ai im plem en tat ion of a standard algorithm that
c ” ‘esp ~’nds t~ a p lan in the plan l ib r ary Code wr itten by the PA can be fr eely “uxed
wi t / i cod e wr i t te n by ti l e p ro grammer and i’ac k an edit the other’s work

S”n e ti ’n e late r it i s flet ss s ar i to wi ctdsf, the representat ion of the buc k ets. The PA helps
f/ic (pe r haps n e w) p r og r amm er ma in ta in cc ’nsis t enci

Programmer: I want to make a change in the repr esentation of buckets in
the hashing programs. A bucket now has two parts: a count field and a
list of entries as before. The count field will contain an Integer equal
to the length of the list of entries Let a bucket be a dotted-pair whose
CAR i~~ the count and whose CUR is the list of entries.

W hen t h e P 4 ins p ec ts the logl t al dependencies in the plans . it discov ers that a type
r e quirement has been i ’iolate d

PA The proposed change will e f fec t DEL ETE as follows: After the
bucket is fetch ed, it Is passed to B1(T-DELET E wh4ch does the actual
deletion However , BKT- D(LETE requires a list of entries while In
this new implementation, a bucket is no longer lust a hat of entries.

Programmer: Explain the plan for BKT- DELETE please.

PA: 81(1-DELETE is Implemented following the standard Rat deletion
plan. The inputs are a key and a list of entries. The plan Ii a search
loop using two pointers: a pointer to the current entry, which Is
initIalized to the Input list . and a trailing pointer, which is initialized
to NIL. On each Iteration the loop tests the key of the current

T ~

.

_
. —

~
Progra mmer ’s Apprenti ce 47

entry . If it is equal to the Input key, the element Is spliced out of the
list by RPLACDIng the trailing pointer.

Acting in i ts role as dccij meiuagion, the PA describes th e s trls c ture of BKT-DELETL by
reporting out the structure of its plan. The prog rammer then decides hora to modify
BAT- D 5LE TE

Programmer Change the specifications of BKT - DELET E so that it
expects as Input a bucket of the new type, rather than a list of entries.
Also change the InItialIzation of the pointers to teed:
“(SETO-PRFVIOUS-BUCKE T- CURRENT-(COR-BUCKET))M .

The PA reanalyzes the p rog ram in order to verify that this change fires the problem
without causin g any other problems to arise This analysis r eveals the presence of
inacce ss ib le cods whkh the PA reports to the p ro grammer

PA: OK this fixes the problem. However , now the special case tests in
B1(1-DELETE and DELETE are not necessary since PREVIOUS is
never NIL and therefore elements are always deleted by side-effect.

and it’ the session continues with the PA looking over the programmer ’s shoulder.

Operat ion of the System

The design of the PA is based on four modules , a surface analyzer, a recognizer, an
Interactive module, and a deductive module; and two data bases , the plan library and a
scrat ith pad celled the “design notebook.” Only the f irst three modules have been
implemented so far. As described above, the plan library contains the PA’ s knowledge of
programming in general The design notebook contains the PA’ s evolving knowledge of the
partIcular programs being worked on and serves as the communication center for the system
as a whole. The modules communIcate with one anot her solely by making assertions In the
desIgn notebook Each module has pred.fined trigger patterns which cause It to perfor m
specific task s (such as making a deduction or querying the user) whenever appropri ate
assertions appear In the notebook . Every assertion added to the notebook Is ‘also
accompanied by a Justification of its presence. These justIfications make It posslb’~ toe the
PA to account for Its actions.

The surface analyzer Is used to construct simple surf ace plans for sections of code
w ri tten by the programmer. It Is the only module whose linpiementat lon depend s on the
particular programming language being used. To date , surface analyzers have been
implemented for both LISP and FORTRAN. The recognition module takes over where the
surf ace snslyler leaves o~ in order to construct a detailed plan for a p45cc of code. It first
breaks up the surface plan by identify ing weakly interactIng subsegments that can be
further analyzed In Isolation from each other. It then com pares these subsegments with the
plans in the library In order to determine more detailed plans for the program.

The Interact ive module Is the communication link between the PA and the programmer.

-~~

43 Automatic Programming

It converts the programmer ’s input (which can consist of code, direct specification of a plan.
or various requests) into assertions in the design notebook and decides what to say to the
programmer based on the information currently in the notebook T he deductive module
operates In the background in cooperation with all of the other modules. It performs the
deductions necessary to verify a proposed match between a program end a plan, to detect
bugs in a plan , and to determine the ramifications of a proposed modification to a program or
plan.

At a given moment , the design notebook holds the sum total of what the PA knows
about the program being worked on T his information triggers additional activity by the
modules~ If the recognizer and deductive modulus are strong enough and the program is
simple enough, this process will culminate in a complete understanding and verification of the
program However , typically. this wil l not be the case , end some quost.on~ (s u c h as t h e

exac t plan for a segment or the correctness of a specification) will remain unresolved in the
notebook . The flexible architecture chosen for the PA makes it possible for the PA to exhibit
useful partial performance en this situation. it is able to ignore what It doesn’t understand
and wor k constructively with what it does understand. The programmer can be called upon
to fill in the gaps.

Current Status of the Programmer ’s Apprentice

Rich and Shrobe (1976) laid out the basic idea of a p’an and the initial design of the
PA. Since that time Rich. Shrobe. and Waters have been working together on further as pects
of the theory along with design and implementation of the PA

Rich ’s work (forthcoming) cente rs on the pian library and the recognition process He is
using the plan representation In order to codify a large body of common programming
strategies In the domain of non numerica l programming. He is also designing a recognition
module that will be able to identif y instances of plans in the library as they occur in
combination in a programmer ’s program.

Shrobe (1978) has implemented a prototype deductive module that can reason about
progr ams represented by plans. An important aspect of its operation is that it maintains a
recor d of the dependency relationships embodied in its deductions. In doing this it builds up
some of the logical structure that is a vital part of a plan for a program. He is currently
designing an improved version of this deductive module.

Waters (1970 , 1978) has implemented a syst em that can analy ze the code for a
program and produce the basic structure of a plan for the entire program. The system
corresponds to the surface analysis module and the Initial phase of the recognition process.
The basic Idea behind Waters ’ work is that plans for typical programs are built up in a small
number of stereoty ped ways and that features in the code for a program can be used to
determine how the plan for the program should be built up.

Th’- goal for the immediate future is to construct a prototype system that can exhibit
the kind of behavior shown in the scenario . To do this, an inte ractive module must be built.
and the other modules must be connected together Into an integ rated system. Looking
further ahead , addit ional modules (such as a simple program synthesis module, and one
dealing with efficiency issues) will be added to the PA, and the exis t ing ones will be
strengthened so that the PA can assume an even larger part of the programming process.

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~~~
-

~~

-~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —.-~~ ~~~
.

Programmer s Apprentice 49

~eterence.

See Llakov et aI. (1977), RICh & Shrob (1976), Rich 1. Shrobe (1976), Rich (1979).
Shrobe (19 73), Waters (1973), Water s (1973), Wat ers (1979), and lilies (1976).

I
— .

. —

~~~-.-
- 

- —~~~~
— —--- . — --- , -- 

— —---— — -. . . - - — —.- - 
-

~~



- .  —.~~~ - .. —

60 Automatic Programming

F. PECOS

Developed In 1970 by David Barstow (Bar.tow,1976). the automatic programming
system PECOS serves as the coding expert of Standford’s PSI project (see article 02 and
Rarstow , 1979. The foundations of PECOS are based on ideas presented in Green & Barstow
( I97 7a), and Green & Barstow (1978). Though PICOS can act in conjunction with the PSI
system , It can also stand on Its own and interact directly with the user. The original problem
area of P[COS was symbolic programming, which includes simple list processing, sorting.
database retrieval , and concept formation . This domain has recently been extended to graph
theory and simple number theory. Programs are specif ied in terms of very high-level
constructs including data s t r uct u re S , like collections or mappings, and operat ions , like testing f or
membership en a collection or computing the inverse image of an object under a mapping.
ILnowledge about programming In the problem area has been codified (i.e., made explicit and
p i t into machine useable form) primarily in the form of transformation rules, and these have
been entered into PFCOS ’s knowledge base. Most of the rules describe how constructs and
operations can be represented or implemented in terms of other constructs and operations
that are closer to , or actually In, the target language LISP (actuall y a subset of lPJTERL. ISP ,
Teitelman et al , 1978). These rules can identif y design decisions and can also se rve as
limited explanations.

The operation of the system proceeds by the repeated selection and application of the
transformation rules in the knowledge base to parts of the program Also referred to as
grai lual re f inr inen t. this transformation process reduces (he high-level specification to an
implementation fully within the target language. Each application of a rule is said to produce
a parti al Implementation or refine’not t of the program , and the transformation rules are called
r efineir ,vnt rules.

Conflict Resolution

At some points during the transformat ion process, a conflict may arise because several
rules apply to the same part of I he program. The handling of this situation Is important: The
application of the several rules ultimately results in different target language
Implementations that often vary significantly in terms of efficIency. There are three ways to
handle this situation.

(1) If PECOS is Interacting directly with the user , the user may select which rule
should be appl ied (and thu s which Implementation will be constructed ).

(2 )  For the convenience of the user , PECOS can choose one of the applicable
rules, using about a dozen heuristIcs It has to pick the rule that leads to the
‘n~’rv efficient implementation. These heuristics handle about two-thirds of
the choices that ty pically arise.

(3) When rio heuristic applies and the user Is uncertain about which rule Is
TM best ” for his or her purposes. PECOS can apply each In parallel ,
constructing a separate ImplementatIon for each rule appl ied.

When PECOS functions as the Coding Expert of the PSI program synthes is system
(Green, 1976b;02), choices between rules are made by an automated Eff iciency E&pert

~~~~~~~~~~~~~~~~~~~~ —— — — .- —..—---..—-- --- .- —


F PECOS 61

known as LIBRA (see article 09, kant (1977)), whIch Incorporates more sophisticated
analytic techn iques than the sim ple heur istics used by PECOS. The capability of developing
different Implementations In parallel Is used extensively in the interactions between P1 C(P’ .

and (.IBRA (Barstow I. kant , 197?).

PECOS s knowledge Base

PECOS’ s knowledge base consists of about 400 rules dealing with a variety of symbolic
programming concepts. The most abstract concepts are those of the specIfication language
(e.g., collection, inverse Image , enumerating the objects in a collection, etc.) . The
ImplementatIon techniques covered by the rules Include the representation of collections as
linked lists , arrays (both ordered and unordered), and Boolean mappings , and the
representation of mappings as tables , sets of pairs, property list markings , and inverted
mappIngs (indexed by range element). As a natural by-product , these rules also cover
sorting within a transfer parad igm that includes simpler sorts such as Insertion and selection.
While some of the rules are specific to LISP, about three-fourths of the rules are
independent of LISP or any other target language.

Internally, PECOS’ s rules are represented as condItion-action pairs. The conditions are
particular configurations of abstract operations and data structures that are matched agaInst
parts of the developing program. Where the match Is successful , the actions replace parts
of the abstract concepts with refinem ents of t hos e parts.

In the system of refinement rules, intermediate -level abstraction s play a major role.
One benefit of such IntermedIate-level concepts Ia a certain economy of knowledge.
Consider , for example , the construct of a sequeittial ollec(io’i : a linearly ordered group of
locations In which the elements of a collection can be stored. Since there is no constraint on
how the linear ordering Is implemented , the construct can be seen as en abstraction (or
generalization) of bath linked lists and arrays. Much of what programmers know about linked
lIsts Is in common to what they know about arrays, and hence can be represented as one
rule set about sequential collections, rather than as two, one about linked lists, and one
abou t arrays. Another benefit of these Intermediate-level concepts Is that the process of
choosing between alternatIve (valid) rules Is fac il itated: Attention can be focused on the
essentIal aspects of a choice while Ignoring irrelevant details.

Rules about Programming knowledge

Most currently available sources of programming knowledge (e,g.. book s and articles)
lack the precision required for effective use by a machine. The descriptions are often
info rmal , with details omitted and assum p t ions unstated. Before this programming knowledge
can be made available to machines, it must be made more precise; the assumpt ions must be
made explicit; and the details must be filled In.

PECOS’s rules provide much of this precision for the domain of elementary symbolic
programmIng. For example, consider the foliowlng r~is (an English paraphr ase of PECOS’ s
internal representatIon):

A ccJI.ction ma, be r.frres.~ted as . uwpping of obj .’cts to bxlean .alai.s; the default
range objec t Ii FALSE.

_______ I
. .

.— . _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.—.

.—• . ~~~~~~~~~~~~~~~~~
,t__ ____ • —

--.--~~ .-~--. •


~~~~~
.- •~~~~--~~~~~~~~-~~~~-—— ~~~~~~~~~~

. 
~~~~~~~~~~ ~~~~~~~~

--
~~~~~~~~~~~~ ~~~~~~

.

52 Automat Ic Programmin g

Most programmers know this tact: that a collection may be represented by its
c/tara cteris eic function. Without knowing this rule, or something similar, It is almost Impossible to
understand why a bitstrlng can be used to represent a set (or , for that matter , why property
list markings work). yet this rule is generally left unstated In discussions of bItstning
representations. As another example , consider the following rule:

An assxsation table whose keys ore intege rs from a fired range may be represented as an
array subregion.

The fact that an array Is simply a way to represent a mapping of Integers to arbitrary
values Is well known and usually stated exp licitly. The detail that the integers must be from
a fixed range Is usually not stated. Note that If the integers are not from a fixed range, then
an array is the wrong representation end something like a hash table should be used.

PECOS ’s rules also Identify particular desIgn decisions Involved In programming. For
example, one of the crucial decisions in building an enumerator of the objects in a sequential
collection Is selecting the order In which they should be enumerat ed. This decision is often
made only implicitly. For example, the use of the LISP function MAPC to enumerate the
objects in a list assumes implicitly that the stored (or natural”) order Is the right order in
which to enumerate them. While this is oft en correct , there are times when some other order
is des i red. For example , the selector of a selection sort Involves enumerating the objects
according to a particular ordering relation. A second major dec ision in building an enumerator
involves selecting a way to Save the state of the computation between calls to the
enumerator . The use of a location (e.g., index or list cell) to specif y the current state IS
based on knowing the following rule:

If the enumer ation order is Me sane as Ms stored order , Me state of an enumei’atEon may
be represented as a Ic~ation in the sequential collectio’t .

Were the enumeration order different f rom the stored order (as in a selec tion sort),
then some other state-saving scheme would be needed , such as delet ing the objects or
marking them in some fashion.

Another interesting aspect of PECOS’ s rules is that they hav e a certa in kind of
explanatory power . Consider, for example , a well-known trick for computing the intersection
of two linked lists of atoms In linear time Map down the first list and put a special mark on
the property list of each atom; then map down the second list collecting only those atoms
whose property lists contain the special mark . This technique can be understood on the
basis of the following four of PECOS’s rules (in addition to the rules about represent ing
collect ions as linked lists ):

A collection may be repre senteis as a mapping of objects to boolvan v&ues~ Me default
ran ge object is FALSE.

A mapp in g whose domai n consists of atoms ma, be represented using property list
mark in gs

The intersect ion of two collections ma, be implemented ~ enumerating the objects in one,
and while enumerating them, collecting those that are members a/ the other .

L .
.

~~~~~~~~
—

~~~
——-

~~
- -- - - —-•- ------ -

~~
- -



_ _ _ _ _ _ _ _ _ _ _ _ _  -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _

F PECOS 53

If a collection is input , its representat ion may be converted in to any oMer re~ rvsentation
• before further process ing

GIven these rules, the trick works by first converting the representation of one
collection from a linked list to property list markings with Boolean values, and then computing
the Intersection in the standard way, except that a membership test for property list
markings Invo lves a call to GETPROP rather than a scan down a linked list.

Statu s

P(COS Is able to implement abstra ct algorithms (i.e., a very high-level specification) in
a variety of domains, Including elementary symbolic programming (simple classIfication and
concept formation algorithms), sorting (several versions of selection and Insertion sort),
graph theory (a reachability algorithm), and even simple number theory (a prime number
algorithm). In each case , PECOS s knowledge about different implementation techniques
enabled the construction of a variety of alternative implementations, often with significantly
different efficiency char acteristics.

PECOS’ s success demonstr ates the viability of the knowledge-based approach to
automatic programming. In order to deve lop this approach further , two research directions
seem particularly useful.

First, programming knowledge for other domains must be codifIed. In the process , rules
developed foe one domain may be found to be useful In other domains. With the hope of
verifyIng the wider utility of PECOS’ s rules about collections and mappings, Yale ’s
knowledge-based Automatic Programming Project Barstow , 1978 Is currently codif ying the
programming knowledge needed for elementary graph algorithms.

As an example , consider the common technique of representing a graph as an
adjacency matrix. In order to construct such a representation, only one rule abou t gra phs
need be known:

A graph na~ be repr esent ed as a pai r of setS 0 Jet of vertices (whose elements are
p rs ni t ivf  obj eas) and a set of edges (chose .lvwients are pai rs of ver t i ces)

The rest of the necessary knowledge is concerned with sets and mappings and is
independent of its application to graphs. For example . in order to derive the bounds on the
matrix , one need only know that primitive objects may be represented as integers, that a set
of otherwise unconstrained integers may be repr esented as a sequence of consecutIve
integer s, and that a sequence of consecutive integers may be represented as lower and
upper bounds. To derive the representation of the matrix itself , one need only know PECOS’ s
rules about Boolean mappings and assocIat ion tables, plus the fact that a table whos e keys
are pairs of integers In fIxed ranges may be represented as a two-dimensional mat rix.

Second , different ty pes of programming knowledge need to be codified. Two ty pes
seem particularly Important: efficiency knowladge and strategIc know ledge. LIBRA (article
Ca), whIch acts together with PECOS In PSI’ s syn t hesis phasi , embodies a large amount of
effIciency knowledge; but much remains to be done . Very little work on the use of general

• strategies (e.g., divide and conquer) In program synthes is has been done. The latter seems

L -
~~ •

. •. . - 
-

~~~


- .

64 Automatic ProgrammIng

an especially important direction, since such strategies seem to play a major rol. In humen
programming.

References

See Barstow & Kent (1977), Barsto w (1976), Barsto w (1979), Green (1976b), Kent
(1977) . end Teitelman et •I. (1976).

— .— ~~— ----. ---
— —---- -~~~~~~~~ -—-. - -——- . .--- -—

T~
--

__-~

G DEDALUS 66

G. DEDALUS

OEDALUS , the DEDuctive Algorithm Ur-Synthesizer , accepts an unambiguous, logically
complete, very high-level specIfication of a desired program and through repeated
applIcation of transformat ion rules seeks to reduce It to an implementation within a simple
LISP-like target language. This target language implementation is guaranteed to be correct
(I.e.. logically equivalent to the high-level specifIcation) and to terminate. The knowledge
that ultimately relates the constructs of the specif ication language to those in the target
language Is expressed In the transformation rules. But of special importance are certain
rules that express general programming principles that are Independent of the particular
specIfication language and target language. These rules, which have constituted a major
component of the DEDALUS effort, form conditional statements and recursive and
nonrecurslve procedures; they also generalize procedures, construct well-founded orderings
to guarantee the termInation of recursive calls, and write code that simultaneously achieves
two or more goals. These general programming pr4nciples are described in detail in a
subsequent section, with examples Illustrating their application. As pointed out in the
STATUS section, some of the principles are fairly well understood, whIle others require
further study. Not all th e prInciples are implemented In the current DEDALUS system.

The DEDALUS specification language can contain constructs that are close to how the
user actually thinks about the problem. Thus , the DEDLAUS specification of the program
lessal l(x I), which tests whether a number x Is less than every element of a list I of numbers.
and the program gcd(x y), which computes the greatest common divisor of two nonnegative
Integers * and y, are s pecified as fol lows:

Iessafl(x I) (~ Compute x (afl (l)
where x Is a number and I Is a list of numbers ,

gcd(x y) s compute max (z :zlx and zly)
where x and y are nonnegative nonzero integers

The all construct in P(all (I)), indicating that the condition P holds for all elements of
the list I, and the set constructor {u: P(u)), indicating the set of elements for which P is true.
are constructs that , through the repeated application of transformation rules will eventually
be converted Into target language code that , for the particular program, is logically
equivalent to the original specification. The specification language is not f ixed: New
constructs can be Introduced by modifying or adding transformation rules.

The operation of DEDALUS consists of the repeated application of transformations to
expressions in order to produce expressions that are closer to. or within, the target
language. In DEDALUS , the expressions that occur during the transformation process specify
not only programs; they can also specify condItIons to be proved, as well as conditions to be
made true. Aft these expressions are treated as goals to be achieved: Foe an expression
that specifies a program, the goal Is to convert that program Into a target language
Implementation ; for an expression that Is a condition to be proved, the goal Is to convert it to
the logical constant true; for an expression that Is a condition to be made true, the goal Is to
construct a program that will make that condition true.

Transf orming a subexpresslon (of an expression) into another subexpress ion requires
rules of the form

- ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~
— -

~~~~~~~~--~~~~~-. ~~~~*- .—



66 Automat Ic Programming

t.) t’ if P

the conditIon P beIng optional. This rule indi cates that the sube x press ion t can be replaced ‘ -

by t’. If P is present , then the rule can only be applied provided that the system first prove
that P Is true; which Is to say, before the rule can be applied , the system must succeed in
achieving the subgoa l

Goal: prov e P

for example, consider

P(all(I)) ~) P(Piead (I)) and P(all (tail (l))) if not empty (I)

which express es the fact that a property P holds for every element of a nonempty list I If it
holds for the first element head(l) and for every element of the list tail (I) of the other
elements. Before the sy stem can apply this rule to some part of an expression, it would
have to succeed In proving that I Is not empty.

The application of transformation rules results In a tree of goals and subgoals. Initi ally
the top-level goals of this tree are established by program spec if icat ions. Thus, the common
form of program specification

f(*) <‘ compute P(x )
where 0(x)

establishes its output description as the top-level goal

Goal:compute P(x)

and In trying to achieve this goal, the system assumes the truth of 0(x). If the top-level
goals of trees are established by program specifications, most goals are established as the
result of transformations . Thus, by applying the trans f ormat ion rule

ulv and ulw a) ulv and u~w-v

to the top-level goal of the gcd program

Goal 1: com pute ,sax (z:zIx and z$y),

th. system estab lishes

Goal 2: compute max (Z:Z I* and z~y-*)

as a subgoal. Such transformations express knowledge about specific constructs. In the
DEDALUS system there Is also knowledge of a more general sort.

General ProgrammIng PrincIples

This section descrIbes f ive general programming principles and presents several

. - •m’~~~
L - - - -~~- — — —-.-—. - - — — - — — — •.•. - - 

-



G DEOALUS 61

examples to illustrate their application. The principles expres s knowledge about how to form
conditionals and procedures (recursive and nonrecursive), how to replace two or more
procedures by a generalized procedure , and how to achieve simultaneous goals. As explained
in the S T AT U S section , the current implementation of DEDALUS does not incorporate the
generalization of procedures or the achievement of simultaneous goals.

CondItIonal formation. Many of the transformation rules impose some condition P (e.g.. I
is nonempty, * is nonnegative) that must be satisfied for the rule to be applied. Suppose
that in attempting to apply a particular rule, the system failed to prove or disprove the
condItion P wher e P Is expressed entirely In terms of the primitive constructs of the target
language; in such a situation, the conditional formation rule is invoked. This rule allows the
Introduction of case analysis to consider separately the cases in which P is true and in which
P is false. Suppose the result is both a program segment Si that achieves the goal under
the assumption that P is true and another program segment $2 that achieves the goal under
the assumption that P Is false. The conditional formation principle puts these two program
segments together Into a conditional expression

if P then Si else S2

which solves the problem regardless of whether P is true or false. During the generation of
52 , the system could discover that a conditional expression was unnecessary: The
generation of S2 may not have required the assumption that P was false. In such a case, the
program constructed would be simply S2.

Recursion formation. Suppose, in constructing a program with specIfications

f(x) (a computa P(x)
where 0(x )

the system encounters a subgoal

compute P(t )

which Is an instance of the output specificat ion , com pute P(x). Because the program f (x )  is
Intended to compute P(x ) for any x satisf ying Its Input specification 0(x), the recursion
formation rule proposes achieving the subgoal by computing P(t) with a recursive call f (t) .
For this step to be valid, it must ensure that the Input condition 0(t) holds when the proposed
recursive call is executed. To ensure that the new recursive call will not cause the program
to loop Indefinitely, the rule must also establish a termination condition, showing that the
argument t Is strictly less than the Input x in seine well-founded ordering. (A well-founded
ordering Is an ordering in which no infinite strictly decreasing sequences can exist. ) This
condition precludes the possibility that an Infinite sequence of recursive calls occur during
the execution of the program.

Example: lessall. The DEDALUS system derived the program lesssll(x I), which tests
whether a given number * Is less than every element of a give list I of numbers. The
specifIcations for this program are

lessall(x I) (a compute x ( all (I)
where x is a number and I Is a list 01 numbers

_________________ - 



66 AutomatIc Programming

in deriving this program, the system develops a subgoal

compute x < all(ta Il(l))

in the case th at I Is nonempty. This subgoal Is an Instance of the output specification of the
original specification, with the Input I replaced by taii (l); therefore , the recursion formation
principle proposes that the subgoal be ach ieved by introducing a recursive call Iessa ll (x
ta ll (l)). To ensure that this step Is valid, the rule establ ishes an input condition that

x Is a number and taII(I) Is a list of numbers

and a termination condition that the argument pair (x ta il (l)) Is less than the input pair (x I) in
some well -founded order ing. This term inat ion condition holds because ta il(l) is a proper
sublist of I.

As the fInal  program the system obtains

lessall(x I) (a if empty(l) then true
else x ( head (I) and lessall Cx tail(I)) -

Procedure format io n. Suppos e that while deve loping a tree for a specification of the
form

t (x)  <~ com pute P(x )
where 0(x )

the system encounters a subgoal

Goal B: compute R(t)

which Is an instance not of the output specification compute P(x) but of some previously
generated subg oal

Goal A: compute R(x) -

Then the procedure formation principle introduces a new procedure, g(x), whose output
specification Is

g(x )  (a com pute R(x ) -

In this way, both Goals A and B can be achi eved by caus g(x) and g(t) to a single procedure.
In the case where Goal 8 has been der ived f rom Goal A, the call to g(t) wIN be a recursive
call; otherwIse, both cal ls will be simple procedure calls.

Ex’.mple: cart . The specification of the program cafl( s t) to compute the Cartes ian
product of two sets , a and t , is

cart (s t ) <a compute ((x y) xi s and y~*)
where s and t are f ini te sets

. . 
~.

___ 
—

____________



- - ~—-..— ~~~~~~~~~~~-~~~-.-~~-.- -~~~~~~ --- ,-~- . -

G DEDALU S 69

WhIle deriving the tree for the program, the system obtains a subgoal

Goal A: com pute ((x y ) :  x~heiid(a) and y t )

given that s Is nonempty. Developing Goal A further, (he syste n derives

Goal 8: com pute ((* y ) : x :haad(s) and yitall(t))

given that t Is nonempty. Goal B is an Instance of Goal A; therefore, the procedure formation
rule proposes introducing a new procedure carth .ad Cs t ) whose output specification Is

carthead(s t) (~ computs (( x y) : x’head(s) end yit)

so that Goal A can be achieved with a procedure call carthead (s 1), and Goal B. with  a

(recursive) call carthead (s ta ll (t )) .

Constructing the carthead procedure by the techniques already described, th e f inal
system of programs becomes.

ca r t(s  t )  (. If empty(s) then C )
else unlon( carthead(s t) cart(ta il(s) t))

carthead(s t ) (a if empty(t) then C )
else union( ((head( s) heed(t)))

carthead(* 1.11(t)))

Generalization. Suppose, in deriving a program, that we obtain two subgoals

Goal A: com pute R(a(x))

Goal B com pute R(b( x ))

neither of which Is an instance of the other , but both of which are instances of the more
general expression

compute R(y) -

In such a case the extended procedure formation rule pro poses the Introduction of the new
procedure, whose output specification Is

g(y)  (a compute R(y)

Thus , Goal A and Goal B can be achieved by procedure calls to g(a(x)) and g(b(x) ).
respectIvely.

Example: reverse. In constructing a program reverse (I), to reverse a list I, we first
derive two subgoals:

Goal A: com pute append(reverse (ta ll (l))

- - - .-.-— _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _



1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_

00 Automatic Programming

cons(head(I)nil))

Goal B: com pute appe nd(reverse (ta Il (ta il (l)))
cons(head(talt(l))

cons(head(l) nil)))
skip

Each is an Instance of the more general expression

com pute append (reverse (ta ll (I))
cons(head(l) in))

therefore, the extended procedure formation rule proposes Introducing a new procedure
reversegen( l in), whose output specification is the more general express io n:

reversegen( I m) (a compute append ( reverse(tall (I))
cons(head(l) m)) .

Although this procedure , which reverse s a nonempty list I and appends the result to in, is a
more general problem than the original reverse program , it turns out that reversegen a
actually easier to construct. The final system of programs obtained is

reverse(l) (a if empty(l) then nil
else reversegenO nil)

reverseg.n(l in) (a if empty(tsd(I)) then coni(head(l) m)
else rev erse ç~en(ta il (l) co ns(head(l) in))

Simultaneous goals. In order to deal with operations that produce side-effects such
as modif ying the structur e of data objects (e .g., assignment statements ), D(OALUS
introduc es constructs auch as achIeve P. to denote a program intended to make the
condition P true.

In constructing a program to achieve two conditions, P t  and P2, it Is not sufficient to
decompose the problem by constructing t~~.. r’Iependent programs to achIeve P1 and P2.
respectively. The concatenation of the two programs might not achieve both conditions
because the program that achieves P2 may in the process make Pt false , and vice ve ts ~

For example , suppose a program is desIred to sort the values of three va riables x , y .
and a; in other words, to permute the values of the variables to ach ieve the two condIt ion s
*~ y and y.

~ z simultaneously. Assume the given primitive Instruction soit2(u v), which sorts
the values of its Input variables u and v. The concatenation

soit2(* y)
sort2(y a)

of these two segments wIll not achieve both conditions simultaneously; the second segment
aort2(y a) may, by sorting y and a, make the f irst condition xzy false.



0 0~0ALU8 01

The simultaneous goal principle, which was introduced to circumvent such difficulties,
states that to satisf y a goal of form

achIeve P1 and P2

first construct a program F to achieve Pt , then modify F to achieve P2 while protecting Pt at
the end of F. A special aprotectiof, mechanism (ci. (Sussm.n, 1975)) ensures that no
modification Is permitted that destroys the truth of the protected condition P1 at the end of
the program ,

Example: sort To apply this principle to the goal

achieve x < y and y ( a

in the sorting problem, a system would first achieve x < y, by using the segment sor t 2(x
y) This program would then be modIfied to achieve the second condItion y s a. But adding
sort2(y a) at the end of the program will riot work because It destroys the truth of the
protected condition * ~ y.

liowever , in general , a goal may be achieved by inserting modifications at any point in
the program, not merely at the end . Introducing the two instructions

I? y < x then sort2( * y)

if x y then sort2(y a)

at the beginning of the program segment would s imu ltaneous ly achieve both conditions x y
and y a. The resulting program would be

If y ( x then sort2(x z)
if x ( y then sort2(y a)
sort2(x y) -

Status

Currently, the DE DALUS implementation incorporates the principles of conditional
fo rmat ion, recurs ion formation (including the termination proofs), and procedure forma t ion, but
it does not include generalIzation or the formation of structure-changing programs. The
techn iques for deriving straight-line structure-changing programs were implemented In a
se parate sy stem (see Waldlnger, 1977).

Conditional formation and recursion formation are well underst ood . The method for
proving t ermination of ordin ry recurs ive calls does not always extend to the multIple-
procedure case The generalization mechanism and the extended procedure formation
principle are Just beginning to be for mula ted.

The derIvatIon of straight-line programs with simple s id e-effects is fairly well
understood, but much work needs to be done on the derivation of struct ure-changing

—4

.- —c--,- — _— ~-.~ 
.- . -. .— - -- ~~~~~~ 

—
—-----

~

- -



62 Automatic Programming

programs with conditional expressions and loops, as well as on the derivation of programs
that alter list structures and other complex data objects.

The DEDALUS system is Implemented in OLISP (Wilber, 1976), an extension of
IN TE RU SP (Teite lman et al.. 1978) that includes pattern-matching and backtracking facilities.
The full power of the QLISP language is available in expressing each rule since the rules are
represented as Q(ISP programs in a fair ly direct manner.

To dat e, these are sonic of the representatIve samples of the programs constructed by
the current DEDALUS system:

Numerical Programs i

- the subtractive gcd algorithm.
- the Eudkdean gcd algorithm.
- the bInary gcd algorithm, and
- the remaind er of dividing two Integers.

List Programs:

- finding the maximum element of a list,
- testing if a list is sorted,
• testing if a number is less than every element of a list

of numbers (lessall)), and
- testing if every element of one list of numbers is less
than every element of another.

Set Programs:

- computing the union or intersection of two sets ,
- testing If an element belongs to a set .
- testing if one set is a subset of another , and
- computing the cartesian product of two sets (cart ).

References

See Belier (1972), Balzer, Goldman . & Wile (lO7Tb) , Bayer & Moore (1976), Buchanan
& Luckham (1974) , Burstall & Darlingt on (1977), Dlj&stra (1076), Dljkstra (1976), Green
(IG7Sb) , Guttag. Horowitz, 1, Musser (1976), Heldorn (1976), Manna & Waldinger (1976).
Siklossy (1974), Sussm an (1976), Teitelman et as. (1976), Waidlnger (1977), Warren
(1974), Warren (1970), and WIlber (1970).

. . 
~~~~~~~

.

L .. . ~- . - .. _ _ _ _ _ — -~~~~~
. -

7 . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~

- _ _ _~~-. -

H PROTOSYSTEM I 63

H. PROTOSYSTEM I

PROTOSYST[M I, an automatic programming system desIgned by William Martin . Gregory
R u t h , Robert Baron. Matthew Morgenstern , and others of thu MIT Laboratory for Compute’
Science. Is part of a larger research project aimed at modeling, understanding, and
automating the writi ng of a data-processing system. Hereafter the data-processing system
is referred to as a da:a-p r c es~utg ~ro gru M , in accord wi th this chapter ’s terminology, which
refers to the output of an automatic programming system as a program. A model of the larger
research project was developed that consists of five phases The successive phases can
he viewed as a series of transformat ions of the descriptions of the target program . beginninq
w i t h  a g lobal conceptual description of the problem at hand and progressing, through
increasing specificity, toward a detailed machine-level solution. The aim of the project is to
develop stages of an automatic programming system where each corresponds to one of the
five phases of the model and each embodies the particular knowledge and expertise for that
phase.

Phase 1: Problem Definition--The specification of the dat a-processing program is
expressed in domain-dependent terms in (nglish.

Phase 2: Specification Analysis ana System Formulation--The specification In Phase 1
is viewed as a data-processing problem. This problem is so lved , yielding a data -processing
formulation of th. desired program.

Phase 3: implementat Ion--The procedural ste ps , data representation , and organIzation
of the target are determined by Intelligent selection from, and adaptation of , a set of
standard implementation possibilities.

Phase 4: Code Generation--The implementation of Phase 3 is transformed into code in
some high-level language (e.g., P1/I).

Phase 5: Compilation and Loading--The higPi-Ievei code is transformed into a for m that
can be “understood and executed by the target computer .

The f irst two phases involve such Al areas as natural language comprehension, program
model format ion, end problem solving. Since these area, are still In the process of evolution.
the development of the first two phases has been deferred. At present , PROTOSYST EM Is
limited to the automation of phases 3 and 4 since It was felt that these phases were much
more amenable to solution. Thus, the current PROTOSYSTEM acce pts a specification in terms
of abstract relations (in a very high-level language called 851), and then designs an
optimized data-processing program and generates code for an efficient implementation. In
automatIc programming it is usually impoaslbis for a system to carry out a search for the
absolutely optimal implementation ; Instead, a cyst ic works at optImizing a program only t oa
degree

The particular problem area of PROTOSYSTEM is that of I/O intensive (file manipulation
and updating), batch-oriented, data-processing programs. Included in this area are programs
for Inventory control, payroll, and other record-kee ping systems.

The specification method uses a description of the desired data-processing program in
the SSL language. An $51. specification consists of a data and a computation division. The

— ~~~~~~~ - - -~ ~~~~~~~~~~~~~~~~~~~~~~~~ .~~~~~~~~



1 
-

~~~~~~~

- - .

~~

- .

_

64 Automatic Program ming

data division gives the names of data sets (conceptual aggregations or groupings of data),
their keys, and their period of updating Ihe computation division specifies for each
computed file the calculation s to be pertoi’med when it is computed. F igure 1 illustrates an
SSI specification of a data-processing program for a warehouse Inventory. In the proposed
problem, the warehouse stocks a number of different kinds of items that are sent out daily to
various stores. The data-processing program’s task is to keep track of inventory levels,
which Items and how many of each Item ;hould be reordered from t he producer (an Item $5
reordered when less than 100 remain in stock), arid how many Items are received from the
producer. In the data division are data sets (e g., shipments-received , beginning-inventory,
total-items , etc.), and In the computation division are the computation ste ps that involve
these data sets (e.g., for each item , the beginning inventory is computed by adding the
shipments received to the final Inventory from the previous day).

Af ter receiving the SSL specificat ion of the desired program, PROTOSYSTEM transforms
it into an efficient target language implementation consisting of a collection of P1./i programs
and its JCL (“Job Control Language ”) for the IBM 360 system. To accomplish this
transformation, the following specific desiqn decisions are made with the goal of achieving an
eff i cient implementation :

(a) Design each keyed file , deciding what are to be its data items , organization
(consecutive , index sequential . reg.oeal), storage device, associated sort
ordering, a nd number of r e co rds per t~ock ,

(b) design each job step, determining which computations the step is to include,
its accessing method (sequential, random, core table), its driving data
set (s), and the order (by key va lues) in which the records of its input data
sets are to be processed ,

(c) determine whether sorts are necessary and where they should be performed ;
and

(d) determine the sequence of job ste ps.

Generally, these design decisions, especially the central ones of determining the final
t a rg e t data sets , co mputation ste ps , and si’quencing of computation steps, are made by
exploring the different ways of combining data sets and computation ste ps. The system
carries out these explorations w ith the goal of minimizing the number of file accesses made
during the run-time of the target implementation Sometimes , as explained below, the system
also w il l seek to minimize a more detailed co s t esti mate of the target implementation .

Described In greater detai l in the ne xt section, the method employed by PROTOSYSIEM
for achieving an efficient implementation dons not rely solely on heuristics but Instead uses
what is essentia lly a dynamic programming algorithm with heuristics added to the algorithm.
so that ft can finish in a reasonabl, amount of t,me An advantage of dynamic programming is
that It can provide a good handle on global optimization when the results of individual
decis ions have far-r eaching and compounding effects throughout the design of the data-
process ing progra m.

~ - - . .—~ -—-~ -. -. --- , -~~~~~~~~ .-~~—.— -~~~~~ —~~~~~~ -- . .-- .--- . . ,- -- . ..

H PROTOSYSTEM I 65

Operation

Although the actual optimization process is performed by the optimizer module, several
other modules provide preparatory and suppor t services. First , the structural analyzer module
generates predicates for the operations In the SSI. computation division. These predicates
IndIcate the conditions under which data Items In a data set will be eIther accessed or
generated during an operation. For example, the condition

(DEFINED A (ki)) • (OR (DEFINED B (k i)) (DEFINED C (ki)))

would indicate that there is a record In data set A for a value of the key, ki , only when at
least one of the data sets B or C has a record for that value of the key. The structural
analyzer also produces candidate driving data sets for each operation in the computation
dIvision. A driving data set of an operation is a data set whose records are “walked through”
once in order of their occurrence-- i.... the operation Is executed once at each step
(record)--to drive the operation.

The predicates produced by the structural ana icr are then used by the question-
answering module to provide information to the optimizer about the average number of I/O
accesses implied by tentative configurations (i.e. tentative choices for the data sets and
computation steps) of the target implementation . The question-answering module maintains a
k nowledge base consIstIng of the predicates , characteristics of the data , as well as
Information obtaIned from interaction with the user , such as average data set s ize or the
probability of a predicate fragment being true. This knowledge, along wi th knowledge about
the probability calculus, is used to answer questions about the size of a data set and about
the average number of items in the data set t hat are likely to satisfy a certain predicate
(e.g.. an access predicate). When the knowledge Is insufficient to answer an optimIzer
question, the question answerer Initiates a dialogue with the user In order to elicit enough
addit ional Information to proceed.

The optimization process itself Is perf o rmed by the optimizer module. This module
Intermittently obtains Information from the question answerer about I/O accesses of
tentative configurations of parts of the data-processing program, In order to explor e the
eff ects of such design parameters as the number of records per block, the file organization,
the data items that are collected Into a single data set , and the computations that are
performed during a single reading of a Vile or f u ss. Since the problem area of PROTOSYSTEM
is that of I/O intensive programs, the optimizer explores the various design parameters with
the goal of mInimIzing the number of file accesses of the target language Implementation (of
the data-processing program). Sometimes, however , aft.r a number of more Important design
decisions have been made, the optimizer will explore desIgn decisions by computing a more
detaIled cost estimate that attempts to approximat. the charging structure of the particular
installation on which the target system Is to run (e.g.. disc s pace , core residenc y charges ,
explicit I/O, etc.).

The central part of the opt imizat ion process Is concerned with t he the explorat ion of
variou s ways of setting up data sets and computat ion ste ps. BasIcal ly, the opt imizat ion
module starts with the data sets and com putation ste ps in the data dIvision and com putation
division of the SSL specIfication . Then, with the goal of minimizing the number of file
accesses , the module looks at data- process ing programs that use var ious aggregat ions of
these initIal data sets and computation ste ps (an agg regat ion of two or more data sets is a

_ _ _ _ _ _ ~~~~-~~~
--

~~ -~~~~— - -.~~~‘ ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~
—.

~~

- . .~~~.

66 Automatic Programming

data set that has all the data Items of the original data sets , while an aggregation of several
computation steps Is a computation step that performs the functions of the original steps) .
The optimIzer explores aggregating data sets and aggregating computation steps and
develops and utilizes constraints on the sort order of both data sets and com putation ste ps
(an example of a sort order constraint on a data set would be when the data set should have
Its records sorted on a particular key first) .

To avoid the problem of combinatorial explosion, the module uses a form of dynamic
programming with heuristics. Loosely speaking. one may say that dynamic programming is a
set of parameter ized recursive equations, which. in this case , express the cost of optimized
longer segments of the program In terms of optImized shorter segments. A pure dynamic
programming algorithm , though it would find the absolute optimum target implementation , would
require an extreme amount of time to do so. Therefore, in order that the algorithm finish in a
reasonable time, a number of heuristics have been employed in the algorithm, including
decoupling decIsIons where possible (and sometimes even where It Is not completely
possIble) and carrying out local optimizetions befor e making adjustments for global concerns.
A full explanation of the algorithm Is f ound in Morgenstern (1976).

Status

The SSI. specification language has boon completely defined and there is an
operat ional Implementat ion of PROTOSYSTEM in MACLISP on the MIT ICS PDP-10. The system
is cspsble of producing accep tab le targ et language implementations. From a larger
perspective , the PROTOSYST EM I project has developed a 5-phase model of the process of
writing a data -processing program (system) . from its conception to its Implementation as
executable code. Twenty years ago , the f i f th phase, compilation and loading, was
automated. At present , a preliminary theory and automation of the third and fourth phases,
the generation of the system and trans lat ion unto high-level code. are embodied in
PROTOSYST EM I. It us felt that w thin the next decade the theory end automation of the
remainIng two phases, Including problem definition, specification analysis, and system
fo rmulation , should easily fall within the realm of pr esently developing Al technologies.

DATA DIVISION

FILE SHIPMENTS-RECEIVE D FILE QUANTITY-ORDERED-BY-STORE
KEY IS ITEM KEY IS IT EM
GENERATED EVERY DAY GENERATED EVERY DAY

FILE BEGINNING-INVENTORY FILE TOTAL-SHIPPED
KEY IS ITEM KEY IS ITEM , STOR E
GENERATED EVERY DAY GENERATED EVERY DAY

FILE TOTAL-ITEM-ORDERS FILE FINAL-INVENTOR Y
KEY IS ITEM KEY IS ITEM
GE NE RATED EVERY DAY GENERATED EVERY DAY

FILE C JANTITY-SHIPPED-TO-STORE FILE REORDER-AMOUNT
KEY IS ITEM, STORE KEY IS ITEM
GENERATED EVERY DAY GENE RATED EVERY DAY

~~~~~~~~~~ -~~~ -—-..-.—~- - .—— .—-— . - ~~ - — -.,-—-— -.



F ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ 
- . ..~~~~~ 

-
~~~~

.. -.-.- .—.-- -

I

H PROTOSYSTEM I 07

COMPUTATION DIVISION

BEGINNING-INVENTORY IS
FINAL-INVENTOR Y (from the previous day) • SHIPMENTS-RECEIVED

TOTAL-ITEM-OR DERS IS SUM OF QUANTITY-ORDERED-BY-STORE FOR EACH ITEM
QUANTITY-SHIPPED-TO-STORE IS

QUANTITY-ORDERED-BY-STORE IF BEGINNING-INVENTORY IS
GREATER THEN TOTAL-ITEM-ORDERS

ELSE
QUANTI TV-ORDERED-BY-STORE
‘(BEGINNING-INVENTORY / TOTAL-ITEM-ORDERS)

IF BEGINNING-INVENTORY IS NOT
GREATER THEN TOTAL-ITEM-ORDERS

TOTAL-SHIPPED IS SUM OF QUANTITY-SHIPPED-TO-STORE FOR EACH ITEM
FINAL-INVENTORY IS BEGINNING-INVENTORY - TOTAL-SNIPPED
REORDER-AMOUNT IS 1000 IF FINAL-INVENTORY IS LESS THAN 100.

Figure 1: SSL relatIonal descript ion for a data process ing progra m.

References

See Baron (1977), Morgenstern (1976), Ruth (lQTSa), Ruth (1976), and Ruth (1979).

U
.~ ~~~ —. — —.-—-— -.. ~~~~~~~~~~~~~~~~~~~~~ -. —- .-—..~ --.——— ..———~~~~~~~~~~

.- — — -——-.—. .--- . -.—- .— - — . . . -~~~~~~~ — ———-- —. — -.


~~~~~~~~~
.- - - .

88 Automat ic Programmin g

I. NLPQ: Natural Language Programming for Queuing Simulations

The Natural Language Programming for Queuing Simulations (NLPO) project was begun
by George Heidorn at Yale University in 196 7 as a doctoral dissertation and completed at the
Navel Postgraduate School during the years 1968-197 2. The problem area Is that of
simulation programs for simple queuing problems. The queuing problem ’s specifIcatIon occurs
during an English dIalogue in which the user and the NIPO system each can furnish
information to, and request information from, the other. From this dialogue, the NLPQ system
creat i’ s and maintains a partial internal description of the queuing problem. This partial
description is used to answer any questions that the user may ask ; it is used to generate
questions that are to be asked of the user; and when eventually completed by the dialogue
act i v ity, it is used to generate the implementation of the simulation program In the target
language GPSS. The system s processing -- including creating the problem description and
generating the GPSS program, as well as translating and generating sentences--Is specified
by production rules.

Specif ication

In the English dialogue that constitutes Nt P0’s method of specificat ion , the user can
m a ke  statements, give commands, ask questions, and answer questions. During this process
the system can ask and answer questions and respond to commands. In the very brief
dialogue of Figure 1, most of the features of the specification method are illustrated in a
simple way (other more complex dialogues are presented in Heidorn , 1972, Heidorn. 1974 ,
Heidorn, 197 5b . and Hesdor n, 1976). in the dialogue, line numbers have been added for
purposes of reference ; and the lower case typing was done by tile user , while the UPPER
CASE typing was done by the computer.

The particular specification concerns a queuing problem about cars that arrive at a
station , get serviced , and leave. The user initially volunteered some information about how
often the cars arrive and about the sequencing of actions , in lines 1 and 2, and then e’sked
the system what other Information wa s needed to complete the queuing model, in line 3. In
lines 4 through 9, the system asked questions about times and actions. which the user
answe red , until the problem statement wa s complete, in line 10. Then in line ii the user
asked a specific question about the queuing model concerning the mean time needed to
service a car , a question that the system answered in line 12. In line 13 the user told the
system to produce a description of the entire problem in English for verification purposes.
which It did, in line 14 Finally, in response to the user command in line 15, the system
produced t h e  GPSS program, in line 16, complete with English comments (preceded by ) and
mpanirujful symbolic names. The time required for the NLPO system to process this sample
specification and to produce the GPSS program was 8 seconds of virtual CPU time on an IBM
3 70/ 16B running LISP.

I “ EVERY 6 MINUTES A CAR ARRIVE S AT A STATION.
2 “ AFTER ARRIVING , IT IS SERVICED AT A PUMP.
“ IS ~ IE PROBLEM STATEMENT COMPLETE?

4 How long are the cars serviced at the pump?
5 “FROM 3 TO 7 MINUTES.
6 Af ter  being serviced at the pump, what do the cars do?
7 “ THEY LEAVE THE STATION.
8 How long shall the simulat ion be run?

...

L~~ ~~~~~~~~~~~~~~~ — ~~~~. T _ ~~~ 2~~~~ .~~~~~~ . —--~.... -—— --— .
~~ ______



__ • ...~~~~~~ 
. -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

NLPQI Natural Language Programming for Queuing Simulations 89

9 ~ 10 HOURS; USE 1 MINUTE AS THE BASIC TIME UNIT.
10 The problem statement is complete.
i i” WHAT IS THE MEAN OF THE TIME TO SERVICE CARS?
/2 The mean of the un~torm distribution Is 6 mInutes.
13 ~ DESCRIBE THE PROBLEM IN ENGLISH.
14 The cars arrive at the station every 6 minutes.

After arriving at the station, the cars are serviced at the
pump. The time for the cars to be serviced at the pump Is
uniformly distributed, with a mean of 6 minutes and a
half-range of 2 minutes. After being serv iced at the pump,
the cars leave the station.
The simulation is to be run for 10 hours, using a
basic time untt of 1 minute.

~ WRITE THE GPSS PROGRAM.
SIMULATE
STA l l EQU 1,F,Q
PUMP2 EQU 2,F,0
CAR l (Oh 1,1
1 TA BL E M 1 ,1,1,2

a

THE CARS ARRIVE AT THE STATION.
GE NE RATE 6
ASSIGN 1 ,CAR 1

a

• THE CARS ARE SERVICED AT THE PUMP.
ACT 1 QUEUE PUMP 2

SEIZE PUMP2
DE PART PUMP 2
A DVANCE 5,2
RELEASE PUMP2

a
• THE CARS LEAVE THE STATION.
AC T 3 TABULAT E P1

T ER M I N A T E
a

‘ TI MING LOOP
GENERATE 600
TERMINATE I
START 1
(ND

FIgure 1. A vory brief NLPQ dialogue.

OperatIon

The processing to be done by NIPO is specified by sets of production rules wrItten in a
language designed especially for this system. Decoding’ rules specIf y how str ings of

L L~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~
H

70 Automat Ic Programm ing

English text are to be converted into records In a semantic net , and “encoding’ rules specify
how records are to be converted Into text. These rules are basically phrase structure
grammar rules Netisal L.r~~ag..BI, but they are augmented with arbitrary conditions and
structure-bu~Idlng actions .

The represent ation of the internal description of the simulation problem as well as the
representation of the syntactic and semantic structures are in the form of a semantic
network Re~~eeantetion.B2. A networ k consists of records that represent such things as
concepts , words, physical entities , and probability distributions. Each record Is a list of
attribut e-value pairs, where the value of an attribute is usually a pointer to another record
but may sometimes be simply a number or character string.

Prior to a queuing dialogue, the system is given a network of about 300 “named”
records containing information about words and concepts relevant to simple queuing
problems. Also, It Is furnished with a set of about 300 English decoding rules and 500 English
and GPSS encoding rules. As the dialogue progresses , the system uses the information it
obtains from the English dialogue to build and complete a partial description of the desired
simulation, a description that is in the form of a networ k called the Internal Problem
Description (iPO).

Basically, an IPD network describes the flow of mobile entities, such as vehicles.
through a framewor k consisting of sta t ionary entities , such as pumps, by specifying the
actions that take place in the framewor k and their Interrelationships. Each action is
represented by a record whose attributes furnish such information as the type of action, the
entity doing the action (I.e., the agent). the entity that Is the object of the action, the
location where it happens, Its duration, its fr equency of occurrence, and what happens next.
For example , the action ‘The men unload the truck at a dock for two hours” could be
represented by the record:

Ri: Type unload
Agent men
Object truck
location dock
DuratIon 2 hours

From the English dialogue the NLPQ system must obtain all the information needed to
build the IPO Thus , the user must describe the flow of mobile entities through the queuing
model by making statements abou t the actions that take place and about the relations
between these actions. Each mobile entity must “arrive ” at or “en te r” the model. Then It
may go through one or more other act io ns , such as “service,” “load.” “unload,” and “w ait.’
T hen , typically, It “leaves” the model. The order in which these actions take place must
eventually be made explicit by the use of subordinate clauses beginning with such
conjunctions as ‘after ,” ‘when,” and “before,” or by usIng the adverb “then.” If the order of
the actions depends on the state of the queuing model, an “if” clause may be used to
specIf y the condItIon for performing an act ion~ a sentence with an “ otherw ise ’ in It is used
to give an alternat ive act ion to be performed when this condition Is not met.

The information needed to simulate the problem, including the various times involved,
must also be furnished by the English dialogue. It is necessa ry to specIf y the time between
arrivals , the t ime requ ired to perfo rm each activity, the length of the sImulation run, and the

_ _ _ _ _ _ _ _ _ _ ~~~~~~~~ ‘ _~~~~~~~:~~ ~~~~~~~~~~~~~~~~~ . . -~~ — -~~~~~~~~ — -— _ _ _ _ _ _ _ _

NLPQi Natural languag e Programming for Queuing Simulations 71

basIc time unit to be used in the GPSS program. Inter-event and activity times may be given
as constants or as probability distributions, such as uniform , exponential, normal, or empirical.
The quantity of each stationary entity should also be specified , unless 1 is to be assumed.

The user may either furnish this information in the form of a complete problem
statement or state some part of it and then let the system ask questions li’ obtain the rest
of the information, as wa s done above in lines 1 through 10 of F igure 1. 1 he latter method
results In a scan of the partially built lPO for misstn~ or erroneous information and the
generation of appropriate questions. Each tIme the system asks a question, 4t is trying to
obtain the value of some specific attribute that will be needed to generate a GPSS program.
To furnish a value for the attribute , the question may be answered by a comp lete sentence
or simply by a phrase.

The user may ask the system specific questions about the queuing model , and then the
system generates the answers from the information in the appropriate par ts of the IPD. In
order to check the entire IPO as it exi sts at any time , the user may request that en English
problem description be produced. Such a description consists of all the information in the IPO
as it is converted into English by the encoding rules (see line 1 4 of Figure 1). Specificall y.
for each action In the IPD . the system generates one or more statements describing the type
of action, its agent , obj ect , location, what action if any follows (if none , a new paragrap h is
started), and, If applicable , an inter-e vent time or duration. Conditional successor actions
may result in two sentences , with the first one having en “if” clause in it and the second one
beginning with “otherwise.” After all of the actions have been described , a separate one-
sentence paragraph Is produced with the values of the run time and the basic time unit.

Af ter the dialogue is finished and all the required information is obtained. NLPO uses the
IPO snd the GPSS encoding vuIo~ to p!oduce the desired program in the GPSS target
language. Such a program w as listed ,n 16 of Figure 1. At the beginning of this program, the

definitions for the stationary entitles , mobile entities , and distributions are given. Then. I or
each action, a comment consisting of a simple English action sentence is produced, followed
by the GPSS statements appropriat e to this action. For example , an “arrive ” usually
produces a GENERATE end an ASSIGN; a “leave” produces a TABULAT E and a TERMINATE; and
most activities produce a sequence like QUEUE . SEIZE. DE PART . ADVANCE , and RELEASE .
These are usually followed by some sor t of TRANSFER , depending upon the type of value that
the action’s successor attribute has. Finally, the GPSS program closes with a “timing loop”
to govern the length of the simulation run.

Status

T hough this project was “completed.” a system ready for production use was not
developed. Thp NIPO prototype, however , was demonstrated several times on a variety of
problems. Although the cspabthtles oh the implemented system are limited, the research did
establish an overall framework for such a system , and useful techniques were developed.
Enough details were worked out to enable the system to carry out interesting interactions.
as evidenced by the longer more com pl icated dialogues found in the first four references at
the end of th is article. More details of the processing done by this system can be found in
any of the references , especially Heldorfl, 1972, whIch is a 376-page technIcal report.

--

IL~ .4 ~~~~~~~~~~ . .~~~ - --.- - - ~~~~~~~~~~ .
.
-
~~~~—— --

~~~~~~~
.-....-—.-—-..—-

~ -- - ----— ---.-~

rj
~~~

-.

~~~

——
~~~~~~~~~~~

-_ _ _  

~~~~~~~~~~~~~~~~~~~

72 Automatic Programming

References

See Heldorn (1972), Heidorn (1974), H*idorn (1976.), HeIdorn (1976b), and Heidorn
(1976) .

• “5,

1i4 ~~~~~
-— ..—.- - ..-—- - ~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~ ..~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ - . .~~~

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -. . - _ _ _ _-.- .- - -

J LIBRA 73

J. LIBRA

LIBRA, the efficiency analysis expert of the PSI system (Article 02) is being developed
by ElaIne Kant in conjunction with the PSI project at Systems Control , Inc., and at Stanford
UnIversity. The PSI system, through interaction with the user , constructs a very higl.-Ievel
program specification called the program model. Then LIBRA , working together with the
PECOS coding expert 05, converts the program model Into a target language implementation,
The PECOS system supplies the transformation rules that can convert the program model into
various target language Implementations. Using global efficiency analysis (“ global analysis”
1* analysis with access to the entire program, as opposed to only a local segment), LIEIRA
directs and explores the application of the transformation rules so as to produce an efficient
Implementation.

The transformation process itself consists of repeated applications of transformation
rules to parts of the program , where every application results In a specification closer to a
target language implementation . Each such application of a rule is said to produce a partial
implementation or r.’f ineMent of the program , and the transformation rules are called rif : vu’~i r n t
ruj,j . Thus refinement rules applied to refinements produce further refinements. Because
more than one refinement rule may be applicable to the same part of a refinement , t h e
transformation process produces a tree of possible refinements (the actual situation is
slightly more complicated since the order In which the rules are applied can a f f ec t the tree
that Is produced). To avoid the problem of combinatorial explosion. LIBRA develops only part
of the tree. A discLssion of the details of this process follows.

i t Is L1BRA’s funct ion to analyze and guide the development of the refinement tree in
order to achieve an efficient implementation LIBRA determines what parts of the program to
expand next end ahat parts not to expand at all. In particular , when more than one
refinement ruie is Ipplicable . LIBRA may decide to apply them all so that the resulting
refinements can be considered in greater detail; or LIBRA may decide to apply only one of

- the rule s. In the latter case , the refinement Is implemented directly in the current node of
th e t ree , and the other possibilities are permanently forgone.

One of the most important ways in which LIBRA at tacks the problem of combinatorial
explosion is by est in af in g the efficIency of possible target language implementations. For
each refinement In the tioe , IJBRA maintains two cost estimates; the estimates are In the
form of symbolic algebraIc expressions that give the time and space requirements needed to
execute a certain kind of target language implementation . The first estImate is the default
cost that might result If all the constructs and operators in the refinement were assigned
default Implementations. The aecond is the optimistic cost estimate that might result
as suming: (a) certain efficient implementation techniques that have worked in similar
situations will prove euccesful In the present situation, and (b) LIBRA expends enough of Its
own resources of time and space to carry out these Implementation technIques.

Treat ing these two coats as upper and lower bounds on the costs of possible target
language Imp lementations of the refinement . IIBRA obtaIns important guidance in directing the
growth of the refinement tree. These upper and lower bounds can be used to prune a branch
of the refinement tree (without further consIderat ion of the branch) or to calculate the
effect of a partIal Implementation decision on the global program cost. As discussed below In
the RULES section, the upper and lower bounds are used to direct attention to high Impac t
areas, those areas where effort Is likely to yield the greatest increases in overall efficiency.

7~- Automatic Programmin g

Another feature of the I IBRA system . a f ea t u r e implicit in the above is the knowledge
LIBF~A has about the use and limits of its own resources of avai lable time end space Thi s
feature is important because no system can devote unlimited ef for t to finding en eff ic ient
implementation Ef for t must be allocated. The way in wh ich L IBRA performs this allocation is

to assign available resources to high impact area s , where the resources will do the most
good The RULES section will present the method used to compute impact , as well as
examples and uses of resource knowledge.

I BRA also includes mechanisms to ass ist in the acquisition of new programming
c imc.’i t S . When new high-level constructs are added (such as new types of sort s , or
t re es) , new efficiency knowledge is needed to an&yze these concepts (thei r subparts .
running t i mes , data structure accesses , and so on) LII38~A has a model of programming
(k n c , ’ pt S t hat is consulted when new concepts are added~ Some of the necessary
informat ion can be deduced automaticall y, and the user is asked specif ic questions to obtain
t he r e st To help construct these estimation functions , LI BRA provides a semi-automatic
;‘ r t c e l t i rO for deriving cost estimation funct ions from the set of cost functions for the target
nn ç J t IAQe constructs

Th~ knowledge for managing rp5cu rcC3 . omput’ng upper and lower cos t e st i m a tes .

c l l r i’ (-t ing attention to different parts of the tree , makiflg implementation decisions , and, in
general , for analyzing and directing the growth of the tree is in the form of rules. Eac h rule
consists of a condition and an action to be performed if the condition is met The knowledge
that a rule expresses can easi ly be modified since the rules s e replaceable and can be
added , deleted , or altered without requiring a modification to the syst e m itse f

Rules

Tho rules in LIBRA’ s knowledge base gnnerallv can be divided into three groups
attent io n and resource management rules . plauslble lmplemt’ntat ion rules, and cost-analysis
r u l o~

Attention and resource management ruins desc ribp ~ hnn to sh i f t a t ten t ion to other
nodes in the t re e and also bo* to set priort ies for refining the di f ferent constructs and
operat ions within a refinement node Some of the mor e important of these rules determine
how LIRPA’ s own resources of availab le time and space •re to be al located, on the basis ~f
w herr’ they will have the greatest impact One of the w a y s of determining impact is to
consider thp differ e nce between the upper bound cost est imate (assuming default
implementations) and the optimistic lower bound cost estimate (assuming both the ~iiçç~~~~fiiI

~pp licetion of efficiency techniques that have worked in similar situat ions end the sufficient
exp en lr tu r ~ of resources to carry the techniques to completion) Other rules in thiS group
s t a t e how to shift attent ion among nodes. These rules (a) cause complex programs to he
.‘xjnn (Jeri early in order to see what decisions are involved. (h) postpone trivial decisions
~~~~~~ important ones are mad., (c ) look at all ref inements in the tree and select for
de~~rd~~i ment the one whose optimistic cost est imate is least (when resources for developing
a part l( .:i sr refinement an, exhausted ) , and (d) apply a form of branch and bound which
s ta tes  that (when resources al located for consid•ning a particular decision at e exhausted)
attention should be directed to the whole tree and that all nodes whose optimistic cost
estimate Is worse than the default estlmat~ of some other node should be eliminated. As
described later , when cost ana lysis rules compare estimates , they take into account the
degree of uncertainty in tP,e est imate

~.~__________________________ 
.-, , ,, 

________________- — -



LIBRA 75

Plausible implementation rules express heuristics about when to limit expansion c,(
nodes, by makIng a decision about some part of an implementation. for example , when t h e
question of how to represent a set f irst arises, LIBRA performs a global examination of the
program to determine all uses of the set . I f  there are many places where the program checks
for membership in the set , then a hash-table repr esentation may be suggested. In general ,
plausible implementation rules express knowledge derived by human or machine anal ysis of
commonly occurring situations, such as which sorting techniques are best f or d if ferent size
input a. These rules also contaIn heuristics to make quick decisions ihus , if LIBHA is running
out of resources , heuristics that are not as dependable as the one Just described are used
to make decisions on the spot , without creating any new nodes. ihese heuristics generally
expr ess  defaults , such as “use lists rathe r than arrays if the ta rget language is LISP” ; they
are used to m a k e  the less important decisions or to make au decisions if the total resources
for writing a program are nearly exhausted

The final group, the cost-analy s iS rules , ex press  how to compute , update , and compare
upper and lower bound estimates of the cost of the final implementation . The cost est imates
are in the form of symbolic algebraic expressions that may involve variables representing set
si zes The cost est imates are not computed once and for all . Whenever a refinement in the
tree is further refined (i e • a refinement rule is applied to some part of a node in the subtree
whose root is tho ref inement), then the cost est imates associated with the refinement are
I’,.. ‘ “ ~“~~~~ . ‘~ & . r 1 : : d so as to produce esti mates that are more accurate in view of the new
information Cost est imates are constructed from a knowledge base that includes information
on upper and lower bounds on costs for time and space usage by individual constructs and
operations. and on how to combine such cost esti mat~ s for composite programs T he
knowledge needed to incrementall y update the cost est imates is contained in rules
corresponding to the particula r construct or operation. The method of comparing the cost
e s t i m a tes  c’ t d ’ f fe r ~~nt  refinements involves the addition of a bonus to the refinement that
has a urs ~a te r  degree of compietion and that consequently has a greater certainty in its cost
es t i m a t e s  (default and optimistic). This feature favors  a nearl y complete refinement that
has a ~ iighti~, worse lower bound over a less complete (mor e abst ract )  refinement that has a
s ;. b at te r  ~ wer bound Such a preference is desirable since the cost estimate of the
more a bst ract  r ef inement is less certain and therefore may not be achievable. By giving a
bonuS for the degree of completion, th e cost analysis rules take into account the likelihood of
being ahie to achieve the cost est imate.

Status

LIRRA has guided the application of the PECOS refinement rules to produce efficient
Implementation of several variants of simple database retrieval, sorting, and concept
formation programs (see PSI article for an example of a concept formation program). Current
plans Include extending the problem area to include simple algorithms for finding prime
numbirs and for reaching nodes In a graph. For an efficiency expert to be of use in a
complete automat ic programming syste m . a good deal more research Is needed . Higher level
optlmizations. extended symbolic analysis and comparison capabilities , and more domain
expertise are some obvious extens ions. Automatic bookkeeping of heuristics and perhaps
even automatic generation of heuristics f rom an analysis of symbolic cost estimates of target
language concepts are some long -range goals. In order to write more complex programs such
as compilers or operatin g systems , mor , efficiency rules would have to be added to the
system , rules about conce pts such as bit-packing, machine Int errup t s , and multiprocessing.

_ _ _ _ _  _ _ _  - - 
-



76 Automatic Programming

However , even with such additions, the efficiency techniques employed by the LIBI4A system
should be significant In controlling the problem of combinatorial explosion that occurs during
the search for efficient implementations,

This article closes with the description of an example illustrating LIBRA’ s present
operation producing a simple sor t program.

Example

Suppose that a sc~~T i~ specified as a transfer of elements from a SOURCE sequential
collection to a TARG ET sequential collection that Is ordered by some relation such as [I SS-
THAN Af ter the application of some preliminary refinement rules that do not require any
cIø~’i~ ionq as to alternative choices , three choice points remain - choosing a transfer order .
and  choosing representat ions for SOURCE and for TARG ET .

Since the transfer order 5 selected as the most important decision , LII3RA directs
at tent ion first to that choice point A heuristic rule ,3 applied that suggests the use of either
en insertion sort from list to list or array to array, or a selection sort from list to array T h e
different refinement possibilities are added to the tree accordingly. I ach of the branches is
given a limited amount of resources and told to focus attention only On the parts of the
program directly relevant to the transfer order decision

Af ter  these branches are refined within the limits of the assigned resources, the nodes
of the tree are compared Branch arid bound does not eliminate any of the sternat ives here.
bu t  the insertion branch is selected as it has the best lower bound (tak ing Into account
factor s relat•d to uncertainty of est imates ) .

Ref i nement then pro ceeds rn that node The choice of a list or array representation for
the TARGI T is made by a heuristic that says that lists are easier to manipulate than arrays in
tlSP This heuristic was applied because much of the time and space resources allocated
for finding an implementation had been coniumed in the above tasks and a quick decision
was required The choice of a list representation for TARGE T forces a 4i~~( representation for
SOURCE because of a suggestion made under the transfer-order heuristic Thereafter , the
re f inement  proces s is basically straight f o rw ard , t hough several choices of whether to store
or recompute local variables are made.

References

See Barstow (1979), Bsrstow & kant (1977), Green (197 6*,), Green (19 77), Green &
Baratow (1978), kant (1977). kant (1978), kant(1979), and McCun. (19??’) .

~

—
~~~

---——

References 77

References

Automatic CodIng. Proc. of the Symposium , Franklin Institute . Philadelphia , PA , January
1957.

Aho, A. V., l4opcrott , ,J. U, & Ullman , J. 0. The Design and Analysis of Computer Algorithms
Reading, Mass.: Addison-Wesley, 1974.

Allen, F. E., & Coc ke , J A catalogue of optimizing transformations. In H Rustin (Id),
Design and OptImization of Compilsrs. Proceedings of the Cour ant
Computer Science Symposium 6. Englewood Clif Ii, N.J.: Prentice-Hall, 19 72. Pp. 1-
30.

Allen, F. F . & Cocke . J. A program da ta flow analysis procedure. Communications of the
ACM , 1976 , 19(3), 137 -1 4 7

Amarel . S. Representation end modeiing in problems of program formation. In B. Meit zer &
0. Michie U ds). Machine Intelligence 6 New York: American (Isevier . 1972.
Pp 4 11-466 .

I3alzer , R. M. Oata less programming Proceedings FJCC, 196 7. 31, 535- 544.

Balzer . H. N Automatic Programming. Information Sciences Institute Tech. Memo
1. University of Southern California, Marina Del Hey. 1972.

Balzer , R. N CASAP A testbed for program flexibility. LJCAI 3, 1973 , 601-005. (a)

Bslzer , P N A global view of automatic programming IJCAI 3. 1973 , 4~~4- 499. (b)

B.lzer , H N A Language -independent programmer ’s Inter lace. information Sciences
Institute Report RH- 73- 1 5, University of Southern California, Marina Del Rey, November
1973 (c)

BaIzer , P. M Human Use of World knowledge. Information Sciences Institute Report USC-
151 RM- 73- 0 7, University of Southern California, Marina Del Rey, March 1974 (ARPA
Order 2223/1)

Balzer, A N , & Goldman. Pd Principles of Good Software Specification and Their Implications
for Specification Languages Proc. of the IEEE SpecIfIcations of Reliable Software
Con?.. Cambridge, April 1979.

Blslzer, P. N., Goldman. N.. & WIle. D. On the Transformational Implementation Approach to
Programming. 2nd hit. Con?, on Software EngIneering, October 1976. pp. 337-344.

8&zer . P. M., Goldman, N., & Wile, D. lnformai4ty In program specillcatlon. 1.1CM 6, 1977, 389-
397. (a)

BaIzer , P. U , Goldman, N., & Wile, D. Meta- evaluat lon as a tool for program
understanding. UCAI 6, 1977 , 398-403. (1)

_ _ -.
~~~~~~~~~~~~~~~~ 

‘I



pir ~
_ .

~ ~~~~
—.—-

~~~~~
—

~~~~~~~~ 

—

~~~~~~~ ~~~

.. ..

~~~~~~

. - - .  . .

~~~~~~

.

78 Automatic Programm ing

Balzer . P. f.t , Goldman , N.. & Wile , 0. On the Use of Programming Knowledge to Understand
Informal Process Descript ions. SIGART Newsletter , No. 63, June 1977 , pp. 72-
75. (c)

Balzec . A U , Goldman , N., & Wile , 0. informality in Program Specifications. IEEE
Transact ion s on Software EngineerIng . 1978 , SE-4 (2), 94-103.

Balzer , H N., Greenfeld, N., kay, N.. Mann, W. , Ryder , W , Wilczynskl. 0.. & Zobrist , A.
Domain independent automatic programm ing. IFIP, 19 74, 326-330.

Baron , Li V Structur al Analysis in a Very High Level Language , Master ’ s thesis , MIT ,
19 7 7

Harstow , 0 A knowledge based system for automatic program construct ion 1.1CM 6, 1977 ,
~48 2-388 (a)

Barstow , P. A k nowledge base organization for rules about programming. Proc. of the
Workshop on Pattern Directed Inferen ce Systems SIGART Newsletter . No. 63. June
19 17 , pp. 18-22. (b)

Barstow , P Automat Ic Construction of Algorithms and Data Structures using a
knowledge Base of Programming Rules . Al Memo 308, Computer Science Dept.,
Stanford University, November 1977. (c)

Barstow . D Codification of programm Ing k nowledge: Graph algorithms , TR-1 4 9 ,
C omputer Science Dept., Yale University, December 1978.

Barstow , 0. knowledge-based Program Construction . Elsev ier North Holland, 1979.

Barstow. 0 H . & kant . F. Observations on the Interaction between coding and efficiency
knowledge In the PSI system Proc. of t he 2nd kit. Coef . on Software Engineering,
Computer Society, Institute of Electrical and Electronics Engineers , inc ., Long Beach ,

CA . Oc tober 1977 . pp. 19-31

Bsrth, J N An interprocedural dat a f low ans iys is algorithm, Fourth ACM Symposium on
PrInciples of Programming Languages, Los Angeles , CA , January 1977.

Bauer . N A basis for the acquisition Of prOCedures from protocols. IJCAI 4. 1975. 226’231.

Baermann , A W. Computer program synthes is from computation traces. Symposium on
Fundamenta l Theory of Programming. kyoto Un.ve raity , -~yoto, Japan , October
19?? (a) -

8.ormann. A W. On the infe r ence of Turing machines from sample computations. Artlficiel
IntellIgence, 1972, 3, 181-198. (b)

8.ermann, A W. The Use of Examples In Program Construct ion and Debugging. ACM
‘76: ProceedIngs of th e National Conf.renc., Association for Computing Machinery,
New Yor k , 1975. Pp. 242-247.

I. . .~~~~ ~~~ ~~~~~~~ ._ ~~, —.-—~~—~~
.——.————---- .— —.

r — - .
~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

_ _ -
~~~~~

-

Reference. 79

Bierman n, A. W. Approache, to automatic programming. in N. Rublnof I & N. C. Yov its
(Ed..). Advances In Computers (vol. 16). New York: Academ ic Press , 1976. Pp. 1-
63. (a)

Blermann. A. W. Regular LISP Programs end Th.i, Automatic Synthesis from EPLampies ,
CS-1978-12. Dept. of Computer ScIence, Duke UnIversity. June 1976. (b)

Bierins nn , A. W.. Baum , P. I., & P.try , F. F. Speeding up the synt hesis of programs from
traces. IEEE Transact lonso n com puters. February 1975, C-24 , 1 22- 1 36.

B4.rms nri , A. W ., 1. K.riahnaswa my Construct ing programs f rom exam ple computations, OSU
CISRC TR-74-5, August 1974.

Bl.rm.nn. A. W., & Feldman, .1. A. On th e Synthesis of FInite-state Acce ptor s , Al Memo
114 , Al Lab, Stanford UnIversity, AprIl 1970.

Blggerstaf I. T. J. C2: A Super-compiler Ap proach to Automatic Programming. Doct oral
dIssertation , Tech. Rep. 76-01-01 , Dept. of Computer Science . University of
Wa shington. 1976.

Bobrow , D. G.. & Wegbrelt . 8. A model of control structures for ArtificIal Intelligence
progra mming languages. IEEE TransactIo ns on Computers , 1976. C-26(4), 347-353.

Bobrow , 0. G., & Winograd, T. An overview of KRL. a knowledge representation
language. Cogn itiv e ScIence , 1977 . 1(1). 3-48.

Ooyer, R. S., & Moore, J. S. Proving theorems about LISP F unctions. JACM. 1975, 22( 1).
129-144 .

Brown. 0. P. A Framework for ProcessIng DIalogue, TR-182, laboratory for Computer
Science. NIT . June 1977.

Brown, P. Use of Analog y to Ach ieve New Expertise. Al-IR-403, NIT Al Lab, Apr ii 1977.

Buchanan, J. P., & L, uckham, 0. C. On Automating the Construction of Programs, TM-CS-
433, ArtifIcIal intelligence laboratory, Stanfor d UniversIty. Stanford. CA, May 1974.
(Also Stanford Al Memo 236)

Burata ll . P. U.. & Dariington . J. Some t,anstormations for developing recursive programs.
Intern ational Conferenc e on Reliable Software, IEEE Computer Soc Iety. AprIl 1975.

pp. 465-472.

Burstall. P. M., & Darlinglon, J. A Transformation Sys t em for Developing Recursive
Programa. Jour nal of the Association for Computing MachInery, 1977, 24(1). 44-67.

Cft andrasekaran. B. Al--The past decade--AutomatIc programming. In U. Rublnof I & N. C.

Yovits ((di.), Advances In Computers (vol. 13). New Yort : AcademIc Press ,
1976. Pp. ~TO-232.

Chang . C., & Lee, P. SymbolIc Logic and Mechanical Theorem Proving. New York:
Academic Press. 1909.

a

I. ~~~~~ ~ .._ ~~~~~~ ---—--
-
~~~~~~~ 

—
~~~~~~

-. .



_ _ _  
__ -.~~~-—— ~~~~~~-._ _- -~~~~~~~~~~~~~~~~~~~~ -- 

80 AutomatIc Programming

Cheatham, 1. F., Jr.. & Wegbi’eit , B. A laboratory for the study of automating
programming. Proceedlng. of AFIPS Spring Joint Computer Conference , 1972. pp.
11-2 1.

Cheatham. I. F., & Townley. J. A. Symbolic Evaluat ion of Programs i A Look at Loop
Analys is, T M- i l- TO, Center for Research In Computing Technology. Harvard
University, 1976.

Clark . K. and SlckeI. 7. Predicate logic: A calculus for der iv ing programs. 1.1CM 6. 1977 ,
419-4 20.

Dahl, 0- J., Dij kstra . I. W., & Hoare, C. A. P. Structured Programming. New York: Academic
Press , 1972.

Dahi. 0 J.. Myhrhaug. B., & Nygaard , ~~~. SIMULAO7 Common Base Language , Pubi. No. 5-2,
Norwegian Computing Centre , Oslo, 1968.

Darlington, J. A Semantic app roach to automatIc program improvement. Doc t oral
dissertat ion , Univers ity of Edinburgh, Scotland, 1972.

Darlington,.1. Automatic prog ram synthesis in second -order logic. 1.1CM 3, 1973, 637-642.

DarlIngton, J. Applications of program transformat ion to program synthesIs. In 0 Hu~’t & G.
Kahn (Ed..). Proving and improving Programs. Rocquencourt , France: Institut do
Recherche d info rmat ique et d’Auto mat iqu e. July 1975. Pp. 133-144.

Derlington. J A Synthesis of Several Sorting Algorithms, Research Report 23, Dept. of
ArtIfic ial IntellIgence, University of Edinburgh, Scotland. July 1976.

0.rIington, J . & Burstall, P. M. A System which automat ically improves progr ams . 1.1CM 3.
19 73, 479-466.

Dershowttz. N.. & Manna, Z. On automatin g struct u red programming. In G. Hue t & 6. Kahn
((dc ). Proving and Improving Programs. Rocquencourl , France: Institut de Recherche
d’lnformatlque et d’Automatique, July 1976. Pp. 107-193.

Dershowitz. N., & Manna , Z. The evolution of programs: A system for automatic program
modification. Fourth ACM Symposium on Principles of Programm ing Languages, Los
Ange les , CA , Janu ary 1977.

Deutsch . 8. 0. The struct ure of task-oriented dialogs. In 1. Erman (Ed.), IEEE Symposium on
Spe ech Recognit ion : Contributed Papers , IEEE Group on Acoustics, Speech , and
Signal Process ing. TM Institute of Electr ical and ElectronIcs Engineer., inc., New
York, AprIl 1974. Pp. 260-264.

Oeutsch 8. 6. Establ ish ing Context In Task-Ori ented Dialog s , Tech. Note 114. Artificial
Intell igence Center , St anford Research inst itute , Menlo Park , CA, September 1975.

Oljk s t ra , F. W. Guarded commands, nonoeterminancy and formal derivation of programs.
CACU . 1976, ¶8(6), 463-457.

a ~~~~
- 

. .~~~~~
--  - - -  . , -

‘~~~~~~~~~~- -. ——‘: - -.. . .~~ ,.,. ~_ . ~~~~~~~~~~~~~~~~ 
—.

~. -—.-.-—,
~.- - — .—-— .



F 

- - -

~~~

-

~~~~

- . . . —  —-

~~

.--. -. .

References 61

Dljkstra , E. W. A discipline of programming. Englewood Cliffs , N.J.: Prentice-Hall, 1976.

Fan cy. J. Relational level data structures in programming languages. Acta Informatica .
1973 , 2. 293-309.

Earley, J H.gh-l.vei Iterator s and a Method for Automaticall y Designing Data Structure
Representation, Memo ERL-M425 . Electronics Rusea rch Laboratory, University of
California , Berkeley. 1974. (a)

Ear iey , J . High-level operations in automatic programming. Proceedings of the SIGPLAN
Sym posIum on Very High-level Langu ages , March 1074 SIGPLAN Notices , 1974 .
9(4) . 34-42. ( b )

Elcock, F. W , i ost e r . J N., Gray, P. N. 0., McGregor , J. J., & Murray, A . M. A B S ET : A
programming language bas ed on sets: Motivation and examples. In B. Moltzer & 0.
Michie ( Eds ), Machine IntellIgence 6. Edinburgh Edinburgh University Press , 19 71.

Pp. 457-492.

Feldman , J A., Gips, J . Horning. J. ,i.. & Reder , S Grammatical comple~lty and Inference, Al
Memo 89, Al Lab , Stanfor d University, June 1969.

Fe ldman . J A. Towards Automatic Programming Preprints of the NATO Software
Engineering Conference , Rome, Italy, Oc tober 1069.

Feldman. J. A. Automatic Programming, AIM - ISO . STA N -CS-72-255 . Stanford Al Lab .
Computer Science Dept . Stanfor d University, February 197 2.

Fenlchol , P. P . Woizenbaum. J , & Yochelson, J. C. A program to teach programming. CACM,
1970, 13(3). 141-146.

Floyd, P W. Toward Interactive design of correct proirams In C. V. Freiman
( d  ). Foundations and Systems . InformatIon Processing 71: Proceeding s of IFIP
Congress 71 (vol. 1). Amsterdam North-Hoiiand Publishing Co.. 197 2. Pp. 7-10.
(Aiso Memo AJ M-150 , Repor t STAN-CS- 71-235. Al lab. Computer Science Dept..
Stanf ord Uruverslty, September 1971.)

Glns parg . J N Natural Language Processing in an Automatic Programming
Domain. Doctoral dissertat ion and Memo AI M-3 18 , Rep. STAN -CS- 78-671 , Al
Lab, Computer Science Dept., Stanford University, Stanfor d, CA , June 1978.

Goldberg. P C. Automatic Progr ammIng. MC 6148 , Computer Sciences Dept.. T homas J.
Watson Research Center . IBM, Yorktown Heights, New York. September 1974.

Goldberg, P. C. The Future of Programming for Nonpro grammers . MC 5975, Watson
Research Center , IBM. Yorktown HeIghts, New York, May 1976.

Goldman. N., B.lzer , R. U., & Wile , 0. The Inference of Domain Structure from Informal
Process Descriptions, Workshop on Pattern-Directed Inference Systems . Hawaii.
May 1977. SIGART Newsl etter , No. 63, Jun. 1977. pp. 76-62. 

.,,— — -
~~ -~~~~~-.--- ~~ -



82 AutomatIc Programm ing

Goldstein , i., & Sussman, G. J. Some pr ojects in automatic programming , Working Paper 87 ,
Al lab , MiT , March 1974.

S

Goodman , P. (Ed.) ‘I’pie Annual Review in Automatic Programming (Papers of the
Working Conference on Automatic Programming of Digital Computers. Brighton, April
1959). New York: Pergamon Prr’ss, 1960.

Gr een, C. The Application of Theorem ProvIng to Question-answering Systems. Doctoral
dissertat ion, Electrical Engineering Oept , Merno A IM-96 , Report STAN-CS-69- 138 , Al

L a b , Computer Science Dept., Stanford University, June 1989.

Green , C Unpublished lecture surveying Automat ic Proremming. Stanf ord
University. Computer Science Dept., 1915. (a)

Green , C. Whither automatic programming, Invited tutor ial lecture. IJCAI 4. Ibilisa , USSR .
September 197 5. (b)

Green . C An informal talk on recent progress in Autom atic Programming. Lectures on,
Automatic Programming and List Processing. P1PS-R- 12 , Eloctrotechnical Laboratory.
Tokyo , Japan, November 1976. pp. 1-69. (a)

Gre en , C. The design of the PSI program synthesis system. Proc. 2nd International
Conference on Software Engineering. Oc tober 1976. Pp. 4-18. (b)

Green, C. The PSI Program Synthesis System, 197 5. ACM ‘78: Proceed ings of the Annual
Conference , Association for Computing Machinery, New Yor k. N.Y.. October 1976.
pp. 74-75. (c)

Green . C. A Summary of the PSI Program Synthesis System. 1.1CM 6, 1977 , 380-38 1.

Green, C The PSI Program Synthesis System . 1978. An Abstract , In S P. Ghosh, & 1. Y . LIu
(Eds. ), AFIPS Conference Proc .: National Com put er Conf ., 1978, 47, 673-674.

Green . C. . & Barstow, 0. A hypothetical dialogue exhibit ing a knowledge base for a
program understanding system. In F. W. Elcock & D. Mich ie (Eds. ), MachIne
Intelligence 8: Mach ine Representat io ns of Know ledge. New York : HeIsted Press.
John Wiiey & Sons, 197 7. Pp. 335-359. (a)

Green. C. , & Barstow, 0. Some rules for the automatic syn th sis of programs. IJCAI 4.
1975. 232-239.

Green. C.. et Cl. Progr•ss Report on Knowl.ge Based Programm ing. Systems Control ,
Inc., Computer Science Division, Palo Pdto, CA, September 1978.

Green, C., & Barstow , 0. On Program Synthes is Knowledge. Memo AIM-300, Repor t STAN-
(
~~ - 71-639, Al lab, Computer ScIenc e Dept., Stanford University, Stanford , CA,
November 1977. (b)

Green , C.. & Barstow , 0. On program synthesis knowledge. Artificial Intell igence, 1978.
10(3). 241-279.

• . --, --~-—-~~~--—
. w_~~~. .

~~~~- —-- - -~~~~ ~~rn—-------- —-- . -.


References 83

Green , C., WaId inger , P., Barstow. 0., Eisch lager , P.. L.enat, 0., McCune , B., Shaw, D., &
Steinberg, 1. Progress Report on Program Understanding Systems , Memo AIM-240, Al
lab, Stanford, CA , August 1974.

Gries , 0. Programming by Induction, TM 71-106 , Computer Science Dept., Cornell University.
September 1971.

Guttag, J. V., Horowitz, E., & Musser , 0. A . Abstract Data Types and Software ValIdation.
Tech. Repor t ISI-RR-76-48 , Information Science s Institute, Marina del Roy , CA. August
1976.

Hammer , N. Automatic Programming: An Assessment. Unpublished paper , MIT Lab for
Computer Science, Cambridge, Mass., December 1977.

Hammer . N., & Ruth, G. Automating the Software Development Process. in P. Wegner (Ed.).
Research Directions In Software Technology. Cambridge: MIT Press , 1979.
Pp. 707-792.

Hammer , N., Howe, W. G., Knu skel , V . 1 ., & Wladaws ky, I. A Very HIgh-Level Programming
Language for Data Processing Applicat ion s , MC 8583, Computer Sciences Dept..
T homas J. Watson Research Center , IBM, Yorktown Heights, N ew York , August 1975.

Hardy, S. Syn’hesls of LISP functions f rom examples. IJCAI 4, 1975, 240-245.

Heidorn, 8. F. The End of the User Programmer? The Software Revolution, Infotech State
of the Art Conf. , Copenhagen , Denmark , October 1977. (To app ear in Future
ProgrammIng . Infotech , Engl and , 1979.)

Heldor n, G. F. Natural Languag e Inputs to a Simulation Programming System , Report
bbhd721OlA , Naval Postgraduate School. Monterey, CA . October 1972.

Heldorn. 8. F. Engl ish as a very hIgh level language for simulation programming. IBM
Research 4536, September 1973.

Heidarn, 8. F. English as a very high level language for simulation programming. Proceedings
Symposium on Very HIgh Level Languages. SIGPLAN NotIces , 1974 , 9(4), 9 1-100.

Heidorn, 8. F. Augmented Phrase Structure Grammars. In 8. 1. Nash-Webber & P. C.
Schank (Eds.). Theoretical lssu.s in Natural Language Processing. Associat ion for
Computational lingu istIc s , June 1975. Pp. 1-6. (a)

Heldorn , G. F. SImulatIon programming thr ough natural language dialogue. Amsterdam:
North-Holland Studies In the Management ScIences . 1976. (a)

Heidor n, 8. F. Slmuiation programming through natural language dialogue. In N. A.
Gels ier (Ed.), TIMS Stud ies in th e Management ScIences, LogistIcs (vol .
1). Amsterdam: North Holland , 1976. Pp. 7 1-86. (c)

Heldorn. 0. E. Automatic programm ing through natu ral language dialogue : A survey. IBM
Journal of Research and Development, 1978 , 20(4) 302-3 13.

. -

~ .--- —--— —~~~
-

~~~~~~~
‘ ‘



-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . . - - - - -.— - - - - -,-- - -

84 Automatic Programming

Henderson, P . & Morris, J. H., Jr. A lazy evaluator . Third ACM Symposium on Principles of
Progr ammIng Languages. Atlanta. GA, January 1976. Pp. 96- 103.

Hewitt , C. Teaching Procedures in Humans and Robots . Memo 208, Al Lab . Massachusetts
institute of Technology. April 1970.

Hewitt . C Viewing Control Structures as Patterns of Passing Messages , Working paper
92 (rev, ad.), Al Lab , Massachusetts Institute of Technology. April 1976.

Hewitt , C. . & Smith. B. C Towards a programming apprentice. IEEE Transactions:
Software Engineering. 1975. 1(1), 28-45.

Hill. I [) Wouldn ’t it be nice if we could write computer programs in ordinary English- -of
would it? Computer Bulletin. 1972, 16( 6), 306-312

Hobbs. .1 P. From Well Written Algorithm Descriptions into Code , Research Rep. li-I.
we pt . of Computer Science , City College, City University of New Yor k. July 1977.

K a n t , I The selection of efficient implementations for a high level language, Proceedings
of Sym posium on Artificial Intelligence and Programming Languages. SIGPLA N
Not ices , 12(8); SIGART Newsletter , No. 64 , August 19 11, pp 140-146 .

Kant . E Efficiency Estimation: Controlling Search in Program Synthesis In S P Ghosh &
I Y. L eonard (fE ds.), AFIPS Conf. Proc.: National Com puter Cont .. 1978 , 47 , 703.

K a n t , EfficIency Cons ideration s in Program Synthes is: A Know ledge-
based Appr oach. Doctoral dissertat ion, Stanfor d University, Computer Science Dept .
19 79.

Kowalski . P. Predicate Logic as a Programming Language. Inf ormation Processing, North
Holland. Amsterdam,1977.

L.enat . 0. 8. Synthesis of large programs from specific dialogues , in 8. Huet &
G K ahn  ( E d s  ). Proving and ImprovIng Programs Rocquencourt . France: Institut de
Hecherche d’Informatlque et d’Automatique , July 19 75. PP. 225-24 1.

Liskov , U. H., Snyder , A., Atkin son, R., & Schaf f art , C. Abstraction Mechanisms in CLU. CACM’~’
1977 , 20(8), 684-676.

Lornet , D. B. Data Flow Analysis In the Presence of Procedure Calls , MC 5728, T homas .1.

Watson Research Center , IBM, Yorktown Heights. New York . November 19 76 .

Long, W. J. A Program Writer. Doctoral dissertat ion , TA - IC? , CS, Massachusetts Institute
of Technology, November 1977.

low, .1. P AutomatIc codIng: Choice of data structures , Stanford Al Memo AIM-242,
Stanf ord University, August 1974.

Low . J. P. Automatic Codlngi Choice of Data Struct ures, ISA 16, Birkhauser Verlag, . I
1976. (a)

L~1 ~~~ — .-.-
~~~~ -,-.—_---__ -..—----—---- ...---— . ~~~~~~~~~~~~~ — ~~~~~~ llli .,. ~~~~~~~~~~ ~~-~~~~~~~~ . .___—.


References 85

Low. J. P. Automatic Data Structure Select ion : An Example and Overview, IP-14 ,
Computer Science Dept.. University of Rochester , September 1916. (b)

Low , .1. P. AutomatIc data structure selection : An example and Overview. CACM, 197 6, 6,
2 1-25.

Manna, Z., & Waldinger , A DIDALUS-- Ihe DEDuct ive ALgor ithm UP-S ynthesizer. Nationa l
Computer Conference . Anaheim, CA , June 1978 . Pp. 683-690.

Manna , Z., & Waldinger , A. Synthesis: Dreams Programs. Memo AIM, Al Lab , Stanford, CA .
November 1977.

Manna, / , & Waidinqer , P. J. Toward automatic program synthesis. Communications of the
ACM , 1 9 7 1 , 14(3) , 151- 165

Manna , Z., & Waldlngor , P. Knowledge and reasonIn~ ..~ pr ogram synthesis. Artdicl.l
Intell igence , 1975 . 6(2), 1 75-208.

Martin , W. A. OWL Note s : A System for Building Expert Problem Solving
Systems Involving Verbal Reasoning . M I T . Project MAC , 1974 .

McCune, 8. P. The PSI program model builder Synthesis of very high-level programs.
Proc eedIngs of the Symposium on Art i f i cial Intelligence and Programming
languages. SIGPLA N Notic es , 12(8), 130-139 , SIGAR T Newsletter , No. 64 , August
1977 , 130- 139

McCune, B. P. BuIlding Program Models Incrementally from Informal Descriptions.
Doctoral dissertation , Al Lab Memo, Computer Science Dept., Stanford University, in
pre ss.

Michie, 0. Memo functions and machine learning Nature , 1 968 . 218(No. 5136), 19-22.

Miller , I. A,, & Becker , C A . Progr amming in Natural English, Re search Report RC
5137 , T homaj J Watson Research Center , IBM. Yorktown Heights, New York, November
1974 .

Mitchell, J G The Design arid Construction of Flexible and Efficlpnt
Interactive Programming Systems Doctoral dissertation, Dept. of Computer
Science . Carnegie-Mellon University, June 1970.

Morgenstern , M Autom at i .d Design and OptimIzation of Information Processing System s
Doctoral dissertation. MIT , 1916

Perseon, S. Some Sequenc e Extra polating Programs: A Study of Representation and
Modeling in Inquiring Systems. Doct oral dissertat ion, School of Business
AdmInistration, University of CalIfornIa, Berkeley; Memo AIM-46, Report STAN-CS-66-6O,
Al Lab , Computer Science Dept., Stanford UniversIty, September 1966.

Petry, F. F . & Blermann, A. W. Reconstruction of algorithms from memory sna pshots of their
execution. ACM ‘16i Proceedings of the An nual Conferenc e , Association for
Computing Machinery, New York, October 1976 , pp. 530-634.

•

- -
_ _ _ _ _ _ _ _

_ _ _ _ _ _ _ —

86 Automatic Programming

Phillips, J. V. Program inference from Traces Using Multiple Knowledge Sources. 1JCAI 6,
1977, p. 812.

P r a t t , V. P. The Competence/Performanc . Dichotomy in Programming, TM-400 , Al
Lab . Mas sachusetts institute of Technology, January 197 7.

Proje ct MAC , Aut omatic composition of functions from modules (Section III (.1). Project MAC
Progress Report X , Massachusetts Institute of Technology, July 19 72-July 1973.

Peisser , J. F. (Ed.) SAIL, St anford Al Memo No. 289, August 197 8.

Rich , C A Library of Programming Plans wIth Applications to Automated Analysis ,
Synthesis and Verification of Programs. Doctoral dissertation, MiT , Cambridge . MA ,
1979

Rich , C , & Shrobe , H. [. Initial Report on a LISP Programmer ’s Apprentice , IR-354 . Al
iib , Massachusetts Institute of Technology, December 1976.

Rich, . ., & Shrobe, H. Initial Report on a LISP Programmer ’s Apprentice. IEEE Trans. on
Soft. Eng., 1978 . 4(6). 456-467 .

Rivest . Il I Two-Dimensional Programming Languages. Dept of Electrical Engineering and
Computer Science Dept., MIT , April 1975.

Rosen . U i.. Data Flow Analysis for Procedural Languages . PC 5948, Computer Sciences

~ ept. , Thomas J. Watson Resea rch Center , 1PM. Yorktown Heights , New York . April 197 6.

Rosen , 8. K. Applications of high-level control flow. Fourth ACM Symposium on Principles of
Programming Languag es . Los Angeles . CA . January 1977

Rovner , P. 1) Automatic Representation Selection for Associate Data Structures. IR- lO,
Computer Science Dept., University of Rochester , September 19 76.

Ruth, G. Anal ysis of A lgor i thm Implementat ions. Doctoral dissertation , TR-130 . Project
MAC , Massachusetts Institute of Technology, May 19 74.

Ruth , 6 Automatic Design of Data Processing Systems, Proc. of the T hird A CM
Sym posium on Principles of Programming Languages. Atlanta , Georgia, 1976 (also
MIT Camp Sc’ IR TM-070). (a)

Ruth , G int elligent program analysis. Al , 1976, 7, 85-85. (b)

R u t h , (.. Protosj stem I An Automatic Programming System Prototype, Proc . of the National
Computer Con ? ., Anahe im, CA , 1978. APIPS , 1978 , 47, 675-681.

R u t h , ~i Automating the Software Development Process. In P. Wegner (Ed.) . Research
Directions in Software Technology. Cambridge: MIT Press , 1979.

Sacerdoti, F. 0. A Structure for Plans and Behav ior . New York: Elievler , 1077.

__________ ~~~~~~~~~~~
‘-.— ...—. .. -_ - — -

~
.— .— . .—. —-———.—- ..—

~~~~~~~~~~~~~~~~~~~~~ 
— — —



References 87

Schwartz. J. T. On Programming: An Interim Report on the SElL Project (rev.
ed ). Computer Science Dept., Courant Institute of Mathematical Sciences . New York
University, June 1975.

Shaw , D.. Swartout , W., & Green, C. Inferring LISP programs from examples. IJCAI 4, 19 75.
260-26 7.

Shrobe. H. F. Reasoning end Logic for Complex Program Understanding. Doctoral
dissertation. MIT , Cambridge , MA , August 1978.

Sibel, W , Furbach , U.. & Schraiber , J F. Strategies for the Synthesis of algorithms.
lnformatik-Fadbendik , 1978, 5, 97-109.

Slklossy, 1. The synthesis of programs from their properties . and the insane heuristic
Proceedings of the Third Texas Conference on Computing System s, Austin , 1 X ,
1974 , pp. 5- 2- 1 - 5-2-5.

Siklossy. 1, & Sykes , D. Automatic program synthesis from example problems. iJCAI 4 .
1975, 288-273.

Simon, H. A. Experiments with a heuristic compiler. JACM , 1963, 10(4), 493-503.

SImon. H A . Th e heuristic compiler . In H. A. SImon & L. Siklossy (Eds.), Representat ion and
Meaning. Eng lewood Cliffs, N. J : Prentice-Hail , 19 72. Pp. 9-43.

Summers , P. D. A Methodology for LISP Program Construction from Examples. JACM , 197 7,
24(1), 16 1- 1 75

Sussman . G. J. A Computer Model of Skill Acquisition . New York: American Elsov ier .
1975.

Szolovlts, P.. Hawksnson . L. B., & MartIn, W. A. An Overview of OWL , A Language fo r
Knowledge Repr esentation , TM-88 , LCS, Massachusetts Institute of Technology. June
1977.

T eit eirnan , W. PiLOT: A Step Toward Man-Computer Symbiosis. Doctoral dissertat ion.
MAC-TR- 32, Project MAC , Massachusetts Institut e of Technology, September 1966.

Teitelman. W. Toward a programming laboratory. Li~ Al 1, 1969. 1-8.

Teiteiman . W. Automated programming--The programmer ’s assistant. Proceedings
Fall Joint Computer Conference (Vol. 41), December 1972. pp. 917-92 1.

Teitelman , W. Interllsp Refer .nce Manual. Xerox Corp., Palo Alto , CA . 1974.

Teitelman . W. A Display Oriented Programmer ’s Assistant , CSL 77-3 , Palo Alto Research
Center , Xerox Corp., Palo Alto, CA. March 1977.

Telte lman . W., et al. INTERLISP Reference Manual. Xerox PARC, Palo Alto, CA, October
1 978.



V AD AO7b 87k STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F~G 9/2AUTOMATIC PROGRAMMING. (U)

UNCLASSIFIED STAN—CS—79 758 
. J PHILLIPS M0A903—77—C—0322



10 
~: ~L..~~

’ ’ %  ~~2 2
5—.

L ~~ I2•01.1 
~~L. I~~

_ _  ~
. L.: 118• 1~~• ‘~1i 

125 ~~~~~~~U T QUI~~~ I~~~

~4*tIONA~ ~~~~~*& O~ S’~Pm~~~S
•1 IC’ •~ ~

• -



be Automatic Programming

Van Wijngaarden. A., Mailioux, B. J., Peck, J. F. 1., & Koster , C. H. A. Repor t on the
algorithmic Language ALGOL68. Numerlsche Mathematlk . 1989. 14. 79-216.

Waldinger , R. Constructing Program Automatically Using Theorem Proving. Doctoral
diss.,tation, Carnegic-MeNon Univ.rshty, Pittsburgh. Penn.. 1969.

Waldunger , R. Achieving several goals simultaneously. In F. W. Elcoc k 8. D. Machis (Eds.).
Machine lnt.lllgenc. C: Machine Representations of ~nowIedge. New York: Haisted
Pruss . John Wiley & Sons, 1977. Pp. 94-136.

Waldinger, R. & lee, R. PROW: A ste p toward automatic program writing. IJCAI 1, 1969.
241-252.

Waldanger . R. . & Levitt , K. N. R.ason.ng about programs. Artificial Intelligence, 1974 .
5(3) 235-316.

Warren . 0. H. 0. WARPLANI A System for Generating Plans. Memo No. 76. Dept. of
Computational Logic , School of Artificlil Intelligence, University of Edinburgh,
Scotland , June 1974.

Warren , 0. H. 0. GeneratIng conditional plans and programs. Proceedings of the
Conference on Artificial Intelligence and SImulation of Behavior . Edinburgh. Scotland.
July 1976 , pp. 344-364.

Warren . 0. H. 0. Implementing PROI.OG: Compiling Predicate Logic Programs (vols. 1-2).

~esearch Reports 39-40, Dept. of Al, University of Edinburgh, Scotland. May 1917.

Warren . H. S., Jr. Data Type. and Structures for a Set Theoretic Programming Language,
RC 5687, Thomas J. Watson Research Center , IBM, Yorktown Heights. New York. August
1975.

Waterman, 0. A. Generalization Learning Techniques for Automating the Learning of
Heuristics. Artificial intelligence. 1970. 1. 121-170.

Waters, R. C. A System for Understanding Mathematical FORTRAN Programs. MIT-AIM-
188. MIT , Cambridge, MA. August 1976.

Waters. R. C. Automatic Analysis of the Logical Structure of Programs, MIT-AI-TR-492 ,
December 1978 (based on doctoral dissertation, A Method for Automat ically
Analyzing the Logical $tructure of Programs. August 1976).

Waters, R. C. A Method for Analyzing Loop Programs. To appear in IEEE Trans. on Soft.
Eng.. 1979.

Wegbreit. B. Studies in Extensible Programming Languages. Doctoral dissertation. Center
for 9eseerch in Computing Technology, Harvard UniversIty, January 1972.

Wegbreit, B. Goal-directed program transformation, CSL-76-8, Xerox PARC, Palo Alto, CA,
September 1976. (a)

W.gbrelt, B. Mechanical program analysis. CACM, I g7b, 8(18), 628-639. (b)

0 - -~~ -- - — . -. —

______ ~~~~~~~~~~~~~~~ 
—

~~~~~~~-. 
. . -

Ref erences 69

Wllber , B. N. A OLISP Reference Manual. Al Center Tech. Repor t 118. SRI Internat ional ,
Inc.. Menlo Park, CA. March 1076.

Winograd, T. Five Lectures on Artificial Intellige nce , Stanford AIM-246, CS4SO, Computer
Scien ce Dept.. Stanford Univers ity, Septemb er 1974.

Winograd, T. Break ing the complexity barrier again . $IGPLAN Notices, 1976. 10(1), 13-30.

Winston , P. H. Learning structu ral descr ipt ions fr om exam ples . In P. Winston (Ed.), The
Psy cho logy of Computer Vis ion. New York: McGraw-Hell. 1976.

Wirt h, N. The programming language PASCAL. Acta Informat lca , 1971, 1, 36-63.

Zinc., S. Abstract Specification for Data Ty pos. IBM Research Laboratory, San Jos e. CA ,
1976.

ZImmer man, 1. 1. On-lIne program debugging: A graphic approach. Computers and
Automat ion, 1907 , 16(11). 30-34.

- —~~ .~~ . - -- -~~~

