7" AD=A076 874 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 9/2
AUTOMATIC PROGRAMMING, (U)
AUG 79 R ELSCHLAGER » J PHILLIPS MDA903=77-C=-D322
UNCLASSIFIED STAN=CS=79-758

e -

~N
o

1-1 f::l_ q
s =

Wz R

g318
a*,
18
wra
.

i

—
®

A [F

NATIONAL BUREAU OF STANDARDS

CROCOPY RESOLUTION TEST CnalY

Stanford Heuristic Programming Project August 1979
Memo HPP-79-24

Computer Science De
Report No. STAN-CS-79- 758 ‘
'l
M ~ -~ =

Automatic Programming

-~

B o o=

by

Robert Elschiager and Jorge Phillips

ADAO7T6874

a section of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward A. Feigenbaum

COMPUTER SCIENCE DEPARTMENT
: School of Humanities and Sciences
€2 STANFORD UNIVERSITY
2

79 11 15 144

UNCLASSIFIED 3
e (um'v (\ As\n |(ATION OF ‘N':-’.—;< £ .(:.,,;7-1,;,:'",,,,4,
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE /. BEFORE COMPLETING FORM
VO RLPORT nusatw 1T A | 2 GOVY ACCESSION NO | 3 HECIFIENT'S CATALOG NUMBLR
_HPP-79-24 G N-CS-“'—u\ W J .1 g & " . ‘
C TITLE (end Sudiitie) — — - S TYPE OF RLPORY & PEMOD COVIRED
Automatic Programm a-section-of the Handboox :
wmxmm) technical, August 1379
- >t PERFORMING ORG REPORT HUMBER
HPP-79-24 (STAN-CS-7G-T58)
T V7Y S— - ;- {® CONTHACT G GRANT NuMBLA()-
Robert /Elschlager amd Jorge/ Phillipe . ABPA MDIL_DOB-T{-C-OI‘ZZ//
Ly NIH-RR-00785-06
(A. Barr and E.A. Feigenbaum, editors) '

(% PERFORMING ORGANIZATION NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK
Department of Computer Science MREL S Pol™ tmminmn s
Stanford University Sl 7
Stanford, California 94305 USA

11 CONTROLLING OF FICE NAME AND ADORESS t: |2 metront oave
Defense edv.nced Research Projects Agency / Awy
Information Proccessing Techniques Office '3 wWUMB PAGES
1400 Wilson Ave., Arlington, VA 22209 I

[T4 MOMITORING AGENCY NAME 8 ADORESS(I! dillerent lrom Controlling Olfice) | 18 SECURITY CL ASS. (of this report)

Mr. Philip Surra, Resident Representative
office of Naval Research, Durand 165 Unclassified
Stanford University 173 %Eéasm{aculonfoowuaauomc

- e, e -— — — —~ ——
18 OISTRIDBUTION STATEMENT (of thia Neport)

Reproduct ion in whole or in part is permitted for any purpose of the
U.S. Government.

(5] p,yr..g\, 1ON sYA'l!ul NT (of 'h. a\nrul entered In Biock 20, If dilterent Irom Report)

18 SUPPLEMENTARY NOTES

F“" .;rv .onn‘ (r~-u» 1o on reverse alde ! nnonw and Identity by block number)

20 ADSTAACTY ((mnm;o on reverse side Il necessory and identily by Blochk number)

(see reverse side)

DD .',2:“" 1473 EOITION OF ' NOV 63 1S OBSOLETE

UNCLASSIFIED =~ -

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

—

SSOET—""

UNCLASSIFIED

URILYY CLASS I P ATION OF TS PAGH (dhon Daota § ntered

Those of us involved in the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main resuits
of artificial Intelligence research accessible to a broad scientific and engineering audience.
Currently, Al work is familiar mainly to its practicing specialists and other interested
computer scientists. Yet the field is of growing Interdisciplinary interest and practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists in other fields, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of Al, presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and important Al systems. Throughout we have tried to keep in mind the reader who is not a

specialist in Al

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical “cores"
to structure calculational use of the computer. Such areas will inevitably be served by
symbolic models and symbolic inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to "go public” in the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. In addition,
there are a few textbooks that attempt to present a more detailed view of selected areas
of Al, for the serious student of computer science. But no textbook can hope to describe all
of the sub-areas, to present brief explanations of the important ideas and techniques, and to
review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described In core articles (e.g., basic concepts In heuristic search, semantic nets).
Important individual Al programs (e.g.. SHRDLU) are described in separate articles that
indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program is Important. Overview articles discuss the problems and approaches in
i each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying issues that motivate Al research.

Eventually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as Al, It Is important that its practitioners alert us to important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Stanford University, with assistance from graduate students and Al professionals at
other institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRl International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this chapter on Automatic Programming research are Robert Eischlager
and Jorge Phillips. They have worked from material supplied by the AP researchers
themselves, including David Barstow, Cordell Green, Neil Goldman, George Heidorn,
Elaine Kant, Zohar Manna, Brian McCune, Gregory Ruth, Richard Waldinger, and E
Richard Walers.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Automatic Programming
by

Robert Elschlager and Jorge Phillips

a section of the
Handbook of Artificial intelligence

edited by
Avron Barr and Edwaerd A. Felgenbaum

This research was supported by both the Defense Advanced Research Projects Agency
(ARPA Order No. 3423, Contract No. MDA 903-77-C-0322) and the National Institutes of
Health (Contract No. NIH RR-00785-08). Jorge Phillips' work was supported n part at the
Stanford Al Lab (ARPA Order 2404, Contract MDA 903-76-C-02006). The views and
conclusions of this document should not be interpreted ss necesserily representing the
officlal policies, either express or implied, of the Defense Advanced Research Projects
Agency, the National Institutes of Health, or the United States Government.

Copyright Notice: The material herein is copyright protected. Permission to quote or
reproduce in any form must be obtained from the Editors. Such permission is heredby granted
to agencies of the United States Government.

R —-—

Automatic Programming

Table of Contents

A. Methods of Specification e R e R e e e W e
B. Basic Approaches « « « + &+ « o o o o o o = .
c. ’sl . . . v o . . - . - . . . e - L] 28
B SAPE - o s e W e e T e e e W mC e e . >
€. Programmer”s Apprentice <« + + + s s s e s s e s
COR) R S A i s e TR A S A M A R
G. DEDALUS it e R e e, e A S e
H. PROTOSYSTER I . « & & & %' s w m_ % & & % % % % = & & @
I. NLPQ: Natura) Language Programming for Queuing Simulations
el T LRSI S AR A SIS Tt i e T S R T PR S S VIR

References« +« ¢ « o o o o o o o o

Foreword

Those of us involved in the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and meain results
of artificial intelligence research accessible to a broad scientific and engineering sudience.
Currently, Al work is famikar mainly to its practicing specislists and other interested
computer scientists. Yet the field is of growing Interdisciplinary Interest and practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

In the Handbook we intend to cover the breadth and depth of Al, presenting general
overviews of the scientific issues, as well as detalled discussions of particular techniques
and important Al systems. Throughout we have tried to keep in mind the reader who is not a

specialist in Al

As the cost of computation continues to fell, new ereas of computer applications
become potentiaily viable. For many of these areas, there do not exist mathematical "cores"
to structure calculational use of the computer. Such areas will inevitably be served by
symbolic models and symbolic inference techniques. Yet those who understend symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for Al to "go public® in the manner intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of Al
and have attempted to help fill the vacuum. Lay reviews, in particular Margaret Boder's
Artificlal Intelligence and Nature! Man, have tried to explain what is important and
interesting about Al, and how research in Al progresses through our programs. In addition,
there are a few textbooks that attempt to present & more deteiled view of selected areas
of Al, for the serious student of computer science. But no textbook cen hope to describe all
of the sub-areas, to present brief explanations of the important ideas and techniques, and to
review the forty or fifty most important Al systems.

The Handbook contains several different types of articles. Key Al ideas and techniques
are described In core articles (e.g., basic concepts in heuristic search, semantic nets).
Important individual Al programs (e.g., SHRDLU) are described in separate articles that
indicate, among other things, the designer's goel, the techniques employed, and the reasons
why the program is important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly usetul to those who seek a
summary of the undertying issues that motivate Al research.

g

BT —

Eventually the Handbook will contain epproximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other Al
research sites. We look forward to being advised of errors of omission and commission. For &
field as fast moving as Al, It is important that its practitioners alert us to important
developments, so that future editions will reflect this new material. We intend that the
Handbook of Artificial intelligence be a living and changing reference work.

The articles in this edition of the Handbook were written primarily by graduate students
in Al at Stanford University, with assistance from graduate students and Al professionals at
other Institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

The authors of this chapter on Automatic Programming research are Robert Eischiager
and Jorge Phillips. They have worked from material supplied by the AP researchers

themselves, incluaing David Barstow, Cordell Jreen, Neil Goldman, George Heidorn,
tlaine Kant, Zohar Manna, Brian McCune, Gregory Ruth, Richard waldinger, and
Richard Waters.

Avron Barr Stanford University
Edward Feigenbaum July, 1979

Handbook of Artificial intelligence

Topic Outline
Volumes | and Il

Introduction

The Handbook of Artificial Intelliigence
Overview of Al Research

History of Al

An Introduction to the Al Literature

Search

Overview

Problem Representation

Search Methods for State Spaces, AND/OR Graphs, and Game Trees
Six Important Search Programs

Representation of Knowledge

Issues and Problems in Representation Theory
Survey of Representation Techniques
Seven Important Representation Schemes

Al Programming Languages

Historical Overview of Al Programming Languages
Comparison of Dats Structures and Control Mechanisms in Al Languages
LISP

Natural Language Understanding

Overview - History and Issues

Machine Trenslation

Grammars

Parsing Techniques

Text Generation Systems

The Early NL Systems

Six Iimportant Natural Language Processing Systems

Speech Understanding Systems

Overview - History and Design lssues
Seven Major Speech Understanding Projects

Applications-oriented Al Research -- Part

Overview

TEIRESIAS - Issues In Expert Systems Design

Research on Al Applications in Mathematics (MACSYMA and AM)
Miscellaneous Applications Research

Applications-oriented Al Research -- Part 2: Medicine

Overview of Medical Applications Research
Six Important Medical Systems

Applications-oriented Al Research -- Part 3: Chemistry

Overview of Applications in Chemistry
Applications in Chemical Analysis

The DENDRAL Programs

CRYSALIS

Applications in Organic Synthesis

Applications-oriented Al Research -- Part 4: Education

Historical Overview of Al Research in Educational Applications
Issues in ICAl Systems Design
Seven Important ICAI Systems

Automatic Programming

Overview

Techniques for Program Specification
Approaches to AP

Eight important AP Systems

The following sections of the Handbook ere still in preparation and will appear (n the third
volume:

Theorem Proving

Vision

Robotics

Information Processing Psychoiogy
Learning and Inductive Inference

Planning and Related Problem-solving Techniques

“ A.g__h‘_;._uu. i i

AV

Automatic Programming (AP) Is a new, dynamic, and not precisely defined area of
artificial intelligence. This overview discusses the definitions, history, motivating forces and
goals of automatic programming and includes a brief description of the basic characteristics
and central issues of AP systems. The article begins with a section discussing the various
possible definitions of automatic programming, the background in which It has achieved
existence, as well as some of its general motivating forces and goals. The next section
describes four characteristics of all AP systems: the method by which a user of such a
system specifies or describes the desired program, the target language in which the system
writes the program, the problem or application area to which the system is addressed. and
the approach or operational method employed by the system. Next, a section discusses four
basic Issues, one or more of which concern all AP systems: the representation and
processing of partial or Incomplete information; the transformation of structures, and
especially the transformation of program descriptions into other descriptions (in this chapter,
the term program description includes the user's specification of the desired program, any
internal representations of the program, as well as the target language implementation); the
efficlency of the target language implementation; and the system's capabilities for aiding In
the understanding of the program.cFollowing this overview, the reader will find articles on the
methods of specifying programs systems, on some of the basic operational methods
employed In such systems, and then e¥ght articles describing most of the major AP projects.

Definition

The bulk of the research in AP has appeared in the 1970s, and it is not surprising that
there Is lack of agreement as to the definition, scope, and direction of the endeavor.
Several brief definitions of automatic programming have been suggested in the literature, but
considering the newness of the area, one should not expect these definitions to be precise.
One definition says simply that AP is something that will save people the chores of
programming (Biermann, 1976a). Another states that an AP system carries out part of the
programming activity currently performed by a human in constructing, a program written in
some machine executable language, given the definition of the problem to be solved; here,
the essence of an AP system is that it assumes some responsibilities otherwise borne by a
human, and thereby reduces the person's task (Hammer & Ruth, 1979). Yet another states
that AP means having the computer help write its own programs (Heidorn, 1977). AP is the
application of a computing system to the problem of effectively utilizing that or another
computing system in the performance of & task specified by the user (Balzer, 1973b).

To summarize, perhaps we can define AP here as an automation of some part of the
program-writing activities that currently are typically performed by people and not yet
performed by machine. Therefore the definition excludes such systems and software
environments as assembly lenguages and high-levei languages such as FORTRAN, COBOL.
PL/1, ALGOL, or LISP; and such programming aids as symbol tables, cross reference
generators, text editors, and debugging systems.

Other more extensive definitions have been suggested. One definition (Balzer, 1973b)
"rates” AP systems according to a measure of merit, which includes the following factors:

(a) the amount of time and effort needed by the programmer to formulate and
specify the desired program;

2 Automatic Programming

(b) the efticiency of the decisions made by the system in designing the program,
and consequently the overall efficiency of the program that is produced by
the system;

(c) the ease with which future modifications can be incorporated In the program;
(d) the reliablility and ruggedness of the program;

(e) the amount of computer resources, Including time and memory, used by the
system to produce that program; and

(1) the range, as well as the complexity, of the tasks that can be handled by the
system.

Notice that, according to such a measure, a FORTRAN language compiler would rank as
* an AP system. However, Its rank would be significantly less than the potential of current AP
research projects.

Another source (see article D3) lists some specific factors that bear on factor (a)
above, the factor concerned with the effort required of the programmer. The specific
factors are informality, language level, and executability. An AP system is informal to the
degree that the user can be ambiguous (various interpretations of the specification are
possible) and partial or incomplete (pieces of information, including perhaps information about
retferencing and sequencing, have been omitted). Language level refers to the degree to
which the AP system can accept specifications in a terminology natural to the problem area
under consideration. Executability refers to the degree to which the system can achieve a
desired program state on the basis of a description of that state, that is, the degree to
which the user need only specify what is wanted rather that how to obtain it.

Another definition of AP can be obtained by defining the development phases of a
software system (software development refers to the creation of a program or collection of
programs, from their inception to the completed product). On this basis, it would follow that
AP assists the programmer with one or more of these phases. For example, in a later article
that describes the PROTOSYSTEM research project 07, the development of data-processing
systems (programs) is seen as passing through five phases. First, the programming problem
iIs defined by clearly identifying and understanding what the desired software is to
accomplish; second, what the program is to do in order to alleviate this problem is clearly and
precisely determined; third, the organization, flow of control, and data representations are
selected from standard implementation possibilities; fourth, this very high-level specification
in terms of standard implementations is transtormed into code in some high-level language;
and fifth, this code Is complied.

These, then, are some of the more detailed definitions that have been presented for
AP. Altogether, they define a somewhat amorphous direction of research; there is still no
widespread agreement as to exactly what constitutes AP.

Automatic Programming 3

Background

The present period is not the first time the term automatic programming has been used.
The term was employed once before, about twenty years ago, to mean writing a program in a
high-level language (e.g.,. FORTRAN) and having a compiler transform the program into machine
language code. Thus, one finds "Automatic Coding," Franklin Institute, January 1957 (see
Automatic Coding, 19567), or TAe Annual Review of Automatic Programming, first appearing in
1060 (see The Annual Review in Automatic Programming, 1960). At that time, when "real"
programming referred to writing a program in machine or assembly language, AP meant writing
a program in FORTRAN. Today, when most programming is done in high-leve! languages, AP
means programming in a software environment much more advanced than the ones created by
these high-level languages.

Though the early meaning of the term automatic programming differs from the current
meaning, nevertheless, at both times AP meant assisting and automating the process of
writing programs.

In a general way, the forces responsible for AP twenty years ago are similar to those
responsible for its appearance today. At both times there was a feeling that programmers
were burdened with the need to specify many details, with the need to keep track of the
many relations between these detalls, and with a programming environment that was not,
perhaps, natural to the way in which they thought about the problem. At both times there
was a feeling among some that new programming environments might be within grasp (twenty
years ago the new environments were high-level languages) and that the software
technologies required to realize such environments might be feasible. Out of the desire for
new programming environments and out of the feeling that these new environments might be
attainabie, there appeared, in each period, an endeavor called AP.

The current motivations for AP, while similar to those twenty years ago, are more
intense. Today software is costly and unreliable. Much time, money, and effort is curr iy
being expended, with even greater expenditures forecast for the future. Software is scidom
produced within budget or on time. Quite often the supposedly finished product, when
delivered, fails to meet specifications. As programming applications of increasingly greater
complexity are addressed, not only does reliability become more difficult to attain, but the
costs of software, in terms of time, money, and effort, spiral upward.

To help alleviate these probiems, AP aims at a general goal: To restyle the way in which
the programmer specifies the desired program. This restyling should allow the programmer to
think of the probilem at a higher and more naturei level. AP would like to relieve the
programmer of mundane portions of programming, that is, the need to keep track of inordinate
amounts of detalls. By changing the programming environment, AP couid allow programmers to
construct, with greater ease and with greater accuracy, the prcgrams of the present and the
more complex programs of the future.

This goal circles back to a succinct definition of AP: The computer is used as a tool
that automates part of the programming process. That is, the computer performs a portion of
the program-writing activities. Neither the goal nor this definition are especially precise, but
the next sections are more specific. They describe the common characteristics and primary
issues of AP systems..mark Characteristics of AP Systems

4 Automatic Programming

All AP systems have a specification method, a target language, a problem area, and an
approach or method of operation.

Specification method Users of an AP system must be given some means or method for
conveying to the system the program that they desire. This means is referred to as the
specification method of the AP system. As will be seen in the remainder of this chapter, AP
systems possess a variety of specitication methods. Formal specification methods are those
that might be considered to be very Aigh-level programming languages. In general, the syntax
and semantics of such methods are precisely and definitely defined. Formal methods also
tend to be complete; that is, the specification will compietely and precisely indicate what it is
that the program is to accomplish, though, of course, the specification may not indicate the
torm of the program or how the program is to accomplish it. On the one hand, many formal
specification methods are not usually inferactive, which is to say, the system does not
interact with the user in order to obtain missing information, to verify hypotheses, or to point
out inconsistencies in the specification. For example, it Is comparable to the passive
acceptance of a program's specification by a compiler of a high-level language (e.g.
FORTRAN). On the other hand, there are some formal specification methods that are
Interactive (see McCune, 1978, which emphasizes interactive formal specification
techniques as a natural extension of incremental compiling).

A different method of specification is by examples. Here the user specifies the desired
program by simply giving examples of what the desired program is to do; the AP system
would then construct the desired program. The specification might consist of examples of
the input/output behavior of the desired program, or it might consist of traces of the desired
program's behavior (a trace is an example showing how the program should process & qiven
input). Specification by examples (or traces) is certainly not complete: The examples do not
fully describe in all cases the behavior of the desired program.

Natural language (e.g., English) is another method of specification. The user specifies
in natural language what the desired program is to do. This method is often interactive (ct
articles on PSI and NGPS), checking hypotheses, pointing out inconsistencies, and asking for
further information.

A more detailed discussion of specification, including some advantages and
disadvantages of the various methods, is presented in the article on program specification.
tE xamples of program specification are found in most of the remaining articles of this chapter.

Target language The specification method refers to the input to the AP system, and
the target language Is concerned with the system's output of the finished program. The
language in which the AP writes the finished program, or parts of the finished program, is
called the rarget language. The target languages of the AP systems described in this chapter
are high-level languages such as LISP, PL/1, or GPSS. As an example, suppose that the
target language of an AP system were LISP. The user, possibly employing a very high-level
language, or examples, or natural language, would specify to the AP system what the desired
program is to do. Then the AP system would eventually output a LISP program to do just that.

it is possible to view specification method and target language as relative terms. In an
AP system that carries the process of writing programs through several phases, the input
language for each phase could be thought of as a specification method, and the output
specification as being written in a target language, which then becomes the input

Automatic Programming 5

specification method to the next phase. However, in this chapter, target language is usually
reserved for the language In which the output program of the whole AP system is written.

Problem area Another characteristic of an AP system is its problem area or area of
intended application. Problem area, problem domain, applicetion area, and application domain
are synonomous terms. For some AP systems, the scope of its problem area is relatively
precise; for example, the problem area of the NLPQ system is simple queuing problems, while
the problem area ot the PROTOSYSTEM project is input/output intensive data-processing
systems, including inventory control, payroll, and other record-keeping systems. On the other
hand, the problem area of zuome AP systems can be relatively large; the application domain of
the PS! system is symboli: computation, including list processing, searching and sorting, data
storage and retrieval, and concept formation. The problem area of a system can have a
bearing on the method of specification, introducing relevant terminology, influencing the
method of operation or approach used by the AP system, etc.

Method of operation The fourth characteristic of AP systems is the approach or
method of operation. AP is too new for there to be very many clear-cut categories of
methods of operation. The approach(es) of most systems is not easily categorized. A
separate article on basic approaches discusses some of the more clear-cut methods,
including theorem proving, program formation, knowledge engineering, sutomatic date
selection, traditional problem solving, and iInduction.

In the theorem-proving approach, the user specifies the conditions that must hold for
the input dats (to the desired program) and the conditions that the output data should
satisfy: The conditions are specified in some formal language, often the predicate calcuius. A
theorem prover Is then asked to prove that, for ail given inputs, there exists an output that
satisties the output conditions. The proof, then, yields a program. The desired program can
be extracted from the proof.

The program transformation approach refers to transforming a specification or
description of 8 program into an equivalent description of the program. The reason for the
transformation might be to convert a specification that can be easily written and read into
one that is more complicated but more efficient; alternatively, the goal might be to convert a
very high-level description of the program into a description closer to a target language
implementation.

Knowledge engineering (see Appications chapter), applicable to many areas in addition
to AP, refers to Identifying and explcating knowiedge, and it often means “realizing™ the
knowledge as specific rules that can be added to or removed from the knowledge base of a
system.

Traditional problem solving (see section Search), also appliceble to many areas, refers
to the use of goals to direct the choice and application of a set of operators.

These approaches or paradigms overiap, and meny systems utilize a method that may,
in part, draw on elements from several. While It is hard to categorize the approaches of AP
systems, there are now enough systems 8o that it is possible to identify some common
issues, and these are the topic of the next section.

6 Automatic Programming

Basic Issues

In the article on basic approaches and in all the articles describing the individual
research projects, the reader will find one or more of several explicit basic Issues
addressed: partial information, transformation, efficlency, and understanding.

Partial information Partial information pertains to systems whose methods of
specification allow for partial or fragmentary descriptions of the desired program: Not all of
the required information Is present In the specification, or, where it is present, it may not be
explicit. Since the problem of partial information does not apply to systems that have
complete methods of specification, systems such as DEDALUS, PROTOSYSTEM |, LIBRA, and
PECOS are not concerned with this problem. On the other hand, systems that accept
incomplete specifications, especially natural language specifications, are very much
concerned with partial information. The NLPQ, PSI, and SAFE systems fall in this category. A
classification of the different kinds of missing information that might occur in a natural
language specification is given in the SAFE article.

Usually going hand In hand with the problem of partial information is the problem of
consistency. Incomplete methods of specification often permit inconsistency between
different parts of the same specification. In such cases, the system must check for
inconsistencies and, If they are found, resolve them.

In trying to till In missing information in one part of the specification or checking for
consistency between different parts and resolving any discovered inconsistency, the system
may use Information that occurs either explicitly or Implicitly in other parts of the
specification. Also, it might utilize a knowledge base containing information about the problem
area. Finally, the system may consult the user in an attempt to gain the sought-for
information. One of the explicit devices for utilizing such information is constraints. For
examples of these, see the article on PS| and especially the article on SAFE.

Transformation Another issue addressed by AP systems is transformation. The term
refers, simply, to transforming a program description, or part of a program description, into
another form. All AP systems use transformation, if only to transform an internal description of
the program into a target language implementation (description). Even a compller of high-
level languages (e g, FORTRAN, PL/I, ALGOL) will often transform a program description
several times, taking it through several internal representations, the last of which is the
machine language description. However, a compiler differs from an AP system in that it
applies the transformations in a rigid, predetermined manner; in an automatic programming
system there might be no predetermined way to apply the transformations, the application
depending on an analysis and exploration or the results of applying various transformations.
Systems, such as DEDALUS and PECOS, that use extensive transformation on the program
description have a knowledge base containing many transformation rules that convert parts
of a higher level description into a lower level description, closer to a target language
implementation. Such rules are repeatedly applied to parts of the program description with
the goal of eventually producing descriptions within the target language. These systems
develop a tree of possible descriptions of the program, with each descendant of a node
being the result of a transformation. One of the goals, then, in developing the tree Is to find a
description that is a target language implementation of the desired program. Another goal
might be to find an efficient target language implementation.

Automatic Programming 7

Other AP systems may use transformation rules in various ways. For instance, the NLPQ
system uses transformation rules to parse the natural language input from the user, to
generate natural language output to the user, and to generate the target language program
from an internal description. :

Efficlency Another concern of AP gystems is the efficiency of the target language
Implementation. The two projects that deailt with this issue are PROTOSYSTEM | and the PSI
subsystem LIBRA. While the PROTOSYSTEM approach to creating efficient programs combines
artificial intelligence with the mathematical technique of dynamic programming, the LIBRA
approach uses a more extensive renge of artificial intelligence techniques, employing a
variety of heuristics, estimates, and kinds of knowiedge to guide its search for an efficient
program.

When it is said that an AP system optimizes a program for efficiency, it does not mean
that the system finds the absolutely most efficient implementation; combinatorial explosion
makes such a task impossible. Instead, optimizing means making some reasonable choices in
the Implementation so as to achieve a reasonably efficient program,

Understanding The basic concern of one of the systems below, PROGRAMMER'S
APPRENTICE, pertain more to "understanding™ the program than it does to the basic concerns
of partial information, transformation, or efficiency. In this situation, understanding e program
might be defined as that which enables a system to talk about, analyze, modify, or write
parts of a program. It is the intention of the PROGRAMMER'S APPRENTICE, though it should be
kept In mind that at present this system is not yet operational, to realize program
understanding through the explicit use of plans. A plan represents one particular
understanding or way of viewing a program, or part of a program (for a more detailed
explanation, see the article on PROGRAMMER'S APPRENTICE). Understanding in the other
systems Is relatively implicit and does not reside in eny one particular class of
structures.

Overview of the Systems Articles

The projects described in the system articles cover much of the current research in
AP, Including the four basic issues just discussed: transformation rules, search for efficiency,
handling partial iformation, and explicit understanding.

The NLPQ system is the first AP system to utiize netursl lenguage dislogue es a
specification method. The user specifies part of & simple queuing simulation problem in
English, and then the system, as is necessary, answers questions posed by the user, as well
as queries the user in order to complete missing information or to resolve inconsistencies.
The partial knowiedge that the system has obtained about the desired program is
represented as a semantic net that is eventually used to generate the program in the target
language GPSS. Transformation or production rules analyze the user's natural language
specification, bulld and modify the sementic net, produce natural language responses, and
finally generate the target language program.

The PSI system is more recent and consists of many subsystems; it stresses the
integration of a number of different processes and sources of knowledge. The problem
application area is symbolic programming, Including information retrieval, simple sorts, and
concept formation. The user cen specify the desired program with a mixture of examples
and mixed-initiative natural language dialogue; for an easier and more natural interaction with
the user, the system maintains and utlizes e tree of the topics that occur during the

8 Automatic Programming

specification dialogue. Through such a dialogue, PS|I creates a complete, consistent
description of the desired program. In the last phase, the system explores repeated
application of transformation rules in order to convert the description into a target language
implementation. This last phase, the synthesis phase, is carried out by two subsystems:
PECOS provides suitable transformation rules and LIBRA directs and explores the application
of the rules, with the goal of obtaining an efficient target implementation. PECOS and LIBRA
are described in separate articles.

Both PECOS and DEDALUS are examples of full-fledged, dynamic transformation
systems. They each start out with a compiete specification of the desired program. Each has
a knowledge base of many transformation rules that are repeatedly appiied to the
specification. These repeated applications produce a sequence of specifications that
eventually terminate with a specification that is a target language implementation. Because
more than one transformation rule can apply in some cases, each system actually develops a
tree of specitications (descriptions), with eventually one or more of the final nodes of the
tree being a program implementation within the target language. Part of the differences
between these two systems hes in the fact that DEDALUS is concerned with the logic of
such programming concepts as recursion and subroutine. On the other hand, PECOS is more
concerned with the multiplicity of implementations of very high-level programming constructs
and operations, because that is its task within the PSI system. Though PECOS stresses
knowledge of various implementations and DEDALUS stresses knowledge of programming
constructs, both are systems where transformation is the primary emphasis.

The SAFE system article contains an extensive description of constraints and their use
in handling partial information. SAFE processes a variety of different kinds of constraints, in
order to fill in different kinds of micrmation in the specification of the desired program, and
employs different methods of processing these constraints. There are constraints related to
type of object referenced in the specification, as well as related to sequencing of steps.
Constraints are processed by backtracking and by carrying out a form of symbolic execution.

One of the ideas of the SAFE project is that a completely specified program satisfies a
very large number of constraints. Information in the user's partial, fragmentary specification
(partial and fragmentary since the specification does not mention all objects explicitly, or
partially mentions other objects and may not contain explcit sequencing of actions)
combined with the many constraints that a formal program satisfies (and possibly with
information from a knowledge base of the application area or, in special cases, from
information obtained from queries to the user), taken together, tully determine a complete
and formal description of the program. No other system deals in so central @ way with pertial
information and constraints as does the SAFE system.

The LIBRA and PROTOSYSTEM | projects are concerned with efficiency of the tarqet
language implementation. LIBRA uses an artificial intelligence approach, while PROTOSYSTEM
| uses a combination of some artificial intelligence with primarily the mathematical approach
of dynamic programming. Dynamic programming, modified by approximations and heuristics,
produces an optimized target language implementation. On the other hand, LIBRA guides the
application of the transformation rules furnished by the PECOS subsystem of PS| and directs
the growth of the resuliting tree (see above discussion of PECOS) with the goal of finding an
efficient target implementation. LIBRA determines and utilizes estimates of what it is likely to
achieve by exploring the development of a particular node. LIBRA has knowledge about how
its own allocation of space and time should influence its strategy in searching for an efticient

Automatic Programming

implementation. Though both LIBRA and PROTOSYSTEM | are concerned with producing
efficlent implementations, they approach the problem In different contexts. The first
explores configurations of a deta-processing program and the second explores applications
of trensformation rules.

The PROGRAMMER'S APPRENTICE is not necessarily intended to write the program, but
Instead to function as an apprentice to the user, with the user writing none, some, or all of
the program and the apprentice assisting with such tasks as writing parts of the program,
checking for consistency, explaining pieces of program, and helping the user modify
programs. The central concern of this project is understanding, through the explicit device of
plans. A plan may be thought of as & template that expresses a viewpoint. Matching the
plan to a part of a program description corresponds to understanding the part in that way.
Several plans can match the same part of a program, corresponding to different ways of
understanding that part. Plans can also be built up in a hierarchical fashion. The goal is that
the PROGRAMMER'S APPRENTICE, with the understanding attained through the use of plans,
can assist the programmer with correcting mistakes, writing parts of the program, and
effecting modifications.

All of these are research projects: At present none has been responsible for an AP
production system. Much research remains before most of these systems can be of use to
programmers.

References

See The Annual Review in Automatic Programming (1960), Automatic Coding (1957),
Baizer (1973a), Baizer (18973b), Baizer (1973c), Biermann (1976a), Hammer (1977), Hammer
& Ruth (1979), Heidorn (1978), Heidorn (1977), and McCune (1978).

Further references for specific research areas are listed with the other articles in this
chapter.

10 Automatic Programming

A. Methods of Specification

There must be some means or method by which the user conveys to the AP system the
kind of program that he wants. This method is called the program specification. It might entail
fully specifying the program in some formal programming language or possibly just specifying
certain properties of the program. It might involve giving examples of the input and the
output of the desired program, giving formal constraints on the progrem in the predicate
calculus, or giving interactive descriptions of the program at increasing levels of detail in
English. (Specification is introduced in general terms in the overview article.)

Formal Specifications

One method of formal specification is that used with the basic approach of theorem
proving (see below for this basic approach). Here one might specify a program as

(1) Vsl (P(s1)>3s20Q(s1,82))
where s1 are the input variables, and s2 are the output variables. P(s1) is the input
predicate (or input specification); it gives the conditions that the inputs, s1, can be
expected to satisfy at the beginning of program execution. Q(s2) is the output predicate
(specification); it gives the conditions that the outputs, s2, of the desired program are
expected to satisfy.

Expression (1) states that for all s1, the truth of P implies there is an 82 such that
Q(s1,82) is true. If there are no restrictions on the inputs, one may simply write

Vsl 3s20Q(s1,s2) .

For example, a program that computes the greatest common divisor of two Integers x
and y might be specified by taking P(x,y) as the condition that x and y are positive, and
Q(x,y.z) as the condition that z is the greatest common divisor. P(x,y) could be written as

x>0Oandy)>O ,

and Q(x,y,z) could be written as

divide(z,x) and divide(z.y) and
vr((r>0 and divide(r,x) and divide(ryy)) > z27) .

The expression
Vxylz(P(xy)> Qx,y.2))

would than state that for all positive integers x and y, there is a 2 such that 2 is their
greatest common divisor.

In the basic approach for this kind of specification, the above expression is given to a
theorem prover that produces a proof from which a program cen be extracted (see beasic

A Methods of Specification 1"

approach of theorem proving below). One is required to give to the theorem prover enough
facts concerning any predicates and functions that occur in P and Q so that (1) is provable.
Thus, In the above, one would have to specify a number of facts concerning the predicates
"divide"”, "<", and "2" over the integers.

Another very simidar method of specification is that used with the basic approaches of
program transformation and of very high-level languages. This specification method stresses
the use of entities that are not immediately implementable on a computer, or at least not
implementable with some desired degree of efficlency. There is considerable leeway in this
classification. For Instance, in some program transformat:=n systems the entities employed
may be quite abstract, without any hint of the desired algorithm. In other systems the
algorithm most naturally suggested by the specification of the program could be inefficient,
but the AP system will produce an efficient but perhaps convoluted program.

One example of a specification used with program transtormation is (see article D6)

gcd(x,y) « compute max (z: divide(z,x) and divide(z,y))
where x and y are nonnegative integers greater than zero .

This expression states that the gcd (greatest common divisor) of x and y is the
maximum of all those 2z such that 2 divides x and y. Furthermore, it is assumed that x and y
are nonnegative integers one of which is nonzero. By successive transformations of this
definition of gcd, the system would produce an efficient recursive program. Another example
(Darlington & Burstall, 1973, p. 280) is

factorial(x) := If x=0 then | eise times(x.factorial(x-1)) .

The system, then, by various transformations produces a more efficient nonrecursive, though
more tortuous, program.

Advantages and Disadvantages of Formal Specifications

The first specification method, that involving the input and the output predicates and
based on formal logic, is compietely general: Anything can be specified. On the other hand,
the user must have 8 sufficient understanding of the desired behavior of the program in
order to give a full formal description of the input and output. This understanding can
sometimes be difficult, even for simple programs. Also, the present form of theorem provers
and problem reduction methods makes synthesis of longer programs difficuit.

The second type of formal specification does not have such arbitrary generality, but
the terminology used in the specification often is closer to our way of thinking about a
particular subject, and so it should be easier to create such specifications.

Even though some of the above formal methods are arbitrarily general and others are
not, they all are complete: The specitication of the desired program fully and completely
specifies what the program is to do. This is not trve of some of the other methods discussed
below, where the specification does not uniquely determine what the program is to do. With
such methods It becomes a concern whether the program produced by the system is actually

o

12 Automatic Programming

what the user desires. Sometimes a system employing such a method may need to verity
whether the program it produces is the program that the user wants. On the other hand, with
the specification methods discussed here, there is no such problem. For further reading on
this subject, see Sibel, Furbach, & Schreiber (1978).

Specification by Examples

Some simple programs are most easily described using examples of what the program is
supposed to do.

Examples of input/output pairs In this specification method, the user gives exampies
of typical inputs and the corresponding outputs. Consider specifying or describing a
concatenation of lists to someone who is unfamiliar with the term "concatenation.” it might
be most straightforward to use an example:

concat [(ABC), (DE)) = (ABCDE) ,

which states that when the input of the function "concat” consists of the two lists (A B C)
and (D E), then the corresponding output is (AB C D E).

Given certain commonsense assumptions, this example input/output pair should suffice
to specify what it is that the desired program is to do. In more complicated cases, where the
commonsense assumptions are not sufficient, more examples must be given in order to
specity the program uniquely. For instance, the above example could be misinterpreted as a
"constant” program that always gave (A B C D E) as output:

concat [x,y)s (ABCDE) .
In such a case, giving an additional example
concat [(LM)(NOP)]J=(LMNOP) ,
would probably clear up any confusion.

Another instance of this method is the specification of the function "prime” by a set of
input/output pairs:
! prime(1) = 1
prime(2) = 2

prime(3) = 3
prime(4) = 6
prime(5) = 7
prime(6) = 11

Generic examples of input/output pairs In certain cases, generalizations of specific
exampies or generic examples are more useful in order to avoid the problems inherent In
partial specifications. For instance, the generic example

reverse [(X1 X2 X3 ... Xn)] = (Xn ... X3 X2 X1)

A Methods of Specification 13

describes a list reversal function. Here, the X1,X2..,Xn are variables which may be
anything. This specification is still partial but is more complete than any specification of this
function given by example of input/output pairs.

Program traces Traces allow more imperative specifications than do example pairs. A
sorting program may be specified with input/output pairs (e.g., Green et al., 1974):

sort [(3142)]=(1234) ,

but It would be hard to specify an insertion sort program in the same way. Yet, a program
trace could express such a program as follows:

sort [(3142)])-->()
(142)-->(3)
(42)-->(13)
(2)-->(134)
()-->(1234)

Another example of specification by traces might be

gcd(12,18) ->
(6,12) ->
(0,6) -
6

for the specification by trace of the Euciidean aigorithm that computes the greatest common
divisor. An example of using & trace to specify part of a concept formation program Is
presented in D2.

More formally, a trace may be defined as follows. A programming domain cen be thought
of as consisting of a set of abstract objects, a set of possible representations (called data
structures) for these abstract objects, a basic set of operators to transform these
representations, and a class of questions or predicates that can be evaluated on these data
structures. A programming domain thus characterizes a cless of programs that might be
constructed to operate on representations of the set of abstract objects in the domain. For
a given program operating on some date objects in the domain, a frece is a sequence of
changes of these data structures and control flow decisions that have caused these
changes during execution of the progrem.

Traces are usually expressed In terms of domain operators and tests (or functional
compositions of these). Traces are classified as complete If they carry all information about
operators applied, date structures changed, control decisions taken, etc.; otherwise, they
are called incomplete. An interesting subclass of the latter is the class of profocels, In which
all data modifications are explicit but all control information (e.g.. predicate eveluations that
determine control flow) is omitted. A protocol is then a sequence of date structure state
snapshots and operation applications (for a more complete definition see Artice
aplapproaches-777).

Generic traces Like generic examples of input/output pairs, these may aiso be
useful. In general, there is @ whole spectrum of trace specifications depending on how much

14 v Automatic Programming

imperative Information and descriptive information is present in the trace. For instance, the
trace above is compiletely descriptive; traces that contain function applications and/or
sequencing information tend to be more imperative.

Advantages and Dissdvantages of Specification by Examples

As stated above, generic examples are less ambiguous than non-generic examples.
Traces are less ambiguous than input/output pairs, but the user is required to have in mind
some idea of how the desired program is to function. On the other hand, traces do allow
some imperative specification of the flow of control.

Specitication by examples can be natural and easy for the user to formulate (Manna,
1977). Examples have the limitations inherent to informal program specifications: The user
must choose examples so as to unambiguously specify the desired program. The AP system
must be able to determine when the user's specitfication is consistent and complete and that
the system's "model” of what the user wants is indeed the right program.

Natural Language Specifications

Given an appropriate conceptual vocabulary, English descriptions of algorithms are
often the most natural method of specification. Part of the reason is that natural lanquage
allows greater flexibility in dealing with basic concepts than do, say, very high-level
languages. This flexibility requires a fairly sophisticated representational structure for the
model, with capabilities tor representing the partial (incomplete) and often ambiguous
descriptions that users provide. In addition, it may be necessary to maintain a database of
domain-dependent knowledge for certain applications. Experience with implemented
systems, such as SAFE (Balzer, Goidman, & Wile, 1877s; see also D3), suggests that the
relevant issues are not In the area of natural language processing but in how the
specifications are modeled in the system and what "programming knowiedge” the system
must have.

Mixed-initiative Natural Language Dislogue

More versatile, this specification method involves interaction between the user and the
system as the system builds and tries to fill in the details in its model of the algorithm. In
addition to maintaining a model of the algorithm, such systems sometimes will even maintain a
kind of mode! of the user to heip the system tallor the dialogue to a particular user's
idiosyncracies. Various techniques mentioned previously, such as examples or traces, could
be used in the dialogue as a description of some part of the algorithm. The system might be
designed so as to allow users to be as vague or ambiguous as they please; the system will
ultimately ask them enough to fill in the model.

This method is probably the closest to the usual method of program specification used
by people, allowing both the specifier and the programmer to make comments and
suggestions. Users do not have to keep every detell in mind, nor do they have to present
them in a certain order. The system will eventually question the user for missing details or
ambiguous specifications. On the other hand, this method requires a system that deals with

A Methods of Specification 16

many problems of natural language transiation, generation, and representation. A
representation Is also required for the system's model of the algorithm.

The PSI system (Green, 1976b; see also D2) and the NLPQ system (Heidorn, 1974; see
also 08) use this method of program specification. Floyd (1972), and Green (1977), give
hypothetical dialogues with such a system, illustrating the probiems that researchers have
encountered with this approach.

References

See Biermann (1976a) and Heidorn (1977). For examples of individual specification
methods see the remaining articies of this chapter.

16 Automatic Programming

8. Basic Approaches

The following are some of the basic approaches used in Automatic Programming (AP)
systems to synthesize desired programs from user specifications. There is not always a
clear distinction between synthesis and specification. Furthermore, as will be seen from the
later articles, some systems employ primarily one approach while others employ more
elaborate paradigms that use several approaches. (Synthesis and specification are
introduced in the overview article.)]

Theorem Proving

The theorem-proving approach is used for the synthesis of programs whose input and
output conditions can be specified in the formalism of the predicate calculus. As stated in
the section on formal specifications, the user specifies the desired program for the theorem
prover as an assertion to be proved. This assertion usually takes the form Green (19680):

Vsi(P(s1)>3s2Q(s1,82)) ,

where s1 is one or more input variables, s2 Is one or more output variables, P is the |
predicate that s1 is expected to satisfy, and Q is the predicate that s2 is expected to |
satisfy after execution of the desired program. In addition to the above expression, the
theorem prover must aiso be given enough axioms to make the above expression provable.]

From the proof produced by the theorem prover, a program is extracted. For instance,
certain constructs in the proof will produce conditional statements; others, sequential
statements; and occurrences of induction axioms may produce loops or recursion. There are
several variant methods of accomplishing these results (see Waidinger & Levitt, 1974,
Kowalski, 1974, Ciark & Sickel, 1977).

Although any interesting example would be far too long to work out in all of its detail
here, it may be worthwhile to show how such a problem is set up. The interested reader is
referred to Green, 1960, for & more complete development of the following example.
Consider the very simple problem of sorting the dotted pair of two distinct numbers, in LISP.
The axioms that would prove useful for this synthesis would be:

1) x = car (cons(x,y))
2) yrcdr(c ‘xy))
3) x = nil > contrA,y,2) = 2
4) x } nil > cond(x,y,2) = y
6) Vx,y (lessp(x,y)) nile x Cy)

The specification of the desired program, and the theorem to be proved, would be:

Vx. 3y. [car(x)<cdr(x) > y=x] A
[cer(x)2cdr(x) > cer(x)=cdr(y) A cdr(x)=car(y)] ,

which says that for every dotted pair input x, there is a dotted pair output y such that if x is

8 Basic Approaches 17

already sorted, then y is the same as x; and if x is not sorted, then y is the interchange of
the two elements of x. Using the techniques of resolution theorem proving (see Theorem

Proving.C), we would obtain the following program:

y=cond(lessp(car(x),cdr(x)),x,cons(cdr(x),car(x))) .

In general, programs to be synthesized will not be as simple as the one above. One of
the major problems that more complicated programs introduce is that they require some form
of iteration or recursion for solution. To form a recursive program, one needs the proper
Induction axioms for the problem. A general schema for the induction axiom sufficient for
most programs is Green (1969):

(P(h(ni),nil) A ¥x[ATOM(x) A P(h(cdr(x)),cdr(x)) > P(h(x),x)]]
> ¥z [P(h(2),2)]

where P Is any predicate and h is any function. Somehow this predicate and function
must be determined. Requiring the user to supply the induction axioms for each program to be
synthesised somewhat defeats the purpose of the synthesis, yet having the system
generate induction axioms until one of them works takes up far too much time and memory.
Systems that determine the P and h usually use various heuristics to limit search.

There are several constraints inherent to the approach of theorem proving. First, for
more complicated programs, it is often more difficult to correctly specify programs in the
predicate calculus than it is to write the program itseit. Second, the domain must be
axiomatized completely, that is, one must give enough axioms to the theorem prover so that
any statement that is true of the various functions and predicates that occur in the
specification of the program can actually be proved from the axioms--otherwise, the theorem
prover may fail to produce a proof, and thereby fail to produce the program. Third, present
theorem provers lack the power to produce proofs for the specification of very complicated
programs. To summarize, the user must fully and correctly specify the desired program, the
theorem prover must be given enough axioms so that the specification is provable, and the
theorem prover must be strong enough to prove the specification.

It should be noted that this approach does not allow partial specification: Users cannot
specify the program partially, with the system helping them to fill in details. On the other
hand, when a theorem prover does succeed in producing a proof of the specification, the
correctness of the extracted program is guaranteed. Thus, AP systems might incorporate
theorem proving where it is either convenient or where correctness is an important requisite.

Program Transformation

The transformation approach is used to automatically convert an easily written, easily
understood LISP function into a more efficient, but perhaps convoluted program. One such
system, described in Darlington & Burstall (1973), performs recursion removal, the elimination
of redundant computation, expansion of procedure calis, and reuse of discarded list cells.

s e s—

18 Automatic Programming

The recursion removal transforms a recursive program into an iterative one, which is
generally more efficient, avolding the overhead of the stacking mechanism. Candidates for
recursion removal are determined by pattern matching the parts of the program against a
recursive schema input pattern. If the match is successful and if certain preconditions are
met, then the program is replaced by an iterative schema. A simple example of such a
transformation rule Is:

input pattern: f(x) ::= if a then b else h(d.f(e));
precondition: h is associative, x does not occur free in h;
result pattern: f(x) ::= if a
then result - b
else begin
result - d,;
X - e; CHR
while not a
do begin
result « h(resuit,d),;
Xe+~@
end,
result ~ h(result,b)
end

where a, b, d, e, f, and h in the input pattern are matched against arbitrary expressions
in the candidate functions. For exampie, the function,

FACTORIAL(x) ::= if(x=1) then 1 eise TIMES (x, FACTORIAL (x-1))

would match the above input pattern with f « FACTORIAL, @ = (x=1), b« 1, h « TIMES, d
- x, and @ - {x-1). The resulting program would be the resuiting pattern with these values
substituted for a, b, d, e, 1, and h.

Eliminating redundant computations includes traditional subexpression elimination as
well as combining loops that iterate over the same range. The latter includes implicit
iteration. Thus, if A, B, and C are represented as linked lists, the sequence:

X « INTERSECTION (A,B)
Y « INTERSECTION (A,C) ,

is really two implicit Iterations, each over the set A. A suitable transformation rule would
convert these Into a single iteration over the set A.

Expanding procedure calls generally involves substituting the body of a procedure for
each of the calis to it. The potential benefit arises from simplifications made possible by use
of the ocal context. This technique Is the starting point for a general class of
transformations explored in Burstall & Darlington, 10765, and Wegbreit, 1076a.

Program transformation s also used to convert very high-level specifications into
target language implementations (see D8, DS, as well as summaries of these articles in A).

8 Basic Approaches 19

Knowledge Engineering

AP systems are said to be "knowledge-based"” when they are built by identifying and
codifying the knowledge that is appropriate for the program synthesis and understanding
(l.e., ability to manipulate and analyze programs) and by embedding this knowledge in some
representation. Many of these systems use large amounts of many kinds of knowiedge to
analyze, modify, and debug large classes of problems. While the distinction is relative, it is
possible to divide this knowledge Into two types: programming knowledge and domain
knowiedge.

Programming knowledge includes both programming language knowledge, which s
knowledge about the semantics of the target language in which the system will write the
desired program, and genera/ programming knowledge, which is knowledge about about such
things as generators, tests, initialization, loops, sorting, searching, and hashing. Programming
knowledge includes: (a) optimization techniques, (b) high-level programming constructs
(loops, recursion, branching), and (c) strategy and planning techniques.

Domain knowledge Is what is necessary for a system to infer how to go from the
problem description or specification of a program in a certain program class (for example
symbolic computation) to what needs to be done to solve the problem. This "know-how"
Includes how to structure the concepts In the domain or problem area and find
interrelationships among them. It must also include knowledge about how to achieve certain
results in the problem domain (cf., HACKER's learning of procedures Problem Soiving.BS).
Moreover, it should be able to define the problem in alternative ways and find aiternative
ways to solve the task--such knowledge represents an "understanding” of the domain.

Knowledge-based systems need s method of reasoning. Since they are not restricted
to using the traditional formalisms of logic, they often supply their own fiexible reasoning
techniques for guiding the synthesis. Some of these techniques include Inference, program
simplification, Wiustration and simplification for the user, decision trees, problem-solving
techniques, and refinement

The basic concern in representing the knowledge is that the knowledge be structured
in such a way that the search for relevant facts not cause a combinatorial explosion.
Various representations employed include:

-- PLANNER-lke procedural experts (Al Langunges.Cl),

-- Refinement rules (DS),

-- Modular, frame-like experts (OWL (Martin, 1974)
and BEINGS (Lenat, 1976)),

-- Semantic nets (08), and

-- Amorphous systems that try several ad hoc techniques
((Biggerstaff, 1976)).

Methods of accessing knowledge bases include: pattern invocation (Article DS), "when
needed” (Sussman, 1975); frame relations and assertions, including filling in process models
(Martin, 1074; Green, 1060; Lenat, 1076; see Articles D8, D2, end D3); and subgoal or case
analysis (Green, 1977, and see 08).

20 Automatic Programming

Automatic Data Selection

This approach refers to the selection of efficient low-level data-structure
implementations for a program specified in terms of high-level abstract information structures
(e.g., sets). Generally, programming languages containing abstract data types have default
representations that are a compromise between all likely uses of the structures; these data
types are typically far from efticient in any one particular program. But a system with
automatic data selection would choose, from a collection of possible implementations, an
implementation more efficient for the particular program under consideration. For example,
the abstract data type sef could be represented in low-level implementations as a linked list,
a binary tree, a hash table, a bit string, or as property list markings. Various operations on
sets are easier in one representation than in another--e g., set intersection using bit strings
is simply a logical AND operation, while iteration over a set is easier when it is represented
as a linked list--and some representations may not even be applicable in a given case (e.g.,
bit strings require that the domain of set elements be fixed and reasonably small, since one
bit position is used for each possible element). Also, some representations may not permit ali
needed operations (e.g., the only way to enumerate the items in a set represented with
property markings is to enumerate all atoms in the system.) By tailoring the representation to
the particular programmer's intention, it is possible to produce much better code.

One such system performing data-structure selection for the user is Low, 1874, and
Low, 1978. This system handies simple programs written in LEAP, a sublanguage of SAIL. It
selects representations for sets, sequences, and relations from the fixed library of low-tevel
data structures available in LEAP. The selection is guided by the goal of minimizing the
product of the memory and time required to execute the resulting program.

The system begins with an information-gathering phase that searches out the relevant
characteristics of the program's data structures, such as their expected size, number, the
operations performed on them, and their interactions. Some of this information is obtained by
questioning the user, and some is obtained by monitoring the actual execution ot the program
on typical data, using default representations for each structure. Then the system partitions
into equivalence classes the variables whose values will be of the same type of data
structure. The system employs a method similar to hili cimbing (see Article Search.Overview)
in order to determine a good assignment of data structures to the equivaience classes (i.e.,
the representations assigned to the equivalence classes are repeatedly varied, one at a
time, to see if an improvement will resuit). For further details, see the above references.

Other AP systems are also concerned with the selection of an efficient set of data
structures or file structures, but this concern is part of the general goal of writing an
efficient program (see Articles 07 and D08).

Traditional Problem Solving

Traditiona!l problem solving refers to using goals to direct the application of operations
In a state space (see Search). The Heuristic Compiler (Simon, 1872) regards the task of
writing & program as a problem-solving process using heuristic techniques, like those of GPS
(see Article Search.D2). This ploneering work recognized the value of both a state language,
to describe problem states and goals, and & process lenguage, to represent the solver's
actions.

8 Basic Approaches 21

In the Heuristic Compller, the State Description Compiler is quite similar to later work on
synthesis from examples. The program being synthesized is defined by specifying
inpat/output conditions on the memory celis that it affects. The difference between the
current state and the desired state is looked up in a tabie that specifies which operators to
apply to transform the contents of the celis appropriately. The Functional Description
Compiler is an important precursor to later work in automatic modification and debugging of
programs. It uses a means-ends analysis to transform a known (compiled) routine into a new
(desired) routine.

HACKER, a system described by Sussman (1975), adds to Simon's work, detecting and
generalizing new differences (bugs) and defining appropriate operators to resolve them
(patches). This system uses many significant Al techniques and language features: learning
through practice how to write and debug programs; modular, pattern-invoked expert
procedures (chunks of procedural knowledge); and hypothetical world models for subgoal
analysis. Sussman's emphasis on generalizing from experience (trying old techniques in new
situations), acceptance of the fact that users have an incomplete understanding of the
desired program, and his goal-purpose annotation technique are all interesting directions in
the development of Automatic Programming.

However, HACKER's preference for ruthless generation of "buggy" code without
detailed planning has led to Inadequate handling of subgoal conflicts. The user must
carefully schedule the training sequences and be ready for the combinatorial explosion as
the system exhaustively searches its base of world facts and programming knowledge. Such
systems must constrain the search problem of large knowledge bases. Other attempts to
distribute knowledge among Interacting specialists have encountered the same difficulty
(Lenat, 1976).

We find that systems such as HACKER, which have been designed to operate like
human programmers, promise a moderate degree of success compared to knowledge-
impoverished formal methods. However, these systems are still often hampered by the rigid
formalism that governs their application: In what order are operators to be applied? How
can domain-specific information be specified as differences? The formalisms used to
incorporate the various knowledge sources In these systems seem too methodical; the
method is space and time bound because it is based on search.

Induction

Induction or inductive inference refers to the system's "educated guess” at what the
user wants on the basis of program specifications that only partially describe the program's
behavior. Such specifications are often the examples of input/output pairs and program
traces, in both regular and generic form (B). For each of these kinds of specitication, the
corresponding AP system must determine the general rules on the basis of a specification
that contains only a few examples (or in the generic specifications, a limited class of
examples) of the program behavior.

The work In program synthesis from specification by examples had its origin In research
dealing with grammatical inference, where the objective was to infer a grammar that
described a language, given several examples of strings of the language (Feldman, Gips,
Horning, & Reder, 1060, and Biermann & Feldman, 1070). In a natural way, this research was

22 Automatic Programming

associated with the inference of finite-state machines from the sequence (string) of states
that the machine passes through during execution. The association was natural since finite-
state machines are Intimately related with the grammar that generates the strings of states
that represent legal behavior of the machine (Biermann & Krishnaswamy, 19874). This
research was the basis for two new avenues of investigation: synthesis from examples and
synthesis from traces.

The crucial issue for program synthesis from examples is to develop a generalized
program, that is, one that can account for more than the examples given in the program
speciftication. To do this, these programs break down the Input, looking for recursively
solvable subparts (Shaw, Swartout, & Green, 1975) or computation repetitions that can be
fitted into a known program scheme (Hardy, 19756).

The work in program syntAesis from trace specifications seeks to invert the transformations
observed in a trace protocol to create abstractions that generalize into loops and variables
(Bauer, 1976). Of all the Induction-based synthesis paradigms, it is the one that is closest
to grammatical inference. Biermann & Krishnaswamy (1974) has built a system that
interprets traces as directions through a developing flowchart. Phillips (1977) has
implemented a system for the inference of very high-level program descriptions from a
mixture of traces and example pairs in the context of a large automatic programming system
02.

All inductive Inference systems are dependent upon a good axiomatization of operarions.
In other words, the system must know about all of the possible primitive operations that cen
be applied to the data structures if it is to hope to construct, by composition of these
primitives, the desired program. Furthermore, a harmonious relation between the nature of
the constructs in the specification and the most basic constructs in the target languane is
essential; for example, in Siklossy & Sykes, 1975, the tasks of tree traversal and repetitive
robot maneuvers are directly translatable Into LISP recursion. Moreover, these programs are
required to know quite a bit about generalization. After synthesizing the program, they test
it on other exampies, sometimes by generating test cases and sometimes by asking the user
for approval. For certain classes of programs, examples and traces provide a natural way for
the user to specify what the desired program is to do.

induction For Input/Output Pairs

The synthesis of programs from a specification consisting of instances of input/output
pairs Iis strongly related to the probliem domain to which these programs belong (e.g., sorting,
concept formation). A set of program schemata characterize the entire class of programs for
the domain. These schemata are like program skeletons and define the general structure of
a program, omitting some details. The synthesis of a program thus amounts to (a) selecting
a given schema that is representative of the program specified by the set of exampie pairs,
and then (b) using thc information present in the examples to instantiate the untfilled siots of
the schema. So, there are two steps: e classification process, which selects the general
structure (schema) of the target program, eand an (nstantiation process, which completes the
details of the target program.

What does the classification process require? Every schema defines a subclass of
progrems in the problem domain. Every set of example pairs defines a family of programs In

——

8 Basic Approaches 23

the domain. Thus, the classification process must associate this set of example pairs with
one of the subclasses of programs in the domain. In order to accomplish this task, a set of
characteristics is assoclated with each schema (subclass) that, if present in the set of
example pairs, guarantees that the set specifies a program of this type. Usually this task is
accomplished by (a) providing a set of difference measures to be applied to the inputs and
outputs of en example pair, as well as to different example pairs in the input collection (if it
consists of more than one), and (b) providing a set of heuristics for each program scheme
that determine a fit measure of the example set that accompanies it. The task of classifying
the example set is then simply reduced to choosing the schema with the highest fit value.

During the instantiation process, in addition to the difference fit measures described
above, every schema has an assoclated set of rules for filling its empty slots through the
extraction of necessary features from the examples. For instance, in the domain of list
manipulation functions, cases where the output list contains all elements in the input and
cases where the output list contains only every other element, etc., suggest different
methods of constructing the output incrementally from the input. In the first case the
function maps down the Input list; in the second case, it maps down the input using the LISP
CDOR function. Slots are instantiated by these ruies in terms of primitive operators of the
domain and their functional compositions (in the above case, the basic LISP functions and
their compositions).

Once a schema has been selected and instantiated, the synthesis aigorithm must
validate its hypothesis. This task is usuaily done either by generating some new examples for
the program, evaluating the synthesized program on the example set, and checking the
results with the user; or by presenting the program to the user and letting him/her verity its
correctness.

In summary, the basic aigorithm is:
(1) Apply the difference measures to the example set.
(2) Based on this application, classify the set into a particular schema class.

(3) Using heuristics associated with the particular schema, hypothesize a
complete Instantiation of the selected schema.

(4) Validate this hypothesis.

In this basic algorithm, If there is a single 1/0 pair in the specification, the difference
measures are just a set of feature-detecting heuristics. If there is more than one pair, the
pairs may be ordered according to the complexity of the input. Difference measures will fall
into two classes: those that associate the structure of a peir with a schema class, and
those that find differences between pairs. The latter are perhaps more crucial in the
inference of a program. From these differences, a theory for the operation of the program is
inductively inferred or, what is the same, 8 formation rule is derived. This operational theory
might take the form of a certain schema class or of a recurrence equation that, in turn,
specifies a schema class. In the classification phase it may be necessary to apply the
classification rule to all pairs in order to Infer the corresponding schema correctly. When
several different schemas have been inferred, a decision rule is required to select the

correct one.

N —

24 Automatic Programming

An alternative approach is to reduce the whole problem to another paradigm for
synthesizing programs. For example, if the problem domain has been formalized, so that there
is a set of operators for the domain, it is possible to use a traditional problem solver to
generate a solution to the input/output pair (considered as initial-state, goai-state) in the
form of a saquence of operators that carry the Input into the output. The solution so
obtained can be considered a trace of the program to be synthesized and a trace-based
paradigm may be empiloyed.

Specification by examples is suitable for synthesizing a program only in those cases
where the task domain is small and easily axiomatized. It may also be a feasible approach in
the case where the domain Is repetitious enough that a small set of pairs is sufficient to
specity the program, which is aimost never the case in practical programming domains. Such a
specification method tends to be quite lmited and does not lend itself to useful
generalization to large domains. Nevertheless, the power of examples for clarifying concepts
is unquestionable. It seems that the main application that this specification formalism will
have in future automatic programming systems is restricted to the annotatiorn and clarification
of more formal program descriptions.

induction From Traces

inferring a program from a set of traces is, as mentioned earlier, very similar to inferring
a description of a finite-state machine from 8 set of sequential states that the machine
might pass through. The basic approach for synthesizing a program from a set of traces is to
generate, in order of increasing complexity, the possible programs constructed from the
programming-domain operators, tests, and their functional compositions; then, after each new
program is generated, to validate the given traces against the progrem. |f the generated
program accounts for the traces, then it is the required solution. Notice that some kind of
complexity measure Is needed for the enumeration, for exampie program size (e.g., number of
instructions in the program).

This basic approach suffers from the problems inherent to search in a large search
space and thus admits improvements in the form of reduction of the combinatorial explosion
by the use of heuristics to prune and guide the search process. it is thus not generally
practical and is suited only to the inference of small programs in very simple domains.
Nevertheless, it has been applied with moderate success to the inference of programs from
memory traces. Usually consisting of register assignments, tests, and memory modification
instructions, such programs and their traces are not very complex. Programs as complex as
Hoare's FIND aigorithm have been synthesized in this manner (Petry & Biermann, 1976).
Though these systems tend to be knowiedge-impoverished, Phillips (1877) exhibits a
methodology to compensate for this by utilizing problem-domain or domain-specific knowledge
In the Inference process. There are certain other speciel inference paradigms for particular
trace classes.

Program Inference from protocols Usually, traces mix information about operations
applied 5 data objects, resuits of tests ss to whether predicates hold at certain points
during program execution, state snapshots of data values, and other information. Different
classes of traces arise If restrictions are placed on the kind of information that may appear
in them. Protocols are one such class, in which only operation applications and data structure
changes may appear and in which there is no information about control decisions that have

8 Basic Approaches 26

been taken during the particular program execution refliected in the trace. An example of a
typical protocol for a function that reverses a list would be:

Input X
X=(ABC)
Y = (A)
X=(B8C)
Y=(BA)
X = (C)
Y=(CBA)
output Y

Notice that the only information present in the protocol is operation applications and variable
state changes. All control information is omitted.

The Inference of a program from a collection of protocols Involves two phases: (a)
constructing a program description that captures the nature of a program and which could
have generated a subset of the input protocols, and modifying the program description; and
(b) moditying the program description as more protocols become available in order to
validate them.

A natural algorithm would then be to hypothesize, by some feature classification
process cr with the aid of a domain knowledge base, an initial description and then debug it
by forcing a unification of the protocol family with the description. The construction of the
initial program description can be described as follows:

(1) Match the protocols, that is, find common segments as well as differences by
matching their structure.

(2) Find substitutions that unify these protocols. Protocols may differ in variables
that have different names, in the same data objects (at the same place in
the protocols) having different values, and in differences in the operations
that occur. The matching phase produces a set of such differences. The
substitution phase finds substitutions that remove these differences. For
example, if two protocols refer with different variable names to the same
data object, this phase would propose a common name for the two variables.
Such substitutions usually take the form constant -) variable or variable-
name -) variable-name.

(3) Inductively form loops by detecting repeated equivalent subprotocols. Loop
formation is the basic inductive step of this approach.

For example,

protocol string= ABCDABCD
hypothesized loop:
while {condition)
do be

A;

8;

C;

D;

end;

26 Automatic Programming

Since there are intinitely many loop hypotheses for a given protocol, one of
the tasks of the system designer is to provide a good set of heuristics to
guide the search process during loop formation. For example, one such
possible heuristic could be to consider first the loops with minimal nesting
level.

(4) Generalize remaining constants to variables.

At this stage, then, a description has been generated where all data object snapshots
have an assoclated variable name, and where loop structures in the program have been
inferred. The result of this matching, unification, and abstraction (generalization) process |is
a semantic net representation of the program.

The next stage is to verity that the hypothesized progrem description agrees with any
additional protocols, and if this is not the case, to modify it. This correction (debugging)
phase can be described as follows:

(1) Try to validate new protocois against the program representation--i.e., to
symbolically execute the program description to see if it can account for
the given protocol.

(2) Find any differences between predicted and actual protocol. The symbolic
evaluation process generates a set of differences that are due to the
protocol's not matching the program description. This set of differences
suggests the kinds of modifications that must be done to the description.

(3) Form a theory for the difference. That is, hypothesize a suitable change to
the program description, which removes the particular difference. One way
of accomplishing this result is to use e classification process similar to the
basic algorithm for inference from examples.

(4) Modity program representation accordingly.

This synthesis paradigm works only for complete protocois, that is, protocols where all
data structure changes appear explicitly. Phillips (1977) has proposed a procedure for
handling Incomplete protocois in a unified framework for synthesis from examples and
synthesis from traces or protocols. This procedure is basically as follows: For those
segments of a protocol where operations are missing, that is where two states of a date
structure appear without intervening operations, the examples component of the system
infars a piece of program description (i.e., 8 sequence of operations) that can taeke the data
object from one state to the other. This progrem description is nothing but the sequence of
missing operation applications. Merging all such sequences with the original incomplete
protocol, transforms it into a complete protocol, and the above algorithm for dealing with
complete protocois can be used.

Problem-soiver generated traces If the domain is fully axiomatized, as may be the

8 Basic Approaches 27

case for simple domains like those for robots, it may be possible to synthesize programs from
example pairs by using a problem solver that produces a solution to the input pair in the form
of a trace.

(1) Synthesize trace from example pair via problem solver.

(2) Using the trace, a set of program schemas for the domain, and a set of
schema selection and instantiation heuristics that operate on trace steps,
produce a program in terms of domain operators and domain predicates that
explain the example pair.

All these paradigms work only for complete traces and protocols. The problem of
program inference from incomplete specifications Is still under investigation. It is possible
that the techniques outiined may be extended to cover the incomplete case by coupling the
program synthesizer to a domain-based theory formation module that could, so to speak, "fill
in" the missing elements from the original specification. At this point, then, the methodology
discussed above could be used.

Traces have the limitations inherent to informal program specifications, namely, the
difficulty of specifying the required program uniquely with respect to the limited amount of
Information conveyed to the synthesizer. Thus, the problem of choosing a good description is
left, as a burden, to the user. This problem might be alleviated by the use of greater domain
expertise--to produce the program that more nearly resembles the user's desired resuit.

Traces, and informal specification methods, will be useful for algorithm description and
correction in future automatic programming systems. Clearly, the reason for this is that these
methods closely reflect the form In which we humans understand and describe programs.
Current applications include the synthesis of caiculator-like programs from memory-register
traces (Biermann & Krishnaswamy, 1074).

References

For theorem proving, see Green, 1969, Waldinger & Levitt, 1974, Kowalski, 1974, Clark
& Sickel, 1977; for program transformation, (Darlington & Burstall, 1873), and (Wegbreit,
1976a); for knowledge engineering, (Mertin, 1874), (Lenat, 1976), (Biggerstaft, 1976),
(Sussman, 1975), and (Green, 1977); for automatic data selection, Low (1978); for
traditional problem solving, (Simon, 1872), (Sussman, 1875); for induction from input/output
pairs Amarel (1972), Green (1975a), Hardy (19076), Shaw, Swartout, & Green (19785),
Siklossy & Sykes (1976), and Summers (1977); for induction from traces, Bauer (1975),
Biermann (1072a), Biermann (1976a), Petry & Biermann (1976), Phillips (1977), and Sikiossy
& Sykes (1075); and for induction from examples, Biermann & Feldman (1970), and Feldman,
Gips, Horning, & Reder (1969).

b

28 Automatic Programming

C. PsI

The PS| system is being developed by Cordell Green and his colleagues at Systems
Control, Inc., and at Stanford; people who contributed ideas and actually worked on the
project Include David Barstow, Avra Cohn, Richard P. Gabriel, Jerold Ginsparg, Elaine Kant,
Beverly |. Kedzierski, Juan Ludiow, Bruce Neison, Tom Pressburger, Jorge V. Phillips, Louis
Steinberg, Steve T. Tappel, Ronny Van Den Heuval, and Stephen J. Westfold. The goal of
the system is the integration of the more specialized methods of automatic programming into
a total system. This system then would incorporate specification by examples, by traces, or
by interactive natural language dialogue; knowledge engineering; model acquisition; program
synthesis; and efficiency analysis. Research objectives incilude the organization of such a
system, the determination of the amount and type of knowledge such a system would require,
and the representation of this knowledge.

The program is specified by means of an Interactive, mixed-initiative dialogue, which
may Include as a subpart the specification by example of a trace. Plans are also underway
to add specification by means of a loose, very high-level language. The different
specification methods can'usually be intermixed.

When the specification is interactive natural language dislogue, the user furnishes both
a description of what the desired program is to do and an indication of the overall control
structure of the program.

The problem area of PSi is symbolic computation, including list processing, searching
and sorting, data storage and retrieval, and concept formation.

The overall operation of the system, illustrated in Figure 1, may be divided into two
phases: acquisition of a description of the program, and synthesis of the program. During the
acquisition phase, several modules of the system--including the parser/interpreter,
example/trace, explainer, and moderator--will jointly interact with the user to obtain and
construct a net, called the program net, that describes the desired program. Then the
program model-builder module converts the net into a complete and consistent description of
the program. Afterwards, during the synthesis phase, the coding and efficiency modules,
interacting with each other, convert the program model, through the use of repeated
transformations, into an efficient program written in the target language.

PSI

USER

LOOSE, VERY HIGH-LEVEL
LANGUAGE STATEMENTS

ENGLISH
SENTENCES

Parser ... "

Interpreter

<o -Explatner

--Loose, very

PROG*

29

INPUT-OUTPUT PAIRS
AND TRACES

high-level
language
expert
(.. Trace and exampie
inference expert

o+~ Domain
expert

«+«+..-Program model builder

PROGRAM MODEL

Coder

Efficiency expert

HIGH-LEVEL UANGUAGE PROGRAM

.....Conventional
compiler

MACHINE LANGUAGE PROGRAM

Figure 1: Major paths of information flow in PSI

There were three reasons for separating the operation into acquisition and synthesis
phases. First, the problems of designing such a system are more tractable because of the
separation. Second, it was envisioned that code generators for different target languages
and domain experts for different problem areas could be implemented to result in a versatile
modular system. Third, acquisition requires interaction with the user, whereas, in PSi,
synthesis does not.

In the overesll operation, two of the primary interfaces within the PS| system are the

30 Automatic Programming

program net and the program model. Both are very high-level program and data structure
description languages. The program net forms a looser descrnption of the program than does
the program model. Fragments of the program net can be accessed in the order of
occurrence in the dlalogue, rather than in execution order, which allows a less detailed, local,
and partial specitication of the program. Since these fragments correspond rather closely to
what the user says, they ease the burden of the parser/interpreter as well as the
example/trace inference module. As opposed to the program net, the program model includes
complete, consistent, and interpretable very high-level algorithmic and information structures.
Further description of the program model occurs in the section below on the program model
builder.

The remainder of this article briefly describes the PS| modules, presents the status of
PSI, and then describes several exampies (Figures 2 through 6) from the acquisition phase.
The latter Includes a specification by interactive natural language dislogue, the resuiting
program net and model, and a specification by trace.

Experts

PSI is a knowledge-based system organized as a set of closely interacting modules,
also called experts. These experts include:

parser/interpreter expert, explainer expert,
dialogue-moderator expert,

applications domain expert, example/trace inference expert,
program model-building expert, coding expert, and the

algorithm analysis and efficiency experts.

Parser/interpreter

In the acquisition phase, the parser/interpreter expert (Ginsparg, 1978) first parses
sentences and then interprets these parses into less linguistic and more program-oriented
terms, which are then stored in the progrem net. This expert efticiently handies a very large
English grammar and has knowledge about data structures (e.g., sets, records), control
structures (e.g., loops, conditionals, procedures), and more complicated algorithm ideas (e.g.,
interchanges between the user and the desired program, set construction, quantitication).
The parser/interpreter can sometimes assign a concept to an unknown word on the basis of
the context in which the word appears.

Dialogue Moderator Expert

This expert (Steinberg, 1876) modeis the user, the dislogue, and the state of the
system and selects appropriate questions and statements to present to the user. it also
determines whether the user or the expert has the initiative, and at what level on what

C PSI 31

subject, and attempts to keep PS| and the user In agreement on the current topic. It
provides review and preview when the topic changes. This expert decides which of the
many questions being asked by the other experts should be passed on to the user. Since
experts phrase questions in an internal form based on relations, the dialogue-moderator
expert gives questions to the explainer expert which, in turn, converts them into English and
gives them to the user.

Explainer Expert

The explainer expert, developed by Richard Gabriel, phrases questions in terms that
the user finds meaningful (i.e., in terms related to the problem domain and the previous
sentences in the dialogue), rather than using the more programming-oriented terms used In
the program net or by the model builder. For example, rather than asking for the definition of
"A0O18.," PS! asks what does it mean for “a scene to fit a concept." The explainer ailso
generates Enghsh descriptions of the net.

Example/Trace Expert

PSI also allows specification by traces and examples, since these are useful for
Inferring data structures and simple spatial transformations. This expert Phillips (1977)
handies simple loop and data structure inference and uses several of the techniques
discussed in in the last three articles. The final section of this article illustrates how the PSI
user can specify part of a program using traces.

Domain Expert

The domain expert, developed by Jorge Phillips, uses knowledge of the application area
to help the parser/interpreter and exampie/trace experts fill in missing information in the
program net.

Model Builder

The program model-building expert McCune (1977) applies knowledge of what
constitutes a correct program to the conversion of the program net into a complete and
consistent program model, which then will be transformed during the synthesis phase into the
target language implementation. The modei-buiiding expert completes the model by filling in
the various pieces of required information and by analyzing the model for consistency; it
checks to see that its parts are iegal both with respect to each other and with respect to
the semantics of the program-modeling language. Information is filled in either by default, by
inference mechanisms (which are in the form of rules and which make use of consistency
requirements), or by queries to other experts, which may eventually result in a query to the
user. As an example, suppose that the program net contains "x part of y" and that the mode!
builder needs to fill In whether "part of" is to mean set membership, subset inclusion,
component of y, the image of x under some correspondence relation with y, or whether there
might be an unspecified intervening subpart. Such information may be deducible from the
structures of x and y, If these structures are known or when they become known.

R R S R U T LT P ey TIShSSS

32 Automatic Programming

The model builder also corrects minor inconsistencies, adds cross-references, and
generalizes parts of the program description so that the synthesis phase has more freedom
in looking for a good implementation. Thus, if the program net specifies that a certain object
is to be a set of ordered pairs, the program model may, if appropriate, Indicate that the
object is to be a correspondence (i.e., a functional mapping).

Coding and Efficiency Experts

These two experts are responsible for the synthesis phase. The coding expert's
knowledge base contains rules that transform parts of a program description to forms closer
to the target language. It is the goal of the efficiency expert to guide the choice of the
different rules so that an efficient target language implementation eventually resuits. These
two experts, aiso known as the systems LIBRA and PECOS, are discussed more explicitly in
articles devoted to their description. See the articles 0805.

Status

The entire PS|I system can now be used by a knowledgeable user. PS| has
successfully produced LISP code that Implements the specifications given In English
dialogues for four variants of CLASS, a simple pattern classification program. In addition,
other tasks are handied by individual experts in a stand-alone mode; see, for example, OS5
D9.

The next section concludes this article by describing examples of PS| at work.

Examples

Figure 2 illustrates an interactive natural language dialogue held with the PS| system in
which the user specifies a simple program, to be called CLASS. CLASS includes many
programming constructs necessary for more compiex programs

Cc P8I

What is the name of the program you want to write?
"* CLASS.

Does CLASS have a special program type?
"% Classification.

Please describe CLASS.

®% CLASS first inputs a concept. Then it repeatedly accepts an input
*fscene from the user, ciassifies it based on whether or not it fits the
"fconcept, and outputs this classification to the user.

What is the structure of the concept?
" A conceptis a collection of relations. Each relation is just a string.

What is the exit test of the loop?
"* Stop when the user types “QUIT” instead of a scene.

What is the structure of the scene?
** The same as the concept.

Please define what it means for a scene to fit a concept.

"* A scene fits a concept if all the relations in the concept are
%% in the scene.

What is the format of the classitication output?
** Output "FIT" if the scene fit, "DIDN'T FIT" if It didn't.

Are we finished?
"% Yes.

Figure 2. Specitication by interactive natural language dialogue: CLASS

G amaii B b eon . o uma a Sale e e L ade g al e LAl b aut LA) sl

34

Automatic Programming

The user intends that the CLASS program input a sample set of items (e.g., a list of job
qualifications) and then repeatedly input a trial set (e.g., the qualifications of an applicant),
each time testing whether the sampie set (required qualitications) is a subset of the trial set
(applicant qualifications) and printing "FIT® or "DIDN'T FIT,” accordingly. The user further
intends that a person will be abie to terminate CLASS simply by typing the word “QUIT,”
Instead of a trial set.

Based upon Its understanding of the dialogue, the parser/interpreter expert produces
the program net, which Is summarized in Figure 3 (the algorithmic part of the net is shown in
an ALGOL-like notation). Then the program model-building expert creates the very high-level
complete and consistent model of Figure 4. After repeated application of transformation
rules during the synthesis phase, the coding and efficiency experts will convert this model
into an efficient target language implementation.

A2 is either a set whose generic element is a string or @ string whose
value is "QUIT™.

Al is a set whose generic element is a string.

A4 is the generic element of AY.

AJ is either TRUE or FALSE.

B1 is a variable bound to A2.
B2 is a variable bound to A1.
B3 is a variable bound to A4.

CLASS
PRINT("Ready for the CONCEPT*")
A1 - READ()
LOOP Y
PRINT("Ready for the SCENE")
A2 « READ()
IF EQUAL(A2,"QUIT") THEN GO TO EXITY
A3 - FIT(A2.A1) o
CASES: IF A3 THEN PRINT(®FIT®)
ELSE IF NOT(A3) THEN PRINT("DION'T FIT®)
GO TO LOOPY

EXITYT:

FIT(81,82)
FOR_ALL B3 IMPLIES(MEMBER(83,82),MEMBER(B3,81))

Figure 3. Summary of the program net.

C PSI 35

program CLASS;
type
a0032 : set of string ,
a003 7 : alternative of [<{string = >*QUIT" , a0032];
vars
a001! ,a0014 ,a0035 ,a0036 : 20032,
a0055 , m0080 : a0053 ,
m0095 : string = "DIDN'T FIT* ,
m0092 : string ® “FIT",
mQ009! : Boolean ,
m00S§| : string & "QUIT" ;
procedure a0067(a0036 , 30035 : a0032) : Boolean ;
a0035 K a0036 ;
procedure a0065(a0055 : a00373) : Boolean ;
a005s = “QUIT" ; :
begin
60011 ~ input(a0032 , user , "READY FOR CONCEPT" ,
"lilegal input. Input again: ") ;
until 40051
repeat
begin
mO080 « input(a0053 , user , "READY" , "lllegal input.
Input again: *);
if a0065(m0080) then assert exit_condition(A0051) ;
60014 « m0080 ;
m009] « a0067(a0014 , a0011) ;
case
& m009] : inform_user("DION'T FIT®) ;
mO0®] : inform user(“FIT®) ;
endcase
end
finally
A0051 .
endioop
end ;

Figure 4. The program model.

Traces are snother method of specification aliowed by the PSI system. Figure & shows
the use of a trace to specify part of the behavior of @ program celled TF ("Theory
Formation"). A simplifiad version of Pat Winston's concept formation program,.(Winston, 19756),
TF builds and updates an internal model of a concept. A concept is a collection of "may" and
"must" conditions. TF builds and updates the model by repeatedly reading in a scene,
guessing whether the scene is an instance of the concept, verifying with the person using
TF whether the guess was correct or incorrect, and updating the model of the concept
accordingly. The trace in Figure 6 shows the specification for only a part of the behavior ot
TF, the part that describes how TF is to update the model, given that a scene does or does
not fit a concept. The other parts of TF can be specified by trace or by interactive natural
language dialogue.

36 Automatic Programming
Concept: (]
Scene: [(block a)(block b)(on a b))
Result of fit: True

Updated concept:

(((block a) may)((block b) may)((on a b) may)]

Concept: [((block a) may)((block b) may)((on a b) may)]
Scene: [(block a)(block b))
Result of fit: False

Updated concept:

[((block a) may)((block b) may)((on a b) must))

Concept: [((block a) may)((block b) may)((on & b) must)}
Scene: [(block a)(block b)(block c)on a b))
Result of fit: True

Updated concept:

(((block a) may)((block b) may)(block c) may)
((on a b) must))

Figure 6. A specification by trace.

From this specification, the example/trace inference expert generates the following
information about the desired program: If the scene fits the concept, then add all relations in
the scene but not present in the concept to the concept and mark them with "may.*
Otherwise, If the scene doesn't fit the concept, then change the marking of all relations
marked "may" in the concept and not appearing in the scene from "may” to "must.”

References

See Barstow (1977a), Barstow (1977b), Barstow (1877c), Barstow & Kant (1977),
Ginsparg (1978), Green (1976a), Green (1975b), Green (1976a), Green (1976b), Green
(1976c), Green (1977), Green (1978), Green & Barstow (1976), Green & Barstow (1977a),
Green & Barstow (1977b), Green & Barstow (1078), Kant (1977), Kant (1978), McCune
(1977), Phillips (1977), and Shaw, Swartout, & Green (1976).

e —— Y T T T T T T Iy Ty

Py ————

0 SAFE 37

D. SAFE

The SAFE system, developed at USC Information Sciences Institute by Robert Balzer,
Neil Goldman, David Wile, and Chuck Williams (with the recent addition of Lee Erman and Phil
London), accepts a program specification consisting of pre-parsed English, with limited
syntax and vocabulary, including terms from the problem domain. The phrases and sentences
of this specification, however, may be ambiguous and may fail to explicitly provide all the
information required in a formal program specification. Therefore, using a large number of
built-in constraints (that must be satisfied by any well-formed program), any specified
constraints on the problem domain, and an occasional interaction with the user, SAFE resolves
ambiguities, fills in missing pieces of information, and produces a high-level, complete program
specification. To decide on missing pleces of information, SAFE uses a variety of techniques,
including backtracking (see article Al Languages) and a form of symbolic execution.

The SAFE system views the task of Automatic Programming as the production of a
program from a description of the desired beAguior of that program. There are four major
differences between a conventionally specified program and a program described in terms of
its desired behavior.

Informality: The behavioral description is informal. It contains ambiguity
(alternative Interpretations yilelding distinct behaviors) and “partial”
constructs (constructs missing pieces of information that must be supplied
before any interpretation is possibie). A conventionally specified program, on
the other hand, is formal; its meaning is completely and unambiguously defined
by the semantics of the programming language.

Vocabulary: The primitive terms used in the behavioral description are those of
the problem domain. General-purpose programming languages, on the other
hand, provide a primitive vocabuiary that is significantly more independent of
particular problem areas.

Executability: Informality aside, it is possible, and sometimes desirabie, to
describe behavior in terms of relationships between desired and achieved
states of a process , rather than by rules that specify how to obtain the
desired state. Conventionally specified programs must specify an algorithm
for reaching the desired state.

Efticiency: Conventionally specified programs contain many details of operation
beyond the desired input/output behavior. Among these are data
representation, internal communication protocols, store-recompute decisions,
etc., that affect a program's efficiency (utilization of computer resources and
time). In general, these details should not appear in the description of
Input/output behavior.

When one writes a program in the conventional manner, one must formalize the
behaviora! specification, transiate the terms of the problem domain into those of a general
programming language, guarantee that the specified aigorithms actually achieve the desired
resuits, and make a myriad of decisions for the sake of an efficient implementation.

38 Automatic Programming

The ISI group has attempted to split the task of creating a program into two separate
parts by designing a formal, compiete specification language (Balzer & Goldman, 1979) that
allows behavioral specitications to be stated in terms specific to the problem domain while
avolding efficiency and representational concerns. This formal specification language acts as
an interface between two projects that deal respectively with the first issue, translation
from informal to formal specitications, and the last issue, optimization of a formal
specification. The former project is the subject of this article, while the latter is described
elsewhere (Balzer, Goldman, & Wile, 1976). The other issues, domain-specific vocabulary
and executability, are addressed within the formai specification language.

The SAFE project has concentrated on only the first of the above specification issues:
automatically producing a formal description from an informal description. It is not, therefore,
a complete automatic programming system. The user of the SAFE system provides a
behavioral description in a pre-parsed, !imited subset of English, including terms from the
problem area. SAFE then seeks o determine a way of resolving all ambiguities and of filling in
all missing Information in a way that satisfies SAFE's knowiedge of the constraints that all
programs must satisfy. The resuit is a complete, unambiguous, very high-level program
specification in a language called AP2.

Partial Descriptions

After studying many examples of program specifications written in English, the SAFE
research group concluded that the main semantic difference between these specifications
and their formal equivalent is that partial descriptions rather than complete descriptions
were used. When such partial descriptions were used, it was because the missing
information could be determined from the surrounding context. These partial descriptions
possess some of the useful properties of natural language specifications that are lacking in
formal languages. They focus both the writer's and reader's attention on the relevant issues
and condense the specification. Furthermore, the extensive use of context almost totally
eliminates bookkeeping operations from the natural language specification.

A partial description may have zero or one or more valid interpretations in a given
context. If a single valid interpretation Is found for a description, it is unambiguous in that
context. Multiple valid interpretations indicate that there is not sufficlent information from
the context to complete the description and that interaction with the user is required to
resolve the ambiguity. If a partial description possesses no valid interpretation, it is
Inconsistent within the existing context.

The SAFE system incorporates the most prevaient forms of partial descriptions found in
natural language specifications:

Partial sequencing: Operations are not always described in the order of
execution. While sequencing may sometimes be described explicitly, it is
frequently implicit in the relationships between operations. Example: "Output
generated while compiling is sent to a scratch file. This file must be opened in
write only mode. (file should be opened before compiling commences).”

Missing operands: The operands of operations are frequently omitted because
they are recoverable from context. Recovering them may involve considering

D SAFE 39

the operation's definition, other operands, and the procedural context.
Example: "Do not mount a tape for a job uniess the tape drive has been
assigned (to that job)."

Incomplete reference: A description of an object(s) may match several objects
whereas it was intended to refer to only one or possibly a subset of these
objects. A complete description may be recovered by methods similar to that
for missing operands. Example: "When the mail program starts, it opens the
file named MESSAGE (in the directory of the job running the program).”

Type coercions: Often, people using natural language do not precisely specify
the object intended, but instead specity an associated object or a subpart of
an object. This situation can be recognized by a mismatch between the type
of object actually specified and the type of object expected. Example:
"Information messages are copied to each logged-in user (to the terminal of
the job of each logged-in user).”

Operation of SAFE

The goal of SAFE Is to compiete the various partial descriptions in the user's
specification of the desired program so as to produce a formal specitication ot the whole
program. SAFE goes through several phases, but in all phases the system uses a variety of
constraints to achieve the goal of completing the partial descriptions. These include buiit-in
criteria that any formal program must meet (e.g., information must be produced before (t is
consumed), built-in heuristics that "sensible® programs will meet (e.g., the vaiue of a
conditional must depend on the program data), as well as any known or discovered
constraints particular to a program's domain (e.g., each file in & directory has a distinct
name). In fact, since programs are highly constrained objects, there are a large number of
constraints that any "well-formed” program must satisfy, and this is one reason programs are
hard to write.

In general, each partial description has several different possible completions. Based
on the partial description and the context in which it occurs, an ordered set of possible
completions is created for it. But one decision cannot be made in isolation from the others;
decisions must be consistent with one another and the resuliting program must make sense as
a whole, satistying all the criteria of weli-formed programs.

The problem of finding viable completions for a collection of partial descriptions
provides a classical backtracking situation, since there are many interrelated individual
decisions that, in combination, can be either accepted or rejected on the basis of the
constraints. SAFE utilizes the constraints so that early rejection possibllities can be realized.

The operation of SAFE consists of three sequential phases: the linguistics, pianning.
and meta-evaluation phases. The cumulative effect of these phases is to produce a formal
specification that is composed of declarative and procedural portions. The declarative pert,
or domain model, specifies the typcs of objects manipulated by the process, the various
ways they may relate to one another, the actions that may be performed on various object
types, and other giobal regularities of the problem domain. The procedural portion specifies
the controlled application of actions to objects.

40 Automatic Programming

The linguistic phase, using production rules, transforms the parse trees of the English
specification into fragments that retain the semantic content while discarding the syntactic
detail. The production rules capture many context-sensitive aspects of natural language
such as various uses of the verb "be" and of quantifiers. The production rules may also add
declaratons to the domain model, with user approval, when this is required for interpretation
of the input. This procedure is accomplished by distinguishing two sets of conditions on each
rule: those relating to the linguistic form of the phrase being processed, and those relating a
form to the domain model. If the linguistic form conditions are not satisfied (e.g., a clause
using a transitive verb) but the domain model conditions are (e.g., the verb names an action
in the problem domain that has opersnds of types compatible with the verb arguments), then
the domain model conditions are assumed.

The planning phase determines the overall sequencing of the operations in the program.

It also determines which fragments belong together and how they are to interact. It does
this by using explicit sequencing information In the description, such as "A is executed
immediately after B," "A is invoked whenever the condition C becomes true,” as well as
static flow constraints on weli-formed processes such as:

Before information is consumed (used by one fragment), it must be produced
(created by the same or another fragment).

Expected outputs of the whole program or of a subprogram must be produced
somewhere within that program.

The resuits of each described operation must be used or referenced somewhere.

The final phase, meta-evaluation, uses dynamic constraints to help determine the
proper completion of partial descriptions. Dynamic constraints are those that apply, or at
least relate to, the program during execution. Examples of such constraints are:

It must be possible (in general) to execute both branches of a conditional
statement (otherwise why would the user have specified a conditional).

The constraints of a domain must not be violated.

Since no actusl input data is available for testing the execution of the program and
since the program must be weli-formed for all allowable inputs, inputs are represented
symbolically. Instead of actual execution, the program is symbolically executed on the inputs,
which provides a much stronger test of the constraints than would execution on any
particular set of inputs. The result is a detabase of relationships between the symbolic
values and, implicitly, a database of relationships between program variables that are bound
to these values.

All decisions concerning the proper interpretation of partial descriptions that affect the
computation to some point in the execution (but not beyond) must be made before these
dynamic <riteria can be tested at that point in the execution. Thus, decisions are made as
they are needed by the computation of the program, and the symbolic state of the program is
examined at each stage of the computation. This arrangement allows the dynamic stete-of-
computation criteria to be used to obtain early rejection of infeasible alternatives.

e

(4] SAFE 41

There is an additional point worth noting. Representing the complete state of a
computation during symbolic execution is very difficult (e.g., It Is quite hard to determine the
state after execution of a loop or conditional statement) and more detailed than necessary
for testing the constraints. Therefore, the SAFE system uses a weaker form of symbolic
Interpretation called Meta-Evaluation, which only partially determines the program's state as
the computation proceeds (e.g., loops are executed only once for some "generic” element).

Notice that symbolic execution requires that the sequential relationships between the
fragments be known; therefore the meta-evaluation phase must follow the planning phase.

Finally, the global referencing constraints (such as "The body of a procedure must
meke use of the procedure's parameters®™) test the overall use of names within the program
and, thus, cannot be tested until all decisions have been made. These criteria can be tested
only after the Meta-Evaluation is complete.

Status

The prototype system has successfully handied the 75-200 word specifications of
three quite distinct programs. In these cases the SAFE output of a completed specification,
Including domain structure definition, requires approximately two pages. One example
concerned part of a system for scheduling transmissions in a communications network. Given
a table (SOL) containing entries for various network subscribers and for various unassigned
time slots (RATS), a schedule of absolute times when a particular subscriber could broadcast
on the network was tabulated. The input specification to SAFE is:

((THE SoOL)

(IS SEARCHED)

FOR

(AN ENTRY FOR (THE SUBSCRIBER)))

(IF ((ONE)
(1S FOUND))
((THE SUBSCRIBER'S (RELATIVE TRANSMISSION TIME))
(1S COMPUTED) ACCORDING TO ("FORMULA-1")))

((THE SUBSCRIBER'S (CLOCK TRANSMISSION TIME))
(IS COMPUTED) ACCORDING-TO ("FORMULA-2")))

WHEN ((THE TRANSMISSION TIME))
(HAS BEEN COMPUTED))
Q)
(1S INSERTED)
AS (THE (PRIMARY ENTRY))
IN (A (TRANSMISSION SCHEDULE))))

FOR (EACH RATS ENTRY)
(PERFORM)
(: ((THE RATS'S (RELATIVE TRANSMISSION TIME))
(1S COMPUTED) ACCORDING TO ("FORMULA-1"))

42 Automatic Programming
((THE RATS'S (CLOCK TRANSMISSION TIME))
(1S COMPUTED) ACCORDING TO ("FORMULA-2"))))
((THE RATS (TRANSMISSION TIMES))
(ARE ENTERED)
INTO (THE SCHEDULE))

Figure 1. Actual input for link scheduling example.

In formalizing this description, SAFE encountered and resolved the following
characteristics of informal specifications:

number of missing operands s 7
number of incomplete references =12
number of implicit type coercions =3
number of implicit sequencing decisions s 4

Robustness of the system has been increased by processing a number of
perturbations of each of the major examples. These have involved specifying the same
process but varying the syntax and vocabulery used, the partial descriptions used, and the
formal knowledge provided about the problem domain.

Future Developments

The key technical restrictions of the prototype system appear to be (a) the sequential
'cppllcoﬂoﬂ of the three phases, which prohibits adequate Interactions between the
expertise embodied In each, and (b) the backtracking within the meta-evaluation phase,
which corresponds to restarting the symbolic execution from an earlier point, which cen iead
to much unnecessary search. To correct these limitations, a reformulation of the system
architecture within a framework derived from the HEARSAY |l speech understanding system
(see article Speech.C) is currently in progress. This framework consists of a number of
cooperating experts interacting via a "blackboard” database.

Simuitaneously, the system is being scaled up to handie larger practical specifications
(approximately 20 pages). Later, the project will consider the formalization of incremental
informal specitications so that it can also provide help during both specification formulation
and maintenance activities.

References

See Balzer, Goidman, & Wile (1976), Balzer, Goldman, & Wile (1077e), Baizer, Goldman,
& Wile (*978), and Balzer & Goldman (19790).

(3 Programmer's Apprentice 43

E. Programmer's Apprentice

The Programmer's Apprentice (PA) is an Interactive system for assisting programmers
with the task of programming. it is being designed and impiemented at MIT by Charles Rich,
Howard Shrobe, and Richard Waters. Currently, most, but not all, of the modules that
comprise the PA system are running. It shouid be kept in mind that the scenario descrived
here lilustrates the projected operation of the system, not the present operation. The intent
of the PA is that the programmer will do the hara parts of design and impiementation, while
the PA will act as a junior partner and critic, keeping track of details and assisting the
programmer in the documentation, verification, debugging, and modification of his program. in
order to cooperate with the programmer in this fashion, the PA must be able to "understand”
what is going on. From the point of view of Artificial Intelligence, the centrai deveiopment of
the Programmer's Apprentice project has been the design of a representation (called a
"plan") for programs and for knowledge about programming that serves as the basis for this
"understanding.” Developing and reasoning about plans is the central activity of the PA.

The "plan" for a program represents the program as a network of operations
interconnected by links explicitly representing data tiow and control flow. The advantage of
this aspect of the plan formalism is that it abstracts away from the specific syntactic
constructs used by various programming languages in order to implement control flow and
data flow. The most novel aspect of the plan formalism is that it goes beyond this level in
order to create a vehicle for expressing the Iogual interrelationships in a program. First, a
plan is not just a graph of primitive operations. Rather, it is a hierarchy of segments within
segments, where each segment corresponds to a unit of behavior and has an input/output
specification that describes features of this behavior. The plan specifies how each
nonterminal segment is constructed out of the segments contained within it. This
segmentation is important because it breaks the plan up into localities that can be
understood in isolation from each other. Second, the behavior of a segment is related to the
behavior of its subsegments. This interrelationship is represented by explicit dependency
links that record the goal-subgoal and prerequisite relationships between the input-output
specification for a segment and those for its subsegments. Taken together, the links
summarize a proof of how these specifications for 8 segment follow from the specifications
of its subsegments and from the way the subsegments are Interconnected by control flow
and data flow. A final aspect of the plan formalism is that there may be more than one plan
for a given segment of & program, with each plan representing a different point of view on
the segment. The data structures used by a program are represented by specifying their
parts, properties, and the relationships between them in a method similar to data
abstractions (Zilles, 1976; Liskov, 1877).

Knowledge about programming in general is also represented using plans and data
structure descriptions. This knowledge is stored in the PA in a database of common
algorithms and data structure implementations calied the "plan library." The PA's
"understanding” of a program is embodied in e hierarchical plan for it. In general, the subplan
for each individual segment in terms of its subsegments will be an instance of some plan
stored in the plan library. This structure gives the PA access to all of the information stored
in the plan library about the particular subplan as soon as it can make a guess as to what the
subplan is.

44 Automatic Programming |

A Scenario of Use of the Programmer's Apprentice

The following imagined conversation between a programmer and the PA is presented in
order to illustrate the intended operation of the system. (Comments discussing the scenario
are printed in ifalics.) The scenario illustrates the following four basic areas in which the PA
can assist a programmer:

(1) Documentation: One of the primary services the PA provides is automatic,
permanent, and in-depth documentation of the program. The PA remembers
not only explicit commentary supplied by the programmer with the code, but
also a substantial body of derived information describing the logical
structure underlying the program, such as the dependency relationships
between parts of the program.

(2) Veritication: The development of a program is accompanied by the
construction of a sequence of plans at various levels of abstraction. At
each step, the PA attempts to verify that the current plan Is both
consistent and sufficient to accomplish the desired goal. As more
information is specified, the PA's reasoning about these plans approaches a
complete verification of the program.

(3) Debugging: Any discrepancy between the PA's understanding of the
programmer's intent and the actual operation of the progrem is reported to
the programmer as a potential bug.

(4) Managing Modification: Perhaps the most useful aspect of the PA is that it
can help a programmer modify his program without introducing new bugs.
Based on its knowledge of the logical relationships between parts of a
program, the PA is able to determine what parts of a program can be
affected by a proposed change, and how they can be affected. It can use
this information to warn the programmer of impending difficulties.

The scenario traces the design, coding, and subsequent modification of a program that
deletes an entry from a hash table. The scenario picks up in the middle of a session, at a
point where the programmer has already made many design choices and conveyed them to
the PA. In particular, he has stated the input-output specifications for the subroutine
DELETE and chosen the basic data structures to be used. The hash table is implemented as
an array of linked lists called "buckets.” Each of the entries in a bucket is a dotted-pair
whose CAR is the key for the entry.

P TR T—

Programmer: The plan for the routine DELETE has three main steps: The
first one hashes the input key to get an index; the second one fetches the
bucket corresponding to that index from the table; and the third splices
out the entry in the bucket whose key part is equal to the input key.

T he only feature of this scenario tAat is not @ current research goal of the Programmer’s
Apprentice profect is the use of natural English dialogue. Although the system should be
able to support @ sophisticated natural language “front-end,” no effort Aas been expended
in tAis direction to date. As a result, the programmer would actually type in something
like.

S—

E Programmer's Apprentice

"(subsegments-of-DELETE step1-step2-stepd)
(specifications-for-step1 (inputs-key1) (outputs-index)
(assert-(=-index-(hash-key1)))) ..*

The PA uses the programmer’s outline of the design in order to build ¢ plan representing
the program's intended structure. References to basic programming techniques such as
“splicing out” (deleting elements from a linked list) trigger the retrieval of plans from the
plan library

PA: | can't verify that this plan satisfies the specifications for
DELETE. In particular, when the input key is equal to the key part of
the first entry in a bucket, | can't prove that the entry is no longer in
the table after DELETE is executed. Note that in this situation, the
bucket after splicing out entries has a different Initial cell from the
bucket before splicing out entries, and that therefore the table isn't
changed.

After constructing a plan, the PA uses its reasoning abilities in order to check for bugs.
Above, the PA finds one and reports it to the programmer. In general, it is the
responsibility of the programmer to supply corrections. Below, the programmer corrects the
plan by issuing semantically based editing commands to the PA

Programmer: Modify the plan as follows. Add a final step that compares
the bucket after spiicing with the bucket before splicing and stores the
new bucket in the table under the index if the two initial cells are not
identical.

PA: OK, the plan now seems correct.

The programmer tAhen types in the code for DELETE In cases where the programmer
specifies the plan for a program as completely as he does Aere, he could ask the PA to
write the code It is expected that the programmer will actually only write code in
sttuations where it is easier to write the code than to fully explain the plan.

Programmer: (DEFUN DELETE (KEY) ; hash table delete routine.
(PROG (BKT1 BKT2)
(SETQ BKT1 (TBL (HASH KEY)) BKT2 (BKT-DELETE KEY BKT1))
(COND ((NOT (EQ BKT1 BKT2))
i check if first entry in bucket deleted.
(STORE (TBL (HASH KEY)) BKT1)))))

The PA analyzes the code written by the programmer in order to construct @ plan for it.
Comparing tAis plan with the plan directly described by the programmer, the P A discovers
an implementation bug: In the last line of code the user probably meant to store into the
Aash table not thAe first bucket, BKTI, but the second bucket, BKT 2.

PA: This code is not consistent with your plan. When the first entry |s
deleted, the code stores the bucket before splicing, rather then the

45

46 Automatic Programming

bucket after splicing. Did you mean
“(STORE-(TBL-(HASH-KEY))-BKT2)"?

Programmer: Yes, fix the code. Also, use the standard list deletion
algorithm to code BKT-DELETE so that it splices out of the bucket all
entries whose key equals the indicated value.

PA: (DEFUN BKT-DELETE (KEY BUCKET) ; list deletion routine coded by the PA.
(PROG (CURRENT PREVIOUS)
(SETQ CURRENT BUCKET PREVIOUS NIL)
LP (COND ((NULL CURRENT) (RETURN BUCKET))
((EQUAL (CAAR CURRENT) KEY)
; It keypart equal, splice out entry.
(COND (PREVIOUS (RPLACD PREVIOUS (COR CURRENT)))
(T (SETQ BUCKET (CDR BUCKET)))))
;special if first element deleted.
(T (SETQ PREVIOUS CURRENT)))
(SETQ CURRENT (CDR CURRENT))
(GO LP)))

The PA s able to code a program like this itself, even though the programmer did not
specify a plan for if, because it is an implemeniation of a standard algorithm that
corvesponds to a plan in tAe pian lidrary Code written by the PA can be freely mixed
with code written by the programmer and each can edit the other's work

Some time later it s necessary to modify the representation of the buckets. The PA helps
the (perhaps new) programmer mainiain consisiency

Programmer: | want to make a change in the representation of buckets in
the hashing programs. A bucket now has two parts: a count field and @
list of entries as before. The count field will contain an integer equal

to the length of the list of entries. Let a bucket be a dotted-peir whose
CAR is the count and whose COR is the list of entries.

When the PA inspects the logical dependencies in the plans, it discovers that a (ype
requirement Aas been violated

PA: The proposed change will affect DELETE as follows: After the
bucket is fetched, it Is passed to BKT-DELETE which does the actual
deletion. However, BKT-DELETE requires a list of entries while in
this new implementation, a bucket is no longer just a list of entries.

Programmer: Explain the plan for BKT-DELETE please.

PA: BKT-DELETE is implemented following the standard list deletion
plan. The inputs are a key and a list of entries. The plan is a search
loop using two pointers: a pointer to the current entry, which is
initialized to the input list, and a trailing pointer, which is initialized

to NiL. On each Iteration the loop tests the key of the current

—————— r

E Programmer's Apprentice 47

entry. If it is equal to the input key, the element is spliced out of the
list by RPLACDIng the trailing pointer.

Acting in its role as documentation, the PA describes the structure of BKT-DELETE by
reporting out the structure of its plan. TAe programmer then decides how to modify
BKT-DELETE

Programmer: Change the specifications of BKT-DELETE so that it
expects as input a bucket of the new type, rather than a list of entries.
Also change the initialization of the pointers to read:
"(SETQ-PREVIOUS-BUCKET- CURRENT-(CDR-BUCKET))".

The PA reanalyres the program in order to verify that this change fixes the problem
without causing any other problems to arise. TAis analysis reveals the presence of
inaccessible code which the P A reports to the programmer

PA: OK this fixes the problem. However, now the special case tests in
BKT-DELETE and DELETE are not necessary since PREVIOUS s
never NiL and therefore elements are always deleted by side-effect.

and 5o the session continues with the P A looking over the programmer’s shoulder.

Operation ot the System

The design of the PA is based on four modules, a surface analyzer, a recognizer, an
interactive module, and a deductive module; and two data bases, the plan librafry and a
scrat¢ch pad called the “design notebook." Only the first three modules have been
implemented so far. As described above, the plan library contains the PA's knowledge of
programming in general. The design notebook contains the PA's evolving knowledge of the
particular programs being worked on and serves as the communication center for the system
as a whole. The modules communicate with one another solely by making assertions in the
design notebook. Each module has predefined trigger patterns which cause it to perform
specific tasks (such as making a deduction or querying the user) whenever appropriate
assertions appear in the notebook. Every assertion added to the notebook Is-also
accompanied by a justification of its presence. These justifications make it possib’ for the
PA to account for its actions.

The surface analyzer is used to construct simple surface plans for sections of code
written by the programmer. It is the only module whose implementation depends on the
particular programming language being used. To date, surface analyzers have been
implemented for both LISP and FORTRAN. The recognition module takes over where the
surtace analyzer laaves off in order to construct e detailed plan for & piece of code. It first
breaks up the surface plan by identifying weakly interacting subsegments that can be
further analyzed in isolation from each other. it then compares these subsegments with the
plans in the library in order to determine more detailed plans for the program.

The interactive module is the communication link between the PA and the programmer.

B ——

48 Automatic Programming

It converts the programmer's input (which can consist of code, direct specification of a plan,
or various requests) into assertions in the design notebook and decides what to say to the
programmer based on the information currently in the notebook. The deductive module
operates in the background in cooperation with all of the other modules. It performs the
deductions necessary to verity a proposed match between a program and a plan, to detect
bugs in a plan, and to determine the ramifications of a proposed modification to a program or
plan.

At a given moment, the design notebook holds the sum total of what the PA knows
about the program being worked on. This information triggers additional activity by the
modules. If the recognizer and deductive modules are strong enough and the program Is
simple enough, this process will cuiminate in a complete understanding and verification of the
program. However, typically, this will not be the case, and some questions (such as the
exact plan for a segment or the correctness of a specification) will remain unresoived in the
notebook. The flexible architecture chosen for the PA makes it possible for the PA to exhibit
useful partial performance in this situation. It is able to ignore what it doesn't understand
and work constructively with what it does understand. The programmer can be called upon
to fill in the gaps.

Current Status of the Programmer's Apprentice

Rich and Shrobe (1976) laid out the basic idea of a plan and the initial design of the
PA. Since that time Rich, Shrobe, and Waters have been working together on further aspects
of the theory along with design and impiementation of the PA

Rich's work (forthcoming) centers on the pian hbrary and the recognition process. He Is
using the plan representation in order to codify a large body of common programming
strategies In the domain of non numerical programming. He is aiso designing a recognition
module that will be able to identify instances of plans in the library as they occur in
combination in a programmer's program.

Shrobe (1978) has implemented a prototype deductive moduie that can reason about
programs represented by plans. An important aspect of its operation is that it maintains &
racord of the dependency relationships embodied in its deductions. In doing this it builds up
some of the logical structure that is a vital part of a plan for a program. He is currently
designing an improved version of this deductive module.

Waters (1976, 1978) has implemented a system that can analyze the code for a
program and produce the basic structure of a plan for the entire program. The system
corresponds to the surface analysis module and the initial phase of the recognition process.
The basic idea behind Waters' work is that plans for typical programs are built up in a small
number of stereotyped ways and that features in the code for a program can be used to
determine how the plan for the program should be built up.

The goal for the immediate future is to construct a prototype system that can exhibit
the kind of behavior shown in the scenario. To do this, an interactive module must be built,
and the other modules must be connected together into an integrated system. Looking
further ahead, additional modules (such as a simple program synthesis module, and one
dealing with efficiency issues) will be added to the PA, and the existing ones will be
strengthened so that the PA can assume an even larger part of the programming process.

€ Programmer's Apprentice 49

References

See Liskov et al. (1977), Rich & Shrobe (1976), Rich & Shrobe (1978), Rich (1979).
Shrobe (1978), Waters (1076), Waters (1978), Waters (1979), and Zilles (1976).

-

Nty
P

60 Automatic Programming

F. PECOS

Developed in 1976 by David Barstow (Barstow,1976), the automatic programming
system PECOS serves as the coding expert of Standford's PSI project (see article D2 and
Barstow, 19769. The foundations of PECOS are based on ideas presented in Green & Barstow
(1977a), and Green & Barstow (1978). Though PECOS can act in conjunction with the PSI
system, it can also stand on its own and interact directly with the user. The original problem
area of PECOS was symbolic programming, which includes simple list processing, sorting,
database retrieval, and concept formation. This domain has recently been extended to graph
theory and simple number theory. Programs are specified in terms of very high-level
constructs including data structures, like collections or mappings, and operalions, hke testing for
membership in a collection or computing the inverse image of an object under a mapping.
Knowledge about programming in the problem area has been codified (i.e., made explicit and
put into machine useable form) prnimarily in the form of transtormation rules, and these have
been entered into PECOS's knowledge base. Most of the rules describe how constructs and
operations can be represented or implemented in terms of other constructs and operations

-that are closer to, or actuaily in, the target language LISP (actually a subset of INTERLISP,

Teiteiman et al, 1978). These rules can identity design decisions and can also serve as
limited explanations.

The operation of the system proceeds by the repeated selection and application of the
transformation rules in the knowledge base to parts of the program. Ailso referred to as
gradual refinement, this transformation process reduces the high-level specification to an
implementation fully within the target language. Each application of a rule is said to produce
a partial implementation or refinement of the program, and the transformation rules are called
refinement rules.

Contlict Resolution

At some points during the transformation process, a confiict may arise because several
rules apply to the same part of the program. The handiing of this situation is important: The
application of the several rules ultimately resuits in different target language
implementations that often vary significantly in terms of efficiency. There ere three ways to
handle this situation.

(1) it PECOS is interacting directly with the user, the user may select which rule
shouid be applied (and thus which implementation will be constructed).

(2) For the convenience of the user, PECOS can choose one of the applicable
rules, using about a dozen heuristics it has to pick the rule that leads to the
more efficlent implementation. These heuristics handle about two-thirds of
the choices that typically arise.

(3) When no heuristic applies and the user Is uncertain about which rule is
"best” for his or her purposes, PECOS can apply each in paraliel,
constructing a separate impiementation for each rule applied.

When PECOS functions as the Coding Expert of the PSI program synthesis system
(Green, 1976b;02), choices between rules are made by an sutomated Efficiency Expert

TR T WTp———y

T T,

AT 25 . . S

F PECOS 61

known as LIBRA (see article D8, Kant (1977)), which incorporates more sophisticated
analytic techniques than the simple heuristics used by PECOS. The capability of developing
different implementations in paraliel is used extensively in the interactions between PHCO",
and LIBRA (Barstow & Kant, 1977). o

PECOS's Knowledge Base

PECOS's knowledge base consists of about 400 rules dealing with a variety of symbolic
programming concepts. The most abstract concepts are those of the specification language
(e.g., collection, Inverse image, enumerating the objects in a collection, etc.). The
implementation techniques covered by the rules include the representation of collections as
linked lists, arrays (both ordered and unordered), and Boolean mappings, and the
representation of mappings as tables, sets of pairs, property list markings, and inverted
mappings (indexed by range element). As a natural by-product, these rules also cover
sorting within a transfer paradigm that includes simpler sorts such as insertion and selection.
While some of the rules are specific to LISP, about three-fourths of the rules are
independent of LISP or any other target language.

Internally, PECOS's rules are represented as condition-action pairs. The conditions are
particular configurations of abstract operations and data structures that are matched against
parts of the developing program. Where the match Is successful, the actions replace parts
of the abstract concepts with refinements of those parts.

In the system of refinement rules, intermediate-level abstractions play a major role.
One benefit of such intermediate-level concepts is a certain economy of knowledge.
Consider, for example, the construct of a sequential collection: a linearly ordered group of
locations in which the elements of a coliection can be stored. Since there is no constraint on
how the linear ordering is implemented, the construct can be seen as an abstraction (or
generalization) of both linked lists and arrays. Much of what programmers know about linked
lists is in common to what they know about arrays, and hence can be represented as one
rule set about sequential collections, rather than as two, one about linked lists, and one
about arrays. Another benefit of these intermediate-level concepts is that the process of
choosing between alternative (valid) rules is facilitated: Attention can be focused on the
essential aspects of a choice while ignoring irrelevant details.

Rules about Programming Knowledge

Most currently available sources of programming knowledge (e.,9.. books and articles)
lack the precision required for effective use by a machine. The descriptions are often
informal, with details omitted and assumptions unstated. Before this programming knowledge
can be made available to machines, it must be made more precise; the assumptions must be
made explicit; and the detalis must be filled in.

PECOS's rules provide much of this precision for the domain of elementary symbolic
programming. For example, consider the following rule (an English paraphrase of PECOS's
internal representation):

A collection may be represented as @ mapping of odjects to Boolean values; the default
range object is FALSE.

T T T T TP p—

62 Automatic Programming

Most programmers know this fact: that a collection may be represented by its
cAaracteristic function. Without knowing this rule, or something similar, it is aimost impossible to
understand why a bitstring can be used to represent a set (or, for that matter, why property
list markings work). Yet this rule is generally left unstated in discussions of bitstring
representations. As another example, consider the following rule:

An association table whose keys are integers from a fixed range may be represented as an
array subregion.

The fact that an array is simply a way to represent a mapping of integers to arbitrary
values is well known and usually stated explicitly. The detail that the integers must be from
a fixed range is usually not stated. Note that if the integers are not from a fixed range, then
an array is the wrong representation and something like & hash table should be used.

PECOS's rules also identily particular design decisions involved in programming. For
example, one of the crucial decisions in building an enumerator of the objects in a sequential
collection is selecting the order in which they should be enumerated. This decision is often
made only implicitly. For example, the use of the LISP function MAPC to enumerate the
objects in a list assumes implicitly that the stored (or "natural®) order is the right order in
which to enumerate them. While this is often correct, there are times when some other order
is desired. For example, the selector of a selection sort invoives enumerating the objects
according to a particular ordering relation. A second major decision in building an enumerator
involves selecting a way to save the state of the computation between cails to the
enumerator. The use of a location (e.g., index or list cell) to specify the current state is
based on knowing the following rule:

If the enumeration order is the same as tAe stored order, tAe stale of an enumeration may
be represented as a location (n the sequential collection.

Were the enumeration order different from the stored order (as in a selection sort),
then some other state-saving scheme would be needed, such as deleting the objects or
marking them in some fashion.

Another interesting aspect of PECOS's rules is that they have a certain kind of
explanatory power. Consider, for example, 8 well-known trick for computing the intersection
of two linked lists of atoms in linear time: Map down the first list and put & special mark on
the property list of each atom; then map down the second list collecting only those atoms
whose property lists contain the special mark. This technique can be understood on the
basis of the following four of PECOS's rules (in addition to the rules about representing
collections as linked lists):

A collection may be represented as a mapping of objects to Boolean values; the default
range object is FALSE.

A mapping whose domain comsists of atoms may be represented using property list
markings

T Ae intersection of two collections may be implemented by enumerating the objects in one,
and while enumerating them, collecting those tAat are members of the other.

F PECOS 63

If a collection is input, its representation may be converted into any other representation
before further processing

Given these rules, the trick works by first converting the representation of one
collection from a linked list to property list markings with Boolean values, and then computing
the intersection in the standard way, except that a membership test for property list
markings involves a call to GETPROP rather than a scan down a linked list.

Status

PECOS is able to implement abstract algorithms (i.e., a very high-level specification) in
a variety of domains, including elementary symbolic programming (simple classification and
concept formation algorithms), sorting (several versions of selection and Insertion sort), 1
graph theory (a reachability algorithm), and even simple number theory (a prime number]
algorithm). In each case, PECOS's knowledge about different implementation techniques
enabled the construction of a variety of alternative implementations, often with significantly
different efficiency characteristics.

PECOS's success demonstrates the viability of the knowledge-based approach to
automatic programming. In order to develop this approach further, two research directions
seem particularly useful.

First, programming knowledge for other domains must be codified. In the process, rules
developed for one domain may be found to be useful in other domains. With the hope of
verifying the wider utility ot PECOS's ruies about collections and mappings, Yale's
Knowledge-based Automatic Programming Project Barstow, 1878 Is currently codifying the
programming knowledge needed for elementary graph algorithms.

As an example, consider the common technique of representing a graph as an
adjacency matrix. In order to construct such a representation, only one rule about graphs
need be known:

A graph may be represented as a pair of sets: a set of vertices (whose elements are
primitive objects) and a set of edges (whose elements are pairs of vertices)

The rest of the necessary knowledge is concerned with sets and mappings and is
independent of its application to graphs. For example, in order to derive the bounds on the
matrix, one need only know that primitive objects may be represented as integers, that a set
of otherwise unconstrained integers may be represented as a sequence of consecutive
integers, and that a sequence of consecutive integers may be represented as lower and
upper bounds. To derive the representation of the matrix itself, one need only know PECOS's
rules about Boolean mappings and association tables, plus the fact that a table whose keys
are pairs of integers in fixed ranges may be represented as a two-dimensional matrix.

Second, different types of programming knowledge need to be codified. Two types
seem particularly important: efficiency knowledge and strategic knowledge. LIBRA (article
09), which acts together with PECOS in PSi's synthesis phase, embodies a large amount of
efficiency knowledge; but much remains to be done. Very little work on the use of general
strategies (e.9., divide and conquer) in program synthesis has been done. The latter seems

|
L
]

64 Automatic Programming

an especially important direction, since such strategies seem to play & major role in human
programming.

References

See Barstow & Kant (1977), Barstow (19078), Barstow (1979), Green (1976b), Kant
(1977), and Teitelman et al. (1978).

G DEDALUS 66

G. DEDALUS

DEDALUS, the DEDuctive ALgorithm Ur-Synthesizer, accepts an unambiguous, logically
complete, very high-level specification of a desired program and through repeated
application of transformation rules seeks to reduce it to an implementation within a simple
LISP-like target language. This target language implementation is guaranteed to be correct
(l.e., logically equivalent to the high-level specification) and to terminate. The knowledge
that ultimately relates the constructs of the specification language to those in the target
language Is expressed in the transformation rules. But of special importance are certain
rules that express general programming principles that are independent of the particular
specification language and target language. These rules, which have constituted a major
component of the DEDALUS effort, form conditional statements and recursive and
nonrecursive procedures; they also generalize procedures, construct well-founded orderings
to guarantee the termination of recursive calls, and write code that simuitaneously achieves
two or more goals. These general programming principles are described in detail in a
subsequent section, with examples lllustrating their application. As pointed out in the
STATUS section, some of the principles are fairly well understood, while others require
further study. Not all the principles are implemented in the current DEDALUS system.

The DEDALUS specification language can contain constructs that are close to how the
user actually thinks about the problem. Thus, the DEDLAUS specification of the program
lessall(x 1), which tests whether a number x is less than every element of a list | of numbers,
and the program gcd(x y), which computes the greatest common divisor of two nonnegative
integers x and y, are specified as follows:

lessali{ x 1) (= compute x(alii{i) -
where x Is a number and | is a list of numbers,
g9cd(x y) (= compute max (z:z|x and z|y)
where x and y are nonnegative nonzero integers .

The all construct in P(alil (1)), indicating that the condition P holds for all elements of
the list |, and the set constructor {(u: P(u)), indicating the set of elements for which P is true,
are constructs that, through the repeated application of transformation rules will eventually
be converted into target language code that, for the particular program, is logically
equivalent to the original specification. The specification language is not fixed: New
constructs can be introduced by modifying or adding transformation rules. k

The operation of DEDALUS consists of the repeated application of transformations to
expressions In order to produce expressions that are cioser to, or within, the target
language. In DEDALUS, the expressions that occur during the transformation process specify
not only programs; they can aiso specify conditions to be proved, as well as conditions to be
made true. All these expressions are treated as goais to be achieved: For an expression
that specifies a program, the goal Is to convert that program into a target language
implementation; for an expression that is a condition to be proved, the goal is to convert it to
the logical constant true; for an expression that is a condition to be made true, the goal is to
construct a program that will make that condition true.

Transforming a subexpression (of an expression) into another subexpression requires
rules of the form

66 Automatic Programming

te>tite

the condition P being optional. This rule indicates that the subexpression t can be replaced
by t'. If P is present, then the rule can only be applied provided that the system first prove
that P is true; which is to say, before the rule can be applied, the system must succeed in
achieving the subgoal

Goal: prove P .
For example, consider
P(ali(1)) => P(head(l)) and P(ali(tail(l))) if not empty (i) ,

which expresses the fact that a property P hoids for every element of a nonempty list | if it
holds for the first element head(l) and for every element of the list tail (I) of the other
elements. Before the system can apply this rule to some part of an expression, it would
have to succeed In proving that | is not empty.

The application of transformation rules resuits in a tree of goals and subgoals. Initially 1
the top-level goals of this tree are established by program specifications. Thus, the common
form of program specification

f(x) <= compute P(x)
where O(x) ,

establishes its output description as the top-level goal

Goal:.compute P(x) ,
and in trying to achieve this goal, the system assumes the truth of Q(x). If the top-level
goals of trees are established by program specifications, most goais are established as the
result of transformations. Thus, by applying the transformation ruie

ulv and u|w =) u|v and ujw-v
to the top-level goal of the gcd program

Goal 1: compute max(z:2|x and z|y),
the system establishes

Goal 2: compute max (2:2|x and z|y-x)
as a subgoal. Such transformations express knowiedge about specific constructs. In the
DEDALUS system there is also knowiedge of a more general sort.
General Programming Principles

This section describes five general programming principles and presents several

48

-

.

G DEDALUS 57

examples to illustrate their application. The principles express knowledge about how to form
conditionais and procedures (recursive and nonrecursive), how to replace two or more
procedures by a generalized procedure, and how to achieve simultaneous goals. As explained
in the STATUS section, the current implementation of DEDALUS does not incorporate the
generailization ot procedures or the achievement of simuitaneous goals.

Conditional formation. Many of the transformation rules impose some condition P (e.g., |
is nonempty, x is nonnegative) that must be satisfied for the rule to be applied. Suppose
that in attempting to apply a particular rule, the system failed to prove or disprove the
condition P, where P Is expressed entirely in terms of the primitive constructs of the target
language; in such a situation, the conditional formation rule is invoked. This rule allows the
Introduction of case analysis to consider separately the cases in which P is true and in which
P is false. Suppose the result is both a program segment S1 that achieves the goal under
the assumption that P is true and another program segment S2 that achieves the goal under
the assumption that P is false. The conditional formation principle puts these two program
segments together into a conditional expression

if P then S1 eise S2 ,

which soilves the problem regardiess of whether P is true or false. During the generation of
S2, the system could discover that a conditional expression was unnecessary: The
generation of S2 may not have required the assumption that P was faise. in such a case, the
program constructed would be simply S2.

Recursion formation. Suppose, in constructing a program with specifications

f(x) <= compute P(x)
where Q(x) ,

the system encounters a subgoal
compute P(1) ,

which is an instance of the output specification, compute P(x). Because the program f(x) is
intended to compute P(x) for any x satisfying its input specification Q(x). the recursion
formation rule proposes achieving the subgoal by computing P(t) with a recursive call f(t).
For this step to be valid, it must ensure that the input condition Q(t) holds when the proposed
recursive call is exacuted. To ensure that the new recursive call will not cause the program
to loop indefinitely, the rule must also establish a termination condition, showing that the
argument t is strictly less than the input x in some well-founded ordering. (A well-founded
ordering is an ordering in which no intinite strictly decreasing sequences can exist.) This
condition precludes the possibility that en infinite sequence of recursive calls occur during
the execution of the program.

Example: lessall. The DEDALUS system derived the program lessali(x), which tests
whether a given number x Is less than every element of a give list | of numbers. The
speécifications for this program are

lessall(x |) <= compute x < all (1)
where x is a number and | is a list oi numbers .

68 Automatic Programming

In deriving this program, the system develops a subgoal
compute x < ali(tail(l)) .,
In the case that | is nonempty. This subgoal Is an instance of the output specification of the
original specification, with the Iinput | replaced by tail(l); therefore, the recursion formation
principle proposes that the subgoal be achieved by introducing a recursive call lessali{x
tail(1)). To ensure that this step is valid, the rule establishes an input condition that
x is a number and tail(l) is a list of numbers ,
and a termination condition that the argument pair (x tail(l)) is less than the input pair (x |) in
some weli-founded ordering. This termination condition hoids because tail(l) is a proper
sublist of |.
As the final program the system obtains
lessall(x |) <= it empty(l) then true
else x < head (i) and lessall (x tail(l)) .
Procedure formation. Suppose that while developing a tree for a specification of the

form

f(x) <= compute P(x)
where Q(x) ,

the system encounters a subgoal
Goal B: compute R(t) ,

which is an instance not of the output specification compute P(x) but of some previously
generated subgoal

Goal A: compute R(x) .

Then the procedure formation principie introduces & new procedure, g(x), whose output
specification is

g(x) <= compute R(x) .
In this way, both Goals A and B can be achieved by calis g(x) and g(t) to a single procedure.
in the case where Goal B has been derived from Goal A, the call to g(t) will be a recursive
call; otherwise, both calis will be simple procedure calis.

Ex~mple: cart. The specification of the program cart(s t) to compute the Cartesian
product of two sets, s and t, is

cart(s t) (= compute ((x y) : xes and yxt)
where s and t are finite sets .

4

G DEDALUS 69

While deriving the tree for the program, the system obtains a subgoai
Goal A: compute ((x y) : x=head(s) and yst) ,

given that s is nonempty. Developing Goal A further, the system derives
Goal B: compute ((x y) : x=head(s) and y«taii(t)) ,

given that t is nonempty. Goal B is an instance of Goal A; therefore, the procedure formation
rule proposes introducing a new procedure carthead (s t) whose output specification is

carthead(s t) (= compute ((x y) : x=head(s) and y«t)

so that Goal A can be achieved with a procedure call carthead(s t), and Goal B, with a
(recursive) call carthead(s tail(t)).

Constructing the carthead procedure by the techniques aiready described, the final
system of programs becomes,

cart(s t) <= if empty(s) then ()
else union(carthead(s t) cart(tail(s) t)) ,

carthead(s t) (= if empty(t) then ()
else union(((head(s) head(t)))
carthead(s tai(t))) .

Generalization. Suppose, in deriving a program, that we obtain two subgoals
Goal A: compute R(a(x))
Goal B: compute R(b(x)) ,

neither of which is an instance of the other, but both of which are instances of the more
general expression

compute R(y) .

In such a case the extended procedure formation rule proposes the introduction of the new
procedure, whose output specification is

g(y) <= compute R(y) .

Thus, Goal A and Goal B can be achieved by procedure calls to g(a(x)) and g(b(x)),
respectively.

Example: reverse. In constructing a program reverse (I), to reverse a list |, we first
derive two subgoals:

Goal A: compute append(reverse(tail(l))

60 Automatic Programming
cons(head(i)nil))

Goal B: compute append(reverse(tail (tail(i)))
cons(head(tail(l))
cons(head(l) nil))) .
skip
Each is an instance of the more general expression

compute append(reverse(tail(l))
cons(head(l) m)) ;

therefore, the extended procedure formation rule proposes introducing a new procedure
reversegen(l m), whose output specification is the more general expression:

revarsegen(l m) ¢z compute append(reverse(tail(i))
cons(head(l) m)) .

Aithough this procedure, which reverses a nonempty list | and appends the result to m, is a
more general problem than the original reverse program, it turns out that reversegen is
actually easier to construct. The final system of programs obtained is

reverse(l) <= if empty(l) then nil
else reversegen(! nil)

reversegen(l m) <= it empty(taii{({)) then cons(head(l) m)
else reversegen(taill) cons(head(l) m)} .

‘Simultaneous goals. In order to deal with operations that produce side-effects such
as modifying the structure of data objects (e.g., assignment statements), DEDALUS
introduces constructs such as achieve P, to denote a program intended to make the
condition P true.

In constructing a program to achieve two conditions, P1 and P2, it is not sufficient to
decompose the problem by constructing twe mdependent programs to achieve P1 and P2,
respectively. The concatenation of the two programs might not achieve both conditions
because the program that achieves P2 may in the process make P1 false, and vice versa.

For example, suppose a progrem is desired to sort the values of three variables x, y,
and z; in other words, to permute the values of the veriables to achieve the two conditions
x>y and y>z simultaneously. Assume the given primitive instruction sort2(u v), which sorts
the values of its input variables u and v. The concatenation

sort2(x y)
sort2(y 2)

of these two segments will not achieve both conditions simuitaneously; the second segment
sort2(y z) may, by sorting y and z, make the first condition x2y false.

G OEDOALUS 61

The simuitaneous goal principle, which was introduced to circumvent such difficulties,
states that to satisfy a goal of form

achieve P1 and P2 ,

first construct a program F to achieve P1, then modity F to achieve P2 while protecting P1 at
the end of F. A special "protection mechanism® (cf. (Sussman, 1975)) ensures that no
modification is permitted that destroys the truth of the protected condition P1 at the end of
the program.

Example: sort. To apply this principle to the goal
achieve x C yandy ¢ z

In the sorting problem, a system would first achieve x < vy, by using the segment sort 2(x
y). This program would then be modified to achieve the second condition y s 2. But adding
sort2(y z) at the end of the program will not work becsuse it destroys the truth of the
protected condition x s y.

However, in ganeral, a goal may be achieved by inserting modifications at any point in
the program, not merely at the end. Introducing the two instructions

Ity < x then sort2(x y)
If x y then sort2(y 2)

at the beginning of the program segment would simuitaneously achieve both conditions x y
and y z. The resulting program would be

Ity ¢ x then sort2(x 2)
it x Cy then sort2(y 2)
sort2(x y) .

Status

Currently, the DEDALUS implementation Incorporates the principles of conditional
formation, recursion formation (including the termination proofs), and procedure formation, but
It does not include generalization or the formation of structure-changing programs. The
techniques for deriving straight-line structure-changing programs were implemented in a
separate system (see Waldinger, 1077).

Conditional formation and recursion formation are well understood. The method for
proving termination of ordinary recursive calls does not always extend to the multiple-
procedure case. The generalization mechanism and the extended procedure formation
principle are just beginning to be formulated.

The derivation of straight-line programs with simple side-effects is fairly well
understood, but much work needs to be done on the derivation of structure-changing

62 Automatic Programming

programs with conditional expressions and loops, as well as on the derivation of programs
that alter list structures and other complex deta objects.

The DEDALUS system is impiemented in QLISP (Wilber, 1976), an extension of
1 INTERLISP (Teiteiman et al., 1078) that includes pattern-matching and backtracking facilities.
The full power of the QLISP language is avaliable in expressing each rule since the rules are
represented as QLISP programs in a fairly direct manner.

To date, these are some of the representative sampies of the programs constructed by
the current DEDALUS system:

Numerical Programs:

- the subtractive gcd algorithm,

- the Euclidean gcd algorithm,

- the binary gcd algorithm, and

= the remainder of dividing two integers.

List Programs:

- finding the maximum element of a list,

- testing if a list is sorted,

- testing if a number is less than every element of a list
of numbers (lessall)), and

- testing if every element of one list of numbers is less
than every element of another.

Set Programs:

- computing the union or intersection of two sets,

- testing if an element belongs to a set,

- testing if one set is a subset of another, and

- computing the cartesian product of two sets (cart).

References

See Balzer (1972), Balzer, Goldman, & Wile (1977b), Boyer & Moore (1975), Buchanan
& Luckham (1974), Burstell & Darlington (1977), Dijkstra (1976), Dijkstra (1976), Green
(1976b), Guttag, Horowitz, & Musser (1976), Heidorn (1976), Manna & Waldinger (1978),
Siklossy (1974), Sussmen (1075), Teiteimen et al. (1978), Waldinger (1977), Warren
(1974), Warren (1976), and Wiber (1070).

H PROTOSYSTEM | 63

H. PROTOSYSTEM |

PROTOSYSTEM |, an automatic programming system designed by William Martin, Gregory
Ruth, Robert Baron, Matthew Morgenstern, and others of the MIT Laboratory for Computer
Science, Is part of a larger research project aimed at modeling, understanding, and
automating the writing of a data-processing system. Hereafter the data-processing system
is referred to as a data-processing program, in accord with this chapter's terminology, which
refers to the output of an automatic programming system as a program. A model of the larger
research project was developed that consists of five phases. The successive phases can
be viewed as a series of transformations of the descriptions of the target program, beginning
with a global conceptual description of the problem at hand and progressing, through
increasing specificity, toward a detailed machine-level solution. The aim of the project is to
develop stages of an automatic programming system where each corresponds to one of the
five phases of the model and each embodies the particular knowledge and expertise for that
phase.

Phase 1: Problem Definition--The specification of the data-processing program Iis
expressed in domain-dependent terms in English.

Phase 2: Specification Analysis and System Formulation--The specification in Phase 1
iIs viewed as a data-processing problem. This problem is solved, yielding a data-processing
formulation of the desired program.

Phase J: Implementation--The procedural steps, data representation, and organization
of the target are determined by intelligent selection from, and adaptation of, a set of
standard implementation possibiiities.

Phase 4: Code Generation--The implementation of Phase 3 is transformed into code in
some high-level language (e.g., PL/I).

Phase 5: Compilation and Loading--The high-level code is transformed into a form that
cen be "understood” and executed by the target computer.

The first two phases involve such Al areas as natural language comprehension, program
model formation, and problem solving. Since these areas are still in the process of evolution,
the development of the first two phases has been deferred. At present, PROTOSYSTEM Iis
limited to the automation of phases 3 and 4 since It was felt that these phases were much
more amenable to solution. Thus, the current PROTOSYSTEM accepts a specification in terms
of abstract relations (in a very high-level language called SSL), and then designs an
optimized data-processing program and generates code for an efficient implementation. In
automatic programming It is usually impossible for a system to carry out a search for the
absolutely optimal impiementation; instead, a system works at optimizing a program only to &
degree.

The particular problem area of PROTOSYSTEM | is that of 1/0 intensive (file manipulation
and updating), batch-oriented, data-processing programs. Included in this area are programs
for inventory control, payroll, and other record-keeping systems.

The specification maethod uses a description of the desired data-processing program in
the SSL language. An SSL specification consists of a data and a computation division. The

64 Automatic Programming

data division gives the names of data sets (conceptual aggregations or groupings of data),
their keys, and their period of updating. The computation division specifies for each
computed file the caiculations to be performed when it is computed. Figure 1 illustrates an
SSL speciftication of a data-processing program for a wareghouse inventory. In the proposed
problem, the warehouse stocks a number of different kinds of items that are sent out daily to
various stores. The data-processing program's task is to keep track of inventory levels,
which items and how many of each item should be reordered from the producer (an item is
reordered when less than 100 remain in stock), and how many items are received from the
producer. In the data division are data sets (e g., shipments-received, beginning-inventory,
total-items, etc.), and in the computation division are the computation steps that involve
these data sets (e.g. for each item, the beginning inventory is computed by adding the
shipments received to the final inventory from the previous day).

After receiving the SSL specification of the desired program, PROTOSYSTEM transforms
it into an efficient target language impiementation consisting of a collection of PL/| programs
and its JCL ("Job Control Language”) for the IBM 360 system. To accomplish this
transformation, the following specific desian decisions are made with the goal of achieving an
efficient implementation:

(a) Design each keyed file, deciding what are to be its data items, organization
(consecutive, index sequential, regional), storage device, associated sort
ordering, and number of records per biock;

(b) design each job step, determining which computations the step is to include,
its accessing method (sequential, random, core tabie), its driving data
set(s), and the order (by key vaiues) in which the records of its input data
sets are to be processed,

(c) determine whether sorts are necessary and where they should be performed;
and

(d) determine the sequence of job steps.

Generally, these design decisions, especially the central ones of determining the final
target data sets, computation steps, and sequencing of computation steps, are made by
exploring the different ways of combining data sets and computation steps. The system
carries out these explorations with the goal of minimizing the number of file accesses made
during the run-time of the target implementation. Sometimes, as explained below, the system
also will seek to minimize 8 more detailed cost estimate of the target implementation.

Described in greater detail in the next section, the method employed by PROTOSYSTEM
for achieving an efficient implementation does not rely solely on heuristics but instead uses
what is essentially a dynamic programming aigorithm with heuristics added to the aigorithm,
so that it can finish in a reasonable amount of time. An advantage of dynamic programming is
that it cen provide @& good handie on giobal optimization when the results of individual
decisions have far-reaching and compounding effects throughout the design of the data-
processing progrem.

H PROTOSYSTEM | (1]

Operation

Although the actual optimization process Is performed by the optimizer module, several
other modules provide preparatory and support services. First, the structural analyzer module
generates predicates for the operations in the SSL computation division. These predicates
indicate the conditions under which data Items in a data set will be either accessed or
generated during an operation. For example, the condition

(DEFINED A (k1)) = (OR (DEFINED B (k1)) (DEFINED C (k1)))

would indicate that there is a record in data set A for a value of the key, k1, only when at
least one of the data sets B or C has a record for that value of the key. The structural
analyzer also produces candidate driving data sets for each operation in the computation
division. A driving data set of an operation is a data set whose records are "walked through”
once in order of their occurrence--i.e., the operation is executed once at each step
(record)--to drive the operation.

The predicates produced by the structural ana . :zer are then used by the question-
answering module to provide information to the optimizer about the average number of 1/O
accesses implied by tentative configurations (i.e. tentative choices for the data sets and
computation steps) of the target implementation. The question-answering module maintains a
knowledge base consisting of the predicates, characteristics of the data, as well as
information obtained from interaction with the user, such as average data set size or the
probability of a predicate fragment being true. This knowledge, along with knowledge about
the probability calculus, is used to answer questions about the size of a data set and about
the average number of items in the data set that are likely to satisfy a certain predicate
(e.g., an access predicate). When the knowiedge is insufficient to answer an optimizer
question, the question answerer initiates a dialogue with the user in order to elicit enough
additional ln'ov:u"on to proceed.

The optimization process itself Is performed by the optimizer module. This module
intermittently obtains Information from the question answerer about 1/0O accesses of
tentative configurations of parts of the data-processing program, in order to explore the
effects of such design parameters as the number of records per biock, the file organization,
the data items that are collected Into a single dats set, and the computations that are
performed during a single reading of a file or files. Since the problem area of PROTOSYSTEM
is that of 1/0 intensive programs, the optimizer expilores the various design parameters with
the goal of minimizing the number of file accesses of the target language implementation (ot
the data-processing program). Sometimes, however, after a8 number of more important design
decisions have been made, the optimizer will explore design decisions by computing a more
detailed cost estimate that attempts to approximate the charging structure of the particular
installation on which the target system is to run (e.g., disc space, core residency charges,
explicit 1/0, etc.).

The central part of the optimization process is concerned with the the exploration of
various ways of setting up data sets and computation steps. Basicailly, the optimization
module starts with the data sets and computation steps in the data division and computation
division of the SSL specification. Then, with the goal of minimizing the number of file
accesses, the module looks at data-processing programs that use various aggregations of
these initisl data sets and computation steps (an aggregation of two or more data sets is a

66 Automatic Programming

data set that has all the data items of the original data sets, while an aggregation of several
computation steps is a computation step that performs the functions of the original steps).
The optimizer explores aggregating data sets and aggregating computation steps and
develops and utilizes constraints on the sort order of both data sets and computation steps
(an example of a sort order constraint on a data set would be when the data set should have
its records sorted on a particular key first).

To avoid the problem of combinatorial explosion, the module uses a form of dynamic
programming with heuristics. Loosely speaking, one may say that dynamic programming is &
set of parameterized recursive equations, which, in this case, express the cost of optimized
longer segments of the program in terms of optimized shorter segments. A pure dynamic
programming algorithm, though it would find the absolute optimum target implementation, would
require an extreme amount of time to do so. Therefore, in order that the aigorithm finish in a
reasonable time, a number of heuristics have been employed in the algorithm, including
decoupling decislons where possible (and sometimes even where It is not completely
possible) and carrying out local optimizations before making adjustments for global concerns.
A full explanation of the algorithm Is found in Morgenstern (1976).

Status

The SSL specification language has been completely defined and there s an
operational implementation of PROTOSYSTEM in MACLISP on the MIT LCS PDP-10. The system
is capable of producing acceptlable targetl language impiementations. From a larger
perspective, the PROTOSYSTEM | project has developed a 5-phase model of the process of
writing a data-processing program (system), from its conception to its implementation as
executable code. Twenty years ago, the fifth phase, compilation and loading, was
automated. At present, a preliminary theory and automation of the third and fourth phases,
the generation of the system and transiation into high-level code, are embodied in
PROTOSYSTEM |. It is felt that within the next decade the theory and automation of the
remaining two phases, Including problem definition, specification analysis, and system
formulation, should easily fall within the reaim of presently developing Al technologies.

DATA DIVISION
FILE SHIPMENTS-RECEIVED FILE QUANTITY-ORDERED-BY-STORE
KEY IS ITEM KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY
FILE BEGINNING-INVENTORY FILE TOTAL-SHIPPED
KEY IS ITEM KEY IS ITEM, STORE
GENERATED EVERY DAY GENERATED EVERY DAY
FILE TOTAL-ITEM-ORDERS FILE FINAL-INVENTORY
KEY IS ITEM KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY
FILE CQJANTITY-SHIPPED-TO-STORE FILE REORDER-AMOUNT
KEY IS ITEM, STORE KEY IS ITEM
GENERATED EVERY DAY GENERATED EVERY DAY

r"‘"’@::—“*"" e~ e v e B

H PROTOSYSTEM |

COMPUTATION DIVISION

BEGINNING-INVENTORY IS
FINAL-INVENTORY (from the previous day) ¢+ SHIPMENTS-RECEIVED
TOTAL-ITEM-ORDERS IS SUM OF QUANTITY-ORDERED-BY-STORE FOR EACH ITEM

QUANTITY-SHIPPED-TO-STORE IS
QUANTITY-ORDERED-BY-STORE IF BEGINNING-INVENTORY IS
GREATER THEN TOTAL-ITEM-ORDERS

ELSE
QUANTITY-ORDERED-BY-STORE
* (BEGINNING-INVENTORY / TOTAL-ITEM-ORDERS)
IF BEGINNING-INVENTORY IS NOT
GREATER THEN TOTAL-ITEM-ORDERS
TOTAL-SHIPPED IS SUM OF QUANTITY-SHIPPED-TO-STORE FOR EACH ITEM
FINAL-INVENTORY IS BEGINNING-INVENTORY - TOTAL-SHIPPED
REORDER-AMOUNT IS 1000 IF FINAL-INVENTORY IS LESS THAN 100.

Figure 1: SSL relational description for a data processing program.

! References

See Baron (1977), Morgenstern (1976), Ruth (1976a), Ruth (1978), and Ruth (1979).

68 Automatic Programming

I. NLPQ: Natural Language Programming for Queuing Simulations

The Natural Language Programming for Queuing Simulations (NLPQ) project was begun
by George Heidorn at Yale University in 1967 as a doctoral dissertation and completed at the
Naval Postgraduate School during the years 1968-1972. The problem area is that of
simulation programs for simple queuing problems. The queuing problem's specification occurs
during an English dialogue In which the user and the NLPQ system each can furnish
information to, and request information from, the other. From this dialogue, the NLPQ system
creates and maintains a partial internal description of the queuing problem. This partial
description is used to answer any questions that the user may ask; it is used to generate
questions that are to be asked of the user; and when eventually completed by the dialogue
activity, It is used to generate the implementation of the simulation program in the target
language GPSS. The system's processing -- including creating the problem description and
generating the GPSS program, as well as transiating and generating sentences--is specified
by production rules.

Specification

In the English dialogue that constitutes NLPQ's method of specification, the user can
make statements, give commands, ask questions, and answer questions. During this process
the system can ask and answer questions and respond to commands. In the very brief
dialogue of Figure 1, most of the features of the specification method are illustrated in a
simple way (other more complex dialogues are presented in Heidorn, 1972, Heidorn, 1974,
Heidorn, 1976b, and Heidorn, 1976). In the dialogue, line numbers have been added for
purposes of reference; and the lower case typing was done by the user, while the UPPER
CASE typing was done by the computer.

The particular specification concerns a queuing problem about cars that arrive at a
station, get serviced, and leave. The user initially volunteered some information aboutl how
often the cars arrive and about the sequencing of actions, in lines 1 and 2, and then asked
the system what other information was needed to complete the queuing model, in line 3. In
lines 4 through 9, the system asked questions about times and actions, which the user
answered, until the problem statement was compiete, in line 10. Then in line 11 the user
asked a specific question about the queuing model concerning the mean time needed to
service a car, a question that the system answered in ine 12. In line 13 the user told the
system to produce a description of the entire problem in English for verification purposes,
which it did, in line 14. Finally, in response to the user command in line 15, the system
produced the GPSS program, in line 16, complete with English comments (preceded by *) and
meaningful symbolic names. The time required for the NLPQ system to process this sample
specification and to produce the GPSS program was 8 seconds of virtual CPU time on an IBM
370/168 running LISP.

] ** EVERY 6 MINUTES A CAR ARRIVES AT A STATION.

2 "* AFTER ARRIVING, IT IS SERVICED AT A PUMP.

7 ** IS THE PROBLEM STATEMENT COMPLETE?

4 How lonqg are the cars serviced at the pump?

5 ** FROM 3 TO 7 MINUTES.

6 After being serviced at the pump, what do the cars do?
7 "* THEY LEAVE THE STATION.

8 How long shall the simulation be run?

cali

| NLPQ: Natural Language Programming for Queuing Simulations

9 "% 10 HOURS; USE 1 MINUTE AS THE BASIC TIME UNIT.
10 The problem statement is complete.
11 ** WHAT IS THE MEAN OF THE TIME TO SERVICE CARS?
12 The mean of the uniform distribution is 5 minutes.
13 ** DESCRIBE THE PROBLEM IN ENGLISH.
14 The cars arrive at the station every 6 minutes.
After arriving at the station, the cars are serviced at the
pump. The time for the cars to be serviced at the pump is
uniformly distributed, with a mean of 6 minutes and a
halt-range of 2 minutes. After being serviced at the pump,
the cars leave the station.
The simulation is to be run for 10 hours, using a
basic time unit of 1 minute.
15 ** WRITE THE GPSS PROGRAM.
SIMULATE
STATY EQU 1.F.Q
PUMP2 EQU 2FQ
CAR1 EQU 1.7
1 TABLE M1,11.2
. THE CARS ARRIVE AT THE STATION.
GENERATE 6
ASSIGN 1,CAR1

THE CARS ARE SERVICED AT THE PUMP.
ACT1 QUEUE PUMP2

SEIZE PUMP2

DEPART PUMP2

ADVANCE 65,2

RELEASE PUMP2

a
" THE CARS LEAVE THE STATION.
ACT3 TABULATE P1
TERMINATE
L]
" TIMING LOOP
GENERATE 600
TERMINATE 1
START 1
END

Figure 1. A very brief NLPQ dialogue.

Operation

The processing to be done by NLPQ is specified by sets of production rules written in a

language designed especially for this system. “"Decoding” rules specify how strings of

70 Automatic Programming

English text are to be converted into records in a semantic net, and “"encoding" rules specify
how records are to be converted into text. These rules are basically phrase structure
grammar rules Natursl Language.Bl, but they are augmented with arbitrary conditions and
structure-building actions .

The representation of the internal description of the simulation problem as well as the
representation of the syntactic and semantic structures are in the form of a semantic
network RepresentationB2. A network consists of records that represent such things as
concepts, words, physical entities, and probability distributions. Each record is a list of
attribute-value pairs, where the vaiue of an attribute is usually a pointer to another record
but may sometimes be simply a number or character string.

Prior to a queuing dialogue, the system is given a network of about 300 "named"
records containing Information about words and concepts relevant to simple queuing
problems. Also, it is furnished with a set of about 300 English decoding rules and 5600 English
and GPSS encoding rules. As the dialogue progresses, the system uses the information it
obtains from the English dialogue to build end complete a partial description of the desired
simulation, a description that is in the form of a network called the Internal Problem
Description (IPD).

Basically, an IPD network describes the flow of mobile entities, such as vehicles,
through a framework consisting of stationary entities, such as pumps, by specifying the
actions that take place in the framework and their interrelationships. Each action is
represented by a record whose attributes furnish such information as the type of action, the
entity doing the action (l.e., the agent), the entity that is the object of the action, the
location where it happens, its duration, its frequency of occurrence, and what happens next.
For example, the action "The men unioad the truck at a dock for two hours™ could be
represented by the record:

Rl: Txpc unload
gent men
Object truck
Location dock
Duration 2 hours

From the English dialogue the NLPQ system must obtain all the information needed to
build the IPD. Thus, the user must describe the flow of mobile entities through the queuing
model by making statements about the actions that take place and about the relations
between these actions. Each mobile entity must "arrive™ at or "enter" the model. Then it
may go through one or more other actions, such as "service," "load," "unioad," and "wait.”
Then, typically, it "leaves™ the model. The order in which these actions take place must
eventually be made explicit by the use of subordinate clauses beginning with such
conjunctions as "after,” "when,” and "before,” or by using the adverb "then." If the order of
the actions depends on the state of the queuing model, an "if" clause may be used to
specify the condition for performing an action; a sentence with an "otherwise" in it is used
to give an alternative action to be performed when this condition is not met.

The information needed to simulate the problem, including the various times invoived,
must also be furnished by the English dialogue. It is necessary to specify the time between
arrivals, the time required to perform each activity, the length of the simulation run, and the

| NLPQ: Natural Language Programming for Queuing Simulations 71

basic time unit to be used in the GPSS program. Inter-event and activity times may be given
as constants or as probability distributions, such as uniform, exponential, normal, or empirical.
The quantity of each stationary entity should also be specified, unless 1 is to be assumed.

The user may either furnish this information in the form of a complete problem
statement or state some part of it and then let the system ask questions to obtain the rest
of the information, as was done above in lines 1 through 10 of Figure 1. The latter method
results In a scan of the partially built IPD for missing of erroneous information and the
generation of appropriate questions. Each time the system asks a question, it i1s trying to
obtain the value of some specific attribute that will be needed to generate a GPSS program.
To furnish a value for the attribute, the question may be answered by a complete sentence
or simply by a phrase.

The user may ask the system specific questions about the queuing model, and then the
system generates the answers from the information in the appropriate parts of the IPD. In
order to check the entire IPD as it exists at any time, the user may request that an English
problem description be produced. Such a description consists of all the information in the IPD
as it is converted into English by the encoding ruies (see line 14 of Figure 1). Specificaliy,
for each action in the IPD, the system generates one or more statements descrnbing the type
of action, its agent, object, location, what action it any follows (if none, a new paragraph is
started), and, If applicable, an inter-event time or duration. Conditional successor actions
may result in two sentences, with the first one having an "if" clause in it and the second one
beginning with "otherwise." After all of the actions have been described, a separate one-
sentence paragraph is produced with the values of the run time and the basic time unit.

After the dialogue is finished and all the required information is obtained, NLPQ uses the
IPD and the GPSS encoding rules to produce the desired program in the GPSS target
language. Such a program was listed in 16 of Figure 1. At the beginning of this program, the
definitions for the stationary entities, mobile entities, and distributions are given. Then, for
each action, a comment consisting of a simple English action sentence is produced, followed
by the GPSS statements appropriate to this action. For example, an “arrive" usually
produces a GENERATE and an ASSIGN; a "leave"” produces a TABULATE and a TERMINATE; and
most activities produce a sequence like QUEUE, SEIZE, DEPART, ADVANCE, and RELEASE.
These are usually followed by some sort of TRANSFER, depending upon the type of value that
the action's successor attribute has. Finally, the GPSS program closes with a "timing loop"
to govern the length of the simulation run.

Status

Though this project was "completed." a system ready for production use was not
developed. The NLPQ prototype, however, was demonstrated several times on a variety of
problems. Although the capabilitics of the implemented system are limited, the research did
establish an overall framework for such a system, and useful techniques were developed.
Enough details were worked out to enable the system to carry out interesting interactions,
as evidenced by the longer more complicated dialogues found in the first four references at
the end of this article. More details of the processing done by this system can be found in
any of the references , especially Heidorn, 1072, which is & 376-page technical report.

T

T2 Automatic Programming

References

See Heldorn (1972), Heidorn (1974), Heidorn (1975a), Heidorn (1876b), and Heidorn
(1976).

J LIBRA 73

J. LIBRA

LIBRA, the efficiency analysis expert of the PSI system (Article D2) is being developed
by Elaine Kant in conjunction with the PSI project at Systems Control, Inc., and at Stanford
University. The PSI system, through interaction with the user, constructs a very higk-level
program specification called the program model. Then LIBRA, working together with the
PECOS coding expert DS, converts the program model into a target language implementation.
The PECOS system supplies the transformation rules that can convert the program model into
various target language implementations. Using global efficiency analysis ("giobal analysis"
is. analysis with access to the entire program, as opposed to only a local segment), LIBRA
directs and explores the application of the transformation rules so as to produce an efficient
implementation.

The transformation process itself consists of repeated applications of transformation
rules to parts of the program, where every application results in a specification closer to a
target language implementation. Each such application of a rule is said to produce a partial
implementation or rcﬁmmmt of the program, and the transformation rules are called rc[mtnen!
rules. Thus refinement rules applied to refinements produce further refinements. Because
more than one refinement rule may be applicable to the same part of a refinement, the
transformation process produces a tree of possible refinements (the actual situation is
slightly more complicated since the order in which the rules are applied can affect the tree
that Iis produced). To avoid the problem of combinatorial explosion, LIBRA develops oniy part
of the tree. A disciLssion of the details of this process follows.

it is LIBRA's function to analyze and guide the development of the refinement tree in
order to achieve an efficient implementation. LIBRA determines what parts of the program to
expand next and what parts not to expand at ail. In particular, when more than one
refinement rule is e¢pplicable, LIBRA may decide to apply them all so that the resulting
refinements can be considered in greater detail; or LIBRA may decide to apply only one of

" the rules. in the latter case, the refinement is implemented directly in the current node of

the tree, and the other possibilities are permanently forgone.

One of the most important ways in which LIBRA attacks the problem of combinatorial
explosion is by estimating the efficiency of possible target language implementations. For
each refinement in the troe, LIBRA maintains two cost estimates; the estimates are in the
form of symbolic algebraic expressions that give the time and space requirements needed to
execute a certain kind of target language implementation. The first estimate is the default
cost that might result if all the constructs and operators in the refinement were assigned
default implementations. The second is the optimistic cost estimate that might resuit
assuming: (a) certain efficient implementation techniques that have worked in similar
situations will prove succesful in the present situation, and (b) LIBRA expends enough of its
own resources of time and space to carry out these implementation techniques.

Treating these two costs as upper and lower bounds on the costs of possible target
language implementations of the refinement, LIBRA obtains important guidance in directing the
growth of the refinement tree. These upper and lower bounds can be used to prune a branch
of the refinement tree (without further consideration of the branch) or to caiculate the
effect of a partial implementation decision on the global program cost. As discussed below in
the RULES section, the upper and lower bounds are used to direct attention to high impact
areas, those areas where effort is likely to yield the greatest increases in overall efficiency.

.

T2 Automatic Programming

Another feature of the LIBRA system, a feature implicit in the above. is the knowledge
LIBRA has about the use and limits of its own resources of available time and space. This
teature is important because no system can devote unlimited effort to finding an efficient
implementation. Effort must be allocated. The way in which LIBRA performs ttus atiocation ts
to assign available resources to high impact areas, where the resources will do the most
good. The RULES section will present the method used to compute impact, as well as
examples and uses of resource knowledge.

LIBRA also includes mechanisms to assist in the acquisition of new programming
concepts. When new high-level constructs are added (such as new types of sorts, or
trees), new efficiency knowledge is needed to analyze these concepts (their subparts,
running times, data structure accesses, and so on). (IBRA has a model of programming
concepts that is consulted when new concepts are added. Some of the necessary
information can be deduced automatically, and the user is asked specific questions to obtain
the rest. To help construct these estimation functions, LIBRA provides a semi-automatic
procedure for deriving cost estimation functions from the set of cost functions for the target
language constructs

The knowledge for managing resources, computing upper and iower cost estimates,
directing attention to different parts of the tree, making impiementation decisions, and, n
general, for analyzing and directing the growth of the tree is in the form of rules. Each rule
consists of a condition and an action to be performed if the condition is met. The knowiedge
that a ruie expresses can easily be modified since the rules are replaceable and can be
added, deleted, or altered without requiring a modification to the system itseif.

Rules

The rules in LIBRA's knowledge base generally can be divided into three qgroups:
attention and resource management rules, plausibie-implementation rules, and cost-analysis
rules

Attention and resource management rules describe when to shift attention to other
nodes in the tree and also how to set priorities for refining the different constructs and
operations within a refinement node. Some of the more important of these rules determine
how LIBRA's own resources of available time and space are to be allocated, on the basis of
where they will have the greatest impact One of the ways of determining impact is to
consider the difference between the upper bound cost estimate (assuming default
implementations) and the optimistic lower bound cost estimate (assuming both the successful
application of efficiency techniques that have worked in similar situations and the sufficient
expenditure of resources to carry the techniques to completion). Other rules in this group
state how to shift attention among nodes. These rules (a) cause complex programs to be
expanded early in order to see what decisions are involved, (b) postpone triviai decisions
until important ones are made, (c) look at all refinements in the tree and select for
development the one whose optimistic cost estimate is least (when resources for developing
a partici’'ar refinement are exhausted), and (d) apply a form of branch and bound which
states that (when resources sllocated for considering a particular decision are exhausted)
attention should be directed to the whole tree and that ali nodes whose optimistic cost
estimate Is worse than the default estimate of some other node should be eliminated. As
described later, when cost analysis ruies compare estimates, they take into account the
degree of uncertainty in the estimate.

J LIBRA 75

Plausible implementation rules express heuristics about when to limit expansion of
nodes, by making a decision about some part of an implementation. For example, when the
question of how to represent a set first arises, LIBRA performs a global examination of the
program to determine all uses of the set. If there are many places where the program checks
for membership In the set, then a hash-tabie representation may be suggested. In general,
plausible implementation rules express knowledge derived by human or machine analysis of
commonly occurring situations, such as which sorting techniques are best for different size
inputs. These rules also contain heuristics to make quick decisions. Thus, if LIBRA is running
out of resources, heuristics that are not as dependabie as the one just described are used
to make decisions on the spot, without creating any new nodes. These heuristics generally
express defaults, such as "use lists rather than arrays if the target language is LISP"; they
are used to make the less important decisions or to make ali decisions if the total resources
for writing a program are nearly exhausted.

The final group, the cost-analysis rules, express how to compute, update, and compare
upper and lower boumd estimates of the cost of the final implementation. The cost estimates
are in the form of symbolic algebraic expressions that may involve variables representing set
sizes. The cost estimates are not computed once and for all;. Whenever a refinement in the
tree is further refined (1.e., a refinement rule i1s applied to some part of a node in the subtree
whose root is the refinement), then the cost estimates associated with the refinement are
tncrementally updated so as to produce estimates that are more accurate in view of the new
information Cost estimates are constructed from a knowledge base that includes information
on upper and lower bounds on costs for time and space usage by individual constructs and
operations, and on how to combine such cost estimatzs for composite programs. The
knowledge needed to incrementally update the cost estimates s contamed in rules
corresponding to the particular construct or operation. The method of comparing the cost
estimates of different refinements involves the addition of a bonus to the refinement that
has a greater degree of completion and that consequentiy has a greater certainty in its cost
estimates (default and optimistic). This feature favors a nearly complete refinement that
has a shghtly worse lower bound over a less complete (more abstract) refinement that has a
slighiiv better lower bound Such a preference is desirable since the cost estimate of the
more abstract refinement is less certain and therefore may not be achievable. By giving a
bonus for the degree of completion, the cost analysis rules take into account the likelihood of
being able to achieve the cost estimate.

Status

LIBRA has guided the application of the PECOS refinement rules to produce efficient
implementation of several variants of simple database retrieval, sorting, and concept
formation programs (see PSi article for an example of a concept formation program). Current
plans include extending the problem area to include simpie algorithms for finding prime }
numbers and for reaching nodes in a graph. For an efficiency expert to be of use in a j
compiete automatic programming system, a good deal more research is needed. Higher level
optimizations, extended symbolic analysis and comparison capabilities, and more domain
expertise are some obvious extensions. Automatic bookkeeping of heuristics and perhaps
even automatic generation of heuristics from an analysis of symbolic cost estimates of target
language concepts are some long-range goals. in order to write more complex programs such
as compilers or operating systems, more efficiency ruies would have to be added to the
system, rules about concepts such as bit-packing, machine Interrupts, and multiprocessing.

76 Automatic Programming

However, even with such additions, the efficiency techniques employed by the LIBRA system
should be significant in controlling the problem of combinatorial expiosion that occurs during
the search for efficient implementations.

This article closes with the description of an exampie illustrating LIBRA's present
operation producing a simpie sort program.

Exampile

Suppose that a SORT is specified as a transfer of elements from a SOURCE sequential
collection to a TARGET sequential collection that is ordered by some relation such as LESS-
THAN. After the application of some preliminary refinement ruies that do not require any
decisions as to alternative choices, three choice points remain: choosing a transfer order,
and choosing representations for SOURCE and for TARGET.

attention first to that choice point. A heuristic rule is applied that suggests the use of either
an insertion sort from list to list or array to array, or a selection sort from list to array. The
different refinement possibilities are added to the tree accordingly. tach of the branches is
given a limted amount of resources and told to focus attention only on the parts of the
program directly relevant to the transfer order decision

Since the transfer order is selected as the most important decision. LIBRA directs l{

ot e 2

Aftar these branches are refined within the limits of the assigned resources, the nodes
of the tree are compared. Branch and bound does not eliminate any of the sternatives here,
but the insertion branch is selected ss it has the best lower bound (takmg into account ,
factors related to uncertainty of estimates). 3

Refinement then proceeds in that node. The choice of a list or array representation for
the TARGET is made by & heuristic that says that lists are easer to manipulate than arrays n
LISP. This heuristic was applied because much of the time and space resources allocated
for finding an implementation had been consumed in the sbove tasks and a quick decision
was required. The choice of a list representation for TARGET forces s list representation for ; ‘
SOURCE because of a suggestion made under the transfer-order heuristic. Thereafter. the
refinement process is basically straightforward, though several choices of whether to store
or recompute local variables are made.

References

See Barstow (1970), Barstow & Kant (1977), Green (1976b), Green (1877). Green &
Barstow (1978), Kant (1877), Kant (1878), Kant (1970), and McCune (1877).

References 77

References

Automatic Coding. Proc. of the Symposium, Franklin Institute, Philadelphia, PA, January
1967.

Aho, A. V., Hopcroft, J. E., & Uiiman, J. D. The Design and Analysis of Computer Algorithms
Reading, Mass.: Addison-Wesley, 1874.

Allen, F. E., & Cocke,J. A catalogue of optimizing transformations. In R. Rustin (Ed.),
Design and Optimization of Compilers, Proceedings of the Courant
Computer Science Symposium 6. Englewood Cliffs, N.J.: Prentice-Hall, 1972. Pp. 1-
30

Allen, F. E., & Cocke, J. A program data flow analysis procedure. Communications of the
ACM, 1076, 19(3), 137-147

Amarel, S. Representation and modehng in problems of program formation. In B. Meitzer &
D. Michie (Eds.), Machine Intelligence 6 New York: American Elsevier, 1972.
Pp. 411-466

Balzer, R. M. Dataless programming. Proceedings FJCC, 1967, 31, 635-544.

Balzer, R. M Automatic Programming. information Sciences Institute Tech. Memo
1. University of Southern Calitornia, Marina Del Rey, 1872.

Balzer, R. M. CASAP: A testbed for program flexibility. IJCAI 3, 1973, 601-605. (a)

Balzer, R. M A gilobai view of automatic programming. IJCAI 3, 1973, 404-499. (b)

Balzer, R M A Language-independent programmer's interface. Information Sciences
Institute Report RR-73-15, University of Southern California, Marina Del Rey, November
1973 (c)

Balzer, R. M. Muman Use of World Knowledge. Information Sciences Institute Report USC-
ISI RR-73-07, University of Southern California, Marina Del Rey, March 1874 (ARPA
Order 2223/1)

Balzer, R. M., & Goldman, N. Principles of Good Software Specification and Their Implications
for Specification Languages. Proc. of the IEEE Specifications of Reliable Software
Cont., Cambridge, April 1970.

Balzer, R. M., Goldman, N.. & Wile, D. On the Transformational Implementation Approach to
Programming. 2nd Int. Conf. on Software Engineering, October 1876, pp. 337-344.

Balzer, R. M., Goldman, N., & Wile, D. informality in program specification. lWJCAI 6, 1877, 380-
397. (a)

Balzer, R. M, Goldman, N., & Wile, D. Mets-evaluation as e tool for program
understanding. WCAI 6, 1877, 308-403. (b)

78 Automatic Programming

Baizer, R. M, Goldman, N., & Wile, D. On the Use of Programming Knowledge to Understand
Informal Process Descriptions. SIGART Newsletter, No. 63, June 1977, pp. 72-
76. (c).

Balzer, R. M, Goldman, N, & Wile, D. Informaiity in Program Specifications. IEEE
Transactions on Software Engineering, 1978, SE-4(2), 94-103.

Balzer, R. M., Greenfeld, N., Kay, M., Mann, W., Ryder, W., Wiiczynski, 0., & Zobrist, A.
Domain independent automatic programming. IFIFP, 1974, 326-330.

Baron, R. V. Structural Analysis in a Very High Level Language, Master's thesis, MIT,
1977

Barstow, 0. A Knowledge based system for sutomatic program construction. IJCAI 6, 1977,
382-388. (a)

Barstow, D. A knowledge base organization for rules about programming. Proc. of the
Workshop on Pattern Directed Iinference Systems. SIGART Newsletter, No. 63, June
1977, pp. 18-22. (b)

Barstow, D Automatic Construction of Aigorithms and Data Structures using a
Knowledge Base of Programming Rules, Al Memo 308, Computer Science Dept.,
Stanford University, November 19077. (c)

Barstow, D Codification of programming knowledge: Graph algorithms, TR-14Q,
Computer Science Dept., Yale University, December 1978.

Barstow, 0. Knowiledge-based Program Construction. tisevier: North Holiand, 1979.

Barstow, D. R, & Kant, E. Observations on the interaction between coding and efficiency
knowledge in the PSI| system Proc. of the 2nd Int. Conf. on Software Engineering,
Computer Society, Institute of tlectrical and Eiectronics Engineers, Inc., Long Beach,
CA, October 1977, pp. 19-31

Bearth, J M. An interprocedural data fiow analysis aigorithm. Fourth ACM Symposium on
Principles of Programming Languages, Los Angeies, CA, January 1077.

Bauer, M. A basis for the acquisition of procedures from protocois. IJCAI 4, 1976, 226-231.

Biermann, A. W. Computer program synthesis from computation traces. Symposium on
Fundamental Theory of Programming. Kyoto University, Xyoto, Jepan, October
1972. (a) o

Biermann, A. W. On the inference of Turing machines from sampie computations. Artificial
Intelligence, 19072, 3, 181-108. (b)

Biermann, A. W. The Use of Examples in Program Construction and Debugging. ACM
'76: Proceedings of the National Conference, Association for Computing Machinery,
New York, 1976. Pp. 242-247.

References 79

Biermann, A. W. Approaches to automatic programming. In M. Rubinoff & M. C. Yovits
(Eds.), Advances In Computers (vol. 16). New York: Academic Press, 1976. Pp. 1-

63. (a)

Biermann, A. W. Regular LISP Programs and Their Automatic Synthesis trom Examples,
CS-1976-12, Dept. of Computer Science, Duke University, June 1976. (b)

Biermann, A. W., Baum, R. |, & Petry, F. E. Speeding up the synthesis of programs from
traces. IEEE Transactionson computers, February 1976, C-24, 122-136.

Blermann, A. W., & Krishnaswamy Constructing programs from example computations, OSU
CISRC TR-74-5, August 1974.

Blermann, A. W., & Feldman, J. A. On the Synthesis of Finite-state Acceptors, Al Memo
114, Al Lab, Stanford University, April 1970.

Biggerstaft, 1. J. C2: A Super-compiler Approach to Automatic Programming. Doctoral
dissertation, Tech. Rep. 76-01-01, Dept. of Computer Science, University of
Washington, 19760.

Bobrow, D. G., & Wegbreit, 8. A model of control structures for Artificial iIntelligence
programming languages. IEEE Transactions on Computers, 1976, C-25(4), 347-353.

Bobrow, D. G., & Winograd, T. An overview of KRL, a knowledge representation
language. Cognitive Science, 1877, 1(1), 3-46.

Boyer, R. S., & Moore, J. S. Proving theorems about LISP Functions. JACM, 1976, 22(1).
129-144

Brown., G. P. A Framework for Processing Dialogue, TR-182, Laboratory for Computer
Science, MIT, June 1977.

Brown, R. Use of Analogy to Achieve New Expertise, AI-TR-403, MIT Al Lab, April 1977.

Buchanan, J. R.. & Luckham, D. C. On Automating the Construction of Programs, TR-CS-
433, Artificial Intelligence Laboratory, Stantord University, Stantord, CA, May 1974.
(Also Stanford Al Memo 236)

Burstall, R. M., & Darlington, J. Some transformations for developing recursive programs.
international Conference on Reliable Software, IEEE Computer Society, April 1975,
pp. 4656-472.

Burstall, R. M., & Darlington, J. A Transformation System for Developing Recursive
Programs. Journal of the Association for Computing Machinery, 1977, 24(1), 44-67.

Chandrasekaran, B. Al--The past decade--Automatic progremming. In M. Rubinoff & M. C.
Yovits (Eds.), Advances In Computers (vol. 13). New York: Academic Press,
1976. Pp. 170-232.

Chang, C., & Lee, R. Symbolic Logic and Mechanical Theorem Proving. New York:
Academic Press, 1000.

80 Automatic Programming

Cheatham, T. E., Jr., & Waegbreit, B. A laboratory for the study of automating
programming. Proceedings of AFIPS Spring Joint Computer Conference, 1072, pp.
11-21.

Cheatham, T. E., & Townley, J. A. Symbolic Evaluation of Programs: A Look at Loop
Analysis, TR-11-76, Center for Research Iin Computing Technology, Harvard
University, 1976.

Clark, K. and Sickel, 7. Predicate logic: A calculus for deriving programs. IJCAI 6, 1977,
419-420.

Dahi, O. J., Dijkstra, E. W., & Hoare, C. A. R. Structured Programming. New York: Academic
Press, 1072.

Dahi, O. J., Myhrhaug, B., & Nygaard, K. SIMULA67 Common Base Language, Publ. No. §-2,
Norwegian Computing Centre, Osio, 1068.

Darlington, J. A Semantic approach to automatic program improvement. Doctoral
dissertation, University of Edinburgh, Scotland, 1972.

Darlington, J. Automatic program synthesis in second-order logic. IJCAI 3, 1973, 637-642.

Darlington, J. Applications of program transformation to program synthesis. In G. Huet & G.
Kahn (Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de
Recherche d'Informatique et d'Automatique, July 1876. Pp. 133-144.

Darlington, J. A Synthesis of Several Sorting Algorithms, Research Report 23, Dept. of
Artificial Intelligence, University of Edinburgh, Scotiand, July 19876.

Darlington, J., & Burstal, R. M. A System which automatically improves programs. (JCAI 3,
1973, 479-486.

Dershowitz, N., & Manna, Z. On asutomating structured programming. In G. Huet & G. Kahn
(Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de Recherche
d'informatique et d'Automatique, July 1876. Pp. 167-103.

Dershowitz, N, & Manne, Z. The evolution of programs: A system for automatic program
modification. Fourth ACM Symposium on Principles of Programming Languages, Los
Angeles, CA, Januery 1977.

Deutsch, B. G. The structure of task-oriented dislogs. in L. Erman (Ed.), IEEE Symposium on
Speech Recognition: Contributed Papers, IEEE Group on Acoustics, Speech, and
Signal Processing. The Institute of Electrical end Electronics Engineers, Inc., New
York, April 1974. Pp. 260-264.

Deutsch B. G. Establishing Context in Task-Oriented Dislogs, Tech. Note 114, Artificial
intelligence Center, Stanford Research Institute, Menlo Park, CA, September 1975.

Dijkstra, E. W. Guarded commands, nondeterminancy and formal derivation of programs.
CACM, 1976, 18(8), 4563-4567.

References 81

Dijkstra, E. W. A discipiine of programming. Englewood Cliffs, N.J.: Prentice-Hall, 1976.

Earley, J. Relational level data structures in programming languages. Acta Informatica,
1873, 2, 293-309.

Earley, J. High-level iterators and a Method for Automatically Designing Data Structure
Representation, Memo ERL-MA4256, Eiectronics Research Laboratory, University of
California, Berkeley, 1974. (a)

Earley, J. High-level operations in automatic programming. Proceedings of the SIGPLAN
Symposium on Very High-level Languages, March 1074 SIGPLAN Notices, 1974,
9(4), 34-42. (b)

Eicock, E. W., Foster, J. M., Gray, P.M.D., McGregor, J. J., & Murray, A. M. ABSET: A
programming languege based on sets: Motivation and exampies. In B. Meltzer & D.
Michie (Eds.), Machine Intelligence 6. Edinburgh: Edinburgh University Press, 1971.

Pp. 467-492.

Feldman, J A, Gips, J, Horning, J. J., & Reder, S. Grammatical complexity and inference, Al
Memo 80, Al Lab, Stanford University, June 1968.

Feldman, J. A. Towards Automatic Programming. Preprints of the NATO Software
Engineering Conference, Rome, Italy, October 1069,

Feldman, J. A. Automatic Programming, AiM-160, STAN-CS-72-265, Stanford Al Lab,
Computer Science Dept., Stanford University, February 1972.

Fenichel, R. R, Weizenbaum, J., & Yochelson, J. C. A program to teach programming. CACM,
1970, 13(3), 141-146. :

Floyd, R. W. Toward interactive design of correct programs in C.V. Freiman
(Ed.). Foundations and Systems, information Processing T71: Proceedings of IFIP
Congress 71 (vol. 1). Amsterdam: North-Holland Publishing Co., 1972. Pp. 7-10.
(Also Memo AIM-150, Report STAN-CS-71-235, Al Lab, Computer Science Dept.,
Stanford University, September 1971.)

Ginsparg, J M Natural Language Processing in an Automatic Programming
Domain. Doctoral dissertation and Memo AIM-316, Rep. STAN-CS-78-671, Al
Lab, Computer Science Dept., Stanford University, Stanford, CA, June 1978.

Goldberg, P. C. Automatic Programming, RC 6148, Computer Sciences Dept., Thomas J.
Watson Research Center, IBM, Yorktown Heights, New York, September 1974.

Goldberg, P. C. The Future of Programming for Nonprogrammers, RC 650765, Watson
Research Center, IBM, Yorktown Heights, New York, May 1976.

Goldman, N., Balzer, R. M., & Wile, D. The Inference of Domain Structure from Informal
Process Descriptions, Workshop on Pattern-Directed Inference Systems, Hawaii,
May 1977. SIGART Newsietter, No. 63, June 1077, pp. 76-82.

Cr————— e et e

et v

82 Automatic Programming

Goldstein, |., & Sussman, G. J. Some projects in automatic programming, Working Paper 67,
Al Lab, MIT, March 1974.

Goodman, R. (Ed.) The Annual Review in Automatic Programming (Papers of the
Working Conference on Automatic Programming of Digital Computers, Brighton, Apnil
19050). New York: Pergamon Press,1860.

Green, C. The Application of Theorem Proving to Question-answering Systems. Doctoral
dissertation, Electrical Engineering Dept., Memo AIM-96, Report STAN-CS-69-138, Al
Lab, Computer Science Dept., Stanford University, June 1869.

Green, C. Unpublished lecture surveying Automatic Proramming. Stanford
University, Computer Science Dept., 1876. (a)

Green, C. Whither automatic programming, invited tutorial iecture. IJCAI 4, Tbilisi, USSR,
September 1976. (b)

Green, C An informal talk on recent progress in Automatic Programming. lLectures on,
Automatic Programming and List Processing, PIPS-R-12, tlectrotechnical Laboratory,
Tokyo, Japan, November 1876, pp. 1-68. (a)

Green, C. The design of the PSI program synthesis system. Proc. 2nd International
Conference on Software Engineering, October 1876. Pp. 4-18. (b)

Green, C. The PSI Program Synthesis System, 1876. ACM '76: Proceedings of the Annual
Conference, Association for Computing Machinery, New York, N.Y., October 1976,
pp. 74-76. (c)

Green, C. A Summary of the PSI| Program Synthesis System. IJCAI S, 19877, 380-381.

Green, C. The PSI Program Synthesis System, 1978: An Abstract. in S. P. Ghosh, & L. Y. Liu
(Eds.), AFIPS Conference Proc.: Nastional Computer Conf,, 1978, 47, 673-674.

Green, C. , & Barstow, D. A hypothetical dislogue exhibiting a knowledge base for a
program understanding system. in E.W. Elcock & 0. Michie (Eds.), Machine
intelligence 8: Machine Representations of Knowledge. New York: Haisted Press,
John Wiley & Sons, 1977. Pp. 3356-369. (e)

Green, C. , & Barstow, D. Some rules for the automatic synthesis of programs. IJCAI 4,
1976, 232-239.

Green, C., et al. Progress Report on Knowiege Based Programming. Systems Control,
inc., Computer Science Division, Palo Aito, CA, September 1878.

Green, C., & Barstow, D. On Program Synthesis Knowledge, Memo AIM-306, Report STAN-
C&-77-639, Al Lab, Computer Science Dept., Stanford University, Stanford, CA,
November 19877. (b)

Green, C., & Barstow, D. On program synthesis knowledge. Artificial intelligence, 1978,
10(3), 241-279.

it b it

s i

References 83

Green, C., Waidinger, R., Barstow, D., Elschliager, R., Lenat, D., McCune, B., Shaw, D., &
Steinberg, L. Progress Report on Program Understanding Systems, Memo AIM-240, Al
Lab, Stanford, CA, August 1874.

Gries, D. Programming by Induction, TR 71-106, Computer Science Dept., Cornell University,
September 1971.

Guttag, J. V., Horowitz, E., & Musser, D. R. Abstract Data Types and Software Validation,
Tech. Report ISI-RR-76-48, Information Sciences Institute, Marina del Rey, CA, August
1976.

Hammer, M. Automatic Programming: An Assessment. Unpubiished paper, MIT Lab for
Computer Science, Cambridge, Mass., December 1977.

Hammer, M., & Ruth, G. Automating the Software Development Process. In P. Wegner (Ed.),
Research Directions in Software Technology. Cambridge: MIT Press, 1979.
Pp. 767-792.

Hammer, M., Howe, W. G., Kruskal, V. J., & Wiadawsky, |. A Very High-Level Programming
Language for Data Processing Applications, RC 6583, Computer Sciences Dept.,
Thomas J. Watson Research Center, iBM, Yorktown Heights, New York, August 1975.

Hardy, S. Synthesis of LISP functions from examples. IJCAI 4, 1976, 240-245.

Heidorn, G. E. The End of the User Programmer? The Software Revolution, Infotech State
of the Art Conf. Copenhagen, Denmark, October 1977. (To appear in Future
Programming, Infotech, England, 1979.)

Heidorn, G. E. Natural Language Inputs to a Simulation Programming System, Report
66nd72101A, Naval Postgraduate School, Monterey, CA, October 1972.

Heldorn, G. E. English as a very high level language for simulation programming. IBM
Research 4536, September 1973.

Heidorn, G. E. English as a very high level language for simulation programming, Proceedings
Symposium on Very High Level Languages. SIGPLAN Notices, 1974, 9(4), 81-100.

Heidorn, G. E. Augmented Phrase Structure Grammars. In B. L. Nesh-Webber & R.C.
Schank (Eds.). Theoretical Issues in Natural Language Processing. Association for
Computational Linguistics, June 1976. Pp. 1-5. (a)

Heidorn, G. E. Simulation programming through natural language dialogue. Amsterdam:
North-Holland Studies in the Management Sciences, 1975. (b)

Heidorn, G. E. Simulation programming through natural language dialogue. In M. A,
Geisler (Ed.), TIMS Studies in the Management Sciences, Logistics (vol.
1). Amsterdam: North Holland, 1976. Pp. 71-86. (¢)

Heldorn, G. E. Automatic programming through natural language dialogue: A survey. (BM
Journsl of Research and Development, 1876, 20(4), 302-313.

84 Automatic Programming

Henderson, P, & Morris, J. H., Jr. A lazy evaluator. Third ACM Symposium on Principles of
Programming Languages, Atianta, GA, January 1976. Pp. 95-103.

Hewitt, C. Teaching Procedures in Humans and Robots, Memo 208, Al Lab, Massachusetts
institute of Technology, Aprit 1970.

Hewitt, C. Viewing Control Structures as Patterns of Passing Messages, Working paper
02 (rev. ed.), Al Lab, Massachusetts Iinstitute of Technology, April 1976.

Hewitt, C., & Smith, B.C. Towards a programming apprentice. I|EEE Transactions:
Software Engineering, 1975, 1(1), 26-45.

Hill, 1. D. Wouldn't it be nice If we could write computer programs in ordinary Englhish--ar
would it? Computer Bulletin, 1972, 16(6), 306-312

Hobbs, J. R. From Well Written Aigorithm Oescriptions into Code, Research Rep. 77-1,
Dept. of Computer Science, City College, City University of New York, July 1977.

Kant, E. The selection of efficient implementations for a high level language, Proceedings
of Symposium on Artificial intelligence and Programming Languages. SIGPLAN
Notices, 12(8); SIGART Newsietter, No. 64, August 1977, pp. 140-146.

Kant, £ Efticiency Estimation: Controling Search in Program Synthesis. In S. P. Ghosh &
L. Y. Leonard (Eds.), AFIPS Conf. Proc.: National Computer Conf., 1978, 47, 703.

Kant, E. Efficiency Considerations In Program Synthesis: A Knowledge-
based Approach. Doctoral dissertation, Stanford University, Computer Science Dept.,
1879.

Kowaliski, R. Predicate Logic as a Programming Language, information Processing, North
Holland, Amsterdam,1977.

Lenat, D. B. Synthesis of large programs from specific dialogues. In G. Huet &
G Kahn (Eds.), Proving and Improving Programs. Rocquencourt, France: Institut de
Recherche d'Informatique et d'Automatique, July 1876. Pp. 225-241.

Liskov, B. H., Snyder, A., Atkinson, R., & Schaffert, C. Abstraction Mechanisms in CLU. CACM.-’
1977, 20(8), 664-676.

Lomet, D. 8. Data Fiow Analysis in the Presence of Procedure Calls, RC 6728, Thomas J.
Watson Research Center, IBM, Yorktown Heights, New York, November 1976.

Long, W. J. A Program Writer. Doctoral dissertation, TR-187, LCS, Massachusetts Institute
of Technology, November 1977.

Low, J. P Automatic coding: Choice of data structures, Stanford Al Memo AIM-242,
Stanford University, August 1974.

Low, J. R. Automatic Coding: Choice of Data Structures, ISR16, Birkhauser Verlag,
1976. (a)

T ———

References 85

Low, J. R. Automatic Data Structure Selection: An Example and Overview, TR-14,
Computer Science Dept., University of Rochester, September 1976. (b)

Low, J. R. Automatic data structure selection: An example and overview. CACM, 1978, 6,
21-26.

Manna, Z., & Waldinger, R. DEDALUS--The DEDuctive Algorithm UR-Synthesizer. National
Computer Conference, Anaheim, CA, June 1978. Pp. 683-690.

Manna, Z., & Waldinger, R. Synthesis: Dreams Programs, Memo AIM, Al Lab, Stanford, CA.
November 1977,

Manna, 7., & Waldinger, R. J. Toward automatic program synthesis. Communications of the
ACM, 1971, 14(3), 151-165.

Manna, Z., & Waldinger, R. Knowledge and reasoning .1 program synthesis. Artificial
intelligence, 19756, 8(2), 1756-208.

Martin, W. A OWL Notes: A System for Building Expert Problem Solving
Systems Involving Verbal Reasoning, M.I.T. Project MAC, 1974.

McCune, B. P. The PSI program model builder: Synthesis of very high-level programs.
Proceedings of the Symposium on Artificial Intelligence and Programming
Languages. SIGPLAN Notices, 12(8), 130-139; SIGART Newsletter, No. 64, August
1977, 130-139

McCune, B. P. Building Program Models Incrementally from Informal Descriptions.
Doctoral dissertation, Al Lab Memo, Computer Science Dept., Stanford University, in

press.
Michie, D. Memo functions and machine learning. Nature, 1968, 218(No. 5136), 19-22.

Miller, L. A, & Becker, C. A. Programming in Natural English, Research Report RC
65137, Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, November
1974.

Mitchell, J. G The Design and Construction of Fiexible and Efficient
Interactive Programming Systems Doctoral dissertation, Dept. of Computer
Science, Carnegie-Meilon University, June 1870.

Morgenstern, M. Automatied Design and Optimization of Information Processing Systems.
Doctoral dissertation, MIT, 1976,

Persson, S. Some Sequence Extrapolating Programs: A Study of Representation and
Modeling in Inquiring Systems. Doctoral dissertation, School of Business
Administration, University of California, Berkeley; Memo AIM-46, Report STAN-CS-66-50.
Al Lab, Computer Science Dept., Stanford University, September 1966.

Petry, F. E., & Biermann, A. W. Reconstruction of aigorithms from memory snapshots of their
execution. ACM '76: Proceedings of the Annual Conference, Association for
Computing Machinery, New York, October 1976, pp. 630-534.

86 Automatic Programming

Philiips, J. V. Program Inference from Traces Using Multiple Knowledge Sources. IJCAI 6,
1977, p. 812.

Pratt, V. R. The Competence/Performance Dichotomy in Programming, TM-400, Al
Lab, Massachusetts Institute of Technology, January 1977,

Project MAC, Automatic composition of functions from moduies (Section Il E.1). Project MAC
Progress Report X, Massachusetts Institute of Technology, July 1872-July 1973.

Reisser, J. F. (Ed.) SAIL, Stantord Al Memo No. 289, August 1976.

Rich, C. A Library of Programming Plans with Applications to Automated Analysis,
Synthesis and Verification of Programs. Doctoral dissertation, MIiT, Cambridge, MA,
1979

Rich, C., & Shrobe, H. E. Initial Report on a LISP Programmer's Apprentice, TR-354, Al
Lab, Massachusetts Institute of Technology, December 1976.

Rich, C., & Shrobe, H. Imtial Report on a LISP Programmer's Apprentice. |EEE Trans. on
Soft. Eng., 1978, 4(6), 456-467.

Rivest, R. L. Two-Dimensional Programming Languages. Dept. of tlectrical Engineering and
Computer Science Dept., MIT, April 1876,

Rosen, B K. Data Flow Analysis for Procedural Languages, RC 5948, Computer Sciences
Dept., Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, April 1976.

Rosen, B. K. Applications of high-ievel control fiow. Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, CA, January 1877

Rovner, P. 0. Automatic Representation Selection for Associate Dats Structures, TR-10,
Computer Science Dept., University of Rochester, September 1076.

Ruth, G. Analysis of Algorithm Impiementations. Doctoral dissertation, TR-130, Project
MAC, Massachusetts institute of Technology, May 1874.

Ruth, G Automatic Design of Data Processing Systems, Proc. of the Third ACM
Symposium on Principles of Programming Languages, Atlanta, Georgia, 1976 (also
MIT Comp. Sci. TR TM-070). (a)

Ruth, G. inteiligent program anaiysis. Al, 1876, 7, 66-85. (b)

Ruth, G Protosystem |- An Automatic Programming System Prototype, Proc. of the National
Computer Conf., Anaheim, CA, 1978. AFIPS, 1078, 47, 675-681.

Ruth, G. Automating the Software Development Process. in P. Wegner (Ed.), Research
Directions in Software Technology. Cambridge: MIT Press, 1870.

Sacerdoti, E. D. A Structure for Plans and Behavior. New York: Elsevier, 19077.

References 87

Schwartz, J. 7. On Programming: An Interim Report on the SETL Project (rev.
ed.). Computer Science Dept.,, Courant Institute of Mathematical Sciences, New York
University, June 1976.

Shaw, D., Swartout, W., & Green, C. Inferring LISP programs from examples. IJCAI 4, 1976,
260-267.

Shrobe, H. E. Reasoning and lLogic for Complex Program Understanding. Doctoral
dissertation, MIT, Cambridge, MA, August 1978.

Sibel, W., Furbach, U, & Schreiber, J. F. Strategies for the synthesis of algorithms.
Informatik-Fadbendik, 1978, 5, 87-108.

Siklossy, L. The synthesis of programs from their properties, and the insane heuristic
Proceedings of the Third Texas Conference on Computing Systems, Austin, 1X,
1974, pp. 6-2-1 - 6-2-5.

Siklossy, L., & Sykes, D. Automatic program synthesis from example problems. IJCAlI 4,
1976, 268-273.

Simon, H. A. Experiments with a heuristic compiler. JACM, 1963, 10(4), 493-503.

Simon, H. A. The heuristic compiler. In H. A. Simon & L. Siklossy (Eds.), Representation and
Meaning. Englewood Ciiffs, N. J.: Prentice-Hail, 1972. Pp. 8-43.

Summers, P. D. A Methodology for LISP Program Construction from Examples. JACM, 1977,
24(1), 161-176.

Sussman, G. J. A Computer Model of Skill Acquisition. New York: American Elsevier,
1976.

Szolovits, P.. Hawkinson, L. B., & Martin, W. A. An Overview of OWL, A Language for
Knowledge Representation, TM-86, LCS, Massachusetts Institute of Technology, June
1977.

Teiteiman, W. PILOT: A Step Toward Man-Computer Symbiosis. Doctoral dissertation,
MAC-TR-32, Project MAC, Massachusetts Institute of Technology, September 1966.

Teitelman, W. Toward a programming laboratory. IWCAI 1, 1960, 1-8.

Teitaiman, W. Automated programming--The programmer's assistant. Proceedings
Fall Joint Computer Conference (Vol. 41), December 1972, pp. 917-921.

Teiteiman, W. Interlisp Reference Manual. Xerox Corp., Palo Aito, CA, 1874.

Teitelman, W. A Display Oriented Programmer's Assistant, CSL 77-3, Palo Alto Research
Center, Xerox Corp., Palo Aito, CA, March 1877.

Teiteiman, W., et al. INTERLISP Reference Manual. Xerox PARC, Palo Aito, CA, October
1978.

>

AD=AO76 874 STANFORD UNIV CALIF DEPT OF COMPUTER SCIENCE F/6 972
AUTOMATIC PROGRAMMING, (V)

AUG 79 R ELSCHLAGER » J PHILLIPS MDASO03=T7T=(C=0322

UNCLASSIFIED STAN=CS=79=758 NL
20r2 END
- |12 79

e G e e e e

L = =

e "'

"““1 25 “”11"‘1"

88 Automatic Programming

Van Wijngaarden, A., Maillloux, B. J., Peck, J.E.L, & Koster, C.H.A. Report on the
slgorithmic Language ALGOL68. Numerische Mathematik, 1060, 14, 70-218.

Waldinger, R. Constructing Program Automatically Using Theorem Proving. Doctoral
dissertation, Carnegie-Melion University, Pittsburgh, Penn., 1068.

Waldinger, R. Achieving several goais simultaneously. In E. W. Eicock & D. Michie (Eds.),
Machine Intelligence 8: Machine Representations of Knowledge. New York: Halisted
Press, John Wiley & Sons, 1877. Pp. 94-136.

Waldinger, R. , & Lee, R. PROW: A step toward automatic program writing. WCAI 1, 19689,
241-252.

Waldinger, R. , & Levitt, K. N. Reasoning about programs. Artificial intelligence, 19874,
6(3), 2356-3186.

Warren, D. H. D. WARPLAN: A System for Generating Plans, Memo No. 76, Dept. of
Computational Logic, School of Artificial Intelligence, University of Edinburgh,
Scotiand, June 1974.

Warren, D. H. D. Generating conditional plans and programs. Proceedings of the
Conference on Artificial intelligence and Simulation of Behavior, Edinburgh, Scotiand,
July 1976, pp. 344-364.

Warren, D. H. D. Implementing PROLOG: Compiling Predicate Logic Programs (vols. 1-2),
Research Reports 39-40, Dept. of Ai, University of Edinburgh, Scotiand, May 1877.

Warren, H. S., Jr. Data Types and Structures for a Set Theoretic Programming Language,
RC 6567, Thomas J. Watson Research Center, IBM, Yorktown Heights, New York, August
1976.

Waterman, D. A. Generalization Learning Techniques for Automating the Learning of
Heuristics. Artificial intelligence, 1070, 1, 121-170.

Waters, R. C. A System for Understanding Mathematical FORTRAN Programs, MiT-AIM-
168, MIT, Cambridge, MA, August 1976.

Waters, R. C. Automatic Analysis of the Logical Structure of Programs, MIT-AI-TR-492,
December 1978 (based on doctoral dissertation, A Method for Automatically
Analyzing the Logicel Structure of Programs, August 1978).

Waters, R. C. A Method for Analyzing Loop Programs. To eppear in IEEE Trans. on Soft.
Eng., 1979.

Wegbreit, B. Studies in Extensible Programming Languages. Doctoral dissertation, Center
for Qesearch in Computing Technology, Harvard University, January 1972.

Wegbreit, B. Goal-directed program transformation, CSL-76-8, Xerox PARC, Palo Alto, CA,
September 1976. (a)

Wegbreit, B. Mechanical program analysis. CACM, 1076, 9(18), 628-5630. (b)

e i) i me bt

s

References 89
Wilber, B. M. A QLISP Reference Manual, Al Center Tech. Report 118, SRi international,

inc., Menio Park, CA, March 1876.

Winograd, T. Five Lectures on Artificial Intelligence, Stanford AIM-246, CS45609, Computer
Science Dept., Stanford University, September 1974.

Winograd, T. Breaking the complexity barrier again. SIGPLAN Notices, 1976, 10(1), 13-30.

Winston, P. H. Learning structural descriptions from examples. in P. Winston (Ed.), The
Psychology of Computer Vision. New York: McGraw-Hill, 1976.

Wirth, N. The programming language PASCAL. Acta informatica, 1971, 1, 35-63.

Zilles, S. Abstract Specification for Data Types. IBM Research Laboratory, San Jose, CA,
1976.

Zimmerman, L. L. On-line program debugging: A graphic approach. Computers and
Automation, 1067, 16(11), 30-34.

