

AD A 076795

1

FINAL REPORT

CONTRACT DAAG29-77-C-0019

Final rept / April 1, 1977 - March 31, 1979.

Research Investigation Directed Toward Extending

the Useful Range of the

Electromagnetic Spectrum

D D C

PROPERTY IS

NOV 16 1979

NOV 16 1979

Columbia Radiation Laboratory

Columbia University

New York, New York 10027

DOC FILE COPY

Approved for public released
Distribution Unlimited

// May £979

12/40/

79 06 04 109

mit

TABLE OF CONTENTS

Abstra	ict .																		3
ı.	Relaxa	tion	and	Ener	rgy	Tra	ans	fer	in	All	kali	Me	eta)	s					4
11.	Relaxa	tion	and	Ene	rgy	Tra	ans	fer	in	Sma	a11	Pol	ya	tom:	ic	Mo1	ecu.	les	7
111.	Genera	tion	and	Con	trol	01	f R	adia	itio	on									9
IV.	Quantu	m De	tect	ion i	and	Ser	nsi	ng o	of I	Rad	iati	ion							11
v.	Physic	al P	rope	rtie	s at	nd 1	Ef f	ect	s o	f E	lect	ror	nic	Ma	ter	ial	s.		14
Person	nnel .																		16
Public	cations																		18
Papers	s and I	.ec tu	res l	Pres	ente	ed	in	Mee	tin	gs									24
Ph.D.	Degree	es Aw	arde	d .															31
Distr	ibution	n Lis	t .																32

NTIS DOC 1	GRA&I 'AB	A
	Clastion	
ru	ta on	file
	inution/	
ivel	14013317 C	odes
	Avail and	/or
1st	special	
.//		

ABSTRACT

During the period covered by this contract the major thrust areas of the Columbia Radiation Laboratory were in the fields of quantum optics, energy transfer and relaxation, spectroscopy, the generation and control of electromagnetic radiation, quantum detection and sensing of radiation, and the physical properties of electronic materials. Research supported by the contract led to 79 publications in the Physical Review Letters, Applied Physics Letters, Physics Letters, Optics Communications, the Physical Review, the Journal of Chemical Physics, and other major journals. Nine students received the Ph.D. degree for work performed under this contract.

I. RELAXATION AND ENERGY TRANSFER IN ALKALI METALS

A new diagonostic technique for flames has been developed. The flame is seeded with a small amount of sodium salt and the sodium atoms in the flame are spin polarized by optical pumping. The spin relaxation rates vary substantially across the spatial extent of the flame.

Good agreement has been found between recent calculations of emission and absorption profiles of alkali-noble gas excimers and experimental measurements from this laboratory.

Experimental evidence has been obtained for the existence of potassium polyxenide exciplexes of the form KXe $_{\rm n}$ = 1,2,3,4. These exciplexes radiate strongly in the green region of the spectrum.

We have completed the design of an experimental system for time-resolved studies of alkali-noble-gas excimer molecules. The aim of this work is to determine the dominant formation and destruction mechanisms of the higher excited states of these interesting and potentially useful molecules.

Preliminary studies of the spin relaxation rates of sodium in xenon gas have been completed. The aim of these studies is to develop an efficient way to polarize the nucleus of Xe¹²⁹, a very slowly relaxing species which would be of great interest as a component of nuclear magnetic resonance gyroscopes.

We have discovered a novel spatially propagating wavefront which is generated by laser pumping of an optically thick medium to a state of complete transparency. The wavefront velocity v is related to the number of photons n absorbed per atom by $v = I_0(N_n)-1$, where I_0 is the photon flux and N is the atomic number density.

A new region of infrared absorption has been found for saturated alkali vapors. The absorption shows the analog of the ultraviolet emission continuum of the H₂ molecule. In addition evidence is found for alkali trimers absorbing

in the infrared.

The design of an experiment to measure the magnetic circular dichroism of saturated alkali vapors has been completed. The results of this experiment will be used to assign quantum numbers to several prominent but poorly understood absorption bands in the visible and near ultraviolet region of the spectrum.

We have completed the preliminary design of an experiment to measure the hyperfine structure of the unusually long-lived 5D state of the cesium atom. Because of the very narrow natural width of this state, exceptionally high resolution is possible. We hope to use the results of these measurements to make the first precise determination of the nuclear quadrupole moment of the cesium nucleus.

Optical pumping of Cs vapor using second resonance-D₁ light at 4593 Å, has been achieved. The percent spin-polarization appears to saturate with dye laser power at levels much lower than 100% and to decrease with Cs temperature. This saturation of polarization, is somewhat reduced by the addition of N₂ gas, but persists even at a N₂ pressure of 200 torr for which no radiation trapping is possible. It appears that spin-exchange between Cs atoms is the mechanism limiting spin polarization at high (>10¹³ cm⁻³) Cs densities. Theoretical calculations of the spin polarization, taking into account spin-exchange, were carried out and are in qualitative agreement with the experiment.

The narrow absorption bands of Cs₂ molecules near 700 nm have been identified for the first time as transitions at very large internuclear separations, possibly from the repulsive ${}^3\Sigma_{_{11}}$ ground state.

Pulsed dye laser excitation of alkali vapors has been shown to lead to

nearly complete photoionization of the alkali atoms. The local electric fields from the resulting plasma lead to stimulated emission of highly forbidden atomic transitions.

II. RELAXATION AND ENERGY TRANSFER IN SMALL POLYATOMIC MOLECULES

A method has been developed which provides a complete description of the energy and population distributions in a laser pumped, metastable polyatomic molecule. Different temperatures are required for each mode and for the translational/rotational degrees of freedom. Good agreement between calculated and measured distributions has been found for $\mathrm{CH_3F}$. Vibrational energy for this system tends to accumulate preferentially in the $\mathrm{v_3}$ C-F stretch vibrational mode. As a result, extremely large population inversions are predicted for $\mathrm{CH_3F}$ when optically pumped by a $\mathrm{CO_2}$ laser. These results are expected to apply to many polyatomic molecules.

Energy transfer cross sections have been measured for methyl fluoride/
rare gas collision events. For the first time in a polyatomic molecule larger
than 3 atoms, individual kinetic rate constants for specific intermode energy
exchange processes have been obtained. The general qualitative features which
describe the variation of rate constants with rare gas atoms are predicted
by simple theoretical considerations, but quantitative agreement is seriously
lacking.

Intermode collisional energy exchange events coupling the v_2 , v_6 , and v_3 ,5 modes of fluorophosgene (COF₂) have been studied in detail. Approximately 500 gas kinetic collisions are required to transfer population from v_2 to v_6 while only 180 collisions are necessary for v_6 to v_3 ,5 transfer. The direct coupling between v_2 and v_3 ,5 has been found to be weak (> 1500 collisions). The transfer of energy into the translational and rotational degrees of freedom has been found to be noticeably slower than intermode collisional energy exchange.

Energy transfer processes which collisionally couple the vibrational modes of CF₃Cl have been investigated. On the time scale of a laser pulse

width, at high pressures of CF₃Cl, significant energy transfer takes place.

No evidence for locking of energy into a single mode has been found for this molecule.

Intermode energy transfer processes have also been investigated in OCS, ${\rm CH_3COF}$ and ${\rm SO_2/^{18}O_2}$. Rates and cross sections for individual kinetic steps due to collisions have been obtained.

Preliminary measurements of vibrational temperatures have been made in ${\rm COF}_2$ which indicate that the ${\rm v}_1$ and ${\rm v}_2$ modes can be made very hot. Multiphoton dissociation of ${\rm COF}_2$ using a ${\rm CO}_2$ laser has been observed to produce F atoms.

The CO₂ laser driven decomposition of perfluorocyclobutanone has been studied. Time resolved infrared fluorescence from product molecules has been observed, and product yields have been measured. The present experimental evidence suggests that at least some of the products are formed coincident with the laser pulse suggesting multiphoton decomposition of the parent perfluorocyclobutanone.

Time resolved studies of NO₂ fluorescence in the visible region of the spectrum have been undertaken to gain a better understanding of the anomalous radiative lifetimes of this important product of combustion in air.

III. GENERATION AND CONTROL OF RADIATION

We have made the first observations in Na vapor of three new types of echoes: excited-state photon echoes, tri-level echoes, and two-photon echoes. The excited-state photon echo extends the photon echo effect to transitions between states which are both thermally unpopulated. The tri-level echo is a totally new effect peculiar to multilevel (three levels or more) systems. The two-photon echo is the sum-frequency analogue of the Raman (difference-frequency) echo. We have used these new effects to study foreign-gas collisional relaxation of atomic Na S-P and S-D superposition states.

We have made the unprecedented finding that an echo can be generated from the information stored in a <u>single atomic state</u>. This enables echoes to be used to study the effect of collisions on atoms in one state. An echo detection technique which utilizes the relative polarizations of the excitation pulses and the echo has been developed which makes echo effects much easier to observe. Finally the tri-level echo technique (which we recently developed) has been used to perform the first comprehensive study of collisionally-induced relaxation of high Rydberg S and D states in an alkali atom.

Photon echo modulation effects in Pr³⁺:LaF₃ have been analyzed in terms of a combined interaction of the nuclear quadrupole interaction and the second order hyperfine interaction. Using the interaction parameters obtained elsewhere, the theoretical echo behavior fits the experimental data successfully. The sign of the electric field gradient at the Pr site inferred from our data is negative.

Two newly developed nitrogen pumped dye lasers are used to generate photon echoes in LaF3:Pr3+ at pulse separations as large as 8.0 µsec. Data

analysis yields excited state nuclear quadrupole splittings of 0.73 MHz and 1.12 MHz. Inhomogeneous broadenings associated with these splittings are found to lead to echo modulation damping. We have also observed an unusual dependence of homogeneous relaxation on detuning in the inhomogeneous profile as well as long-lived stimulated photon echoes.

UNCLASSIFIED

68 68 A076795 (U) FIELD/GROUP 686666

RESEARCH INVESTIGATION DIRECTED TOWARD EXTENDING THE USEFUL RANGE OF THE EL

ABSTRACT

C

C

C

0

0

10

10

0

0

(U) DURING THE PERIOD COVERED BY THIS CONTRACT THE MAJOR THRUST AREAS OF TELDS OF QUANTUM OPTICS, ENERGY TRANSFER AND RELAXATION, SPECTROSCOPY, THE RADIATION, QUANTUM DETECTION AND SENSING OF RADIATION, AND THE PHYSICAL PROPPORT BY THE CONTRACT LED TO 79 PUBLICATIONS IN THE PHYSICAL REVIEW LETTERS OPTICS COMMUNICATIONS, THE PHYSICAL REVIEW, THE JOURNAL OF CHEMICAL PHYSICS

CHEMICALS
ELECTROMAGNETIC RADIATION
MATERIALS
OPTICAL COMMUNICATIONS
OPTICS
RESEARCH MANAGEMENT
THRUST

APPLIED PHYSICS LETTERS PHYSICAL REVIEW LETTERS QUANTUM DETECTION 79 PUBLICATIONS INDEX TERMS ASSIGNED
PHYSICS
ELECTRONIC EQUI
ENERGY TRANSFER
PHYSICAL PROPER
QUANTUM THEORY
SPECTROSCOPY

TERMS NOT FOUND ON NLDB
PHYSICAL REVIEW
PHYSICS LETTERS
RESEARCH INVEST

UNCLASSIFIED

.....

D EXTENDING THE USEFUL RANGE OF THE ELECTROMAGNETIC SPECTRUM.

IS CONTRACT THE MAJOR THRUST AREAS OF THE COLUMBIA RADIATION LABORATORY WERE IN THE ANSFER AND RELAXATION. SPECTROSCOPY, THE GENERATION AND CONTROL OF ELECTROMAGNETIC SING OF RADIATION, AND THE PHYSICAL PROPERTIES OF ELECTRONIC MATERIALS. RESEARCH SU CATIONS IN THE PHYSICAL REVIEW LETTERS, APPLIED PHYSICS LETTERS, PHYSICS LETTERS, NEVIEW, THE JOURNAL OF CHEMICAL PHYSICS, AND OTHER MAJOR JOURNALS.

INDEX TERMS ASSIGNED
PHYSICS
ELECTRONIC EQUIPMENT
ENERGY TRANSFER
PHYSICAL PROPERTIES
QUANTUM THEORY
SPECTROSCOPY

TERMS NOT FOUND ON NLDB
PHYSICAL REVIEW
PHYSICS LETTERS
RESEARCH INVESTIGATION

UNCLASSIFIED

IV. QUANTUM DETECTION AND SENSING OF RADIATION

A heterodyne correlation radiometer for the sensitive detection of radiating species whose Doppler shift is known, but whose presence we wish to affirm has been considered. Such radiation (which may be actively induced) can arise, for example, from remote molecular emitters, impurities and pollutants, trace minerals, chemical agents, or a general multiline source. A radiating sample of the species to be detected is physically made a part of the laboratory receiver, and serves as a kind of frequency-domain template with which the remote radiation is correlated, after heterodyne detection. The system is expected to be especially useful for the detection of sources whose radiated energy is distributed over a large number of lines, with frequencies that are not necessarily known. We have also considered the performance of a conventional optical heterodyne system in estimating the mean intensity of a Gaussian random signal, and shown that it depends on the degeneracy parameter of the signal radiation.

A single-threshold processor has been derived for a wide class of classical binary decision problems involving the likelihood-ratio detection of a signal embedded in noise. The class of problems we considered encompasses the case of multiple independent (but not necessarily identically distributed) observations of a nonnegative (nonpositive) signal, embedded in additive, independent, and noninterfering noise, where the range of the signal and noise is discrete or continuous. We have shown that a comparison of the sum of the observations with a unique threshold comprises optimum processing, if a weak condition on the noise is satisfied, independent of the signal. Examples of noise densities that satisfy and violate our condition were tabulated. The results were applied to a generalized photocounting optical communication system, and it was shown that most components of the system could be incorporated into our model.

We also obtained exact photocounting distributions for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It was assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T was shown to be given in terms of the incomplete gamma function for $n \ge 1$ and in terms of the exponential integral for n = 0. Simple closed-form expressions were obtained for the count mean and variance. The results are of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting.

Expressions have been obtained for the mean and variance of the number of events in a fixed sampling time for a nonparalyzable dead-time counter. The input process was assumed to be Poisson with a rate that is a known function of time. Experiments performed with triangularly and sinsoidally modulated laser radiation provide results that are in accord with theory. We have also reported a series of optical experiments that verify the full theoretical photocounting distributions obtained by Diament and Teich for triangularly and sinusoidally modulated laser radiation. Another series of experiments validates the nonparalyzable-dead-time-modified versions of these formulas obtained by Cantor and Teich. A new expression has been obtained for the paralyzable-dead-time-modified counting distribution for a modulated source.

The detection of a fluctuating signal in the presence of noise has been considered for a doubly-stochastic Poisson counting system that is subject to fixed nonparalyzable detector dead time. The probability of error and channel capacity were examined. A maximum-likelihood estimate of the mean signal level was obtained for a simple image detection system

with a dead-time-perturbed counting array.

Stable, thermally re-cyclable Niobium point-contact Josephson junctions have been fabricated which are suitable for operation in heterodyne detectors (mixers) at millimeter wavelengths. A Josephson mixer at 115 GHz $(2.6 \text{ mm}-\lambda)$ has demonstrated an efficiency more than an order of magnitude greater than the best room temperature detectors. A complete receiver is now being constructed.

Efforts to understand the noise properties of a Josephson mixer have led to a digital computer simulation which agrees well with measurements at 115 GHz.

V. PHYSICAL PROPERTIES AND EFFECTS OF ELECTRONIC MATERIALS

Experimental studies have been made of Si MOS devices with ultrathin (10-50 Å) oxide layers fabricated by low-temperature (700°C) dry oxidation. Electrical and optical properties of these devices reveal that photocurrent suppression occurs for oxides ≥ 20 Å in thickness, and that these effects can be removed by appropriate reverse bias. New modes of quantum detection are suggested by these devices and one such mode, a low-voltage photomultiplication, has been demonstrated for a Au-SiO₂-n type Si structure.

A fundamental asymmetry between the tunneling probabilities for electrons and holes has been observed in ultrathin SiO_2 layers (20-30 Å) which is explained in terms of the E-K dispersion relation in the energy gap of the SiO_2 . These probabilities have been measured on the same MOS samples using a new experimental technique combining dark characteristics with measurements of photocurrent suppression by the SiO_2 layer.

The physical mechanisms of the breakdown of carrier confinement have been considered using both the thermionic-emission and diffusion models. It has been shown that, for most practical AlGaAs/GaAs DH lasers, the diffusion current is responsible for carrier leakage. The thermionic-emission of minority carriers is important when the confinement barrier or the mobility is very large. The theory presented is also applicable to structures other than the AlGaAs/GaAs laser.

Majority and minority carrier transport in small geometry (2 µm diameter) Pt-GaAs Schottky barriers have been characterized experimentally.

Transistor measurements on a matrix of these diodes, lying within approximately a minority carrier diffusion length of one another, indicates that majority-carrier thermionic emission current dominates for large forward

bias (> 0.4V). At smaller bias recombination in the space-charge region is most important. The minority carrier injection ratio decreases from 10^{-2} to 10^{-5} over the measurable range of voltage 0.5 to 1.0V. The implications for submillimeter detection and mixing using these devices have been considered.

A general theory has been presented to describe the carrier transport across heterojunction interfaces. In matching the boundary conditions at the interface, the conservation of total energy and perpendicular momentum was assumed and the difference of effective masses on two sides of the junction was taken into account. The quantum mechanical transmission coefficient was calculated by a combined numerical and WKB method. Application of this model to an $Al_X Ga_{1-X} As$ GaAs N-n heterojunction was performed and gives rise to rectifying characteristics together with non-saturated reverse current. Comparison with the classical thermionic emission model was made to show the significance of tunneling and the effect of quantum mechanical reflection.

An experimental study has been made of the electronic properties of rectifying metal-Ge (n-type) contacts for a range of metals (Au, Cu, Ag, Pb and Ni) and their optoelectronic characteristics under monochromatic illumination for λ = 0.6328 µm. For each metal, very nearly ideal I-V characteristics were obtained with n values from the exponential forward bias region of 1.02 to 1.08 and excellent reverse saturation at 300°K. The dependence of photoresponse on thickness of various metal electrodes (from 50 Å to more than 1000 Å) was observed. ϕ_B 's found from I-V and C-V measurements are in close agreement within \pm 0.03 eV. The dependence of quantum efficienty (Q.E.) upon metal thickness was measured for all metals and these results exhibit the expected decline in Q.E. with d > 100 Å. For d < 100 Å, Q.E. can go as high as 75% at λ = 6328 Å.

PERSONNEL

Faculty

- N. D. Bhaskar, Assistant Professor of Physics
- H. C. Card, Associate Professor of Electrical Engineering
- K. Eisenthal, Professor of Chemistry
- G. W. Flynn, Professor of Chemistry, Director
- W. Happer, Professor of Physics
- S. R. Hartmann, Professor of Physics
- J. M. Luttinger, Professor of Physics
- I. I. Rabi, University Professor Emeritus
- M. C. Teich, Professor of Engineering Science
- P. Thaddeus, Adjunct Professor of Physics
- C. S. Wu, Pupin Professor of Physics
- E. Yang, Professor of Electrical Engineering

Research Associates and Physicists

Dr. Y. Chen Dr. T. Mossberg
Dr. A. Kerr Dr. P. Prucnal
Dr. J. Liran Dr. Y. Taur

Graduate Research Assistants

J. Ahl P. Siegel K. Leung J. Camparo R. Meyers B. Suleman E. Chan K. Ng G. Vannucci B. Novak A. Vasilakis K. Chiang M. Hou J. Pietras E. Whittaker R. Kachru T. Poon C. Wu M. Lester E. Zouboulis R. Sheorey

Technical Research Assistants

Mr. I. Beller

Mr. E. Deery

Physics Department Electronics Engineering and Construction Shop*

Mr. J. Packer

Physics Department Machine Shop*

Mr. E. Jauch

Administration

Ms. T. Brasfield

Ms. I. Moon

Ms. P. Pohlman

^{*}The Machine Shop and Electronics Shop facilities are available for the Columbia Radiation Laboratory.

PUBLICATIONS

- Kent H. Casleton and George W. Flynn, "Laser Excited Infrared Fluorescence in COF₂: Equilibration and Relaxation of the C=O and C-F Stretching Modes," J. Chem. Phys. 67, 3133 (1977).
- H. C. Card, "Photovoltaic Properties of MIS-Schottky Barriers," Solid St. Electron. 20, 971 (1977).
- H. C. Card and F. F. Fang, "Spectral Response of Photocurrents in the MOS and the Dependence on Gate and Substrate Bias," J. Appl. Phys. 48, 2481 (1977).
- H. C. Card, E. S. Yang, and P. Panayotatos, "Peaked Schottky Barrier Solar Cells by Al-Si Metallurgical Reaction," Appl. Phys. Lett. 30, 643 (1977).
- H. C. Card and E. S. Yang, "Electronic Processes at Grain Boundaries in Polycrystalline Semiconductors under Optical Illumination," IEEE Trans. on Electron Devices, ED-24, 397 (1977).
- P. Panayotatos, H. C. Card and E. S. Yang, "The Effects of Illumination on the Depletion-Region Recombination Currents in Schottky-Barrier Solar Cells," IEEE Proceedings (Lett.) 65, 1213 (1977).
- K. K. Ng and H. C. Card, "Photocurrent Suppression and Interface State Recombination in MIS-Schottky Barriers," IEEE-IEDM Digest of Technical Papers, 57 (1977).
- G. W. Flynn, "Laser Fluorescence and Thermal Lensing Studies of Intermode Energy Transfer and Chemical Reactivity in Small Polyatomic Molecules," A. C. Symposium on State-to-State Chemistry, Am. Chem. Soc. Meeting, New Orleans, La., March 1977, ACS Symposium Series, P. R. Brooks and E. F. Hayes, Editors, 1977.
- S. Lemont and G. W. Flynn, "Vibrational State Analysis of Electronic to Vibrational Energy Transfer Processes," Ann. Rev. of Phys. 28, 261 (1977).
- A. C. Tam and W. Happer, "Plasma Production in a Cs Vapor by a Weak CW Laser Beam at 6010 Å," Opt. Comm. 21, 403 (1977).
- A. C. Tam and W. Happer, "Oscillating Laser-Production of Particulates in a Cs/D₂ Vapor," Chem. Phys. Lett. 49, 320 (1977).
- W. Happer and A. C. Tam, "Effect of Rapid Spin Exchange on the Magnetic-Resonance Spectrum of Alkali Vapors," Phys. Rev. A 16, 1877 (1977).
- G. Moe and W. Happer, "Conservation of Angular Momentum for Light Propagating in a Transparent Anisotropic Medium," J. Phys. B 10, 1191 (1977).

- T. Mossberg, A. Flusberg, R. Kachru, and S. R. Hartmann, "Tri-Level Echoes," Phys. Rev. Lett. 39, 1523 (1977).
- Eknoyan, S. M. Sze and E. S. Yang, "Microwave BARITT Diodes with Retarding Field-an Investigation," Solid St. Electron. 20, 285 (1977).
- Eknoyan, E. S. Yang and S. M. Sze, "Multilayered Ion Implanted BARITT Diodes with Improved Efficiency," Solid St. Electron. 20, 291 (1977).
- M. C. Teich, "Nonlinear Heterodyne Detection," Topics in Appl. Phys., edited by R. J. Keyes 19, 229 (1977).
- M. C. Teich, Editor, Proc. NSF Grantee-User Meeting, Opt. Comm. Systems, 1977.
- M. E. Breton, M. C. Teich and L. Matin, "Intensity Fluctuations Produced by Multimode Lasers in Combination with Dielectric Beam-splitters," Beh. Res. Meth. Instr. 9, 324 (1977).
- M. C. Teich, P. R. Prucnal, and G. Vannucci, "Optimum Photon Detection with a Simple Counting Processor," Opt. Lett. 1, 208 (1977).
- S. Meth and S. R. Hartmann, "Photon Echo Modulation in Ruby," Opt. Comm. 24, 100 (1978).
- S. M. Curry, W. Happer, A. C. Tam, and T. Yabuzaki, "Spin Polarization in Flames by Optical Pumping," Phys. Rev. Lett. 40, 67 (1978).
- R. S. Sheorey, R. C. Slater, and G. W. Flynn, "Overtone Fluorescence as a Probe of Intermode Energy Flow in Laser Pumped Molecules," J. Chem. Phys. 68, 1058 (1978).
- A. Flusberg, T. Mossberg, and S. R. Hartmann, "Excited-State Photon-Echo Relaxation in Na Vapor," Opt. Comm. 24, 207 (1978).
- R. Gupta, "Hyperfine Structures in the Excited States of Alkali-Metal Atoms," North-Holland Publishing Co., Hyperfine Interactions 4, 79 (1978).
- R. Gupta, W. Happer, J. Wagner, and E. Wennmyr, "Absorption Studies of Cs₂ and Rb₂ Molecular Bands in the Visible and Near Visible," J. Chem. Phys. 68, 799 (1978).
- M. C. Teich, "Heterodyne Correlation Radiometry," Opt. Eng. 17, 170 (1978).
- G. Vannucci and M. C. Teich, "Effects of Rate Variation of the Counting Statistics of Dead-Time-Modified Poisson Processes," Opt. Comm. 25, (1978).
- E. S. Yang, "Fundamentals of Semiconductor Devices," McGraw-Hill Book Co., New York, 1978.
- T. Yabuzaki, A. C. Tam, M. Hou, W. Happer, and S. M. Curry, "Preferential Excitation Transfer in Cs*(6D₃/2)-Cs(6S₁/2) Collisions," Opt. Comm. 24, 305 (1978).

- E. Y. Chan and H. C. Card, "Optoelectronic Properties of Metal-Germanium Schottky Barrier Quantum Detectors," IEEE-IEDM, Digest of Tech. papers, 653 (1978).
- H. C. Card, "Electrically Erasable FAMOS Memory Structure Using Avalanche-Injection from Floating Gate," Electron. Lett. 14, 674 (1978).
- P. Panayotatos and H. C. Card, "Experimental Critique of the Simple Schottky Theory of Metal-Silicon Solar Cells," Proc. 13th IEEE Phot. Spec. Conf., 634 (1978).
- J. M. Preses, E. Weitz, and G. W. Flynn, "Laser Fluorescence Study of Vibrational Energy Equilibration in CH₃F:0₂ Mixtures: "Impurity" Molecules as Probes of Mode to Mode Energy Flow Pathways," J. Chem. Phys. 69, 2782 (1978).
- Irwin Shamah and G. W. Flynn, "Translational and Vibrational Energy Distributions in Metastable Laser Pumped Polyatomic Molecules: A Quasi-thermodynamic Description," J. Chem. Phys. 69, 2474 (1978).
- K. H. Liao and R. Gupta, "I₂ Vapor Cell as Narrow Band Optical Filter," Rev. Sci. Instrum. 49, 867 (1978).
- B. B. Bulos, A. J. Glassman, R. Gupta, and G. W. Moe, "Measurement of the Lifetimes of the Z²F_{5/2}, Z²D_{3/2}, Z⁴G_{3/2}, and y²D_{3/2} States of Lanthanum," J. Opt. Soc. Am. 68, 842 (1978).
- W. Nagourney, W. Happer, and A. Lurio, "Level-crossing Study of the Hyper-fine Structure of Lithium," Phys. Rev. A 17, 1394 (1978).
- A. C. Tam, T. Yabuzaki, S. M. Curry, M. Hou, and W. Happer, "Inelastic Cross Sections in Cs(n²D_J) + Cs(6²S_{1/2}) Collisions," Phys. Rev. A <u>17</u>, 1862 (1978).
- A. C. Tam, T. Yabuzaki, S. M. Curry, and W. Happer, "Visible Excimer Bands of the K-noble-gas and Na-noble-gas Molecules: Comparison of Experiment with Theory," Phys. Rev. A 18, 196 (1978).
- T. Yabuzaki, A. C. Tam, S. M. Curry, and W. Happer, "Visible Emission Bands of KXen Polyatomic Exciplexes," Phys. Rev. Lett. 41, 543 (1978).
- W. Happer and R. Gupta, "Perturbed Fluorescence Spectroscopy," Progress in Atomic Spectroscopy, PT. A. Edited by W. Hanle and H. Kleinpoppen, Plenum Publishing Corporation, 1978.
- T. Mossberg, A. Flusberg, and S. R. Hartmann, "Optical Second-Harmonic Generation Atomic Thallium Vapor," Opt. Comm. 25, 121 (1978).
- A. Flusberg, T. Mossberg, R. Kachru, and S. R. Hartmann, "Observation and Relaxation of the Two-Photon Echo in Na Vapor," Phys. Rev. Lett. 41, 305 (1978).
- Y. C. Chen, K. P. Chiang, and S. R. Hartmann, "Photon Echo "decay" in LaF3: Pr3+ as a Modulation Process," Opt. Comm. 26, 269 (1978).

- A. Flusberg, T. Mossberg, and S. R. Hartmann, "The Multiphoton Coherent Hanle Effect," Coherence and Quantum Optics IV, 695 (1978).
- Y. Taur and A. R. Kerr, "Low-Noise Josephson Mixers at 115 GHz Using Recyclable Point Contacts," Appl. Phys. Lett. 32, 775 (1978).
- Y. Taur and A. R. Kerr, "Progress on Multimeter-Wave Josephson Junctions," AIP Conference Proceedings, No. 44, On Future Trends in Superconductive Electronics, p. 254 (1978).
- Shamah, "Vibrational Steady States Produced by the Vibrational Relaxation of Laser Pumped Polyatomic Molecules," Ph.D. Thesis, Dept. of Chem., Columbia University, 1978.
- Y. Taur, "Noise Down-Conversion in a Pumped Josephson Junction," Journal de Physique 39, C6-575 (1978).
- G. Vannucci and M. C. Teich, "Effects of Rate Variation on the Counting Statistics of Dead-Time-Modified Poisson Processes," Opt. Comm. 25, 267 (1978).
- M. C. Teich and G. Vannucci, "Observation of Dead-Time-Modified Photocounting Distributions for Modulated Laser Radiation," J. Opt. Soc. Am. 68, 1338 (1978).
- P. R. Prucnal and M. C. Teich, "Single-Threshold Detection of a Random Signal in Noise with Multiple Independent Observations: 1. Discrete Case with Application to Optical Communication," Appl. Opt. 17, 3576 (1978).
- M. Elbaum and M. C. Teich, "Heterodyne Detection of Random Gaussian Signals in the Optical and Infrared: Optimization of Pulse Duration," Opt. Comm. 27, 257 (1978).
- M. C. Teich and B. I. Cantor, "Information, Error, and Imaging in Deadtime-Perturbed Doubly-Stochastic Poisson Counting Systems," IEEE J. Quantum Electron. QE-14, 993 (1978).
- L. Matin, M. C. Teich, M. E. Breton, G. Vannucci, P. R. Prucnal, and W. J. McGill, "Quantum Requirement at the Absolute Threshold with Non-Poisson Visual Stimuli," Assoc. Res. Vis. Ophthal. (ARVO) Abstr. 1, 132 (1978).
- M. C. Teich, "Photon Counting," in <u>Proc. NSF Grantee-User Meeting</u>, edited by M. Gottlieb, C. Tsai, G. Brandt, and J. Blanchard (Carnegie-Mellon University, Pittsburgh, 1978), <u>Optical Communication Systems</u>, pp. 68-69 (1978).
- M. C. Teich, "Atmospherically Disturbed Photon Counting Optical Communications," URSI Optical Communications Abstracts 0S3, 36 (1978).
- P. R. Prucnal and M. C. Teich, "Optimum Detection in Optical Communications with a Simple Counting Processor," J. Opt. Soc. Am. 68, 1384 (1978).

- G. Vannucci and M. C. Teich, "Dead-Time-Modified Photon Statistics and Their Relationship to the Optical Power Spectrum," J. Opt. Soc. Am. 68, 1421 (1978).
- P. R. Prucnal and M. C. Teich, "Statistical Properties of Counting Distributions for Intensity-Modulated Radiation," J. Opt. Soc. Am. 68, 1421 (1978).
- M. Elbaum and M. C. Teich, "Optimal Condition for Pulsed Heterodyne Detection of Random Signals," J. Opt. Soc. Am. 68, 1421 (1978).
- M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton, and W. J. McGill, "Non-Poisson Nature of the Effective Noise in the Visual System Near Threshold," J. Opt. Soc. Am. 68, 1454 (1978).
- Chii-Ming Wu and E. S. Yang, "Physical Mechanisms of Carrier Leakage in DH Injection Lasers," J. Appl. Phys. 49, 3114 (1978).
- N. D. Bhaskar, E. Zouboulis, T. McClelland, and W. Happer, "New Infrared Absorption Bands of Alkali Vapors," Phys. Rev. Lett. 42, 641 (1979).
- N. D. Bhaskar, E. Zouboulis, R. Novak, and W. Happer, "Laser-excited Cross Fluorescent Emission from Cesium Molecules," Chem. Phys. Lett. (1979).
- P. R. Prucnal, "Chain Rule for Finite Differences," Proceedings of IEEE 67, 445 (1979).
- A. C. Tam, "Optical Pumping of a Dense Na + He + Ne₂ System: Application as an rf Spectrum Analyzer," (1979).
- Y. Taur, "Characteristics of a Josephson Junction Harmonic Mixer with External Pumping," IEEE Transactions on Magnetics, January, 1979.
- P. R. Prucnal and M. C. Teich, "Single-Threshold Detection of a Random Signal in Noise with Multiple Independent Observations: 2. Continuous Case," IEEE Trans. Inform. Theory IT-25, 213 (1979).
- H. C. Card and R. W. Ulmer, "On the Temperature Dependence of Subthreshold Currents in MOS Electron Inversion Layers," Solid St. Electron., in press.
- H. C. Card, "MOS Circuit Applications: Nonvolatile Memories," Chap. 10 of Digital Integrated Circuits: Technology, Device Structures, and Applications, Eds. M. I. Elmasry and R. W. Dutton, Wiley, New York, in press.
- H. C. Card, "Electrostatic Effects of Interface States on Carrier Transport in Semiconductor Heterojunctions," J. Appl. Phys., in press.
- E. Y. Chan, H. C. Card, E. S. Yang, A. R. Kerr, and R. J. Mattauch, "Transport of Majority and Minority Carriers in 2 µm Diameter Pt-GaAs Schottky Barriers," IEEE Trans. on Electron Devices, in press.

- Irwin Shamah and G. W. Flynn, "Laser Catalized Translational to Vibrational Energy Conversion in CH3F-O2 Mixtures," J. Chem. Phy., in press.
- Y. C. Chen, K. Chiang, and S. R. Hartmann, "Photon Echo Relaxation in LaF3: Pr3+," Phys. Rev. A, in press.
- A. Flusberg, R. Kachru, T. Mossberg, and S. R. Hartmann, "Foreign-Gas-Induced Relaxation of Rydberg S and D States in Atomic Sodium," Phys. Rev., in press.
- A. Flusberg, T. Mossberg, R. Kachru, and S. R. Hartmann, "Multilevel Echo Relaxation Studies in Gaseous Media," Opt. Soc. Am., in press.
- C. M. Wu and E. S. Yang, "Carrier Transport Across Heterojunction Interfaces," Solid St. Electron., in press.

PAPERS BY CRL STAFF MEMBERS PRESENTED AT SCIENTIFIC MEETINGS

- H. C. Card, "Physics of MIS-Schottky Barrier Solar Cells," Device Research Conference, Cornell University, Ithaca, New York, June 27-29, 1977.
- H. C. Card and K. K. Ng, "Photocurrent Suppression and Interface State Recombination in MIS-Schottky Barriers," IEEE International Electron Devices Meeting, Washington, D.C., December, 1977.
- H. C. Card, "Physics and Applications of MOS Devices with Ultra-Thin (Tunnelable) Oxides," JSEP Topical Review on Semiconductor I.C.'s, Devices and Materials, Stanford University, August 3-4, 1977.
- H. C. Card, "The Theory of MIS Solar Cells," Gordon Research Conference on Metal-Insulator-Semiconductor Contacts," Kimball Union Academy, Meriden, New Hampshire, August 21-25, 1978.
- K. H. Casleton, "Vibrational Relaxation of the C=O and C-F Stretching Modes in Carbonyl Fluoride," Gordon Conference on Molecular Energy Transfer, Brewster Academy, Wolfeboro, New Hampshire, July 13, 1977.
- E. Y. Chan and H. C. Card, "Optoelectronic Properties of Metal-Ge Schottky Barrier Quantum Detectors," The International Electronic Device Meeting, Washington, D.C., December 4-6, 1978.
- E. Y. Chan, "Infrared Optoelectronic Properties of Metal-Ge Schottky Barriers," Western Electric Research Center, Princeton, New Jersey, March 13, 1979.
- S. M. Curry, "Infrared CW Laser Excitation and Particulate Formation in Cs and Rb Vapor," San Francisco Meeting of the American Physical Society, San Francisco, California, January 25, 1978.
- M. Elbaum and M. C. Teich, "Optimal Condition for Pulsed Heterodyne Detection of Random Signals," Annual Meeting of the Optical Society of America, San Francisco, California, November, 1978.
- A. Flusberg, T. Mossberg, R. Kachru, and S. R. Hartmann, "Multilevel Echo Relaxation Studies in Gaseous Media," Tenth International Quantum Electronics Conference, Atlanta, Georgia, February 1, 1978.
- G. W. Flynn, "Lasers, Energy Transfer, and Vibrational Photochemistry," Illinois Institute of Technology, Symposium on "Lasers in Chemical Dynamics," May 19, 1977.
- G. W. Flynn, "Progress in Vibrational Energy Transfer," Symposium in Honor of E. Bright Wilson, Georgia Institute of Technology, Atlanta, Georgia, May 25, 1977.
- G. W. Flynn, "Mode-to-Mode Energy Transfer: The Vibrational Overhauser Effect," Workshop on Laser Chemistry, Battelle Institute Northwest, Seattle, Washington, August 23, 1977.

- G. W. Flynn, "Intermode Vibrational Energy Transfer in Small Molecules," Symposium on Energy Transfer in Atoms and Molecules, American Physical Society Meeting, Knoxville, Tennessee, December 5, 1977.
- G. W. Flynn, "Intermode Energy Transfer in Small Molecules," Distinguished Speaker Series, University of Utah, Salt Lake City, Utah, April 6, 1978; Gordon Conference on Radiation Chemistry, Holderness School, Plymouth, New Hampshire, July 17, 1978.
- W. Happer, "États Atomique et Moleculaires Couplés a un Continuum; Atomes et Molécules Hautement Excités," Colloque Internationale du CNRS, France, June 13-17, 1977.
- W. Happer, "Long Range Interactions Between CW Self-Focused Laser Beams in an Atomic Vapor," Third International Conference on Laser Spectroscopy, Jackson Hole, Wyoming, July 4-8, 1977.
- S. R. Hartmann, "The Multiphoton Coherent Hanle Effect," Fourth Rochester Conference on Coherence and Quantum Optics, Rochester, New York, June 8-10, 1977.
- S. R. Hartmann, "Superradiance and the Laser," DOD Conference on New Laser Concepts, Durham, North Carolina, September, 1977.
- R. Kachru, A. Flusberg, T. Mossberg, and S. R. Hartmann, "Foreign-gas-Induced Relaxation of the Rydberg S and D States of the Alkalis," APS Meeting, New York, New York, January 29, 1979.
- M. I. Lester, "Vibrational Energy Equilibration in SO₂/180₂ Mixtures," APS Meeting, New York, New York, January 31, 1979.
- J. K. McVey, "Energy Transfer in CF₃Cl," Gordon Research Conference on Molecular Energy Transfer, Brewster Academy, Wolfeboro, New Hampshire, July 13, 1977.
- J. K. McVey, "Vibrational Relaxation Processes in CF₃Cl at Low Pressures," American Chemical Society Conference, Anaheim, California, March 15, 1978.
- G. Moe and W. Happer, "Three and Four-wave Mixing and Photoionization in Cs Vapor," 1978 Annual Meeting of the American Physical Society, San Francisco, California, January 23, 1978; Bull. Am. Phys. Soc. 23, 33 (1978).
- T. Mossberg, "Two-Photon Echoes in Na Vapor," 1978 Annual Meeting of the American Physical Society, San Francisco, California, January 23, 1978; Bull. Am. Phys. Soc. 23, 33 (1978).
- T. Mossberg, A. Flusberg, R. Kachru, and S. R. Hartmann, "Study of the Velocity-Changing Collisions Between Na Atoms and either He or CO," APS Meeting, New York, January 29, 1979.

- P. Panayotatos and H. C. Card, "Separation of the Basic Mechanisms in Optically-Illuminated Metal-Semiconductor Contacts," 36th Annual Device Research Conference, University of California at Santa Barbara, June 26-27, 1978.
- P. Pruchal and M. C. Teich, "Optimum Detection in Optical Communications With a Simple Counting Processor," Annual Meeting of the Optical Society of America, San Francisco, California, November, 1978.
- P. Prucnal and M. C. Teich, "Statistical Properties of Counting Distributions for Intensity-Modulated Radiation," Annual Meeting of the Optical Society of America, San Francisco, California, November, 1978.
- Shamah, "Translation and Vibration Energy Distributions in Metastable Laser Pumped Polyatomic Molecules," Poster Session at Gordon Research Conference on Molecular Energy Transfer, Brewster Academy, Wolfeboro, New Hampshire, July 13, 1977.
- R. Sheorey, "Intermode Energy Flow in Laser Pumped CH3F," APS Meeting, New York, New York, January 31, 1979.
- A. C. Tam, "Long Range Interaction Between Laser Beams in an Atomic Vapor," Gordon Research Conference (Atomic Physics) Brewster Academy, Wolfeboro, New Hampshire, July 4-8, 1977.
- A. C. Tam, "Plasma Production in Cs Vapor by a Weak CW Laser Beam at 6010 %,"
 Gordon Research Conference (Nonlinear Effects and Lasers), Holderness
 School, New Hampshire, August 15-19, 1977.
- M. C. Teich, "Information and Error in Photon Counting Optical Communications and Radar Systems," Topical Conference on Informational Aspects of Decision and Control, Joint Services Electronics Program, Harvard University, Cambridge, Massachusetts, May 5, 1977.
- M. C. Teich, "Photon Counting and Energy Detection: The Experiment of Hecht, Shlaer, and Pirenne Revisited," Annual Meeting of the Society for Neuroscience, Anaheim, California, November 7, 1977.
- M. C. Teich, L. Matin, M. E. Breton, G. Vannucci, P. Prucnal, and W. J. McGill, "Quantum Requirements at the Absolute Threshold with Non-Poisson Visual Stimuli," Annual Meeting of the Association for Research in Vision and Ophthamology (ARVO), Sarasota, Florida, May, 1978.
- M. C. Teich, "Photon Counting," NSF Grantee-User Group in Optical Communication System, Pittsburgh, Pennsylvania, June, 1978.
- M. C. Teich, "Atmospherically Disturbed Photon Counting Optical Communications," International Symposium on Optical Communication and URSI General Assembly, Helsinki, Finland, August, 1978.
- M. C. Teich, P. R. Prucnal, G. Vannucci, M. E. Breton and W. J. McGill, "Non-Poisson Nature of the Effective Noise in the Visual System Near Threshold," Annual Meeting of the Optical Society of America, San Francisco, California, November, 1978.

- G. Vannucci and M. C. Teich, "Dead-Time-Modified Photon Statistics and Their Relationship to the Optical Power Spectrum," Annual Meeting of the Optical Society of America, San Francisco, California, November 1978.
- C. M. Wu, E. S. Yang, and H. C. Card, "Current Conduction Across Heterojunction Interfaces," Semiconductor Interfaces Specialists Conference, Miami, Florida, November 30-December 2, 1978.

LECTURES

- H. C. Card, "Schottky Barrier Optoelectronics," Research Seminar, RCA Labs. David Sarnoff Res. Ctr., Princeton, N. J., May 26, 1977.
- H. C. Card, "Schottky Barriers," Electrical Engineering Seminar, University of Manitoba, January 10, 1978.
- H. C. Card, "Solar Cells, Basic Principles, and Some Recent Research", Department of Physics, Electrical Engineering, and Energy Research Center, Lehigh University, November 15, 1978.
- K. H. Casleton, "Studies of Mode to Mode Vibrational Energy Transfer and Laser Induced Chemistry," Seminar, Ford Motor Company Research Laboratory, Dearborn, Michigan, September 28, 1977; Seminar, Oak Ridge National Laboratory, Oak Ridge, Tennessee, November 2, 1977.
- S. M. Curry, "Excitation Transfer Reactions in Laser-Excited Cesium Vapor," Seminar, University of Connecticut, Storrs, Connecticut, March 6, 1978.
- S. M. Curry, "Laser-Induced Plasma Formation in Cesium Vapor: An Atomic Chain Reaction," Colloquium, University of Arkansas, Fayetteville, Arkansas, March 24, 1978.
- A. Flusberg, "Multi-level Echoes in Na Vapor," Seminar, NRL, Washington, D. C., November 3, 1977.
- A. Flusberg, "Coherent Atomic Transients and Multi-level Echoes," Colloquium, Hebrew University, Jerusalem, Israel, January 3, 1978.
- A. Flusberg, "Tri-level Echoes," Seminar, Ben Gurion University of the Negev, Beersheva, Israel, January 5, 1978.
- A. Flusberg, "Tri-level Echoes: A New Coherent Transient Effect," Seminar, IBM Research Corp., San Jose, California, February 23, 1978.
- G. W. Flynn, "Mode-toMode Energy Transfer in Small Polyatomic Molecules," Allied Chemical Company, Morristown, New Jersey, June 6, 1977; Livermore Laboratories, Livermore, California, August 18, 1977; University of Rochester, Rochester, New York, September 21, 1977; Rice University, Houston, Texas, October 7, 1977, Ohio State University, Columbus, Ohio, October 20, 1977; Argonne National Laboratory, Argonne, Illinois, October 21, 1977; University of Iowa, December 1, 1977.
- G. W. Flynn, "Energy Transfer and Chemical Reactivity in Small Molecules," University of North Carolina, Raleigh, North Carolina, January 30, 1978; Amherst College, Amherst, Massachusetts, March 3, 1978; University of Toronto, Toronto, Canada, March 15, 1978; University of Waterloo, Waterloo, Canada, March 16, 1978.

- G. W. Flynn, "Collision Induced Mode to Mode Energy Transfer and Metasta-bility in Laser Pumped Molecules," University of Nevada, Reno, Nevada, April 5, 1978; University of Colorado, Boulder, Colorado, April 10, 1978; Colorado State University, Fort Collins, Colorado, April 11, 1978; University of Chicago, Chicago, Illinois, June 6, 1978; University of North Carolina, Chapel Hill, North Carolina, October 17, 1978; University of California, Berkeley, California, October 24, 1978; California Institute of Technology, Pasadena, California, October 25, 1978; University of Nebraska, Lincoln, Nebraska, March 2, 1979.
- W. Happer, "Laser Snow," Wesleyan University, Middletown, Connecticut, April 7, 1977; Harvard University, Cambridge, Massachusetts, May 23, 1977.
- W. Happer, "Highly Excited Alkali-Noble Gas Excimers," Meudon Observatory, Paris, France, June 10, 1977.
- W. Happer, "Long Range Interactions Between cw Self-Focused Laser Beams in an Atomic Vapor," University of Rochester, Rochester, New York, November 8, 1977; Thomas J. Watson IBM Research Center, Yorktown Heights, New York, November 17, 1977.
- W. Happer, "Attraction and Repulsion of Laser Beams," Department of Physics, University of Illinois, October 12, 1978; Department of Physics, Princeton University, November 9, 1978.
- W. Happer, "Laser Snow," Department of Physics, Texas A & M University, October 19, 1978; Department of Physics, University of Texas at Dallas, February 1, 1979; JILA Colloquium, University of Colorado, March 8, 1979.
- W. Happer, "Laser Photochemistry of Alkali Vapor Hydrogen System," Seminar, Exxon Research Laboratories, December 21, 1978.
- S. R. Hartmann, "Tri-Level Echoes in Atomic Vapors," Seminar, Massachusetts Institute of Technology, Cambridge, Massachusetts, March 2, 1978.
- S. R. Hartmann, "Superradiance," Colloquium, University of Maryland, College Park, Maryland, 1977.
- J. Liran, "Two Photon Near Resonance Scattering From Sodium Vapor," Resonance Seminar, Columbia University, New York, New York, December 15, 1978.
- J. K. McVey, "Energy Transfer and Chemistry in IR-Excited Polyatomics," Seminar, Princeton University, Princeton, New Jersey, March 1, 1978.
- T. Mossberg, "Excited State Echoes," Seminar, Naval Research Laboratory, Washington, D.C., October 17, 1977.
- P. Prucnal, "A New Statistical Discussion Theory Model for Processing in the Visual System," Seminar, Columbia University, New York, New York, February 14, 1979; Bell Laboratories, Holmdel, New Jersey, February 21, 1979; Texas Tech University, Lubbock, Texas, March 5, 1979; Penn State University, State College, Pennsylvania, March 23, 1979.

- P. Prucnal, "Optical Communications and Visual Psychophysics," Seminar, Riverside Research Institute, New York, New York, January, 1979.
- Shamah, "Vibrationally Excited States Produced by the Relaxation of Laser Pumped Polyatomic Molecules," Oral Dissertation Seminar, Columbia University, New York, New York, November 16, 1977.
- A. C. Tam, "Forces Between Laser Beams," Seminar, Columbia Radiation Laboratory, New York, New York, June, 1977; Colloquium, Columbia University, New York, New York, November, 1977; Seminar, New York University, New York, New York, December, 1977.
- A. C. Tam, "Display-Magnetometers and Spectrometers," Seminar, Massachusetts Institute of Technology, Cambridge, Massachusetts, October, 1977; Seminar, University of Massachusetts, Amherst, Massachusetts, November, 1977.
- M. C. Teich, "Photon Counting in the Presence of Dead Time," Seminar, New York University, New York, New York, December 19, 1977.
- M. C. Teich, "Imaging, Error, and Information Transmission in Photocounting Optical Radar and Communications Systems," Seminar, Riverside Research Institute, New York, New York, March 8, 1978.
- M. C. Teich, "Dead-Time Effects in the Maintained Discharge of the Cat's Retinal Ganglion Cell," Biomedical Engineering Seminar, Carnegie-Mellon University, Pittsburgh, Pennsylvania, June, 1978.
- M. C. Teich, "The Role of Quantum Optics in Optical Communications," Laboratory of Optics Colloquium, Palacký University, Olomouc, Czechoslovakia, August, 1978.
- E. S. Yang, "Carrier Confinement in Double Heterostructure Injection Lasers," Seminar, Phillips Research Laboratories, Briarcliff Manor, New York, March 2, 1978.

Ph.D. DEGREES AWARDED

- R. Biskeborn
- Y. Chen
- P. Fu
- A. Glasman
- J. Lyden
- T. Mossberg
- P. Prucnal
- I. Shamah
- M. Steinback

JSEP REPORTS DISTRIBUTION LIST

DEPARTMENT OF DEFENSE

Director
National Security Agency
ATTN: Dr. T. J. Beahn
Fort George G. Meade, MD 20755

Defense Documentation Center (12 copies) ATTN: DDC-TCA (Mrs. V. Caponio) Cameron Station Alexandria, VA 22314

Dr. George Gamota
Acting Assistant for Research
Deputy Under Secretary of Defense
for Research & Engineering
(Research & Advanced Technology)
Room 3D1079, The Pentagon
Washington, D.C. 20301

Mr. Leonard R. Weisberg Office of the Under Secretary of Defense for Research & Engineering/EPS Room 3D1079, The Pentagon Washington, D.C. 20301

Defense Advanced Research Projects Agency ATTN: (Dr. R. Reynolds) 1400 Wilson Boulevard Arlington, VA 22209

DEPARTMENT OF THE ARMY

Commandant
US Army Air Defense School
ATTN: ATSAD-T-CSM
Fort Bliss, TX 79916

Commander
US Army Armament R&D Command
ATTN: DRDAR-RD
Dover, NJ 07801

Commander
US Army Ballistics Reserach Lab.
ATTN: DRXRD-BAD
Aberdeen Proving Ground
Aberdeen, MD 21005

Commandant
US Army Command and General Staff College
ATTN: Acquisitions, Lib. Div.
Fort Leavenworth, KS 66027

Commander
US Army Communication Command
ATTN: CC-OPS-PD
Fort Huachuca, AZ 85613

Commander
US Army Materials and Mechanics Research
Center
ATTN: Chief, Materials Sciences Div.
Watertown, MA 02172

Commander
US Army Materiel Development and
Readiness Command
ATTN: Technical Library, Rm. 7S 35
5001 Eisenhower Avenue
Alexandria, VA 22333

Commander
US Army Missile R&D Command
ATTN: Chief, Document Section
Redstone Arsenal, AL 35809

Commander
US Army Satellite Communications Agency
Fort Monmouth, NJ 07703

Commander
US Army Security Agency
ATTN: IARD-T
Arlington Hall Station
Arlington, VA 22212

Project Manager Army Tactical Data Systems EAI Building West Long Branch, NJ 07764 Commander
Atmospheric Sciences Lab. (ERADCOM)
ATTN: DELAS-BL-DD
White Sands Missile Range, NM 88002

Director
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs
ATT: Dr. Ray Balcerak
Fort Belvoir, VA 22060

Commander
US Army Communications
R&D Command
ATTN: DRDCO-COM-C
(Dr. Herbert S. Bennett)
Fort Monmouth, NJ 07703

Commander
US Army Research Office
ATTN: DRXRO-MA (Dr. Paul Boggs)
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
US Army Missile R&D Command
Physical Sciences Directorate
ATTN: DRDMI-TRD (Dr. Charles Bowden)
Redstone Arsenal, AL 35809

Director TRI-TAC ATTN: TT-AD (Mrs. Briller) Fort Monmouth, NJ 07703

Commander
US Army Missile R&D Command
Advanced Sensors Directorate
ATTN: DRDMI-TER (Dr. Don Burlage)
Redstone Arsenal, AL 35809

Commander
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs
ATTN: DELNV (Dr. Rudolf G. Buser)
Fort Monmouth, NJ 07703

Director
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs
ATTN: John Dehne
Fort Belvoir, VA 22060

Director
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs
ATTN: Dr. William Ealy
Fort Belvoir, VA 22060

Director
US Army Electronics R&D Command
ATTN: DELEW (Electronics Warfare Lab.)
White Sands Missile Range, NM 88002

Executive Secretary, TAC/JSEP US Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709

Commander
US Army Missile R&D Command
Physical Sciences Directorate
ATTN: DRDMI-TER (Dr. Michael D. Fahey)
Redstone Arsenal, AL 35809

Commander
US Army Missile R&D Command
Physical Sciences Directorate
ATTN: DRDMI-TRO (Dr. William L. Gamble)
Redstone Arsenal, AL 35809

Commander
White Sands Missile Range
ATTN: STEWS-ID-SR (Dr. Al L. Gilbert)
White Sands Missile Range, NM 88002

Project Manager Ballistic Missile Defense Program Office ATTN: DACS-DMP (Mr. A. Gold) 1300 Wilson Blvd. Arlington, VA 22209 Commander
US Army Communications R&D Command
ATTN: CENTACS (Dr. David Haratz)

Commander
Harry Diamond Laboratories
ATTN: Mr. John E. Rosenberg
2800 Powder Mill Road
Adelphi, MD 20783

Fort Monmouth, NJ 07703

HQDA (DAMA-ARZ-A) Washington, D. C. 20310

Commander
US Army Electronics R&D Command
ATTN: DELET-E (Dr. Jack A. Kohn)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Technology
and Devices Lab.
ATTN: DELET-EN (Dr. S. Kroenenberg)
Fort Monmouth, NJ 07703

Commander
US Army Communications R&D Command
ATTN: CENTACS (Mr. R. Kulinyi)
Fort Monmouth, NJ 07703

Commander
US Army Communications R&D Command
ATTN: DRDCO-TCS-BG (Dr. E. Lieblein)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Technology
and Devices Lab.
ATTN: DELET-MM (Mr. N. Lipetz)
Fort Monmouth, NJ 07703

Director
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs.
ATTN: Dr. Randy Longshore
Fort Belvoir, VA 22060

Commander
US Army Electronics R&D Command
ATTN: DRDEL-CT (Dr. W. S. McAfee)
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Research Office
ATTN: DRXRO-EL (Dr. James Mink)
P.O. Box 12211
Research Triangle Park, NC 27709

Director
US Army Electronics R&D Command
Night Vision Laboratory
ATTN: DELNV
Fort Belvoir, VA 22060

COL Robert Noce Senior Standardization Representative US Army Standardization Group, Canada Canadian Force Headquarters Ottawa, Ontario, Canada KIA)K2

Commander
Harry Diamond Laboratories
ATTN: Dr. Robert Oswald, Jr.
2800 Powder Mill Road
Adelphi, MD 20783

Commander
US Army Communications R&D Command
ATTN: CENTACS (Dr. D. C. Pearce)
Fort Monmouth, NJ 07703

Director
US Army Electronics R&D Command
Night Vision & Electro-Optics Labs.
ATTN: DELNV-ED (Dr. John Pollard)
Fort Belvoir, VA 22060

Commander
US Army Research Office
ATTN: DRXRO-EL (Dr. William A. Sander)
P.O. Box 12211
Research Triangle Park, NC 27709

Commander
US Army Communications R&D Command
ATTN: DRDCO-COM-RH-1
(Dr. Felix Schwering)
Fort Monmouth, NJ 07703

Commander
US Army Electronics Technology and
Devices Lab.
ATTN: DELET-I (Dr. C. G. Thornton)
Fort Monmouth, NJ 07703

U.S. Army Research Office (3 copies) ATTN: Library P.O. Box 12211 Research Triangle Park, NC 27709

Director
Division of Neuropsychiatry
Walter Reed Army Institute of Research
Washington, D.C. 20012

Commander
USA ARRADCOM
ATTN: DRDAR-SCF-CC (Dr. N. Coleman)
Dover, NJ 07801

DEPARTMENT OF THE AIR FORCE

Mr. Robert Barrett RADC/ES Hanscom AFB, MA 01731

Dr. Carl E. Baum AFWL (ES) Kirtland AFB, NM 87117

Dr. E. Champagne AFAL/DH Wright-Patterson AFB, OH 45433

Dr. R. P. Dolan RADC/ESR Hanscom AFB, MA 01731 Mr. W. Edwards AFAL/DH Wright-Patterson AFB, OH 45433

Professor R. E. Fontana Head Dept. of Electrical Eng. AFIT/ENE Wright-Patterson AFB, OH 45433

Dr. Alan Garscadden AFAPL/POD Wright-Patterson AFB, OH 45433

USAF European Office of Aerospace Research ATTN: Major J. Gorrell Box 14, FPO, New York 09510

LTC Richard J. Gowen
Department of Electrical Engineering
USAF Academy, CO 80840

Mr. Murray Kesselman (ISCA) Rome Air Development Center Griffiss AFB, NY 13441

Dr. G. Knausenberger Air Force Member, TAC Air Force Office of Scientific Research (AFSC) AFSOR/NE Bolling Air Force Base, DC 20332

Col. R. V. Gomez Air Force Member, TAC Air Force Office of Scientific Research (AFSC) AFSOR/NE Bolling Air Force Base, DC 20332

Mr. R. D. Larson AFAL/DHR Wright-Patterson AFB, OH 45433

Dr. Edward Altshuler RADC/EEP Hanscom AFB, MA 01731 Mr. John Mottsmith (MCI) HQ ESD (AFSC) Hanscom AFB, MA 01731

Dr. Richard Picard RADC/ETSL Hanscom AFB, MA 01731

Dr. J. Ryles Chief Scientist AFAL/CA Wright-Patterson AFB, OH 45433

Dr. Allan Schell RADC/EE Hanscom AFB, MA 01731

Mr. H. E. Webb, Jr. (ISCP) Rome Air Development Center Griffiss AFB, NY 13441

Dr. R. Kelley
Air Force Office of Scientific
Research
(AFSC) AFOSR/NP
Bolling Air Force Base, DC 20332

LTC G. McKemie Air Force Office of Scientific Research (AFSC) AFOSR/NM Bolling Air Force Base, DC 20332

DEPARTMENT OF THE NAVY

Office of the Naval Research 800 North Quincy Street Arlington, VA 22217 Attn: Codes 220/221

432

Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375 Artn: Codes 1405 - Dr. S. Teitler 2627 - Mrs. D. Folen 5200 - A. Brodzinsky 5210 - J. E. Davey 5270 - B. D. McCombe 5403 - J. E. Shore 5464/5410 - J. R. Davis 5510 - W. L. Faust 7701 - J. D. Brown

Director Office of Naval Research Branch Office 495 Summer Street Boston, MA 02210

Director Office of Naval Research New York Area Office 715 Broadway, 5th Floor New York, NY 10003

Director Office of Naval Research Branch Office 536 South Clark Street Chicago, IL 60605

Director Office of Naval Research Branch Office 1030 East Green Street Pasadena, CA 91101

Office of Naval Research San Francisco Area Office 760 Market Street, Room 447 San Francisco, CA 94102

Naval Surface Weapons Center Attn: Technical Library Code DX-21 Dahlgren, VA 22448

Dr. J. G. Mills, Jr.
Naval Surface Weapons Center
Code DF
Dahlgren, VA 22448

Naval Air Development Center Johnsville Warminster, PA 18974 Attn: Codes 01 - Dr. R. Lobb 202 - T. Shopple Technical Library

Dr. Gernot M. R. Winkler Director, Time Service U.S. Naval Observatory Mass. Ave. at 34th Street, NW Washington, DC 20390

Dr. G. Gould Technical Director Naval Coastal Systems Laboratory Panama City, FL 32401

Dr. W. A. VonWinkle Associate Technical Director for Technology Naval Underwater Systems Center New London, CT 06320

Naval Underwater Systems Center Attn: J. Merrill Newport, RI 02840

Technical Director Naval Underwater Systems Center New London, CT 06320

Naval Research Laboratory Underwater Sound Reference Division Technical Library P.O. Box 8337 Orlando, FL 32806

Naval Ocean Systems Center San Diego, CA 92152 Attn: Codes O1 - H. L. Blood

> 015 - P. C. Fletcher 9102 - W. J. Dejka 922 - H. H. Wieder

532 - J. H. Richter

Naval Weapons Center China Lake, CA 93555 Attn: Codes 601 - F. C. Essig 5515 - M. H. Ritchie Donald E. Kirk
Professor & Chairman
Electronic Engineering
Sp-304
Naval Postgraduate School
Monterey, CA 93940

Mr. J. C. French National Bureau of Standards Electronics Technology Division Washington, DC 20234

Harris B. Stone
Office of Research, Development, Test
& Evaluation
NOP-987
The Pentagon, Room 5D760
Washington, DC 20350

Dr. A. L. Slafkosky Code RD-1 Headquarters Marine Corps Washington, DC 20380

Dr. H. J. Mueller Naval Air Systems Command Code 310 JP #1 1411 Jefferson Davis Hwy. Arlington, VA 20360

Mr. Larry Sumney
Naval Electronics Systems Command
Code 03R
NC #1
2511 Jefferson Davis Hwy.
Arlington, VA 20360

Naval Sea Systems Command NC #3 2531 Jefferson Davis Hwy. Arlington, VA 20362 Attn: Code 03C - J. H. Huth

Officer in Charge Carderock Laboratory Code 522.1 - Technical Library (Cont'd. on next page) Code 18 - G. H. Gleissner David Taylor Naval Ship Research & Development Center Bethesda, MD 20084

Naval Surface Weapons Center
White Oak
Silver Spring, MD 20910
Attn: Codes WX-40 - Technical Library
WR-303 - R. S. Allgaier
WR-34 - H. R. Ried1

OTHER GOVERNMENT AGENCIES

Dr. Howard W. Etzel
Deputy Director
Division of Materials Research
National Science Foundation
1800 G Street
Washington, DC 20550

Mr. J. C. French National Bureau of Standards Electronics Technology Division Washington, DC 20234

Dr. Jay Harris
Program Director
Devices and Waves Program
National Science Foundation
1800 G Street
Washington, DC 20550

Los Alamos Scientific Laboratory ATTN: Reports Library P.O. Box 1663 Los Alamos, NM 87544

Dr. Dean Mitchell
Program Director, Solid-State Physics
Division of Materials Research
National Science Foundation
1800 G Street
Washington, DC 20550

Mr. F. C. Schwenk, RD-T National Aeronautics & Space Administration Washington, DC 20546 M. Zane Thornton
Deputy Director Institute for
Computer Sciences and Technology
National Bureau of Standards
Washington, DC 20234

Head, Electrical Sciences & Analysis Section National Science Foundation 1800 G Street, NW Washington, DC 20550

NON-GOVERNMENT AGENCIES

Director Columbia Radiation Laboratory Columbia University 538 West 120th Street New York, NY 10027

Director Coordinated Science Laboratory University of Illinois Urbana, IL 61801

Director
Division of Engineering and
Applied Physics
Harvard University
Pierce Hall
Cambridge, MA 02138

Director
Electronics Research Center
The University of Texas
P.O. Box 7728
Austin, TX 78712

Director
Electronics Research Laboratory
University of California
Berkeley, CA 94720

Director Electronics Sciences Laboratory University of Southern California Los Angeles, CA 90007 Director
Microwave Research Institute
Polytechnic Institute of New York
333 Jay Street
Brooklyn, NY 11201

Director
Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, MA 02139

Director Stanford Electronics Laboratory Standord University Stanford, CA 94305

Director Stanford Ginzton Laboratory Stanford University Stanford, CA 94305

Dr. Lester Eastman School of Electrical Engineering Cornell University Ithaca, NY 14850

Chairman
Department of Electrical Engineering
Georgia Institute of Technology
Atlanta, GA 30332

Dr. Carlton Walter ElectroScience Laboratory The Ohio State University Columbus, OH 43212

Dr. Richard Saeks
Department of Electrical Engineering
Texas Tech University
Lubbock, TX 79409

Dr. Roy Gould Executive Officer for Applied Physics California Institute of Technology Pasadena, CA 91125