3 Stanford Artificial Intelligence Laboratory April 1879
1 Memo AIM-327

. Nem

B %

Computer Science Department
Report No. STAN-CS-70-727

! 3 |FVE

THE INTERACTION OF OBSERVATION AND INFERENCE

by
Robert Filman

e

Research sponsored by

Advanced Research Projects Agency

YRS e R R

Enbivn

COMPUTER SCIENCE DEPARTMENT
Stanford University

Flaa das Fron e
R KR SN SR R A e

m
g
‘éri
T
t
] g
2\
i |
i
i
A
BAORETE o

o AR B FRK S W S 8 T 2 S e D)

ORI wnligme

— M,mm%- SR o TN N——
{
: UNCLASSIFIED
! SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
i READ INSTRUCTIONS
| N __=_gemza:c..nummza,‘_____..._1 7 2. GOVT ACCESSION NO. [3. RECIPIENT'S CATALOG NUMBER
!) &
| / 14, STAN-CS-79-727, AIM-327) @ Zochoice X el
! 4. TITLE (and Subtitie) 5 TYP F
/'/ | The Interaction of Observation and Inference / technical, March 1979
; l " : e 6 PERFORMING ORG. REPOAT NUMBER
: 7. AUTHOR(s) STAN-CS-79-727 (AIM-327)
1 £} comm\cv OR GRANT NUMBER(s)
E 1)] |
/ ! £/ / D Robert Ellio Filman / / MDA 9d3-76-c-620’6/ }
7 i | A R JVYIARYA Oy -
] ; { 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. LEMENT, PHOJEC K
. Department of Computer Science -l L "".‘2“" UNIT NUMBERS
: [Stanford University 2 i }/ / /—7 ,
g T o A / 0SS ,’]
. = Stanford, CA 94305 124} L)
E gj 2 Dk e /1' 4 12. %EPOHT DATE 13. NO. OF PAGES
f 11. CONTROLLING OFFICE NAME AND ADDRESS
1 Defense Advanced Research Projects Agency Marcia 1979 235
s 2 ——T———_ . IS r
¥ Information Processing Techniques Office TR BEOVRETY CLASD. (o1 Ihix seport)
4 1400 Wilson Avenue, Arlington, VA 22209
4 11 MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office) Unclassified
¥ Mr. Philip Surra, Resident Representative
H Office of Naval Research, Durand 165 T RS
¢ Stanford University
3 f 16. DISTRIBUTION STATEMENT (of this report)
i
| Approved for public release; distribution unlimited.
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report) -
18. SUPPLEMENTARY NOTES
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
1
|
y ;b. ABSTRACT (Continue on reverse side if necessary and identify by block number) =
5= An intelligent computer program must have both a representation of its
Bl - | knowledge, and a mechanism for manipulating that knowledge in a reasoning process
| e j This thesis,is—en-examination of /the problem of formalizing the expression and
1 - solution of reasoning problems in a machine manipulable form. It is particularly £
concerned with analyzing the interaction of the standard form of deductive steps
‘ with an observational analogy obtained by performing computation in a semantic
| model., T ——_
! =
i Consideration {Pl‘bzhis dissertation is centered on the world of retrograde - 2

FORM N\ O)
DD. 1473~ wcussrim D94 7.4 D
EDITION OF 1 NOV 65 1S OBSOLETE SECURITY CLASSIFICATION OF fHIS PAGE (When Data Entered) A

H

UNCLASSIFIED

: s i SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
19 KEY WORDS (Continuea)

20 ABSTRACT (Continued)

>analysis chess, a particularly rich domain for both observational tasks and long
deductive sequences.

A forpmalization is embodied in its axioms, and a major portion of this dig- _ -
sertati is devoted to both axiomatizing the rules of chess, and discussing and
comparing the representational decisions involved in that axiomatization. Con-
sideration was given'to not only]the necessity for these particular choices (and
possible alternatives) but also the implications of these results for designers of
representational systems for other domains.

1§
e am—

Using a reasoning system for first order logic, “FOL‘, a detailed proof of
the solution of a difficult retrograde chess puzzle was constructed. The close :
correspondence between this ¥formal® solution to the problem, and an “informalﬁ
descriptive" analysis a human might present was shown.

o pia

The proof and axioms were then examined for their relevance to general
epistemological formalisms. 4 The importance of several different mechanisms were
considered. These included: 1) retaining both the notion of "current status"
(typically embodied as the current chessboard) and that of a "historical state"
(a hypothetical game played to reach a desired place), 2) evaluating functional
and predicate objects in the semantic model (the chess eye), 3) the value of
"induction schemas" as partial solutions to frame problems, 4) the retention of
explicit undefined elements within the representation, 5) the importance of =
manipulating multiple representations of objects, and 6) a comparison of state
vector and modal representations.

DD. 514 73 ek UNCLASSIFIED

EDITION OF 1 NOV 65 IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entereq) ¥

Jrampe—————e

Stanford Artificial Intelligence Laboratory April 1979
Memo AIM-327 B Bt o

Computer Science Department
Report No. STAN-CS-79-727

THE INTERACTION OF OBSERVATION AND INFERENCE
by

Robert Filman

An intelligent computer program must have both a representation of its knowledge, and a
mechanism for manipulating that knowledge in a reasoning process.- This thesis is an
examination of the problem of formalizing the expression and solution ‘of reasoning problems
in a machine manipulable form. It is particularly concerned with analyzing the interaction of
the standard form of deductive steps with an observational analogy obtained by performing
computation in a semantic model.

Consideration in this dissertation is centered on the world of retrograde analysis chess, a
particularly rich domain for both observational tasks and long deductive sequences.

A formalization is embodied in its axioms, and a major portion of this dissertation is
devoted to both axiomatizing the rules of chess, and discussing and comparing the
representational decisions involved in that axiomatization. Consideration was given to not
only the necessity for these particular choices (and possible alternatives) but also the
implications of these results for designers of representational systems for other domains.

Using a reasoning system for first order logic, "FOL", a detailed proof of the solution of a
difficult retrograde chess puizle was constructed. The close correspondence between this
“formal” solution to the problem, and an “informal, descriptive” analysis a human might present
was shown.

The proof and axioms were then examined for their relevance to general epistemological
formalisms. The importance of several different mechanisms were considered. These
included: 1) retaining both the notion of “current status” (typically embodied as the current
chessboard) and that of “historical state” (a hypothetical game played to reach desired place),
2) evaluating functional and predicate objects in the semantic model (the chess eye), 3) the
value of "induction schemas” as partial solutions to frame problems, 4) the retention of
explicit undefined elements within the representation, 5) the importance of manipulating

o M e

o seapige

multiple representations of objects, and 6) a comparison of state vector and modal
representations.

This thesis was submitted to the Department of Computer Science and the Committee on Graduate
Studies of Stanford University in partial fulfillment of the requirements for the degree of Doctor of
Philosophy. ;

This vesearch was supported by the Advanced Research Projects Agency of the Department of
Defense under ARPA Qrder No. 2494, Contract MDA903.76-C-0206. The views and conclusions
contained in tAis document are those of the authors and should not be interpreted as necessarily

representing the official policies, either expressed or implied, of Stanford University, or any agency
of the U. §. Government.

© Copyright 1979
by
Robert Elliot Filman

|
|
|
|
|

S .

)
i
H
Z
;'.

Acknowledgments

I would like to take this opportunity to thank the many people who have contributed to the
completion of this dissertation.

I am especially grateful to my adviser, Dr. John McCarthy, and the other members of my reading
committee, Drs. Richard Weyhrauch and Terry Winograd, for their kind and patient reading and
advice. Without their support and direction, this dissertation would not have been possible.
Without their guidance and helpful criticism, this dissertation would have been markedly inferior.

To the other members of the FOL project, Dan Blom, Juan Bulnes, Ashok Chandra, Bill Glassmire,
Chris Goad, Dave Poole, Andrew Robinson, Carolyn Talcott, Arthur Thomas, and especially Rich
Weyhrauch for for providing a system where checking reasoning was possible.

To Jim Davidson, for reading even those sections I had forgotten I'd written. To the other people
who have, over the years, provided discussions and suggestions for improvement to system. 1 can’t
remember all of them, but they certainly include Avra Cohn, Lew Creary, Martin Davis, Scot
Drysdale, Bob Elschlager, Bill Faught, Brian Funt, Dick Gabriel, Scott Kim, Fred Knoll, Bob Moore,
Allen Newell, Rich Pattis, Hanan Samet, Dave Shaw, Bob Smith, Peter Suzman, Nori Suzuki, Dave
Wilkins, and Don Woods.

To the staff and system programmers of the Stanford Artificial Intelligence Laboratory, for
providing such a productive working environment.

And of course to Myrna Kay, for providing the emotional support and stability I needed to get all
this done.

e

Chapte

(AN S

r
1.
1.
1.

1.4
15
1.6
1.7
1.8

Chapter 2
2.1

Table of Contents

CONTENTS

Paradigm: Artificial intelligencet e S A LT A 2
Context: The Representation of Knowledge A A AT P T 3
1.3.1 Declarative versus Procedural Representations el e e 4

1.3.1.1 The Power of Proceduresccooeeveteeosoescassoceessoss 8

1.3.1.2 The Deficiencies of Proceduresocoveveenuncenssssnnnns 5

1.3.1.3 A Declarative Alternativecciveievvnesssreeccasonnsnnns 6

1.3.1.4 A Suitable Marriagecii0iteiniinns T A T 9
J2 OUr SCBOME . vihone s dntiniin ois e mraios oin o680 m o 8o oIe 16 56 8 518 T8 meid 10
Analogs: Other Eyes RS e R e e 11
1.4.1 The Mechanic’s Eye AR S e PRSP |
1.4.2 The Personal Assistant’s Eye S s e e ok Ve e 12
143 The ENGINeEESIEVE . .. Jiidics ois i v vuisisine s v inm w b wis b s w5 v b s 13
WY CHO8S ..o iiv dne wie niosis Fewds v Sk e v e o e 14
15.1 Structure end Search Spaces ¢ vaae s el S 14
15.2 Chess and theEye e sleiatoss s sie Sie % et wates b 15
153 Which Chess Puzzlescov00ennn R Sl 8)s 5 ehe v/ e v onite 16
Topography: The Path of Our Proofccoivieenenrnnronssnnassonanns 16
BGL ThOESOIGHON ol o ri el o e armn e sw b5 o oo va v vsssthsmse s oo s & ok e w v 18
1.62 TRERBEIOI o i v i voi tnsn oo Oy e 50 0s Sam w0 % 5 0h 0w 4R Nh 0 % 18
183 ANATRYEIS oo oviiinvd voicnene s o s Ghen v e b S SR e ST R e 34
1.6.4 Reasoning in a First Order Logic Formalism b vees. 34
Perspectives: Other Points of Interestcceiiiiennennenns P 35
1.7.1 Mathematics and a Chess Proofcco0veirvnsnennnccnss e R 35
1.7.2 Machine Proof Generation and 8 Chess Proofcccovevveevncrieaes 35
Format: A Guide for Reading This Paper D N g s 35
1.8.1 The Proof Checker FOLc. ... oo S B G S R 58 e 36
1.8.2 Reading Proofs At L e ST T PSS 36

The Chess Axioms R E S Y T, A b E e T o R 37
Declarations and Definitionscoceeeerencrocessnssenssssnsssensnes cees 38
251 Very Primitive NotONS .« csvcvnevessvnssvsnsvenvsnsssssvsvssssosssssy S8

SELT PORNONE. i iiniiiiosmin e Cha b S s b e el b WS § w08

2.1.1.2 Pieces g G b WEA e .. 39
2.1.1.3 Squares e v S e e v e s AR PR T G B LR W 40
CLLA VUMUBE ivonin oo edomvohevevisms e 6aoms e s sy vames w ey .. 40
2.1.15 Boards B o My S L AP R F AR B E WOrop 40
CILEE WOVBE ..cvvvivinvinvsivoisnsnrssvobvasessesssss R 41
2.1.1.7 Colors S 41
.2 Piece Declarationscce00veevinnnne T E TN PR e B e s e

1.2
1.3 Squares and Dimensionscecvvvvrecvrcocasnconns K S peu ceeee.. 44
2.1.3.1 Square declarationsciiiiiieririsnsiesrrisriicansassss 44
2.1.3.2 Coordinate Declarationscocvcevievrcscsssnsssscasessnessess @7
2.1.4 Value Declarations B B P R PR N S SR S G e S e 48
215 BoardDeclirslions ... ccvssvsssevisissssvasssisissossevsaessssssss OO
2.1.6 COlOrDECIOFaliONS ..vvisvrsvssvsvvvssinevsossssrssavvavsrvsosyssve DE
217 MreOnPOBIIONSE ..coivsssisssvssavsvvsrsrvavrrscrrssssasesvisssy 53
2.1.7.1 Position declarationsoooeeeesevcrrsnsecsrtsrcssscssssssssss D3
2.1.7.2 Positional Attachmentsccoeeevevcrsscsssssssssscssssssess D4
208 MOV DRCIIEUIONE o .cosvvviivvsrivisvivanvvovsrsaeeossenosevsbyess SO

l Chapte

22

r3
3
3.2

33

34

Table of Contents

2181 Predicates 0N MOVEScovvitvrrantvssssssssrssssanssensnns
2.1.82 FUNClioNns ON MOVEScvovutevnsnoasnsonsssssssennnnssnns
2.1.9 Definitional Axioms O i et R e T
2.1.9.1 Miscellaneous axiOmscco0veenacnasns P P PR T
2.1.9.2 Positional Axioms e S D L v P P P S S P R
i’A}' 10 Miscellaneous Declarations PP SIS e e e e e e i
221 Movement BxXiOmScccovouevssnnncscnsones B s ntie s wrkiahs e
2.2.1.1 Successor definitionccciiit0citiittttest et ann
2.2.1.2 Simple legal motion e slan e PP S T e
2.2.1.21 Ortho Attachments P R SR e L S S
2.2.1.22 Disg Attachmentsccoevtannnnrcannressnnseesoens
2.2.1.2.3 Knightmove Attechments O A e
2.2.1.24 Kingmove Attachments P e A e R e
2.2.1.25 Pawn Moves S O e e e el el = 3 o s A kAl YA S e
22.1.26 BnngmgltAllTogothor e i e P A L S

2219 CHUING . ivvrnivvivnnesnessseessse s sasasssssnsessssssnasessios
22.1.4 Capture EnPassant sy S R SR S
2.2.2 In Check Definitions e o P P e e e e R R
2.23 Board Axioms AR SR S R T e R R
2.23.1 Sub-board Definitioncciciciececcensasstrartnanaaraenes
2.2.3.2 Board Manipulation Al T s a e e o NS B e et
224 Global Notionsocvvvervnenrnacnnons S e v s e ey
2.2.4.1 Chessinductionc.c0n0en T e e e
2.2.4.2 The Mathematics of Pawn Copturu
2.2.4.2.1 Pawn Capture Definitions e R e b TN R e 8 0

2.25 Asserted Theorems e e S I
225.1 PawnCaplure THEOT®MScovcevevncoroeranasvnnsosennnns
2.25.2 Other Unproven Theorems coctevcevnntvonensacensnnsns
Chess Lemmas and ThEOr@MScccovvneeenssonnnsssosanssasannsssns
Simplification Lemmas 0000000 R e R s
Simple Proofs DGR W ne e e o e i s T
3.2.1 ProofsonPositionscc0.. 5o e o S S8) s e W 6 W e e
3.2.2 Simple Theorems on Values e B L R
Chess Inductive Proofs V8 o RS b R AT R 0 8 o 0
3.3.1 Only Pawns Promote S L e o
332 MOBIIlY ..cc.covviiiviisrrnvnsersrvonssessassassranassssossssssas
333 Segregate i s R SR
More Complex Chess Thooroms o e e
3.4.1 Proof by Cases: Symmetric Orthogonality Vv e S A A e
3.4.2 Cornered Checking Pi@cesoeevvevsensonvsrnonesasnsesasens
3.43 No Black Pawns on the First ROW covvvvrensnrerenancensrnnnnnns
A FOL Solutiontothe Chess Puzzlecovvvivrerncrnnercncannes T
Declarations for this Proofccvoeerrverconrsessanesssrssonasssssssssas
The Proof AT R N B B SR AN B S R D
4,2.1 BlackisinCheckcoovvnnns R N e R
4,2.2 White’s Lest Move R R b s § S e B R S S
4221 ThoChcckMustHovoBunommud......................
4,23 Which Piece Discovered the Checkcvovevrverntsnsssnnnnnnnns
4.2.3.1 Where the Last Move Originatedccovveveincrnrnnnrnnns
4.23.2 The Last Move was 8 Pawn Promotionccovvvvevoccvnnssanns
4,24 How the Pawn Promoted P

4.24.1 ThoPownDndNoiCnp\w.oRookorQ\mn.......................
424.1.1 The Cornered Rook or QUEeNcovvvvvvnvrtincnonens
v

122

Table of Contents

- 4.2.4.1.2 Which Piece Discovered the Checkco0vvieenenn 123
4.24.2 The Pawn Did Not Capture a King or Pawncocvvennnnn 129
4243 The Fate of the Black Bishopsciviiiinvineennennnnanens 130
B25 The BIsCK PBWRE . oo vovvessoisosssnnsisssssssassssnsssssssssssssssd 133
4.25.1 Which Pawn Promotedccouovienrntoannnnnnnannansnnnss 136
426 DidaBlack Piece Fall?cconvennnanssasssascnccsessnsssnssos 138
4.2.7 The Fallen Piece Wasn't a White Pawnciiiiiiisrnerannannns 142
428 The White ROOK and Kingcovniuniieeneornnnesnnascnasenennsnns 145
429 Black Pawn Caplurescciernienenernrnrnsnensasseasaaassns 147
4.2.10 The Black Pawn's Path to Promotioncctiviiinnoennnenoannns 151
4.2.11 The Source of the Promoting MOVecovvrreninernnnonnnnesses 155
8212 The Raule 1o BNT .. o conenvns sistuin o nin/s oin aisie sioias vin winis s = als s o & 158
Chapter B ConClUSIONS vuvvererentoerssnssossssasoesesssssossosanssnsasons 162
Bl POraPOCHIVE .« oo ct acnnvine s v s e S8 a8 a8 6 N e e e e 162
5.2 Representation and this Proofcciiiiiiiieiineenereieenneeeennns 162
5.2.1 State Variables and Computable Objects v 163
{ 5.2.2 Incompletely Defined OBJECtSooeeeseneernnennsenecnsoasnns 165
5.2.3 Representation of Aspectsccviiiiiiiiiiiiiiiiiaiaaens 166
5.2.4 Expanding the Vision of the Chess Eyecciiiiiiiiiiininnnn 167
5.25 Other Natural and Unnatural Notionsccoiiivnvennnnenenennsans 167
B AlErnaliVES oot e s i e 4 aia 8 e s s Sl e) e 168
5.3.1 Levels Of Axiomatizationcovevrrvncnnrennroennasnsssasacns 168
6.3.2 Prior’s Modal Tense Logic and Positionsc.coveiuierinrenennonns 169
6.3.3 Filling inthe Blanksccovvvienierionertneruisensnsneenansns 170
5.4 Our Representation Applied to Other Problemscocieiuinnvnneenn 170
B.0.1 Where was the Kingccoiiuiitieninnreriensarasnssacssnsonnss 171
5.42 Berliner's problemccciiiiiiiiiiiitiiiiititsitaieasanes 173
5.5 The Limitations of this Axiomatizationciitiverinuireronenonnannns 175
5.5.1 Difficulties Encountered in Generating this Proof00 176
§5.2 Epistemological Axiomatic Limitations oottt 176
5.6 General Representation ISsuescotiiiniirnrinenaeensennastsosns 179
5.6.1 Multiple Representationscotivirvntnrnnrnnroneronansecnns 179
1 5.6.2 Abstract and Concrete Representationscoviiervineeinennnn 181
5.6.3 Heuristics and Representationccoiiiiiiiiiiiiiiieiiiiiiinans 181
5.6.4 Funclions and Predicatescotiiirerinrrteresesensasnansns 182
BES WROPFSLAW .. vovevivnessanosasaesessesinmsesssssessssssssneesss 183
5.6.6 States and Representations A T ST e e e 184
5.7 Historical Contextcoevveevvrrsessssssososesssosssessssssnsnassss 185
L 2 R e R L L e L e R 187
5.9 Evaluation and SUMMArY cccvvenireroerosotnsssssassssncansnansss 190
Appendix A ChessLemmascvvvvnviensns 46w s PR e SRR 192
Appendix B Proof Lemmascciiitiiiiiiiiiiatittitiitiiieittataataaanee 193
B.1 Undefined Squares on the Given Chessboardcoiviiiiiiiinennnens 193
B.2 "Blocked on the Total Board, TOO™vvvvirriernrrierisonsnsasnsnsnsoases 193
B.3 Where A White Pawn on BQBZ GO oo ii o v 6n v 6 N W E R 6w 196
B.4 A Rook or Queen on BQl is Corneredvvn S AR T N A e 198
B.4.1 Blocked Diagonal Movementc.00n e SN e W 202
B.4.2 Consequences of a Distant Pawn Promotoon R R P A e S B 203
Appendix C FOL Command Frequencyccoeeevvnnannns AR e 206
- Appendix D A Constructive Solution to the Puzzleccovveeviinniiininannnnn 207
vi
i

- T S ——

r_— < RN VR TR
hiase . d ot . i tiiia) i ~ R TREUIPITRY H S iiecd o8 g

Table of Contents
Appendix E Listing of the Chess Theoremsvooveniecnneen e e s s ey e 208
CEBHOREERIY | || sieinciaienin anin i i s e v b i I U e T e R 219
index to Predconst and Opconst Declarations c¢oceiineninnonenneneenennnennns 223

Index to Axioms and Theorems Fa PR e Seiii e e a s aig s e e kR 225

= "ﬂiw‘%

l. Introduction Page 1.

Chapter 1 Introduction y

Section 1.1 Synopsis: A Summary

A intelligent computer program must have both a representation of its knowledge, and a mechanism 1
for manipulating that knowledge in a reasoning process. This paper is an examination of a difficult
problem in retrograde chess, particularly with respect to formalizing the expression and solution of
that problem in a machine manipulable form. In effect, this is both an exploration in the symbolic
representation of knowledge and a characterization of the shape of the resulting knowledge space.

Our consideration centers on the following retrograde chess analysis puzzle (figure). Its solution
(from basic chess principles) is certainly beyond the ability of any current computer program.

/ //////%/2 ?B;;/ ///%/ ///;/ ‘,/2
2 3 g
37, KX 7. T
%, % T, I
AT, T,)2
//%%& %7& ///”7”/2&%7”/
AR 7%, e

%Q/% A%, /%. ’

A piece has fallen off of the board from the square marked X.
W hat piece was it? This position was achieved in a legal chess
game, though there is no presumption that either player was
playing to win.

figure 1

This problem was selected because its solution ‘requires” both deductive and observational
inferences, in a context isolated from other issues of correctness and sufficiency.!

The notion of deductive inference, obtaining new proof steps by the application of syntactic
inference rules, ought to be familiar to the reader. We recognize, however, that human reasoning
proceeds not only by deduction, but also by the immediate recognition of results, a process we
identify with observation. We have extended our representational system to include observational
inference by performance of computation in a partial semantic model. Thus, for example, a human

| The “requires” is in scare-quotes, for, technically, any of these functions can be decomposed into logicel form. Any program
can also be expresead in Turing machine form; it is, however, as much folly to write thoss things thet should be evalusted as predicates
oe it is 10 write programs thet should be LISP in Turing notetion.

Page 2. Introduction 1.1

chess player might see a black knight checking a white king on some board. This inference is
performed in our system by computing the check predicate within the semantic model. This result
might be applyed in the deduction that the black knight was the last piece to move, or that it is now
white's turn, by syntactic application of deductive inference rules.

Within the context of the solution of our chess problem, we attempt a synthesis of the two. In
particular, we will axiomatize the rules of chess within first order logic (our declarative
representation), but include within our system a method for evaluating (when we know how) the
values of predicates and functions (which will serve as a form of procedural representation).

We shall also highlight the various representational decisions made in the process of axiomatizing
retrograde chess. We will consider both the necessity for these particular choices, and their
implications for designers of representational systems for other domains.

Using a proof checker for first order logic (FOL, [Weyhrauch?77)), we detail a proof for the solution
of the given chess puzzle. In the process, we show the close correspondence between our formal
solution to the problem, and an informal, descriptive analysis.

This work should be viewed in the context of the search for epistemologically effective formalisms for
artificial intelligence. We need representation structures that are sufficient to express those concepts
we wish our computers to manipulate. However, if these formalisms are to be useful for our AL
purposes, they must also be able to express these ideas concisely enough for computer manipuiation.

It should be emphasized that, unlike many theses within our field, we are not demonstrating a
computer program. Our research is on a more basic level. We are interested in the nature of the
things that an artificially intelligent program would need to be able to do, without specifying the
mechanism by which the program would tie these things together. We are not asserting here that
creating an intelligent program is an easy task; quite to the contrary, there are numerous issues in
the representation and manipulation of knowledge that require solution before a general human
level intelligence could be produced. We hope here to shed some light on several of the different
representation issues and ideas, and examine the power of their interaction.

Section 1.2 Paradigm: Artificial Intelligence

It is important to begin by expressing the underlying assumptions involved in this examination, to
mention, in effect, "where we're coming from". We consider this thesis to be primarily centered in
the subfield of computer science called Artificial Intelligence.

The study of Artificial Intelligence is an attempt to better understand the nature of intelhzent
processes. This endeavor is, of itself, neither unique nor novel. Understanding cognitive processes
has long been the domain of many other sciences, especially philosophy, psychology and linguistics.
While AL shares many concerns with these fields, it differs in that its primary concern is with the
instrumentality of intelligent action. There exists a basic belief in A.L that intelligent processes can
be mechanized. This computer modeling of these processes has become the ma jor paradigm of A.l

The gross model for these experiments is that of search through a problem space2 The A.l. problem
then naturally divides into two parts: defining the elements and operators of the space to be

2 See, for example, (Nilsson7 |) or [Neweli72)

W A TR R e s

1.2 Introduction Page 3.

searched, and describing the mechanisms that the searcher uses to transverse that space. This is
perhaps more familiarly represented as the distinction between the representation of knowledge and,
perhaps anthropomorphically, reasoning.® Thus, if we are to model general intelligent behavior we
must be capable of both symbolically encoding a representation of the world, and manipulating this
knowledge through a reasoning process. It must be emphasized that these two cannot be regarded as
separate and distinct entities; rather, the selections of particular data and control structures are
strongly interrelated decisions. However, we seek some simplification through problem
decomposition. Hence the emphasis in this thesis on the representation issue, rather than attempting
to encompass the entire A.l. problem.

Section 1.3 Context: The Representation of Knowledge

This work is directed towards general issues in the computer representation of knowledge, not just
heuristics and data structures applicable to one small domain. Many systems have been created, for
instance, which apply specific knowledge to a single problem, obtaining powerful, though limited,
deductions. These are typified by the “expert question answer systems”. While expert behavior in a
limited field can thus be had, these results do not generalize over into solving other, less well-
structured problems.

A good example of purely specific knowledge representation systems are embodied in the game tree
searching programs. While various stratagems and heuristics, particularly the alpha-beta heuristic4,
have been used to program competent game playing programs, the resulting programs have not been
useful for solving problems outside of their limited expectations. Thus, while the typical chess
program, confronted with a board, might be very good at answering the question, "What is the best
move for white”, it might well be unable to comprehend the meaning of "What is the second best
move for white"S. There is no way, of course, of getting the typical chess playing program to
incorporate knowledge of mathematics or geology, and therefore no way convincing the program to
manipulate such knowledge.

Even confining ourselves within the chess domain, and restricting our attention to producing the
"best” move from a given board, it is often quite difficult to instruct the chess program. While a
suggestion like "keep your pawns in diagonal lines” or "avoid an unprotected king in the center of
the board” might easily be incorporated by addition to the board evaluation functions, notions like
“"develop a strategy to obtain control of the center” and "work towards checkmate” are neither easily
expressed nor simply implemented within the tree search paradigm.

However, this is not a paper on playing chess. Rather, we are addressing ourselves to
representational issues, considering the criteria for useable knowiedge representations. We would
like our representation to be "general”, not one for which we first select the domain of application,
and then fit the knowledge structure. Our ideal representation should be able to express all

3 This distinction has been characterized in several different fashions. For instance, McCarthy-Hayes call it the
epistemologicsl and heuristic parte of the Al problem ([McCarthy69). pg 466), while Pratt (extending # notion of Chomeky on
finguistice) refere to the competence/performance dichotomy (Pratt?7] Thus, one can think of "Epistemological Effectiveness” (section
1.3.1.3) s 8 form of “logical competence”, just as Chomsky refers to a notion of grammaticel competence ([Chomeky72))

4 The oc-8 procedure for searching games trees is described in [Nilsson7 |) section 5-12

5 This example is by Allen Newell, in a personal communication

o Y vt

e ——

Page 4. Introduction 1.3.

“questions” and “notions”, or at least as many questions and notions as in human language is capable
of expressing. Particularly important, a good representation system must have some mechanism for
relating the multiple perspectives and organizations that are associated with any object. No good
representational structure should have arbitrary limits on its extent. Rather, it should be an
expansible system, one that can easily and uniformly include additional knowledge about both
previously defined domains, and new areas. It is convenient if the selected representation is natural,
its (basic) knowledge both readily apparent, and humanly understandable.® And, perhaps most
germane to the current discussion, the ideal representational organization should be able to employ
the most natural format for expressing each “fact”, be it as a static rule, or a computational
algorithm.”

Section 1.5.1 Declarative versus Procedural Representations
Section 1.3.1.1 The Power of Procedures

Let us consider that last qualification in some greater detail. We consider the existence of two
species of knowledge. Declarative knowledge has each particular fact represented as a simple
statement, such as Laomedon was tAe father of Priam, or Al red objects on tAe table are blocks.
Procedural knowledge embeds the given information as an algorithm. Typically, To get to the train
station, make a right at the second light, and go tAree Nocks or, To find if there is a green pyramid in a
blue box, check each object in each Wue box, (to see If it Is a green pyramid) . What is given here is not
so much a particular piece of information, as a well defined algorithm for determining the desired
factor or achieving a desired state of the world. This distinction has often been characterized as the
difference between Anowing what and knowing Aow.

Procedures are algorithms; recipes for action. In this respect, they model any well learned activity.
One does not do long division by reference to Peano’s axioms, considering at each step the set
. theoretic meaning of the computation. Rather, one knows "how to divide", and does, just as one can
recognize the checked king on a chessboard without considerations of orthogonality and color, or can
find a phone number in the phonebook without requiring a derivation of the interpolation search
algorithm. Here we speak of using procedures to model derivable, though well defined, recognitions.

Nor do we have to limit the power of our procedures to human size tasks. For most tasks requiring
"intelligence”, a computer is not (or, is not yet) a match for a human. However, it is fair to recognize
that there are some things (well defined, complicated algorithms, preferably requiring either a long
computation of a great deal of memory) which computers can do better than humans. A procedure
that knows how to solve analytic integrals could use such a solution as a building block in some
longer derivation. Here the solution of the integral is a single step in the larger deduction, though
the actual computation involved in the integration might well be great.

We will explore these notions in some specific cases in section |.4.
It is worthwhile mentioning that our notion of procedural knowledge differs in several important

respects from a similar (and probably more familiar concept): the procedural a.i. languages, of which
the major exemplar is PLANNER [Hewitt7l]. These languages are similar to our aforementioned

[) Naturel form permite sssier composition, verification end understending of the represented system

7. Algorithm here is meant to also inciude the employment of physical devices by our intelligent mechine. For inetence, @ robot
doing vieval analysis might use o special processor, equipped with television camers, that found edges or regione in e vievel field.

T T

Su— ———

1311 Introduction Page 5.

scheme, in that much of the knowledge of programs written in Planner is embedded in procedural
definitions. They differ, however, in that our notion does not include the implicit control structure
(particularly pattern matched invocation) dominant in the procedural languages Our functions state
Aow to compute some value; there is no explicit or implicit demand when the actual computation
should take place. Additionally, we shall see that our notion of the procedure to compute x is
subordinate to our notion of x, we discuss this mapping in section 1.3.14.

Section 1.3.1.2 The Deficiencies of Procedures

One might well expect, after reading the previous section, that we are about to hoist a banner,
Knowledge = Procedure. Not so. We recognize that procedural representation Is sometimes
appropriate. Most particularly, when one knows how to compute some value, computing it might
well be the best idea.

But procedural representations have their himitations. For one thing, procedures are best written in
a structured and modular form. That is, we would like the procedure that computes X to be able to
do that without regard for “the rest of the world", (subject, of course, to conventions about data
structures, communications, and the like). In the same spirit, and within those assumptions, we want
our procedures to perform the most efficient computation possible. But this Nack boxing of a
procedure presupposes that the internal structure of the procedure will not be examined. Hence, we
will need some other way to express the relationships between procedures, and the invariants of the
particular procedural computation. In effect, we may need to reason about some procedure, and the
program semantic formalisms available to do this are not strong enough. Note that our notion of the
procedure as @ Nack box corresponds strongly with human limitations on introspection. For instance,
no one can describe Aow he sees some scene, for example, what makes a particular ob ject red

This fixation of the procedural definition delimits the possible uses of a given piece of knowledge
Typacally, procedural representations of entire predicates (as embodied by most purely procedural
languages) implicitly specifies the only uses of that knowledge. Thus, if we know that Al computer
science graduate students are dnight and overworked we may want to use this knowledge to prove that
Tom, a computer science graduate student is bright, or that Dick, who is not overworked, can not be
a computer science graduate student, or that, combined with the fact that all A.l. graduate students
are computer science graduate students, there is no dumb Al graduate student® The procedural
language formalism demands that each possible use be associated with an explicit occurrence of that
information.

Lastly, procedural representations dependent upon computation on completely specified ob jects, such
as a complete data base of ob jects, will be unable to reason about situations involving incomplete

knowledge and multiple representations.

To summarize, while procedural representations are often quite powerful, they retain certain
inadequacies. Our list is by no means exhausted; comparison with section 1.3 show several other,
obvious deficiencies. A more complete discussion of the problems of purely procedural
representations can be found in [Moore?5).

If the meaning of natural language (that is, English, Latin, Basque, ..) expressions were more
precisely defined, and suitable for algorithmic reasoning, then perhaps a natural language

............................

[} These being & slight extension of kdeas of Winogred in [Winogred?8)

Page 6. Introduction 1.3.1.2.

representation would be appropriate. Language is, after all, one of the major mediums of thought.
But the “pretend it's English” [Hayes77) approach to representation runs into problems of inherent
ill-definition. What, after all, does this English structure mean? And how is it to be used?
Language, we see, reveals itself to be too imprecise and ambiguous to serve as our representation.
Rather, we need a firmer epistemological foundation for our knowledge system.

Section 1.3.1.3 A Declarative Alternative

Modorn formal logic is the most successful precise
language every developed to express human thought
and inference. Measured across any reasonably
broad spectrum, including philosophy, linguistics,
computer science, mathematics and artificial
intelligence, no other formalism has been anything
like so successful.

P. J. Hayes®

To fill the gap between a natural language system and a pure procedural representation, we propose
the use of formal logic, particularly an extended first order predicate calculus.?

Logic was originally conceived in an attempt to precisely delimit the nature of human reasoning.
This is a theme extending back through to Aristotle. It is a notion that reached its apogee by the
middle of the nineteenth century, perhaps best exemplified by George Boole's magnum opus, An
Investigation into the Laws of Thought, on Which Are Founded the Mathematical Theories of

Logic and Probabilities.

Modern logicians are not quite as dogmatic on this point. It is now recognized that there are many
domains which formal logic does not (yet) model well. Particularly of interest to those of us in A.L
are the various model logics of knowledge, belief, tense and ability. These are areas of current study
in both mathematics and philosophy. Until these problems are resoived, we can hardly assert the
universality of formal logic as a representational system. Even so, using formal logic for computer
representations has several advantages:

1. The sentences of first order logic are fairly natural. With a little practice, one has no
difficulty with either composing such sentences, or understanding the meaning of a given sentence.
In fact, they have a much clearer semantics than ambiguous natural language. Similarly, it is fairly
easy (for humans) to translate between many natural language constructs and first order logic.

2. First order logic has explicit quantification (¥ and 3). Some other formalisms, particularly
network formalisms, have no explicit method of producing existential quantification. Other network
formalisms lack explicit negation.

3 There are partial decision procedures for first order logic (procedures which can sometimes
decide the validity of a WFF), and decision procedures for parts of first order logic (such as

9 [Hayes?77)
10 The "first order logic” vsed in this voiume is the pr itional calculve (ives A ¥V » 3 and +) extended by the inclusion

of predicates, quantification (V and 1), functions (operators), ﬂ; notion of equelity, and the ebility to do inference by computation in 8
semantic model.

1.3.1.3. Introduction Page 7.

propositional logic with equality and monadic predicate calculus). Here we look ahead to the
heuristic side of the Al problem. The validity of some first order logic sentences is determinable by
certain decision procedures. In particular, the tautologies of propositional logic, tautologies of
propositional logic with equality without substitution in functionals, and monadic predicate calculus
are all examples of decidable logics. A reasoning program using a first order logic representation
could easily take advantage of these procedures. Similarly, there are heuristic procedures for first
order logic. For example, the various forms of resolutions are heuristic methods for logic.!! As
automatic theorem proving progesses, these better and more powerful procedures become
immediately available to a logic based system.

4. First order logic satisfies our criterion of generality. It is obviously not tailored to one
particular domain. One hears a complaint from the gallery, “But logic is for mathematics.” Perhaps
so, but this paper is especially a demonstration of an application of first order logic to a non-
mathematical (though well structured) domain.

3. Knowledge can be added to a declarative system through the addition of lemmas and
theorems. There should not be any need to know Aow this new information the interaction will with
the current data base, other than to insure that no contradiction, deducible by the heuristic portion
of the program, is thereby introduced.12

6. We propose a method for keeping the power of procedures that know how within the
framework of the formal logic system. In effect, have some of the best of both worlds. We consider
this notion in greater detail in section 1.3.1.4.

7. We have within first order logic a good mechanism for describing the equivalence of
different representations. We can do so explicitly, especially through the use of the equality relation,
and universal generalization.

8. In some sense, the alternate representations currently extant are just other, and sometimes
fuzzier forms of logic. For example, most of the notions currently titled semantic networks are as well
expressed as well formed formulas; deductions and representations in one can be mapped to the
other. Similarly, anyone familiar with LISP must recognize the interchangeability of data and
functions. But there is an inherent problem with other systems that formal logic, with its strong
syntactic and semantic restraints does not share. The meaning (semantics) of the particular
constructs within these other representations are not well enough understood to be completely
analyzable. Non-monotonic systems are particularly prone to this problem. The truth value of the
various functions within systems of this kind is frequently tied up to the heuristic mechanisms
involved in computing that value. Statements about such systems, for example, whether they can or
cannot deduce some particular result, must therefore lead into a dynamic analysis of the action of the
entire system. And such analysis, as our brief experience with program verification should show us,
is a difficult problem. Formal logic systems, with their notion of fruth, have the property that
anything once deducible, will remain deducible despite the addition of any other information (axioms).

|1 We sre not ssserting thet one wante to reason strictly by using resolution (or that one even wants to use resolution at all).
Rather, one wante to vee useful inference rules, and, in cortain circumstances, resolution might be useful

12 We ore, admittedly, skimming over & pair of important points. We have here proposed a consistent data base, or at least one
whose inconsistencies are not apparent. But determining if a set of axioms is consistent is, in general, undecidable. Whether one wante
a consistent data based is an argusble question. [t is certainly not trve that b intain & istent knowledge system. However,
we seek here 10 model human external actions, not internal processes. Secondly, we have pushed off to the problem space searcher the
question of what to do with this additional information.

e e A i Y B A B e S

Page 8. Introduction 1.3.1.3.

Systems such as PLANNER ([Hewitt71), [Winograd72]), where negation is used interchangeably with
a truth value that is, effectively, / can't find a counter example. lack this property.}3

We are not alone in recognizing the importance of a uniform semantics for a representation system.
(Hewitt73] considers this issue in detail in his design of his procedural ACTORS formalism.

Perhaps a word on the value of first order logic, in contrast to higher order or simpler logics. It is
clear that purely propositional logic is insufficient for our task; one of the major reasons we want
first order logic s its ability to express quantification and predicates.

Dismissing higher order logics 1s not quite as easy. First order logic is capable of expressing set
theory, and therefore, all of mathematics. It is not obvious that a higher level logic might not
provide a more convenient expression for some real world domains. However, first order logic is
complete; additional axioms can add any needed extension. Higher order logics are not complete,
not every true statement has a derivation. Additionally, first order logic provides us with a well
defined semantic model; the more interesting higher order logics lack this feature. One of the
demonstrations of this paper is that an appropriate semantic model can be a very useful aid to the
deduction process. So, we consider first-order logic here; this is a is very powerful logic, with a large
existing literature on its manipulation. Note that some of the things that computer scientists think
they need higher order logics for can be accomplished through the use of axiom schema (see,
perhaps, sections 2.2.4.1 and A.2.1) in first order logic.

It is important to mention that use of a first order logic representation system is not at all the same as
marriage to a resolution style proof mechanism. Pure resolution proof checkers have proven to be
failures. While such an algorithm might be a small portion of a full artificial inteiligence system, it
is clear that it cannot be the sole (or even the major) inference mechanism. We mention this caveat
because, unfortunately, formal logic and resolution are "married” in the minds of too many people in
the A.l. community. What we are dealing with here are primarily representation issues; even to the
limited extent that we touch upon heuristics, we wish to state that we are not implying a resolution
style approach.

We also wish to emphasize the distinction between representational formalisms and representational
data structures. A parallel to automata theory might clarify this difference. There are many
machines that retain a given degree of computing power: various automata equivalent, for example,
to finite state machines or Turing machines. Any class of machines can solve certain problems,
though some particular machine within that class might solve the given problem more quickly or
require less storage to do so.

The state of representational formalisms is similar. Certain formalisms can express certain truths
about the world. Formalism have certainly not reached the Turing level of expression; there are
many issues of representation we do not how to adequately express. Among them are the issues of
representing knowledge about how to use knowledge, representing beliefs, and representing
chronological developments.

For any given set of axioms and inference rules, there is a set of statements provable from those
axioms and rules. In a complete logic, such as first order predicate calculus, the set of provable

13 This is not to assert that the truth value expressed by lack of a counter example is not a useful heuristic quantity.
However, it is probsbly better if our representationsl systeme recognize the distinctions between "proven” and “unable to prove, but
currently assumed true”.

AT A -

sl v el s

1.3.1.8. Introduction Page 9.

theorems is equivalent to the set of true statements. Classically, an axiomatization is adeguate if all
of the desired truths can be derived in it.

Now, AL is a more practical sort of an affair. It is not merely sufficient for us that a given result be
eventually obtainable; we ideally desire two other things: that the result be concisely derivable, and
that there be some methodology a program could employ to find that derivation.

The second of these is the heuristic adequacy problem, and is beyond the scope of the current
discussion. Rather, we are concerned with two things: finding representations in which what we
want to say can be expressed, and insuring that that expression is of manageable magnitude. We
call this the search for epistemalogically effective representation formalisms.

Epistemologically effective formalisms are not a question of data structure. Rather, it is the
combination of classical epistemological adequacy (expressiveness of logical language) with an
appropriate set of inference rules to allow reasonable proof to be obtained.

We notice that one of the things that human problem solving does to shorten derivations is to
employ both standard deduction, and a quicker moticing @ conclusion, something we have associated
with observation, and suggested can be performed by procedyral computation on ground instances.
We explore this combination in the next section.

Section 1.3.1.4 A Suitable Marriage

We desire a composition that will permit us both the effective advantages of procedures, and the
expressive quality of declarative methods. We also want that this unification retain the
mathematically valid foundation accrued by use of our original formal system.

To perform this marriage, we turn to model theory, and postulate the following. We assume that (as
an underlying structure) we have a LISP world. This world contains individuals (S-expressions,
hereafter abbreviated Sexpers), and functions and predicates in the usual LISP - lambda function
notation. Above this world, we have our formal first order logic system, the usual collection of
individuals, variables, predicates, and functions. We then create a map between our logic constants
and the LISP world model, prescribing for some constants a LISP Sexpr, which we then assert will
act like that constant. Thus, in a system reasoning about arithmetic, we might map the individual
constants ONE, TWO and THREE to the respective LISP atoms 1, 2, and 8, the predicate < to the
LISP predicate LESSP, and the operator + to the LISP function PLUS. Our logic system would
then be able to derive the validity of sentences using these constants by invoking the computational
mechanism in the LISP model. For example, the sentence 2 < (1 + 8) would be seen to be semantically
true in the LISP model, and therefore valid in the formal logic system.!4 In effect, we retain the
ability to easily compute Aow, when we can compute, while still being able to reason about the
computations. We have not increased what we can say; however, use of this device will free us to
talk about more interesting things than, for example, set theory and Peano axioms.

We hope that the resulting system will retain the advantages of both; that the computational
functions can be invoked when most appropriate, while retaining the powerful descriptive ability of
the formal logic representation.

14 For & more formel explanation of thie relationship, see [Weyhreueh?7}

RIS Dl SV AT o YR

& B ...»wwuwwﬂt MR

A

Page 10. Introduction 1.3.1.4.

Earlier (section 1.3.1.1), we suggested that the most appropriate use of this computational ability
would be to model the human ability to observe. Persisting in this notion, we dub our semantic
procedural attachment, our Eye. Thus, for our chess problem, we have a Chess Eye. Similarly, an
automated physician, capable of doing its own chemical analysis, might perceive this knowledge
through its Lab Eye, or an electrical design facility might consult a simulation Tech Eye to verify the
correctness of a circuit. Any computer individual performing a test on the real world will need to
employ some sort of device, quite likely, this device will be some computer system “called” ob ject.
The intelligent part (as opposed to the perceiving part) of our computer individual could easily refer
to this perception action as the evaluation of the particular device function, just as the semantic
model evaluation performs simulated functional evaluation. Hence, computation can be used just
like perception.

Section 1.3.2 Our Scheme

To summarize: we have, as our representational framework, a system founded on first order logic.
We declare predicates, functions and constants in this logical system, and express some of our
knowledge as axioms of the logic. Additionally, we will attach functions and constants in our LISP
model to the constants of our logic system, and will use these LISP ob jects to compute the values of
predicates and functions (attachment of semantic procedures). The legal operators of our system are
fundamentally the rules of inference of the first order logic; we extend them to include computational
evaluation within the LISP model (our EYE), and whatever decision procedures for this logic we have
available. We use this system to examine the topography of long reasoning sequences. '

It 1s perhaps useful to emphasize that this structure constitutes the framework within which we
work. It is, we believe, a broad enough structure to accommodate most consistent formalisms for any
particular problem. We will, in the following chapter, be demonstrating the feasibility of this
framework for a particular formalization of the given chess problem; in the concluding chapter
(chapter 5), we will consider how alternative formulations of the problem might be expressed within
the framework of first order logic with semantic procedural attachment.

We presume the reader is more familiar with the inference rules of predicate calculus than with our
particular implementation of semantic procedural attachment. Perhaps a word about simplification
would be appropriate. Our simplification system employs two ma jor computational mechanisms. As
initially conceived, its purpose was to use the attached functions to compute on constants of the logic
system. Thus, one could take a (constant) board, such as the puzzle board of our problem (figure 1)
and compute a predicate (for example, Black is in check) on it. It has since been extented to include
the ability to evaluate WFFs quantified over finite sets.!> Thus, one can simplify a predicate that asks,
Is there a black bishop on a square of the given board.1® We shall consider in the section 58 various
desirable extensions to this scheme.

Proofs of the size we contemplate would be impossible to write (correctly) were it not for the
existence of a mechanical (computer) proof checking. We are fortunate to have available, for
verification of our proof, FOL. FOL is a proof checker in the first order logic. It originally checked
proofs of the natural deduction style of Prawitz [Prawitz65); it has since been extended to include

15 The performance of this computation varies, of course, with the size of the sete invoived. Practically, we have been patient
enough to check WFF's with up to 2‘2 cesen

16 The simplificat h ss embodied in FOL, slso performs other inference tasks, such ss decision procedures on the
sort hierarchy, and inferences sbout the membership of finite sets

e —————T

132 Introduction Page 11.

decision procedures on tautologies, and the beginings of deductive ability within a LISP model
(what we have been denoting semantic procedural reasoning or an eye).

This proof checker acts much like the Missouri Program (“show me”) described by McCarthy and
Hayes [McCarthy69). It “allows the experimenter to present it proof steps and checks their
correctness”.)7 The various decision procedures incorporated into FOL may be viewed as either
making this Missouri Program more discerning, or as being steps towards the Reasoning Program
mentioned in that paper.

The bulk of the remainder of this paper presumes knowledge of the FOL system. An introduction
to FOL, of adequate detail for understanding the FOL used in this paper, may be found in
(Filman76). A full description of the syntax and semantics of FOL is the FOL manual
[Weyhrauch?7).

Section 1.4 Analogs: Other Eyes

Back at the beginning of this thesis (section 1.1) we mentioned that this is primarily (at least by the
measure of physical paper use) a demonstration of the proof of a chess puzzle. However, we are
concerned with the general representation issues, and find it profitable to present a few short
examples of our representational scheme applied to some other domains, particularly emphasizing
the employment of procedural Eyes. In contrast to our major proof, which is a highly detailed
though unidirectional derivation, this detour is best perceived as speculation and hypothesis. We
are not presenting a system of axioms and attachments for these worlds, but rather, a brief overview
of how these techniques might be applied in them.

It is important to point out here that this section is not dealing with how perception might be
performed; rather, we are describing a system that, through the semantic procedural attachments, is
able to talk about its perceptions in the same language as the “rest of its thinking".

Section 1.4.1 The Mechanic's Eye

We consider first a representation to embody some of the knowledge employed by an automobile
mechanic in diagnosing a malfunctioning automobile. Of course, whatever we say can be related to
the maintenance of any similar machinery. What must such a person know? Primarily, the
mechanic knows the interconnections and functions of the various parts and subassemblies,
particularly with an eye towards recognizing malfunctions (and potential malfunctions) of individual
components.

How could a computer be employed in such a task? One imagines an extension of the current
engine electrical analysis systems. Instead of (or in addition to) displaying the current levels and
frequencies of various wires on a CRT, such a monitor would pass the information back to the
computer through an appropriate ADC. Special devices might be attached to, say the exhaust pipe
or water pump, to measure composition or pressure, and convert these signals to digital values.
Effectively, these devices would permit the machine to observe the state of the running engine. They
would act (combined with appropriate functions to transmute these real time signals) as part of the
computer’s eye.

Typically, our automated mechanics would have axioms such as:

17. [McCarthy69) pg 469.

e cirdlion e

Page 12 Introduction 1.4.1

¥x.(Voltage(Battery(x)<Minivoltage(Cartype(x))>NEEDREPLACEM ENT(Battery(x))

which would be read to mean: for all cars x, if the voltage on the battery of x is less than the minimum
voltage required for cars of x's make, then that battery needs replacement (or repair). The mechanic
program could then simply observe (by simplifying the given formula) whether the battery was
performing correctly. Note that (from the point of view of the logical language level) we are able to
perform both the perceptual task involved in measuring the battery's current, and checking (in the
mechanics manual) the appropriate voltage for this car by employing the same mechanism. From
the computer's point of view, observation inside its "head" is the same as observing the real world.

Given the prevailing technology, we can hardly expect the computer to fix the car alone. Rather, we
imagine it to be the partner of a human mechanic, who could both ask help from the computer, and
provide non-digital measurements. The computer might request the tire-tread wear statistics for the
car, and then ask the human mechanic to push the front end up and down. His reply (and the
questions) could be used in (and generated by) evaluating:

Vx.3s((IRREGULAR-WEAR(Tire(x,s)ABOUNCES(x,$))>
NEEDREPLACEMENT(Shock-absorber(x,s)))

That is, if, for a car x, there is a side of x (left-front, right-rear, ..) whose tire is wearing irvegularly, and
which bounces after pushing, then the shock absorber om that side of that car needs replacement. The
simplification (computer observation) would request the appropriate information from the human
mechanic, in addition to doing the calculations.

Meta-knowledge, that is, general rules applicable to systems, might also be expressed axiomatically:

¥j k((CONNECTED(jk)JACURRENTTHROUGH()A-CURRENTTHROUGH(k))>
NEEDREPLACEMENT(k))

or, for any two electrical components j and X, if j and k are connected electrically, and there is curvent at
J» but mot k, then k is defective. For example, if there is current leaving the distributor, but no spark
at the plug, then the ignition wire is broken. By looking at the electrical connections, our automatic
mechanic sees the validity of any instantiation to this axiom. But it is up to the main mechanic
program to (heuristically) decide what instantiation to make.

Section 1.4.2 The Personal Assistant’s Eye

Here is a second example of the combination of procedural observation embedded in a formal
system. One thing |1 would like of my computer, is for it to be my personal assistant, effectively, my
secretary. It should be capable of tasks such as scheduling appointments, planning trips, and making
coffee. To do these tasks most successfully involves both actions of a simple procedural nature (such
as table look up or message transmission) and of deductions of a more complex, reasoning variety.
For instance, I might want my assistant to arrange a trip to Pittsburgh for me. To accomplish this
task, the program would need to look up the airline schedule, relate the information found to its
knowledge of my flight preferences and other appointments, call the airline and hotel for
reservations, find a way to and from the various airports, print a list of directions, and so forth.
There are several different abilities involved here. The program must reason about my knowledge
and desires (it doesn't need to tell me, for instance, how to get to the San Francisco airport -- but I
might need information about ground transportation in Pittsburgh). It should realize that 1 prefer

BRSAS
0 R R 3

14.2 Introduction Page |3.

flights with a movie and meal. It might believe that 1 have axioms telling it to use the least
expensive flight, or to avoid a particular airline. But it does not need to do an involved reasoning
sequence to find out what flights exist. Rather, it can see the flight schedule merely by looking it up
in a table, an observational activity. We see that we need a formalism strong enough to be able to
reason about knowledge and desires, but which can still efficiently solve simple algorithmic problems.
The semantic procedural attachment mechanism to a full logic seems the appropriate solution.

My secretary program would (in this ideal, non-existent world) also communicate with other
programs and machines. It could call the airline and hotel computers to arrange the reservations.
Another interesting communication domain involves scheduling appointments with the programs of
the other people on our system. Our ideal program can observe my schedule (table lookup), consider
my preferences (avoid appointments before 11:30), and send and receive messages from the other
secretary programs. Note that the acts of sending and receiving are procedural actions, naturally
expressed by executing functions. The updating of various tables associated with particular states
accomplishes a large portion of fixing the tense logic. Within this general formalism, this updating
and searching is accomplished by attaching the executing procedures to the associated functions.
And this system allows us to reason about the actions of sending messages. Our system need also be
able to distinguish between thinking about sending a message, a purely gedanken experiment, and
actually sending it. Thus, it can reason, if / send him a message asking for an appointment tomorrow, it
will probably give us a 10.00 am meeting. But if | ask for a more preferable time, like 2:30, | may get
it

Making coffee involves turning on some real, physical device. Once again, it is accomplished
through some function call. We imagine, perhaps, an execution of the COFFEE UUO. Once
again, we seek interaction with the real world represented by the use of a function call. Needless to
say, simplification of some other function permits the program to observe when the coffee is ready.

Section 1.43 The Engineer's Eye

As our last example, we consider the representation of knowledge for a computer engineer.
Basically, we will wish to describe physical systems to this program, and have it verify properties of
these systems. For example, our engineer could be given a circuit, and asked to prove some
functional property of the outputs, relative to the input currents, or given a system a moving bodies
in some force field, and asked to determine the possibility of collision. Such a procedure might be
part of a hardware design and verification program, or a module of a computer aided instruction
system.

Our system will know general laws about ob jects, suitably expressed as formulas of our logic. Thus,
a typical axiom about moving bodies would have:

VX t vy as(x,t)e.5uant? « vgat

or, the distance reached by body x, by time t, is the product of the (constant) acceleration of x
between t and t,, and t?, plus the distance traveled by x due to its initial velocity during interval t.

The program must be capable of both manipulating such formulas as formulas, and using them to
produce numeric answers. The natural rules allowing substitution of equals, and instantiation of
axioms allow for the formal manipulation. When a program using such a representation needed to
solve for a particular value, in could observe (via the simplification mechanism) and compute it.

Page 14. Introduction 1.4.3. !

Our engineer might also be called upon to design systems. Humans have ready access to familiar,
solved subproblems. For example, adders and registers are the components from which human
designers build bigger digital systems. Our computer engineer can have a list of solved subproblems
of his own, and (with an appropriate procedural call), can consult this list for the correct device.
Once again, we have an observational operation obtained by procedural semantic attachment within
our general formalism.

Section 1.5 Why Chess

It is not that the games and mathematical problems
are chosen because they are clear and simple; rather
it is that they give us, for the smallest initial
structures, the greatest complexity.

Marvin Minskyl8

The end of our detour. Though concerned with general epistemological issues, we are presenting,
primarily, one particular example of the use of our representation system. As we stated in section
i 1.1, this thesis pivots around the demonstration of a solution of a chess puzzle, within the first nrder
logic (and semantic simplification) formalism. It is perhaps useful to detail some of the justification
for examining puzzles about chess, and not some other problem domain.

Section 1.5.1 Structure and Search Spaces

There are several dimensions to be considered in the selection of a domain for A.L research. The
primary one, shaping the entire model, is the degree of structure inherent to the task. Recall that we
described computer intelligence in terms of a searck through a problem space (section 12). We
introduce the notion of measuring the structure of this space, along two different dimensions. Such a
} space can vary both in the specificity of its elements, and the degree of definition of the operators for

transferring between these elements. In general, the more limited the elements of the space, and the
clearer the transference operators, the more amenable the problem is to computer solution. The
current generation of A.l. programs are mostly concerned with those problems for which there is
typically a fairly large number of states, but clear rules for state definition and transition.
Intelligence for programs such as these lies in selecting the appropriate heuristics for navigation.
Beyond the ability of present machine intelligence is negotiation of spaces with ill specified operators
or states. Effectively, we have no programs that can creatively generate and select operators and
states; we have difficultly representing the operators and states of ill-structured domains.

Spaces are also distinguished by the size of their solution sequences. Obviously, the fewer the
number of steps needed to solve a given problem, the easier it is to obtain the solution. With
several choices of applicable operators at any point, longer solutions can become exponentially
difficult. Typically, current problem solvers produce long, but certainly not very long, solutions.

This measure is reflected in the current "state of the art” of generating "smart” machines. We see
successful "expert” programs, dealing with well structured and relatively small problem spaces,
mediocre mathematical programs, dealing with very well structured but very large spaces, but no
"creative” or "common sense” programs, dealing with both large and ill-structured domains. More
specifically, the better one is able to formalize the rules and structure of some domain, the more
successful one’s program can be at “solving” the problems of that domain.

18 [Minksy68), page 12.

1.5.1. Introduction Page 15.

In this thesis, we are concerned with extending the length of solution sequences, within the context
of fairly well structured problem spaces. We view this activity as laying the groundwork for much
longer and more complex reasoning programs. Effectively, we need to know the lie of the terrain,
before sending our computer out to transverse it. We also need a measure of the obstacles and steps,
to be considered in designing the right “legs” for our explorers, gauging the difficulty of the course,
and, perhaps, the building of special tools.

We are not presenting specific methods for improving the most ill-structured domains. Rather, we
seek to extend the present structured domains (though not artificially well-structured domains). More
particularly, we want a problem space that is not purely artificial but, rather, corresponds to the
irregularities of natural systems. We want a problem we can solve, not one we must defend from
semantic ob jections and different interpretations.

Similarly, this domain should be complex enough to require long reasoning sequences. Most hard
problems of the "real” world do not derive their difficulty from the depth of the reasoning required
for their resolution. Rather, problems arise out of the poor structure and broad knowledge base
inherent to "real” domains. The problem is not then not merely the storage of information, but,
more importantly, its selection.

One domain obviously satisfies some of the above criteria: mathematics. Deduction sequences in
mathematics can be arbitrarily long; mathematical proofs are presumably not (very) open to
questions of semantic validity. But the mathematical domain retains shortcomings. parsimony
within mathematical structures that is not paralieled within more synthetic systems. Effectively, we
find mathematics foo well structured a domain.

So we step away from orderly mathematics, and towards a more ill-structured task. By considering a
game system, with rules delimiting the domain, we acquire a well specified structure. We will not be
bothered with semantic quibbles, for it is clear from any state what legal transitions exist. But with
as old and dynamic a game as chess, we also get an arbitrary and irregular rule system. As we shall
see in chapter 2, these irregularities dramaticaily increase the complexity of the representation.

Chess retains yet another appeal. We profess to be interested in extending the size of deduction
sequences. From the (relatively) small set of initial rules, we can produce problems of enormous
complexity. Since our goal is not to test the size of initial structure we can store,!? we find this an

additional boon.
Section 1.5.2 Chess and the Eye

Chess puzzles have yet another attraction. We defined one of the purposes of this paper as an
examination of the semantic simplification mechanism (our form of observation) as applied in
detailed deduction sequences. Chess provides a good forum to display this notion. Our chess eye
can roam freely in this world. It can, for example, be used to look at a board (or board fragment),
and determine a checking or movement relation. Various theorematic knowledge, such as limits on i
the movements of pawns, can also be incorporated into the functions that make up the chess eye. :
And we permit our proof to observe the values of ar. - wessions, rather than requiring their :
derivation. All these effectively parallel the observational aviiity of humans.

19. Our axioms, together with the proof checker, sireedy tox the available memory of our computer system.

Page 16. Introduction 1.5.8.

Section 1.53 Which Chess Puzzles

Before the reader becomes too mislead, let us state that we are (by and large) not talking of chess
puzzles of the mate in n (n = 1,2,3..) variety. For sufficiently small n, such puzzles become trivial
tree search. Rather, we are examining the world of retrograde chess problems, puzzles where
examination of a board fragment leads to deductions and constraints about the moves that led to
that board.20 Retrograde chess problems (and their solutions) can be extremely long and complex; a
suitably difficult domain for analysis.

Let us also note that we seek these deductions from chess “first principles”. That is, we will derive
our solutions (by and large) from the rules of chess, rather than from the “theorems” familiar to
chess puzzle solvers. This serves both to display the generality of our system, and to preserve our
“"honesty", for from a sufhuently powerful set of lemmas, any theorem is easily proven.

Section 1.6 Topography: The Path of Our Proof

We continue our descent from the general to the more specific. As we stated in the introductory
summary (section 1.1), our attention is focused on the representation of the knowledge and reasoning
implicit in the solution of one particular chess puzzie. Having kept the reader waiting long enough,
1t i1s perhaps time to state and solve that problem.

We examine the FOL solution to the chess puzzle illustrated in figure 2. It is a difficult problem, one
whose solution requires inferences both about the given board and the game that preceded it.
Deducing the identity of the fallen piece requires the use of many of the more subtle nuances of the
chess rules.

20 The reader interested in other examples of retrogrede chess problems is referred to [Dawson73). While this book is
primarily “fairy™ chess problems, it also contains a number of retrograde analysis puzzies.

Wlsatvas

oo

Gl oo

1.6.

A piace has fallon off of the board from the square marked X.
What pilece was it? This position was achieved in a legal chess
game, though there is no presumption that either player was
playing to win.

Introduction

\\\\
\

1y
,//

N\
NN

A\

Ko)r i

\

/

%

/ i 7, y

/3/34”
% % %

4
/.,

/z/ y /

7aT 7B
////z'////
’/%/}25

Vi
é
/

figure 2

Page 17.

The reader may be unconvinced of the difficulty of this problem, and the complexity of its solution,
if he has not himself attempted its solution. So we defer its answer to the next page.

Page 18. Introduction 16.1.

Section 1.6.1 The Solution

The reader has, of course, by now deduced that the piece that fell off of the X-ed square was the
white queen'’s bishop. If the reader had reasoned the problem in sufficient detail, his analysis
probably resembled the following:2!

Section 1.6.2 The Reason

1 We see, in figure 3 the white rook checking the black king. The king's check is a function
of only the boxed three squares of figure 3; hence, the king will still be in check no matter what the
fallen piece might have been.

1Ll It therefore must be black’s turn to play.

1.2. And white must have made the last move.

7

%M/’,
L7 fx’; ’% Y
’/ 31 ’/ //
// // //,/”ﬁ
/3/&/ /%
// / % %K
/z/ U Y

The white rook checks the black king.
It is black’s turn to play.

figure 3

2. What was white's last move? There are several ways a check can be made. The checking
piece can make the check, the check can be discovered by a piece moving out from between the
checked king and the checking piece, the check can be discovered by the removal of a pawn
captured en passant. To these we add a fourth method, to accommodate our (to be developed)

21 We observe the following chess notation in this discussion. Squares are named first by the color of the perepective side
(White or Black), then differentiated as being on the King's or Quesn's side. A modifying piece (Rook, kNight, Bishop) may be used to
select the sppropriste column, while the final digit describes the distance to thet square from the edge of the bosrd. Thus, the white
queen begine the game on WQi: she is likewise on BQS. The square thet the piece fell from, in out example, is both BKRS end WKRA.
Chesspieces are similerly MM, by color, side and rank. Thus, the white king is WK; the pawn in front of black's queen side rook
becomes BQRP (black queen’s rook pawn). This is basically an sbbrevistion of the stenderd “Englieh” system of chess nemes. We shalil
persist in this naming convention throughout the remainer of this paper.

TSN

16.2. Introduction Page 19.

, formalism. As we will consider the king to be the "moving” piece of a castle, we consider the case
; when a just castled rook has made the check.

2.1 The last move was obviously not a castle by white. The white king is not
_ on one of his castle destination squares. Nor is either white rook on a square
F reachable by a castle.

2.2. This check could not have been made after a capture en passant. En

passant capture leaves a white pawn in the on the sixth rank. There is no white
pawn on this row to have just captured en passant. Hence the last move was not an
L en passant capture.

d.2. Obvnously. the only square the rook could have moved from is WQB?
(white queen's bishop seven, the distinguished square in figure 4). But the white rook
checks the black king from that square too, and white can not begin his move with

black in check.
DA, T
/A/ m% ://///// 2/1/,//
2 7., & 7., %
// // ; ;’ 7, %/ % /87
7 % // X
// ﬂ // ﬂ // // ;;y///
R 2%, %

R

%a///

The square betweon the rook and king.

Sfigure 4
24. Hence, the check must have been a discovered check.
3. Well, then, what piece made the discovered check?
3.1 If the check was discovered, it must have been from a square between the

rook and the king. But there is only one square between these two, WQB7 (noted in
figure 4). Hence, the last move must have been made from that square.

3.2 What type of move was the last move? We have already concluded that
it was not a castle or en passant capture. How about an ordinary move?

Page 20. Introduction 16.2.
33 If the move was not a pawn promotion, one of the white pieces on the
board (see figure 3), in its present incarnation, (that is, unpromoted), must have made
that move.

331 The white king on WKR8 certainly could not have been
next to the black king on BQN2.

332 None of the white pawns could have moved from that
square.

3.3.3. We have already eliminated the rook on BQ2 as a
possible mover. This piece is making the check, not moving to
discover it.

334 A rook on WQBS8 could not have moved on that
diagonal.

3.35. Nor could it have been the piece that fell off the board.

No matter which piece it was, it could not have moved from WQN7.
No piece can make the jump from WQN7 to BKRS.

“/ﬁ//,’l
17, ’////4

A

r

,fif/%
%%/
//%
//a///

None of the (possibly) white pieces (in its present incarnation)
could have moved to discover the check

figure 5

34. Therefore, the last move must have been a pawn promotion.

16.2. Introduction Page 21.

4. How did this pawn promotion go?

4.1 As we see in figure 6, a white pawn can move from WQB7 to one of
three squares. Only one of these, WQS8, has a white piece on it. Thus, the last move
must have had a white pawn moving from WQB?7 to WQ8, promoting to a rook.

%}@
Y, 17
27 X % U
/ A % y
/1/ /”%
/ﬂ/é,
/ﬁ% @ ﬂ
Il Y Y

W here did the promoting pawn move?

figure 6

5. But to make this move, the white pawn must have captured a black piece. Let us call that
/

piece Z, (figure 7). What plece was Z,?
o l //
/ /
/ 'y /'// f %
73/3/,/”
/27 % /

The white pawn captured black’s Z,.

Page 22. Introduction 16.2.

figure 7

3.1 Clearly, black’s last move was neither an en passant capture nor a castle.

His pieces (pawns, king) are not appropriatedly arranged to have just completed one
of these moves.

5.2 Perhaps Z, was a black rook or black queen.

521 If that were the case, then white's king would be in
check. And Z, would be cornered, like the white rook on WQ?7,

unable to have reached that square except from another checking
square.

5.3 So if Z, was a rook or queen, it must have made that check through a
discovered check.

5.3 But once again, none of the black pieces could have
moved from between the checking piece and the white king. Nor
could the piece that fell off have moved from any of those three
squares.

78 7 5%

.&8:}2
%, .
s, %, R
DAGRY, K

.

2

N % %

None of the black pieces could have discovered check.
Sfigure 8
54. Maybe the captured piece was a pawn?

5.4.1. But pawns (at least unpromoted pawns, and here we are talking
about the value of the captured piece) do not find their way to the first
row.

3.5 The captured piece certainly was not the black king.

et s P TR . T Wt R

kot ni i

Introduction

36. Could the captured piece have been a bishop?

36.1 It certainly was not the black queen's bishop. That is
the black on white bishop (the black bishop that moves on the white
squares). He would not be caught dead on a black square.

56.2 It was not the black king's bishop, either. Notice the two
pawns in figure 9 on BK2 and BKN2. They have not moved, and the
bishop could not have gotten out from behind them.

/2’2/ @

,.&
/ ,/ 7l / //// %
'y
/ %/1%/ ////’////?X,Z
////,,;/&%3% 40

Dl oy

These pawns stymie the exit of the black bishop.

figure 9

A

\\\§
\ \\\

3.7. Hence, if the captured piece had bishop value, it must have been

promoted pawn.

Page 28.

AN 2o)) et

Page 24. Introduction 16.2

58. And, we can see in figure 10, that if the captured piece was a knight, then
black had three knights on the board before white's last move. Anyone with three
knights on the board at the same time (and who is not cheating) has promoted a

pawn.
7 h, 5%

7
y2y Ly
KW RK, N

17, X W, Y
//fi’ﬁ ///
UL %, / %
’/M/.a// f/%

ol"s w

1f black has three knights, then he has promoted a pawn.

Sfigure 10

59. We have not learned the identity of the captured piece, but we have
discovered an important fact: black must have promoted at least one of his pawns.

But which pawn?

6.1 In figure 11, we see the three black pawns on black's second rank. These
must have been the pawns that started on these squares.

//az .
ME 57
/////%/ // /
/ %,/// %
% % /”&
/3/ *
///, 7// / ”’
//A% % //

These black pawns have not moved.

Sigure 11

16.2 Introduction Page 25.

6.2. There is a pawn on BQR3. Since only two black pawns can reach this
square, and we have concluded that one of them i1s on BQRZ2, this must be black’s
queen's knight pawn (BQNP, figure 12).

727 7B
3¢

4/2 787 / /1
[y ??//
51'5 / .

/ L7 /
% é/// g//////" X
// W, % %
/ a/ % Y
Biack’s queen’s knight pawn (BQNP).
figure 12

6.3. Of the remaining pawns, there are only two unaccounted for pawns that
could be on BQB+4 and BQ3, the black queen's bishop and queen's pawns. We have
not established which is which, but then again, we do not care (figure 13).

AR T B
219 A
10 B0
/, 9y
o /”x
Ul 5

e

/a//%%

/

Black queen's and queen's bishop pawns.

figure 13

- "

17, & % . %
/// %//’//x
// /, 2
ff///}//é// ,/é.éi/,,
R R ®
7/ a7 7// Y,

Black king's bishop pawn (BKBP).

figure 14
653 So all the pawns except the black king's rook pawn are on the board.
Hence, if a black pawn promoted (as we have already established), it must have been
that pawn.
? Could a black piece have fallen off the board?
24 Well, we have accounted for all the black pawns.
72 We have also determined that in the position prior to the given board,
the two knights must have been on two of three squares.
73 The black on white bishop does not traffic on black squares.
74 The black on black bishop never escaped from his original square (as we

have already demonstrated (figure 9)). He could not have been the piece that fell.

75 The black king is on BQN2.

E Page 26. Introduction 16.2
;
64 Which means the pawn on BQBS, boxed in figure I4, must be the black
: king's bishop pawn.
7 v T7/
T T B
34 :9a) ¢ L

16.2.

Introduction Page 27.

76. If the fallen piece were rook or queen, then both sides would be in check
on the original board (figure 15). This is clearly impossible.

787 //,
/i /Afj, @
/ VI, / / ///
7 /’ / %,
/ / //,,[@]
/}/}/ x

&/ /‘&/
Yal vy

1f the [allen piece were a black rook or queen, then both sides
would be in check.

figure 15

Hence, the fallen piece must have been a white piece.

Could the fallen piece have been a white pawn?

Page 28. Introduction 16.2.

9.1 By a process similar to that employed for black, we can identify all of the
white pawns. In fact, just before the last move, all of them were on the board, in
pawn incarnation. Hence, the fallen piece was not a white pawn (figure 16).

/MZ/ 5
/ 1

5. ¢
i "ﬁ///
N
%1% % %
7.

7, B B
57, %

All of the white pawns are on the board.

figure 16
10. The fallen piece was obviously not the white rook on WQJ7, nor was it the white king.
10.1. Thus, we have accounted for all the white pieces except the other white

rook, both white knights, both white bishops, and the white queen.

1. We observe that the black queen's knight pawn, now on BQRS, and the black king's
bishop pawn, now on BQBS, have captured four white pieces between them in reaching their
current squares. Additionally, and most peculiarly, all of these captures have occurred on the white

squares (figure 17).

727 T, B
fx’/ﬁi ‘B ‘/ iy/
7, A %

%/ /////,///
,/ 7, 00, %
W2 7% //,/’,
AUR // / /

%z/’////%

Four white pieces captured on white squares.

figure 17

16.2 Introduction Page 29.

12. We recall that the black king's rook pawn has promoted. What can we say about the path
to his elevation?

12.1. If he promoted on any square to the left of BKN7 (figure 18), he would
have had to make two or more captures.

/g%/,
‘R4

z// M,////
7//?////
///2,{
/ﬁ/&/ f
/&’
%

ronle

PR WY VP

1f any of these were the black promotion square then BKRP
captured at least two white pieces.

figure 18

12.1.1. This would have required the capture of a total of six
white pieces. There are already ten white pieces on the board. The ;
capture of six white pieces would leave no white piece to have fallen. '
;

5

D N G+ 1 e N

5 g T

— gy

i

Page 30.

12.2.

Hence, the pawn must have promoted on BKR8 or BKN8 (figure 19).

122.1.

12.2.2.

Introduction

nam 7,6
/// 4 //// 2

f

QIR R
17 AW
% 5 7 %
WA /”x
%ﬁ%ﬁ//ﬂ
AD AT, % %
/a// v

The two possible promotion squares.

figure 19

If the black king's rook pawn promoted to BKR8 or
BKNS, then he must have moved into one of these squares on some
move. What square would he have been moving from?

The white king's rook and king's bishop pawns,
distinguished in figure 20, have not, for the duration of this game, left
those squares.

”%g%// &
/&’ g/ﬁ ! L; ///A //
%@%77
// 7 // %0 ///
WA /3/ 40

U7, B A
/@///@%

These pawns have not moved.

figure 20

16.2. Introduction Page 81.

12.3. Therefore, the black king's rook pawn must have been on BKN7 (figure ;
-

21) before moving to promote.
T T B
s 7 ///
b, 5
I //
! 0 //,,
§ 7. ///,
/ a// %

BKRP was on this square.

figure 21
13. How did that pawn get to BKN7?

13.1. The white king’s knight pawn was a good deal more widely traveled than
his neighbors. He has spent the game on two squares, WKN2 and WKNS3 (figure

22).
/ //”//2//// "y
IR Y W
///,/ﬁ/i/ , /%/
/A // ///, X/
%, %// }////,, o
N7 zzz
/ YR |

WKNP remained on lhou squares.

figure 22

16.2.

Page 82, Introduction
132 In the move that brought the black king's rook pawn to BKN7, white
king's knight pawn must have been on WKN3.
13.3. Hence, the black pawn must have made a capture in moving onto BKN?.
. But BKN7 is a white square. Five white pieces have been captured, all by pawns, and all

on white squares (fAgure 27).

e e
27z @

W Aite piaces were captured on these squares.

fgure 23

4.1 There are only six unaccounted for white pieces, all officers (non-pawns).
Five of them have been captured on white squares. The white queen’s bishop is
never on a white square. Between the fallen piece, and the five captured pieces, we
must arrange the falling square and the five capture squares. No piece is ever
captured twice; no piece once captured, ever reappears.

16.2. Introduction Page 33.
15.) Obviously, we can conclude that the fallen piece must have been the white bishop (figure
24).

VY AR
mﬁ& %”@

A, W, B
%3%&/ MW
8180, K

///

7,87 % %

Page 34. Introduction 16.4.

The board before the Fall.
Sfgure 24

Section 1.6.8 An Analysis

Several differences between the reader's reasoning process, and the above solution may be apparent
For one thing, quite trivially, the order of some of the steps may be permuted. This is of httle
consequence. Of more importance, however, is the detail to which we have developed our proof
We have included many of the steps that most humans would have avoided noting, for instance,
statements to exclude kings in certain situations, where the human chess player would not «ven
mention the possibility of their presence. This is partially an issue of heuristics; some steps are
virtually automatic (and unmentioned) in a familiar reasoning sequence. But it is mostly because we
presume that we are reasoning from the basic chess rules, and not from the theorems obvious to an
experienced player. The restraint, the refusal to “jump to conclusions”, is what permits the proof to
"see” the promoted pieces as knights and rooks, when the experienced chess player (though not the
chess problem solver) would quickly skip to the more “logical” conclusion that pawns pramote ta
queens.

We have, however, availed ourselves of the ability to look at a board and "see” which pieces can
move where. We cite this as an example of of the observational knowledge mentioned in section
1.3.1.1. Within our representational model, deductions of this kind are performed by function
evaluation in the (LISP) model structure. Similarly, we leave to computation arithmetical evaluation,
this is not a treatise on proving equations by Peano’s axioms. Rather, mathematical calculations will
be automatic, procedural in our system.

Section 1.6.4 Reasoning in a First Order Logic Formalism

We have a problem and a representation formalism, and with them, the assertion that the problem
can be "solved” within the formalism. In some sense, much of the rest of this paper is that
demonstration. We will first axiomatize the cAess world in first order logic and then deduce, within
our formalism, the unique solution of our chess puzzle.

This proof is the other side of the intelligence problem, the path through the problem space defined
by our representation. Note that we are not claiming a program that can do this reasoning: this
proof is human powered. Instead, we are exploring the path that a mechanized problem solver,
using our formalism, would take. What results then is a map of the terrain, a guide for future
explorers, an example of what is required to get through this particular "wilderness”.

We assert that this proof, while not matching the level of detail of human analysis,2? corresponds on
grosser level to the human solution. That is, the individual inferences used in this proof are
typically much smaller and weaker than human deductions. We will show, however, the correlation
between the cAunks of lines in our proof, and the individual steps of the natural deduction. We
imply thereby the ability of our formal logic/semantic attachment system to model the human ability
to accept problem solutions.

The analysis of the puzzle in section 1.6.2 will serve as the model of the "human solution”.

22 Only the author, after talking to Me proof checker all night, thinks in pure firet order logic

|y A Introduction Page 35

Section 1.7 Perspectives: Other Points of Interest

While exploration of representational systems is the dominant direction of this research, it retains
several tangential interesting properties.

Section 1.7.1 Mathematics and a Chess Proof

We find this proof interesting for several mathematical reasons, unrelated to the problems of
artificial intelligence.

Historically, mathematicians have used formal logic in two ways. Proofs of short mathematical
theorems have occasionally been detailed within first order logic. But more commonly,
mathematicians have used logic as a field to reason about, rather than in. One proves that a formal
proof is possible, rather than presenting that elephantine object as a demonstration of its own
existence. One writes proofs about proofs, rather than the proof itself.

This proof breaks with that tradition in both respects. It is an application of logic to a non-
mathematical domain. As we will discuss in the conclusion, it exposes several strengths and
weaknesses of the natural deduction system. In particular, the value of stronger inference rules, and
semantic modeling will be considered. The difficulties of handling multiple representations and long
proofs wiii also be mentioned.

It 1s also unusual for being a long, formal logic proof. A proof of this size, even with the help of a
proof checker, has proven to be a non-trivial task. It is no surprise that there are not more of them.

Section 1.7.2 Machine Proof Generation and a Chess Proof

This paper should also be of interest to those interested in programming automatic theorem provers.
We have, particularly in the appendices, numerous examples of first order proofs, which can be used
as bench marks for those interested in creating their own systems. Effectively, we have a set of
machine level examples that can be compared to computer deductions.

Section 1.8 Format: A Guide for Reading This Paper

This thesis is divided into several chapters and appendices. This first chapter has been the
introduction, where we have presented our problem domain and motivation.

In the second chapter, we proceed to axiomatize the rules of chess in FOL. Concurrent with
detailing these axioms, we describe and defend the various representation decisions embodied
therein.

We begin to present FOL proofs in the third chapter. This section is a well commented sample of
the proofs of several lemmas. It serves not so much to expound interesting theorems, as to
familiarize the reader with FOL and our style of proof.

We present the proof of the fallen piece problem in the fourth chapter. In an important sense, this
is the heart of this research. In the process, we draw the correspondence between this proof and the
human proof of the first chapter.

—— |

Page 36. Introduction 1.8.

The final chapter contains our conclusions, basically, what we have learned about the design and
implementations of representational systems, with an eye towards their improvement.

There are several appendices, principally the proofs of many lemmas, and statistics about the proofs,
and two indices, one for the document in general, and the other for the various labels and names
used in the proofs.

The reader who has not the patience to read the whole volume is pointed towards the introductory
and concluding chapters. A skimming of chapter two, the chess axioms, and a cursory glance at
chapter four, the main proof, will aid in understanding the conclusions.

Section 1.8.1 The Proof Checker FOL

The reader unfamiliar with FOL will not receive the full benefit of reading this paper, though we
hope the comments surrounding the various FOL sections will be of great value. For an
introduction to FOL suitable for understanding this proof, the reader is referenced to [Filman76).
The complete description of FOL, including some its the mathematical motivation, can be found in
(Weyhrauch?7).

Section 1.8.2 Reading Proofs

Understanding a proof in first order logic is somewhat similar to reading an assembly language
program. The level of detail is basically similar, and without annotation, the reader is sure to get

lost.

In an attempt to avoid that tragedy, the proofs in the various chapters have been copiously
commented.

Additionally, certain lexicographic and typographic conventions have be used in proofs in this
paper. Any identifier in capital letters (CHESSPIECES, BKR) is either a predicate (PREDCONST) or
individual (INOCONST). Functions (OPCONST) have only their initial letter capitalized. Lower case
identifiers are used for variables (INOVAR). Predicate and operator parameters have been printed in
script. Axiom names and labels are in capitals; theorems and lemma identifiers use both upper and
lower case. A theorem name ending in an underbar (_) was obtained from a single simplification; a
theorem name both begining and ending with underbars is an unproven theorem (section 2.2.5).

2 The Chess Axioms Page 37.

Chapter 2 The Chess Axioms

In any epistemological domain, we have a basic collection of information, what the system knows
without further inference. This of course applies to our chess deduction. In a system like ours, of
formal logic combined with a computational model, this knowledge takes several forms. We must
first select the individual constants, predicates and operators of our formal system. Then the axioms
of chess must be written. We need to organize the underlying model structure, and prescribe the
mapping between the constants of our logical space, and the predicates, functions and individuals in
our model. Throughout all of this definition, the correspondence between our definitions and the
rules of chess should remain transparent.

We have decided to study chess partially because chess provides a well-defined set of rules. One
might think that this regularity would prescribe some specific approach. But just as one can do
formal proofs in arithmetic by computing on sets or Peano axioms, one has a choice in chess of the
level of one's axioms. There exist both decisions to be made on a complexity dimension, and
irregularities in the rules to complicate any organization.

The problems generated by the latter will be dealt with in depth in the remainder of this chapter,
particularly as we handle each intricacy. It would be useful, however, to justify at this point the
general complexity level of our approach, and the reasons for rejecting either a more or less basic set
of axioms.

This proof is meant to be an examination of the reasoning that could be involved in the solution of
retrograde chess problems. We wish to show the correspondence between the reasoning in this form,
and the human deduction, while retaining the validity advantages of a formal proof.23 It is not an
attempt to prove mathematical theorems, nor do we wish to do with deduction what could be more
easily observed. For these reasons, we have incorporated into the computational model functions to
compute relations like individual piece movement. We have also passed to the computational model
all arithmetic responsibility. In that sense, this is not a low level approach.

However, we also desire that our system be general in its ability to express many different kinds of
retrograde analysis chess puzzles. We thereby become limited from above. We do not wish this
analysis to be based on theorems applicable only to some small set of problems. Hence, we have
expended considerable energy deriving general chess theorems from our axioms, and have used these
theorems as individual steps in our main proof. These theorems are proven in chapter 3 and
appendix A. But we are restrained by this generality restriction to consider chess at the piece and
move level, rather than considering notions of general board geometry. A board geometric approach
would express legal moves in terms of the pieces on a board, and procedures for expressing their
movement ability. While easier to manipulate in the short term (proving things about the immediate
predecessor or successor of a given board) such an approach would have difficulty expressing long
term ("sometime, during this game, the following has happened”) notions.

We are also bounded from above by the limitations of our proof checker. There are some things
that are, by nature, observational, but nevertheless not computable within the present
implementation of the proof checker. These restrictions, we might add, are discoveries of experience.
We will consider possible improvements to the model computational method in section 5.8.

23 This is not to assert that we are modeling the way humans reason; rather, we are looking for & repr tation that »
computer can reason with, which is etill understendabie (and verifisble) for & humen intelligence

Page 38. The Chess Axioms 2.1

Section 2.1 Declarations and Definitions

This chapter naturally divides into two sections: defining the objects of the chess world (with their
FOL declarations), and expressing the rules of chess with these defined object. We begin, our
course, by detailing and declaring the tokens of the chess axiomatization.

Interspersed with the description of this chapter are the text of the various FOL declarations and
axioms used in generating this proof. Several of the declarations and functions here declared, while

not mentioned in any of the proofs in this paper, have been included for completeness.

Section 2.1.1 Very Primitive Notions

In any axiomatization, there will be certain base notions, upon which the rest of the structure is
built. Chess, of course, is no exception. We should display the distinction between the basic ob jects,
and the less basic operations and predicates upon them. For this discussion, there exist seven basic
sorts24 of chess objects -- chesspieces, squares, piece values, positions, boards, moves and colors.
While the necessity for some of these concepts is obvious (what car we say about a chess problem
without referring to a chess board, or speaking of black and white?) the reasons for some of the
others are more obscure, and will require some explanation. This section will detail each of these

sorts, and their ob jects and ob jectives.25

Section 2.1.1.1 Positions

The fundamental ob ject in this chess world is the position. A position is, effectively, a state vector
containing all of the information needed to reconstruct an entire chess game. While this might, for
instance, be conceptually encoded as a list of the moves made to reach that moment, or a list of the
chess boards visited in the course of the game, it is generally not possible, in our system, to do so.
More particularly, a position is not a concrete ob ject (one that we can (usually) display or compute

upon), but, rather, a conceptual notion.

Typically, a retrograde chess puzzle will be presented not as a position, but, rather, as an
arrangement of chess pieces26 on a chessboard, (what we will call a board). The puzzle is then to
deduce the common factors of all possible games that could have led to such a board, effectively, the
predicates true on any position with such a board. Nevertheless, we still wish to be able to retain our
computational ability on the given (and associated boards). Hence, we see the necessity for
representing what is essentially the same ob ject (the board and the common factors of the games that
lead to it) in several different representations. The lesson here for writers of programs that would
seek to solve problems like this (and problems of similar complexity) is of the necessity for retaining

multiple representations of ob jects.2’

So, rather than having axioms manipulating positions themselves, our axioms will constrain the

24 A sort is 8 monadic predicate; one that therefore defines a set (the set of things for which it is trve).

25 In the remainder of this paper, it is ssserted that all individuals, except squares and dimensions, are represented uniformly
as chess objects. We declsre this representation with the command: declere REPRESENTATION CHESS:

26. Or, more precisely, an arrangement of chess values.

27. We will consider this resuit in greater detail in section 5.6.1.

[—

o TR

R EEEEEEE——

?

2.1.1.1. The Chess Axioms Page 39.

transfer from one position to the next. Similarly, we will draw conclusions about the properties of
successor and predecessor positions. It is worthwhile noting that from a given position, one can
derive the previous position (the position on the previous move), and determine, of two positions, if
one occurred in the game of the other.28

For example, we consider the following notions involving positions. We will have occasion to speak
of the path some piece must have used to get to some square, without having to detail the
interleaving between the moves of that piece and the other moves of that player, or to describe the
capture of some particular chess piece, without detailing the particulars of the move (which piece
made the capture?) involved. Thus, we will conclude, for example, that in any game played to reach
a given board, there must have been another position (in that game) with some certain property, (for
example, an unknown piece captured a bishop on that square) without ever having to state explicitly
which prior position it was (which move during this game the captured occurred).

There is also an additional motivation for retaining the entire history of a game in our encoding.
More specifically, one of the chess rules refers to the entire game. The castling rule requires that
neither of the castling pieces have moved in the course of that §ame. That is, for some positions,
the entire game must be considered to determine the legal moves.2

Our FOL declaration for POSI TI10ONS:30
declare PREDCONST POSITIONS 1(PRE];

Section 2.1.1.2 Pieces

Perhaps the most obvious sort needed in the solution of chess puzzles is one to represent the
individual chesspieces. The implementation of this concept, however, is not so trivial. One quickly
discovers3! that not all pawns are the same; each of the thirty two chessmen has his own identity,
distinguished mostly of his value and square at both the begining of the game, and at any later
position. Note that we are differentiating between the identity of a chessman and his value; a pawn
may promote to a queen, but in our eyes he remains a pawn in drag.

We will have need to talk of the piece on a square in a position. We therefore are required to add a
thirty-third “piece” to our system, the EMPTY piece, the piece that sits on any square with no other
occupant. Thus, the major sort of this scheme is PIECES, which includes the set of the thirty two
CHESSPIECES. The FOL declarations are:

declare PREDCONST PIECES 1 (PRE];
declare PREDCONST CHESSPIECES (PIECES) [PRE):

28 An exception to much of what we say is, of course, the initial position. We have » complete description of the game thet led
to it, and can encode & particuiar representstion for it.

29 Though the effect of this rule could be obtained by in o shorter term representation by “flagging” the “position™ when one
of the cestling pieces moved.

30 This command declares the existence of » one place (monedic) predicate POSITIONS. POSITIONS is o prefix (PRE) predicate,
and may be used without parentheses around ite srgument.

31. Particularly when dealing with chess puzzies, rather then playing chess.

Page 40. The Chess Axioms 2.1.1.8

Section 2.1.1.8 Squares

Another group of individuals is the set of squares of the chessboard. As with pieces, we have an
extra member in our set, a heaven or hell for chesspieces, a place for them to be after they are
captured and removed. We call this sort of extended squares EXSQUARES, and will occasionalily
speak of the extended square that a chesspiece is on in a given position, or which piece is on a
given square in that position.

declare PREDCONST EXSQUARES 1;
declare PREDCONST SQUARES (EXSQUARES) [PRE] ;
Section 2.1.1.4 Values

Just as we spoke of the thirty two chessmen in a chess set, we will still often find it necessary to speak
of their rank in a given position. To avoid confusion with rank and column, we shall henceforth
speak of the VALUE of a chesspiece. Thus most pawns will promote to have a queen's value. We
shall prove general chess theorems such as A/ pawn valued pieces are pawns and Al non-pawn (officer)
pieces retain the same value through every position (no officer ever promotes).

We also distinguish the color of a piece in its value. Thus, the Nack king’s pawn (BKP) will usually
have a value of pawn dack (PB), but might occasionally32 promote to be a knight black (NB). Failure
to understand the fundamental distinction between the name of a piece and its value in a position
will cause trouble understanding the motivation and detail of many of the proofs in this paper.

declare PREDCONST VALUES 1 (PRE];
Section 2.1.1.5 Boards

Most chess problems are stated not in terms of what we have called a position, but rather, as boards
of distributed chess values. Similarly, most chess moves are defined in terms of the board structures
they can to be made on, rather than the varieties of games that could precede different moves.33
Therefore, we find it useful to have the primitive notion of a Board in our chess axiomatization. On
the individual squares of a board, we meet the various values, including the value MT, which
represents an empty square, and UD, a square on a board whose value is unknown. Note that one
can speak of a pawn on a board without specifying which pawn it is. Our formalism includes
partially and fully defined boards, and naturally lends itself to a partial ordering on boards by
increasing definition. We speak of a fully defined board, one with no unknown squares, as being a
TOTALBOARD.

declare PREDCONST BOARDS 1 [PRE];
declare PREOCONST TOTALBOARDS (BOARDS) [PRE) s
It is reasonable to question the necessity for the partially defined boards introduced above. They

32 Particularly in puzzies.

33 There are, however, exceptions to this rule. The en passant capture, for instance, refers not only to the present bosrd, but
also the last move. Castling i not permitted if either the king or the rook has ever (in this game) been moved. Even more complicated
are the variovs draw conditions, which demend the repetition of particviar boards.

—

2.1.1.5 The Chess Axioms Page 41.

serve two primary purposes. First, they provide a structure for the representation of partial
information about a situation. For example, we may know that a certain bishop has moved and
captured, though we may not know what the captured chesspiece was. Nevertheless, through the
employment of partial boards, we can compactly express the situation prior to the capture

A parallel, and perhaps more important reason, resides the in nature of FOL's simplification
mechanism. Partial boards are computable ob jects; particularly, our LISP functions can make
computations on expressions with explicitly undefined values, but not on partially defined
expressions. This is similar to call-by-value LISP's inability to evaluate CAR(CONS(A x)) if x is
undefined. Each of our attached functions and predicates on boards must know how to handle the
partial piece. Partially defined squares typically restrict validity of predicates, for more information
does not accrue from a less specified ob ject.

Section 2.1.1.6 Moves

Our next sort is something of a pseudo-sort. A common chess notion is that of the move. We would
like to be able to speak of the last move of a position as being a castling, or the white queen as the
mover (piece that moved) of the last move of this position. Practically speaking, however, there are
no occasions when a predicate or function on a move is used without first extracting the move from
the position in question. As the state vector, the position retains all of the information in the move;
hence, the sort itself is not needed; rather, it gets in the way. However, we are attempting to model
reasoning, not distort it. A move is a natural notion, and this demands its inclusion.

declare PREDCONST MOVES 1 (PRE];

Section 2.1.1.7 Colors

There remains one basic, though nevertheless trivial sort to be mentioned. Chess is organized as a
competitive game; there is not much we could say without recognizing the existence of the two
armies, BLACK and WHI TE.

declare PREDCONST COLORS 1 (PRE];
Section 2.1.2 Piece Declarations

A large sort hierarchy for pieces is declared, most of which is not used. It is worthwhile mentioning
the existence of EMPTY, the piece on any not otherwise occupied square, and that the variables for
pieces are the t's (t and t1), whereas the variables for chesspieces are those variables starting with
the last three letters of the alphabet (x, y, and 2).

The naming scheme for the constant chesspieces might also be mentioned; the encoding is color, side
(king's or queen’s), column or rank, and the designation p for pawns. Thus, the WKR is the white
king’s rook, and the BANP is the black queen's knight pawn.

The function Piececolor, on chesspieces, returns the color of the given chesspiece.

Pieces are represented internally to the FOL simplification mechanism by the atom of the same name
as the piece.

e e

Page 42. The Chess Axioms 2.12.
The rest of this section is a series of rather monotonous declarations.34

declare PREDCONST EMPTYPIECE (PIECES) (PRE];

declare PREDCONST WHITEPIECE BLACKPIECE (CHESSPIECES) (PRE);

declare PREDCONST PAWNS BISHOPS KNIGHTS KINGS QUEENS ROOKS
(CHESSPIECES) (PRE) &

declare PREOCONST BPAWNS WPAWNS (PAWNS) [(PRE];
declare PREDCONST BBISHOPS WBISHOPS (BISHOPS) [PRE);
declare PREDCONST BKNIGHTS WKNIGHTS (KNIGHTS) (PRE];
declare PREDCONST BROOKS WROOKS (ROOKS) (PRE];
declare PREDCONST BKINGS WKINGS (KINGS) [PRE];
declare PREOCONST BQUEENS WAUEENS (QUEENS) (PRE];

declare OPCONST Piececolor (CHESSPIECES)=COLORS [PRE];

declare INDVAR t tl1 ¢ PIECES:
declare INDVAR x x1 x2 x3 x4 y z xa xb xc xd ¢ CHESSPIECES;

declare INDCONST BK ¢ BKINGS, WK ¢ WKINGS;

declare INDCONST BQ ¢ BQUEENS, WQ ¢ WAUEENS;

declare INDCONST BKB BQB ¢ BBISHOPS, WKB WAB ¢ WBISHOPS;
declare INODCONST BKN BAN ¢ BKNIGHTS, WKN WAN ¢ WKNIGHTS;
declare INOCONST BKR BQR ¢ BROOKS, WKR WAR ¢ WROOKS;

declare INDCONST WQRP WKRP LIGNP WKNP WKBP WQBP WAP WKP ¢ WPAWNS;
declare INDCONST BQRP BKRP BQNP BKNP BKBP BQBP BQP BKP ¢ BPAWNS;
declare INDCONST EMPTY ¢ EMPTYPIECE;

declare INDVAR yb zb ¢ BLACKPIECE, yyd ¢ WHITEPIECE;
declare INDVAR yk ¢ KINGS, ywr yurl ¢ WROOKS;

declare INDVAR ybic¢ BISHOPS, yn ¢ KNIGHTS, ywn ¢ WKNIGHTS;
declare INDVAR yp ¢ PAUNS, yup ¢ WPALNS, ybp ¢ BPALINS;

mg PIECES2 (CHESSPIECES, EMPTYPIECE! ;
mg CHESSPIECES2
{WHI TEPIECE, BLACKPIECE, PAWNS, BI SHOPS, KNIGHTS, KINGS, QUEENS, ROOKS! 5
mg WHITEPIECE2 (WPAWNS, WBISHOPS, WKNIGHTS, WK INGS, WQUEENS, WROOKS} 3
mg BLACKPIECE> (BPAWNS, BBISHOPS, BKNIGHTS, BKINGS, BQUEENS, BROOKS] 3
mg PAWNS2 {BPAWNS, WPALNSH
mg BISHOPS2 (BBISHOPS, WBISHOPSI 4
mg KNIGHTS2 {BKNIGHTS, WKNIGHTS} ;
mg KINGS2 (BKINGS, WKINGS} ;
mg QUEENS2 {BQUEENS, WQUEENS! ;
mg ROOKS2 {BROOKS, WROOKS} §

Here are some attachments for the chess eye. All simplification is done in the (partial) model named
CHESS; we shall usually attach (map or associate) atomic primitives to the atom of that name in this
model.

34 In these declarations, PREDCONST's sre predicate constants, OPCONST's operator tante (or functions, if you prefer),
INDCONST's, individual constants, and INDVAR's, individual variables. (PRE) application terms can be written without parenthesizing their
srgument; [INF] terms, between their arguments. It is worthwhile pointing out that while every sort hes en infinite collection of varisbles
(theoretically) availsble to it, we have only declered those varisbles that we shall actually vse.

12 The Chess Axioms
attach BK (CHESS] BK; attach BKP (CRESS]) BKP;
attach BKB {CHESS) BKB; attach BKBP « [CHESS) BKBP;
attach BKN {CHESS) BKN; attach BKNP « [CHESS) BKNP;
attach BKR (CHESS) BKR; attach BKRP « [CHESS) BKRP;
attacnh BQ [CHESS) BQ; attach BQP [CHESS) BQP;
attach BQB [CHESS) BQB; attach BQBP « ([(CHESS) BQBP;
attach BON [CHESS) BQN: attach BGNP « [CHESS) BQNP;
attach BQGR [CHESS) BQR; attach BQRP « [CHESS] BQRP:
[CHESS] WKP;

(CHESS] WKBP:
[CHESS] WKNP;
(CHESS] WKRP;
(CHESS) HQP;

{CHESS) WQBP;
(CHESS] WONP;
{CHESS) WQRP;

attach WKB [CHESS] WKB; attach WKBP
astach WKN (CHESS] WKN; attach WKNP
attach WKR (CHESS] WKR; attach WKRP
attach WQ (CHESS]) WQ; attach WQP
attach WQB (CHESS) WQB; attach WQBP
attach WQON (CHESS] WAN; attach WGNP
attach WQOR [CHESS) WQR; attach WQRP
attach EMPTY » [CHESS) EMPTY;

attach WPAWNS [CHESS] (DE WPAWNS (x) (MEMQ x

(QUOTE (WKRP WKNP WKBP WKP WQP WQBP WAGNP WQRP))));
attach BPAWNS (CHESS] (DE BPAWNS (x) (MEMQ x

(QUOTE (BKRP BKNP BKBP BKP BQP BQBP BANP BQRP))))
attach BBISHOPS (CHESS) (DE BBISHOPS (x) (MEMQ x (QUOTE (BKB BQGB
attach WBISHOPS [CHESS] (DE WBISHOPS (x) (MEMQ x (QUOTE (WKB WQB
attach BKNIGHTS ([CHESS] (DE BKNIGHTS (x) (MEMQ x (QUOTE (BKN BON
attach WKNIGHTS [CHESS] (DE WKNIGHTS (x) (MEMQ x (QUOTE (WKN WGN

222212122222 2222

-
attach WK « [CHESS]) WK; attach WKP
Y

attach BROOKS [CHESS) (DE BROOKS (x) (MEMQ x (QUOTE (BKR BQR))));
attach WROOKS [CHESS) (DE WROOKS (x) (MEMQ x (QUOTE (WKR WQR)))) ;¢

attach BKINGS [CHESS) (DE BKINGS (x) (MEMQ x (QUOTE (BK))));
attach WKINGS (CHESS) (DE WKINGS (x) (MEMQ x (QUOTE (WK))))q
attach BQUEENS (CHESS) (DE BQUEENS (x) (MEMQ x (QUOTE (BQ))));
attach WQUEENS (CHESS) (DE WQUEENS (x) (MEMQ x (QUOTE WQ)11)4
attach QUEENS [CHESS) (DE QUEENS (x) (MEMQ x (QUOTE (WQ BQ))));

attach ROOKS (CHESS] (DE ROOKS (x) (MEMQ x (QUOTE (BKR WKR BGR WQR)))):
attach BISHOPS [CHESS) (DE BISHOPS (x) (MEMQ x (QUOTE (BKB BQB WKB WQB))
attach KNIGHTS [CHESS) (DE KNIGHTS (x) (MEMQ x (QUOTE (WKN WQN BKN BQN))

attach KINGS [CHESS) (DE KINGS (x) (MEMQ x (QUOTE (WK BK))));
attach BLACKPIECE [CHESS) (DE BLACKPIECE (x) (MEMQ x (QUOTE

(BKRP BKNP BKBP BKP BQP BQBP BQNP BQRP BKB BQB BKN BAN BKR BGR BK BQ))));

attach WHITEPIECE [CHESS) (DE WHITEPIECE (x) (MEMQ x (QUOTE

(WKRP WKNP WKBP WKP WQP WQBP WQNP WQRP WKB WQB WKN WAN WKR WAR WK W@)))):
attach EMPTYPIECE [CHESS) (DE EMPTYPIECE (x) (MEMQ x (QUOTE (EMPTY))));

vttach PAUNS [CHESS) (DE PAWNS (x) (MEMQ x (QUOTE
{BKRP BKNP BKBP BKP BQP BQBP BQNP BQRP
WKRP WKNP WKBP WKP WQP WQBP WANP WARP))))

attach CHESSPIECES ([CHESS) (DE CHESSPIECES(x) (MEMQ x (QUOTE (BKRP BKNP
BKBP BKP BQP BQBP BONP BQRP BKB BAB BKN BAN BKR BOR BK BQ WKRP WKNP
WKBP WKP WQP WQBP WQONP WQRP WKB WAB WKN WAN WKR WAR WK WG)))) ¢

attach PIECES (CHESS) (DE PIECES (x) (MEMQ x (QUOTE (BKRP BKNP BKBP BKP BQP
BQBP BQNP BQRP BKB BQB BKN BQN BKR BQR BK BQ EMPTY WKRP WKNP WKBP WKP

WQP WQBP WANP WORP WKB WQB WKN WAN WKR WQR WK WQ))));
attach Piececolor [CHESS-CHESS) (DE Piececolor (x)

(COND ((WHITEPIECE x) (QUOTE WHITE)) ((BLACKPIECE x) (QUOTE BLACK))))}y

PSNUTRIRSGR R N

Page 43.

.,,,,,..1....,,...“

— -

Page 44. The Chess Axioms 212
extension BKINGS {BK} ; extension WKINGS (WK} ;

extension BQUEENS (BQI; extension WQUEENS (WAl

extension BROOKS {BKR BQR}; extension WROOKS {WKR WQR};

extension BBISHOPS (BKB BQB!; extension WBISHOPS (WKB WGB!

extension BKNIGHTS (BKN BAN}; extension WKNIGHTS (WKN WANIj

S R 1 e

extension WPAWNS
extension BPAWNS

{WKRP WKNP WKBP WKP WQP WABP WANP WQRPI;
{BKRP BKNP BKBP BKP BQP BQBP BGNP BQRP) ;

extension KINGS {WK BK};

extension QUEENS {WQ BQI;

extension ROOKS {BKR WKR BQR WQR};

extension BISHOPS (BKB BQB WKB WQBI;

extension KNIGHTS (WKN WAGN BKN BQNI

extension PAWNS {BKRP BKNP BKBP BKP BQP BQBP BGNP BQRP
WKRP WKNP WKBP WKP WQP WQBP WANP WQRP} ;

extension BLACKPIECE {BKRP BKNP BKBP BKP BQP BQBP BQNP BQRP
BKB BQB BKN BOGN BKR BGR BK BQl;
extension WHITEPIECE {(WKRP WKNP WKBP WKP WGP WQBP WQANP WQRP
WKB WQB WKN WAN WKR WOR WK WA
extension EMPTYPIECE {(EMPTY};
extension CHESSPIECES
{BKRP BKNP BKBP BKP BQP BQBP BQNP BQRP BKB BQB BKN BGN BKR BQGR BK BQ
WKRP WKNP WKBP WKP WQP WABP WANP WORP WKB WQGB WKN WAON WKR WGR WK WQ};
extension PJECES
{BKRP BKNP BKBP BKP BQP BQBP BQNP BQRP BKB BGB BKN BQN BKR BQR BK BQ EMPTY
WKRP WKNP WKBP WKP WQP WQBP WQNP WORP WKB WQAB WKN WAN WKR WAR WK Wal;

Note that were it not for a small bug in the FOL implementation, the functional definitions of
various sorts would not have been required. This has since been corrected.

Section 2.1.3 Squares and Dimensions

Section 2.1.3.1 Square declarations

Squares are represented in FOL as the acronym of the square's name. Thus, the FOL INDCONST for
black queen’s rook one is BGR1. The perspective (relative to white and black) is chosen to be the

nearer side. Black king's knight five (which is also white king's knight four) therefore becomes
WKN4. This notation is seen to be a subset of the standard English system.

2.1.3.1. The Chess Axioms Page 45

Internal to the LISP chess model, squares are represented at the dotted pair formed of the squares
coordinates (row, column). Thus, Bl in FOL (black queen's one) is (1 . 4) to the LISP model. The
coordinates used are tllustrated in figure 23.

12345678

EAGWMS AL
1123220222

VA \
3_\

Y
2

/

g

t;"J s “\-\. N
NN NN
N \ W

o |
o0 |03 (5

vy
M
4

oy
AT

cO~NNOYUT S WM
CONOYUTH WN) -~

— '\TF’ ﬂ N

»

w l@["
o @5 [fv ﬁs\-f;'i :

The LISP intornal numbering scheme [or squares.

figure 25

There are also several sub-species of squares. We identify the WHITESQUARES and BLACKSQUARES,
by the traditional checkerboard pattern of the squares. Squares are also specialized by their row.
We thereby acheive sorts such as WLASTRANK and BLASTRANK (white and black's last rank (row)).

declare PREDCONST WH]TESQUARES BLACKSQUARES BLASTRANK WLASTRANK
(SQUARES) (PRE] ¢

declare INDVAR sqx sq sql a2 eq3d 6q4 6q5 eqb 8q7 8q8 « SQUARES;

declare INDCONST

BQR1 BON1 BGB1 BQ1 BK1 BKB1 BKN1 BKR1 BQR2 BON2 BQB2 BQ2 BK2 BKB2 BKN2 BKR2

BORI BON3 BQB3 BA3 BK3 BKB3 BKN3 BKR3 BAR4 BON4 BQB4 BQ4 BK4 BKB4 BKN4 BKRG

WAR4 WQAN4 WAB4 WA4 WK4 WKB4 WKN4 WKR4 WQR3 WON3 WQA3 WA3 WK3 WKB3 WKN3 WKR3

WAaR2 WAN2 UQBZRNgZ WK2 WKB2 WKN2 WKR2 WQOR1 WONI WABL1 WAl WK1 WKB1 WKN1 WKR1
¢« SQUARES;

mg EXSQUARES2 (SQUARES!
mg SQUARES?2 (NHlTESQUARES BLACKSQUARES, MLASTRANK , BLASTRANK

And the various sorts have the obvious attachments.

attach SQUARES (CHESS) (DE SQUARES (x)
(AND (NOT (ATOM x))
(NUMBERP (COR x)) (GREATERP (CDR x)®) (LESSP (COR %) 9)
(NUMBERP (CAR x)) (GREATERP (CAR x)@) (LESSP (CAR x) 9)));
attach BLASTRANK (CHESS) (LAMBDA (x) (EQ 8 (CAR x)))y
attach WLASTRANK [(CHESS] (LAMBOA (x)(EQ 1 (CAR x)))y

m——_——‘-wv m—

Page 16.

The Chess Axioms

attach WHITESQUARES [CHESS) (LAMBODA (S) (AND (SQUARES S)
(ZEROP (REMAINDER (PLUS (CAR S) (COR S)121)))4
attach BLACKSQUARES [CHESS] (LAMBDA (S) (AND (SQUARES S)
(NOT (ZEROP (REMAINDER (PLUS (CAR S) (COR S))2)))));

extension SQUARES (BQR1 BON1 BQB1 BQl BK1 BKB1 BKN1 BKR1 BQR2 BANZ BQB2

BQ2 BK2 BKB2 BKN2 BKR2 BQR3 BAN3 BAB3 BQ3 BK3 BKB3 BKN3 BKR3 BQR4 BAN4 BQB4
BQ4 BK4 BKB4 BKN4 BKR4 WQR4 WONG WOB4 WQ4 WK4 WKB4 WKN4 WKR4 WOR3 WON3 WGB3
WA3 WK3 WKB3 WKN3 WKR3 WOR2 WAN2. WQB2 WQ2 WK2 WKB2 WKN2 WKR2 WOR1 WAN1 WQB1
WAl WK1 WKB1 WKN1 WKR1l;

attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach
attach

BAR1« [CHESS) (1.1);attach
BQAl «(CHESS] (1.4)3attach
BKN1e [CHESS] (1.7) ;attach
BAN2« [CHESS) (2.2) ;attach
BK2 «[CHESS) (2.5);attach
BKR2« [CHESS] (2.8) ;attach
BQAB3«~ [CHESS) (3.3) ;attach
BKB3« [CHESS] (3.6) ;attach
BQAR4« [CHESS] (4.1) ;attach
BQ4 « [CHESS] (4.4) ;attach
BKN&4 e [CHESS]) (4.7) ;attach
WAN4« [CHESS) (5.2) ;attach
WK4& » [CHESS) (5.5);attach
WKR4«» [CHESS) (5.8) ;attach
WAB3e [CHESS) (6.3) sattach
WKB3« [CHESS) (6.6) ;attach
WAR2« [CHESS]) (7.1) ;attach
WQ2 «[CHESS) (7.4) ;attach
WKN2e [CHESS) (7.7) ;attach
WANle [CHESS) (8.2) ;attach
WK1 «[CHESS) (8.5);attach
WKR1e [CHESS) (8.8);

BAN1e [CHESS] (1.2) sattach
BK1 «(CHESS] (1.S)jattach
BKR1« [CHESS) (1.8);attach
BQB2« [CHESS) (2.3) ;attach
BKB2~ [CHESS) (2.6) s attach
BQR3« [CHESS] (3.1) ;attach
BQ3 « [CHESS) (3.4) ;attach
BKN3« [CHESS] (3.7) sattach
BQN4«~ [CHESS) (4.2) ;attach
BK& « [CHESS] (4.5) jattach
BKR&4« [CHESS) (4.8) ;attach
WAB4« [CHESS) (5.3) sattach
WKB4« [CHESS) (5.6) s attach
WQR3« [CHESS) (6.1) ;attach
WA3 «[CHESS] (6.4);attach
WKN3e [CHESS] (6.7) ;attach
WAN2« [CHESS] (7.2) ;attach
WK2 «[CHESS] (7.5):attach
WKR2« [CHESS) (7.8) ;attach
WaBle [CHESS] (8.3) jattach
WKB1« [CHESS) (8.6) 1attach

BAB1« [CHESS) (1.3)
BKBl« [CHESS) (1.6) 3
BAR2« [CHESS] (2.1) ¢
BQ2 «[CHESS] (2.4);
BKN2« [CHESS) (2.7)
BAN3«~ [CHESS) (3.2) ¢
BK3 «[CHESS] (3.5)
BKR3« [CHESS] (3.8) ¢
BAB4« [CHESS]) (4.3) ;
BKB4 e [CHESS] (4.6
WAR&4 e [CHESS) (5.1) ¢
WA4 » [CHESS) (5.4);
WKN&G e [CHESS) (5.7) ¢
WAN3« [CHESS]) (6.2) ¢
WK3 «[CHESS] (6.5) ¢
WKR3« [CHESS) (6.8) ;
WAB2« [CHESS) (7.3) 3
WKB2w~ [CHESS] (7.6) ¢
WAR1 e [CHESS] (8.1);
WAl «[CHESS) (8.4);
WKN1w (CHESS) (8.7)

2.1.3.1.

The predicates LASTRANKER (is square the last rank (pawn promotion rank) of the given color),
SAMEDIAG (are the arguments on the same diagonal), and SQUARE_BETWEEN (is the middie argument
between the other arguments, either orthogonally or diagonally) are also declared. Attachments are

provided for the latter two.

declare PREDCONST LASTRANKER (SQUARES COLORS);
declare PREDCONST SAMEDIAG (SQUARES, SQUARES)
declare PREDCONST SQUARE_BETWEEN (SQUARES, SQUARES, SQUARES) 4

SAMEDIAG [CHESS,CHESS] (DE SAMEDIAG (x y) (AND
(SQUARES) (SQUARES y) (NOT (EQUAL x y))

attach

attach SQUARE_BETWEEN [CHESS,CHESS, CHESS)

(EQ(ABS (DIFFERENCE (CAR
(ABS (DIFFERENCE (COR

x) (CAR y)))
x) (COR y) 1))

(AND (SQUARES q) (SQUARES r) (SQUARES S) (OR

(AND (EQ (CAR q) (CAR r)) (EQ (CAR r) (CAR S)) (BETWEEN (COR q) (COR r) (COR S))
(AND (EQ (CDR q) (COR r)) (EQ (COR r) (COR S)) (BETWEEN (CAR q) (CAR r) (CAR S))
;??D;SAHEUIAG q r) (SAMEDIAG q S) (SAMEDIAG r S) (BETWEEN(CAR q) (CAR r) (CAR S

))y

(DE SQUARE_BETWEEN(q r S)

)
)
)

RPN S—

ol

PTYTTE———

The Chess Axioms Page 47.

o
)
o

Section 2.1.83.2 Coordinate Declacations

We will also have occasion to refer to the individual coordinates of particular squares, and to prove
lemmas about these coordinates. We call the class of square coordinates dimensions, and speak of the
row and cumn of a particular square. The numbering scheme for rows and columns corresponds to
the numbering in the internal LISP model. This, we might axiomatically have, /f Square is in
White's last row then its row is equal to l. Dimensions are represented in the LISP model as natural
numbers.

A compositor, Makesquare, for taking a row-column pair, and producing the appropriate square, is
also declared. This compositor is stated to be equivalent to the LISP function CONS in the
computational model.

declare PREOCONST ISOIMENSION (NATNUM) [PRE]:
declare PREOCONST ISROW ISCOLUMN (1SOIMENSION) (PRE) ¢
declare PREDCONST BLASTROW WLASTROW (1SROW)

represent {(ISDIMENSION ISROW 1SCOLUMN BLASTROW WLASTROW! as NATNUMREP;

declare OPCONST Row (SQUARES) «]SROW(PRE] ¢
declare OPCONST Column (SQUARES) «1SCOLUMN [PRE] ;
declare OPCONST Makesquare (ISROW 1SCOLUMN)=SQUARES:

declare PREDCONST IS_EVEN (1SROW, ISCOLUMN) 4

declare INDVAR dx dxl dx2 ¢!SOIMENSION;
declare INDVAR drx drx] drx2 ¢ 1SROW;
declare INDVAR dcx dex] dex2 « 1SCOLUMNG

mg ISOITMENSION> (1SROW, ISCOLUMNI ¢
mg NATNUM2 (ISOIMENSIONI 3

Successor functions are defined on the rows, succession being relative to the moving side. A black
pawn in row drx moves to row BSUC (drx) on his next (single square) move. The last row is the
pawn promotion row.

declare PREDCONST BSUC WSUC (1SROW, [SRON) ¢
declare PREDCONST BETWEEN (ISOIMENSION, ISOIMENSION, ISOIMENSION) 4
declare OPCONST Bsuct Wsucf (ISROW)=[SROW(PRE]

It should be noted that the operators Bsuct, Wsuct (and, similarly L2toucht and R2touchf, section
2.2.1.2) are functions of convenience, not definition. There are no axioms that mention these
functions. However, we can (and do) use the simplification mechanism to compute the value of these
functions in every (interesting) case, and thereby produce useful inference steps involving their use.

Attachments to implement rows, columns and successors.

A S TRy »

Page 48. The Chess Axioms 2.1.3.2.

extension ISROW (1,2,3,4,5,6,7,8};
extension ISCOLUMN {1,2,3,4,5,6,7,8);
extension ISOIMENSION {1,2,3,4,5,6,7,8};

attach Row [CHESS-NATNUMREP] CAR;
attach Column [CHESS-NATNUMREP] COR;
attach Makesquare [NATNUMREP,NATNUMREP-CHESS) CONS;
attach ISDIMENSION [(NATNUMREP) (DE ISDIMENSION (x)
(AND (NUMBERP x) (LESSP x 9) (GREATERP x 8)));
attach [SROW (NATNUMREP] [SDIMENSION;
attach ISCOLUMN [NATNUMREP) ISDIMENSION;
attach Bsucf INATNUMREPNATNUMREP] (DE Bsucf (r) (COND((EQ r 8)8) (T(ADD1 r))));
attach Wsucf INATNUMREP-NATNUMREP) (DE Wsucf (r) (COND((EQ r 1)1)(T(SUBL r))));
attach BLASTROW (NATNUMREP) (DE BLASTROW(r) (EQ r 8));
attach WLASTROW (NATNUMREP) (DE WLASTROW(r) (EQ r 1))}
attach BETWEEN [NATNUMREP,NATNUMREP,NATNUMREP] (DE BETWEEN (x y 2z)
(AND (NUMBERP x) (NUMBERP y) (NUMBERP 2)
(OR (AND (LESSP x y) (LESSP y 2z))
(AND (LESSP z y) (LESSP y x))))};

Notice that we can easily observe (simplify) that the predicates ISROW, ISCOLUMN and ISDIMENSION
are equivalent. However, we find it more natural to retain the distinction, for, after all, rows and
columns are hardly equivalent in their chess interpretations.

Section 2.1.4 Value Declarations

There are fourteen VALUES in this system, corresponding to the twelve different incarnations of the
chessmen on the chessboard, an empty value, and an undefined value. It is perhaps worthwhile to
emphasize that the value of a given chesspiece is a function of the position in which we are
considering that chesspiece. Of course, the value of non-pawn pieces does not change during a game
(and we shall prove a theorem to that effect (section 3.3.1).

Chessboards, being a manifestation of the current situation in a chess game, rather than a
description of the history of that game, have values filling their squares. Our desire to have
partially defined chessboards leads to the existence of the undefined value (UD) of our system.

The naming scheme for values is the converse of that of pieces. Thus, QW is a value of any piece
that is a white queen. In competitive chess, a promoted white pawn would therefore be likely to
have the value QW after his promotion. Value variables begin with the letter v. Each value is
represented in the internal LISP world as the atom of the same name.

declare PREDCONST VVALUES NVALUES (VALUES) (PRE];
declare PREDCONST PIECEVALUES EVALUES (VVALUES) [PRE];
declare PREDCONST WVALUES BVALUES (PIECEVALUES) [PRE];
declare PREDCONST PROMVALUES VALUEK VALUEQ VALUEB VALUEP
VALUER VALUEN (PIECEVALUES) [PRE];

declare INDCONST KW QW BW NW RW PW ¢ WVALUES ;
declare INDCONST KB QB BB NB RB PB ¢ BVALUES;
declare INDCONST MT ¢ EVALUES, UD ¢ NVALUES;

|
|
|
|

2.14. The Chess Axioms Page 49.

declare INDVAR vw ¢ WVALUES, vb ¢ BVALUES;

declare INDVAR v vl ¢ VALUES, vpc vpcl vpc2 ¢ PIECEVALUES;
declare INDVAR vvx ¢ VVALUES;

declare INDVAR vbi ¢ VALUEB;

(CHESS] NB; attach KW « [CHESS] KW
(CHESS] PB; attach PW « [CHESS] PW;
(CHESS) RB; attach QB « [CHESS) QGB;
(CHESS) UD; attach BB « (CHESS] B88;
(CHESS) BW;

attach MT « (CHESS] MT; attach NB
attach RW « [CHESS) RW; attach PB
attach KB « [CHESS) KB; attach RB
attach QW « (CHESS) QuW; attach UD
attach NW « [CHESS) NW; attach BW

mg PIECEVALUES2
{PROMVALUES, WVALUES, BVALUES, VALUEK , VALUEQ, VALUEB, VALUEN, YALUER, VALUEP! 3
mg PROMVALUES2 (VALUEQ, VALUEB, VALUEN, VALUER} ;
mg VVALUES2 (P1ECEVALUES,EVALUES! ;
mg VALUES2 INVALUES, VVALUES} ;

extension VALUEK (KW KB}; extension VALUEQ {QW QGB};
extension VALUEB (BW BB}; extension VALUEN {(NW NBI;
extension VALUER {RU RB}: extension VALUEP {PW PBl;
extension WYALUES (KW,QW,BW,NW,RW,PW!;

extension BVALUES (KB,Q8,88,NB8,RB8,PBI;

extension EVALUES {MTl; extension NVALUES {UDl;

extension PIECEVALUES {KB QB RB BB NB PB KW QW RW BW NW PWl;
extension VVALUES {MT KB QB RB BB NB PB KW QW RW BW NW PWi ;
extension VYALUES {UD MT KB QB RB BB NB PB KW QW RW BW NW PW};
extension PROMYALUES (QB RB BB NB QW RW BW NW);

attach VALUEK [CHESS) (DE VALUEK (x) (MEMQ x (QUOTE (KW KB)

attach VALUEQ (CHESS) (DE VALUEQ (x) (MEMQ x (QUOTE (QW Q@B)

attach VALUEB [CHESS) (DE VALUEB (x) (MEMQ x (QUOTE (BW BB;
x

)

)

L 2 B 3 4

attach VALUEN (CHESS) (DE VALUEN (x) (MEMQ x (QUOTE (NW NB
attach VALUER [CHESS) (DE VALUER (x) (MEMQ x (QUOTE (RW RB
attach VALUEP (CHESS] (DE VALUEP (x) (MEMQ x (QUQTE (PW PB
attach WVALUES (CHESS] (DE WVALUES (x) (MEMQ x(QUOTE (KW Q
attach BVALUES ([CHESS) (DE BVALUES (x) (MEMQ x(QUOTE (KB Q
attach EVALUES (CHESS] (DE EVALUES (x) (EQ x (QUOTE MT)))
attach NVALUES [CHESS) (DE NVALUES (x) (EQ x (QUOTE UD)))
attach VVALUES (CHESS) (DE VVALUES (x)
(OR (BYALUES x) (WVALUES x) (EQ x(QUOTE MT))));

attach PROMVALUES [CHESS) (DE PROMVALUES (x)

(MEMQ = (QUOTE (QB RB NB BB QW RW NW BW))));
attach PIECEVALUES [CHESS) (DE PIECEVALUES (x) (OR (BVALUES x) (WVALUES x)));
attach VALUES [CHESS) (DE VALUES (x) (OR (VVALUES x) (EQ x (QUOTE UD))));

;
:
¢
:
:
3
NW RU
NB RB

o

e os

PROMVALUES are the values a pawn can promote to. More specifically, a pawn can promote to be a
queen, rook, bishop or knight.

The Valuecolor of any PIECEVALUES is the color of that value. Thus, the Valuecolor of KW is
WHITE.

declare OPCONST Valuecolor (PIECEVALUES)=COLORS (PRE];

attach Valuecolor [CHESS-CHESS) (DE Valuecolor {v) (COND
((WVALUES v) (QUOTE WHITE)) ((BVALUES v) (QUOTE BLACK))))}

e e e

Page 50. The Chess Axioms 2.1.5.

Section 2.1.5 Board Declarations

We have several interesting functions and predicates defined on boards. Two of the most complex
are the predicates WHI TEINCHECK and BLACKINCHECK. These are true when the given side is in
check on the given board.3%

Similarly, we have the composite predicate, SIDEINCHECK, on boards and colors. SIDEINCHECK on
WHITE and a board is true if and only if WHITEINCHECK is true for that board. The corresponding
statement about BLACK and BLACKINCHECK also holds.

Since a position is a state vector, we are theoretically able to obtain the total board (board with no
undefined squares) of any position. The function which extracts that board is Tboard. However, as
a position is almost invariably a variable (rather than a constant), we will never actually compute the
Tboard of any position.

One board is a SUBOARD of another if the second is equal to the first, on every square the first is not
undefined (UD). SUBOARD is therefore a partial ordering relation on boards. We state that the
predicate BOARD, on positions and boards, is true if the given board is a SUBOARD of the Tboard
(total board) of that position. Thus, this predicate is true if the undefined squares of the given
board could be filled in to make the board obtained by playing the game that the position defines.36
The predicate BOARD is particularly appropriate for the kinds of puzzles we solve. Typically, we
shall be presented a board or board fraction, and need to reason about any POSITION which has
this board fragment as one of its boards.

We also have a constructor for boards, Makeboard, which takes a board, a square and a value, and
constructs the new board formed by inserting that value on the stated square.

The function Valueon, on boards and squares, returns the value on that square of that board. The
predicate MOVETO, on boards, values, squares and squares, is true if the given value could move, on
the given board, from the first square to the second. MOVETO encompasses our notion of ordinary
movement. If the piece in question is, for example, a rook, then MOVETO will be true for that piece
and board, if, the two squares share a row or column (but not both), and every square between them
is unoccupied (MT, not UD).

declare PREDCONST WHITEINCHECK BLACKINCHECK (BOARDS) (PRE];
declare PREDCONST BOARD (POSITIONS,BOARDS) ¢

.group
deciare OPCONST Tboard (POSITIONS)=TOTALBOAROS (PRE] s
declare OPCONST Valueon (BOARDS,SQUARES)=VALUES;
declare INDVAR a b bl b2 b3 ¢ BOARDS, bt ¢ TOTALBOARDS;

declare PREDCONST SI1DEINCHECK (BOARDS,COLORS);
declare PREDCONST MOVETO (BOARDS, VALUES, SQUARES, SQUARES) ;

mg BOARDS2 (TOTALBOARDS, WH1 TEINCHECK , BLACK INCHECK1 3

35, The attachments to these predicates are in section 2.2.2.

36. Therefore, (and trivially) the totally undefined board is a BOARD of every position.

2.1.5. The Chess Axioms Page 51. g

3 . declare OPCONST Makeboard (BOARDS,SQUARES, VALUES) =BOARDS;
declare PREDCONST SUBOARD (BOARDS,BOARDS) ;

K We shall call initial board, the configuration of pieces before the start of the game, START. This

board is illustrated in figure 26.
1//7 / 2
Wy AE

/g ///g 7 A2

| 0090
| /////

e
w009

i A Vi 2 RaTR /ﬁ”
| ST AR
The board START.
figure 26

declare INDCONST START ¢ TOTALBOARDS;

We represent a board in the internal LISP system as a list of the eight rows, each row being a list of
the eight values on it. This is illustrated in figure 27.

((BQR1 BON1 BGB1 BAl BK1 BKB1 BKN1 BKR1)
(BQR2 BAN2 BAB2 BA2 BK2 BKB2 BKN2 BKR2)
(BQR3 BQGN3 BOB3 BA3 BK3 BKB3 BKN3 BKR3)
(BQR4 BQGN4 BAB4 BQ4 BK4 BKB4 BKN4 BKR4)
(WQR4 WONG WGB4 WA4 WK4G WKB4 WKNG WKR4)
(WAR3 WAN3 WaB3 WA3 WK3 WKB3 WKN3 WKR3)
(WAR2 WAN2 WAB2 W2 WK2 WKB2 WKN2 WKR2)
(WOR1 WGN1 WGB1 WAl WK1 WKB1 WKN1 WKR1))

LISP arrangement of a board, with square locations

figure 27

With this representation in mind, we make the appropriate attachments.

Page 52. The Chess Axioms 2.1.5.

attach START « [CHESS) ((RB NB BB QB KB BB NB RB)
(PB PB PB PB PB PB PB PB)
(MT MT MT MT MT MT MT MT)
(MT MT MT MT MT MT MT MT)
(MT MT MT MT MT MT MT MT)
(MT MT MT MT MT MT MT HT)
(PN PN PW PN PW PW PW PW)
(RW NW BW QW KW BW NW RW));

attach Valueon [CHESS,CHESS-CHESS]
(DE Valueon (b S) (CAR (NTH (CAR (NTH b (CAR S))) (COR S))));

attach BOARDS [CHESS) (DE BOARDS(b) (AND (EQ (LENGTH b) 8) (ALLROWS b)));
FUNCTION (DE ALLROWS (b) (COND ((NULL b) T)
((AND (EQ (LENGTH (CAR b)) 8) (MEMBOARD (CAR b)) (ALLROWS (COR b))})));
FUNCTION (DE MEMBOARD (Row) (COND ((NULL Row) TI)
((AND (VALUES (CAR Row)) (MEMBOARD (COR Row))))));
attach TOTALBOARDS [CHESS)
(DE TOTALBOARDS (b) (AND (EQ (LENGTH b) 8) (ALLTROWS b)))3
FUNCTION(DE ALLTROWS (b) (COND ((NULL b) T) ((AND (EQ (LENGTH (CAR b)) 8)
(MEMTBOARD (CAR b)) (ALLTROWS (COR b))))));
FUNCTION (DE MEMTBOARD (Row) (COND ((NULL Row) T)
((AND (VVALUES (CAR Row)) (MEMTBOARD (COR Row))))));
attach SUBOARD [CHESS,CHESS] (DE SUBOARD (a b) (COND
((NULL a)T)
((EQUAL (CAR a) (CAR b)) (SUBOARD (COR a) (COR b)))
((OR (EQ (CAAR a) (CAAR b))
(EQ (CAAR a) (QUOTE UD)))
(SUBOARD (CONS (CDAR a) (COR a))
(CONS (CDAR b) (COR b))))));

Section 2.1.6 Color Declarations
We develop a much richer set of predicates and variables on colors than a two element sort deserves.

declare PREDCONST WHT BLK (COLORS) [PRE);
declare INDCONST WHITE ¢ WHT, BLACK ¢ BLK;
declare INDVAR ¢ ¢ COLORS;

mg COLORS 2 {WHT,BLK);

extension BLK (BLACKI;
extension WHT (WHITE};
extension COLORS WHT u BLK;

attach BLACK « ([CHESS] BLACK:
attach WHITE » [CHESS]) WHITE;
attach WHT [CHESS) (DE WHT(c) (EQ ¢ (QUOTE WHITE)));
attach BLK [CHESS) (DE BLK(c) (EQ ¢ (QUOTE BLACK)))4

e

e

e e s

2.1.%, The Chess Axioms Page 53.

Section 2.1.7 More on Positions
Section 2.1.7.1 Position declarations

It is worthwhile to emphasize that these chess axioms apply only to situations that might arise in a
legal game. Just as formal logic is very sensitive to inconsistency, allowing a proof of any WFF from
a false premise, so these axioms, when presented with, for example, an impossible board, do not
know which of their axioms to doubt, and will permit the proof of any conclusion about that board.
Therefore, the use of the word position in this paper should be understood to mean legal position. If
it were necessary to consider almost legal positions, then these axioms could be suitable subverted to
reflect whatever the subverter felt were the more fundamental legalities (see section 5.2.1).

Qur system recognizes another major distinction between positions. For almost every position, one
can speak of the move that was made to get to that position. The exception, of course, is the initial
position, the position before the game begins. We therefore have the subsort of GAMEPOSITION,

which is every position except the initial one.

We refer to the initial position as P@. Its LISP representation is as the list whose only element is the
(arbitrarily selected) atom STARTING.

Positions also naturally, and somewhat more evenly, divide themselves by the color of the player
who is to move next in that position. We therefore have the subsort of WHI TETURN, those positions
for which white is on move. Consistent with the rules of chess, P8 will be a WHI TETURN position.

The variables r, r1 and r2 are over the domain of POSITIONS. All variables beginning with the
letters p and q range over the GAMEPOSI TIONS.

declare PREDCONST WHITETURN GAMEPOSITION (POSITIONS) [PRE];
mg POSITIONS2 {WHITETURN, GAMEPOSI TION) §

declare INDCONST P8 ¢ POSITIONS;
attach P8 « [CHESS] (STARTING);

declare INDVAR r rl r2 ¢POSITIONS;
declare INDVAR p q pl p2 p3 p4 px py pz ax qy qz ql 62 g3 ¢ GAMEPOSITION;

We speak of one position as being a SUCCESSOR to another if there is a legal move from the first to
the second. We also recognize the function which takes a position, and returns the previous position
(position prior to the last move), Prevpos. Thus, for all GAMEPOSITIONS, p, SUCCESSOR (Prevpos

p,p) will be true.

dec)are PREDCONST SUCCESSOR (POSITIONS,GAMEPOSITION) 3
declare OPCONST Prevpos (GAMEPQSITION)=POSITIONS (PRE];

As positions are conceptually built of moves, we have the function Move, on GAMEPOSITIONs, which
extracts the last move made to get to that position. A compositor, Nextpos, on moves and positions,
yielding the ALLPOSITION obtained by making that move, is also provided. Two things should be
noted about this function. It produces elements of the sort ALLPOSITION, which includes both
“legal” and "illegal” positions, depending upon whether the given move was legal in the argument
position. Secondly, and perhaps more germanely, we are dealing exclusively with retrograde analysis
chess; the function Nextpos and sort ALLPOSITION are nowhere used in the following proofs.

T

Page 54. The Chess Axioms 2.1.7.1.

declare OPCONST Move (GAMEPOSITION)=MOVES [PRE);
declare OPCONST Nextpos (MOVES,POS!TIONS)«ALLPOSITION;

One position is PRECEGAME (predecessor in this game) to another if the first occurred in the game
played to reach the second. We will also use similar kinship terms, such as ancestor and descendant
in describing positions played in the same game. The initial position is, of course, a predecessor to
every GAMEPOSITION. It is seen, therefore, that POSITIONS form themselves into a tree, with P8 at

the root, with respect to Prevpos operator.
declare PREDCONST PREDEGAME (POSITIONS,GAMEPOSITION;

In going from one position to a successor position, one can employ one of three different moves -- a
castle, a capture en passant, or a simple, legal move37 Castles are distinguished by moving two pieces
with the same move, en passant capture by the capture of a piece on a square other than the one
moved to.

declare PREDCONST SIMPLELEGALMOVE EN_PASSANT CASTLING
(POS1TIONS, GAMEPOSITION)

Another useful predicate on positions and colors is POSITIONINCHECK. If the given color is in check
in the stated position, this predicate is true.

declare PREOCONST POSITIONINCHECK (POSITIONS,COLORS):

As positions are state variables, it is possible to extract information about the status of individual
chesspieces or squares from them. The function Pos says which piece is on a given square at a
given time. Its a/most inverse is Pospcf (position-piece function) which takes a position and a
chesspiece, and returns the extended square occupied by that piece38 One can also ask for the value
of a piece in a position (Val) or the color of the position itself (Color), a WHITETURN position having
a WHITE color.

declare OPCONST Pos (POSITIONS, SQUARES) =PIECES;
declare OPCONST Pospct (POSITIONS,CHESSPIECES) =EXSQUARES:
declare OPCONST Val (POSITIONS,PIECES)=VVALUES;
declare OPCONST Color (POSITIONS)=COLORS (PRE];

The predicate PROMOTEDPAWN is true if the argument pawn has been promoted before or by the
given position (no longer has a pawn value.)

declare PREDCONST PROMOTEOPAWN (GAMEPOSITION,PAWNS)
Section 2.1.7.2 Positional Attachments

The following attachments have been made to the position predicates.3% These functions are, to the
minimal extent that they have been implemented, the obvious attachments for handling the ob jects in

37. A general classification, mesnt to subsume everything else.
38 The piece may, of course, no longer be on any “resl” square. In that case, the valve of the function is not defined.
39. Note the use of the |_DONT_KNOW response (s special FOL construct) when the suthor didn't tee! like writing the rest of

these complicated functions.

-

21722 The Chess Axioms Page 55.

the world we have defined. The notion of a position as a list of moves has been minimally
incorporated into these attachments. The attachment for POSITIONS is only used to uniformly
recognize the initial position. We will construct no other positions, for we will not be speaking about
any other entire game.

attach POSITIONS [CHESS) (DE POSITIONS (L) (COND
((EQUAL (QUOTE (STARTING)) L)) (T (QUOTE |_DONT_KNOW))));

attach Pos [CHESS,CHESS-CHESS)
(LAMBDA (p S) (COND((EQUAL p (QUOTE (STARTING))) (GIVENF S))
(T (QUOTE I_DONT_KNOW))));
attach Pospct [CHESS,CHESS-CHESS]
(LAMBDA (p x) (COND((EQUAL p (QUOTE (STARTING))) (GIVENPCF x))
(T (QUOTE 1_DONT_KNOW))));

attach WHITETURN [CHESS) (DE WHITETURN(L) (NOT (ZEROP (REMAINDER (LENGTH L12))))3
attach Color [CHESS-CHESS]
(DE Color (L) (CONO((WHITETURN L) (QUOTE WHITE)) (T(QUOTE BLACK))));

FUNCTION (DE GIVENF (S) (COND
((EQ (CAR S) 1) (CAR (NTH (QUOTE (BQR BQN BQB BQ BK BKB BKN BKR)) (COR S))))
((EQ (CAR S) 2) (CAR (NTH
(QUOTE (BQRP BQNP BQBP BAP BKP BKBP BKNP BKRP)) (COR S))))
((EQ (CAR S) 7) (CAR (NTH
(QUOTE (WQRP WQNP WQBP WQP WKP WKBP WKNP WKRP)) (COR S))))
((EQ (CAR S) 8) (CAR (NTH (QUQTE (MQR WQN WQB WQ WK WKB WKN WKR}) (COR S I
(T (QUOTE EMPTY))));
FUNCTION (DE GIVENPCF (x) (CADR (ASSOC x (QUOTE (
(BQR (1 . 1)) (BON (1 . 2)) (BAB (1 . 3)) (BQ (1 . 4))
(BK (1 . S)) (BKB (1 . 6)) (BKN (1 . 7)) (BKR (1 . 81)
(BQRP (2 . 1)) (BANP (2 . 2)) (BQBP (2 . 3)) (BQP (2 . 4&))
(BKP (2 . 5)) (BKBP (2 . 6)) (BKNP (2 . 7)) (BKRP (2 . 8))
(WQRP (7 . 1)) (KNP (7 . 2)) (WQBP (7 . 3)) (WGP (7 . 4))
(WKP (7 . 5)) (WKBP (7 . 6)) (WKNP (7 . 7)) (WKRP (7 . 81)
(MOR (8 . 1)) (KON (8 . 2)) (WQB (8 . 3)) (WA (8 . 4))
(WK (8 . 5)) (WKB (8 . B)) (WKN (8 . 7)) (KKR (8 . 8)))))));
attach Val [CHESS,CHESS-CHESS) (DE Val (p x) (COND((EQUAL p(QUOTE (STARTING)))
(COND ((SETQ TEMPORARYXXX (ASSOC x (QUOTE
((WK.KW) (WKN.NW) (WKB.BW) (WKR.RW) (WQ.QW) (WQN.NW) (WQB.BW) (WQR.RW)
(WQP. PW) (WANP.PW) (WGBP. PW) (WQRP.PW) (WKP,PW) (WKNP.PW) (WKBP.PW) (WKRP,PW)
(BK.KB) (BKN.NB) (BKB.BB) (BKR.RB) (BQ.QB) (BQN.NB) (BQB.BB) (BAR.RB)
(BQP.PB) (BQNP.PB) (BQBP.PB) (BQRP.PB) (BKP,PB) (BKNP.PB) (BKBP.PB) (BKRP.PB)
(EMPTY.MT))))) (COR TEMPORARYXXX))))
(T(QUOTE I_DONT_KNOW))));

Section 2.1.8 Move Declarations
Section 2.1.8.1 Predicates on Moves

The sort of MOVES is redundant in the axioms and proof, replacable by the positions themselves.
However, the notion of a move is a natural concept in itself, and was therefore included in the
axiomatization.

There are, of course, various kinds of moves. For example, we can classify the last position by
whether it was an en passant capture, castle or ordinary move:

Page 56. The Chess Axioms 2.18.1.

declare PREDCONST ORDINARY CASTLE ENPASSANT (MOVES) [PRE);

There are several kinds of ordinary moves. They divide between the capturing and non-capturing
moves (CAPTURE and SIMPLE), and may also fall into the pawn promotions (PAWNPROM). Compound
classifications such as simple pawn promotion (SIMPP) or captures that are not promotion moves
(CAP). The predconst TAKINGS covers all capture moves, including en passant capture. This rich
structure uses the following declarations:

declare PREDCONST PAWNPROM TAKINGS (MOVES) (PRE];
declare PREDCONST CAPTURE SIMPLE (OROINARY) [PRE];
deciare PREDCONST Sift SIMPP {(SIMPLE) (PRE];
declare PREDCONST CAP CAPPP (CAPTURE) (PRE];

mg CAPTURE 2 (CAP CAPPP};

mg SIMPLE 2 (SIM SIMPP};

mg PAWNPROM 2 (SIMPP CAPPP} ;

mg ORDINARY 2 (PAWNPROM CAPTURE SIMPLEI;

mg TAKINGS 2 (CAPTURE ENPASSANT};

mg MOVES 2 (DRDINARY CASTLE ENPASSANT TAKINGS!;:

And, of course, each of these sorts needs a variable to call its own.

declare INDVAR m ¢ MOVES, mc ¢ CAPTURE, mo ¢ ORDINARY, mpp ¢ PAWNPROM,
ms ¢ SIMPLE, mtx ¢ TAKINGS, mspp ¢ SIMPP;

Section 2.1.8.2 Functions on Moves

For all moves, we can speak of the square from which the move was made, the square to which it
was made, and the chesspiece that did the moving. For certain other classes of moves, we can state
the chesspiece captured, the value a pawn promoted to, how the rook of a castling move moved, or
where an en passant capture took place. Collectively, these produce the following declarations.

declare OPCONST From To (MOVES) =« SQUARES [(PRE];

declare OPCONST Mover (MOVES) = CHESSPIECES (PREI:
declare OPCONST Taken (TAKINGS) = CHESSPIECES (PRE];
declare OPCONST Promoted (PAWNPROM) = PROMVALUES [PRE];
declare OPCONST Alsofrom Alsoto (CASTLE) = SQUARES [PRE);
declare OPCONST Alsomover (CASTLE) = CHESSPIECES (PRE]s
declare OPCONST Takenon (ENPASSANT) = SQUARES [PRE]:

It should be noted that the ALSO part of the castling move functions refer to the actions of the rook
in the castling move.

We can also have move constructor functions, which take the various determiners of a move, and
produce the move corresponding to those requirements. For example, a simple (SIM) move
constructor would be declared:

declare OPCONST Makesimpiemove (SQUARES,SQUARES,CHESSPIECES)«SIM;

And would produce the move resulting from that chesspiece moving from the first square to the
second. However, as we never construct any moves, we will not need these constructors.

2.1.9. The Chess Axioms Page 57.

Section 2.1.9 Definitional Axioms
Section 2.1.9.1 Miscellaneous axioms

In the last several sections, we have defined several predicates and functions in terms of other
predicates and functions. FOL does not, of course, know about these relationships unless we
explicitly axiomatize them. For example, the rule that white moves first, is expressed by
axiomatically stating that the initial position (P8) be a WHI TETURN.

axiom [INITIAL_MOVER:WHITETURN PQ3;;

Similarly, the fact that the inaugural board is the board START, is specified as:

axiom STARTING_BOARD: Tboard P@ =START;;

As you can see, definitional axioms are not very exciting.

We gave a large hierarchy for move typing. It is important to state both the inclusive (all moves are
of certain sorts) and exclusive (a move is in only one of several classes) properties of this move
structure in an axiom.

1 axiom MOVETYPES:

2 V¥m. (ENPASSANT m VCASTLE m vORDINARY m),
Vm.-~{(ENPASSANT m ACASTLE m),
Vm.-(ENPASSANT m AORDINARY m),
Vm.~(CASTLE m AORDINARY m),
Vmo.-(CAPTURE mo sSIMPLE mo),
Vme.-(CAPPP mc sCAP mc),

Vms.~(SIMPP ms «SIM ms),

Vmpp.-~(CAPPP mpp =SIMPP mpp),
Vmtx.,-~(ENPASSANT mtx sCAPTURE mtx);;

We claimed that the Makesquare operator, on rows and columns, produced the appropriate square,
that the LASTRANKER predicate on squares and colors is decomposable in terms of WLASTRANK and
BLASTRANK, and that SQUARE_BETWEEN representes the betweenness relation, both orthogonally and
diagonally. Each of these definitions entails the appropriate defining axiom. Note, however, we
include the axiom for SQUARE_BETWEEN only for reference; this axiom is not subsequently invoked.
Rather, all uses of SQUARE_BE TWEEN are done through simplification.

axiom SQUARED:
Y sq. (sq=Makesquare(Row sq, Column 8q)),
Y sq c. (LASTRANKER (sq,c) =
((c=WHI TEAWLASTRANK sq)v (c=BLACKABLASTRANK sq))) ;s

axiom SQBETWEEN:
Vsql sq2 sq3. (SQUARE_BETWEEN(sql sq2 sq3)m(
(Row 8ql =Row g2 ARow 8q2 =Row 8qg3 ~
BETWEEN(Column sql, Column 8q2, Column 8g3))v
(Column sql =Column sq2 AColumn sq2 =Column sq3 A
BETWEEN (Row sql, Row 82, Row 8g3))v
(SAMEDIAG (sql 8q2) ASAMEDIAG (8q2 8q3) ASAMEDIAG (sql e8q3)A
BETWEEN (Row sql, Row 82, Row 8g3))))iy

Page 58. The Chess Axioms 2.1.9.2.

Section 2.1.9.2 Positional Axioms

In the section on position declarations, we made several assertions about the relations between the
predicates we declared. We here axiomatize these assertions.

We stated that every position except the initial position was a GAMEPOSI TION.40

axiom POSITION_TYPES:
Yr.=~(r=P@=GAMEPOSITION r);;

Every GAMEPOSITION is the successor of its predecessor position; every GAMEPOSITION is a
descendant of the initial position, P8.

axiom POSITION_RULES:
Vp. (SUCCESSOR (Prevpos p ,p) APREDECAME (P8,p))s: -

Much like a number system, we can axiomatize the a partial ordering relation (PREDEGAME) on
positions. PREDEGAME is true if its first argument occurred in the game that produced its second. It
acts much like any partial ordering relation, such as <41 If the reader keeps this correspondence in
mind, the following axioms will seem transparently valid.

In reading these axioms, one should also recall that the variables r, rl, and r2 range over all
POSITIONS (including the initial position, P8), and that p and q are on the domain of
GAMEPOSI TIONs only.

axiom GAMERELATIONS:
Vr q. (PREDEGAME (r q) = (SUCCESSOR(r qlv
3Ip. (PREDEGAME (r p) APREDEGAME (p q) 1)),
Vp rl r2. ((PREDEGAME (r2 p) APREDEGAME (rl p))>
(PREDEGAME (r1 r2) vPREDEGAME (r2 rl)vr2=rl)),
¥rl r2.-(PREDEGAME (r1 r2) APREDEGAME(r2 rl)),
yrl q r2. (SUCCESSOR(r1 q)>-(PREDEGAME (r1 r2) APREDEGAME (r2 q))) s

These next three axioms relate the translation between functions and predicates. The first states that
the Color function is equivalent to the WHITETURN predicate. The second defines the range over
which Pos (the piece on the given square in the given position), and Pospcf (the square on which
the given chesspiece rests) are inverses, to wit, when the chesspiece is still on the board (not yet
captured). The third states the equivalence of the Val (value) function on pieces, with the Yalueon
function of the corresponding boards.

axiom POS_COLORS: Vr c.(Color rec @ (WHT ¢ s WHITETURN r));;
axiom POS_TRANSLATION: Vr eq x. (Pos(r sq)=x = Pospcf(r x)=sqls}

axiom VALUETRANSPOSITION:Yr t sq b. ((Pos(r sq)=tABOARD(r b))>
(Valueon(b,sq)=Val (r, t)vWalueon(b sq)=UD));;

40. Note thet the varisble "r" ranges over POSITIONS, not merely GAMEPOSITIONS.

4], Remembering, of course, that POSITIONS have o tree like, rather then linesr structure.

2.1.10. The Chess Axioms Page 59.

Section 2.1.10 Miscellaneous Declarations

We shall also have occasion to use a few universal elements, particularlly for the axiom
Substitution4?2 We declare some universal variables (j and k), and functional parameters 8 (for
single argument functions) and B2 (for two argument functions).

declare INDVAR j j1 j2 k kl k2
declare OPPAR 8 1 (PRE);
declare OPPAR g2 2;

Section 2.2 Axioms
Section 2.2.1 Movement axioms
Section 2.2.1.1 Successor definition

Having cleared away most of the definitional rubble (with the exception of a few scattered bricks
and window shards, still to be presented) we are ready to express the rules of chess in first order
logic. The major vehicle for this task are the movement consequence axioms, (WCONSEQ). T hese
detail some of the requirements and consequences of a given position being a successor (legal move
away) to another position. In many ways, SUCCESSOR is the fundamental predicate of this axiom
system.

axiom MCONSEQA:

Vr q. (SUCCESSOR(r q)>
((~WHI TETURN (r) aldH1 TETURN (q)) A
Prevpos(q) =ra
-~POSITIONINCHECK (q,Color r)a
(WHITEPIECE Mover Move qsWHITETURN r)a
Pos(r From Move q)=Mover Move ga
Pos(q,To Move q)e=Mover Move qa
Pos(q,From Move q)=EMPTYA
(CAPTURE Move qoPos(r,To Move q)=Taken Move q)a
(CASTLING (r q) vVEN_PASSANT (r q) vSIMPLELEGALMOVE (r q))))3

This axiom states a series of conditions on positions needed to satisfy the SUCCESSOR predicate.43

For two positions to have the successor relationship, they must, of course, be of opposite color. As
positions retain the history of their derivation, the first must be the previous position of the second.
A caveat against moving and remaining in check is specified. The piececolor of the mover is the
same as the side that made the move (you only move your own pieces), and the Mover moved from
the From square to the To square of the move. The square he left is then vacant. If the move was
an ordinary capture, the captured piece was on the square moved to. Any move is either a castling
move, an en passant capture, or a simple, legal move.

42 Section A2 |
43 This pred<ate, (though we shall not explicitly do s0), would be defined as the conunction of some of the conditions we will
state in this chapter As all of the analysis we have applied these axioms 10 is retrograde analysis, forward truction of .

has not been needed. Like so many other things, never being required, it has not been done.

-

A TN e TR e

e e T R S S

e g ey

VT A W

Page 60. The Chess Axioms 22.1.1

Having defined the fate of the moving piece in any move, we reveal that any taken piece is nowhere
to be found (or, at least, is not on any square).

axiom MCONSEQF:VYr sq x. (Taken Move r=x>-Pos(r sq)ex);;

It is also necessary to state what does not change during a move. Any piece that did not move or
was not captured is still on the same square; any square that was not the From or To or Takenon
square of the last move retains its identical contents.

axiom MCONSEQD:VYr q sq. ((SUCCESSOR(r q)a-sq=From Move qa-sq=To Move qa
-~ (CASTLE Move qal(sq=Alsofrom Move qvsqe=Alsoto Move ql)a
~{ENPASSANT Move qnsq=Takenon Move q))>
Pos(r sq)=Pos(q sq));::
axiom MCONSEQE:V¥Yr q x. (SUCCESSOR(r qlo({-x=Mover Move qa
~(TAKINGS Move qax=Taken Move q)Aa
~(CASTLE Move qnx=Alsomover Move q))>
Pospct (r x)=Pospcfiq x)));

There are also the loose ends of these functions to be tied. We wish these functions to be defined
only on the appropriate positions; to speak of the Takenon square of a castling move is meaningless.
While the need for this axiom is probably not obvious, its restrictions are required in the proofs of
several later theorems.

axiom MCONSEQG:Yr t sq. ((=TAKINGS Move ro-~t=Taken Move r)a
(~ENPASSANT Move ro-sq=Takenon Move r)A(-GAMEPOSITION ro>-MOVES Move r)a
(~GAMEPOSITION ro-~sq=To Move r)a(~GAMEPOSITION r>-sq=From Move r)a
(~GAMEPOSITION ro~teMover Move r)a
(~CASTLE Move ro(-~sqe=Alsoto Move ra~t=Alsomover Move r)))i;

These next three axioms deal with the special circumstances of pawn promotions. The first states
that the only way a piece can change its VALUE is by being the mover of a pawn promotion; we use
this fact, for instance, to prove that any non-pawn chess piece always has the same value.** The
second is definitional for the predicate PROMOTEDPAWN. The third places himitations on pawn
promotions, specifying that a pawn promotion moves a pawn to the last rank of his color, by a
simple, legal move, that the piece must have pawn value when he starts the move, and must have a
value from the set of possible promotion values (queen, rook, bishop and knight) when done. The
axiom bars chameleon promotions; the pawn retains its color though the move.

axiom MCONSEQH:VYr q t. ((SUCCESSOR(r q)A
(~PAWNPROM Move qv-tsMover Move q))oVal(r t)eVal(q t))ss
axiom MCONSEQI:
Vr t. (PROMOTEDPAUN(r t)=
3q. (PAUNPROM (Move (q)) A (PREDEGAME (q r)vqer) AMover (Move ql=t))i
axiom MCONSEQL:
Yp . (PAUNPROM Move pa (LASTRANKER(To Move p,Color Prevpos p)a
SIMPLELEGALMOVE (Prevpos p plA
PAWNS Mover Move pa
VALUEP Valueon(Tboard Prevpos p,From Move p)a
((BVALUES Promoted Move p=BVALUES Val (Prevpos p Mover Move p))a
(WVALUES Promoted Move psWVALUES Val (Prevpos p Mover Move p)))a
Val (p Mover Move p)=Promoted Move p))¢:

a4 Section 33.1.

22.1.1. The Chess Axioms Page 61.

The definitional equivalence of the three types of successions, and their respective moves is declared.

axiom MCONSEQM:
VYp. ((CASTLE Move psCASTLING(Prevpos p pl)la
(ENPASSANT Move psEN_PASSANT (Prevpos p p))a
(ORDINARY Move psSIMPLELEGALMOVE (Prevpos p p)))i

The above axioms are not quite strong enough in their limitations of that special position, the initial
position. So we include this additional axiom.

axiom MCONSEQO:VYt sq. (~Mover Move P3=ta-From Move P@=sqn
-To Move PB=sqa~Taken Move PBeta
-MOVES Move PO);;

Section 2.2.1.2 Simple legal motion

We have split the chess move world into three parts, castling, en passant and ordinary moves. We
must now define each of these classifications. Let us start with the last, certainly the most common.

The definition of a SIMPLELEGALMOVE is given in the axiom MCONSEQK. It demands that the
move source (From) square differ from the destination (To) square, that in non-capturing moves, the
move always go to an empty square, and that in capturing moves, the captured piece always be a
member of the opposing army. The predicate MOVETO, on the (total) board of the moving from
position, need also be satisfied. Notice that, in some important sense, we are not cheating; for
retrograde analysis, it would be much more convenient to define the move in terms of the destination
board. However, this is not the way the rules of chess are naturally expressed. MOVETO defines the
different moves of the individual values.

axiom MCONSEQK:
Vr q. (SIMPLELEGALMOVE(r q)=
(-From Move gq=To Move qn
MOVETO(Tboard r Valueon(Tboard r,From Move q) From Move q To Move gl
((SIMPLE Move qnValueon(Tboard r,To Move q)=MT)v
(CAPTURE Move qAPIECEVALUES (Yalueon(Tboard r,To Move q))a
-Yaluecolor (Valueon(Tboard r,To Move q))=Color r))));;

The predicate MOVETO is, of course, the composite of five different predicates, representing the
possible ma jor movement types of chess. Chess pieces can move orthogonally, like rooks and queens,
on a bishop's (and queen's) diagonal, to the king's ad jacent square, by the knight's jump, or in the
slow, advancing move of a pawn. A predicate for each of these styles is declared; it is true when
that move is legal on the given board, from the first square to the second. Notice that MOVETO, as we
have defined it here, does not include consideration of the end squares of the move. This is because
we wish to more easily conclude, if that unknown piece is a rook, then it could move to that square.
However, this makes it subtly and slightly more difficult to prove moves about completely defined
situations. Life is a trade off.

The auxiliary predicate TWOTOUCHING (are the column arguments next to each other; that is, can a
pawn capture from the first column to the second) is also declared. The functions L2touchf and
R2touchf embody the next column left and next column right notions.

renpa—— rove [TP

o R S NG W R AR

e &

Page 62. The Chess Axioms 22.1.2

declare PREDCONST ORTHO (BOARDS, SQUARES, SQUARES);

declare PREOCONST DIAG (BOARDS, SQUARES, SQUARES)

declare PREDCONST PAWNMOVE (BOARDS, VALUES, SQUARES, SQUARES);
declare PREOCONST KINGMOVE (SQUARES, SQUARES) ;

declare PREOCONST KNIGHTMOVE (SQUARES, SQUARES);

declare PREDOCONST TWOTOUCHING (ISDIMENSION, ISODIMENSION) ;
declare OPCONST L2touchf R2touchf (ISDIMENSION)=ISODIMENSION (PRE];

The attachments to the next column touching functions have a convenient inversion; when the
function would be otherwise undefined (at the edge of the board) the opposite direction is selected

attach L2touchf [NATNUMREP-NATNUMREP]

(DE L2touchf (r) (COND ((EQ r 1)2) (T(SUBL r))));
attach R2touchf [NATNUMREP-NATNUMREP]

(DE R2touchf (r) (COND ((EQ r 8)7) (T(ADD1 r))));

Orthogonality and diagonality are given predicate logic definitions, in the obvious manner. Pawn
moves are broken into black and white pawn movements, and the three types of pawn moves (singie
space ahead, capture diagonal advance, and two space first move) are described for each of black
and white. As the geometry of king and knight moves are purely a function of the squares involved
(at least in the sense that the limitations are imposed elsewhere), we do not need a formal logic

definition of their potential actions. Rather, we invariably rely upon our chess eye for decisions of

this kind. The axioms that we would have defined for king and knight moves are derivable from
the chess eye's functions.

Note that if our chess eye were capable of computing on incompletely defined quantities (variable
ob jects with known properties, for example), we might be able to avoid having definitions of ORTHO
and DIAG. That is, if FOL permitted the passing of a variable board to these functions, then many
of the derivations that use the definitions of ORTHO and DIAG could be done merely by simplification.
However, in the more complex cases, simplify might have to consider four thousand square pairs or
a quarter of a million triplets. The former, while painful, is computationally feasible. The latter is

not. Hence, the definitions of these predicates.

declare PREDCONST WPAWNMOVE (BOARDS, SQUARES, SQUARES):
declare PREDCONST BPAWNMOVE (BOARDS, SQUARES, SQUARES);

axiom MOVING:
Yb v 8ql sq2. (MOVETO (b v sal sq2)s

((VALUER (v) AORTHO (b sql &q2)) v
(VALUEB (v) ADIAG (b sql sq2)) v
(VALUEQ(v) AORTHO (b sql 8q2)) v
(VALUEQ(v)ADIAG(b sql sq2)) v
(VALUEK (v) AKINGMOVE (sql sq2)) v
(VALUEN (v) AKNIGHTMOVE (sql 8q2)) v
(VALUEP (v) APAUNMOVE (b v eql eq2)))),

e o

T T T

R SRR RGN 1% TP /T ARty 7 I,

S B T R

Y T

;

22.1.2 The Chess Axioms Page 63.

Vb sql sq2. (ORTHO(b sql sq2)s
(~sqlesq2na
({(Column sql=Column sq2 A
Ysq3. ((BETWEEN (Row sql, Row sq3, Row 8q2)
AColumn sq3=Column sql)>
, Valueon(b sq3)=MT))v
: (Row sql=Rou sq2a
¥sq3. ((BETWEEN (Column sql, Column 8q3, Column 8q2)a
Row sq3=Row sql)>
Valueon(b sq3)=MT))))),
4 Yo sql sq2. (DIAG (b sql sq2) =
{ (SAMEDIAG (sql sq2) A
Vsq3. ((SAMEDIAG (sql sq3) A
SAMEDIAG (sq2 sq3) A
E BETWEEN (Row sql, Row 8q3, Row 8q2))>
: Valueon (b sq3) = MT)))s;
axiom PAWNMOVING:
Vb v sql sq2. (PAUNMOVE (b v sql sq2)e=
((WPAWNMOVE (b sql sq2) A WVALUES v) v
(BPALINMOVE (b sql sq2) A BVALUES v))),
YV b eql sq2. (WPAUNMOVE (b sql sql)s
((Column sql=Column sq2a
WSUC (Row sql, Rouw sq2)a
Valueon(b sq2)«MT) v
(Column sql=Column sq2a
Rou sql=7a
Valueon(b sq2)=MTA
Valueon (b Makesquare (6, Column eql))=MTa
Rou sq2=5)v
(TWOTOUCHING (Column sql, Column sq2)a
WSUC (Row sql, Row sq2la
BVALUES Valueon(b sq2)))),
Y b sql 8q2. (BPAUNMOVE (b sql sq2)s
((Column sql=Column sq2a
BSUC (Row sql, Rou sq2la
Valueon(b sq2)=MT) v
(Column sql=Column sq2a
Row sql=2a
Valueon(b sq2)=MTA
Valueon (b Makesquare(3, Column sql))=MTA
Row sq2e=4)v
(TWOTOUCHING (Column sql, Column 8q2)a
BSUC (Row sql, Row sq2)a
WVALUES Valueon(b sq2))))3

Each of the possible moves also has an attachment in the LISP model. These attachments are to be
part of our Chess Eye.45 The chess eye functions are defined and explained in the following sections;
their correspondence to these definitional axioms should be obvious.

45 Section 1.52.

Page 64. The Chess Axioms 22.1.2.1.

Section 2.2.1.2.1 Ortho Attachments

The auxiliary LISP function ALLFREER (all free (empty) in the row) is given. It takes a board, a row,
a from column, and a to column, (from being arithmetically less than fo) and returns t (true) if every
square on that board, in the given row, between the given columns, is empty (has MT as its
Valueon), NIL (false) otherwise. The function ALLFREEC performs the corresponding action for

columns.

FUNCTION (DE ALLFREER (b r from to) (COND
((EQ from (SUB1 tol))T)
((EQ (Valueon b (CONS r(SUB1 to))) (QUOTE MT))

(ALLFREER b r from (SUBl1 to)))));

FUNCTION (DE ALLFREEC (b r from to) (COND
((EQ from (SUBL1 to))T)
((EQ (Valueon b (CONS (SUB1 to)r)) (QUOTE MT))

(ALLFREEC b r from (SUB1 tol))));

Using these two functions, the orthogonality check for two squares merely becomes a check to see if
they share a row or column, and if all the squares between the argument squares are free. Note that

no square is ORTHO to itself.

attach ORTHO (CHESS,CHESS,CHESS) (DE ORTHO(b r S) (OR

(AND (EQ (CAR r) (CAR S))
(OR (AND (LESSP (COR r) (COR S))
(ALLFREER b (CAR r) (COR r) (CDR S)))
(ANO (GREATERP (COR r) (COR 51}
(ALLFREER b (CAR r) (COR S) (CDR r)))))

(AND (EQUAL (COR r) (COR S))
(OR (AND (LESSP (CAR r) (CAR S))
(ALLFREEC b (COR r) (CAR r) (CAR S)))

(AND (GREATERP (CAR r) (CAR S))
(ALLFREEC b (COR r) (CAR S) (CAR r)))))));

Section 2.2.1.2.2 Diag Attachments

Diagonal movement attachment is similar to orthogonal. The predicate ALLFREED checks if all the
squares on the diagonal between two given squares are empty. SAMEDIAG (defined earlier) is true if
the two squares lie on a diagonal. SIGN is simply the sign function of mathematics.

FUNCTION (DE SIGN(x) (COND((MINUSP x) (SUB1 8)) ((ZEROP x)8) (T 1)));

FUNCTION (DE ALLFREED(b r1 cl r2 c2) (PROG (x y)
(SETQ x (SIGN (DIFFERENCE r2 r1)))
(SETQ y (SIGN (DIFFERENCE c2 c1)))
LOOP (SETQ r1 (PLUS rl x))
(SETQ c1 (PLUS cl y))

(COND ((EQ rl r2) (RETURN T))
((EQ (Valueon b (CONS rl cl1)) (QUOTE MT)) (GO LOOP)))))}

The attachment to DIAG then simply becomes:

o

¥

P WD S ,,‘;{.r&},;,..;,m;‘;.‘ e

22122 The Chess Axioms Page 65.

attach DIAG [CHESS,CHESS,CHESS] (DE DIAG(b sql sq2)
(AND (SAMEDIAG sql sq2)
(ALLFREED b (CAR sql) (COR sql) (CAR 8q2) (COR 8q2))));

Section 2.2.1.283 Knightnove Attachments

As a knight can effectively jump over other chesspieces, the function that computes the KNIGHTMOVE
between two squares does not need to refer to any board. Rather, two squares have this relationship
purely geometrically; if the differences of their coordinates are two and one, the squares are a knights
Jjump apart.

attach KNIGHTMOVE (CHESS,CHESS]
(DE KNIGHTMOVE (x y)
(AND
(SQUARES x)
(SQUARES y)
(OR (AND(EQ 1 (ABS(DIFFERENCE (CAR x) (CAR y))
(EQ 2 (ABS(DIFFERENCE (COR x) (COR y))
(AND(EQ 2 (ABS(DIFFERENCE (CAR x) (CAR y))
(EQ 1 (ABS(DIFFERENCE (COR x) (COR y))))))));
Section 2.2.1.2.4 Kingmove Attachments

Like the knight's move, the king's move is not limited by any squares beside the .~urce and
destination.

attach KINGMOVE [CHESS,CHESS) (DE KINGMOVE (x y) (AND
(NOT (EQUAL x y))
(SQUARES x)
(SQUARES y)
(LESSP (ABS (DIFFERENCE (CAR x) (CAR y)))2)
(LESSP (ABS (DIFFERENCE (COR x) (COR y)))2)))4

Section 2.2.1.2.5 Pawn Moves

Attachments are given for the predicates used in the pawn move axioms. These functions are a
fairly straightforward translation of their definitional axioms.

attach TWOTOUCHING [NATNUMREP,NATNUMREP] (DE TWOTOUCHING (x y)

(AND (NUMBERP x) (NUMBERP ?) (EQ 1 (ABS (DIFFERENCE x y)))));
attach WSUC (NATNUMREP,NATNUMREP
(DE WSUC (x x) (AND (NUMBERP x) (NUMBERP y) (EQ 1 (DIFFERENCE x y))));
EP,NATNUMREP) (DE BSUC (x y) (WSUC y x))3

attach BSUC [NATNUM

i
!‘
.
-
E |

Page 66. The Chess Axioms 2.2.1.2.5.

attach WPAWNMOVE (CHESS,CHESS,CHESS) (DE WPAWNMOVE (b sql eq2)
(OR (AND(EQ(COR sql) (COR sq2))
(EQ(Valueon b sq2) (QUOTE MT))
(OR (EQ (CAR sql) (ADD1 (CAR sq2)))
(AND (EQ (CAR sql) 7) ~
(EQ (CAR sq2) 5)
(EQ (Valueon b (CONS 6 (COR eql))) (QUOTE MT)))))
(AND (OR (EQ (COR sql) (ADD1 (COR sq2)))
(EQ (ADD1 (COR sql)) (COR eq2)))
(EQ (CAR sql) (ADD1 (CAR sq2)))
(BVALUES (Valueon b 8q2)))));
attach BPAWUNMOVE [CHESS,CHESS,CHESS] (DE BPAWNMOVE (b sql 8q2)
(OR (AND(EQ(COR eql) (COR sq2))
(EQ(Yalueon b sq2) (QUOTE MT))
(OR (EQ (ADD1 (CAR sql)) (CAR sq2))
(AND (EQ (CAR sql) 2)
(EQ (CAR sq2) 4)
(EQ (Valueon b (CONS 3 (COR sql))) (QUOTE MT)))))
(AND (OR (EQ (CDR sql) (ADD1 (COR sq2)))
(EQ (ADD1 (COR sql)) (COR sg2)))
(EQ (ADD1 (CAR sql)) (CAR sq2})
(WVALUES (Valueon b sq2)))));
attach PAWUNMOVE [CHESS,CHESS,CHESS,CHESS) (DE PAWNMOVE (b v sql 8g2)
(COND ((WVALUES v) (WPALUNMOVE b sql sq2))
((BYALUES v) (BPAWNMOVE b sql sq2)))):

Section 2.2.1.2.6 Bringing It All Together

With the above functions, the definition of a LISP attachment for MOVETO becomes quite trivial.
For efficiency’s sake, we take the liberty of using our knowledge that chess piece sorts are dis joint in
the translation of the axiom. Otherwise, the initial COND would be an OR.

attach MOVETO [CHESS,CHESS,CHESS,CHESS) (DE MOVETO (b v eql &q2) (COND
((VALUEQ v) (OR_(ORTHO b sql sq2) (DIAG b eql 8q2)))
((VALUER v) (ORTHO b sql sq2))
((VALUEB v) (DIAG b sql sq2))
((VALUEK v) (KINGMOVE sql sq2))
((VALUEN v) (KNIGHTMOVE sql sq2))
((VALUEP v) (PAUNMOVE b v sql sq2))));

Section 2.2.1.3 Castling

An axiomatic definition of the CASTLING predicate is given. One position obtains from another by
castling under the following conditions. The mover of the move must be a king, and the
Alsomover, a function peculiar to the castle move, a rook. The rook is constrained to be in an
Alsofrom square before the move, just as the general movement rules constrain the Mover to the
From square. Similarly, the Alsomover moves to the Alsoto square.

The next two conjuncts state that both the rook and the king must have been on these squares in
every move that preceded this position. Every square between the rook and the king must be empty.

Castling can not be used when in check, nor can the king pass through check in making a castle.

ok)

T — R i Qi o WO A

2213 The Chess Axioms Page 67.

The last two conditions specify the destination squares in castlings.

Fortunately, we will not have to use this hairy axiom to prove that a castle took place in any given
situation. However, we will frequently have to prove that a castle did not take place. We will
develop theorems to make this easier.

axiom CASTLEMOVES:Yr p. (CASTLING(r p)a
(KINGS Mover Move pa
ROOKS Alsomover Move pa
Pos(r, Alsofrom Move p)e=Alsomover Move pa
Pos(p, Alsofrom Move p)=EMPTYA
Pos(p, Alsoto Move p)=Alsomover Move pa
Vrl. (PREDEGAME (r1 p)oPos(r From Move p)=Mover Move p)A
Vrl. (PREDEGAME (r1 p)oPos(r Alsofrom Move p)=Alsomover Move p)a
Veq3. ((Row 8q3=Row From Move pa
BETWEEN (Column From Move p, Column 8q3, Column Alsofrom Move pllo
Pos(r sq3)=EMPTY)A
-POSITIONINCHECK (r, Color r)a
Vsql x.-~(Pos(r sql)=xa MOVETO(Tboard r, Val(r x), sql, Alsoto Move p)a
Piececolor x=Color pla
(WHITETURN ro((Alsomover Move p=WKRAAIsoto Move p=WKBlAaTo Move ps=WKN1)v
(Alsomover Move p=WQRAAlIsoto Move p=WQlATo Move p=kQB1)))A
(-WHITETURN ro((Alsomover Move p=BKRAA|soto Move p=BKB1ATo Move p=BKN1)v
(Alsomover Move p=BARAAIsoto Move p=BAiaTo Move p=BGB1))))) ;¢

Section 2.2.1.4 Capture En Passant

As chess was originally defined, pawns moved forward only one rank at a time. In an effort to
quicken the opening, the rules were modified to allow a pawn to step two spaces on its first move.
To avoid permitting a pawn to thereby jump and pass an opposing pawn in an ad jacent column
(and thereby, perhaps, become a valuable passed pawn), the en passant capture rule was introduced.
This permitted a player whose pawn could have captured a two stepping pawn (if it had taken only
a single step) to do so, effectively, move the pawn back and capture it, though this right was only
extended for the immediately subsequent move.

A complicated rule produces a complicated axiom. This axiom must refer to both the current
position (q) and the move that reached the previous position (r). Here we refer to the Takenon
square as the square the captured piece moved to on the previous move. After the move, the square
that the captured pawn occupied is now vacant.

The previous move must have satisfied several conditions; the mover must have been the piece
captured, it must have moved to the Takenon square, it must have done so with a simple (SIt)
move, which stayed in the same column. The capture move will move into that column. The mover
and the captured piece both have the value pawn when the capture takes place. The actual rows of
the particular moves are given, depending upon the side making the capture. From the row and
column information, it is possible to reconstruct the various relevant squares.

"
L

R s . T 11

axiom ENPASS:Vr q. (EN_PASSANT(r q)al
GAMEPQSITION ra
Pos(q Takenon Move q)=EMPTYA
To Move r=Takenon Move ga
Mover Move r=Taken Move ga
SIM Move ra
Column From Move rsColumn To Move ra
Column To Move r= Column To Move ga
TWOTOUCHING (Column From Move q, Column To Move g)a
(WHITETURN go>(Val (q Mover Move q)=PBa
Val (r Mover Move r)s=PWla
Row From Move q=5A
Row To Move q=6a
Row From Move r=7a
Row To Move rs=S))a
(~WHITETURN q>(Val (q Mover Move q)s=PWA
Val (r Mover Move r)sPBa
Row From Move q=é4a
Row To Move q=3a
Row From Move r=2a
Row To Move r=4))));;

We (fortunately) shall not use this axiom, except to prove the last move was not an ¢n passant
capture. For this purpose, we will develop several simplifying lemmas.

Section 2.2.2 In Check Definitions

Having specified the different moves of the chesspieces, we can now define what it means to be in
check on a board or in a position. The axiom CHECKERS states the necessary conditions.

axiom CHECKERS:

Vb. (WHITEINCHECK (b) =
3vb sql sqg2. (Yalueon(b 8¢2) =KWAValueon(b 8ql) =vbAMOVETO(b vb sql 8q2))),

VYb. (BLACKINCHECK (b) =
Jvu sql sq2. (Valueon(b sq2)=KBAValueon(b sql) svuAMOVETO(b vw eql 8q2))),

Yb c. (SIDEINCHECK (b c)m
((WHI TEINCHECK (b) AWHT (¢)) v (BLACKINCHECK (b) ABLK (¢)))) ,

Vr c. (POSITIONINCHECK (r c)=3b. (SIDEINCHECK (b ¢)ABOARD(r b))) ;3

The attachments to WHITEINCHECK, BLACKINCHECK and SIDEINCHECK differ somewhat, in spirit,
from the other attachments. Here we use our knowledge of the unique king of any chessboard to
simplify the computation. Note also the scanning of the board to find possible checking pieces used
in the auxiliary functions.

FUNCTION (DE FINODKING (x b) (PROG (rw cl)
TQ ruw 1)

(SETQ ¢! 1)

ROWLOOP (COND ((NULL b) (RETURN NILL))
((NULL (CAR b)) (SETQ b(COR b)) (SET@ ru(ADD1 rw)) (SETQ c! 1)))

(COND ((EQ (CAAR b) x) (RETURN (CONS rw cl))))
(SETQ b (CONS (CDAR b) (COR b)))
(SETQ ¢! (ADD1 ci))
(GO ROWLOOP)))

Page 68. The Chess Axioms 22.14.

;

&
&
]
§
i
i

TN N 30 WL b O A

222 The Chess Axioms Page 69.

FUNCTION (DE INCHECK (b kingsq Colormovingf) (PROG (bl rw cl)
(COND ((NULL kingsq) (RETURN NILL)))
(SETQ rw 1) (SETQ c! 1) (SETQ bl b)
RWLP (COND ((NULL (CAR bl))
(SETQ bl (CDR bl)) (SETQ rw (ADDL rw)) (SETQ cl 1)))
(COND ((NULL bl) (RETURN NILL)))
(COND ((Colormovingf (CAAR bl))
(COND ((MOVETO b (CAAR bl) (CONS rw cl) kingsq) (RETURN T)))))
(SETQ bl (CONS (CDAR bl) (COR bl)))
(SETQ c! (ADD1 CL))
(GO RWLP)));

attach WHITEINCHECK [CHESS]

(DE WHITEINCHECK (b) (INCHECK b (FINDKING (QUOTE KW) b) (QUOTE BYALUES)));
attach BLACKINCHECK (CHESS]

(DE BLACKINCHECK (b) (INCHECK b (FINOKING (QUOTE KB) b) (QUOTE WVALUES)));
attach SIDEINCHECK [CHESS,CHESS] (DE SIDEINCHECK (b c) (COND

((EQ ¢ (QUOTE WHITE)) (WHITEINCHECK b))

((EQ ¢(QUATE BLACK)) (BLACKINCHECK b))))3

Section 2.2.3 Board Axioms

The SUCCESSOR definitions determine the effect of the various moves on the total boards (Tboard) of
positions. However, we still require primitives for the manipulation of the partial boards, those with
undefined (UD) squares.

Section 2.2.3.1 Sub-board Definition

In the section on board declarations, we asserted various properties for sub-boards and board
constructors. These need axiomatization. The axiom SUB_BOARDS consists of four such definitions.
The first WFF defines the Makeboard function. This functions takes a board, a square, and a value,
and creates a board identical to the original board on every square except the argument square. On
this square, Makeboard places the given value.

The second part of the axiom states that every total board has no undefined squares. The third
defines the relation BOARD, between a position and a partial board, in terms of the SUBOARD predicate
and Tboard function on that position. The last part of the axiom defines the SUBOARD relationship.
One board subsumes another if they are everywhere the same, except on those squares where the
less defined board is undefined.

axiom SUB_BOARDS:
Yr b sq t v.((Val(r t)avaPos(r sq)=taBOARD(r b))>
BOARD (r,Makeboard(b sq v))),
Ybt sq.-Valueon(bt sq)=UD,
Vr b . (BOARD(r b)sSUBOARD(b Tboard r)),
Ya b. (SUBOARD(a b)aYsq. (Valueon(a sq)=Valueon(b sq)vValueon(a sq)=UD)),
V¥bl b2 eql vl. (bleMakeboard(b2,sql,vl)s
(Yegx. (~sgqx=sql>
Valueon (bl, sqx)=Valueon (b2, sqx)) AValueon(bl,sql)=vl))}

An attachment for the Makeboard operator is declared.

Page 70. The Chess Axioms 223.1.

FUNCTION (DE MKBOARDI (r N v) (COND
((EQ 1 N) (CONS v (COR r)))
((CONS (CAR r) (MKBOARD1 (COR r) (SUBI N)v)))));

attach Makeboard (CHESS,CHESS,CHESS-CHESS] (DE Makeboard (b S v) (COND
((EQ (CAR S) 1) (CONS (MKBOARD1 (CAR b) (COR S) v) (COR b)))
((CONS (CAR b) (Makeboard (COR b) (CONS (SUB1 (CAR S)) (COR S)) v)))));

Section 2.2.3.2 Board Manipulation

We have provided a mechanism for building boards up from less well defined boards. However,
unless we want to be limited to always constructing from the totally undefined board, a very long and
painful process, we need board decomposers, to take a board and the information from a move, and
produce what can be determined of the previous board

For example, we declare the following four move unmakers, which take move information and a
board, and compute a sub-board of the previous position.

declare OPCONST Unmkmove (BOARDS, SQUARES, SQUARES)=BOARDS;
declare OPCONST Unmkcapmove (BOARDS, SQUARES, SQUARES, VALUES)=BOARDS;
declare OPCONST Unmksppmove (BOARDS, SQUARES, SQUARES)=BOARDS;
declare OPCONST Unmkcapppmove (BOAROS, SQUARES, SQUARES, YALUES) «=BOARDS;

The functions undo, respectively, all ordinary, non-pawn promotion moves, ordinary, non-
promotional captures, simple pawn promotions, and capturing pawn promotions. The more specific
a decomposer function used, the better defined the resulting board, of course. These are just a
sample of the possible set of decomposer functions; however, combined with the Makeboard function,
they are powerful enough for our needs.

These functions come with both attachments, and axioms dictating their use. The attachments rely
heavily on the Makeboard function.

attach Unmkmove [CHESS, CHESS, CHESS-CHESS] (DE Unmkmove (b r S)
(Makeboard(Makeboard b S (QUOTE UD))r (Yalueon b S)));
attach Unmkcapmove [CHESS, CHESS, CHESS, CHESS~CHESS) (DE Unmkcapmove(b r S v)
(Makeboard (Makeboard b S vir (Valueon b S)));
attach Unmksppmove [CHESS, CHESS, CHESS~CHESS) (DE Unmksppmove (b r S)
(Makeboard (Makeboard b S (QUOTE MT))r
(COND ((WYALUES (Valueon b S)) (QUOTE PW)) (T (QUOTE PB)))))
attach Unmkcapppmove [CHESS, CHESS, CHESS, CHESS~CHESS)
(DE Unmkcapppmovei(b r S v)
(Makeboard (Makeboard b S v) r
(COND ((WVALUES (Yaiueon b S)) (QUOTE PW)) (T(QUOTE PB)))));

The use of these functions is delimited by this axiom, UNDO.

axiom UNDO:
Vr q b sql sq2. ((SUCCESSOR (r q)ABOARD(q b) ADRDINARY Move qna
-PAUNPROM Move gAFrom Move q=sqlaTo Move q=8q2)>
BOARD (r Unmkmove (b sql sq2))),
Yr g b sgql sq2 v. ((SUCCESSOR(r q)ABDAHD(q b) ACAP Move gn
From Move q=sqlaTo Move qesq2aVal (r,Taken Move q)=v)>
BOARD (r Unmkcapmove(b sql sq2 v))),

e ——————N S

2232 The Chess Axioms Page 71.

Yr q b sql sq2. ((SUCCESSOR(r q)ABOARD(q b)ASIMPP Move qna
From Move gq=sqlaTo Move q=sq2)>
BOARD (r Unmksppmove (b sql sq2))),
¥r g b sql sq2 v. ((SUCCESSOR(r q)ABOARD(q b)ACAPPP Move gn
Val (r,Taken Move q)=vaFrom Move g=sqlaTo Move q=sq2)>
BOARD (r Unmkcapppmove (b sql 8q2 v)))i;

Section 2.2.4 Global Notions

So far, the definitions and axioms presented have been of a local nature. That is, they detail the
transition from one position to the next, or the effect of a given move on a board. We now lay the
groundwork for more global notions, useful for proving what must have happened during the game
that reached some position.

Section 2.2.4.1 Chess Induction

Perhaps the most aesthetically pleasing notion of the entire axiomatization is that of Chess Induction.
Chess induction is a natural extension of the correspondence between the numerical predicate less
than on the natural numbers, and the chess predicate PREDEGAME of the chess world. A
mathematical induction proof has two parts, the first a proof in an initial state, the second a proof
on a transition from state to state by successor function. For these premises, mathematical induction
concludes a predicate true of all states.

Chess induction action is similar in principle. A proof of some proposition on POSITIONS, «, is first
a proof on some specific position, r, that «(r) is true, then a proof that the proposition o holds over
the SUCCESSOR relation. We can then conclude that the proposition holds for all positions which
have r as one of their ancestors. As all GAMEPOSITIONS have the initial position, P8, in their
history, we will often use P8 as the position r. The resulting theorem will then be true of all
POSITIONS.

Just as many powerful mathematical theorems are proven through the use of mathematical
induction, so we will be able to prove many interesting chess theorems by chess induction.

Chess induction is an axiom schema. For axiom schema, we need a predicate parameter, declared:

declare PREDPAR a (POSITIONS) [PRE];

Note that « is a prefix predicate, and can be used without parentheses around its arguments.
The axiom schema itself is written:

axiom CHESS_INDUCTION:
Vr. ({a ra
Yrl p2. ((a r1A(PREDEGAME (r rl)vr=r1)ASUCCESSOR(rl p2))oa p2))>
Vr2. ((PREDEGAME (r r2)vr=r2)oa r2)) s}

Our explanation, so far, has paralleled one of the more general explanations of ordinary
mathematical induction. Mathematical induction, while is an expression of if it is true of X, (and the
induction Aypothesis is satisfied) then, for all y>x, it must also be true. In practice, however,
mathematical induction is almost invariably used with x=0, resulting in validity on all integers. Our

B AR A Y RS e a1 SO (R

Page 72. The Chess Axioms 224.1.

practice with chess induction is similar. Almost all of our proofs involving chess induction pick P8
for an initial case; they thereby produce proofs valid on all positions. This simplified for of chess
induction we call Chs/nd:

(a« POAYr p. ((a rASUCCESSOR (r,p))oa p))oYr.a r
The derivation of Chs/nd from CHESS_INDUCTION is section A.2.

Section 2.2.4.2 The Mathematics of Pawn Captures
Section 2.2.4.2.1 Pawn Capture Definitions

There is another, though perhaps more parochial, group of theorems and predicates still to be
considered. Any aficionado of chess problems knows that the position of a pawn on a board puts a
minimum on the number of pieces it had to capture to reach that square. Basically speaking, a
pawn must have captured at least one opposing piece for each column it is away from its initial
column (presuming, of course, that the pawn has not promoted in the meantime). While this is both
an extremely useful and interesting limit, practically, it leans more towards mathematics than we
would prefer to go. Consequently, though we declare the predicates to FOL, we leave the actual
computations to the attachment mechanism.

No pawn can move more than seven columns from his original column; nor less than none. We call
this set, zero through seven, the NUMBERS. We also need the mathematical predicate 2, (less than or
equals) to compare our numbers. The declarations and attachments look like:

declare PREDCONST NUMBERS (NATNUM) ;
declare PREDCONST 2 (NUMBERS,NUMBERS) [INF);

extension NUMBERS{B 1 2 3 4 S 6 7}
mg NATNUM2 {NUMBERS!} ;
attach NUMBERS INATNUMREP)
(LAMBDA (x) (AND (NUMBERP x) (LESSP x 9) (NOT (LESSP x 8))));
attach 2 [NATNUMREP,NATNUMREP] (LAMBOA (x y) (NOT(LESSP x y)));

We also desire a function to compute the pawn capturing distance between two squares.

declare OPCONST Pawncaptures (SQUARES,SQUARES)=NUMBERS;
attach Pauncaptures [CHESS, CHESS-NATNUMREP)
(LAMBDA (x y) (ABS (DIFFERENCE (COR x) (COR y))))

Lastly, we declare two predicates on squares and colors. The first, MAY_PAWNCAPTURES, takes two
squares and a color, and returns true if a pawn of that color could have reached the second square
from the first. The second, MUST_PAWN_CAPTURES is true if a pawn of that color, in going from the
first to the second square, must have captured a piece every time it moved.

declare PREOCONST MAY_PAWN_CAPTURES (SQUARES,SQUARES,COLORS) ;
declare PREDCONST MUST_PAWN_CAPTURES (SQUARES,SQUARES,COLORS) ¢

L N SPUSTREIFITENCY W

I I PR Y

224.2.1. The Chess Axioms Page 73.

attach MAY_PAWN_CAPTURES (CHESS,CHESS,CHESS)
(DE MAY_PAWN_CAPTURES (x y c) (COND
((GREATERP
(OIFFERENCE (TIMES (COND ((EQ ¢ (QUOTE WHITE)) (SUB1 8)) (T 1))
(DIFFERENCE (CAR y) (CAR x)))
(ABS (DIFFERENCE (COR) (COR x)1))
(SUB1 8)))));

attach MUST_PAWN_CAPTURES [CHESS,CHESS,CHESSI]
(DE MUST_PAWN_CAPTURES (x y c) (AND (NOT (EQUAL x y)) (COND
((ZEROP (DIFFERENCE ?TIHES (COND ((EQ c¢ (QUOTE WHITE)) (SUB1 @))
(1 1))
(DI FFERENCE (CAR y) (CAR x)))
(ABS (DIFFERENCE (COR y) (EDR x))) 1))

Section 2.2.5 Asserted Theorems

There are several theorems in this volume which we have not proven. These are theorems, in that
they are provable from the axioms we have given, (with, perhaps, a little help from standard
mathematics). However, a certain misguided sense of honesty compels their mention in the axioms
chapter. For some of these, the proof is so trivial (perhaps a change from white's point of view to
black's, or a proof that knights do not promote, when we already have one for bishops) as to make
the actual proof more an exercise in mindless substitution than in logic. Obviously, the value of
detailing another special example is minimal. Hence, we shall simply declare such theorems when
we prove the associated, similar theorem, rather than presenting their proofs.

There are also a few moderately complex theorems, of a general nature, obviously true in themselves,
but for which time and energy constraints have not allowed proofs. We present these theorems in
this section.

Section 2.2.5.1 Pawn Capture Theorems

The first of these are the theorems using the pawn capture functions and predicates, PawnStructure.
PawnStructure? is a sufficient condition on the satisfaction of the MAY_PANN_CAPTURES predicate.
It states that if a pawn can move from one square to another in the course of a legal game, without
promoting, then the predicate MAY_PAWUN_CAPTURES is true between those two squares. We could
have defined MAY_PAWN_CAPTURES to be the predicate satisfying this relationship; however, the
justification for the associated attachment would then have been much more complex.

The second "theorem" consists of seven parts, of which we have listed three 46 It states that the value
of Pauncaptures for two squares places a minimum bound on the number of capturing moves a
pawn has to make to get from its first argument to its second. For each such move, there is a
position with the properties such as the pawn made a capture to get to that position, and that these
positions are distinct. This theorem is difficult to prove with complete generality within our chess
predicate logic system, as it involves both the axiomatization of elementry numerical properties, and
a correspondence between a count of ob jects, and an existentially quantified WFF. Wishing to avoud
this hassle, we leave this as an unproven theorem.

e PawnStructure2, PawnStructured and PawnStructureX 1.

e . i i

.

S e N i

Page 74. The Chess Axioms 2.25.1.

The last pawn capture theorem states that if a pawn is diagonally extended from an earlier position
(MUST_PALIN_CAPTURES is true of the two squares) then the pawn must have made a capture on
every square within that diagonal segment. The proof of this theorem would involve showing that
the MUST_PAWN_CAPTURES predicate remains true if a capture occurs, but goes false, forever to stay
false, if the pawn makes any other move. Chess induction would surely be needed, and the difficulty
of the resulting proof would, in some sense, be inverse to the specificity of the definition of
MUST_PAWN_CAPTURES. Unfortunately, the more usable said definition, the less closely it would
correspond to the attachment. A more basic proof would again involve more mathematics then we
want to approach. Hence, it is also an unproven theorem.

axiom _PaunStructure_i
Vr p x sql sq2. ((Pos(p sql)=xAPos(r sq2)=xAPREDEGAME (r p)a
VALUEP (Val (Prevpos p x)))oMAY_PAWN_CAPTURES (sq2 sql Piececolor(x))),
Vr p x sql sq2. ((VALUEP (Val (Prevpos p x))APos(p 8ql)=xAPos(r 8q2)=xa
PREDEGAME (r p)APauncaptures(sql sq2)21)>
3l x1. ((PREDEGAME (ql p)vql=p) APREDEGAME (r ql)a
TAKINGS (Move (ql)) AMover (Move (ql)) exaTaken (Move (ql)) =x1)),
Vr p x sql sq2. ((VALUEP(Val (Prevpos p x))APos(p sql)=xAPREDEGAME (r p)Aa
Pos(r sq2)=xaPauncaptures(sql sq2)22)>
3ql g2 x1 x2. ((PREDEGAME (ql p)vql=p) APREDEGAME (g2 ql) APREDEGAME (r g2) A
TAKINGS (Move (q1) } ATAKINGS (Move (q2)) AMover (Move (ql)) =xA
Mover (Move (q2)) =xaTaken (Move (ql)) sxlAaTaken (Move (q2)) =x2)) 3 3
axiom _PaunStructureX_:
Yr p x sql sq2. ({(VALUEP (Val (Prevpos p x))APog(p 8ql)s=xaAPos(r sq2)=xna
PREDEGAHME (r p)APauncaptures(sql sq2)23)>
39l 2 g3 x1 %2 x3. ((PREDEGAME (q1 p)vql=p) APREDEGAME (g2 ql)A
PREDEGAME (g3 q2) APREDEGAME (r g3) ATAKINGS (Move (ql))a
TAKINGS (Move (g2}) ATAKINGS (Move (93}) Altover (Move (gl)}) mxa
Mover (Move (g2)) axaMover (Move (q3)) exaTaken (Move (ql)) sx1A
Taken (Move (q2)) «ex2aTaken (Move (q3)) «x3)),
Vr p x sql sq2. ((MUST_PAWN_CAPTURES (sq2 sql Piececolor (x))a
VALUEP (Val (Prevpos p x))APos(p sql)=xAPREDEGAME (r p)aPos(r sq2)=x)>
Vsq3. ((sq3=sqlv (SAMEDIAG (sql sq3) ASAMEDIAG(sq3 sq2)a
BETUEEN (Rou(sql) ,Rou(sq3) ,Rou(sqg2))))>
393 x3. ((PREDEGAME (g3 p)vq3=p) APREDEGAME (r q3) ATAKINGS (Move (q3)) A
Mover (Move (q3)) =xATo (Move (q3)) =8q3aTaken (Move (q3)) =x3))) ; ;

These theorems enable the usual problem solver tricks involving pawn structures.
Section 2.2.5.2 Other Unproven Theorems

Several other unproven theorems remain to be mentioned. Checklypes states the well known chess
fact that on any check, either the piece doing the checking was moved last, an en passant move
captured a piece with discovered check, the rook in a castling move made the check, or an ordinary
move was made, and the check was a discovered check.

The proof of this theorem would be just a large and painful case analysis, to show that the only
change to the board can occur on those squares, so that the conclusion naturally follows.

Frr———

T — o

aaiiie a0 o i ——

2252 The Chess Axioms Page 75.

axiom _CheckTypes_:
Yp b sql sq2 x vpcl vpc2. ((POSITIONINCHECK (p Color (p)) ABOARD(p bla

MOVETO (b vpcl sql 8q2)APos(p sql)e=xaValueon(b sql)e=vpcla
Valueon(b 8q2)=vpc2aAVALUEK (vpc2) A-Valuecolor vpcl «Valuecolor vpe2) >

(Mover Move p=xv
(EN_PASSANT (Prevpos p ,p)A(SQUARE_BETWEEN(sql,From Move p,8q2lv
SQUARE_BETWEEN (sql, Takenon Move p,s02)))v

(CASTLING (Prevpos p,p)Alsomover Move p=vpcl)v
(ORDINARY Move paSQUARE_BETWEEN(sql,From Move p,8q2)))) i

The theorem MoveBack states that all moves, except pawn moves, are symmetric. That is, if the
piece could move from the first square to the second on a board, then it could move back again.

This theorem could be proven by the use of the simplify mechanism and a lot of manipulation.
Particularly useful would be the commutation theorems (section A.9.5).

axiom _MoveBack_:
Yr p v sql sq2. ((SUCCESSOR (r p) AORDINARY Move pA-VALUEP(v))>

(MOVETO(Tboard p,v sql 8q2)«MOVETO(Tboard r,v 8q2 sql)));;

Page 76. Chess Lemmas and Theorems 3.

Chapter 3 Chess Lemmas and Theorems

Of course, no complicated proof is achieved without the use of some theorems and lemmas. These
serve several functions, somewhat similar to the functions served by procedures in a programming
language. They provide structure, pointing out the natural conclusions and breaking points, and
increasing general proof readability. They also serve to reduce the actual volume of the proof,
permitting the condensation of several similar inferences into a single general scheme and the
avoidance of repetition of an identical computation. In the case of computer proof checking, where
the memory size of the program and its data structures often needs be minimized, the use of lemmas
serves to remove from the main computation large sections of proof, replacing them with only a
reference to the desired conclusion. For our axioms, with their many equivalences between the
defined terms, they also aid by rephrasing an axiom into a form more usable in another part of the
proof. This chapter is devoted to the proof of several representative general chess theorems and
lemmas from the basic chess axioms described in the previous chapter. We present several thoughly
explained sample lemmas and theorems, with the proofs of the other chess lemmas and theorems,
less thoughly explained, in the appendices.

Section 3.1 Simplification Lemmas

Among these lemmas are several that are both trivially deduced, and frequently referenced. These
are the lemmas obtained through a single application of the simplify command (a single call to the
semantic computation of the chess eye). Many of these refer to the extension of various sorts. For

example, the simplification:

LABEL WhitepieceAre_;

SIMPLIFY Vt.(WHITEPIECE t=(
t=WKPvt=WQPvt=WKNPvt=WKBPvt=WKRPvt=WQBPvt=WQNPvt=WQRPV
t=WK vt=WQ vtasWKN vt=WKB vt=WKR vtsWQB vtsWQN vt=WQR));

Gives a membership definition for the set of white pieces. This lemma is henceforth referred to as
WhitepieceAre . These simplifications would arise from definition or observation, rather than
deduction. In the cases where a large number of individuals must be considered to establish the
validity of some WFF, they are also quite slow. These qualities have led us to list them in their own
section, section A.l, rather than repeatedly computing them in the different theorems. We will use
these lemmas freely in the rest of this paper. In no case should they express any fact whose validity
is not observationally apparent to the reader.

Section 3.2 Simple Proof's

Section 3.2.1 Proofs on Positions

We begin with several simple example proofs. First, three lemmas about the PREDEGAME relation.
Recall that PREDEGAME (p1,p2) is true if position pl occurred sometime in the play that reached
position p2. In this usage, the PREDEGAME relation is like the predicate < (less than) on a partially
ordered, half closed set. The first lemma we prove on this relationship is its transitivity. PREDEGAME
is defined either directly by the successor relationship, or recursively in terms of the existence of an
intermediate position satisfying PREDEGAME with the original arguments. The position p, common in
PREDEGAME to r and q in the assumption, is shown to be the intermediate position for them of the

definition.

o oo

321 Chess Lemmas and Theorems Page 77.

We shall include comments about the structure of the proof checker in italics.

sexxxlavel [1;
sxsesassume PREDEGAME (r,p) APREDEGAME (p,q) 3
1 PREDEGAME(r,p)APREDEGAME(p,q) (1)

sxxxx3] 1t p;
2 3p.(PREDEGAME(r,p)APREDEGAME(p,q)) (1)

Here, step one creates a line with the assumption that r came before p, and p before q. Step two
generalizes this to some individual p. A series of n %s implies the nth previous step.

Assigning a label to a line gives us another method for referring to it. Al of the theorems in this volume
have the label used in their proof associated with them; temporary label, such as LI and L2, have been used
in many different proofs.

Part of the definition of the PREDEGAME relation is given in the axiom GAMEREL1 (game relation 1).

*xxssVE GAMERELATIONS! r,q;
3 PREDEGAHE(!‘.Q)I(SUCCESSOR(r,Q)v3p.(PREDEGAHE(P.D)APREDEGANE(D,Q)))

VE is used to specialize a universally quantified statement (usualy an axiom) to @ specific list of
individuals.

PREDEGAME is therefore obviously true of r and g.

sxxxxtaut PREDEGAME (r,q) tM: %
4 PREDEGAME(r,q) (1)

FOL has two tautology deciders, TAUT, for tautologies of the propositional calculus, and TAUTEQ for
tautologies of the propositional calculus, including equality. We give the deciders the WFF to be proven,
and the reasons (list of previous steps and ax:’oms§ from which it follows.

As we will do for all the theorems in this volume, we remove dependencies, and generalize:

xxxxs>] L1ot;
5 (PREDEGAME(r,p)APREDEGAME(p,q))>PREDEGAME(r,q)

o1 is a natural deduction rule, one that individually introduces (1) or eliminates (E) propositional
connectives. 51 is also useful for removing dependencies.

#xxx¢lavel TransitiveGenealogy:

sx232 V] * r p q;
6 ¥r p q.((PREDEGAME(r,p)APREDEGAME(p,q))>PREDEGAME(r,q))

This last, sixth step is @ universal quantification. It asserts that, as the statement is true of some general r,
P, and q, it must be true for all r, p, and q.

The next lemma we prove is about the predecessors of positions immediately preceding a given
position. If, of two positions, r and p, p is a successor to r, then, for any position that came before p,
it either also came before r, or is equal to r. We employ three parts of the defining axiom for

P B

Page 78. Chess Lemmas and Theorems $2.1.

PREDEGAME, GAMERELATIONS. The first part (GAMERELQ) states that there is no position between
two successor positions. The second part is a law of the excluded middle for the PREDEGAME
relation. If two positions are in the game tree of another position, then they are either equal, or one
came before the other. The third part is a repetition of GAMEREL1, used above. This time, we
employ the fact that the relation SUCCESSOR implies that of PREDEGAME. Together, these three imply
that a position has, by and large, the same predecessors as its successors.

sssxsVE GAMERELATIONSS rl,q.r2;
7 SUCCESSOR(rl,q)>~(PREDEGAME(rl,r2)APREDEGAME(r2,q))

ssxxaYE GAMERELATIONS2 q,rl,r2;
81()I;REDEGAHE(I‘2 »Q)APREDEGAME(rl,q))>(PREDEGAME(rl,r2)v(PREDEGAME(r2,rl)vr2s
v

sxxxxYE GAMERELATIONS] rl,q:
9 PREDEGAME(rl,q)s(SUCCESSOR(r1,q)v3p.(PREDEGAME(r1,p)APREDEGAME(P,q)))

t;nttaut (SUCCESSOR (r1, q) APREDEGAME (r2,q)) > (PREDEGAME (r2,rl)vr2erl) T1%:
*73
10 (SUCCESSOR(r1,q)APREDEGAME(r2,q))>(PREDEGAME(r2,rl)vr2srl)

We call this lemma ParentGenealogy.

ss2ss |abel ParentGenealoqus
sxxxx Y] Y r2 rl q;

11 Vr2 rl q.((SUCCESSOR(r1,q)APREDEGAME(r2,q))>(PREDEGAME(r2,rl)vr2=rl))

The last part of our triplet concludes that, since all GAMEPOSI TIONS have the initial position in their
game trees, and the PREDEGAME relation is defined to be anti-reflexive, that no position can precede
the initial position. This lemma is called GameRe/at/ons5.

#xxxxYE CAMERELATIONS3 r,P8;
12 —~(PREDEGAME(r,P0)APREDEGAME(PO,r))

#x2xxVE POSITION_RULES r;
13 GAMEPOSITION r>(SUCCESSOR(Prevpos r,r)APREDEGAME(PO,r))

sxxx¢YE POSITION_TYPES r;
14 -~(r=P0=uGAMEPOSITION r)

ssxsx tauteq -PREDEGAME (»,P8) M4:%;
15 ~PREDEGAME(r,P0)

#xxxx|abel GameRelationsS;

sx23z V] T r;
16 Yr.-~PREDEGAME(r,P0)

Section 3.2.2 Simple Theorems on Values

As an example of the use of the simplify command on the extensions of sorts, we present the proofs
of the lemmas Empty/sMT and ChessplecePieceValueThm.

322 Chess Lemmas and Theorems Page 79.

EmptylsMT states that having a value of MT is equivalent to being the EMPTY piece. This result is
obtained using the theorem RetainValueColor, which states that the blackness or whiteness of the
value of any piece in any pair of positions is the same. The proof of Reta/nValueColor is in section
A 8.3. This proof also twice employs the simplification mechanism. We first check that, in the initial
position, having value MT is the same as being the piece EMPTY. Then, each of the VVALUES (values
a piece can have) is checked to show that the value MT is the only value that is neither a black value
(BVALUES) nor a white value (WALUES).

sxxxxsimplify Vt. (t<EMPTY=Val (P8 t)=MT);
1 Vt.(t=EMPTY=Val(P0,t)=MT)

sx*x%%|abel L1;
sxxsxsimplify Yvvx, ((-BYALUES vvxa-WVALUES vvx)avvxsiT);
2 Yvvx.((-BVALUES vvxa-WVALUES vvx)avvxsMT)

These two facts are certainly true of our typical piece, t, and its values in the initial position,
Val (P@, t}, and in a general position r (Val (r, t)).

sxxx2VE Mt
3 t=EMPTY=Val(PO0,t)=MT

xxxxxVYE 1 Val (PO t);
4 (-~BVALUES Val(P0,t)A~WVALUES Val(P0,t))sVai(P0,t)=MT

sxxx¢VYE M1 Val(r t);
5 (-BVALUES Val(r,t)A-WVALUES Val(r,t))sVal{r,t)sMT

Our lemma RetainValueColor tells us that the color of the value of any piece is the same in all
positions.

+xx**VYE RetainValueColor P8 r t;
6 (BVALUES Val(r,t)=BVALUES Val(P0,t))A(WVALUES Val(r,t)=sWVALUES Val(P0,t))

But if this is the case, then the equivalence between having MT value in the initial position, and
being the EMPTY piece, must also hald in the position r.

xkxeetaut MM eHlet P2 MM,
7 t=EMPTYsVal(r,t)=MT

We generalize this to all POSI TIONS and PIECES. Let us call this theorem EmptylsMT.

xx%x%)abel EmptylsMls
sxxxxV] T r t;
8 Yr t.(t=EMPTYaVal(r,t)=MT)

We next attempt the lemma ChessplecePieceValueThm, which states that the value of any
CHESSPIECE in any POSITION is always one of the PIECEVALUES. Recall that PIECEVALUES are the
VALUES less the empty value (M7), and the undefined value (UD). We first inquire of simplify if all
BVALUES and WVALUES are PIECEVALUES.

ssxxxsimplify Yvb.PIECEVALUES vb;
9 Yvb.PIECEVALUES vb

Page 80. Chess Lemmas and Theorems 322

ssssss8implify Yvi.PIECEVALUES vu;
10 Vvw.PIECEVALUES ww

As our lemma EmptyIsMT is true of all PIECES, it must therefore be true of all CHESSPIECES.

ssss3VE Emptylstl r x;
11 x=EMPTYaVal(r,x)=MT

And the two simplifications on PIECEVALUES must also be true on the value of x in r. Note the
conditions inserted by the YE command.

sxxxsVE ™M1 Val(r x);
12 BVALUES Val(r,x)>PIECEVALUES Val(r,x)

sxsx2VE M1 Val(r x);
13 WVALUES Val(r,x)>PIECEVALUES Val(r,x)

Simplification can also be used to obtain SORT information.

sxssxsimplify CHESSPIECES xa-CHESSPIECES EMPTY;
14 CHESSPIECES xA-CHESSPIECES EMPTY

We also need the simplification of line two, applying it now to Val (r,x).

sxxxsVE L1 Val(r x);
15 (-~BVALUES Val(r,x)A-WVALUES Val(r,x))=sVal(r,x)=MT

Since x is a chesspiece, it is not EMPTY. Therefore, it does not have value MT in any position. But if
the value of x in a position is neither black nor white, then it is MI. Hence, x must have either a
black or white value in every position. As all such values are PIECEVALUES, x must always have a
PIECEVALUES value. A single TAUTEQ gives us this result.

sxsxxtauteq PIECEVALUES Val (r x) MMty
16 PIECEVALUES Val(r,x)

We generalize, calling the result ChesspiecePieceValueThm.

ssxsslabel ChesspiecePieceValueThm;

sVt x;
17 Vr x.PIECEVALUES Val(r,x)

Section 8.3 Chess Inductive Proof's
Section 3.3.1 Only Pawns Promote

Having sampled several simple, small proofs, we next attempt the proof of a more complex and
interesting theorem. We want to prove the theorem OnlyPawnsPromote, which states that if any
piece has a non-pawn value at some point in a game, its value will not subsequently change. This
theorem implies that the only piece whose value ever change is a pawn, these only by promotion,
and that not pawn ever promotes twice (in one game). OnlyPawnsPromote is an interesting example
of a Chess inductive proof. From this theorem will spin off several useful corollaries, including the
fact that pieces of value pawn are always pawns.

2ol

33.1. Chess Lemmas and Theorems Page 81.

We have not explained in detail several of the lemmas used in this proof. Their proofs, with some
commentary, may be found in appendix A. In many cases, these lemmas are merely a rephrasing of

some axiom.

This proof uses the simplified form of chess induction, which we call Chsind. The general chess
induction theorem refers to predicates true in the descendants of a position. The simplified form
assumes that the ancestor position is the initial one. As all GAMEPOSITIONs are descended from P8,

theorems true of all GAMEPOS] TIONs can be easily proven from this form.47

The predicate we wish to prove is:

Yr rl t.((=VALUEP Val (rl t)APREDEGAME(rl r))oVal(r t)=Val(rl t})

That is, if in some position r1, a piece t does not have the value of pawn, then, in any descendant
of rl1, r, then the value of t is the same in rl as rl.

We substitute this predicate for the predicate parameter « in Chs/nd.

xxxsxlabel L1;
sxxxxn] ChslndlaeAr.Vrl t. ((<VALUEP Val(rl t)APREDEGAME(rl r))oVal(r t)=Vall

xrl t)));
1 (Vrl t.((~VALUEP Val(rl,t)APREDEGAME(r1,P0))>Val(P0,t)=Val(rl,t))aVr p.((Y

rl t.((-~VALUEP Val(rl,t)APREDEGAME(rl,r))oVal(r,t)=Val(rl,t))ASUCCESSOR(r,p)
)oYrl t.((-~VALUEP Val(rl,t)APREDEGAME(rl,p))>oVal(p,t)=Val(rl,t))))oVr rl t.(
(~VALUEP Val(rl,t)APREDEGAME(rl,r))oVal(r,t)=Val(rl,t))

First, we must establish the validity of the proposition in the initial position (P8). As no position is
a predecessor to the initial position, this is trivial.

xxxxxVE GameRelationsS rl;
2 -PREDEGAME(r1,P0)

srexstaut L1:H1HIHIH] 4,
3 (~VALUEP Val(rl,t)APREDEGAME(r1,P0))oVal(P0,t)=Val(rl,t)

xxxx%|abel L2;
xxxxx VI 1 rl 3
4 Vrl t.((~VALUEP Val(rl,t)APREDEGAME(r1,P0))>Val(P0,t)=Val(rl,t))

We now make two assumptions. As the inductive form is assume its true of n, prove it is true of nel,
we assume the validity of the theorem in position r, trying to prove its validity in its successor p.
Secondly, as the sentence we are trying to prove of p is also of the form 4B, we assume the 4 part,
seeking B. Note this sequence; it is our general schema for chess inductive proofs.

sx22x |abel L3;
sxxs% assume L1:s#1H2H1HIH];
5 Yrl t.((~VALUEP Val(rl,t)APREDEGAME(rl,r))oVal(r,t)=Val(rl,t))ASUCCESSOR(r

w2) (5)

sxsxxassume L1sH1H2HL1H1H2H1H1H1
6 -VALUEP Val(rl,t)APREDEGAME(rl,p) (6)

q7. A derivation of Cheind from CHESS_INDUCTION is in section A.2.

Page 82. Chess Lemmas and Theorems 3.3.1.

sexxxnl L3:41;
7 ¥rl t.((~VALUEP Val(rl,t)nPREDEGAME(rl,r))oVal(r,t)zVal(rl,t)) (5)

There are three pertinent positions in this proof. We seek to prove that the Val of t is the same in
both positions rl and p. We have assumed that the Val is the same between rl and r, the position
previous to (Prevpos) of p.

sxxs3VE 1 rl, t;
8 (~VALUEP Val(rl,t)APREDEGAME(rl,r))>Val(r,t)sVal(rl,t) (5)

We need to show that rl is also a predecessor of p. Our lemma ParentGenealogy*8 is used to
establish this.

s¢sxxVE ParentGenealogy rl,r,p;
9 (SUCCESSOR(r,p)APREDEGAME(r1,p))>(PREDEGAME(rl,r)vrl=r)

The heart of this proof lies with the axiom that states that pieces change value only when they
move in a pawn promotion. The axiom MCONSEQH, part of the move definitional axioms, tells us
that, between a position r and its successor p, if the piece, t, was not the mover of p, or p was not a
pawn promotion, then t retains the same value from r to p.

*s*xx)abel L4;
=xxxx VE MCONSEQH r,p, t;
10 (SUCCESSOR(r,p)A(~PAWNPROM Move pv~(tsMover Move p)))oVal(r,t)=Val(p,t)

We have a special case to consider: when the position rl is the same as the position r (line 9).
TAUTEQ will not make the substitution in functions for us, we must do it ourselves. Assume they
are the same.

sxxxx)abel LS;
££££x assume rs=rl;
11 r=rl (11)

sssexsubst LS in L3+];
12 -VALUEP Val(r,t)APREDEGAME(r,p) (6 11)

ssssxsubstr LS in L&
13(gs;l)JCCESSOR(rl,p)A(-PAwNPROM Move pv~{tsMover Move p)))>Val(rl,t)=Val(p,t)

SUBST and SUBSTR substitute for equals in WFFs.
If they are the same, then, as t does not have a pawn value in rl, it will not have one in r.

sxx%2|abel LB
xexxx D[LSOt
14 r=rls(-~VALUEP Val(r,t)APREDEGAME(r,p)) (6)

sxxx2x>] LSO
lslt('erl:;g(SUCCESSOR(rl.p)A(-PAVNPROM Move pv-~(t=Mover Move p)))>Val(rl,t)=
val(p,t

48 Section 3.2.1.

3.3.1 Chess Lemmas and Theorems Page 83.

By the definition of pawn promotional moves, the moving piece is a pawn on the total board of the

move.

sxxxxYE MCONSEQL p;

16 PAWNPROM Move p=(LASTRANKER(To Move p,Color Prevpos p)a(SIMPLELEGALMOVE(
Prevpos p,p)A(PAWNS Mover Move pa(VALUEP Valueon(Tboard Prevpos p,From Move
p)A(((BVALUES Promoted Move psBVALUES Val(Prevpos p,Mover Move p))a(WVALUES
Promoted Move psWVALUES Val(Prevpos p,Mover Move p)))aVal(p,Mover Move p)=

Promoted Move p)))))

By the definition of SUCCESSOR, the previous position (Prevpos) of a position shares the SUCCESSOR

relation.

xxxxxVE MCONSEQA r,p;

17 SUCCESSOR(r,p)>((~WHITETURN reWHITETURN p)a(Prevpos p=ra(~POSITIONINCHECK
(p,Color r)A((WHITEPIECE Mover Move p=WHITETURN r)a(Pos(r,From Move p)=Mover
Move pa(Pos(p,To Move p)=Mover Move pa(Pos{p,From Move p)=EMPTYA{(CAPTURE
Move poPos(r,To Move p)=Taken Move p)A(CASTLING(r,p)v(EN_PASSANT(r,p)v

SIMPLELEGALMOVE(r,p)))))))))))

sxsxxtaut Prevpos p=r L3,1;
18 Prevpos p=r (5)

sxxxesubstr 1t in M1,

19 PAWNPROM Move p=(LASTRANKER(To Move p,Color r)a(SIMPLELEGALMOVE(r,p)a(
PAWNS Mover Move pa(VALUEP Valueon(Tboard r,From Move p)A(((BVALUES Promoted
Move p=BVALUES Val(r,Mover Move p))A(WVALUES Promoted Move p=WVALUES Val(r,
Mover Move p)))aVal(p,Mover Move p)=Promoted Move p))))) (5)

A mention of the equivalence of the Val and Valueon functions.

sxxxxVYE ValueTranspositionA r,Mover Move p,From Move p;
20 Pos(;.From Move p)=Mover Move poValueon(Tboard r,From Move p)=Val(r,Mover
Move p

More substitutions for the sake of TAUTEQ,

xxsxxlabel L7;
sxsxx assume t=Mover Move p;
21 t=Mover Move p (21)

sxxxssubst L7 in ™M occ 2;
gi)Pos(r,From Move p)=Mover Move poValueon(Tboard r,From Move p)=Val(r,t) (

xxs2x>] L7571
23 t=Mover Move p>(Pos(r,From Move p)=Mover Move poValueon(Tboard r,From
Move p)=Val(r,t))

We have a form that can be handled by TAUTEQ, One invocation produces our desired identity.

ssssxtauteq Val (p, t)eVal(rl,t) L3:0L4,L6:208,%;
24 Val(p,t)=Val(rl,t) (5 6)

Page 8¢. Chess Lemmas and Theorems 3.3.1.

We remove the dependencies, and insert the universal quantifiers in the proper order so as to obtain
the theorem.

sx3x330] GO
25 (-VALUEP Val(rl,t)APREDEGAME(rl,p))oVal(p,t)=Val(rl,t) (5)

sxsxxY] P rl t;
26 Vrl t.((-~VALUEP Val(rl,t)APREDEGAME(rl,p))oVal(p,t)=Val(rl,t)) (5)

sxxxx>]| L3071
27 (Yrl t.((-~VALUEP Val(rl,t)APREDEGAME(rl,r))>Vai(r,t)=Val(rl,t))ASUCCESSOR
(r,p))ovrl t.((~VALUEP Val(rl,t)APREDEGAME(r]1,p))oVal(p,t)=Val(rl,t))

sxxxsV] P r p;
28 Vr p.((Vrl t.((-VALUEP Val(rl,t)APREDEGAME(rl,r))oVal(r,t)=Val(rl,t))a
?l))():CESSOR(r.D)):Vrl t.((-VALUEP Val(rl,t)APREDEGAME(rl,p))oVal(p,t)=Vai(rl,t

We have satisfied the two conditions of chess induction. Our theorem naturally follows.

sxxxxlabel OnlyPaunsPromote;
xxxxx taut L1:#2 L1,L2,%;

29 Yr rl t.((-VALUEP Val(rl,t)APREDEGAME(rl,r))oVal(r,t)=Val(rl,t))
Section 3.3.2 Mobility

Another example of a proof by chess induction. We wish to prove that if any chesspiece is on a
square differing from the one it started upon, then there must have existed a position, earlier in that
game, where that piece moved.43 We take this proposition, and substitute it for the predicate
parameter o in Chsind.

sxsxxjabel L1;
xxxxxnl Chslindlaedp.Ysq x. ({Pos(p, sq) =xn-Pos (P8, sq) =x) > 3q. ((PREDEGAME (q,p) v
xq=p)Ja ((Mover Move q=xATo Move g=sq)v (CASTLE Move qnAlsomover Move g=xn
sAlsoto Move g=sqg)})));
1 (Ysq x.((Pos(P0,sq)=xn~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,P0)vq=P0)A((Mover
Move gq=xATc Move q=sq)v(CASTLE Move gn{Alsomover Move gq=xaAAlsoto Move q=sq))
)))IAYr p.((Vsq x.((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,r)vq=r)a((
Mover Move q=xATo Move q=sq)v(CASTLE Move ga(Alsomover Move g=xaAlsoto Move
g=5q)))))ASUCCESSOR(r,p))oV¥sq x.{{Pos(p,sq)=xa=(Pos{P0,sq)=x))>3q.((
PREDEGAME(q,p)va=p)a((Mover Move q=xATo Move q=sq)v(CASTLE Move qa(Alsomover
Move a=xAAlsoto Move g=sq)))))))o¥r sq x.((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.
((PREDEGAME(q,r)va=r)a((Mover Move q=xaTo Move q=sq)v(CASTLE Move an(
Alsomover Move q=xAAlsoto Move q=sq)))))

As this theorem refers to a position where the piece is on a different square from the initia! position,
it automatically is true of the initial position.

sreextaut TeHLIALHLHL
2 (Pos(P0,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,P0)vq=P0)A((Mover Move q=x
ATo Move q=sq)v(CASTLE Move ga(Alsomover Move g=xaAlsoto Move q=sq))))

49 The notion of moved, in this context, includes both being the mover of a perticular position, or being the rook in a castling
move.

3.3.2 Chess Lemmas and Theorems Page 85.

rexxs¥][tsq x;
3 Ysqg x.((Pos(P0,sq)sxa~(Pos(P0,sq)sx))>3q.((PREDEGAME(qQ, PO)vq=P0)A((Mover
r;l(;\;e qsxATo Move qusq)v(CASTLE Move ga(Alsomover Move gqexaAlsoto Move q=sq))

Following the form of the other chess inductive proofs, we make two assumptions. The first
assumption is that the theorem is true in some position r; we then seek to prove its validity in a
successor of r, p. The theorem itself is of the form A>b, we assume A, and work to conclude b.

ssxxxlabe!l L2;

sxxxrassume L1:#1H201H1H];

4 ¥sq x.((Pos(r,sq)=xa~(Pos(P0,sq)sx))>3q.((PREDEGAME(q,r)vasr)a((Mover Move
a=xaTo Move q=sq)v(CASTLE Move qa(Alsomover Move q=xaAlsoto Move q=sq)))))a
SUCCESSOR(r,p) (4)

sxxxxassume L1:HIN2HLIH1H2014141;
5 Pos(p,sq)=xa—~{Pos{P0,sq)=x) (5)

Let us call the chesspiece in question x, and the square it is on in p, sq. The first haif of the first
assumption is therefore true of x and sq.

sxxxsnETt M)

6 ¥sq x.((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,r)va=r)a((Mover Move
t(F))(I\TO Move q=sq)v(CASTLE Move qa(Alsomover Move g=xAAlsoto Move q=sq)))))
4

sxxxzlabel LS;

xxxxsVE T sq , x 3

7 (Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,r)vq=r)A((Mover Move gq=xaTo
Move q=sq)v(CASTLE Move ga(Alsomover Move g=xaAlsoto Move g=sgq)))) (4)

We have to consider, in this problem, two cases. Either the piece x is one the same square in both p
and r, or it has changed location in the transition between positions. We examine first the occasion
when it is on the same square in each.

xxxx¥)abel L3;
ssxxxassume Pos(p sq)=Pos(r sql;
8 Pos(p,sq)=Pos(r,sq) (8)

By our assumption, there exists some position, a predecessor of r, in which x was the moving piece,
and it moved to sq. Let us call this position q.

sxsxxtauteq T2 2, A0, 01
9 3q.((PREDEGAME(q,r)va=r)a((Mover Move g=xaTo Move q=sq)v(CASTLE Move qa(
Alsomover Move g=xAAlsoto Move q=sq)))) (4 § 8)

sxxxs 36N
10 (PREDEGAME(q,r)va=r)a((Mover Move q=xaTo Move g=sq)v(CASTLE Move ga(
Alsomover Move g=xaAlsoto Move q=sq))) (10)

But by the lemma GrandparentGenealogyY, this position q is also a predecessor to p. Hence, we
have a position to satisfy the theorem for p.

s2s33YE GrandparentGeneaiogyY q r pi

Page 86. Chess Lemmas and Theorems 3.32.

11 (SUCCESSOR(r,p)a(PREDEGAME(qQ,r)vq=r))>PREDEGAME(q,p)

sxsxxtaut (P:H2vqep)Attif2 4, 41,L2;
12 (PREDEGAME(q,p)va=p)Aa((Mover Move q=xATo Move q=sq)v(CASTLE Move gn(
Alsomover Move g=xaAAlsoto Move g=sq))) (4 10)

sxxxx3[1q;
13 3q.((PREDEGAME(q,p)vg=p)Aa((Mover Move q
Alsomover Move q=xAAlsoto Move @g=sq)))) (

=xATo Move q=sq)v(CASTLE Move gn(
4 58)

xxxxx|abel L4:

xxxxx>]| L3>7%;

14 Pos(p,sq)=Pos(r,sq)>3q.((PREDEGAME(q,p)va=p)A((Mover Move g=xaTo Move g=
sq)v(CASTLE Move gna(Alsomover Move g=xAAlsoto Move q=sq)))) (4 5)

We consider the other possibility. If the occupant of sq in r is not the same as in p.

sxxxx|abel L6;
sxxxxassume -Pos(p sq)=Pos(r sql);
15 ~(Pos(p,sq)=Pos(r,sq)) (15)

We consider the various ways the piece x could have changed squares. We have a theorem that
states that the only way the contents of a square changes between positions is if it is either the source
or destination of a move (or castle), or is the square vacated by a piece captured en_passant.

sxxxxYE MCONSEQD r,p, sq;

16 (SUCCESSOR(r,p)a(~(sq=From Move p)a(-~(sq=To Move p)A(-~(CASTLE Move pa(s
Alsofrom Move pvsq=Alsoto Move p))Aa~(ENPASSANT Move pasq=Takenon Move p)))
>Pos(r,sq)=Pos(p,sq)

q=
))

We know from the axioms about successors, that after a move the source square (From, Alsofrom) is
occupied by the piece EMPTY. The square of a piece captured en_passant is likewise vacant. And
EMPTY is not a chesspiece (it is, of course, one of the PIECES).

sxxxxVYE MCONSEQA r,p;

17 SUCCESSOR(r,p)>((-WHITETURN r=WHITETURN p)A(Prevpos p=ra(~POSITIONINCHECK
(p,Color r)A((WHITEPIECE Mover Move peWHITETURN r)a(Pos(r,From Move p)=Mover
Move pa(Pos(p,To Move p)=Mover Move pa(Pos(p,From Move p)=EMPTYA((CAPTURE
Move poPos(r,To Move p)=Taken Move p)A(CASTLING(r,p)v(EN_PASSANT(r,p)v
SIMPLELEGALMOVE(r,p))))))))))}

sxxxxVE NotChesspieceEmpty_ x;
18 ~CHESSPIECES x=x=EMPTY

All moves are of one of the three types.

*xxxxYE MconseqmX r,p;
19 SUCCESSOR(r,p)>((CASTLE Move p=CASTLING(r,p))a((
PASSANT(r,p))A(ORDINARY Move p=SIMPLELEGALMOVE(r,p)

§P)H)’ASSANT Move p=EN_

And no piece is on two different squares in the same position.

sxx2xYE Unique p,sq, To Move p,x;
20 Pos(p,sq)=x>(Pos(p,To Move p)=xmsqsTo Move p)

332 Chess Lemmas and Theorems Page 87.

ssss3VYE Unique p,sq,From Move p,x;
21 Pos(p,sq)=x>(Pos(p,From Move p)sxusqsFrom Move p)

We search the castling and en_passant rules for their special cases.

sssxsVE CASTLEMOVES r,p:
22 CASTLING(r,p)a(KINGS Mover Move pA(ROOKS Alsomover Move pa(Pos(r,Alsofrom
Move p)=Alsomover Move pa(Pos(p,Alsofrom Move p)=EMPTYA(Pos(p,Alsoto Move p
)sAlsomover Move pa(Yrl.(PREDEGAME(rl,p)oPos(r,From Move p)=Mover Move p)a(VY
r1.(PREDEGAME(r1,p)>Pos(r,Alsofrom Move p)=zAlsomover Move p)a(Ysq3.((Row sq3
zRow From Move pABETWEEN(Column From Move p,Column sg3,Column Alsofrom Moveé
p))oPos(r,sq3)sEMPTY)A(-POSITIONINCHECK(r,Color r)a(Ysql x.~(Pos(r,sql)=xa(
MOVETO(Tboard r,Val(r,x),sql,Alsoto Move p)aPiececolor x=Color p))Aa((
WHITETURN ro((Alsomover Move psWKRA{Alsoto Move psWKBIATo Move p=WKN1))v(
Alsomover Move psWQRA(Alsoto Move p=WQlATo Move p=WQB1))))A(~WHITETURN ro>((
Alsomover Move p=BKRA(Alsoto Move p=BKBlAaTo Move p=BKN1))v(Alsomover Move pe=
BQRA(Al1soto Move p=BQlaTo Move p=BQB1)))))))))))))))

sx2x2VE Unique p,sq,Alsoto Move p,x;
23 Pos(p,sq)=x>(Pos(p,Alsoto Move p)=xssq=Alsoto Move p)

sxsx2YE Unique p,sq,Alsofrom Move p,x;
24 Pos(p,sq)=x>(Pos(p,Alsofrom Move p)=xasq=Alsofrom Move p)

s++x2YE ENPASS r,p:

25 EN_PASSANT(r,p)=(GAMEPOSITION ra(Pos(p,Takenon Move p)=EMPTYA(To Move r=
Takenon Move pa(Mover Move r=Taken Move pa(SIM Move ra(Column From Move r=
Column To Move ra(Column To Move r=Column To Move pa(TWOTOUCHING(Column From
Move p,Column To Move p)A((WHITETURN p>(Val(p,Mover Move p)=PBA(Val(r,Mover
Move r)=PWA(Row From Maove p=5A(Row To Move p=6a(Row From Move r=7aARow To
Move r=5))))))A(-WHITETURN p>(Val(p,Mover Move p)=PWa(Val(r,Mover Move r)=PB

A(Row From Move p=4a(Row To Move p=3a(Row From Move r=2aARow To Move rz4)))))

DNNN

sxexeVE Unique p,sq, Takenon Move p,x;
26 Pos(p,sq)sx>(Pos(p,Takenon Move p)sxssqz=Takenon Move p)

sxxxesimplify(CASTLE Move p>SQUARES(Alsoto Move p))A(CASTLE Move p>SQUARES (
sAlsofrom Move p))a (ENPASSANT Move p>SQUARES (Takenon Move p))a CHESSPIECES

X}
27 (CASTLE Move po>SQUARES Alsoto Move p)A((CASTLE Move po>SQUARES Alsofrom
Move p)A((ENPASSANT Move p>SQUARES Takenon Move p)ACHESSPIECES x))

It therefore tautologically follows, that in the move that created p, x and sq must have performed

the desired roles.

sxssx tauteq ((PREDEGAME (p p)vp=p)a((Mover Move p=xaTo Move p=sq)v(CASTLE
sMove pn(Alsomover Move p=xnAlsoto Move p=sq)))) L6:%,L2:LS;

28 (PREDEGAME(p,p)vp=p)Aa((Mover Move p=xATo Move p=sq)v(CASTLE Move pa(
Alsomover Move p=xaAlsoto Move p=sq))) (4 5 15)

p is thus seen to be the position whose existence we were trying to prove.

sxexe3[fpeq occ 1 3567 8 9;
29 3q.((PREDEGAME(q,p)vq=p)A{(Mover Move q=xaTo Move q=sq)v(CASTLE Move agn{

Alsomover Move g=xAAlsoto Move q=sq)))) (4 5 15)

Page 88. Chess Lemmas and Theorems 382

All this was, of course, based on the assumption that the piece was on a different square.

sssesd| LBOM;
30 ~(Pos(p,sq)=Pos(r,sq))>3q.((PREDEGAME(q,p)vasp)a((Mover Move q=xaTo Move
qesq)v(CASTLE Move ga(Alsomover Move Qq=xaAlsoto Move q=sq)))) (4 5)

We have obtained the desired WFF in both cases; when x had changed squares, and when x had not.
It is therefore always true.

sssxstaut t:82 LG,
31 3q.((PREDEGAME(q,p)vqzp)a((Mover Move q=xaTo Move Qq=sq)v(CASTLE Move gna(
Alsomover Move gqsxaAlsoto Move q=sq)))) (4 5)

We insert the assumptions back in the correct order, so as to obtain the premises for the chess
induction form.

sxsesd]| 24101
32 (Pos(p,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,p)vazp)Aa((Mover Move Qq=xA
To Move q=sq)Vv(CASTLE Move ga(Alsomover Move Qq=xAAlsoto Move q=sq)))) (4)

sxxee¥[Tsq x;

33 Vsq x.((Pos(p.sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,p)va=p)A((Mover
Move q=xaTo Move q=sq)v(CASTLE Move ga(Alsomover Move q=xAAlsoto Move q=sq))
))) (4)

ssssxd] L20O%;

34 (VYsq x.{((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,r)va=r)a((Mover
Move q=xATo Move q=sq)v(CASTLE Move ga(Alsomover Move q=xaAlsoto Move q=sq))
)))ASUCCESSOR(r,p))oVYsq x.((Pos(p,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q.p)
vq=p)A((Mover Move q=xATo Move q=sq)v(CASTLE Move ga(Alsomover Move Qq=xA
Alsoto Move q=sq)))))

sxxssV[tr p;

35 Vr p.((Vsq x.((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(Qq,r)va=r)a((
Mover Move q=xaTo Move q=sq)v(CASTLE Move ga(Alsomover Move q=xAAlsoto Move
q=sq)))))ASUCCESSOR(r,p))oV¥sq x.((Pos(p,sq)sxa~(Pos(P0,sq)=x))>3q.((
PREDEGAME(q,p)vq=p)A((Mover Move q=xATo Move Qqesq)v(CASTLE Move ga(Alsomover
Move q=xaAlsoto Move q=sq))))))

Having satisfied both requirements, the theorem is now ours. We call it Mobdility.
ssx2s | abel r}]ggi [i 1
sesestaut L1:#2 *,02-1,L1
36 Yr sq x.((Pos(r,sq)=xa~(Pos(P0,sq)=x))>3q.((PREDEGAME(q,r)vaq=r)Aa((Mover
Move q=xATo Move q=sq)v(CASTLE Move qa(Alsomover Move q=xaAlsoto Move q=sq))
»)

Section 3.3.3 Segregate

For our last example of a chess inductive proof, we prove the well known chess fact that bishops
stay on squares of the same color. The key predicate for this proof is WHITESQUARES, a sort on
squares, which is true, of course, on the white squares.

T

3.3.3. Chess Lemmas and Theorems Page 89.

In proving this theorem we employ the lemma BishopStaysOnSameColor.50
8ishopStaysOnSameColor states that between any position, r, and a successor, p, if a bishop ybi is
on square sql in r, and eq in p, then sql and sq are of the same color. Expressed as a WFF in our
axiomatization, this is:

Yr p ybi sql sq. ((SUCCESSOR(r,p)a(Pos(p,sq)=ybinPos(r,sql)eybi))>
(WH] TESQUARES (sq) sWH] TESQUARES (8ql))) ;3

This theorem also employs the lemma WasHere, which states that for any piece x, in a position p, if
x is on some square in p, then x was on some square in the position previous to p.5}

The proof of B/shopsisOnSameColor follows the form of our other chess inductive proofs. First the
simplified form of chess induction, Chs/nd, is instantiated with the theorem to be proven.

ssssslabel L1;

sss3sn] ChslndlaeAp. (Ysql sq2 ybi. ((Pos(P@,sql)=ybinPos(p,s8q2)=ybi)> (
sWH] TESQUARES (sql) sWHI TESQUARES (8gq2))))1

1 (Vsql sq2 ybi.((Pos(P0,sql)=ybianPos(P0,sq2)=ybi)>(WHITESQUARES sql=
WHITESQUARES s$q2))AVYr p.((VYsql sq2 ybi.((Pos(P0,sql)=ybiaPos(r,sq2)=ybi)>(
WHITESQUARES sqlsWHITESQUARES sq2))ASUCCESSOR(r,p))>V¥sql sq2 ybi.((Pos(PO,
sql)=ybinPos(p,sq2)=ybi)>(WHITESQUARES sqlsWHITESQUARES sq2))))oVr sql sq2
ybi.((Pos(P0,sql)=ybiaPos(r,sq2)=zybi)>(WHITESQUARES sqlsWHITESQUARES sq2))

Proving the proposition for the initial position is trivial. No piece can be on more than one square
in any position. So, of course, our bishop ybi is on the same color square in P8 as in P@.

sxx2sVE Unique P8,sql,sq2,ybi;
2 Pos(P0,sql)=ybi>(Pos(P0,sq2)=ybissql=zsq2)

ssxsstauteq (Pos(P@,sql)=ybinPos (P8, 8q2) sybi) > (WHI TESQUARES (eql) =
#WH]I TESQUARES (sq2)) 13
3 (Pos(P0,sql)sybiAnPos(P0,sq2)sybi)>(WHITESQUARES sqlsWHITESQUARES sq2)

sxxsxlabel L2;

ssxxx Y] 1 sql sq2 ybis

4 Vsql sq2 ybi.((Pos(P0,sql)sybiaPos(P0,sq2)syb1i)>(WHITESQUARES sqls
WHITESQUARES sq2))

We make the two usual assumptions for chess inductive proofs.

*xxxx|abel L3;

sxxxsassume L1:H1N20101H4];

5 Y¥sql sq2 ybi.((Pos(P0,sql)=ybiaPos(r,sq2)=yb1i)>(WHITESQUARES sqlms
WHITESQUARES sq2))ASUCCESSOR(r,p) (5)

sxxxrassume Pos(PB,sql)=ybinPos(p,sq2)=ybi;
6 Pos(P0,sql)=ybinPos(p,sq2)=ybi (6)

ssxxsnb L3141
7 Vsql sq2 ybi.((Pos

(P0,sql)=ybiaPos(r,sq2)=ybi)>(WHITESQUARES sql=
WHITESQUARES sq2)) (5)

50. The proof of BishopStaysOnSameColor is in section A93.2.
81, The proof of WasHere is in section A11.1.2.1.

Page 90. Chess Lemmas and Theorems 3.338.

As ybi s on square 92 in p, it must have been on some square in r. Let us call that square sq.

sssssVE WasHere r,p,0q2,ybi;
8 (SUCCESSOR(r, p)nPos(p.sql)-ybi):Bsq Pos(r,sq)sybi

sssss taut 3lq.Poo(r.oq) bi L3i1 e, N
9 3sq.Pos(r,sq)syd1 g

ssses3E * eqx;
10 Pos(r,sqx)sybt (10)

e T S TR s e i T sl e ‘ﬁ"ﬁw@
y ‘ W Ry %

This square sq is, by our assumption, the same color as the square ybi started on (sql)

ssessVE 1111 sql,sqx,ybi;
11 (Pos(P0,sql)sybinPos(r,sqx)sybi)>(WHITESQUARES sqlsWHITESQUARES sqx) (5)

And by the lemma BishopStaysOnSameColor, it is the same color as the square ybi is on in p
(8q2).

sssesVE BishopStaysOnSameColior r,p,ybi, sqx, 8q2;

12 (SUCCESSOR(r, p)A(Pos(p.sqz)-bePos(r sqQx)zybi))>(WHITESQUARES sq2w
WHITESQUARES sqx)

So it obviously follows that the initial square, eql is the same color as the final square, 8q2.

ssssstauteq WHITESQUARES (sql) allH] TESQUARES (8q2) L3:6,tt1:1¢;
13 WHITESQUARES sqlaWHITESQUARES sq2 (5 6)

We remove the dependencies and generalize in the appropriate order.

ssss3d] L3+10%;
14 (Pos(P0,sql)aybiaPos{p,sq2)eybi)>(WHITESQUARES sqlaWHITESQUARES sq2) (5)

sssesV] t sql sq2 ybit

15 Vsql sq2 ybi.((Pos(P0,sql)sybiaPos(p,sq2)sybi)>(WHITESQUARES sqles
WHITESQUARES sq2)) (5)

sexeed] L3>%

16 (Vsql sq2 ybi.((Pos(P0,sql)=ybiaPos(r,sq2)eybi)>(WHITESQUARES sqlm
WHITESQUARES sq2))ASUCCESSOR(r p))aVsal sqz ybi.{{Pos{P0,sql)=ybiAnPos(p,sq2)
=yb1)>(WHITESQUARES SQX-VHITESQUARES $q2))

sxexs¥Y] P r p;

17 Vr p.((VYsql sq2 ybi.((Pos(PO,sql)=ybiaPos(r,sq2)=ybi)o{WHITESQUARES sqle
WHITESQUARES $Qq2))ASUCCESSOR(r,p))oVsql sq2 ybi.((Pos(P0,sql)sybianPos(p,sq2)
aybi)>(WHITESQUARES sql-wNIYESQUARES sq2)))

Having satisfied both chess inductive requirements, we have our theorem.

ssxss label ?_Lg_g,pp_f_[_[gn%mﬂ_mm

sessxtaut L1:sA2 L1,L

18 Vr sql sq2 ybi.((Pos(P0,sql)sybianPos(r,sq2)sybi)>(WHITESQUARES sqls
WHITESQUARES sq2))

ke i i, N et s s

e o

34 Chess Lemmas and Theorems Page 91.

Section 3.4 More Complex Chess Theorems
Section 3.4.1 Proof by Cases: Symmetric Orthogonality

‘The ORTHO relation, on a board and two squares, is true if the argument squares are on the same
orthogonal (row or column), and all squares between the two are empty on that board. It is used in
defining the rook and queen moves. There is an attachment to ORTHO that, given a board and
squares, will compute the value of the ortho relation. However, much as LISP can not compute call
by name function evaluations, the simplify mechanism cannot handle simplifications of equally
fragmentary information. We wili have occasion to conclude the ORTHO relation on sub-boards from
that on of total boards, and vice-versa.

One can conclude this equivalence, of course, when none of the squares between the given squares is
undefined.

The proof itself is an example of proof by cases. We wiil have to prove the theorem for both rows
and the columns, and in each direction. We will accomplish this by the use of four parallel proof
threads, which, properly Riemannian, wili converge to the our theorem.

We begin by assuming that board a is a sub-board of of board b, that our two squares, sql and
sa2, are different, and that either the two squares are in the same column, and every square between
them on that column is not undefined (UD) on a; or that they share the same row, and every square
between them on that row is not UD.

seasslabel L1

ssessassume SUBOARD(a,bla(-~(sql=sq2)a ((Column(sql)=Column(eq2)A Yeq3. ((
«BE TWEEN (Row (sql) ,Rou(sq3) ,Rou(sa2))AColumn(sq3) =Column(sql))> ~(Valueon(a,
+sq3) =UD))) v(Rou(sql)=Rou(sq2)A Ysq3. ((BETWEEN(Column(sql),Column(sq3),
¢Column(eq2)) ARou(sq3) =Rou(sql) > ~(Valueon(a,sq3)=UD)))));

1 SUBOARD(a,b)Aa(~(sqlzsq2)A((Column sql=Column sq2AYsq3.((BETWEEN(Row sql,
Row sq3,Row sq2)aColumn sq3=Column sql)>~(Valueon(a,sq3d)=UD)))v(Row sql=Row
$q2AYsq3.((BETWEEN(Column sql,Column $q3,Column sq2)ARow sq3=Row sql)o>—(
Valueon(a,sq3d)=ud))))) (1)

If a is a sub-board of b, then they differ only on the squares where a is undefined.

ssx22VYE SUB_BOARDSG a , b ¢
2 SUBOARD(a,b)=V¥sq.(Valueon(a,sq)=Valueon(b,sq)vValueon(a,sq)=UD)

sexsstaut T:42 1M
3 Vsq.(Valueon(a,sq)=Valueon(b,sq)vvalueon(a,sq)=UD) (1)

Let us call the typical square between sql and 8q2, eq3. Either this square is undefined (UD) on a,
or it has the same Valueon it in both a and b.

sssse label L8
seeeVE T sqd;
4 Valueon(a,sq3)=Valueon(b,sq3)vValueon(a,sq3)=UD (1)

We invoke the lemma RowColumnSquareThm, which states that if two squares have the same row

.3

Page 92 Chess Lemmas and Theorems 84.1.

and column, they are equal.5?

sssssVE RouwColumnSquareThm sql ., eq2 3
S Row sql=Row $q2>(Column sqlsColumn sq2>sqlesq?)

. Since sql and #q2 are assumed to be unequal, they must differ in row or column.

We consider each possibility. They might be equal by columns, or equal by rows.

sssss lavbe! 3
sssssassume Columnieql)eColumnisq2);
6 Column sgl=Column sq2 (6)

sesssassume Row(sql)=Row(eq2l:
7 Row sql=Row sq2 (7)

The definition of ORTHO, applied to both a and b.

ssses ! abel H

sesssVE MOVINGZ a , sql , sql:

8 ORTHO(a,sql,sq2)s(~(sqlzsq2)a({Column sql=Column $q2AVs$Qq3.((BETWEEN(Row
sql,Row s$q3,Row sq2)aColumn sq3sColumn sql)>Valueon(a,sq3)=MT))v(Row sqlsRow
$q2AVYsq3.((BETWEEN(Column sql,Column $q3,Column $q2)ARow sq3=Row sql)>

Valueon(a,sqld)=NT))))

sssssVYE MOVING2 b , sql . sq2:

9 ORTHO(Db,sql,sq2)=(~(sqlesq2)a((Column sqlzColumn $q2AVsq3d.((BETWEEN(Row

$ql,Row sQ3,Row sq2)aColumn sq3sColumn sql)oValueon(b,sq3)=MT))v(Row sql=Row
$q2AYsqd.((BETWEEN{Column sql,Column 333,Column $q2)ARow sq3sRow $ql)>

Valueon(b,sq3)=MT))))

As we seek to prove equivalence, we assume each of the ortho conditions and try to prove the other.

ssasslabel [3;
sxersassume il
10 ORTHO(a,sql,sq2) (10)

sssssassume T ¥l
11 ORTHO(b,sql,sq2) (11)

There are now four paraliel cases through the proof, determined by whether the presumed
orthogonality is horizontal or vertical, and on board b, or its sub-board, a. Note the dependencies.

We can conclude, in each case, from our assumptions and the definition of orthogonality, that every
square between sql and eq2 is MT.

sxsxx|abel L4:

sxsestauteq LS:H2024142 LS,L2,L1,L8+1,L3;

12 Vsq3.((BETWEEN(Row sql,Row 8Q3,Row 8Q2)AColumn sqQ3sColumn sql)>Valueon(a,
$Q3)sMT) (1 6 10) :

ssssstauteq LS:H2M20282 LS,L2+1,L1,L8+1,L3;

52 The proof of thie lemma ie in section A4 L.

341 Chess Lemmas and Theorems Page 98.

13 Vsqd.((BETWEEN(Column sql,Column sq3,Column $q2)ARow sq3sRow sql)>Valueon
(a,sq3)sMT) (1 7 10)

b ssssstauteq LS+1 i H2424142 LS+1,L2,L1,L8+1,L3+];
i 14 VYsqd.((BETWEEN(Row sql,Row $q3,Row 3q2)AaColumn sq3=Column sql)>Valueon(b,
$Q3)=MT) (1 6 11)

sssestauteq LS+l M2M20202 LS+1,L2+1,L1,L8¢1,L3¢1;
; 15 Vsqd.((BETWEEN(Column sql,Column sq3,Column $q2)aRow sqisRow sql)>Valueon
| (b,sq3)=MT) (1 7 11)

We apply this fact to our typical square, 8q3.

ssssslabel LB;

sssssVYE 111 8q3;

1? (?ETVEEN(RON sql,Row $q3,Row $q2)AaColumn sq3=Column sql)>Valueon(a,sqld)s
M 16 10)

: ssssaVE 111 8q3:
] g?ﬁﬁi”i;Nﬁgglum sql,Column $q3,Column $Q2)aRow sqisRow $ql)>Valueon(a,sqd
. -

sssssVE 1% eq3;

’l‘g (?El’:iﬁigkow $ql,Row 8q3,Row $q2)AColumn sq3sColumn sql)>Valueon(b,sqld)=

sssssVE 41 8q3;
;9 (BE?{EEN{E?WM sql,Column $q3,Column $Q2)ARow sq3=Row sql)>Valueon(b,sq3
sMT 7

™

sq3 must either be the same on both boards, or undefined on a. By our assumption, all squares on
a between sql and sq2 are not undefined. Therefore, 8g3 will have the same Valueon it in both
boards.

P ssssstauteq L1 H2N2M142 L1,L2,L8+1,
20 Vsq3.((BETWEEN(Row sql,Row $Qq3,Row $q2)AColumn sq3sColumn sql)>-~(Valueon(
a,sq3)=UD)) (1 6)

ssssstauteq L1: 42020242 L1,L2+1,L8+1;
21 Vsq3.((BETWEEN(Column sql,Column $q3,Column $q2)ARow sq3=zRow sql)>~(
Valueon(a,sq3d)suD)) (1 7)

ssssslabel L7;

sssssVE 1 8q3;

ZZDSBEHEE?(RW sql,Row $q3,Row $q2)aColumn sq3sColumn sql)>—~(Valueon(a,sqld)
sy 6

sssssVE 1 8q3;

23 (BETWEEN(Column sql,Column $q3,Column $Q2)ARow sq3=Row sql)>~(Valueon(a,
sq3)=UD) (1 7)

And, in each case, this value will be MT.

sssss |abel |9
ssssstauteq L7:#1oValueonib 8q3)sMT L7,L6,L8;

Page 94. Chess Lemmas and Theorems 34.1.

'2‘: (?E!:EE:()R‘N sql,Row $q3,Row 3q2)aColumn sqi=Column sql)>Valueon(b,sqld)=

ssssstauteq L7+1181oValueonib 0q3)=NT L7+]1,L6+]1,L8;
l;sngltzﬁllﬁsugg?wm 8ql,Column 3q3,Column 3q2)ARow sq3sRow sql)>Valueon(b,sqd
=

ssssstautug L71#1oValueon(a 8q3)«MT L7,L6+2,L8;
'Z‘g (?EI:EE?()M« sql,Row $q3,Row 3q2)AColumn 3qQ3=Column 8ql)>Valueon(a,sqld)=
1

ssssstauteq L7+l:#1oValueon(a 8q3)=MT L7+]1,L6+3,L8;
§7 (BEIVEEN(C?lunn sql,Column sq3,Column $q2)ARow sqldsRow sql)>Valueon(a,sqd
aMT 1711

We generalize this result to all squares sq3.

ssssaV| P 1sq3:
28 Vsql.((BETWEEN(Row sql,Row sq3,Row $q2)AaColumn sq3=Column sql)>Valueon(b,
sQ3)=MT) (1 6 10)

sssseV| P ttsq3;
29 Vsq3.((BETWEEN(Column sql,Column sq3,Column sq2)ARow sqi=Row sql)>Valueon
(b,sq3)=MT) (1 7 10)

sesasV] PP 1sq3:
30 Vsqd.((BETWEEN(Row sql,Row sq3,Row $q2)AColumn sq3=Column sql)>Valueon(a,
$Q3)=MT) (1 6 11)

sssssV| 1 1P1sq3:
31 Vsqd.((BETWEEN(Column sql,Column $q3,Column $q2)ARow sq3=Row sql)o>Valueon
(a,sQ3)=MT) (1 7 11)

But this is the defining condition for ORTHO on the other board.

Ao ;$-£ Aze'{i;‘.m-tg':#ﬁ'%:#.

ssssstauteq ORTHO (b sql sq2) to¢4,L5+1,L1,L8+1,L2;
32 ORTHO(b,sql,sq2) (1 6 10)

ssssstauteq ORTHO (b sql sq2) t444,05+1,L1,L8+1,L2+];
33 ORTHO(b,sql,sq2) (1 7 10)

ssssstauteq ORTHO(a eql sq2) *#44,LS,L1,L8+1,L2;
34 ORTHO(a,sql,sq2) (1 6 11)

ssssstauteq ORTHO (@ eql sq2) t444,LS,L1,L8+1,L2+]1;
35 ORTHO(a,sql,sq2) (1 7 11)

We remove the dependencies of each case assumption.

sseesd| L3N,
36 ORTHO(a,sql,sq2)>0RTHO(b,sql,sq2) (1 6)

ssesed| L3>t
37 ORTHO(a,sql,sq2)>0RTHO(b,sql,8q2) (1 7)

34.1. Chess Lemmas and Theorems Page 95.

sssssd] L3+10MM11;
38 ORTHO(b,sql,sq2)>0RTHO(a,sql,sq2) (1 6)

sssssd| L3+10M111,
39 ORTHO(b,sql,sq2)>0RTHO(a,sql,sq2) (1 7)

\ sssssd] L2O>MM14
i 40 Column sql=Column sq2>(ORTHO(a,sql,sq2)>0RTHO(b,sql,sq2)) (1)

sssssd] L2+10M11
4] Row sql=Row $q2>(ORTHO(a,sql,sq2)>0RTHO(b,sql,sq2)) (1)

sssxsd] L2011,
42 Column sql=Column $q2>(ORTHO(b,sql,sq2)>0RTHO(a,sql,sq2)) (1)

sxssed] L2411
43 Row sql=zRow sq2>(ORTHO(b,sql,sq2)>0RTHO(a,sql,sq2)) (1)

r—r—————

Having proven the theorem for each case, we can conclude that it is always true.

' ssssstauteq ORTHO(a sql sq2)sORTHO(b sql sq2) t1te:t,L1:
i 44 ORTHO(a,sql,sq2)sORTHO(b,sql,sq2) (1)

sssxed] L1o%;

45 (SUBOARD(a,b)Aa(-~(sql=sq2)a((Column sql=Column sq2aYsq3.((BETWEEN(Row sql,
Row sq3,Row sq2)aColumn sq3=Column sql)>~(Valueon(a,sq3)=UD)))v(Row sql=Row
$q2AYsq3.((BETWEEN(Column sql,Column sq3,Column sq2)ARow sq3=Row sql)a-(
Valueon(a,sq3)=zUD))))))>(ORTHO(a,sql,sq2)eORTHO(b,sql,sq2))

1 ssxesxlabel EquilrthoThm;
sxsxeVita b sql sqd;

46 Ya b sql sq2.((SUBOARD(a,b)a(~(sql=sq2)A((Column sql=Column s$q2AYsq3.((
BETWEEN(Row sql,Row sq3,Row sq2)AColumn sq3=Column sql)>-(Valueon(a,sq3)=UD)
))v(Row sql=Row $q2aYsq3.((BETWEEN(Column sql,Column sq3,Column sq2)ARow sq3
zRow sql)>~(Valueon(a,sq3)=UD))))))>(ORTHO(a,sql,sq2)=ORTHO(b,sql,sq2)))

Section 3.4.2 Cornered Checking Pieces

This is a theorem about checks. It states that if a piece is checking the opposing king on a board,
and, if on each of the squares that the piece can move to on that board, the piece still checks the
king, then the original check was a discovered check. This situation is illustrated in figure 28, where
the marked white queen is a cornered checking piece. This check must have been produced by the
white bishop moving out from between the black king and the white queen. The theorem excludes
certain exceptional conditions, such as pawn promotions, castles, en passant captures, and checks by
1 pawns. These restrictions are necessary for these non-reversible moves. If this sounds like a
complicated theorem, please be patient; it is the most intricate “general chess theorem™ we prove.

PO 1) e s R G . el

LAl

Page 9. Chess Lemmas and Theorems 342

7w Y
f/’ ;, .,.;7/ ‘/,/‘,:/{,

#h AR
% wa
772 Q 0% R %
- Zu %//k/ﬁ/ ’)’I%
/ 7 I,
s wrs 74 7
AV
i VA v V7
7 S v/ 7
G, i, %,
9 W W

7 Vi
A /77

The white queen is cornered

figure 28

We start with the assumption of some of the conditions for the theorem. We presume to have a
position, q, whose immediate predecessor was r. The transition from r to q was not accomplhished by
a castle or en passant. q has a board, b, and, on some square of this board, 8q, i a white value, vi.
On some other square, sqx, is the black value KB (king black), and a piece of vi can move on b
from sq to sgqx. vu IS NOt a pawn; 8q is not in white's last rank. These last two conditions prevent
the move from being either a pawn promotion, or a pawn's move.

We label this assumption L1.

ssssslavel Ll

essssassume SUCCESSOR (r,q)a(=EN_PASSANT (r,q) a(=~CASTLING (r,q) A(-WLASTRANK sqn

» (BOARD (0, b)A(Valueon (b, 8q) =via(Valueon (b, eqx) =KBA (MOVETO (b, v, 8q, 8Gqx) A~

eVALUEP vw)))))))

1 SUCCESSOR(r,q)A(~EN_PASSANT(r,q)A(~CASTLING(r,q)A(~WLASTRANK sqa(BOARD(q

;A(Yl;U.ON(D.SQ)IM(VC)UOOH(D.SQX)'KBI\(HOVETO(D.W,SQ.SQX)A-VALUEP w))))
1

b
))

Since there is a white value on sq, it must belong to a chesspiece. Let us call that piece x.

sssssYE PiecevaluesAreChesspieces q,b,8q:
2 (BOARD(q,b)APIECEVALUES Valueon(b,sq))>CHESSPIECES Pos(q,sq)

sessssimplify PIECEVALUES vw;
3 PIECEVALUES vw

ssssstauteq Pos(q,sql«Pos(q,.sq)
4 Pos(q,sq)=Pos(q,sq)

sssxs3] * Poslq,eq)ex occ 2i
5 3Ix.Pos{q,sq)=x

ssssstauteq 3x.Pos(g,sq)ex L1,2:3,5;
6 3x.Pos(q,sq)=x (1)

ssssslabel CALL X:

342 Chess Lemmas and Theorems Page 97.

sssss it T x;
7 Pos(q,sq)sx (7)

We have presented sufficient conditions to prove the black king in check. We establish this fact,
with the help of the lemma AlternateBlack ™ AlternateBlack also incorporates the knowledge that
when black’s king is in check, it must be black's turn to move.

ssssstaut Yalueonib, sqx) «KBa{Valueon (b, sq) svuaAMOVETO (b, v, 8q,8qx)) L1;
8 Valueon(b,sqx)=KBAa(Valueon(b,sq)=vwAaMOVETO(b,vw,sq,sqx)) (1)

sssss3] * sqx sq vu
9 Jvw sq sqgx.(Valueon(b,sqx)=KBa(Valueon(b,sq)=vwaMOVETO(b,vw,sq,sqx))) (1)

sssssYE CHECKERS2 b;
10 BLACKINCHECK bs3vw sql sq2.(Valueon(b,sq2)=KBa(Valueon(b,sql)=vwaMOVETO(b
,VW,sql,sq2)))

sssssVE AlternateBlack q,b;
11 (BOARD(q,b)ABLACKINCHECK b):(POSITIONXNCHEC!((q.8LACK)A~HHITETURN q)

ssssslavel L2;
ssssstaut POSITIONINCHECK (q,BLACK)A~WHITETURN q L1:%;
12 POSITIONINCHECK(q,BLACK)A-WHITETURN q@ (1)

Also, if black is checked, then the color of position g must be black.

sssseVE POS_COLORS q,BLACK:
13 Color q=8LACKa(WHT BLACKsWHITETURN q)

The various type simplifications needed in the rest of the proof.

ssssesimplify Yvi vb.~(Valuecolor vueValuecolor vb);
14 Yvw vb.-~(Valuecolor vw=Valuecolor vb)

sssssVE 1 v, ,KB;
15 ~(Valuecolor vw=Valuecolor KB)

sxssssimplify —~WHT BLACKAVALUEK KB;
16 ~WHT BLACKAVALUEK KB

The proof will also employ parts of the definition of successor, and various facts about the colors of
pieces.

ssssslavel L3:;

sesssVE MCONSEQA r,q:

17 SUCCESSOR(r,q)>((~WHITETURN raWHITETURN q)A(Prevpos q=ra(-~POSITIONINCHECK
(q,Color r)A((WHITEPIECE Mover Move qsWHITETURN r)a(Pos(r,From Move q)=Mover
Move qa(Pos(q,To Move q)=Mover Move gqa(Pos(q,From Move qQ)=EMPTYA((CAPTURE
Move qdPos(r,To Move q)=Taken Move q)A(CASTLING(r,q)v(EN_PASSANT(r,q)v
SIMPLELEGALMOVE(r,q)))))))))))

ssssstaut Prevpos ger L1,L3;
18 Prevpos q=r (1)

53 Proven in section A751.

s
&
[
¥
Gr

o MR

At X - PSSR 8 I P A PRI 8, 1

Page 98. Chess Lemmas and Theorems 342

By the theorem _Chechklypes_, there are four ways a check can occur. The piece that is making
the check can have moved into the check, the check could have occurred on a discovery from an en
passant capture, the rook of a castle could have moved and checked, or the check could have
resulted from a piece moving out from between the king and the checking piece, a discovered check.

sssssVE _CheckTypes_ q.o0,8q, 8gx, x, vi,KB;

19 (POSITIONINCHECK(q,Color Q)A(BOARD(Q b)A(MOVETO(b,vw, 8q,8qx)A(Pos(q,sqQ)=x
a(Valueon(b,sq)=svwa(Valueon(b, sqx)=KBA(VALUEK KBM(Valuocolor vw=Valuecolor
KB))))))))o(Mover Move qsxv(({EN_PASSANT(Prevpos q,q)A(SQUARE_BETWEEN(sq,From
Move q,sqx)vSQUARE_BETWEEN(sq, Takenon Move q,sqx))Iv({CASTLING(Prevpos gq,q)
/)\Alsomover Move q=vw)v(ORDINARY Move QASQUARE_BETWEEN(sq,From Move q, sqx))))

ssssssubstr ™ in %;

20 (POSITIONINCHECK(qQ,Color q)a({BOARD{q,b)A(MOVETO(b,vw,sq,sqx)a(Pos(q,sq)=x
a{Valueon(b,sq)svwa(Valueon(b, sqx)=KBA(VALUEK KBA~(Valuecolor vwsValuecolor
KB))))))))o>(Mover Move q=xv((EN_PASSANT(r,q)A{SQUARE_BETWEEN(sq,From Move q,
sqQx)VSQUARE _BETWEEN(sq,Takenon Move q,s$qx)))v((CASTLING(r,q)aAlsomover Move
qsvw)v(ORDINARY Move gASQUARE_BETWEEN(sq,From Move q,sax))))) (1)

By our assumption L1, we can eliminate the special move (capture en passant, castle) possibilities.

ssxsslabel L&:

ssssstauteq Mover Move qm=xvI(ORDINARY Move gaSQUARE_BE TWEEN (eq,From Move q.
xsgx)) L1,CALL_X,L2:13,15:16,%;

il Mover Move q-xv(ORDINARY Move QASQUARE_BETWEEN(sq,From Move g,sqx)) (1 7

Let use assume that the move was not a discavered check, but rather, that the checking piece, x,
made the last move, into the checking position. We call this assumption umpt/on.

sssxslabel umption:
& sssssassume Mover Move g=x;
; 22 Mover Move gq=x (22)

If the last move was not a pawn promotion, then x has the same value in g as it had in r.

sssss|abel sume;

sxsxsassume Veql. (MOVETO(Tboard q.vw,8q,8ql)a(~(Valueon{Tboard q,8ql)=MT)v
«MOVETO(Tboard q,vw,sqx,8ql)));

23 Ysql.(MOVETO(Tboard g, w.sq,sql):((valueon(Tboard q,sql)=sMT)vMOVETO(
Tboard q,vw,sqx,sql))) (23)

We assume that every square that this piece could have moved from, either is not empty, or also
checks the black king.

sxsssVE sume From Move qi
24 MOVETO(Tboard q,vw,sq,From Move q)>(=(Valueon(Tboard q,From Move q)=MT)v
MOVETO({ Tboard q,ww,sqx,From Move q)) (23)

sss22VE _MoveBack_ r,q,vw,To Move q,From Move q;
25 (SUCCESSOR(r, q)A(ORDXNARY Move gA-VALUEP vw)):(HOVETO(Tbolrd q,vw, To Move
q,From Move q)-HOVETO(Tboard r,vw,From Move q,To Move q))

34.2 Chess Lemmas and Theorems Page 99.

Now, most piece moves are commutative. We need only show that this (non-pawn valued) piece did
not just promote, and this value is also the value of the piece on the square sq in the boards of r
and q

xxxxxYE MCONSEGK r,q;

26 SIMPLELEGALMOVE(r,q)s(~(From Move q=To Move q)A(MOVETO(Tboard r,Valueon(
Tboard r,From Move q),From Move q,To Move q)A((SIMPLE Move gaValueon(Tboard
r,To Move q)=MT)v(CAPTURE Move qa(PIECEVALUES Valueon(Tboard r,To Move q)a-(
Valuecolor Valueon(Tboard r,To Move g)=Color r))))))

*xxxxYE MconsegmX r,q;
27 SUCCESSOR(r,q)>((CASTLE Move q=CASTLING(r,q))A((ENPASSANT Move gsEN_
PASSANT(r,q))A(ORDINARY Move qsSIMPLELEGALMOVE(r,q))))

sxxx%)abel LS;

*xxx*VYE UnpromotedFrom r,q,b,x, sq;

28 (SUCCESSOR(r,q)a(-WLASTRANK sgn(BOARD(q,b)a(Valueon(b,sq)=vwa(Pos(q,5q)=x
AMover Move q=x)))))>Valueon(Tboard r,From Move q)=vw

sxxxxVYE MOVETYPES] Move q;
29 ENPASSANT Move qv(CASTLE Move qvORDINARY Move q)

*xxxsVYE Unique q,To Move q,sq,x;
30 Pos(q,To Move q)=x>(Pos(q,sq)=xsTo Move g=sq)

sxsxstauteq ~{Valueon{Thoard q,From Move q)=MT)VMOVETO(Tboard q,vw,sqgx,From

xMove ¢) L1,CALL_X,L3,umption, sume+l:?:

.zl w(Valuegn(Tboard q,From Move q)=MT)vMOVETO(Tboard q,vw,sqx,From Move q)
172223

Now, the source square of this move is obviously empty. Hence, the MT squares of our assume sume
can be eliminated. The piece must be able to make the indicated move.

xxx2xVE ValueTranspositionC q,From Move qi
32 Valueon(Tboard q,From Move q)=Vai(q,Pos(q,From Move q))

sxsx2VE EmptyFrom q,Pos(q,From Move q),From Move qi
33 CHESSPIECES Pos(q,From Move q)>(Pos(q,From Move q)sPos(q,From Move q)>-(
From Move q=From Move q))

*xxx*YE EmptylsMT q,Pos(q,From Move q):
34 Pos(q,From Move q)=EMPTY=Val(q,Pos(q,From Move q))=MT

sxsxxVE NotChesspieceEmpty_ Pos(q,From Move q);
35 ~CHESSPIECES Pos(q,From Move q)=Pos(q,From Move q)=EMPTY

sxsxextauteq MOVETO(Tboarc q,vw,sqx,From Move q) 1144%:%;
36 MOVETO(Tboard q,vw,sqx,From Move q) (1 7 22 23)

The movement commutivity rules also hold for this MOVETO. We need to show that the values of the
pieces haven't changed by this last move. As the move was not a pawn promotion, this follows.

s«xx2xVYE _MoveBack_ r,q,vu,sqx,From Move q;
37 (SUCCESSOR(r,q)A(ORDINARY Move qa-~VALUEP vw))>(MOVETO(Tboard q,vw,sqx,
From Move q)=MOVETO(Tboard r,vw,From Move q,sqx))

¥

[

Page 100. Chess Lemmas and Theorems 3.4.2.

ssesetauteq MOVETO(Tboard r,vu,From Move q,sqx) L1,L5-1,L5+1,%t:1 %y
38 MOVETO(Tboard r,vw,From Move q,sqx) (1 7 22 23)

sxsssYE OtherSideStays r,q,sqx,BK;
39 (SUCCESSOR(r,q)Aa((WHITEPIECE BKaWHITETURN q)APos(q,sqx)=BK))>Pos(r,sqx)=
BK

sxaxsVE KingValueThm r,Tboard r,eqx;
40 (BOARD(r,Tboard r)a~(Valueon(Tboard r,sqx)=UD))>((Pos(r,sqx)sWKeValueon(
Tboard r,sqx)sKW)A(Pos(r,sqx)sBKeValueon(Tboard r.sqx)-xs)s

sxsss |abel L6;
sxsxsVYE BoardTboard r;
41 BOARD(r,Tboard r)

«xsssYE SUB_BOARDS2 Tboard r,sqx;
42 -(Valueon(Tboard r,sqx)=UD)

sxaxesimplify ~WHITEPIECE BKA~(KB=UD);
43 ~WHITEPIECE BKA-~(KB=UD)

sxx2sVE KingValueThm q,b, sqx;
44 (BOARD(q,b)a~(Valueon(b,sqx)sUD))>((Pos(q,sqx)sWKeValueon(b,sqx)=kW)a(Pos
(q,sqx)=BKsValueon(b,sqx)=KB))

Hence, black must also have been in check in the previous position.

sxssxtauteq Valueon(Tboard r,sqx)=KBa(Valueon(Tboard r,From Move q)=vua
*MOVETO (Tboard r,vu,From Move q,sqx)) L1,CALL_X,L2,umption,LS,ttteeee:

45 Valueon(Tboard r,sqx)=KBa(Valueon(Tboard r,From Move q)=vwaMOVETO(Tboard
r,vw,From Move q,sqx)) (1 7 22 23)

sxxxx3] 1 sqxesq2 From Move qesql vu

46 3Ivw sql sq2.(Valueon(Tboard r,sq2)=KBa(Valueon(Tboard r,sql)=svwaMOVETO(
Tboard r,vw,sql,sq2))) (1 7 22 23)

«xsx2VE CHECKERS2 Tboard r;

47 BLACKINCHECK Tboard re3wvw sql sq2.(Valueon(Tboard r,sq2)=KBa(Valueon(
Tboard r,sql)=vwaMOVETO(Tboard r,vw,sql,sq2)))

This is clearly impossible.

ssxx22VE AlternateBlack r,Tboard r;
48 (BOARD(r,Tboard r)ABLACKINCHECK Tboard r)>(POSITIONINCHECK(r,BLACK)A-
WHITETURN r)

sxsxxtauteq FALSE L1,L2,L3,L6, MMt
49 FALSE (1 7 22 23)

Therefore, we can negate our assumption that this cornered piece made the last move.

sxxxs-]| 1, ,Mover Move q=x;
50 -~(Mover Move q=x) (1 7 23)

We arrange this conclusion in a more useful form.

i ottt i comimnin

34.2 Chess Lemmas and Theorems Page 101.

ssssstaut (ORDINARY Move qASQUARE_BETWEEN(sq,From Move q,sqx))a-(Mover Move
sqex) L4,1;

51 (ORDINARY Move QASQUARE_BETWEEN(sq,From Move q,sqx))Aa-~(Mover Move q=x) (
17 23)

sxxxssubst CALL_X in *;

52 (())RDINARY Move QASQUARE_BETWEEN(sq,From Move q,sqx))a-~(Mover Move q=Pos(q
+$Q) (1 23)

R —— T T T

And, after removing the dependencies, we generalize.

sssss>| sumed?t;
53 Vsql.(MOVETO(Tboard q,vw,sq,sql)>{~(Valueon(Tboard q,sql)=MT)vMOVE TO(

Tboard q,vw,sqx,sql)))>((ORDINARY Move QASQUARE_BETWEEN(sq,From Move q,sgx))
an-~(Mover Move q#Pos(q,sq))) (1)

sxsxsd| L1ot;

54 (SUCCESSOR(r,q)A(-~EN_PASSANT(r,q)A(~CASTLING(r,q)n(~WLASTRANK sqa(BOARD(q
yb)a(Valueon(b,sq)zvwa(Valueon(b,sqx)sKBA(MOVETO(b,vw, sq, sqx)A-~VALUEP vw))))
))))>(VYsql.(MOVETO(Tboard q,vw,sq,sql)>(~(Valueon(Tboard q,sql)=MT)vMOVE TO(

Tboard q,vw,sqx,sql)))>((ORDINARY Move QASQUARE_BETWEEN(sq,From Move q,sgx))
A~(Mover Move q=Pos(q,sq))))

T

We call this theorem WhiteCornered. BlackCornered is the same theorem for black checking white.
We forego the repetition required for its proof.

E sxsx2label WhiteCornered:

sxxx2¥] T r q b vu sq sqgx;
55 Vr @ b vw sq sqx.((SUCCESSOR(r,q)A(~EN_PASSANT(r,q)a(~CASTLING(r,q)A(~
WLASTRANK sqa(BOARD(q,b)a(Valueon(b,sq)svwa(Valueon(b,sqx)=KBA(MOVETO(b, vw,
$Q,$qx)A-VALUEP vw))))))))>(VYsql.(MOVETO(Tboard q,vw,sq,sql)>(~(Valueon(
Tboard q,sql)=MT)vMOVETO(Tboard q,vw,sqx,sql)))>((ORDINARY Move qASQUARE_
BETWEEN(sq,From Move q,sax))Aa-~(Mover Move q=Pos(q,sq)))))

The corresponding result for checking the white king is:

define BlackCornered:

Vr q b vw sq sax.{(SUCCESSOR(r,q)n(=EN_PASSANT(r,q)A(~CASTLING(r,q)
A(-~WLASTRANK(sq)A((BOARD(q,b)a(Valueon(b,sq)=vwa(Valueon(b, sqx)=KBA
MOVETO(b,vw,sq,s$ax))))A-VALUEP ww)))))>(Vsql.(MOVETO(Tboard q,ww,
$q,8ql)>(~(Valueon(Tboard q,sql)=MT)vMOVETO(Tboard q,vw, sqx,sql)))>
((ORDINARY Move aASQUARE_BETWEEN(sq,From Move q,sqx))Aa-~(Mover Move
q=Pos(q,sq)))));;

Section 3.4.3 No Black Pawns on the First Row

A final annotated chess lemma. We prove the theorem NoB/ackPawnsOn1Row, which states that no
piece whose value is PB (black pawn) is ever in on any square of the board's first row. This is of
course true, as all the black pawns start on the second row, and, while they still have the value of
pawn, never move backwards.

An elenctic proof. We assume that such a condition exists. In some position p, a chesspiece x is to
have value PB. In p, x is on square sql. The row of sql is 1.

Page 102. Chess Lemmas and Theorems 3438

ssssslabel 1
sssss assume Val (p,x)=PBaAPos(p, 8ql)=x;
1 Val(p,x)=PBAaPos(p,sql)sx (1)

sss3sassume Row(sql)e=l;
2 Row sql=]l (2)

x must, of course, be a black piece.

ssssslabel [2:
sss3s2 VE ColorChoices p,x;
3 (BVALUES Val(p,x)sBLACKPIECE x)A(WVALUES Val(p,x)sWHITEPIECE x)

ssxsesimplify BVALUES PBAVALUEP PB
4 BVALUES PBAVALUEP P8

ssxssYE PieceChoices_ x;
5 (WHITEPIECE xmPiececolor xsWHITE)A(BLACKPIECE xsPiececolor xsBLACK)

ssxslabel L3;
ssess tauteq Piececolor x=BLACK L1,L2:%;
6 Piececolor xsBLACK (1)
Every piece started on some square. Let us call the square that x was on in the initial position, sg2.

ss3x2VE AlIStart_ x;
7 3sq.Pos(P0,sq)=x

*sx333E Y 8q2;
8 Pos(P0,sq2)=x (8)

If x has pawn value, it must be a pawn. Since x is a blackpiece, it must be a black pawn.

s*»22YE PaunValuedPaunsThm p, x;
9 VALUEP Val(p,x)>PAWNS x

ssxxsVYE BlackpiecePaunsAre_ x;
10 (BLACKPIECE xAPAWNS x)sBPAWNS x

Simplification tells us that all black pawns start in the second row.

ssssslabel L&;
*sx23% VE BlackPaunsOn2Start_ sq2;
11 BPAWNS Pos{P0,sq2)sRow sq2s2

ssxxstauteq Row(sq2)e2 L1,L2:1L2+2,L3+2:L4;
12 Row sq2s2 (1 8)

Each of eql and 8q2 is the composite of its row and column.

sxs33YE SQUARED] sq2;
13 sq2sMakesquare(Row 8q2,Column $q2)

sssssVE SQUAREDL sql;

e —. oo]

D i, b ..,_.-“' i i AR il

T

343 Chess Lemmas and Theorems Page 103.

14 sql=Makesquare(Row sql,Column sql)

ssesssubstr Mt in ™My
15 sq2=Makesquare(2,Column sq2) (1 8)

ssssssubstr Ll+l in ™
16 sql=Makesquare(l,Column sql) (2)

By the theorem _ PawnStructure_1, every path that a pawn takes must satisfy the predicate
MAY_PAWN_CAPTURES. We substitute the Makesquare value for sql and sq2 in this WFF.

ssxssVE _PaunStructure_l PB8,p,x,sql,sql;
17 (Pos(p,sql)=xa(Pos(P0,sq2)=xa(PREDEGAME(PO,p)AVALUEP Val(Prevpos p,x))))>
MAY_PAWN_CAPTURES(sq2,sql,Piececolor x)

sxssssubstr M? in * occ 2;
18 (Pos(p,sql)=xa(Pos(P0,sq2)=xa(PREDEGAME(PO,p)AVALUEP Val(Prevpos p,x))))>
MAY_PAWN_CAPTURES(Makesquare(2,Column sq2),sql,Piececolor x) 8)

sxesssubstr Mt in * occ 2

19 (Pos(p,sql)=xa(Pos(P0,sq2)=xA(PREDEGAME(PO,p)AVALUEP Val(Prevpos p,x))))>
MAY_PAWN_CAPTURES(Makesquare(2,Column sq2),Makesquare(l,Column sql),
Piececolor x) (1 2 8)

sxxsxlabel LS;
xxxxx substr L3 in 1
20 (Pos(p,sql)=xa(Pos(P0,sq2)=xA(PREDEGAME(PD,p)AVALUEP Val(Prevpos p,x))))>
?AY_Z_Pgt;N_CAPTURES(Hakosquare(Z,COIumn $q2),Makesquare(l,Column sql),BLACK)
1

We know P to have occurred in the game of p.

sasxxVE POSITION_RULES ps
21 SUCCESSOR(Prevpos p,p)APREDEGAME(PO,p)

And that if a piece has pawn value, it has always had pawn value.

xx2x2YE PreviousPaunValue Prevpos p,p,x:
22 Prevpos p=Prevpos p>(VALUEP Val(p,x)>VALUEP Val(Prevpos p,x))

Simplification reveals that there are no two squares satisfying the MAY_PAWN_CAPTUURES predicate
for black, such that the transition goes from the second row to the first. Thus, we have a

contradiction.

«xs22VYE NotMPC_Black2tol_ Column{sq2)},Columnisqlls
gs -m)\Y_PAwN_CAPTURES(Nakesquare(2.Column sq2),Makesquare(l,Column sql),
LACK

sxexstauteq FALSE L1,L2+1,L342,L5:1;
24 FALSE (1 2)

Our original assumption must be wrong. No piece with value black pawn can be on a square whose
row is one in any GAMEPOSITION.

T TR G i aead R e m_ﬁuq—u-p-u-.-........,__,_,_,,‘w

Page 104. Chess Lemmas and Theorems 3.4.3.

sssss~] T, Rowlsqgl)=l;
25 ~(Row sql=l) (1)

ssassd] L1o%;
26 (val(p,x)=PBAPos(p,sql)s=x)>~(Row sql=l)

ssssslabel [B3
ssass Y] * p eql:
27 Vp sql.((val(p,x)sPBaPos(p,sql)sx)>~(Row sql=l))

However, we wish to prove our theorem for all POSITIONS, not just GAMEPOSITIONs. Hence, we
must establish it for the initial position. This is trivial, as all black pawns are on the second row at
the beginning of the game, not the first. We first establish that all things with value of pawn black
in the initial position are the black pawns; we then instantiate our just concluded lemma to any
position, r, show by simplification that that if r is P3the theorem is still true. As all positions are
either GAMEPOSI TIONs or P8, we have our theorem.

ssssssimplify Vx, (Val (P@,x)=PBaBPALUNS x);
28 V¥x.(Val(P0,x)=PBuBPAWNS x)

ssassVE T x;
29 Val(P0,x)=PBuBPAWNS x

ssxxssimplify ~(2=1);

30 ~(2=1)

ssssstauteq (Val (P8, x)=PBAPos (P8, 8q2) ex)>~(Row(8q2)=l) L&, st
31 (Val(P0,x)=PBAPos(P0,sq2)=x)>~(Row sq2=])

sssssassume r=P0;
32 r=P0 (32)

sxssssubst T in M
33 (val(r,x)=PBaPos(r,sq2)=x)>~(Row sq2=1) (32)

sxxxed] MO
34 r=P0>((Val(r,x)=PBAPos(r,sq2)=x)>~(Row sq2=1))

xx233VYE L6 r,sq2;
35 GAMEPOSITION ro((Val(r,x)=PBAPos(r,sq2)=x)>~(Row sq2=1))

sxsxsYE POSITION_TYPES r;
36 =~(r=P0=sGAMEPOSITION r)

sssextaut (Val(r,x)=PBAPos (r,8q2) «x)>~(Rou(sq2)=l) %1%
37 (Val(r,x)sPBAPos(r,sq2)=x)>~(Row sq2sl)

sxseslavel NoBlackPaunsOnlRou;

sxses V] r x sqlesq;
38 Yr x sq.({(vVal(r,x)=PBaPos(r,sq)=x)>~(Row sqsl))

T e e

1. A FOL Solution to the Chess Puzzle Page 105.
Chapter 4 A FOL Solution to the Chess Puzzle
Systems of natural deduction . . . constitute a form

for the development of logic that is natural in many
respects. In the first place, there is a similarity
between natural deduction and intuitive, informal
reasoning. The inference rules of the systoms of
natural deduction correspond closely to procedures
common in intuitive reasoning, and when informal
proofs -- such as are encountered in mathomatics
Jor example -- are formalized within these systems,
the main structure of the informal proofs can often
bo preserved. This in itsolf gives the systems of
natural deduction an interest as an explication of
the informal concept of logical deduction.

Dag Prawitsd®

This chapter details our proof, in FOL, of the solution to the chess puzzle presented in section 1.6.
This proof follows closely with the solution presented in that section.

Section 4.1 Declarations for this Proof

First order logic is somewhat distinguished by the proliferation of constants. If one needs a new
entity, one creates a new constant; if a particular formula is a frequent referent, one defines a new
predicate to abbreviate that formula. This particular proof shall not spawn any new predicates for
the chess world. However, perhaps obviously, we shall need names for the individuals mentioned in
the problem and solution. More particularly, we define INDCONSTs for some of the more important
boards of section 1.6.

Most obviously, we need a constant to represent the puzzle board, the board illustrated in figure 29.
Let us call this individual GIVEN.

declare [NOCONST GIVEN ¢ BOARDS;

54 [Prowitz65), page 7.

i

Page 106. A FOL Solution to the Chess Puzzle 1.1

// / // ’/
7,80 7 &
/”/ / //12’ ;/ /

/

///,,;r;/ U W
R
s / " ,Eeal
/ / .& /&?
Ul Y Y

The board GIVEN
figure 29

The attachment to GIVEN is therefore:

attach GIVEN «[CHESS) ((MT MT NB RW MT MT MT KW) (PB KB MT RW PB MT PB MT)
(PB MT MT PB MT MT MT MT) (MT MT PB MT MT MT MT MT)
{MT MT PB MT MT MT MT UD) (MT PW MT PW MT MT PW MT)
(PW MT PW MT MT PW MT PW) (MT NB MT MT AT MT MT MT));

Our proof also dealt at length with the position of the board just prior to the last move. We
concluded that a white pawn on WQB7 had captured some black piece on BQl. We shall need to refer
to several of the possible identities of that piece. In the base situation, that piece is undefined, and
we get the board QBUD.55 When we wish to consider that piece a rook or a queen, we will use the
boards QBR and QBQ. Recalling the definitions of section 2.1.5, we see that QBUD is a sub-board of
both GBR and GBQ. QBUD is illustrated in figure 30.

declare INOCONST QBUD QBR QBQ ¢ BOARDS:

85, In this proof, we will refer 1o the position prasented in the problem ss px, ite previous position, qx. Thus, the name QBUD
signifies that this in position Qx, this Board is UnDefined on the interesting square (BQ1). Similarly, QBR hes o black rook on thet
square; QBQ, o black queen.

4.1. A FOL Solution to the Chess Puzzle Page 107.

//24,2», 7, %5
30 i ¢ /”
// ’ // W
'// 3¢ ’/ //
/ ///, //, %
/ﬁ/ / /”
i
/z’// ////, //

The board QBUD

figure 30

attach QBR « [CHESS] ((MT MT NB RB MT MT MT KW) (PB KB PW RW PB MT PB MT)
(PB MT MT PB MT MT MT MT) (MT MT PB MT MT MT MT MT)
(MT MT PB MT MT MT MT UD) (MT PW MT PW MT MT PW MT)
(PW MT PW MT MT PW MT PW) (MT NB MT MT MT MT MT MT)),

attach QBQ « [CHESS] ((MT MT NB QB MT MT MT KW) (PB KB PW RW PB MT PB MT)
(PB MT MT PB MT MT MT MT) (MT MT PB MT MT MT MT MT)
(MT MT PB MT MT MT MT UD) (MT PW MT PW MT MT PW MT)
(P MT PW MT MT PW MT PW) (MT NB MT MT MT MT MT MT)),

attach QBUD~ [CHESS] ((MT MT NB UD MT MT MT KW) (PB KB PW RW PB MT PB MT)
(PB MT MT PB MT MT MT MT) (MT MT PB MT MT MT MT MT)
(MT MT PB MT MT MT MT UD) (MT PW MT PW MT MT PW MT)
(PW MT PW MT MT PW MT PW) (MT NB MT MT MT MT MT MT)):

Section 4.2 The Proof

Declarations completed, we plunge forward into our proaf. One of the major propositions of this
paper is the existence of a correspondence between the Auman solution to our chess puzzie (presented
in 16.2), and our FOL encoding of that proof. In support of this hypothesis, this chapter is
organized like section 1.62; we number the description of our FOL proof to illustrate the

relationship.
Section 4.2.1 Black is in Check

We seek to prove that, if the given board (GIVEN) is the board of some legal position, and there is a
chesspiece on the square WKR4, then that piece must be the white queen’s bishop (WGB). Expressed as

a FOL WFF, this becomes:56
Yp. ((BOARD (p GIVEN)ACHESSPIECES Pos(p WKR4)) > Pos(p WKR4) = WQB)

It is therefore reasonable to begin our proof with the assumption of the antecedent of this WFF.
Rather than p, we select the distinctive parameter px to symbolize this original position. For future
reference, we label this line CALL_PX

sxxs¢|abel CALL PX;
££££zassume BDARD(px.GIVEN)ACHESSPlECES Pos (px,WKR4) ¢

56. Here we have begun by presuming that the given board is » posiiion of a GAMEPOSITION, not just any POSITIONS. This is,
of course, mmlly nnblnhod The only non GAMEPOSITION POSITIONS is PO, the initial (game starting) position. A quick consultation
to the simplifi ism will show they differ on many squares. Hence, we take the liberty of using px, rather than some

POSITIONS variable.

R ———

i v — - - o e

Page 108. A FOL Solution to the Chess Puzzle 12.1.

1 BOARD(px,GIVEN)ACHESSPIECES Pos(px,WKR4) (1)

l We see that, on the given board, the black king is in check (figure 31). We obtain this
through a single invocation of the simplification mechanism. Notice how we have transformed this
observation into a simple computation. We will use this computational ability in this proof whenever
possible; more particularly, when we have the ground instances (constants) to compute about, and
have the appropriate functions to do the computmg o

“f/ -
/ s X

17 9 / %
% 4 / %
Ya W %, %
/&/&/ﬂ

AR % %
7@% / 7,

Simplification sees the check of the black king.
figure 31

s2exs|abel BINCHECK:
ssssssimplify BLACKINCHECK GIVEN;
2 BLACKINCHECK GIVEN

11 One of the more trivial chess lemmas, AlternateBlack, informs us that any position which
has a BLACKINCHECK board must have black on move. Additionally, the lemma fills in the
POSITIONINCHECK predicate for us. Let us call this line BLACK_GOES.

szesxlabel BLACK COES;
sssexsVE AlternateBlack px,GIVEN;

3 (?OARD(px,GIVEN)ABLACKINCHECK GIVEN)>(POSITIONINCHECK(px,BLACK)A~WHITETURN
pX

1.2. If this position is black's turn, then white must have made the previous move. We want a
name for this position, too. We will call it gx. Implicit in using a name from the sort of
LEGALPOSI TION, rather from POSITIONS is the obligation to show that the stated position is not the
initial position. It is obvious to us that the board GIVEN was not achieved one move from the start
of the game. But to convince our proof checker, we invoke the lemma PREVLEGAL, which demands

57 We have tried to have all of the appropriate functions defined in our axiomatizetion (chapter 2). Occesionally, computing
something with the chess eye, and thersby conswdering sach case of s quantified WFF, would be 00 time coneuming. In those instances,
we may sttempt the proof through the vsusl deductive means.

421 A FOL Solution to the Chess Puztle Page 109.

the display of a black piece not on its original square. What piece to use? Kings are the easiest
commodity; from the lemma KingValueThm we know that any king valued piece must be the king,
and we can see (can simplify) the black king on BQN2.

sas3sVE KingValueThm px,GIVEN, BON2;
4 (BOARD(px,GIVEN)A-~(Valueon(GIVEN,BQN2)=UD))>((Pos(px,BQN2)sWKaValueon(
GIVEN,BQN2)sKW)A(Pos(px,BQN2Z)=BKeValueon(GIVEN,BQN2)=KB))

sesxssinplify
5 BOARD(px,GIVEN)>(~(Pos(px,BQN2)=WK)aPos(px,BQN2)=BK)

sssasYE PrevGameposition px,BAN2,BK;
6 (((WHITEPIECE BKeWHITETURN px)aPos{px,BQN2)sBK)A~(Pos(P0,BQN2)=BK))>3q.
Prevpos px=q

sssvasimplify T
7 (~WHITETURN pxaPos(px,BQN2)=BK)>3q.Prevpos px=q

ssseetaut 3q.Prevpos pxeq CALL_PX:BLACK_GOES, #1*, %
8 3q.Prevpos px=zq (1)

ssseslavel CALL QX:

sssss3E t qx;
9 Prevpos pxsgx (9)

It ts also useful to have around (for the conditional parts of various theorems) facts about the
ancestry and relationships of px and qx. We create and label these auxiliaries.

ssssslavel PXIS;
sesssYE POS N_RULES px;
10 SUCCESSOR(Prevpos px,px)APREDEGAME(PO,px)

ssesslabel QXIS;
sssseVE POSTTION_RULES qx;
11 SUCCESSOR(Prevpos qx,qx)APREDEGAME(PO,qx)

sssss |lavel PXSUC:
ssssstauteq SUCCESSOR (qx,px) CALL_QX:iPXIS;
12 SUCCESSOR(gx,px) (9)

Section 4.2.2 White's Last Move

2. Our attention turns to discovering white's last move, the one that put black into check. We
consider each of the possible checking maneuvers (castling rook makes the check, a pawn captured
en passant leaves a discovered check, the checking piece made the last move, and the piece that move
last discovered check) and discard the first three.

Page 110. A FOL Solution to the Chess Puzzle 4.2.2.

2.1 We wish to prove that white did not castle to reach this position. This is easy. We
observe that on GIVEN, a board of px, white's king is on BKR1. This is not, of course, a square a
castle can leave the king upon, (as the lemma WhiteCast/eThm informs us) (figure 32).

s B

¢ Ay ¢

'// / % //
W A '/ y
/1/ ////%
//g%g///%
/&// /? %
//z// / / ,
The king did not just castle. 3

figure 32

sssx3VE KingValueThm px,GIVEN,BKR1;
13 (BOARD(px GIVEN)A-(Vﬂueon(GIVEN BKR1)=UD))>((Pos(px,BKR1)=WKaValueon(
GIVEN, BKRX)-KV)A(Pos(px BKR1)sBKaValueon(GIVEN,BKR1)=KB))

sssssVYE UWhiteCastleThm gx,px,BKRl;
14 (SUCCESSOR(qgx,px)A(CASTLING(qx,px)A-WHITETURN px))>(Pos(px,BKR1)=WK>(BKR1
sWKN1vBKR1=WQB1))

sxexxsimplify M
15 BOARD(px,GIVEN)>(Pos(px,BKR1)=WKA~(Pos(px,BKR1)=BK))

sszxxsimplify M1
16 (SUCCESSOR(qx px)A(CASTLING(gx, px)A-WHITETURN px))>~(Pos(px,BKR1)=WK)

We can conclude, tautologically, that white did not just castle.
ssxxx | abel NOTPXCASTLE;

ssssstauteq —CASTLING (qx,px) CALL_PX:BLACK_GOES,PXSUC, 14:%;
17 ~CASTLING(ax,px) (1 9

2.2. Similarly, if white has just captured en passant, then he would have a pawn on black’s
third row (from the theorem WhiteEnPassantThm2). Since GIVEN is a board of px, and inspection
reveals neither an undefined piece on the third row, nor a white pawn, we can quickly dismiss en
passant capture as a possibility (figure 33).

k"’"' -
ol s i La SN asd

122 A FOL Solution to the Chess Puzzle Page 111

P R T

WAy 7 &

Yo 0 A
,7

/L’/

/ Y, / %
/3%3% il
WY

A A
% 1
I

/ / /
’//Q/ / /

No white pawns on black’s third row.
figure 33

/s

\\\}

\\V

sssseVE WhiteEnPassantThm2 qx px GIVEN;

18 (SUCCESSOR(qx,px)A(EN_PASSANT(qx,px)A~WHITETURN px))>(Ydcx.~(Valueon(

gi\IENs!;akcsquaro(s,dcx))-Pwvvnuoon(GIVEN.Hakosquaro(s.dcx))-UD)>~BOARD(px.
VEN

sxsxssimplify 1
19 (SUCCESSOR(qx,px)A(EN_PASSANT(qx,px)A~WHITETURN px))>~BOARD(px,GIVEN)

ssssslabel TPXEP;
sssss tauteq ASSANT (gx, px) CALL_PX:BLACK_GOES,PXSUC, *;
20 ~EN_PASSANT(gx,px) (1 9)

o = R
Page 112 A FOL Solution to the Chess Puzile 4221
Section 4.22.1 The Check Must Have Been Discovered
. Proving that the piece that moved last generated the check is more difficult. Knowing

chess, and with broad pattern recognition abilities, we can see that the checking white rook is
blocked on ever side except the king's, and that only moves that started with the king in check could

have lead him to that square (figure 34)
2/ //‘\/;«’
V o)
7,

&y
X
% X Y Y

s/,

777 /

/ V7 V7 /
DADAD, &,

7 2/ P27/ 777
AR R
AN A A/

The white rook is cornered.

figure 34

We have a theorem, WhiteCornered, with that effect: if a checking piece is trapped on all sides, then
that piece did not make the last move, but, rather, the check was a discovered check. (This is only
true with assumptions which eliminate the special moves.) The validity of this condition is obvious
on the problem board (GIVEN). However, some deduction is needed to show that it still holds on the
total board of px (which is not undefined on WKR4, the x-ed square.) We have shoved this deduction
to the background; it is presented in the lemma B8lockedGivenThm in section B.2. That derivation is
a good example of both the problems accruing to different representations of the same ob ject, and
the difficulties involved in proving predicates true on similar ob jects.

N

We invoke our theorem about cornered checking pieces.

ss222VE WhiteCornered qx px GIVEN RW BA2 BANZ;

21 (SUCCESSOR(qx,px)A(~EN_PASSANT(qx,px)A(~CASTLING(gx,px)A(~WLASTRANK BQ2A(
{BOARD(px,GIVEN)A(Valueon(GIVEN,BQ2)=RWA(Valueon(GIVEN,BQN2)=KBAMOVETO(GIVEN
,RW,BQ2,BQN2))))A~VALUEP RW)))))>(Vsg).(MOVETO(Tboard px,RW,BQ2,sql)>(~(
Valueon(Tboard px,sql)=MT)vMOVETO(Tboard px,RW,BQN2,sql)))>((ORDINARY Move
pXASQUARE _BE TWEEN(BQ2,From Move px,BQN2))Aa-~(Mover Move px=Pos(px,BQ2))))

Some of the antecedents of this WFF have been established 2arlier in this proof (such as the
successor relationship between qx and px, and the non castling nature of the last move). Others we
can see by observation. We need here observe that the checking piece is not on the last rank, it can
capture the king, and pieces on that board are where we claim them to be.

ssssxsimplify —WLASTRANK BQ2aValueon(GIVEN,BA2) =RWAValueon (GIVEN, BAN2) =KB
s+ AMOVETO (GIVEN, RW,BQ2, BAN2) A=VALUEP RW;
22 -WLASTRANK BQ2A(Valueon(GIVEN,BQ2)=RWA(Valueon(GIVEN,BQN2)=KBA(MOVETO(

PEUTR

’!lﬂll!ﬂlﬂl'lm e e o~ e : - o e

4.22.1. A FOL Solution to the Chess Puzzle Page 113.

GIVEN,RW,BQ2,BQN2)A-VALUEP RW)))

The quantified part of the conditional is obtained through the use of our lemma.

xxxxxVE BlockedGivenThm px;
23 BOARD(px,GIVEN)>Ysql.(MOVETO(Tboard px,RW,BQ2,sql)>(~(Valueon(Tboard px,
sql)=MT)vMOVETO(Tboard px,RW,BQN2,sql)))

24. Hence, the check was a discovered check; the piece that made the last move moved out
from between the king and rook.

sxxxx |abel ORDPX;

sxxsx tauteq 1T H242 M1, PXSUC,NOTPXEP,NOTPXCASTLE,CALL _PX;

; 24 (ORDINARY Move pxASQUARE_BETWEEN(BQZ,From Move px,BQN2))a~(Mover Move px=
Pos(px,8Q2)) (1)

Section 4.2.3 Which Piece Discovered the Check

Section 4.2.3.1 Where the Last Move Originated

3. We seek the identity of the piece that moved last.
3.1 We observe that there is only one square between the rook and the king, BaB2. If the
piece that moved last moved out from between them, if must have come from this square.

// 's B
A0 1.% 47

' 4,0
/, A // 7.
WA, x
| ////}///,// k-
Jal u '/ G
The FROM square of the move.

figure 35

txsxesimplify Ysq. (SQUARE_BETWEEN (BA2 sq BON2)>sq=BQB2) ;
25 Ysq.(SQUARE_BETWEEN(BQ2,sq,BQN2)>sq=BQB2)

sx22+2VE * From Move px;
26 SQUARE_BETWEEN(BQ2,From Move px,BQN2)>From Move px=BQB2

Page 114 A FOL Solution to the Chess Puzzle 1.2.3.1.

ssssslabel FROMPX;
ssssstauteq From Move px=BGB2 4,1
27 From Move px=BQB2 (1)

Section 4.2.3.2 The Last Move was a Pawn Promotion

32 Perhaps the last move was not special. We have already eliminated the possibility that the
move was a capture en passant or a castle. Let us assume that the last move was not a pawn
promotion.

We know several facts about all moves. In paiticular, moves are either castles, captures en passant,
or satisfy the SIMPLELEGALMOVE predicate.

ssxsxlabel MCONAPX:

sxxeeYE MCONSEQA qx px;

28 SUCCESSOR(ax,px)>((~WHITETURN qxsWHITETURN px)a(Prevpos px=qxa(-
POSITIONINCHECK(px,Color qx)a((WHITEPIECE Mover Move pxsWHITETURN qx)a(Pos(
qx,From Move px)=Mover Move pxa(Pos{px,To Move px)zMover Move pxa(Pos(px,
From Move px)=EMPTYA((CAPTURE Move pxaPos(qx,To Move px)=Taken Move px)a(
CASTLING(qx,px)v(EN_PASSANT(qx,px)vSIMPLELEGALMOVE(Qx,px)))))))))))

We have a lemma MovedValues (section A.7.2.1) applicable to this situation. It states that for all
ordinary, non-pawn promoting moves, the moving piece, with its current value, could MOVETO, on the
total board of the previous position, from the From square of that move, to the To square.
Additionally, when the ensuing position has black on move, then a white piece occupies the To
square of that raove (and similarly for white). We consider each of the white and undefined pieces

on GIVEN in turn (figure 36).
/ ll

/// n ;’7// ////
'///;// ﬁ//é%&
L |
R7 R/ 1t
/';4/ % %

W hich of those picces made the last move?

figure 36

R RIS —— B

T ———————

232, A FOL Solution to the Chess Puzzle Page 115.

sseveVE MovedValues qx px GIVEN BAB2 To Move px:

29 ((SUCCESSOR(ax,px)Aa(—=EN_PASSANT(ax,px)A(~CASTLING(gx,px)A(~PAWNPROM Move
pXABOARD(px,GIVEN)))))a(From Move pxeBQB2ATo Move px=To Move px))>(MOVETO(
Tboard qx,Val(px,Mover Move px),BQB2,To Move px)a(-~(Valueon(GIVEN,To Move px
y=UD)>(MOVETO(Tboard qx,Valueon{GIVEN,To Move px),B8QB2,To Move px)a((
WHITETURN px>BVALUES Valueon(GIVEN,To Move px))A(-WHITETURN pxoWVALUES
Valueon(GIVEN,To Move px))))))

33 There are ten white pieces on the board GIVEN. Could any of them have made the last
move, out from between the rook and the king?

sxeesVE GivenlV To Mave pxi

30 WVALUES Valueon(GIVEN,To Move px)>(To Move px=BKRlv(To Move px=BQlv(To
Move px=BQ2v(To Move pxsWQR2v(To Move px=WQN3v(To Move px=WQB2v(To Move px=
WQ3v(To Move pxsWKB2v(To Move px=WKN3vTo Move px=WKR2)))))))))

2.3.1 Obviously, the king on BKR1 could not have made that jump.

sxs22VE MayMove Tboard gx Valueon(GIVEN,To Move px) BQB2 BKRI;:

31 MOVETO(Tboard gqx,Valueon(GIVEN,To Move px),B8QB2,BKR]1)>(Column BQBZ2=Column
BKR1v(KNIGHTMOVE (8QB2,BKRI1)v(Row BQB2=Row BKR1v(SAMEDIAG(BQB2,BKR1)v(

KINGMOVE (BQB2,BKR1)v(TWOTOUCHING(Column BQB2,Column BKR1)A(WSUC(Row BQB2,Row
BKR1)vBSUC(Row BQB2,Row BKR1))))))))

sxsxxsimplify
32 ~MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,BKR1)

332 We check each of the white pawns on GIVEN, and observe (using our Chess Eye, the
simphification mechanism) that none of them could have just moved from BQB2.

sxxxxVE MayMove Tboard gx Valueon(GIVEN, To Move px) BQB2 WKB2;

33 MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WKB2)>(Column BQB2=Column
WKB2v (KNIGHTMOVE (BQB2,WKB2)v(Row BQB2=Row WKB2v(SAMEDIAG(BQB2,WKB2)v(

K INGMOVE (BQB2,WKB2)v(TWOTOUCHING(Column B8QB2,Column WKB2)A(WSUC(Row BQB2,Row
WKB2)vBSUC(Row BQB2,Row WKB2))))))))

sxxexsinplify
34 -MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQ82,WKB2)

sxeexVE MayMove Thoard qx Valueon(GIVEN,To Move px) BQBZ WQA3:

35 MOVETO(Tboard qx,Valueon(GIVEN,To Move px),B8Q82,WQ3)>(Column BQB2=Column
WQ3V(KNIGHTMOVE (B8QB2,WQ3)v(Row B8QB2=Row WQ3v(SAMEDIAG(BQB2,WQ3)v(KINGMOVE(
BQB2,WQ3)v(TWOTOUCHING(Column BQB2,Column WQ3)A(WSUC(Row BQB2,Row WQ3)vBSUC(
Row BQB2,Row WQ3))))))))

sxxaxsinplify 1
36 ~MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WQ3)

sxuseVE MayMove Tboard qx Valueon(GIVEN,To Move px) BQB2 WQN3:

37 MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WQN3)>(Column BQB2=Column
WQN3v(KNIGHTMOVE (B8QB2,WQN3)v(Row BQB2=Row WQN3v(SAMEDIAG(BQB2,WQN3)v(

K INGMOVE (BQB2,WQN3)v{ TWOTOUCHING(Column BQB2,Column WQN3)A(WSUC(Row BQB2,Row
WQN3)vBSUC(Row BQB2,Row WQN3))))))))

sessssimplify ™

=
3=

Page 116. A FOL Solution to the Chess Puzzle 4.2.3.2.

38 -~-MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WQN3)

sxxs2Y¥E MayMove Tboard gx Valueon(GIVEN,To Move px) BGB2 WORZ2;

39 MOVETO(Tboard qx,Valueon{GIVEN,To Move px),BQB2,WQR2)>(Column BQB2=Column
WQR2v(KNIGHTMOVE (BQB2,WQR2)v(Row BQB2=Row WQR2v(SAMEDIAG(BQB2,WQR2)v(

K INGMOVE {BQB2, WQR2)v(TWOTOUCHING(Column BQB2,Column WQR2)A(WSUC(Row BQBZ2,Row
WQR2)vBSUC(Row BQB2,Row WQR2))))))))

sxsxxsimplify
40 -MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WQR2)

Note that we are invoking two different lemmas here. MayMove is useful for showing that, between
a pair of squares, no piece can ever move. WhitePawnMovement (white pawn motion) is more
specific: it applies only to white pawns, and is basically a telescoping of the conditions on white pawn
movement (as defined in the axioms MOVING1 and PAWNMOVING) so that they can be checked in a

single simplification.

++#xxVE WhitePaunMovement Tboard gx GIVEN To Move px BGB2 WKRZ;

41 To Move pxsWKR2>(Valueon(GIVEN,WKR2)=PW>(MOVETO(Tboard qx,Valueon(GIVEN,
To Move px),BQB2,WKR2)=((Column BQB2zColumn WKR2A(WSUC(Row BQB2,Row WKR2)A
Valueon(Tboard qx,WKR2)=MT))v((Column BQB2=Column WKR2A(Row BQB2=7A(Valueon(
Tboard qx,Makesquare(6,Column BQB2))=MTARow WKR2=5)))v(Valueon(Tboard gx,
WKR2)=MTA(TWOTOUCHING(Column BQB2,Column WKR2)A(WSUC(Row BQBZ2,Row WKR2)A
BVALUES Valueon(Tboard qx,WKR2))))))))

xxs3x8implify T
42 To Move px=WKR2>-MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,WKR2)

sxx%3YE WhitePauntovement Tboard gqx GIVEN To Move px BUB2 WKN3;

43 To Move px=WKN3>(Valueon(GIVEN,WKN3)=PW>{MOVETO(Tboard gx,Valueon(GIVEN,
To Move px),BQB2,WKN3)s((Column BQB2=Column WKN3A(WSUC(Row BQB2,Row WKN3)a
Valueon(Tboard gx,WKN3)=MT))v((Column BQB2=Column WKN3A(Row BQB2=7A(Valueon(
Tboard gx,Makesquare(6,Column BQB2))=MTARow WKN3=5)))v(Valueon(Tboard qx,
WKN3)=MTA(TWOTOUCHING(Column BQB2,Column WKN3)A(WSUC(Row BQBZ,Row WKN3)A
BVALUES Valueon(Tboard qgx,WKN3))))))))

sxxxxsimplify T
44 To Move px=WKN3>-MOVETO(Tboard gx,Valueon(GIVEN,To Move px),BQB2,WKN3)

st2x:VYE WhitePaunMovement Tboard ax GIVEN To Move px BUB2 WQBZ;

45 To Move px=WQB2>(Valueon(GIVEN,WQB2)=PW>(MOVETO(Tboard qx,Valueon(GIVEN,
To Move px),BQB2,WQB2)=((Column BQB2=Column WQB2A(WSUC{Row BQB2,Row WQB2)A
Valueon(Tboard qx,WQB2)=MT))v({(Column BQB2=Column WQB2A(Row BQB2=7A(Valueon(
Tboard qx,Makesquare(6,Column BQB2))=MTARow WQB2=5)))v(Valueon(Tboard gx,
WQB2)=MTA(TWOTOUCHING(Column BQB2,Column WQBZ)A(WSUC(Row BQB2,Row WQBZ2 n
BVALUES Valueon(Tboard qx,wQ82))))))))

sxxxxsimplify 1
46 To Move px=WQB2>-MOVETO(Tboard gx,Valueon(GIVEN,To Move px),BQB2Z,WQBZ)

3.3.3. We have already eliminated the checking rook as the moving piece in the last move.

sssxxassume To Move px=BQ2;
47 To Move px=BQ2 (47)

‘ e £t S A R " T : o “ R T

4232 A FOL Solution to the Chess Puzzle Page 117.

ssssssubst * [N ORDPX;
48 (ORDINARY Move pxASQUARE_BETWEEN(To Move px,From Move px,BQN2))Aa~(Mover
Move px=Pos(px,To Move px)) (1 47)

sssssd| MOt
49 To Move px=RQ2>((ORDINARY Move pxASQUARE_BETWEEN(To Move px,From Move px,
BQN2))a~(Mover tiove px=Pos(px,To Move px))) (1)

234 Nor could the rook on BQl, if it was a rook in the last position, have moved on the
diagonal.

«ssxsVE MOVING2 Tbhoard qx BQB2 BQl:

50 ORTHO(Tboard qx,BQB2,BQl)s(~(BQB2=BQl)A((Column BQB2=Column BQlAYsq3. ((
BETWEEN(Row BQB2,Row sq3,Row BQl)aColumn sq3=Column BQB2)>Valueon(Tboard qx,
$q3)=MT))v(Row BQB2=Row BQlAVsq3.((BETWEEN(Column BQB2,Column sq3,Column BQl
)ARow sq3=Row BQB2)>Valueon(Tboard gx,sq3)=MT))))

sss2ssimplify ~Column BAB2=Column BAlA-Rou BAB2=Row BQAlA

* Valueon(GIVEN,BGQ1) «RWAVALUER RWA-VALUEB RWA-VALUEN RWA-VALUEK RuWA

* -VALUEP RWA-VALUEQ RW;

51 ~(Column BQB2z=Column BQl)A(~(Row BQB2=Row BQl)a(Valueon(GIVEN,BQl)=RWA(
VALUER RWA(~VALUEB RWA(-~VALUEN RWA(~VALUEK RWA(~VALUEP RWA-VALUEQ RW)))))))

sssesVE MOVINGl Tboard qx Valueon(GIVEN BQl) BQB2 BQl:

52 MOVETO(Tboard qx,Valueon(GIVEN,BQ1),BQB2,8Q1)=((VALUER Valueon(GIVEN,BQl)
AORTHO(Tboard qx,B8QB2,8Q1))v((VALUEB Valueon(GIVEN,BQl)ADIAG(Tboard qx,BQBZ,
8Q1))v((VALUEQ Valueon(GIVEN,BQl)AORTHO(Tboard qx,BQB2,8Q1))v((VALUEQ
Valueon(GIVEN,BQl)ADIAG(Tboard qx,BQB2,BQ1))v((VALUEK Valueon(GIVEN,BQl)A
KINGMOVE (BQB2,BQ1))v((VALUEN Valueon(GIVEN,BQl)AKNIGHTMOVE(BQB2,BQ1))v(
VALUEP Valueon(GIVEN,BQl)APAWNMOVE (Tboard qx,Valueon(GIVEN,BQ1),BQB2,8Q1))))

))))

sxsxrassume To Move px=BQl:
53 To Move px=BQl (53)

ssssssubst * [N M OCC 1,2

54 MOVETO(Tboard qx,Valueon(GIVEN,To Move px),BQB2,To Move px)=((VALUER
Valueon(GIVEN,BQl)AORTHO(Tboard qx,BQB2,BQ1))v((VALUEB Valueon(GIVEN,BQl)A
DIAG(Tboard qx,BQB2,BQl))v((VALUEQ Valueon(GIVEN,BQ1)AORTHO(Tboard qx,BQB2,
8Q1))v((VALUEQ Valueon(GIVEN,BQl)ADIAG(Tboard qx,BQB2,BQl))v((VALUEK Valueon
(GIVEN, BQ1)AKINGMOVE (BQB2,BQ1))v((VALUEN Valueon(GIVEN,BQ1)AKNIGHTMOVE (BQB?2,
8Q1))v(VALUEP Valueon(GIVEN,BQl)APAWNMOVE(Tboard qx,Valueon(GIVEN,BQl),BQB2,

8Q1)))))))) (53)

sxxxsd| Moty

55 To Move px=BQ1>(MOVETO(Tbhoard qx,Valueon(GIVEN,To Move px),BQB2,To Move
px)= ((VALUER Valueon(GIVEN,BQ1)AORTHO(Tboard qx,BQB2,B8Q1))v((VALUEB Valueon(
GIVEN,BQI)ADIAG(Tboard qx,BQB2,BQ1))v((VALUEQ Valueon(GIVEN,BQ1)AORTHO(
Thoard qx,BQB82,8Q1))v((VALUEQ Valueon(GIVEN,BQ1)ADIAG(Tboard qx,BQB2,BQ1))v(
(VALUEK Valueon(GIVEN,BQ1)AKINGMOVE(8QB2,8Q1))v((VALUEN Valueon(GIVEN,BQl)A
KNIGHTMOVE (BQB2,8Q1))v(VALUEP Valueon(GIVEN,BQI)APAWNMOVE(Tboard qx,Valueon(
GIVEN,BQ1),8Q82,8Q1)))))))))

3.3.5. We have shown that (if the last move was not a pawn promotion), none of the white pieces
on the board could have moved out from between the rook and king, discovering the check. We

e —

Page 118 A FOL Solution to the Chess Puzzie 1232

must also consider each of the undefined pieces on GIVEN. We can see (simplify) that there 1s only

one such piece, and can show that, (if it was white) it was also incapable (no matter what value it
f might have had) of discovering the check. Once again we turn to the lemma MovedValues, and
; observe that no piece can make that giant knight's move.

sssssVE GivenlUD To Move px;
56 Valueon(GIVEN,To Move px)=zUDaTo Move px=WKR4

ssseeVE MayMove Tboard qx Valueon(Tboard gx From Move px) BOB2 WKR&;

57 MOVETO(Tboard qx,Valueon(Tboard gx,From Move px),BQB2,WKR4)>(Column BQB2=
‘ Column WKR4v(KNIGHTMOVE(BQB2,WKR4)v(Row BQB2=Row WKRAv (SAMEDIAG(BQB2, WKR4)v(
‘ K INGMOVE (BQB2, WKR4)v (TWOTOUCHING(Column 8QB2,Column WKR4)A(WSUC(Row B8QB2,Row
| WKR4)vBSUC(Row BQB2,Row WKR4))))))))

P ssesesimplify t;
58 -MOVETO(Tboard qx,Valueon(Tboard qx,From Move px),B8Q82,WKR4)

sseeeVE MCONSEQK qx px;

‘ 59 SIMPLELEGALMOVE(qx,px)s(~(From Move pxsTo Move px)A(MOVETO(Tboard gx,

| Valueon(Tboard gx,From Move px),From Move px,To Move px)A((SIMPLE Move PXA
E Valueon(Tboard qx,To Move px)sMT)v(CAPTURE Move pxa(PIECEVALUES Valueon(

;t)n;ard ax,To Move px)a~(Valuecolor Valueon(Tboard qx,To Move px)=Color gx)))

34 It therefore tautologically follows (all other alternatives having been disposed), that the last
move must have been a pawn promotion

sssss)abel PROMPX;
ssesetauteq PAUNPROM Move px

* PXSUC, NOTPXCASTLE, NOTPXEP, FROMPX, CALL _PX, BLACK_GOES, BINCHECK,
f 2 MCONAPX, 29, 30, 32, 34, 36, 38, 48, 42, 44, 46,49,58,51,55,56,58,59;
60 PAWNPROM Move px (1)

] Section 4.24 How the Pawn Promoted

1 The promoting pawn could, of course, have moved to only one of three squares. In any
case, the square he moved to must now have a white piece on it. We prove a lemma (section B.3) to
condense this computation. This lemma states that, for any position just reached by a pawn
promotion, a promoting white pawn on BABZ could have moved to one of three squares, BGB1 by a
simple move, or BON1 or BQ1 by a capture. In either case, there is now a white piece on any board
of that position (that isn't undefined on those squares). In the latter case, there must have been a
black piece on the capture square of the previous position's board.

sseesVE PXPaunTo qx,px,GIVEN;

61 (SUCCESSOR(qx,px)A(~CASTLING(qx,px)A(~EN_PASSANT(qx,px)A(PAWNPROM Move px
A(~-WHITETURN pxa(From Move px=B8QB2ABOARD(px,GIVEN)))))))>((To Move px=BQNlA(
(WVALUES Valueon(GIVEN,BQN1)vValueon(GIVEN,BQN1)=UD)ABVALUES Valueon(Tboard
qx,To Move px)))v((To Move px=BQIA((WVALUES Valueon(GIVEN,BQl)vValueon(GIVEN
+BQ1)=UD)ABVALUES Valueon(Tboard gx,To Move px)))v(To Move px=BQBIa(WVALUES
Valueon(GIVEN,BQBI1)vValueon(GIVEN,B8QB1)=UD))))

4.1 We observe that only one of these three squares has a white piece on it on the board
GIVEN.

x
1
3

124 A FOL Solution to the Chess Puztle Page 119.

ssssssinplify 1

62 (SUCCESSOR(ax,px)A(~CASTLING(qx,px)A(-~EN_PASSANT(qx
A(~WHITETURN pxa(From Move px=BQB2ABOARD(px,GIVEN)))))
BVALUES Valueon(Tboard qx,To Move px))

pXx)A(PAWNPROM Move px
)»>

5 (To Move pxs=BQla

3, Hence, the destination (To) square of the last move must have been BQl. Additionally, this
pawn promotion resulted in the capture of some black piece.

ssexsVE ValueTranspositionC qx,To Move pxt
63 Valueon(Tboard gx,To Move px)zVal(qx,Pos(qx,To Move px))

sssesVE ColorChoices qx,Pos(qx,To Move px);
64 (BVALUES Val(gx,Pos(qx,To Move px))wBLACKPIECE Pos(qx,To Move px))Aa(
WVALUES Val(gx,Pos(gx,To Move px))sWHITEPIECE Pos(qx,To Move px))

esesetauteq To Move px=BQlABLACKPIECE Pos(qx,To Move px) A

* BVALUES Valueon(Tboard qx To Move px)

¢ CALL_PX:BLACK GOES,PXSUC,NOTPXCASTLE,NOTPXEP, FROMPX, PROMPX, #4411

65 To Move px=BQIA(BLACKPIECE Pos(qx,To Move px)ABVALUES Valueon(Tboard qx,
To Move px)) (1 9)

eexes label TOPX;
ssess taut T:41 1
66 To Move px=8Q1 (1)

Let us call that black piece zb.

se2estouteq Poslgx To Move px)=Pos(gx To Move px)
67 Pos{qx,To Move px)=zPos(qx,To Move px)

sxexed| t, T:1#2 « 20 OCC 23
68 BLACKPIECE Pos(qx,To Move px)>3zb.Pos(qx,To Move px)=zb

sxeextaut 3zb.Pos(gx To Move px)ezb ¢, 1114,
69 3zb.Pos(qx,To Move px)=zb (1 9)

sxexelabel CALL_ZB:

sxaxsJE T zbg
70 Pos(qx,To Move px)=zb (70)

We proceed to seek the identity of the captured black piece.

5.1 Black's king is on BAN2. As white moved last, and didn't capture this king, we know that
he was on BGN2 in qx. A black king that just castled would not be on this square. Hence, we can
conclude that black has not just finished a castling move.

sxxexlabel PX_BK:

seee2VE KingValueThm px,GIVEN, BON2;

71 (BOARD(px,GIVEN)A~(Valueon(GIVEN,BQN2)=UD))>((Pos(px,BQN2)=WKaValueon(
GIVEN,BQN2)sKW)A(Pos(px,BQN2)sBKeValueon(GIVEN,BQN2)sKB))

seaxsVE OtherSideStays qx,px,BAN2,BK;
72 (SUCCESSOR(qQx,px)A((WHITEPIECE BKuWHITETURN px)aPos(px,BQN2)=BK))>Pos(qx,

BQN2)=BK

T

Page 120. A FOL Solution to the Chess Puzile 124

ssexsVYE BlackCastieThm Prevpos qx, qx,BAN2;
73 (SUCCESSOR(Prevpos ax,ax)A(CASTLING(Prevpos qx,qx)AWHITETURN gx))>(Pos(ax
+BQN2)=BK>(BQN2=BKN1vBQN2=8QB1))

ssxsxsimplify Valueon(G]VEN, BQN2) «KBA-KB=UDA-WH] TEPIECE BKA
* -8AN2=BKN1 A~BQN2=BQB1
;33\{: ;ggon (GIVEN,BQN2)=KBA(~(KB2UD)A(~WHITEPIECE BKA(~(BQN2sBKN1)A~(BQN2=

sssselabel NOTQXCASTLE:

ssxsss tauteq -CASTLING (Prevpos qx qx)

5 PXSUC, CALL _PX, BINCHECK, BLACK_GOES, MCONAPX,QX1S, 4111: 1;
75 ~CASTLING(Prevpos qx,qx) (1 9)

Proving that black's last move was not an en passant capture is slightly more difficult. More
particularly, we must account for either each of his pawns, each of the squares that a black pawn,
capturing en passant, would land in, or demonstrate the existence of all of the white pawns.
However, it is sufficient for our purposes to show that if QBUD is a board of qx, then a capture en
passant was not just completed.

sxsxxVE BlackEnPassantThn2 Prevpos ax qx QBUD;

76 (SUCCESSOR(Prevpos qx,qx)a(EN_PASSANT(Prevpos qx,qx)AWHITETURN gx))>(VYdcx
.~(Valueon(QBUD,Makesquare(6,dcx))=PBvValueon(QBUD,Makesquare(6,dcx))=UD)o~
BOARD(qx,QBUD))

sxxxxsimplify 1
77 (SUCCESSOR(Prevpos qx,qx)A(EN_PASSANT(Prevpos gx,qx)AWHITETURN gx))o-
BOARD(qx,QBUD)

sxsex label NOTQBUDEP:
sasse tauteq BOARD(qx QBUD)>~EN_PASSANT (Prevpos qx qx)
* *,PXSUC, QX1S, MCONAPX, BLACK _GOES, CALL _PX,BINCHECK}

78 BOARD(qx,QBUD)>~EN_PASSANT(Prevpos qx,qx) (1 9)
Section 4.2.4.1 The Pawn Did Not Capture a Rook or Queen

5.2 We proceed by assuming the promoting white pawn captured a black rook or queen
(valued) piece on BQl. This part of the proof is the first time we employ any of the move undoing
functions, UNMK__MOVE. The axiom delimiting their use requires we establish the sort of the last
move.

We know that all pawn promotions are ordinary moves, and that any move (by white) to a square
occupied by a black piece is a capture.

sxesesimplify Ympp.OROINARY mpp:
79 Ympp .ORDINARY mpp

sxexsVE T Move px;
80 PAWNPROM Move px>ORDINARY Move px

ssx22YE BlackCapturedThm px To Move pxi
81 To Move pxsTo Move px>((ORDINARY Move pxABVALUES Valueon(Tboard Prevpos
px,To Move px))>CAPTURE Move px)

e p——— e T

T

g

e EEEE————

ey

R e T e ——

424.1. A FOL Solution to the Chess Puzzle Page 121.

sxssslabel CAPTURE PX;

ssssssubstr CALL_QX IN %

82 To Move px=To Move px>((ORDINARY Move pxABVALUES Valueon(Tboard gx,To
Move px))>CAPTURE Move px) (9)

We can therefore conclude that the last move was a capturing pawn promotion.

ssss3sYE CAPPP_Sor tThm Move px;
83 (PAWNPROM Move pxaCAPTURE Move px)>CAPPP Move px

sssss |abel CAPPPPX;
sssss tauteq CAPPP Move px %, 11,1114, TOPX-1,PROMPX;
84 CAPPP Move px (1)

If the last move (the capturing pawn promotion) captured a black rook, then the board QBR was a
board of that position. If it captured a queen, then QBQ,

sxeesVE UNDO4 gx px GIVEN BQB2 BQl RB:;

85 (SUCCESSOR(qx,px)a(BOARD(px,GIVEN)A(CAPPP Move pxa(Val(qx,Taken Move px)=
RBA(From Move px=BQB2ATo Move px=BQl)))))>BOARD(qx,Unmkcapppmove(GIVEN,BQBZ,
8Q1,RB))

ssexeYE UNDO4 qx px GIVEN BGB2 BQl Q@B;

86 (SUCCESSOR(qx,px)A(BOARD(px,GIVEN)A(CAPPP Move pxa(Val(qx,Taken Move px)=
QBA(From Move px=8QB2ATo Move px=BQl)))))>BOARD(qx,Unmkcapppmove(GIVEN,BQBZ,
8Q1,Q8))

The board GBUD is a sub-board of both.

sxexxsimplify t:#24#2=-0BRA%: #242-QBAASUBOARD (QBUD, QBQ) ASUBOARD (QBUD, GBR) 3
87 Unmkcapppmove(GIVEN,BQB2,B8Q1,RB)=QBRA(Unmkcapppmove(GIVEN,BQB2,8Q1,Q8)=
QBQA(SUBOARD(QBUD,QBQ)ASUBOARD(QBUD,QBR)))

xx22xVE SubboardTransitivityX QBUD GBQ qx;
88 (SUBOARD(QBUD,QBQ)ABOARD(qx,QBQ))>BOARD(qx,QBUD)

*x22sVE SubboardTransitivityX GBUD QBR qx;
89 (SUBOARD(QBUD,QBR)ABOARD(qx,QBR))>BOARD(qx,QBUD)

Therefore, if the captured piece (zb) was rook valued, GBR is a board of qx; if queen valued, GBQ.
In either case, GBUD is a board of gx.

sssss tauteq (Val (qx Taken Move px)=RB > BOARD(gx GBR)) A

* (Val (gqx Taken Move px)=QB > BOARD(gqx QBQ)) A
. ((Val (gx Taken Move px)=RB vVal(qx Taken Move px)=QB) >
* BOARD (qx QBUD))

* 244421, PXSUC, CALL _PX, FROMPX, TOPX;

90 (Val(qx,Taken Move px)=RB>BOARD(qx,QBR))A((Val(qgx,Taken Move px)=QB>BOARD

()c)v)t.o?())()’;;((vn(qx.hken Move px)=RBvVal(qx,Taken Move px)=QB)>BOARD(qx,QBUD
1

We know that the captured piece of position px was zb. We substitute that equivalence into the
previous conclusion.

I P Page 122. A FOL Solution to the Chess Puzzle 1.2.4.1.

ssssstauteq Taken Move px = zb
. MCONAPX PXSUC,CAPTURE_PX,CAPTURE_PX-2, PROMPX,TOPX-1,CALL_ZB;
91 Taken Move pxs=zb (1 9 70)

sssss |abel QB_QQ!T%U

sss3s substr 1)

92 (Val(qx,2b)=RB>BOARD(qx,QBR))A((Val(qx,zb)=QB>BOARD(qx,QBQ))a((Val(qgx,zb)
sRBvVal(qx,2b)=QB)>B0ARD(qx,Q8uUD))) (1 9 70)

: Section 4.2.4.1.1 The Cornered Rook or Queen

: 3.2.1 Just as the white rook on BA2 was comered, unable to have moved into its check, the
& (presumed) black rook or queen on BQl is cornered. We use the same theorem to show its last move

was a discovered check.

72W 7, &
\ X 2 h /’”// ///x
f / /’f W %]
| //;/// U, %
// ,& // il ///, /&/g

///

Tha chcc&m; queen is crappad.
Sfigure 37

S e

sxs23VE BlackCornered Prevpos gx qx QBQ OB BQl BKRl;

93 (SUCCESSOR(Prevpos qx,qx)Aa(~EN_PASSANT(Prevpos qx,qx)A(-~CASTLING(Prevpos
qx.qx)A(-BLASTRANK BQlA((BOARD(qx,QB8Q)Aa(Valueon(QBQ,BQl)=QBA(Valueon(QBQ,
BKR1)=KWAMOVETO(QBQ,QB,8Q1,BKR1))))A=VALUEP QB)))))>(¥sql.(MOVETO(Tboard ax,
QB,BQ1,sql)>(~(Valueon(Tboard qx,sql)=MT)vMOVETO(Tboard qx,QB,BKR1,sql)))>((
Oﬂoggll\i;;)r;ove QxASQUARE_BETWEEN(BQ1,From Move gx,BKR1))Aa~(Mover Move qx=Pos(
1 qx,

sxs33VE BlackCornered Prevpos gx gx OQBR RB BQl BKR1;

94 (SUCCESSOR(Prevpos qx,qx)A(~EN_PASSANT(Prevpos qx,qx)A(~CASTLING(Prevpos
ax,qx)A(~BLASTRANK BQIlAa((BOARD(qx,QBR)A(Valueon{QBR, BQl)-RBA(VaIueon(OBR
BKR1)=KWAMOVETO(QBR,RB,BQ1,BKR]))))A-VALUEP RB)))))D(Vsql (MOVETO(Tboard qx,
R8,BQl, sql):(-v(vnuoon('rboard qx,$ql)=MT)VMOVETO(Tboard qx,RB,BKR1,sql)))o((
ORDggll\%)l;ovo QXASQUARE. BETUEEN(BQI From Move qx, BKRI))A"(HOVOI‘ Hovo qx=Pos(
ax,

A IPPR—

124.1.1 A FOL Solution to the Chess Puzzle Page 123.

The quantified po:tion of the premise of this WFF is somewhat more complex. We need to prove
theorems about the movements of the pieces on the total boards of gx, when we have only partial
boards. Once again, we retreat to the security of a lemma. The theorem
TRAPPED_QX__BQ1_THM, proven in section B.4, shows that, for any position which has QBUD as a
board, a rook or queen valued piece is comered on BQL, in just the form we need for steps 93 and 94.

ssss3sVE Trapped_QX_QBl1_Thm gx QB;
95 BOARD(qx,OBUD)J((08=R8v08=05)>¥sql.(nOVETO(Tboard qQx,QB,BQl,sql)>(~(
Valueon(Tboard qx,sql)=MT)vMOVETO(Tboard gx,QB,BKR1,sql))))

ssss2VE Trapped_QOX_QBl1_Thm qx RB;
96 BOARD(qx,QBUD)>((RB=RBvRB=QB)>Vsql.(MOVETO(Tboard qx,RB,8Q1,sql)o(~(
Valueon(Tboard ax,sql)=MT)vMOVETO(Tboard qx,RB,BKR1,sql))))

Other conditions for this theorem are more easily established. For example, we can observe that, on
both BAR and BB, the white king on BKR1 is checked by a black officer on BQl. We imply that this
officer did not just complete a promotion move.

ssssssimplify ~-BLASTRANK BQlA-VALUEP QBA-YALUEP RBAMOVETO (QBR,RB,BQ1,BKR1)

* ~MOVETO (QBQ, QB, BQ1,BKR1) AValueon (QBQ,BA1) =0BAVal ueon (GBR, BQ1) =RB

* aAValueon (QBQA,BKR1) =KWAValueon (QBR, BKR1) «KW;

97 ~BLASTRANK BQIA(-VALUEP QBA(~VALUEP RBA(MOVETO(QBR,RB,BQl,BKR1)A(MOVETO(
Q8Q,Q8B,B8Q1,BKR1)a(Valueon(QBQ,BQl)=QBA(Valueon(QBR,BQ1)=RBA(Valueon(QBQ, BKR1
)=KWAValueon(QBR,BKR1)=KW)))))))

3.2 It therefore tautologically follows that, if zb was a black rook or queen, the check must
have been a discovered check.

sxzes|abel DISQX;

sesss tauteq (Val (qx,zb)=RBvVal (gx, z2b) =QB) > ((ORDINARY Move gxa

*+ SQUARE_BETWEEN(BQl,From Move qx,BKR1))a-Mover Move qx=Pos (qx,BQ1))

* UX1S,NOTQXCASTLE,NOTQBUDEP, QBUDLBL: 1;

98 (Val(agx,zb)=RBvVal(qx,zb)=QB)>((ORDINARY Move QXASQUARE_BETWEEN(BQ1,From
Move qx,BKR1))A-~(Mover Move gx=Pos(qx,BQl))) (1 9 70)

Section 4.2.4.1.2 Which Piece Discovered the Check

We have concluded that the discovering move must have started upon a square between the
(presumed) queen (or rook), and the white king. We consult the simplification mechanism, which
informs us that the only squares between these two are BK1, BKB1, and BKN1. Hence, (if the captured
piece had rook or queen value), one of these squares must have been the From square of the last
move (figure 38).

Page 124. A FOL Solution to the Chess Puitle 124.12

“1/ A ////
%7

{f a black piecce moucd to discover check,
then it moved [rom one of these squares.

figure 38

svexesimplify Vsq. (SQUARE_BETWEEN(BQ1, 8q,BKR1)>(sq=BKlv(sq=BKBl1veq=BKN1))) ;
99 Vsq.(SQUARE_BETWEEN(BQI, sq. BKRI):(SQSBKIV(SQGBKBIVSQIBKNI)))

sxeesVE * From Move qx;

100 SQUARE_BETWEEN(BQl,From Move qx,BKR1)>(From Move qx=BKlv(From Move qx= N
BKBlvFrom Move qx=BKNl))

f 5.3.1. So we must consider each of the black (possibly) pieces, to determine if any of them could

| have moved from one of these three squares on the last move. The theorem NotBPFrom1Thm is

E useful in this respect. From several suitable premises (black’s move, the source square of the move 1s
on the first row, and this 1sn't a specia! move) it permits various useful conclusions. Most relevantly,

i it asserts that the destination of the last move is now either occupied by a non-pawn, black value, or

E by the undefined value, and that the last move needed to satisfy several MOVETO conditions.

E

|

|

k

|

sxsssVE NotBPFroml Thm qx,QBUD:

101 (~CASTLING(Prevpos qx,ax)a(BOARD(qx,QBUD)A(~EN_PASSANT(Prevpos qx,qx)a(
WHITETURN qxaRow From Move qgx=1))))>((~(Valueon(QBUD,To Move qx)=UD)>MOVETO(
Tboard Prevpos qx,Valueon(QBUD,To Move qx),From Move qx,To Move qx))Aa{(-
PAWNPROM Move qxn(MOVETO(Tboard Prevpos qx,Val(Prevpos qx,Mover Move qx),

From Move qx,To Move gqx)a{-={Valueon(QBUD,To Move qx)=UD)>(-~VALUEP Valueon(
QBUD, To Move qx)ABVALUES Valueon(QBUD,To Move gx))))))

i This simphifies our task enormously. There are now only four possible destination squares for the
' last move, BAN2, occupied by the black king, BGB1 and WONI, occupied by black knights, and, of
f course, WKR4, whose occupant is still unclear. The other undefined square (of the partial board we
compute upon), BQl, has already been dismissed as a possible destination.

424.1.2 A FOL Solution to the Chess Puzzle Page 125.

77 < V&Y i
\ 2"“//;'72;/?1’«,// %1’.5////
27, X ., 7
52//7//;; // r/zlé/// /%////% ‘
A% % B
/',/-,/, % ; @%

N

The squares that need checking.
figure 39

ssssssimplify Vsq. ((BVALUES Valueon(QBUD, sq) A~YALUEP VYalueon(QBUD, sq))> ;

* (sq=BAN2v (sq=BQAB1vsq=WQAN1))) ;
102 Vsq.((BVALUES Valueon(QBUD,sq)A~VALUEP Valueon(QBUD,sq))>(sq=BQN2v(sq=

BQBlvsq=WQN1)))

ssssesimplify Vsq. (Valueon (QBUD, sq) =UD> (sq=WKR4vsq=BQ1)) ; 3
103 Vsq.(Valueon(QBUD,sq)=UD>(sq=WKR4vsq=BQl)) ’

ssxssYE t* To Move gx; L
104 (BVALUES Valueon(QBUD,To Move qx)a-VALUEP Valueon(QBUD,To Move gx))>(To é

Move qx=BQN2v(To Move qx=BQBlvTo Move qx=WQN1))

sxx2sVE M To Move qx;
105 Valueon(QBUD,To Move qx)=UD>(To Move qx=WKR4vTo Move qx=BQl)

We consider each of the possible pieces (and its associated square) in turn, showing how a piece with
1 that value (on QBUD) could not have moved to any of the possible From squares. Note that six steps
are required for each piece: three to instantiate the axiom, and three for simplification.

The knight on waite's first row:

106 MOVETO(Tboard Prevpos qx,NB,BK1,WQN1)>(Column BKl=Column WQNI1v(
KNIGHTMOVE (BK1,WQN1)v(Row BKl=Row WQN1v(SAMEDIAG(BK1,WQN1)v(KINGMOVE(BK]1,
WQN1)v(TWOTOUCHING(Column BK1,Column WQN1)A(WSUC(Row BK1,Row WQN1)vBSUC(Row

BK1,Row WQN1))))))))

sxs2sVYE MayMove Tboard Prevpos qx,NB,BKB1,WQNI;

107 MOVETO(Tboard Prevpos qx,NB,BKB1,WQN1)>(Column BKBl=Column WQN1v(
KNIGHTMOVE (BKB1,WQN1)v(Row BKBl=Row WQN1v(SAMEDIAG(BKB1,WQN1)v(KINGMOVE (BKB1 _
,WQN1)v(TWOTOUCHING(Column BKB1,Column WQN1)A(WSUC(Row BKB1,Row WQN1)vBSUC(i

Row BKB1,Row WQN1))))))))

s#xe2sVE MayMove Tboard Prevpos qx,NB,BKNI,WGNI;
108 MOVETO(Tboard Prevpos qx,NB,BKN1,WQN1)>(Column BKNl=Column WQNIlv(
KNIGHTMOVE(BKN],WQN1)v(Row BKN1=Row WQN1v(SAMEDIAG(BKN1,WQN1)v(KINGMOVE(BKN1

i
\
¥
{3
ssexsVE MayMove Tboard Prevpos qx,NB,BK1,WQN1: ;
!
#

Page 126. A FOL Solution to the Chess Puzzle 424.12

,WQON1)v(TWOTQUCHING

(Column BKN1,Column WQN1)A(WSUC(Row BKNI1,Row WQNI1)vBSUC(
Row BKN1,Row WQN1)))))

)))

sxssssimplify ™M1 ==
109 ~-MOVETO(Tboard Prevpos qx,NB,BK1,WQN1)

sxssssimplify M4
110 -MOVETO(Tboard Prevpos qx,NB,BKB1,WQN1)

ssssssimplify ™M1

111 -MOVETO(Tboard Prevpos qx,NB,BKN1,WQN1) R

The knight on black’s first row:

ssxxxxVE MOVING! Tooard Prevpos qx,NB,BKl,BQBl;

112 MOVETO(Tboard Prevpos qx,NB,BK1,BQB1)s((VALUER NBAORTHO(Tboard Prevpos
qx,BK1,BQB1))v((VALUEB NBADIAG(Tboard Prevpos qx,BK1,BQB1))v((VALUEQ NBa
ORTHO(Tboard Prevpos gx,BK1,BQB1))v((VALUEQ NBADIAG(Tboard Prevpos gx,BKl,
BQB1))v((VALUEK NBAKINGMOVE(BK1,BQB81))v((VALUEN NBAKNIGHTMOVE(BK1,BQB1))v(
VALUEP NBAPAWNMOVE(Tboard Prevpos qx,NB,8K1,8Q81))))))))

sxxxsVE MOVING! Tboard Prevpos qx,NB,BKB1,BOBl;

113 MOVETO(Tboard Prevpos qx,NB,BKB1,BQB1)=((VALUER NBAORTHO(Tboard Prevpos
qx,BKB1,BQB1))v((VALUEB NBADIAG(Tboard Prevpos qx,BKB1,BQB81))v{{VALUEQ NBA
ORTHO(Tboard Prevpos qx,BKB1,BQB1))v((VALUEQ NBADIAG(Tboard Prevpos qx,BKBI,
BQB1))v((VALUEK NBAKINGMOVE(BKB1,BQB1))v((VALUEN NBAKNIGHTMOVE(BKB1,BQB1))v(
VALUEP NBAPAWNMOVE(Tboard Prevpos qx,NB,BKB1,BQB1))))))))

sxsxsVE MOVING] Tboard Prevpos qx,NB,BKNI1,BQBl;

114 MOVETO(Tboard Prevpos qx,NB,BKN1,BQB1)=((VALUER NBAORTHO(Tboard Prevpos
qx,BKN1,BQB1))v((VALUEB NBADIAG(Tboard Prevpos qx,BKN1,BQB1))v((VALUEQ NBa
ORTHO(Tboard Prevpos gx,BKN1,BQB1))v((VALUEQ NBADIAG(Tboard Prevpos qx,BKNl,
BQB1))v((VALUEK NBAKINGMOVE(BKN1,BQB1))v((VALUEN NBAKNIGHTMOVE(BKN1,BQB1))v(
VALUEP NBAPAWNMOVE(Tboard Prevpos qx,NB,BKN1,BQB1))))))))

sxxxxsimplify M
115 -MOVETO(Tboard Prevpos qx,NB,BK1,BQ81)

sxxxxsimplify M,
116 -MOVETO(Tboard Prevpos qx,NB,BKB1,8QB1)

ssxxxsimplify ™M
117 -~MOVETO(Tboard Prevpos qx,N3,BKN1,BQB1)

And, of course, the black king is too far away to have discovered the check.

sxsxxVYE MOVING]! Tboard Prevpos qx,KB,BK1,BQAN2:

118 MOVETO(Tboard Prevpos qx,KB,BK1,BQN2)=((VALUER KBAORTHO(Tboard Prevpos
ax,BK1,BQN2))v((VALUEB KBADIAG(Tboard Prevpos ax,BK1,BQON2))v((VALUEQ KBA
ORTHO(Tboard Prevpos qgx,BK1,BQN2))v((VALUEQ KBADIAG(Tboard Prevpos qx,BKl,
BQN2))v((VALUEK KBAKINGMOVE(BK1,BQN2))v((VALUEN KBAKNIGHTMOVE(BK1,BQN2))v(
VALUEP KBAPAWNMOVE(Tboard Prevpos qx,KB,BK1,BQN2))))))))

sxxxsVE MOVING1 Tboard Prevpos qx,KB,BKB1,BQANZ;
119 MOVETO(Tboard Prevpos qx,KB,BKB1,BQN2)s((VALUER KBAORTHO(Tboard Prevpos
ax,BKB1,BQN2))v((VALUEB KBADIAG(Tboard Prevpos ax,BKB1,BQN2))v((VALUEQ KBA

P T ————e—

424.1.2. A FOL Solution o the Chess Puzzle Page 127.

ORTHO(Tboard Prevpos qx,BKB1,BQN2))v((VALUEQ KBADIAG(Tboard Prevpos qx,BKBI,
BQN2))v((VALUEK KBAKINGMOVE(BKB1,BQN2))v((VALUEN KBAKNIGHTMOVE(BKB1,BQN2))v(
VALUEP KBAPAWNMOVE(Tboard Prevpos qx,KB,BKB1,BQN2))))))))

¥xxxxYE MOVING] Toboard Prevpos gx,KB,BKN],BGN2;

120 MOVETO(Tboard Prevpos qx,KB,BKN1,BQN2)=((VALUER KBAORTHO(Tboard Prevpos
qx,BKN1,BQN2))v((VALUEB KBADIAG(Tboard Prevpos qx,BKN1,BQN2))v((VALUEQ KBa
ORTHO(Tboard Prevpos qx,BKN1,BQN2))v((VALUEQ KBADIAG(Tboard Prevpos qx,BKN1,
BQN2))v((VALUEK KBAKINGMOVE(BKN1,BQN2))v((VALUEN KBAKNIGHTMOVE(BKN1,BQN2))v(
VALUEP KBAPAWNMOVE(Tboard Prevpos qx,KB,BKN1,BQN2))))))))

xxxxxsinplify ™M1
121 -MOVETO(Tboard Prevpos qx,K8,8K1,BQN2)

xxxxxsinplify ™M1
122 -MOVETO(Tboard Prevpos qx,KB,BKB1,BQN2)

xxxxssimplify MY
123 -MOVETO(Tboard Prevpos qx,KB,BKN1,BQN2)

A little substitution for the tautology decider.

xxxxtn] Substitution(B-Ax.Valueon(QBUD,x)];
124 Vj k.(j=koValueon(QBUD, j)=Valueon(QBUD,k))

- xxxxxVE 1 To Move qx,BAN2;
4 125 To Move qx=BQN2>Valueon(QBUD,To Move qx)=Valueon(QBUD,BQN2)

*xxx¢VE M To Move gx,BGBl;
126 To Move qx=BQBloValueon(QBUD,To Move qx)=Valueon(QBUD,BQB1)

:
E' “*xxxxVE M1 To Move qx,WQGN1;
f 127 To Move qx=WQN1>Valueon{QBUD,To Move gx)=Valueon(QBUD,WQN1)

And we appeal to the chess eye, to confirm that various squares of GBUD have the values we asserted:

sxexxsimplify Valueon (QBUD,BAN2) «KBAValueon (QBUD,BQAB1) =NBA
* Valueon (QBUD, WQN1) =NB;
128 Valueon(QBUD,BQN2)=KBa(Valueon(QBUD,BQB1)=NBAValueon(QBUD,WQN1)=NB)

QOur attention turns to proving the undefined squares of GBUD do not harbor the last move mover.
This piece must, of course, be on the To square of the last move. And we have already determined
(step 98) that this is not the square BQ1.

xxxxx|abel MCONAQX:
*xx+xVE MCONSEQA Prevpos ax,ax;
129 SUCCESSOR(Prevpos gx,qx)>((-WHITETURN Prevpos qx=WHITETURN qx)a(Prevpos
gx=Prevpos qxa(-POSITIONINCHECK(qgx,Color Prevpos qx)a((WHITEPIECE Mover Move
ax=WHITETURN Prevpos qx)a(Pos(Prevpos qx,From Move qx)=Mover Move agxa(Pos(
gx,To Move gx)=Mover Move gxa(Pos(qx,From Move ax)=EMPTYA((CAPTURE Move qx>
Pos(Prevpos qx,To Move qx)=Taken Move gx)A(CASTLING(Prevpos agx,qx)v(EN-
PASSANT(Prevpos qx,qx)vSIMPLELEGALMOVE(Prevpos ax,ax)))))))))))

. sxx¥%n] Substitution[B « A x.Pos(gx x)];
i 130 VJ k.(Jj=koPos(ax,J)=Pos(ax,k))

N P R R N TP R TP E Ay R e s e

e 7\"4\‘,r‘"»’2§!&4’,\‘www’”ﬁ*/"f.kb«?»';‘t:'_m

Page 128 A FOL Solution to the Chess Puzzle 42412

sssssVYE 1t To Move qx,BQl:
131 To Move qx=BQl>Pos(qgx,To Move gx)=Pos(qx,B8Ql)

— -

All of the candidate source squares for this move are in the first row.

ssxssen] Substitution(B « A x.Row %)}
132 Y3 k.{J=koRow j=Row k)

sxs3sVE * From Move qx,BKl: 1
133 From Move qx=BKI>Row From Move qxzRow BKI i

sxxexYE ™ From Move qx,BKBl:
134 From Move qx=BKBl>Row From Move gx=Row BKBI

sxxexVE Mt From Move qx,BKNI:
135 From Move gx=BKNI>Row From Move qx=Row BKNl

sxxexsimplify Row BKl=la(Row BKBl=1ARow BKNlel);
136 Row BKl=1A(Row BKBl=1ARow BKNl=1)

And, the fallen piece, no matter what value it might have had could not have moved to one of these
first row squares

sxxe2VE MayMove Tboard Prevpos qx.Val (Prevpos qx,Mover Move qx),BK1,WKRé4;y
137 MOVETO(Tboard Prevpos aqx,Val(Prevpos qx,Mover Move qx),B8Kl UKM):(Co\umn

BK1=Column WKR4v(KNIGHTMOVE(BK1,WKR4)v(Row BKlzRow VKRdv(SAHEDIAG(Bkl WKR4)
v(KINGMOVE(BK1, VKR4)v(THOTOUCHING(Column BK1,Column VKRd)A(USUC(Row BK1,Row
WKR4)vBSUC(Row BK1,Row WKR4))))))))

sxex2VE Mayflove Tboard Prevpos gx,Val{Prevpos gx,Mover Move qx),BKB1,WKR4;
138 MOVETO(Tboard Prevpos qx,Val(Prevpos qx,Mover Move qx),BKB1,WKR4)>(
Column BKBl=Column WKR4v(KNIGHTMOVE(BKB1,WKR4)v(Row BKBl=Row HKR4v(SAHEOIAG(
BKBI.VKRd)v(KINGHOVE(BKBl.VKR4)v(THOTOUCNING(Cqumn BKB1,Column WKR4)A(WSUC(
Row BKB1,Row WKR4)vBSUC(Row BKB1,Row WKR4))))))))

sxexeVE MayMove Tboard Prevpos qgx,VYal (PFrevpos qx,Mover Move qx),BKN1,WKR4;
139 MOVETO(Tboard Prevpos qx,Val(Prevpos ax,Mover Move qx),BKNI NKM):(
Column BKN1=Column WKR4v(KNIGHTMOVE(BKN1,WKR4)v(Row BKNl=Row VKRGV(SAHEDIAG(
BKN1,WKR4)v(KINGMOVE (BKN1,WKR4)v(TWOTOUCHING(Column BKN1,Column WKR4)A(WSUC(
Row BKNl,Row WKR4)vBSUC(Row BKN1,Row WKR4))))))))

sxssxsimplify ™M
140 ~MOVETO(Tboard Prevpos gx,Val(Prevpos qx,Mover Move qx),BK1,WKR4)

wsnwasimplify MMMy
141 —~MOVETO(Tboard Prevpos qx,Val(Prevpos qx,Mover Move qx),BKB1,WKR4)

sxxnxsimplify T
142 ~HOVETO(Ibourd Prevpos qx,Val(Prevpos ax,Mover Move gx),BKN1,WKR4)

It then tautologically follows that the value of the captured piece in gx, zb, was neither a rook nor a
queen.

ssxsslabel NOT_QB_OR_RB;
sesrs tauteq —~(Val (qx,zb)=RBvVal {qx, zb) =UB)

e

4124.12 A FOL 3Solution to the Chess Puzzle Page 129.

* CALL _PX:BLACK_GOES,QXIS, PXSUC, MCONAPX,NOTQXCASTLE, NOTQBUDEP,

* QBUDLBL,D1SQX, MCONAQX, 100:181,104:105,109:111,115:117,121:123,
125:129,131,133: 136, 140:16"

143 ~(Val(qx,zb)=RBvVal(qx,zb)=QB) (1 9 70)

Section 4.2.4.2 The Pawn Did Not Capture a King or Pawn

There are six varieties of black pieces that the promoting pawn could have captured. We have
already eliminated a black rook or queen as a possible victim. What about the others?

5.4. Perhaps the captured piece had pawn value?

54.1. But that black pawn would have been in black's first row. We have a theorem that
prohibits black pawn (valued) pieces from black first row. Hence, the captured piece (while it might
have been a pawn) did not have pawn value.

sx2e2VE NoBlackPaunsOniRou qx,zb,B8Q1¢
144 (Val(qx,zb)=PBaPos(qx,BQl1)=zb)>~(Row BQl=])

sxxaxlabel ON_ZB:
sexsxsubste TOPX IN CALL_ZB;
145 Pos(qx,BQl)=zb (1 70)

sxxxssimplify Row BQly
146 Row BQl=1

ssxexlabel NOT_ZB_FB;
sexes taut ~(Vallgx,zbl=PR) 2041y
147 ~(Val(aqx,zb)=PB) (1 70)

8.5, The captured piece was certainly not the black king. We have already shown the black
king to be on BAN2 on GIVEN (steps 71 through 74). As the king did not just move, he must still be
there.

sxxaxVYE BlackKingThm qx,BQl:
148 Val(qx,Pos(qgx, BQl))=kB-Pos(qx 8Q1)=BK

sxx22VE Unique qx,BANZ,BQL.BK:
149 Pos(qx,BQN2)=BK>(Pos(qx,B8Ql)=BKsBQN2=BQl)

sssnesinplify ~(Valueon(GIVEN,BON2)«UD)A (Yalueon (GIVEN,BAGNZ2) «=KBA

« (-UHITEPIECE BKA -~(BAN2=BQ1)));

150 ~(Valueon(GIVEN,BQN2)=UD)A(Valueon(GIVEN,BQN2)=KBA(~WHITEPIECE BKA-~(BQN2
=8Q1)))

ssssstauteq ~Val (qx,Pos(qx BQl))=KB

* 11:4,PXSUC, CALL_PX,BINCHECK, BLACK_GOES, PX_BK,PX_BK+13
151 =(Vval(aqx,Pos(qx, BQ)))-KB) (1 9)

sssse label NOT Zg KB:
ssssesubstr ON_ N ™
152 ~(Val(qx,zb)=kB) (1 9 70)

Hence, the captured piece must have had, just before being captured, either bishop or knight value.

Y

Page 130. A FOL Solution to the Chess Puzzle 1242

sxxsxsimplify Yvb, (vb=KBvvb=0Bvvb=RBvvb=PBvvb=NBvvb=B8)
153 Yvb.(vb=KBv(vb=QBv(vb=RBv(vbzPBv(vb=NBvvbzB8B)))))

: zxsseYE + Val(gx zb);
: 154 BVALUES Val(ax,zb)>(Val(ax,zb)=KBv(Val(qx,zb)=QBv(Vali(qx,zb)=RBv(Vai(ax,
b zb)=PBv(Val(qx,zb)=NBvVal(gx,zb)=B8)))))

sss2sVE ValueTranspositionA qx zb To Move pxj
155 Pos(qx,To Move px)=zboValueon(Tboard qx,To Move px)sVal(qx,zb)

sxxaxslabel NB_OR BB:

¢ ssesstauteq Yal (gx zb)=NBwal (gx zb)«BB
§ * t1: 4, TOPX-1,CALL_ZB,NOT_QB_OR_RB,NOT_2B_PB,NOT_ZB_KB:
: 156 Val(qx,zb)=NBwVal(qx,zb)=B8 (1 9 70)

And we can also deduce, from this limited selection, that QBUD was, in either case, a board of the
position gx.

sxe2xYE TransitiveUNMKCAPPP gx,GIVEN,QBUD,BQBZ2,BQ1,Val (gx, zb) ,BB;
157 (BOARD(qx,Unmkcapppmove(GIVEN,BQB2,8Ql1,Val(qx,zb)))A(SUBOARD(QBUD,
Unmkcapppmove(GIVEN,BQB2,8Ql1,BB))aval(qx,zb)=B8B))>B0ARD(ax,QBUD)

sxs2xVE TransitiveUNMKCAPPP qx,GIVEN,QBUOD,BGB2,BAl1,Val (gx, zb) ,NB;
158 (BOARD(gx,Unmkcapppmove(GIVEN,BQB2,BQ1,Val(qx,2b)))A(SUBOARD(QBUD,
Unmkcapppmove(GIVEN,BQB2,BQ1,NB))AaVal(ax,zb)=NB))>BOARD(qx,QBUD)

srxsxsimplify M
zsg éggsﬁo(qx.unmkcapppmove(GIVEN.BOBZ.BOI.Vll(qx.Zb)))AV.I(QX.ZD)!BB)DBOARD
qx,

sxxsxsimplify M
160 (BOARD(qx,Unmkcapppmove(GIVEN,BQB2,BQ1,Val(qx,zb)))AVal(qx,zb)=NB)>BOARD

{ax,QBUD)

sxexxVE UNDO4 ox,px,GIVEN,BOB2,B01,Val (gx, Taken Move px);

161 (SUCCESSOR(qx,px)A(BOARD(px,GIVEN)A(CAPPP Move pxa(Val(qx,Taken Move px)
=Val(qx,Taken Move px)a(From Move px=BQB2ATo Move px=BQl)))))>BOARD(ax,
Unmkcapppmove(GIVEN,BQB2,8Q1,Val(qx,Taken Move px)))

ssesssubstr QBUDLBL-1 IN %

162 (SUCCESSOR(ax,px)a(BOARD(px,GIVEN)A(CAPPP Move pxa(Val(ax,zb)=Val(qx,zb)
~(From Move px=BQB2ATo Move px=BQl)))))>BOARD(qgx,Unmkcapppmove(GIVEN,BQBZ,
8Q1,Val(qgx,zb))) (1 9 70)

sxxxxiabel QX _QBUD:
sxxsx tauteq BOARD (gqx,QBUD)
* CALL_PX, PXSUC, FROMPX, TOPX, CAPPPPX,NB_OR_BB, 1114, 14, %;

163 BOARD(qx,QBUD) (1 9)
Section 4.2.4.3 The Fate of the Black Bishops

56. We have already determined that the captured piece was either a black bishop, or a black
knight valued. However, we can infer other results from this fact.

+2.4.3. A FOL Solution to the Chess Puzzie Page 131.

561, We know that one of black's bishops, the BAB, is the black on white bishop. That is, that
bishop never moves to a black square. But the capture square, BGl, is a black square. Hence, the
captured piece could not have been the BQB.

ssssaYE BishopsleOnSameColor qx,BQB1,BA1,B06;
164 (Pos(PO.BOBl)-BQBAPos(qx.BOI)-BQB):(VHUESOUARES BQB1sWHITESQUARES BQl)

sxxexsimplify T
165 ~(Pos(qx,8Q1)=8Q8)

56.2. Nor could the captured piece have been the BKB. The black pawns on BK1 and BKN1 trap
this bishop, preventing his moving until they have moved, and freed one of his exit squares. But
we can see that these pawns are still on their original squares. Hence, the BKB can be on no square
except Ais original square. (He is not, of course, on that square; rather, that bishop has been
captured earlier in this game.)

sssssVE Blocked_BKB gx,QBUD,BQl1;
166 (BOARD(qx,QBUD)a(Valueon(QBUD,BK2)-PBA(Valueon(QBUD.BKNZ)=PBAPos(qx,BQl)

=BKB)))>8Q1=BKB1

sesuwsinplify T
167 ~(BOARD(qx,QBUD)APoOs(qx,BQ1)=BKB)

5.7. However, any black bishop valued piece must be either the BOB, the BKB, or a promoted
black pawn. Hence, if the captured piece was a black bishop, it must have been a promoted pawn.

sxs23VE MightBeBB qx,zb:
168 Val(qx,zb)=BB>((zb=BKBvzb=BQB Jv(BPAWNS ZbAPROMOTEDPAWN(gx,2b)))

ssssslabel [F BISH:
ssssstauteq val (qx,zb) =BB> (BPAUNS 2bAPROMOTEDPAWN (gx, zb))

. ON_2B,0X_QBUD, 1111, 11, 12
169 Val(qx,2zb)=BB>(BPAWNS 2bAPROMOTEDPAWN(qx,zb)) (1 9 70)

5.8. We know that QBUD is a board of ax. Hence, there must be black knights on both BQl and
WAN1 on the total board of qx (or, equivalently, knight valued pieces on these squares in the position
ax). If the captured piece was a black kmight, then black had three knights on the board in qgx.
Having three black knights is proof of having a promoted pawn on one of those three squares.
However, the conditions (and conclusions) of the lemma we really invoke are stronger. It states that
if at most one black pawn has promoted, and the three black knight valued squares situation exists,
then that pawn is on one of the three squares, and no other square (in particular, its not on the
fallen square.) In this step, we're looking forward to phrase our conclusion in the form that will be

most useful in the future.

Page 132. A FOL Solution to the Chess Puzzle 4.2.4.3.

AN T,
YO RL A
s //,,," //’(//"7// Vi ‘
L0, % 7,0 |
7 X T T,
sl W %
///////'&///éy A %yu/%
DADAD, %,
AW B e |
oy A 7 7
W Y Y :

o

1/ the raprlurrd pieco wore a knighs,
then black had three knights in QX.

figure 40

sxx8xVE ThreeNB qx QBUD BKRP B8Ql BQGB1 WAN1 WKR4:

170 Vt.((BPAWNS tAPROMOTEOPAWN(ax,t))>t=BKRP)>(((~(BQl=BQB1)A(~(BQlaWQN])a—{
BQB1=WQN1)))a((Val(ax,Pos(qx,BQl))=NBv(BOARD(qx,QBUD)AValueon(QBUD,BQ1)=NB))
A((Val(qx,Pos(aqx,BQB1))=NBv(BOARD(qx,QBUD)AValueon(QBUD,BQB1)=NB))a(Val(qx,
Pos(qx,WQNI))=NBv(BOARD(qx,QBUD)aValueon(QBUD,WQN1)=NB)))))>(PROMOTEDPAWN(qx
,BKRP)A((~(BQ1aWKR4)A(~(BQB1=WKRA)A~(WQN1=sWKR4)))o(~(Pos(qx,WKR4)sBKRP)A(~(
Pos(qx,WKR4)sBKN)A~(Pos(qx,WKR4)sBQN))))))

We consult the simplification mechanism for several useful equalities and inequalities.

ssxssxsinplify -BQ1=BAB1A-BQL=WAN1A~BAB1=WAN1AValueon (QBUD BAB1) =NBA

* Valueon (QBUD WAN1)=NB;

171 ~(BQ1=BQB1)A(~(BQlsWQN1)A(~(BQB1=WQN1)A(Valueon(QBUD,BQB1)=NBAValueon(
QBUD,WQN1)=NB)))

A little renaming, and we get a useful result from our tautology decider.

sxasssubstr ON_ZB IN ™My

172 Yt.((BPAWNS tAPROMOTEDPAWN(Gx,t))>t=BKRP)>(((~(8Q1=8QB1)A(~(BQ1=WQN1)A~(
BQB1=WQN1)))A((Val(ax,zb)=NBv(BOARD(qx,QBUD)AValueon(QBUD,BQl)=NB))A((Val(qgx
,Pos(ax,BQB1))=NBv(BOARD(ax,QBUD)AValueon(QBUD,BQB1)=NB))Aa(Val(ax,Pos(qx,
WQN1))=NBv(BOARD(ax,QBUD)aValueon(QBUD,WQN1)=NB)))))>(PROMOTEDPAWN(gx, BKRP)A
((~(BQ1=WKR4)A(~(BQB1=WKR4)A~(WQN1=WKR4)))>(~(Pos(qx,WKR4)=BKRP)A(~(Pos(qx,
WKR4)=BKN)A~(Pos(qx,WKR4)=BQN)))))) (1 70)

sxxexlavel PROM _KNIGHT:
sxxxxtauteq (Val (gx,zb) =NBAYt, ({BPAUNS tAPROMOTEDPAWN (gx, t))>t=BKRP))>

* (PROMOTEOPAWN (qx, BKRP) A ((<BQA1 «WKR4A-~BAB1 «WKR4A-WQN] «lWKR4) >

* (~Pos (qx, WKR4) =BKRPA-Pos (qx, WKR4) «BKNA~Pos (gx,WKR4) «BAN))) QX_QBUD, *, 113

173 (Val(qgx,zb)=NBAVt.((BPAWNS tAPROMOTEDPAWN(ax,t))>t=BKRP))>(PROMOTEDPAWN(
ax, BKRP)A((~(BQ1=WKR4)A(~(BQB1=WKR4)a~(WQN1=WKR4)))o(~(Pos(qx, WKR4 }=BKRP A (-
(Pos(ax,WKR4)=BKN)A~(Pos(qax,WKR4)=BQN))))) (1 9 70)

5.9. From the fact that the captured piece had either bishop or knight value (step 156), we

4243 A FOL Solution to the Chess Puzzle Page 133.

could now conclude that black has promoted one of his pawns. However, we defer that deduction
for a few steps, until we can prove which black pawn it was that promoted. To do this, we need to
examine the black pawn structure of QBUD.

Section 4.2.5 The Black Pawns

6. Our attention turns towards identifying the black pawns on QBUD. We will be (almost) able
to identify each of the pawn value pieces on that board.

6.1 We consider first the pawns in black's second row. These pawns have not moved, and are
obviously the pawns that started on those squares. Of course, we have a lemma for this situation. It
states that if a black pawn value is upon some square, and there was also a black pawn value upon
that square in P8, the initial position, then it is the same piece is on that square as was upon it in P8.
More concisely, certain black pawns have obviously not moved.

sxx22VE UnmovedB|ackPaunThm qx,QBUD, BQRP,BAR2;
174 (Pos(P0,BQR2)=BQRPA(Valueon(QBUD,BQR2)=PBABOARD(qx,QBUD)))>(Pos(P0,BQR2)
=Pos{qx,BQR2)APospcf(gx,BQRP)=BQR2)

*xx2xVE UnmovedBlackPaunThm qx,QBUD,BKP,BK2;
175 (Pos(P0,BK2)=BKPa(Valueon(QBUD,BK2)=PBABOARD(Gx,QBUD)))>(Pos(P0,BK2)=Pos
(aqx,BK2)AaPospcf(qx,BKP)=BK2)

ssxx2xVE UnmovedBlackPaunThm qx,QBUD, BKNP,BKN2;

176 (Pos(PO,BKN2)=BKNPA(Valueon(QBUD,BKN2)=PBABOARD(qx,QBUD)))>(Pos(P0,BKN2)
=Pos(qx,BKN2)APospcf(qx,BKNP)=BKN2)

We consult the simplification mechanism to veriry our asserted arrangement.

Tk

// " //4
P i % iy
5% % %
Simplify can quickly and easily
[ind the value on a square.

figure 41

Page 134. A FOL Solution to the Chess Puzzle 4.2.5.

sxxxss5inplify Pos(P8,BAR2) «BARPAValueon (QBUD,BAR2) «PBAPos (P8, BK2) =BKPA

Valueon (QBUD, BK2) «=PBAPos (P8, BKN2) «BKNPAVa | ueon (QBUD, BKN2) =PB;

177 Pos(P0,BQR2)=BQRPA(Valueon(QBUD,BQR2)=PBA(Pos(P0,BK2)=BKPA(Valueon(QBUD,
BK2)=PBA(Pos(P0,BKN2)=BKNPAValueon(QBUD,BKN2)=PB))))

Hence, the black pawns on the second row squares are the BGRP, BKP and the BKNP.

ssx2x|abe!l ROW2 BP;
*s¥ex tauteq TTPPIH2ATTT:H2AM1: 42 OX_QBUD, MMM 1
178 (Pos(P0,BQR2)=Pos(ax,BQR2 JaPospcf(qx,BQRP)=BQR2)A((Pos(P0,BK2)=Pos(qgx,

6.2.

6.3.

E(ill(zs)):)\Pospcf(qx,BKP)=BK2)A(Pos(P0,BKN2)sPos(qx,BKN2)aPospcf(ax, BKNP)=BKN2))

The remaining deductions on the pawn structure are produced with the lemma

WhichBlackPawn. This lemma employs the fact that, if a pawn is to move between two squares, the
MAY_PAUN_CAPTURES predicate must be satisfied between those squares. Each of the eight black
pawns 1s considered, resulting in a WFF which, when simplified, eliminates from consideration those
pawns that could not be on the requested square. There are only two black pawns which can reach
BUR3. We have shown that BORP is on BQR2 in gqx. Hence, the pawn on BAR3 must be the BQNP.

sxxxxVE WhichBlackPaun gx,GBUD, BQR3;
179 {BOARD(qx,QBUD)AValueon(QBUD,BQR3)=PB)2((Pos(ax,BQR3)=BQRPA(Pospcf(qgx,
BQRP)=BQR3AMAY_PAWN_CAPTURES(BQR2, BQR3, BLACK)))v((Pos(qx,BQR3)=BQNPA(Pospcf(
qx, BQNP)=BQR3AMAY_PAWN_CAPTURES(BQN2,BQR3,BLACK)))v((Pos(qx, BQR3)=BQBPA(
Pospcf(qx,BQBP)=BQR3AMAY_PAWN_CAPTURES(BQB2 ,BQR3,BLACK)))v((Pos(qx,BQR3)=BQP
A(Pospcf(qx,BQP)=BQRIAMAY_PAWN_CAPTURES(BQZ,BQR3, BLACK)))v((Pos(qx,BQR3)=BKP
A(Pospcf(qx, BKP)=BQR3AMAY_PAWN_CAPTURES(BKZ,BQR3, BLACK)))v((Pos(qx,BQR3)=
BKBPA(Pospcf(qx,BKBP)=BQRIAMAY_PAWN_CAPTURES(BKBZ, BQR3,BLACK)))v((Pos(agx,
BQR3)=BKNPA(Pospcf(ax,BKNP)=BQR3AMAY_PAWN_CAPTURES (BKNZ,BQR3, BLACK)))v(Pos(
c)vtsBORs)=BKRPA(Pospcf(qx, BKRP)=BQRIAMAY_PAWN_CAPTURES(BKR2,BQR3, BLACK)))))))
)

sxxxesimplify
180 BOARO(qx,OBUD)D((Pos(ux.BQR3)=BQRPAPospcf(Qx.BORP)=BQR3)v(Pos(ax.80R3)=
BQNPAPospcf(qx,BQNP)=BQR3))

sxxsesimplify ~(BAR2=BAR3);
181 ~(BQR2=BQR3)

sxxx# | abel ROW3R _BP:
ssxsstauteq Pos(qx,BAR3) =BANPAPospc f (qx, BANP) «BQR3 QX_QBUD,ROW2_BP, #4: %,
182 Pos(qx,BQR3)=BQNPAPOspcf(qx,BQNP)=BQR3 (1 9)

Of the remaining pawns, only the BA8P and BQP could reach BQB4 and BQ3. We have not

established which of these pawns is on which square, but we can show that, between them, they fill
these two locations.

sxxxxVE WhichBlackPaun qx,QBUD,BOBS;

183 (BOARD(qx,QBUD)AValuoon(OBUD.BOB4)=PB)>((Pos(qx.BQBd)=BORPA(Pospcf(qx.
BORP)zBQBdAMAY-PAVN-CAPTURES(BORZ.BOB4.BLACK)))v((Pos(qx.8084)=BONPA(Pospcf(
qx,BONP)-8084AMAY_PAUN_CAPTURES(BONZ.BOB4.BLACK)))v((Pos(qx.BOBd)-BOBPA(
Pospcf(ax.BQBP)=BOB4AMAY_PAUN_CAPTURES(8082.8084.BLACK)))v((Pos(qx,BOBQ)=BQP
A(Pospcf(qx,BOP)=8084AHAY_PAVN_CAPTURES(802,8084.BLACK)))v((Pos(qx,8084)=8KP
A(Pospcf(qx.BKP)18084AMAY_PAWN_CAPTURES(BKZ.8084.BLACK)))v((Pos(qx.8084)=
BKBPA(Pospcf(qx.BKBP)=8084ANAY_PAVN-CAPTURES(BKBZ,BQB4.8LACK)))v((Pos(qx,

2l

4.2.5. A FOL Solution to the Chess Puzzle Page 135.

BQB4)=BKNPA(Pospcf(qx,BKNP)=BQB4AMAY_PAWN_CAPTURES(BKNZ,BQB4,BLACK)))v(Pos
qx,BQB4)=BKRPA(Pospcf(qx,BKRP)=BQBAAMAY_PAWN_CAPTURES(BKR2,BQB4,BLACK)))))

)))

sxs2xVE WhichBlackPaun gx,QBUD,BQS;

184 (BOARD(qx,QBUD)AValueon(QBUD,BQ3)=PB)>((Pos(qx,BQ3)=BQRPA(Pospcf(qgx,BQRP
)=BQ3AMAY_PAWN_CAPTURES(BQR2,BQ3,BLACK)))v((Pos(ax,BQ3)=BQNPA(Pospcf(gx,BQNP
)=BQ3AMAY_PAWN_CAPTURES(BQN2,BQ3,BLACK)))v((Pos(qx,BQ3)=BQBPA(Pospcf(qx,BQBP
Y=BQ3IAMAY_PAWN_CAPTURES(BQB2,BQ3,BLACK)))v((Pos(qx,BQ3)=BQPA(Pospcf(ax,.BQP)=
BQ3AMAY_PAWN_CAPTURES(BQ2,BQ3,BLACK)))v((Pos(qx,BQ3)=BKPA(Pospcf(Ggx. ,)-BQ3
AMAY_PAWN_CAPTURES(BK2,8Q3,BLACK)))v((Pos{qx,BQ3)=BKBPA(Pospcf{aqx,Bri.,=BQ3A
MAY_PAWN_CAPTURES(BKB2,BQ3,BLACK)))v((Pos(qx,BQ3)=BKNPA(Pospcf(qgx,BKNP)=BQ3A
MAY_PAWN_CAPTURES(BKN2,B8Q3,BLACK)))v(Pos(qx,BQ3)=BKRPA(Pospcf(qx,BKRP)=BQ3A
MAY_PAWN_CAPTURES(BKR2,BQ3,BLACK))))))))))

(
))

sxxxxsimplify ™M,

185 BOARD(&X?QBUD):((Pos(qx.8084)-BQRPAPospcf(qx.BQRP)=BQB4)V((Pos(qx,8084)=
BQNPAPospcf(qx,BONP)=BQB4)v((Pos(qx,BQB4)=BQBPAPospcf(qx,BQBP)=BQB4)v((Pos(
qx,BQB4)=BQPAPospcf(qx,BQP)=BQB4)v(Pos(aqx,BQB4)=BKPAPospcf(ax,BKP)=BQB4)))))

sxxxxsimplify 1
186 BOARD(qx,QBUD)>((Pos(qx,BQ3)=BQBPAPospcf(ax,BQBP)=BQ3)v((Pos(qx,BQ3)=BQP
APospcf(ax,BQP)=BQ3)v(Pos(qx,BQ3)=BKPAPospcf(qx,BKP)=BQ3)))

sxesssinplify ~BOR2=-BOB4A-BQR3=BUB4A~BK2=BAB4A-~BQ3=BK2A-~BUB4=BQ3};
187 —~(BQR2=BQB4)a(~(BQR3=BQB4)A(~(BK2=BQB4)a(~(BQ3=BK2)A~(BQB4=8Q3))))

sxxex|abel QB _BP;

sxssxxtauteq (Pos(qx,BQB4)=BABPAPospc f (ax,BABP) =BQB4A

* Pos (gx,BQ3) =BQPAPospc f (qx, BAP) =BA3) v

* (Pos (qx,BQB4) =BAPAPospc f (qx, BAP) =BAB4A

* Pos (gqx,BQ3) =BABPAPospc f (qx, BABP) «BQ3)

% QX_QBUD, ROW2_BP,ROW3R_BP, 111:1;

188 (Pos(qx,BQB4)=BQBPA(Pospcf(qx,BQBP)=BQB4A(Pos(qx,BQ3)=BQPAPospcf(qgx,BQP)
=BQ3)))v(Pos(qx,BQB4)=BQPA(Pospcf(qx,BQP)=BQB4A(Pos(qx,BQ3)=BQBPAPOSpcf(qx,
BQBP)=8Q3))) (1 9)

6.4. This implies that the black pawn on BABS must be the BKBP.

xxx32VE WhichBlackPaun qx,QBUD,WQAB4;

189 (BOARD(qx,QBUD)AValueon(QBUD,WQB4)=PB)>((Pos(qx,WQB4)=BQRPA(Pospcf(ax,
BQRP)=WQB4AMAY_PAWN_CAPTURES (BQR2,WQB4,BLACK)))v((Pos(ax,WQB4)=BQNPA(Pospcf (
qx, BQNP)=WQBAAMAY_PAWN_CAPTURES(BQN2,WQB4,BLACK)))v((Pos(qx,WQB4)=BQBPA(
Pospcf(qx,BQBP)=WQB4AMAY_PAWN_CAPTURES(BQB2,WQB4,BLACK)))v((Pos(qx,WQB4)=BQP
A(Pospcf(ax,BQP)=WQB4AMAY_PAWN_CAPTURES(BQ2,WQB4,BLACK)))v((Pos(qx,WQB4)=BKP
A(Pospcf(qx,BKP)=WQB4AMAY_PAWN_CAPTURES(BK2,WQB4,BLACK)))v((Pos(qx,WQB4)=
BKBPA(Pospcf(qx,BKBP)=WQB4AMAY_PAWN_CAPTURES(BKB2,WQB4,BLACK)))v((Pos(gx,
WQB4)=BKNPA(Pospcf(qx,BKNP)=WQB4AMAY_PAWN_CAPTURES(BKN2,WQB4,BLACK)))v(Pos(
qx,WQB4)=BKRPA(Pospcf(qx,BKRP)=WQBAAMAY_PAWN_CAPTURES(BKR2,WQB4,BLACK)))))))

)))

sxxsxsimplify 13

190 BOARD(qx,QBUD)>((Pos(qx,WQB4)=BQRPAPospcf(qx,BQRP)=WQB4)v((Pos(qgx,WQB4)=
BQNPAPospcf (qx,BQNP)=WQB4)v((Pos(ax,WQB4)=BQBPAPospcf(qx,BQBP)=WQB4)v((Pos(
ax,WQB4)=BQPAPospcf(qx,BQP)=WQB4)v((Pos(qx,WQB4)=sBKPAPospcf(qx, BKP)sWQB4)v(
Pos(qx,WQB4)sBKBPAPospcf(qx,BKBP)=WQB4))))))

Page 136. A FOL Solution to the Chess Puztle 4.2.5.

ssssxsimpl i fy ~BOR2=WAB4A-BOR3=UAB4A~BK2=WAB4A~BQ3=WAB4A~BAB4 «l(B4;
191 —~(BQR2=WQBA)A(~(BQR3=WQB4)A(~(BK2aWQB4)A(~(BQ3=WQB4)A~(BQB4=WQB4))))

sss3slabel BS_BP;

ssssstauteq Pos (gx,W0B4) =BKBPAPospc f (qx, BKBP) =WQB4
. QX_QBUD, ROW2_BP,ROW3R_BP,QB_BP, t1: %

192 Pos{qx,WQB4)=BKBPAPospcf(qx,BKBP)=WQB4 (1 9)

Section 4.2.5.1 Which Pawn Promoted

6.5. Which pawn was the promoting pawn? A pawn that has promoted, no longer has pawn
value on a board of that position (theorem BlackPawnValueSquares) We consider each black pawn
in turn as a possible candidate for having promoted.

The BGRP is, unpromoted, on BAR2.

sxxxx | abel WHEREPROM;

sxxssVE BlackPaunValueSquares gx,0BUD,BARP,BAR2;

193 —~(PROMOTEDPAWN(qx,BQRP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BQR2)=PBAPOS(QX,
BQR2)=BQRP)))

Similarly the BONP is on BQGR3.

sxxesVE BlackPawnValueSquares gx,0BUD,BONP,BGR3;
194 ~(PROMOTEDPAWN(qx,BQNP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BQR3)=PBAPOS(qx,
BQR3)=BQNP)))

The BQBP and BAP split the squares BAB4 and BA3 between them.

xxxxsVE BiackPaunValueSquares qx,QBUD,BQBP,BOB4;
195 —~(PROMOTEDPAWN(qx,BQBP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BQB4)=PBAPOS(QqX,
8QB4)=8QBP)))

sxx2xVYE BlackPaunValueSquares qx,QBUD,BQBP,BQA3:
196 ~(PROMOTEDPAWN(qx,BQBP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BQ3)=PBAPoS(ax,BQ3
)=8QBP)))

*x+2+VE BlackPaunValueSquares qx,QB8UD,BQP,BAB4;
197 ~(PROMOTEDPAWN(gx,BQP)a(BOARD(qx,QBUD)A(Valueon(QBUD,BQB4)=PBAPOS(qX,
BQB4)=BQP)))

s+x+2VE BlackPaunValueSquares qx,Q8U0,BAP,BA3;
198 —~(PROMOTEDPAWN(qx,BQP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BQ3)=PBAPOS(aX,BQ3)

=BQP)))

The BKP occupies its original square, unpromoted.
sss33VE BlackPaunValueSquares gx,0BUD,BKP,BK2;
199 —~(PROMOTEDPAWN(qx,BKP)A(BOARD(ax,QBUD)A(Valueon(QBUD,BK2)sPBAPOs(ax,BK2)
sBKP)))

WaB4 is occupied by a pawn valued BKB.

s2sssVE BlackPaunValueSquares gx,0BUD,BKBP,WQB4;

4.2.5.1. A FOL Solution to the Chess Puzzle Page 137.

—

200 -~(PROMOTEDPAWN(qx,BKBP)A(BOARD(qx,QBUD)A(Valueon(QBUD,WQB4)sPBAPOS(QqX,
WQB4)=BKBP)))

And, similarly, the BKNP pawn sits on its original squares.

sxss3VE BlackPaunValueSquares qx,QBUD,BKNP,BKN2;
201 —~(PROMOTEDPAWN(Qqx,BKNP)A(BOARD(qx,QBUD)A(Valueon(QBUD,BKN2)=PBAPOS(Qqx,
BKN2)=BKNP)))

We confirm our expectations about the value of the occupants of these squares.

ssssesimplify Valueon(QBUD,BQR2)=PBA Valueon(QBUD,BQR3) =PBA

* Valueon (QBUD,BQB4) =PBA Valueon (QBUD,BQ3) =PBA Valueon (QBUD,BQAB4) =PBA

* Valueon (QBUD,BQ3) =PBA Valueon (QBUD,BK2) =PBA Valueon (QBUD, WQB4) =PBA

* Valueon (QBUD, BKN2) «=PBAPos (P8 BQR2) =BQRPAPos (P8 BK2) =BKPA

* Pos (PB BKN2) =BKNP;

202 Valueon(QBUD,BQR2)=PBA(Valueon(QBUD,BQR3)=PBA(Valueon(QBUD,BQB4)=PBA(
Valueon(QBUD,BQ3)=PBA(Valueon(QBUD,BQB4)=PBA(Valueon(QBUD,BQ3)=PBA(Valueon(
QBUD,BK2)=PBA(Valueon(QBUD,WQB4)=PBA(Valueon(QBUD,BKN2)=PBA(Pos(P0,BQR2)=
BQRPA(Pos(P0,BK2)=BKPAPos(P0,BKN2)=BKNP))))))))))

Now, there are eight black pawns.

*xxxxVE BlackPaunsAre_ t;
203 (t=BKPv(t=BQPv(t=BKNPv(t=BKBPv(t=BKRPv(t=BQBPv(t=BQNPvt=BQRP)))))))=
BPAWNS t

Hence, if one of them has promoted, it must be the BKRP. We generalize this WFF to all possible
black promotions in qx.

sxxxx tauteq (BPAWNS tAPROMOTEOPALN (gx t))ot=BKRP
+«WHEREPROM: 1, QX_QBUO, ROW2_BP, ROW3R_BP,QB_BP, BS_BP;
204 (BPAWNS tAPROMOTEDPAWN(gx,t))>t=BKRP (1 9)

sxxxxlabel THE ONLY ONE:

sxseeV][Tt
205 Vt.((BPAWNS tAPROMOTEDPAWN(Qx,t))>t=BKRP) (1 9)

So it zb was a promoted pawn, it must have been the BKRP.

exessVE THE_ONLY_ONE 2zb;
206 (BPAWNS zbAPROMOTEDPAWN(Qx,2b))>zbzBKRP (1 9)

But, as we pointed out before, we have established sufficient conditions to prove that a black pawn
has promoted. Since a black pawn has promoted, and the only black pawn that could have
promoted is the BKRP (line 205), then BKRP has promoted.

sxxx% | abel PROM_BKRP;

ssssstauteq PROMOTEOPAWN (qx BKRP)

* NB_OR_B8, IF_BISH, *,PROM_KNIGHT, THE_ONLY_ONE;
207 PROMOTEDPAWN(qx,BKRP) (1 9)

Page 138. A FOL Solution to the Chess Puzzle 1.26.

Section 4.2.6 Did a Black Piece Fall?

7. Did a black piece fall from the board? We consider each black piece, in turn, to show that
it could not have been the fallen piece. But first, we pause to point out that, as the square WKR4 was
not involved in the last move, its occupant was identical in both px and qx. Axiomatically, a square
not source, destination, or special square of a special move, retains the same contents from position to
position.

sxx33VE MCONSEQD gx px WKR4;

208 (SUCCESSOR(gx,px)A(-~(WKR4=From Move px)Aa(-~(WKR4=To Move px)A(-~(CASTLE
Move pxa(WKR4=Alsofrom Move pxvWKR4=Alsoto Move px))A~(ENPASSANT Move pxa
WKR4=Takenon Move px)))))>Pos(qx,WKR4)=Pos(px,WKR4)

We know the source (From square) and destination (To square) of the Move px. Neither of them is
WKR4. We also know that Move px was neither an en passant capture, nor a castle.

sxxsssimplify -WKR4=BAl A - WKR4 = BQB2;
209 ~(WKR4=BQl)A~(WKR4=BQB2)

«xx33VE MconseqmX qx px;
210 SUCCESSOR(gx,px)>((CASTLE Move pxsCASTLING(gx,px))A((ENPASSANT Move pxs
EN_PASSANT(gx,px))A(ORDINARY Move pxsSIMPLELEGALMOVE(ax,px))))

Hence, the fallen piece was also on WKR4 in gx.

sxsxxlabel SAME_ON _WKR4:

ssssx tauteq Posfigx WKR4)=Posipx WKRG)

* 114:1,PXSUC, FROMPX, TOPX,NOTPXCASTLE, NOTPXEP;
211 Pos(qx,WKR4)=Pos(px,WKR4) (1 9)

We return to consideration of the each of the black pieces as a candidate fallen piece. We
established that the promoted pawn, BKRP, was on one of the squares Bal, BAB2 or WANZ in gx.
Hence, the fallen piece was not the BKRP.

=s=sx label ON_BLACK SQS:

sxsxssimplify -BAl=WKR4n -BAB1=WKR4An -BAR2=WKR4A -BAN2=WKRé4A

* -BK2=WKR4A -BKN2=WKR4n -BQR3=WKR4A -BQ3=WKR4n -BAB4&=WKR4A

x -WOB4=WKR4A -UQAN1=WKR4}

212 =(BQ1=WKR4)A(~(BQB1=WKR4)A(~(BQR2=WKR4)A(-~(BQN2=WKR4)A(~(BK2=WKR4)A(~(
BK N2=\)ﬂ;f;4 ;t; (~§ BQR3=WKR4)A(~(BQ3=WKR4)A(~(BQB4=WKR4)A(~(WQB4=WKR4)A~(WQN1=
WKR4)))))))))

sxs2:VE Unique qx,BQl,WKR4,BKRP;
213 Pos(qgx,BQl)=BKRP>(Pos(qx,WKR4)=BKRP=BQ1=WKR4)

ssssstauteq -(Pos (gx,WKR4) =BKRP) ON_Z8,NB_OR_BB,
* IF_BISH,PROM_KNIGHT, THE_ONLY_ONE: 206, ON_BLACK_SQS:213;
214 ~(Pos(qx,WKR4)=BKRP) (1 9)

We know squares for each of the seven unpromoted black pawns. None of these squares is WKRé.

sx223YE Unique qx,BAR2,WKR4,BARP;
215 Pos(qx,BQR2)=BQRP>(Pos(qx,WKR4)sBQRPaBQR2=WKR4)

e . - ST o T A W VT mE———er— .J-Iu--ll!-F!Il.l'll-uu-n-uq—wq’E

4.26. A FOL Solution to the Chess Puzzle Page 189.

sss33YE Unique gx,BK2,UWKR4,BKP;
216 Pos(qx,BK2)=BKP>(Pos(qx,WKR4)zBKPuBK2sWKR4)

ssss3VE Unique qx,BKN2,WKR4,BKNP;
217 Pos(qx,BKN2)=BKNP>(Pos(qx,WKR4)=BKNPuBKN2=WKR4)

ss383VYE Unique qx,BQR3,WKR4,BANP;
218 Pos(qx,BQR3)=BQNP>(Pos(qx,WKR4)sBQNPaBQR3=WKR4)

sx+3:YE Unique gx,BQB4,WKR4,BQABP;
219 Pos(qx,BQB4)=BQBP>(Pos(qx,WKR4)=BQBP=BQB4=WKR4)

ssssxYE Unique qx,BQ3,WKR4,BQBP;
220 Pos(qgx,BQ3)=BQBP>(Pos(qx,WKR4)=BQBP=BQ3=WKR4)

ssx3sYE Unique qx,BQB4,WKR4,BAP;
221 Pos(qx,BQB4)=BQP>(Pos(qx,WKR4)=BQP=aBQB4=WKR4) “.

"sxxs3xVYE Unique qx,BQ3,WKR4,BAP;
222 Pos(qx,BQ3)=BQP>(Pos(qx,WKR4)=BQP=BQ3=WKR4)

sss3xVYE Unique qx,WaB4,WKRS,BKBP;
223 Pos(qgx,WQB4)=BKBP>(Pos(qx,WKR4)=BKBPaWQB4=WKR4)

7.1 This accounts for all of the black pawns. Hence, the fallen piece was not a black pawn.

sxx+x¢VE BlackPaunsAre_ Pos(gqx WKR4);

224 (Pos(qx,WKR4)=BKPv(Pos(qgx,WKR4)=BQPv(Pos(qx,WKR4)=BKNPv(Pos(qx,WKR4)=
BKBPv(Pos(qgx,WKR4)=BKRPv(Pos(qx,WKR4)=BQBPv(Pos(qx,WKR4)=BQNPvPos(qx,WKR4)=
BQRP)))))))=BPAWNS Pos(qx,WKR4)

sx¢xx|abel NOT BP:
sxs¥% tauteq ~1:42 212:1,R0W2_BP,ROW3R_BP,QB_BP,BS_BP,ROW2_BP-1;
225 -BPAWNS Pos(qx,WKR4) (1 9)

2.2, If the fallen piece were a black knight, we would suffer from a surfeit of black knights.
We use the same lemma as before, ThreeNB8 in this demonstration.

sxsx2YE ThreeNB qx,QBUD,BKRP,BQB1,WGN1,WKR4,BQAls
226 Yt.((BPAWNS tAPROMOTEDPAWN(gx,t))>t=BKRP)>(((~(BQB1=WQN1)A(~(BQB1=WKR4)A
~(WQN1=WKR4)))A((Val(aqx,Pos(qx,BQB1))=NBv(BOARD(qx,QBUD)AValueon(QBUD,BQB1)=
NB))A((Val(ax,Pos(qx,WQN1))=NBv(BOARD(qx,QBUD)AValueon(QBUD,WQN1)=NB))A(Val(
qx, Pos(qx,WKR4))=NBv(BOARD(gx,QBUD)AValueon(QBUD,WKR4)=NB)))))>(PROMOTEDPAWN
(QX.BKRP)A((*(8081'301)A(*(VQNI'BOl)A*‘VKRQIBQI)))D(H(POS(QX.BQ‘)'BKRP)A("(
Pos(qx,BQ1)=BKN)a~(Pos(qx,BQ1)=BQN))))))

If a black knight fell, it would have had NB value (knights do not promote).

St e

«xx22VYE OfficerValueThmX gx,BKN,Pos(qgx,WKR4);
227 (~PAWNS BKNABKN=Pos(qgx,WKR4))>Val(P0,BKN)=Val(ax,Pos(qx,WKR4))

sxx22YE OfficerValueThmX qx,BQON,Pos(qgx,WKR4);
B - 228 (-PAWNS BQNABQN=Pos(qgx,WKR4))oVal(P0,BQN)=Val(qx,Pos(qx,WKR4))

sssssgimplify ~PAUNS BANA(Val (P8,BQN) =NBA (~PALNS BKNAVal (P@,BKN) =NB))

o

Page 140. A FOL Solution to the Chess Puzzle 4.26.

229 -PAWNS BQNA(Val(P0,BQN)=NBA(~PAWNS BKNAVal(P0,BKN)=NB))

Hence, the fallen piece was not a black knight.

ssxsxlavbel NOT NB;

sssss tauteq ~(Pos(qx WKR4) =BKN) A~ (Pos (qx, WKR4) «BAN)

* ON_2B,NB_OR_BB,QX_QBUD, [F_BISH,PROM_KNIGHT-2,PROM_KNIGHT,

™ THE_ONLY_ONE, THE_ONLY_ONE+1,ON_BLACK_SQS, ON BLACK ~5QS+1, Hfhh
230 -~(Pos{ax, VKR4)IBKN)A“(POS(0X WKR4)=BQN) (1 9)

7.3. The black on white bishop could not have fallen from the black square WKR&.

sxs2sVE BishopslsOnSameColor gqx BOB! WKR4 BQB;
§31 (Pos(P0,BQB1)=BQBAPOs(Qqx,WKR4)=BQB)>(WHITESQUARES BQBl=WHITESQUARES WKR4

sxxxs|label NOT_BQB;
ssx3s simplify T
232 ~(Pos(qx,WKR4)=BQB)

7.4. The black on black bishop, as we have already asserted, did not escape from his starting
square.

sxx332VE Blocked_BKB gqx QBUD WKR4;
233 (BOARD(qx,QBUD)A(Valueon(QBUD,BK2)=PBa(Valueon(QBUD,BKN2)=PBAPOS(qx, WKR4
)=BKB))):HKM-BKN

sxx¥slabel NOT_BKB;
sxx3x simplify T
234 -~(BOARD(qx,QBUD)APos(qx,WKR4)=BKB)

2.3 The black king is on BGN2, not WKR&.

s+x33VE Unique px BGN2 WKR&4 BK;
235 Pos(px,BQN2)=BK>(Pos(px, VKR4)-BK-BQN2-VKR4)

sxxss|abel NOT BK:
ssxss tauteq -Pos(qx WKRG)=BK 1,212,5,1,211;
236 ~(Pos(ax,WKR4)=BK) (1 9)

76. If a black rook or black queen value were on the square WKR& in px then white would be
in check in px. Note the employment of a single simplification to observe this check on the
constructed board.

ssxxsxlavel BQ_OR _BR;
::tttslmplafg WHT TE INCHECK (Makeboard (GIVEN WKR4 QB))A

WHI TEINCHECK (Makeboard (GIVEN WKR4 RB))
237 WHITEINCHECK Makeboard(GIVEN,WKR4,QB)AWHITEINCHECK Makeboard(GIVEN,WKR4,
RB)

sxsesVE SUB_BOARDS! px GIVEN WKR4 Pos{px WKR4) QB
238 (Val(px,Pos(px,WKR4))=QBA(Pos(px, wKM)-Pos(px WKR4)ABOARD(px,GIVEN)))>
BOARD(px, Hakoboard(GIVEN WKR4,Q8))

TP T

i o

4.26. A FOL Solution to the Chess Puzile Page 141.

ssxueYE SUB_BOARDS] px GIVEN WKR4 Pos{px WKR&4) RB}
239 (Val(px,Pos(px,WKR4))=RBA(Pos(px,WKR4)=Pos(px,WKR4)ABOARD(px,GIVEN)))>
BOARD(px,Makeboard(GIVEN,WKR4,RB))

And if white were in check, it would be white's turn in px.

sxxekVYE Alternateldhite px TM:i#242;
240 (BOARD(px,Makeboard(GIVEN,WKR4,QB))AWHITEINCHECK Makeboard(GIVEN,WKR4,QB
))>(POSITIONINCHECK(px,WHITE)AWHITETURN px)

xxxsxVE Alternateldhite px M:4242;
241 (BOARD(px,Makeboard(GIVEN,WKR4,RB))AWHITEINCHECK Makeboard(GIVEN,WKR4,RB
))>(POSITIONINCHECK(px,WHITE)AWHITETURN px)

If the fallen piece would be rook or queen valued if a rook or queen had fallen.

sxxuxVE OfficerValueThmX px BQ Pos(px WKR4):
242 (—~PAWNS BQABQ=Pos(px,WKR4))>Val(P0,BQ)=Val(px,Pos(px,WKR4))

xxxexVE OfficerValueThmX px BQR Pos(px WKR4);
243 (—~PAWNS BQRABQR=Pos(px,WKR4))>Val(P0,B8QR)=Val(px,Pos(px,WKR4))

sxxuaVE OfficarValueThmX px BKR Pos(px WKR4)
244 (-~PAWNS BKRABKR=Pos(px,WKR4))>Val(P0,BKR)=Val(px,Pos(px,WKR4))

sxxxesinplify ~PAUNS BQA-PAUNS BARA-PAUNS BKRA

* Val (P@ BQ)=0BAVal (P@ BQR)=RBAVal (P8 BKR)=RB;

gas;:m)lr;?)aoahmwns BQRA(~PAWNS BKRA(Val(P0,BQ)=QBA(Val(P0,BQR)=RBAVal(PO,
KR)=R8

But we have already determined (back in steps 1, 2 and 3), that black is in check in px, and its his
turn to move. If white were also in check, we would have a contradiction. Hence, the fallen piece
could not have been a black rook or queen.

sxxxxtauteq -Pos(qx WKR4)=BAa-Pos(gx WKR4)=BARA-Pos (qx WKR4)=BKR
* BQ_OR_BR: 1, SAME _ON_WKR4, CALL_PX,BINCHECK,BLACK_GOES;
246 -~(Pos(qx,WKR4)=BQ)A(~(Pos(qx,WKR4)=BQR)A~(Pos(qx,WKR4)=BKR)) (1 9)

8. We have considered each of the black pieces. None of them could have fallen from the
board. Hence, the fallen piece was not a BLACKPIECE.

*xxxxVE BlackpieceArePaunsOr_ Pos(gx WKR4);

247 BLACKPIECE Pos(qx,WKR4)m(BPAWNS Pos(qx,WKR4)v(Pos(qx,WKR4)=BKv(Pos(qx,
WKR4)=BQv(Pos(qx,WKR4)=BKNv(Pos(qx,WKR4)=BKBv(Pos(qx,WKR4)=BKRv(Pos(qx,WKR4)
=BQBv(Pos(qx,WKR4)=BQNvPos(qx,WKR4)=BQR))))))))

*xx2x|label NOT B;
sxxsxtauteq ~T1#1 11:1,0X_QBUD, NOT_BP,NOT_BK,NOT_NB,NOT_BQB,NOT_BKB;
248 -~BLACKPIECE Pos(qx,WKR4) (1 9)

But all chesspieces are either black or white. We know (from our original assumption) that some
chesspiece did fall. Hence, it must have been a white piece.

sxeesVE Borl_Piece_ Pos{qgx,WKR4);

Page 142 A FOL Solution to the Chess Puzzle 1.26.

249 (;P;ESSPIECES Pos{qx,WKR4)>~(BLACKPIECE Pos(qx,WKR4)sWHITEPIECE Pos(ax,
WKR4

Let us call that piece yyw.

sxxxx3] SAME_ON_WKR4 Pos (px, WKRG) eyyns
250 WHITEPIECE Pos(qx,WKR4)>3yyw.Pos(qx,WKR4)syyw

sx¥xxtauteq Jyyw.Pos (qx,WKRe) eyyw CALL_PX, SAME_ON_WKR&4 ,NOT_B:
251 3yyw.Pos{qx,WKR4)=yyw (1 9)

sxxxxlaval CALL_YYW:
sxxxx 3E T yyw

252 Pos(ax,WKR4)=yyw (252)

Section 4.2.7 The Fallen Piece Wasn't a2 White Pawn

9. By a process similar to that employed for the black pawns, we can identify the locations of
each of the white pawns.

There are four white pawns on white's second row.

sxxesVYE UnmovedWhitePaunThm gx, QBUD, WARP, WQR2;
253 (Pos(PO,WQR2)=WQRPA(Valueon(QBUD,WQR2)sPWABOARD(qx,QBUD)))>(Pos(P0O,WQR2)
sPos{qx,WQR2)APospcf(qx.WQRP)=WQR2)

sxx2eVE UnmovedWhitePaunThm qx, QBUD, WQBP,HQBZ:
254 {Pos{P0,WQB2)=WQBPA(Valuoon(QBUD,WQB2)=PWABOARD{qx,QBUD)))>(Pos(P0,WQB2)
=Pos(qgx,WQB2)APospcf(aqx,WQBP)=WQB2)

sxxuwVE UnmovedWhi tePawunThm qx, QBUD, WKBP, WKB2:
255 (Pos(PO,WKB2)=WKBPA(Valueon(QBUD,WKB2)=PWABOARD(qx,QBUD)))>(Pos(P0,WKB2)
=Pos(qx,WKB2)aPaspcl(ax,WKBP)=WKB2)

sxxxxVE UnmovediWhitePaunThm gx,GBUD, WKRP, WKR2:
256 (Pos(PO.UKRZ)=VKRPA(V&1u00n(QBUD.VKR2)IPUABOARD(QX,QBUD)))D(POS(PO.VKRZ)
=Pos(qx,WKR2)APospcf(qx, WKRP)=WKR2)

ssunasimplify (Pos(P@,WQRZ) «WARPAValueon (QBUD, WAR2) «Pi) A

* (Pos (P@,HQB2) ~WABPAVa lueon (QBUD, WABR) «PU) A

* (Pos (P@,WKB2) =lWKBPAValueon (QBUD, WKB2) «PU) A

® {Pos (P8, WKR2) «WKRPAValueon (OBUD, WKR2) «Pid) ¢

257 (Pos(PO,WQR2)=WQRPAValuaon(QBUD,WQR2)=PW)A((Pos(P0,WQB2)sWQBPAValueon(
QBUD,WQB2)=PW)A((Pos(P0,NKB2)=WKBPAValueon(QBUD,WKB2)=PW)A(Pos(P0,WKR2)=WKRP
AValueon(QBUD,WKR2)=PW)}))

sessxlabel RQUZ WP,

ssxex tauteq (Fos(gx WARD) «WARPAFospe f (gx WARP) «WQR2) A

* {(Postgx WQBY) «WQBPAPospet (gx WUBP) «WAB2) A

. (Pas (gx WKB2) =lKBPAPospct (gx WKBP) =WKB2) A

. {Pos (gx WKR2) «WKRPAPospct (gx WKRP) «WKR2) #t444; 4, QX_QBUD¢

258 (Pos(qx,WQR2)=WQRPAPospcf(ax,WQRP)=WQR2)A((Pos(ax,NQB2)=NQBPAPOSPCT(ax,
WQBP)=WQB2)A((Pos(qx,WKB2)=WKBPAPospCr(qx,WKBP)eWKBZ)A(Pos(qx,WKR2)=WKRPA
Pospcf(ax,WKRP)=WKR2))) (1 9)

P ——

Lot s fhe o

Al

TR

427 A FOL Solution to the Chess Puzile Page 143

The white pawns on WAN3 and WKN3 are therefore the WANP and WKNP, respectively.

eereeVE Whichidh! tePaun qx QBUD WAN3:
259 (BOARD(qx,QBUD)AValueon(QBUD,WQNI)=PW)o((Pos(qx,WQN3)=WQRPA(Pospcl(ax,
WQRP) =WQNIAMAY_PAWN_CAPTURES(WQR2,WQNJ3,WHITE)) Iv((Pos(aqx,WQNI)=WQNPA(Pospc((
Qx, WONP) e WQNIAMAY_PAWN_CAPTURES(WQN2,WQN3 ,WHITE)))v((Pos(ax,WQN3)=WQBPA(
Pospcf(qx,VOBP)IUONJAHAY"PAVN,CAPIURFS(NOB?.NONS,NNIlf)))v((Pus(Q\,UQN3)INOP
A(Paspcf(qx,WQP)=WQNIAMAY_PAWN_CAPTURES(WQ2,WQN3,WHITE)))v((Pos(ax,WQN3)=WKP
A(Pospcf(aqx,WKP)eWQNIAMAY_PAWN_CAPTURES(WK2,WQN3,WHITE)))v((Pos(ax,WQN3)=
WKBPA(Pospcf(qx, WKBP)eWQNIAMAY_PAWN_CAPTURES(WKB2 ,WQN3,WHITE)) v ((Pos(ax,
WON3) =WKNPA{ Pospef(Qx, WKNP) =WQNIAMAY _PAWN_CAPTURES(WAN2 ,NQNJ,WHITE)))v(Pos(
Qx.UQN3)-UKRPA(Pospcf(qx.VKRP)-UON3AHAY_PAHN_CAPTUR[S(UNRZ.VONS.VNII[)))))))
)

sxxax¥YE WhichdhiteFaun gx QBUD WKN3:

260 (BOARD(qx,QBUD)AValueon{QBUD,WAN3)=PW)o((Pos(ax,WANI)=WQRPA(Pasper(ax,
WQRP) =WKN3AMAY_PAWN_CAPTURES(WQR2,WKNI, WHITE)))v((Pos(ax,WKNI)=WQNPA(Pospef(
QX , WQNP)= WKN3AMAY_PAWN_CAPTURES(WQN2 ,WKNJ3 ,WHITE)))v((Pos(ax,WANJ3)=WQBPA(
Pospcf(ax,WQBP)eWKNIAMAY_PAWN_CAPTURES(WQB2,NKN3,WHITE)))v((Pos(ax,WKNI)=wQP
A(Pospcf(qx,WQP)eWKNIAMAY_PAWN_CAPTURES(WQ2 ,WANJ,WHITE)))v((Pas(qx,WANI)eWKP
A(Pospcf(qx.NKP)-VKNSAMAY-PAUN,CAPTURES(Vk?.NkNJ.VHIlf)))v((Pns(qx,VkNJ)-
VKBPA(pOSDCf(QX.UKBP)IVKNJAHAY_9AUNmCApTUR[S(Uka?,NkNJ.V“l]E)))v((POS(Q\.
WKN3)=WKNPA(Pospcf(aqx, WKNP)=WKNIAMAY_PAWN_CAPTURES (WKNZ ,WKNJ,WHITE)))v(Pos(
aQx, WKN3)eWKRPA(Pospcf(qx, WKRP)aWKNIAMAY_PAWN_CAPTURES(WKR2,WKN3,WHITE)))))))
)))

sxxupxsinplify ™
261 BOARD(qx,QBUD)>((Pos(ax,WQN3)sWQRPAPOSPCT (X, NORP)= WQNI v ((Pos{ax,WQN)=
MQNPAPOSPCS (ax, WQNP) eMQN3)v (Pos (ax, HON3) sMQBPAPOSPCT (ax, WQBP) sWON3)))

serrxsimplify
262 BOARD(qx,QBUD)>((Posiax,WKNI)=WKBPAPospcf(qx,WKBP)=WKN3)v((Pos(ax,WKNJ)=
WKNPAPospef (qx, WKNP)=WKN3)v(Pos(qx,NKN3)=WKRPAPospcf(qx,NKRP)=WKN3)))

exennsimplify ~WOR2=NANIA-NQB =WANIA-WKRI«WKNIA-WKB=WKNS}
263 ~(WQR2=WQN3)A(~(NQB2=WQN3)A(~(WKR2=WKN3I)A~(WKB2=WKN3)))

sxxxxlabel ROWI_WD:

sxvaxtauteq MNIACEDHIAMA2A24] MM A ROWD_WP, QN _QBUD,

264 (Pos(aqx,WQN3)=WQNPAPospcf(aqx,NQONP)=WQN3)A(Pos(ax,WKN3)=WKNPAPospef(ax,
WKNP)=WKN3) (1 9)

Therefore, the white pawns on BAQB2 (in qx) and WQ3 are the WKP and WGP (though we don't know
which is which)

sxxaeVE WhichldhitePaun gx QBUD NQ3:

265 (BOARD(qx,QBUD)AValueon(QBUD,WQ3)=PW)((Pos(ax,WNQ3)=WNQRPA(Pospcl(ax, WORF
)eWQIAMAY_PAWN_CAPTURES(WQR2,NQ3,WHITE)))v((Pos(ax,WNQ3)eWQNPA(Pospcf(ax, WONP
YeWQIAMAY_PAWN_CAPTURES (WQN2,WQ3,WHITE)))v((Pos(qx,WQd)=WQBPA(Pospcf (ax, NQBP
)=H03AMAY,PANN,CAPIUR{S(NQBC.HOJ.UNl1{)))v((Pos(qx.VQl)szPA(Pnsncf(Q\.VQP)z
HO3AMAY_PAVN_CAPTURES(UO?.VO3.NH1TE)))V((Pos(qx.HQ3)-VkPA(Pospcf(qw.ﬂk?)-VOJ
AMAY_PAWN_CAPTURES(WK2,WQ3,WNHITE)))v((Pos(ax,NQ3)eWKBPA(Pospcl(ax, WKBF)=NQIA
MAY_PAWN_CAPTURES(WKB2,WQ3,WHITE)))v((Pos(ax,VNQ3)=eNKNPA(Paspcr(qx, WKNP)=WQIA

v(
MAY_PAWN_CAPTURES (WKN2,WQ3,WHITE)))v(Pos(ax,WQ3)sWKRPA(Pospcf(ax,WNKRP)=NQIA
MAY_PAWN_CAPTURES(WKR2,WQ3,WHITE))))))

M)

-

T RO RS 1 B

AT A AP

R PR P, TR

Page 144. A FOL Solution to the Chess Puzzle 1.2.7.

sxxxxVYE WhichWhitePaun gx QBUD BOB2;

266 (BOARD(qx,QBUD)AValueon(QBUD,BQB2)=PW)>((Pos(qx,BQB2)=WQRPA(Pospcf(qx,
WQRP)=BQB2AMAY_PAWN_CAPTURES(WQR2,BQB2,WHITE)))v((Pos(qx,BQB2)sWQNPA(Pospcf(
qx, WQNP)=BQB2AMAY_PAWN_CAPTURES(WQN2,BQB2, ,WHITE)))v((Pos(ax,BQB2)=WQBPA(
Pospcf(qx,WQBP)=BQB2AMAY_PAWN_CAPTURES(WQB2,BQB2,WHITE)))v((Pos(ax,BQB2)=WQP
A(Pospcf(qx,WQP)=BQB2AMAY_PAWN_CAPTURES(WQ2,BQB2, ,WHITE)))v((Pos(qx,BQB2)awKP
A(Pospcf(qx,WKP)=BQB2AMAY_PAWN_CAPTURES(WK2,8Q82,WHITE)))v((Pos(qx,BQB2)=
WKBPA(Pospcf(qx,WKBP)=BQB2AMAY_PAWN_CAPTURES(WKB2,B8QB2,WHITE)))v((Pos(qx,
BQB2)=WKNPA(Pospcf(qx,WKNP)=BQB2AMAY_PAWN_CAPTURES{WKN2,BQB2,WHITE)))v(Pos(
?§3BOBZ)SVKRPA(Pospcf(qx.NKRP)=8082AHAY_PAHN_CAPTURES(UKRZ.BOB?.VHITE)))))))

sxxxxsimplifytt;
267 BOARD(qx,QBUD)>((Pos(qx,WQ3)=WQBPAPospcf(qx,WQBP)=WQ3)v((Pos(ax,WQ3)=WQP
APospCf (qx, WQP)=WQ3)v (Pos (ax, NQ3)=WKPaPospcf (ax, WKP)=WQ3)))

sxxxxsimplify -WOB2=WA3AValueon (QBUD BAB2) «PUA ~WQR2«BAB2A -WQB2=BAB2A
*-LKB2=BQB2A -WKR2=8QB2A -WAN3=5Q82A -WKN3=BQB2A -WQ3«BAB2;

268 -~(WQB2=WQ3)Aa(Valueon(QBUD,BQB2Z)=PWA(~(WQR2sBQB2)A{~(WQB2=BQB2)A(~(WKB2=
BQB2)A(~(WKR2=BQB2)a(~(WQN32BQB2)a{~(WKN3=BQB2)A~(WQ3=BQB2))))))))

sxxxx label RAYAL WP,
*sxxx tauteq
* ((Pos (gx WQA3) =WAPAPospct (gx WAP) =WA3) A

* (Pos (gx BQB2) =WKPAPospct igx WKP)«BQB2))v
* {{Pos(gx WQ3) =WKPAPospcf (gx WKP)=WQA3)A
* {Pos (qx BAB2) =WQAPAPospcf (qx WAP) =BAB2))

s M1: %, ROW2_WP, ROW3_WP,QX_QBUO:
| 269 ((Pos(qx,WQ3)=WQPAPospcf(qx,WQP)=WQ3)a(Pos(qx,BQB2)=WKPAPOspcf(qx,WKP)=
i ?033;%% (P?:(g))t ,WQ3)=WKPAPospcf(aqx,WKP)eWQ3 Ia(Pos(ax,BQB2 ysWQPAPOsSPCT(gx, WQP

f ; .
f Hence, any square in gx which is not one of these squares, does not have a white pawn on it.
E Similarly, no white pawn has been captured in the game that reached gx.

| sxxx2VE WherelhitePauns p gx x sq WQR2 WON3 WQB2 WQ3 BAB2 WKB2Z WKN3 WKR2:

| 270 (Pos(qgx,WQR2)=WQRPA(Pos(qx,WQN3)=WQNPA(Pos(qx,WQB2)=WQBPA(Pos(qx,WQ3)=

| WQPA(Pos(ax,BQB2)=WKPA(Pos(qx,WKB2)=WKBPA(Pos(qx,WKN3)=WKNPAPos(ax,WKR2)=

| WKRP))))))ID(((~(sq=WQR2)A(=~(5q="QN3)A(~(5q=WQB2)A(~(5q=NQ3)A(~(sq=BQBZ)A(~(

E $q=WKB2)A(~(sq=WKN3)A~(sq=WKR2))))))))>~WPAWNS Pos(qx,sq))a((x=Taken Move pa i
(PREDEGAME(p, gx)vp=qx))o~WPAWNS x)) s

i *xxxxVE WhereWhitePauns p gqx x sq WOR2 WON3 WAB2 BOB2 WQ3 WKB2 WKN3 WKR2;

! 271 (Pos(qax,WQR2)=WQRPA(Pos(qx,WQN3)=WQNPA(Pos(qx,WQB2)=WQBPA(Pos(qx,BQB2)=

v WQPA(Pos(ax,WQ3)=WKPA(Pos(qx,WKB2)=WKBPA(Pos(qx,WKN3)=WKNPAPoOs(qx,WKR2)=WKRP
)))))))12(((~(sa=WQR2)A(~(sq=WQON3)A(~(sq=WQB2)A(~{5q=BQB2)A(~(5q=WQ3)A(~(sq=

£ WKB2)A(~(sq=WKN3)A~(sq=WKR2))))))))>~WPAWNS Pos(qx,sq))A((xaTaken Move pa(

f PREDEGAME(P, qx)vp=qx))o~WPAWNS x))

sxxxstaut t: 42 1, M, ROW2_WP,RON3_WP,ROYAL _WP;

272 ((~(sq=WQR2)A(~(sq=WQN3)A(~(sq=WQB2)A(~(5q=BQB2)A(~(sqsWQ3)A{~(sq=WKB2)A
(~(sq=WKN3)A~(sq=WKR2))))))))o>~WPAWNS Pos(qx,sq))A((x=Taken Move pa(
PREDEGAME (p,ax)vp=ax))o~WPAWNS x) (1 9)

exxxx |abel QX _WPAUNS:

sexxa¥Yi? p x s

3
,:).

a5

4.2.7. A FOL Solution to the Chess Puzzle Page 145.

273 Vp x sq.(((~(sq=WQR2)A(~(sq=WQN3)A(~(sq=WQB2)A(~(sq=BQB2)A(~(s5q=WQ3)A(~(
$Qq=WKB2)A(~(sq=WKN3)A~(sq=WKR2))))))))>~WPAWNS Pos(qx,sq))Aa((x=Taken Move pa
(PREDEGAME(p, qx)vp=qx))>-WPAWNS x)) (1 9)

9.1 More particularly, the fallen piece, on WKR4, was not a white pawn.

sxsxxVE OX_WPALNS p, x,WKR4;

274 ((~(WKR4=WQR2)A(~(WKR4=WQN3)A(~(WKR4=WQB2)A(~(WKR4=BQB2)A(~(WKR4=WQ3)A(~
(WKR4=WKB2)A(~(WKR4=WKN3)A~(WKR4=WKR2))))))))>~WPAWNS Pos(qx,WKR4))A((x=
Taken Move pA(PREDEGAME(p,qx)vp=gx))>-~WPAWNS x) (1 9)

sxxxxsimplify 1
27?;:5;'\%8 Pos(qx,WKR4)a((x=Taken Move pa(PREDEGAME(p,qx)vp=qx))>~WPAWNS x)

Section 4.2.8 The White Rook and King

9.2. There are two other white (valued) pieces on the board QBUD. There is a rook value on
BQ2. This is either one of the two original white rooks, BQR or BKR, or a promoted white pawn.

sxxuxVE MightBeRW qx,Pos(qx,BA2);
276 Val(ax,Pos(qx,BQ2))=RW>((Pos(ax,BQ2)=WKRvPos(qx,BQ2)=WQR)v(WPAWNS Pos(a~
,BQ2)APROMOTEDPAWN(qx,Pos(ax,BQ2))))

But none of the white pawns is on BQ2.

*xx2xVE QX_WPAWNS p,x,BQ2;

277 ((~(BQ2=WQR2)A(~(BQ2=WQN3)A(~(BQ2=WQB2)A(~(BQ2=BQB2)A(~(BQ2=WQ3)A(~(BQ2=
WKB2)A(—=(BQ22WKN3)A~(BQ2=WKR2))))))))>~WPAWNS Pos(qx,BQ2))A((x=Taken Move pA
(PREDEGAME (p, qx)vp=qx))>-WPAWNS x) (1 9)

«xxxxVE ValueTranspositionB qx,BQ2,QBUD;
2;? BOARD(qx,QBUD)>(Valueon(QBUD,BQ2)=Val(qx,Pos(qx,BQ2))vValueon(QBUD,BQ2)=
U

sxxxxsinplify -BA2=WAR2A-BA2=WAN3A-BA2=LOB2A~B02=B0B2A-BA2=WA3A-BA2=WKB2A

* -BQ2=WKN3A-BA2=WKR2AVa | ueon (QBUD, BQ2) «=RWA-~RW=UDA

* WROOKS WKRAWROOKS WARA-WKR=WQAR;

279 —~(BQ2=WQR2)A(~(BQ2=WQN3)A(~(BQ2=WQB2)A(~(BQ2=BQB2)A(~(BQ2=WQ3)A(~(BQ2=
WKB2)A(~(BQ2=WKN3)A(~(BQ2=WKR2)A(Valueon(QBUD,BQ2)=RWA(~(RW=UD)A(WROOKS WKRA
(WROOKS WQRA-(WKR=WQR))))))))))))

Hence, the piece on BQ2 must be either the BR or the BKR.

sxxxxtauteq Pos (gx,BQ2) =WARVPos (qx,BQ2) «WKR QX_QBUD, #114:1;
280 Pos(qx,BQ2)=WQRvPos(qx,BQ2)=WKR (1 9)

However, this is not the most useful formulation of this fact. What we really need is names for each
of the white rooks. We maneuver to obtain a more pliable WFF.

sxaxstauteq Pos(gx BQ2)=WAR> (Pos(qx BA2) =WARA (WQR=WARVWAR=WKR)A

* -Pos (qx,B802) «WKRA (WKR=WQRVWKR=WKR) A =WQR=WKR) 14:%;

281 Pos(qx,BQ2)sWQR>(Pos(ax,BQ2)=WQRA((WQR=WQRVWQR=WKR)A(~(Pos(qx,BQ2)=WKR)A
((WKR=WQRVWKR=WKR)A=(WQR=WKR))))) (1 9)

Page 146. A FOL Solution to the Chess Puzzle 1.28.

ssssstauteq Pos(qx BQ2)=WKR> (Pos(gx BQ2) «WKRA (WKR«WQARVWKR=WKR) A

s -Pos (qx,B02) =WQRA (LAR=LARVWOR=WKR) A ~WKR=WQR) 111t:1%;

282 Pos(qx,BQ2)=WKR>(Pos(qx,BQ2)=WKRA((WKRsWQRVWKR=WKR)A(~(Pos(qx,BQ2)=WQR)A
((WQR=WQRVWQR=WKR)A~(WKR=WQR))))) (1 9)

ssxxsunify Pos(gx BA2)=WAR> Jywr ywrl, ((Pos(gx BQA2) =syura (ywr=WQARvyur=WKR)A
* -Pos (qx,BQ2) =yurla (yurlelQRvyurl=WKR)A ~yursyurl)) f*

283 Pos(qx,BQ2)=WQR>3ywr ywrl.(Pos(qx, BOZ)-yer((ywr-VQRvywr-VKR)A(~(Pos(gx,
802):ywr1)/\((ywrlswokvywrl=wKR)A-(ywr=ywrl))))) (19)

More specifically, we want to rename the two white rooks to be yur and ywurl, where we know that

ywr is on the square BA2, and that yurl is not yur. With the proper manipulations, we obtain:

sxxxxunify Pos(gx BA2)=WKR> 3yur yurl. ((Pos(gx BQ2) =syura (yursWQRvywr=WKR)A
* -Pos (gx BQA2) =yurla (yurl=WQRvyurle=WKR)A =~yur=yurl)) **;

284 Pos(qx,BQ2)=WKR>3ywr ywrl.(Pos(qx,BQ2)=ywra((ywr=WQRvywrzWKR)a(—~(Pos(qx,
BQ2)=ywrl)a((ywr1=WQRvywr1=WKR)A=~(ywrzywrl))))) (1 9)

sxxxxtaut P42 1,1, MM

285 Jywr ywrl.(Pos(qx,BQ2)zywra

ywr 1=WQRvywr 1=WKR)A=~(ywrzywrl))
permitting the renaming:

((ywr=WQRvywr=WKR)A(~(Pos(qx,BQ2)=ywrl)a((
))) (19)

#xxxx|abel CALL_YUWR:
sxxxx 3E T yur yurl;
286 Pos(qx,BQ2)=ywra((ywr=WQRvywr=WKR)A(~(Pos(qx,BQ2)sywrl)a((ywrl=WQRvywrl=
VKR)A-v(ywrsywrl)))) (286)
which implies that the rook yur was not the fallen piece (though the rook yurl might have been).

*xxxxVE Unique qx,BQ2,WKR4, yur;
287 Pos(qx,BQ2)=ywr>(Pos(qx,WKR4)=ywraBQ2=WKR4)

The white king, on square BKR1, was certainly not the fallen piece.

#xxx2VE Unique qx,BKR1,WKR4,WK;
288 Pos(qx,BKR1)=WK>(Pos(qx,WKR4)=WKuBKR1sWKR4)

sxxxx|abel QX _LK:

=xx32YE King ValueThm qx,QBUD, BKR1

289 (BOARD(qx OBUD)A-(Valueon(QBUD BKR1)=UD))>((Pos(qx,BKR1)=WKuValueon(QBUD
BKRI)SKV)A(Pos(qx BKR1)=BKaValueon(QBUD,BKR1)=KB))

9.3. The whitepieces include the white pawns, two rooks, knights, and bishops, and a white
king and queen. But we have eliminated all but six of these pieces as candidates to be the fallen

piece. Hence, it must have been one of them.

xx2x2VE WhitepieceArePaunsOr_ yyw;
290 WHITEPIECE yyws(WPAWNS yywv(yyw=WKv(yywsWQv(yywsWKNv(yywsWKBv(yyw=WKRv(
yywsWQBv (yywsWQNvyywsWQR))))))))

sxxxxsimplify WHITEPIECE yywn-BA2=WKR4A-BKR1=WKR4A
* Valueon (QBUD, BKR1) =KWA-KW=UD;
291 WHITEPIECE yWA((BQ2=WKR4)A(~(BKR1=WKR4)A(Valueon(QBUD, BKR])=KWA~(KW=UD

)

14.28. A FOL Solution to the Chess Puzzle Page 147.

sxxsslabe! WHICH YYW:
ssesstauteq yyw=Wd v yyws=WQB v yywshKB v yyw=yurl v yyws=WON v yyu=lKN

. QX_QBUD, SAME _ON_WKR4, CALL _YYW, QX_WPALINS+2,CALL _YWR: 13
292 yyw=WQv(yyw=WQBv (yywsWKBv(yywsywrlv(yyw=WQNvyywsWKN)))) (1 9 252 286)

We set the stage for further deductions.

Similarly, only these six white pieces were ever captured. Furthermore, If the capture occurred on a
white square, then the white on black bishop (WQB) was not the captured piece.

sxx32VE MconseqfX qx,p,BKR1,WK;
293 ((p=qxvPREDEGAME(p,qx))AaTaken Move paWK)>~(Pos(qx,BKR1)=WK)

=s»88YE MconseqfX qx,p,BQ2,ywr;
294 ((p=qxvPREDEGAME(p,qx))AaTaken Move pzywr)>~(Pos(qx,BQ2)=ywr)

ssxxsVE WhitepieceArePaunsOr_ x;
292)¥?§;§§§ECE x5 (WPAWNS xv (x=WKv(xsWQv(xsWKNv(xzWKBv(xeWKRv(x=WQBvV(x=WQNvXx=
wQ

*x*x3:xVE WhereBishopTaken p,WQB, sq,WdBl;
296 (To Move p=sqn(Pos(P0,WQB1)=WQBA~(WHITESQUARES WQB1sWHITESQUARES sq)))o>~
(Taken Move p=WQB)

] sswusimplify -WHI TESQUARES WQB1APos (PG,WQB1)=W0B;
- 297 -WHITESQUARES WQBlaPos(P0O,WQB1)=WQB

sxx22YE MconseqfX qx p WKR4 yyw;
298 ((p=qxvPREDEGAME(p,qx))AaTaken Move p=yyw)>-(Pos(qx,WKR4)syyw)

1 sxssstauteq ((PREDEGAME (p qx)vpe=qx)aTaken Move pexaAWHITEPIECE x)>
: * ((x=WQvx=WQNvx«WKNvx =lQBvxslKBvx=yurl) A (~xeyyu) A

P * ((To Move p=sqalHI TESQUARES sq)>-x=WQB))
* A1, QX WK, QX _WK+2,QX_QBUD, CALL _YWR,QX_LIPAUNS+2,CALL _YYWs

¥ 299 ((PREDEGAME(p,qx)vp=ax)a(Taken Move p=xAWHITEPIECE x))>((x=WQv(x=WQNv(x=
WKNv (x=WQBv (x=WKBvxzywrl)))))A(=(xsyyw)Aa((To Move p=sqAWHITESQUARES sq)o—~(x=
WQB)))) (1 9 252 286)

xxsx¢label WHICH QX TAKEN:

sxxxxV] 1 qs

300 Yp x sg.’(((?PREOEGAME(D.qx)vpth)A(Taken Move PEXAWHITEPIECE x))of(x=WQv{

x=WQNv (x=WKNv (x=WQBv(x=WKBvxzywrl)))))A(~(xsyyw)Aa((To Move p=sqaWHITESQUARES
§q)o-~(x=WQB))))) (1 9 252 286)

; Section 4.2.9 Black Pawn Captures

10. We see that the BANP and BKBP have, between them, captured white pieces on the squares
BGR3, BK3, BQ4, and WaB4.

*xs22VE BlackPaunCaptureThm gx , BONP , BAN2 , BQR3 , BQR3 , QBUD ;

301 (Pos(P0,BQN2)=BQNPA(Pos(qx,BQR3)=BQNPA(MUST_PAWN_CAPTURES(BQN2,BQR3,
Piececolor BQNP)A(BOARD(qx,QBUD)AValueon(QBUD,BQR3)=PB))))>((BQR3=BQR3V(
SAMEDIAG(BQR3,BQR3)A(SAMEDIAG(BQR3,BQN2)ABETWEEN(Row BQR3,Row BQR3,Row BQNZ2)
)))>3a3 x3.((PREDEGAME(q3,qx)va3=qx)A((TAKINGS Move q3a(Mover Move Q3=BQNPA(
To Move q3=BQR3ATaken Move q3=x3)))A(PREDEGAME(Prevpos q3,qx)A(To Move qi=

".'....IIIlIIE::::uun-uu-w-un-upu-qnuuun-m-n-mnuunuuunuu!!lliﬂﬂ!!""& PRI Yo o

Page 148. A FOL Solution to the Chess Puzzle 429

BQR3>(Mover Move q3=BQNP>((Taken Move q3sx3A~WHITEPIECE BQNP)>(WHITEPIECE x3
n(~(Row BQR3=6)>Pos(Prevpos q3,BQR3)sx3)))))))))

sss3sVE BlackPaunCaptureThm qx , BKBP , BKB2 , WQB4 , BK3 , QBUD

302 (Pos(P0,BKB2)=BKBPA(Pos(qx,WQB4)=BKBPA(MUST_PAWN_CAPTURES(BKB2,WQB4,
Piececolor BKBP)a(BOARD(qx,QBUD)AValueon(QBUD,WQB4)=PB))))>((BK3=WQB4Av(
SAMEDIAG(WQB4,BK3)A(SAMEDIAG(BK3,BKB2)ABETWEEN(Row WQB4,Row BK3,Row BKB2))))
233 x3.((PREDEGAME(43,qx)vq3=qx)a((TAKINGS Move q3a(Mover Move q3=BKBPa(To
Move Q3=BK3aTaken Move q3=x3)))A(PREDEGAME(Prevpos q3,qx)a(To Move q3=BK3>(
Mover Move q3=BKBP>((Taken Move q3=x3A-WHITEPIECE BKBP)>(WHITEPIECE x3a(~-(
Row BK3=6)>Pos(Prevpos q3,BK3)=x3)))))))))

ssx3s3YE BlackPaunCaptureThm gx , BKBP , BKB2 , WQB4 , BQ4 , QBUD ;
303 (Pos(P0,BKB2)=BKBPA(Pos(qx,WQB4)=BKBPA(MUST_PAWN_CAPTURES(BKB2,WQB4,
| Piececolor BKBP)A(BOARD(qx,QBUD)aValueon(QBUD,WQB4)=PB))))>((B8Q4=WQBAV(
SAMEDIAG(WQB4,BQ4)A(SAMEDIAG(BQ4,BKB2)ABETWEEN(Row WQB4,Row BQ4,Row BKB2))))
E 5393 x3.((PREDEGAME(Q3,qx)va3=qgx)a((TAKINGS Move q3a(Mover Move q3=BKBPA(To
' Move q3=BQ4aTaken Move q3=x3)))~(PREDEGAME(Prevpos q3,qx)a(To Move q3=BQ4>(
Mover Move q3=BKBP>((Taken Move q3=x3A-WHITEPIECE BKBP)>(WHITEPIECE x3a(~(
Row BQ4=6)>Pos(Prevpos q3,BQ4)=x3)))))))))

sxx*2YE BlackPawnCaptureThm qx , BKBP , BKB2 , WQB4 , WQB4 , QBUD

304 (Pos(P0,BKB2)=BKBPA(Pos(qx,WQB4)=BKBPA(MUST_PAWN_CAPTURES(BKB2,WQB4,
Piececolor BKBP)A(BOARD(qx,QBUD)AValueon(QBUD,WQB4)=PB))))>((WQB4=WQB4V(
SAMEDIAG(WQB4,WQB4)a(SAMEDIAG(WQB4,BKB2)ABETWEEN{Row WQB4,Row WQB4,Row BKB2)
)))>3q3 x3.((PREDEGAME(q3,qx)va3=qx)A((TAKINGS Move q3Aa(Mover Move q3=BKBPA(
To Move q3=WQB4nTaken Move Qq3=x3)))A(PREDEGAME(Prevpos q3,qx)A(To Move q3=

; WQB4>(Mover Move q3=BKBP>((Taken Move Q3=x3A~WHITEPIECE BKBP)>(WHITEPIECE x3
i A(~(Row WQB4=6)>Pos(Pravpos q3,WQB4)2x3)))))))))

: ssxxxlavel PISIMP;

1 ssxxx sinplify (Pos(P@,BAN2) =BANPA

» MUST_PALIN_CAPTURES (BAN2,BQR3,Piececolor BANP)AValueon (QBUD,BQR3) =PBA
BAR3=BQAR3) A (Pos (P@, BKB2) «BKBPA

MUST_PAWN_CAPTURES (BKB2,W0B4,Piececolor BKBP)AValueon (QBUD,WQAB4) =PBA
(SAMEDI AG (WQB4,BK3) ASAMEDIAG (BK3,BKB2) A

BETWEEN (Row WQB4,Row BK3,Row BKB2)))a(Pos (P8, BKB2) =BKBPA
MUST_PAWN_CAPTURES (BKB2,WQB4,Piececolor BKBP)AYalueon (QBUD,WAB4) =PBA
(SAMED I AG (WQB4, BQ4) ASAMEDIAG (BQ4, BKB2) A

BETWEEN (Row WQB4,Rou BQ4,Rou BKB2)))A(Pos(P@,BKB2) =BKBPA
MUST_PAWN_CAPTURES (BKB2,WdB4,Piececolor BKBP)A

Z * Valveon(QBUD,WQAB4) =PBANQB4=WAB4)

i 305 (Pos(PO,BQN2)=BQONPA(MUST_PAWN_CAPTURES(BQN2,BQR3,Piececolor BQNP)A(

§ Valueon(QBUD,BQR3)=PBABQR3=5QR3)))A((Pos(P0,BKB2)=BKBPA(MUST_PAWN_CAPTURES(
2 BKB2,WQB4,Piececolor BKBP)a(Valueon(QBUD,WQB4)=PBA(SAMEDIAG(WQB4,BK3)A(

3 SAMEDIAG(BK3,B8KB2)ABETWEEN(Row WQB4,Row BK3,Row BKB2))))))Aa((Pos(P0,BKB2)=

4 BKBPA(MUST_PAWN_CAPTURES(BKB2,WQB4,Piececolor BKBP)A(Valueon(QBUD,WQB4)=PBA(
SAMEDIAG(WQB4,BQ4)A(SAMEDIAG(BQ4,BKB2)ABETWEEN(Row WQB4,Row BQ4,Row BKB2))))
))A(Pos(P0O,BKB2)=BKBPA(MUST_PAWN_CAPTURES(BKB2,WQB4,Piececolor BKBP)A(
Valueon(QBUD,WQB4)=PBAWQB4=WQB4)))))

Hence, there must have existed four positions in the course of this game where the move that
reached that position was one of these captures.

T

LR R X 3R 2R 3R BF B

ssssstauteq MMM H242 MM, PTSIMP, ROW3R_BP,QX_QBUD;
306 3q3 x3.((PREDEGAME(q3,qx)va3=qx)a((TAKINGS Move q3a(Mover Move q3=BQNPA(
To Move q3=BQR3ATaken Move q3=x3)))A(PREDEGAME(Prevpos a3,qx)a(To Move q3=

FHRSIPNSRRSYL ST i - . i

429 A FOL Solution to the Chess Puzzle Page 149.

BQR3>(Mover Move q3=BQNP>((Taken Move Q3=x3A~WHITEPIECE BQNP)>(WHITEPIECE x3
A(~(Row BQR3=6)>Pos(Prevpos q3,BQR3)=x3)))))))) (1 9)

sexsx tauteq MM H242 M4, PTSIMP,BS_BP,QX_QBUD;

307 3q3 x3.((PREDEGAME(q3,qx)vq3=qx)a((TAKINGS Move q3an(Mover Move q3=BKBPA(
To Move q3=BK3aTaken Move q3=x3)))a(PREDEGAME(Prevpos q3,ax)a(To Move q3=BK3
>(Mover Move Q3=BKBP>((Taken Move Q3=x3A-WHITEPIECE BKBP)>(WHITEPIECE x3a(~(
Row BK3=6)>Pos(Prevpos q3,BK3)=x3)))))))) (1 9)

sxxxxtauteq TMPIH242 MMM, PTSIMP,BS_BP,QX_QBUD;

308 3q3 x3.((PREDEGAME(q3,aqx)va3=qx)A((TAKINGS Move q3a(Mover Move q3=BKBPA(
To Move q3=BQ4aTaken Move q3=x3)))A(PREDEGAME(Prevpos q3,qx)A(To Move q3=BQ4
>(Mover Move Qq3=BKBP>((Taken Move q3=Xx3A-WHITEPIECE BKBP)>(WHITEPIECE x3a(-(
Row BQ4=6)>Pos(Prevpos q3,B8Q4)=x3)))))))) (1 9)

sxxsstauteq MMM 242 MM, PTSIMP,BS_BP,QX_QBUD;

309 3q3 x3.((PREDEGAME(q3,qx)va3=qx)a((TAKINGS Move q3a(Mover Move q3=BKBPa(
To Move q3=WQB4aTaken Move q3=x3)))A(PREDEGAME(Prevpos q3,qx)A(To Move Q3=
WQB4>(Mover Move q3=BKBP>((Taken Move q3=sx3A~WHITEPIECE BKBP)>(WHITEPIECE x3
A(-~(Row WQB4=6)>Pos(Prevpos q3,WQB4)=x3)))))))) (1 9)

Let us call these positions pl, p2, p3, and p4, respectively. We will refer to the white pieces captured
as xa, xb, xc, and xd

sxxxx |label CALL_PN;

sxxxx3JE MMM pl xa:

310 (PREDEGAME(pl,ax)vpl=ax)a((TAKINGS Move pla{Mover Move pl=zBQNPA(To Move
pl=BQR3ATaken Move pl=xa)))A(PREDEGAME(Prevpos pl,qx)a(To Move pl=BQR3>(
Mover Move pl=BQNP>((Taken Move plzxan-WHITEPIECE BQNP)>(WHITEPIECE xan(-(
Row BQR3=6)>Pos(Prevpos pl,BQR3)=xa))))))) (310)

exxax3E TP p2 xb;

311 (PREDEGAME(p2,qx)vp2=qx)A((TAKINGS Move p2a(Mover Move p2=BKBPA(To Move
p2=BK3ATaken Move p2=xb)))A(PREDEGAME (Prevpos p2,qx)a(To Move p2=BK3>(Mover
Move p2=BKBP>((Taken Move p2=xbA~WHITEPIECE BKBP)>(WHITEPIECE xba(-(Row BK3=
6)>Pos(Prevpos p2,BK3)=xb))))))) (311)

sxxxx3E MMM p3 xc:

312 (PREDEGAME(p3,qx)vp3=qx)A((TAKINGS Move p3a(Mover Move p3=BKBPA(To Move
p3=BQ4nTaken Move p3=xc)))A(PREDEGAME(Prevpos p3,qx)a(To Move p3=BQ4>(Mover
Move p3=BKBP>((Taken Move p3sxcA~WHITEPIECE BKBP)>(WHITEPIECE xca(-(Row BQ4=
6)>Pos(Prevpos p3,BQ4)=xc))))))) (312)

xxxxxJE MMM pd xds

313 (PREDEGAME(p4,qx)vpd=qx)A((TAKINGS Move pd4a(Mover Move p4=BKBPA(To Move
p4=WQB4ATaken Move pd=xd)))A(PREDEGAME(Prevpos pd,ax)Aa(To Move pd=WQB4>(
Mover Move p4=BKBP>((Taken Move pd=xda-WHITEPIECE BKBP)>(WHITEPIECE xda(-(
Row WQB4=6)>Pos(Prevpos pd,WQB4)=xd))))))) (313)

Clearly, each of xa through xd must be one of the white pieces that could have been captured.

sxxxslabel SIMPWS:

sxexx simplify (SWHITEPJECE BANPA-WHITEPIECE BKBP)A

*+ WHITESQUARES BQR3AWHITESQUARES BK3AWHI TESQUARES BQ4AWHI TESQUARES WQB4:
314 (~WHITEPIECE BQNPA-WHITEPIECE BKBP)A(WHITESQUARES BQR3A(WHITESQUARES BK3
A(WHITESQUARES BQ4AWHITESQUARES WQB4)))

Page 150. A FOL Solution to the Chess Puzzle 1.29.

b ssessVE WHICH_QX_TAKEN pl,xa,BQR3;

315 ((PREDEGAME(pl,qx)vplzax)a(Taken Move pl=xaaWHITEPIECE xa))o((xa=WQv(xas=
WQNv(xasWKNv(xazWQBv (xazWKBvxasywrl)))))a(~(xasyyw)a((To Move plsBQR3A
WHITESQUARES BQR3)>~(xa=WQB)))) (1 9 252 286)

sxsssVE WHICH_QX_TAKEN p2, xb,BK3;

316 ((PREDEGAME(p2,qx)vp2sqx)a(Taken Move p2sxbAWHITEPIECE xb))a((xbsWQv(xbs
WQNv (xbeWKNv(xbaWQBv (xb=WKBvxbaywrl)))))a(~(xbsyyw)a((To Move p2sBK3A
WHITESQUARES BK3)>-(xb=WQB)))) (1 9 252 286)

sexssVE WHICH_QX_TAKEN p3,xc,BQR4;

317 ((PREDEGAME(p3,qx)vp3=qx)a(Taken Move p3=xCAWHITEPIECE xc))o>((xc=WQv(xc=
WQNv (xc=WKNv (xc=WQBv (xc=WKBvxczywrl)))))a(~(xczyyw)a((To Move p3=BQ4n
WHITESQUARES BQ4)>-~(xc=WQB)))) (1 9 252 286)

ssxseVE WHICH_QX_TAKEN p4,xd,WQB4;

318 ((PREDEGAME(p4,ax)vpd=qgx)a(Taken Move pd=xdAWHITEPIECE xd))>((xd=WQv(xd=
WQNv (xd=WKNv (xd=WQBv (xd=WKBvxd=ywrl)))))a(~(xdeyyw)a((To Move p4=WQBAA
WHITESQUARES WQB4)>-~(xdsWQB)))) (1 9 252 286)

Since these are white squares, each of xa through xd was neither the WQB (white on black bishop),
nor, of course yyu (the piece that feli from the board).

sxsxx |abel WHO XA;

sxsxs tauteq (xa=WQuxa=WONvxa=WKNvxas=WKBvxa=ywrl)A-xas=yyw

* CALL_PN , SINMPWS, T4

319 (xa=WQv(xa=WQNv(xa=WKNv(xa=WKBvxazywrl))))a~(xazyyw) (1 9 252 286 310)

ssusstauteq (xb=WQvxbeWANvxbeWKNvxbeWKBvxbeywrl)A-xbeyyw
. CALL_PN+1 , SIMPWS , MMM
320 (xb=WQv(xb=WQNv(xbz=WKNv(xb=WKBvxb=ywrl))))a~(xbsyyw) (1 9 252 286 311)

sssvstauteq (xc=WQvxc=WANvxceWKNvxcalKBvxcayurl)A=xceyyw
* CALL_PN+2 , SIMPUS, 111,
321 (xc=WQwv(xc=WQNv(xc=WNKNv(xc=WKBvxczywrl))))a~(xczyyw) (1 9 252 286 312)

ssesxtauteq (xd=WQuxd=WANvxd=WKNvxd=lKByxdeynrl) A=xdeyyw
* CALL_PN+3 , SIMPWS, ttt%;
322 (xd=WQuv(xd=WQNv(xd=WKNv(xd=WKBvxd=ywrl))))a~(xd=yyw) (1 9 252 286 313)

We need also establish that these moves all captured different pieces. A lemma, Differentlaken,
serves us well here. It states that if a capture took place on differing squares, or by differing pieces,
or any other way of proving the capturing positions different, then the captured pieces were not the
same piece. As there are six equalities to establish, we invoke the theorem six times.

sxx33VE DifferentTaken pl p2 qx xa xbs

323 (((p2=qxvPREDEGAME(p2,qx))A(pl=qxvPREDEGAME(p]1,qx)))A((~(To Move pl=To
Move p2)v(-~(Mover Move pl=Mover Move p2)v(PREDEGAME(pl,p2)v~(pl=p2))))A(
Taken Move pl=xanTaken Move p2=xb)))>~(xa=xb)

sxx33VE DifferentTaken pl p3 gx xa xc:

324 (((p3=qxvPREDEGAME(p3,qx))A{pl=qxvPREDEGAME(pP],qx)))A((~(To Move pl=To
Move p3)v(=~(Mover Move plzMover Move p3)v(PREDEGAME(p1,p3)v=(pl=p3))))A(
Taken Move plsxanTaken Move p3=xc)))>-(xasxc)

|

VY T——

——

L

4.2.9. A FOL Solution to the Chess Puzzle Page 151.

sxs3sVE DifferentTaken pl pé4 qx xa xd;

325 (((p4=qxvPREDEGAME(p4,ax))Aa(pl=axvPREDEGAME(pl,qx)))A((~(To Move pl=To
Move p4)v(~(Mover Move pl=Mover Move p4)v(PREDEGAME(pl,pd)v~(pl=pd))))n(
Taken Move pl=xanTaken Move pdsxd)))>-~(xasxd)

sxs32VE DifferentTaken p2 p3 gx xb xc;

326 (((p3=qxvPREDEGAME(p3,qx))a(p2=qxvPREDEGAME(p2,qx)))A((~(To Move p2=To
Move p3)v(-~(Mover Move p2=Mover Move p3)v(PREDEGAME(p2,p3)v~(p2=p3))))A(
Taken Move p2=xbaTaken Move p3=xc)))o>~(xb=xc)

ssx3sVE DifferentTaken p2 pb4 qx xb xd:

327 (((p4=qxvPREDEGAME(p4,qx))A(p2=axvPREDEGAME(p2,qx)))A((~(To Move p2=To
Move pd)v(-~(Mover Move p2=Mover Move p4)v(PREDEGAME(p2,p4)v-~(p2=p4d))))a(
Taken Move p2=xbaTaken Move pd=xd)))>~(xb=xd)

xxx3:VE DifferentTaken p3 p4 qx xc xd;

328 (((p4=qxvPREDEGAME(p4,qx))A(p3=qxvPREDEGAME(p3,qx)))a((~(To Move p3=To
Move pd)v(-~(Mover Move p3:=Mover Move pd)v(PREDEGAME(p3,p4)v~(p3=p4))))a(
Taken Move p3=xcaTaken Move pd=xd)))>~(xcsxd)

And compact its result to a single step.

sxxsxsimplify ~-BANP=BKBP A -WQB4 = BQ4 A -~ WAB4 = BK3 A-BQ4 = BK3;
329 -~(BQNP=BKBP)A(~(WQB4=BQ4)A(~(WQB4=BK3)A~(BQ4=BK3)))

sxxxx|abel NOT_XN _EQ;

sresp tauteq -xasxba =Xa=XCA -X3a=X0A =xbexCA -xbexdn -xcaxd

* Mttt , CALL_PN:sCALL_PN+3; :

g?g ~§§?=xb)A(*(xa=xc)A(-(xa=xd)A(*(xbsxc)A(~(xb=xd)A~(xc=xd))))) (310 311
3

Section 4.2.10 The Black Pawn’s Path to Promotion

1L We have proven (back on step 207) that the black king rook's pawn had promoted.
Therefore, there must have existed some position (in the course of this game) where he moved onto
the eighth row. Let us call this position qu.

sxx2xVE BlackPromtesOn8A qx BKRP;
331 PROMOTEDPAWN(qx,BKRP)>3p.((PAWNPROM Move pa((PREDEGAME(p,Qqx)vp=qx)aMover
Move p=BKRP))ARow To Move p=8)

sxxxetaut 42 1, PROM_BKRP;
332 3p.((PAWNPROM Move pAa((PREDEGAME(p,qx)vp=qx)AMover Move p=BKRP))ARow To

Move p=8) (1 9)

sxx%¢label CALL_QY;
sxx2x JE 1 qus

y
333 (PAWNPROM Move qya((PREDEGAME(aqy,qx)vay=qx)aMover Move qy=BKRP))ARow To
Move qy=8 (333)

11.1. Our final lemma specifically applicable to this proof, FarTaken (section B.4.2) states that if
the BKRP promoted on any square to the left of WKN1, figure 42 then this pawn must have captured
two white pieces on the way to his elevation.

Page 152. A FOL Solution to the Chess Puzzle 4.2.10.

e
»B B B
AT, W, 7%

2 o Y Y/ Yy
%/ ’& %/g ////'/ ///;867 2/,
VA 7z

AU, %

figure 42

g sxx33VE FarTaken qu;

{ 334 (PAWNPROM Move qya(Mover Move qy=BKRPA(~(To Move qy=WKR1)a~(To Move qy=
WKN1))))o3ql q2 x1 x2.(((PREDEGAME(ql,qy)vql=qy)a(PREDEGAME(Q2,ql)A(
PREDEGAME(PO, q2)A(TAKINGS Move qlA(TAKINGS Move q2a(Mover Move qlsBKRPA(
Mover Move q2=BKRPA(Taken Move gl=xlaTaken Move q2=x2))))))))Aa~(x1=zx2))

Let us assume that the promotion was on one of these squares
ssxsslabel TAKE 2 ASSUMPTION;
ssxerassume ~(1o Move qu=WKN1)A ={To Move qy=WKR1);
335 ~(To Move qy=WKN1)Aa~(To Move qy=WKR1l) (335)

. We call the positions in which the two white pieces were captured ql and q2, the respective captured
; pieces, x1 and x2.

sxxxxtaut Mig2 M,

336 3ql q2 x1 x2.(((PREDEGAME(Ql,qy)vql=qy)a(PREDEGAME(Q2,ql)A(PREDEGAME(PO,
q2)A(TAKINGS Move qlA(TAKINGS Move q2a(Mover Move qlsBKRPA{Mover Move q2=
BKRPA(Taken Move ql=xlaTaken Move q2x2))))))))a~(xlex2)) (333 335)

sxsxslabel CALL QN:

sxxx33E 1 ql,q2,x],x2;

337 ((PREDEGAME(ql,qy)vaql=qy)a(PREDEGAME(a2,ql)a(PREDEGAME(PO,q2)A(TAKINGS

Move QlA(TAKINGS Move q2a(Mover Move qlsBKRPA(Mover Move q2=BKRPA(Taken Move
ql=xlaTaken Move q2sx2))))))))a~(x1=sx2) (337)

As ql and g2 occurred in the game that led to qy, and gy occurred in the game that reach gx, both
gl and q2 are ancestors of ax.

xxx23VE TransitiveGenealogy ql.qu,qx:
338 (PREDEGAME(ql,qy)APREDEGAME(Qy,ax))>PREDEGAME(Ql,qx)

sssssVE TransitiveGenealogy q2,ql,qx:

4.2.10. A FOL Solution to the Chess Puzzle Page 153.

339 (PREDEGAME(qQ2,ql)APREDEGAME(ql,ax))>PREDEGAME(q2,qx)

ssses | abel PRED_QON:
ssssstauteq (PREDEGAME (ql ax)val=ax) APREDEGAME (q2 ox) t44:4,CALL_QY;
340 (PREDEGAME(Ql,qx)vql=qx)APREDEGAME(Q2,qx) (333 337)

And x1 and x2 must also be in the capture set.

sxve3VE WhiteCapturedldnThm Prevpos ql,ql,BKRP,x1,To Move ql;

341 Prevpos ql=Prevpos ql>(To Move ql=To Move qlo>(Mover Move ql=BKRP>((Taken
Move ql=x1A-WHITEPIECE BKRP)>(WHITEPIECE xla(~(Row To Move ql=6)>Pos(
Prevpos ql,To Move ql)=x1)))))

sxeasVE WhiteCapturedOnThm Prevpos q2,q2,BKRP,x2,To Move q2;

342 Prevpos q2:=Prevpos a2>(To Move q2=iv Move Q2>(Mover Move q2=BKRP>((Taken
Move Q2=x2A-WHITEPIECE BKRP)>(WHITEPIECE x2a(~(Row To Move q2=6)>Pos(
Prevpos q2,To Move qQ2)=x2)))))

»exxsVE WHICH_QX_TAKEN ql,xl,To Move ql:

343 ((PREDEGAME(ql,ax)valzax)a(Taken Move ql=x1AWHITEPIECE x1))>((x1=WQv(xl=
WONv (x1=WKNv(x1=WQBv(x1=WKBvx1l=ywrl)))))a(~(xlzyyw)a((To Move ql=To Move qla
WHITESQUARES To Move ql)o-~(x1=WQB)))) (1 9 252 286)

sxxexVE WHICH_QX_TAKEN q2,x2,7o Move q2;

344 ((PREDEGAME(q2,qx)vq2=qx)a(Taken Move q2=x2AWHITEPIECE x2))>((x2=WQv(x2=
WONv (x2=WKNv (x2=WQBv (x2=WKBvx2sywrl)))))a(~(x2syyw)A((To Move q2=To Move Q2A
WHITESQUARES To Move Q2)>-~(x2=WQB)))) (1 9 252 286)

sxxessinplify —WHITEPIECE BKRP;
345 ~WHITEPIECE BKRP

T SN e I T]

sxxsxiabel WHO X1:

ssxsetauteq THT:A2HBLAMMN I H2H2H] A, A4, MM PRED_QN, CALL _QGN, CALL_QY;

342 gx;:VQv(thQNv(xllHKNv(xllVOBV(xllNKBVXISywrl)))))A-w(xllyyw) (1 9 252
286 333 337)

ssxastaut M H2HIAMM 28241 14, M, M0, PRED_QN, CALL_QN, CALL_QY;
ggg gxglgg\;gxzwcw(thwKNv(xZ-HOBv(x2=\JKBvx2=ywrl)))))A~(x2=yyw) (1 9 252
3

Since x1 and x2 were captured by BKRP, and xa through xd, by BUNP and BKBP, x1 and x2 are not
equal to any of xa through xd. DifferentTakenFour is merely four instantiations of Differentlaken,
compressed into one WFF. This is a good illustration of the inaccuracies involved in measuring
proof size merely by counting steps.

sxx22VE DifferentTakenFour gx ql pl p2 p3 pé xl xa xb xc xd;

348 ((ql=qxvPREDEGAME(ql,ax))a((pl=qxvPREDEGAME(pl,qx))A((p2=qxvPREDEGAME(pP2
,ax))A((p3=qxvPREDEGAME(p3,ax))Aa((p4=qxvPREDEGAME(p4,qx))a(~(Mover Move pl=
Mover Move ql)a(~(Mover Move p2=Mover Move ql)a(~(Mover Move p3=Mover Move
ql)a(~(Mover Move pd=Mover Move ql)a(Taken Move al=xla(Taken Move pl=xaa(
Taken Move p2=xba(Taken Move p3=xcaTaken Move pd=xd)))))))))))))a(~(xa=x1)A(
~(xb=x1)A(~(xc=x1)A=~(xd=x1))))

sxee2VE DifferentTakenFour gx q2 pl p2 p3 p4 xZ xa xb xc xd;
349 ((q2sqxvPREDEGAME(Q2,qx))A((pl=qxvPREDEGAME(p1,qx))A((p2=axvPREDEGAME(p2

Page 154. A FOL Solution to the Chess Puzzle 4.2.10.

,QXx))A((p3=qxvPREDEGAME(p3,qx))A((p4=qxvPREDEGAME(p4,qx))A(~(Mover Move pl=
Maover Move q2)a(-{Mover Move p2=Mover Move q2)a(-(Mover Mova p3zMover Move
q2)A(~(Mover Move pd=Mover Move q2)a(Taken Move q2zx2a(Taken Move pl=xan(
Takan Move p2=xba(Taken Move p3=xcaTaken Move pdsxd)))))))))))))o(~(xasx2)a(

~(xb=x2)A(~(xcEx2)a~(xd=x2))))

sxxs% | abel DIFFMOVERS;
sxxsx simplify ~BKRP=BKBPA-BKRP=BANP;

350 ~(BKRP=BKBP)A~(BKRP=BQNP)

ssxsstauteq MM1:#2 CALL_PN:CALL_PN+3,CALL_QY,CALL_QN,PRED_QN, t1¢, *;
351 ~(xasxl)a(=(xb=x1)Aa(=~(xc=xl)a~(xd=x1))) (310 311 312 313 333 337)

ssxsxtauteq MMP:#2 CALL_PN:CALL_PN+3,CALL_QY,CALL_QN,PRED_QN, t1¢,11%;
352 ~(xasx2)A(-~(xbsx2)A(-~(xcsx2)Aa=~(xdsx2))) (310 311 312 313 333 337)

1.1l We have presume a situation that is clearly impossible. We have posited the existence of
: six captured white piece, all different, and a fallen piece, all to be selected from the pool of six
unaccounted for white chessmen. Our pigeon will not fit into this hole. We can tautologically

produce the contradiction:
sxsx% tauteq FALSE

* M NOT_XN_EQ, WHICH_YYW, WHO_XA: WHO_XA+3,WHO_X1:WHO_X1+1,CALL_QN;
353 FALSE (1 9 333 335)

11.2. This permits us to negate one of our assumptions. We of course choose the assumption
that the BKRP promoted to the left of WKN1. Hence, we get something equivalent to specifying the
promotion square of BKRP to be either WKN1 or WKR1.

sxxxxlabel N1 _OR RIl;
sxxxx-~] T TAKE_2_ASSUMPTION;
354 -(~(To Move qyzWKN1l)a~(To Move qy=WKR1l)) (1 9 333)

ha% Y ’/’f
’/7’//4 W //

/ /’é '// %
/ / /
A / //,,%z
/3./:1/,,,

/3// # K
//'\// %,

BKRP promoted on one of these squares.

figure 43

;
1
k|

41211 A FOL Solution to the Chess Puzzle Page 155

Section 4.2.11 The Source of the Promoting Move

In either case, there was a move when the pawn valued BKRP was on WKN1 or WKR1. Notice that for
the next few steps, we are compelled to follow two parallel proof strands, one for each of the possible
promaotion squares. We will meryge these strands as soon as possible

sevaaVE BlackDidPromote qu BRKRP WKNL
355 To Move qy=WANI>(Mover Movo qy=BKRP>(PAWNPROM Move qy>(Val(Praevpos qy,
BRRP)=PBAPOS(qy,WKN1)=BKRP)))

essve¥E BlackDidPromote qu BKRP WKRI:
356 To Move qy=WKRI>(Mover Move qy=BKRP>(PAWNPROM Move qy>(Val(Prevpos ay,
BKRP)=PBAPOs(qy,WKR1)=BKRP)))

11.2.1 Properly composed, we can use our chess eye to see backwards as well as just looking about.
A black pawn on KAN1 came from one of WKB2, KKN2, or WKR2; on WKR1, from either WKNZ or WKR..

sevweVE BlackPaunMoveThm qx, qu, BKRPUKNL

357 (Pos(qy,WANT)=BRRPA(~(Pos(PO,NKN1)=BKRP)A((PREDEGAME (qy, ax)vay=ax)aVa I(
Prevpos qy,BANRP)=PB)))odq. ((PREDEGAME (q,qx)vazqgx)a(Mover Move q=BKRPA(T0
Move q=WKNIA(VALUEP Val(Prevpos q,BRRP)A((~(Row WKN1=G)a~(Row WKN1=4))o((
From Move q=Makesquare(Wsuct Row WKN1,Column WKN1)aPos(Prevpos q,WKNI1)=LMPTY
v((Taken Move q=Pos(Provpos q,WKN1)AWHITEPIECE Pos(Prevpos q,WKN1))a(From
Move g=Makesquare(Wsuct Row WKNI1,L2touchf Column WAN1)vFrom Move g=
Makesquare(Wsucf Row WAN1,R2touchf Column WKN1)))))))))

sevexVE BlackPaunMNovelhn gx, qu,BAEP,NKR]

358 (Pos(qy,WAR1)=BKRPA(~(Pos(PO,WKR1)=BKRP)A((PREDEGAME (qy,qx)vay=ax)avVal(
Provpos qy,BRRP)=PB)))>1q. ((PREDEGAME (q,qx)va=ax)a(Mover Move q=BKRPA(To
Movae q=WKRIA(VALUEP Val(Provpos q,BKRP)A((~(Row WKR1=G)A-~(Row WKR1=4))o((
From Move qe=Makesquaro(Wsucf Row WKR1,Column WKR1)APos(Prevpos q,WNR1)stMPTY
Yv((Taken Move q=Pos(Provpos q,WKR1)AWHITEPIECE Pos(Prevpos q,WKR1))A(From
Move q=Makesquare(Wsuctf Row WKR1,L2touchf Column WKR1)vFrom Move q=
Makosquare(Wsucf Row WKR1,R2touchf Column WAR1)))))))))

svsawainplify ~(Fos (PO, NKRL) «BKRP) A= (FPos (PO, WKN1) =BKRP) 4
359 ~(Pos(PO,WKR1)=BKRP)A~(Pos(PO,WKN]1)=BKRP)

In either case, there was a position when BKRP was on this From square.

sennxlavel Nl _assume:
svvpxasaume 1o Move que=lKNlg
360 To Move qy=WAN1 (360)

seevnlabel Rl _assumey
svervannume 1o Move qu=NKR1
361 To Move qy WKR1 (3o0l)

ennnntauteq MOMIAD MAMMAMR, AR, S0, M, CALL QY

362 1q.((PREDEGAME (a,ax)va=ax)a(Mover Move q=BKRPA(To Move q=WANIA(VALUEP
Val(Pravpos q,BKRP)A((~(Row WKN1=G)A~(Row WKN1=4))>((From Move q=Makesquare(
Wsuct Row WKNI,Column WKN1)APos(Pravpos q,NAN1)=EMPTY)v((Taken Move q=Pos(
Provpos q,WKN1)AWHITEPIECE Pos(Pravpos q,WKN1))a(From Move q=Makesquarae(
Wsucf Row WKNL,L2touchf Column WKN1)vFrom Move q=Makesquare(Wsucf Row WKNI,
R2touchf Column WKN1))))))))) (333 300)

e

e P oy

O

W

Page 156 A FOL Solution to the Chess Puzzle 4.2.11.

sesnetauteq TIMPIH2 PANMMNNL, MO, 369, M, CALL_QY;

363 3q.((PREDEGAME(q,ax)vaq=ax)a(Mover Move q=BKRPA(To Move q=WKRla(VALUEP
Val(Prevpos q,BKRP)A((~(Row WKR1z6)A~(Row WKR1=4))>((From Move q=Makesquare(

Wsucf Row WKR1,Column WKR1)aPos(Prevpos q,WKR1)=EMPTY)v((Taken Move q=Pos(i
Prevpos q,WKR1)AWHITEPIECE Pos(Prevpos q,WKR1))Aa(From Move q=Makesquare(
Wsucf Row WKR1,L2touchf Column WKR1)vFrom Move q=Makesquare(Wsucf Row WKR1,
R2touchf Column WKR1))))))))) (333 361)

We call that position ql. We use the chess eye to simplify the defining WFF of ql. 5

sxxas3E M ql:

364 (PREDEGAME(ql,qx)vql=ax)a(Mover Move ql=BKRPA(To Move ql=WKNIA(VALUEP
Val(Prevpos ql,BKRP)A((~(Row WKN1=6)a-~(Row WKN1=4))>((From Move ql=
Makesquare(Wsucf Row WKN1,Column WKN1)APos(Prevpos ql,WKN]1)=EMPTY)v((Taken
Move ql=Pos(Prevpos ql,WKN1)AWHITEPIECE Pos(Prevpos ql,WKN1))A(From Move ql=
Makesquare(Wsucf Row WKN1,L2touchf Column WKN1)vFrom Move ql=Makesquare(
Wsucf Row WKN1,R2touchf Column WKN1)))))))) (364)

sexsx3E M ql:

365 (PREDEGAME(ql,ax)vaql=agx)a(Mover Move ql=BKRPA(To Move ql=WKR1a(VALUEP
Val(Prevpos ql,BKRP)A((~(Row WKR1=z6)a~(Row WKR1=4))>((From Move ql=
Makesquare(Wsucf Row WKR1,Column WKR1)APos(Prevpos ql,WKR1)sEMPTY)v((Taken
Move ql=Pos(Prevpos ql,WKR1)AWHITEPIECE Pos(Prevpos ql,WKR1))Aa(From Move ql=
Makesquare(Wsucf Row WKRI1,L2touchf Column WKR1)vFrom Move ql=Makesquare(
Wsucf Row WKR1,R2touchf Column WKR1)))))))) (365)

~isi AR | et Wi A oA Mo

ssxsesinplify ™

366 (PREDEGAME(ql,qx)vql=qx)a(Mover Move qlzBKRPA(To Move ql=WKNIA(VALUEP

Val(Prevpos ql,BKRP)A((From Move ql=WKN2aPos(Prevpos ql,WKN1)=EMPTY)v((Taken
Move ql=Pos(Prevpos ql ,WKN1)AWHITEPIECE Pos(Prevpos ql,WKN1))Aa(From Move ql
=WKB2vFrom Move ql=WKR2)))))) (364)

ok mr AR T

sxxexsinplify ™M,

367 (PREDEGAME(ql,qx)vql=qx)a(Mover Move ql=BKRPA(To Move ql=WKRIA(VALUEP
Val(Praovpos ql,BKRP)A((From Move ql=WKR2APos(Prevpos ql,WKR1)=EMPTY)v((Taken
Move ql=Pos(Prevpos ql,WKR1)AWHITEPIECE Pos(Prevpos ql,WKR1))Aa(From Move ql
sWKN2vFrom Move ql=WKN2)))))) (365)

Hence, the from square of either ql was one of the three possibilities.

sxxsntauteq (PREDEGAME (ql qx)vql=qx)aMover Move ql=BKRPAVALUEP Val (Prevpos
«ql, BKRP)A (From Move ql=WKR2vFrom Move ql=WKB2vFrom Move qle=WKN2) 1
368 (PREDEGAME(ql,qx)vql=qx)a(Mover Move ql=BKRPA(VALUEP Val(Prevpos ql,BKRP
)A(From Move ql=WKR2v(From Move ql=WKB2vFrom Move ql=WKN2)))) (364)

sexavtauteq (PREDEGAME (ql qx)vaqlegx)aMover Move ql=BKRPAVALUEF Val (Prevpos
2ql, BKRP)A (From Move ql=WKR2vFrom Move ql=WKB2vFrom Move ql=WKN2) 11
369 (PREDEGAME(ql,qx)vql=ax)a(Mover Move ql=BKRPA(VALUEP Val(Prevpos ql,BKRP
JA(From Move ql=WKR2v(From Move ql=WKB2vFrom Move ql=WKN2)))) (365)

By existential quantification, we obtain the same WFF as a consequence of either (promotion square)]
assumption.)

sxxuxd] M ql:
370 3ql.((PREDEGAME(ql,qax)val=ax)a(Mover Move ql=BKRPA(VALUEP Va
,BKRP)A(From Move qlsWKR2v(From Move qlsWKB2vFrom Move ql=WKN2))

Prevpos ql !
) (333 t

1
)

i , 4211 ' A FOL Solution to the Chess Puzzle Page 157. i

360) |

sxxxx3] M gl

371 3ql.((PREDEGAME(ql,ax)vql=qgx)a(Mover Move ql=BKRPA(VALUEP Val(Prevpos ql

i SBKS(P)A(From Move qlsWKR2v(From Move qlsWKB2vFrom Move qlsWKN2))))) (333
4 61

We know the promotion square to be either NKN1 or WKR1.

sxxsxtaut To Move qu=kKNl v To Move qu=WKR1 N1_OR_Rl;
372 To Move qy=WKNlvTo Move qy=WKR1 (1 9 333)

Hence, the presumed position ql certainly exists, regardless. We have used an uncommon

dependency removing inference rule, or elimination to generate this step. Without vE, we would have
needed an addition inference.

sxxxxvE 1, M, M

373 3ql.((PREDEGAME(qQl,qx)vql=ax)Aa(Mover Move ql=BKRPA(VALUEP Val(Prevpos ql
+BKRP)A(From Move ql=WKR2v(From Move qlsWKB2vFrom Move ql=WKN2))))) (1 9)

Let us call the position from which black promoted his pawn qz. We know that the From square of
qz must be one of WKB2, WKN2 or KKR2.

sxxxx3E 1 qz;

374 (PREDEGAME(qz,qx)vaz=qx)a(Mover Move qz=BKRPA(VALUEP Val(Prevpos qz,BKRP
JA(From Move qz=WKR2v(From Move Qqz=WKB2vFrom Move qz=WKN2)))) (374)

i _ sxxxxlabel CALL _QZ;

11.2.2. We notice that the WKBP has not yet moved. Hence, in qz, the WKKBP was on WKB2.

sxxx2VYE ShortPawnPathThm qz,qx.WKB2,WKB2, WKBP, QBUD;

375 Vsq.((MAY_PAWN_CAPTURES(WKB2,sq,Piececolor WKBP)AMAY_PAWN_CAPTURES(sq,

: WKB2,Piececolor WKBP))>(sq=WKB2vsq=WKB2))>((Pos(qx,WKB2)=WKBPA(Pos(P0,WKB2)=
| WKBPA((PREDEGAME (qz,ax)vaz=ax)A(VALUEP Val(qx,WKBP)v(BOARD(qgx,QBUD)A(Valueon

&Sgg?;VKBZ)=PWvValueon(QBUD,WKB2)=PB))))))>(Pos(qz,WKB2)=WKBPvPos(qz,WKB2)=

sxxxx |label ON_WKBP;

ssxxxsinplify 1

376 (Pos(ax,WKB2)=WKBPA((PREDEGAME(qz,qx)vQz=qx)A(VALUEP Val(gx,WKBP)vBOARD(
qQx,QBUD))))>(Pos(qz,WKB2)=WKBPvPos(qz,WKB2)=WKBP)

A similar statement can be made about the WKRP. It, too, was on WKR2 in qz.

sxx22VYE Shor tPawnPathThm qz,qx,WKR2,WKR2, WKRP, QBUD:

377 Vsq.((MAY_PAWN_CAPTURES(WKR2,sq,Piececolor WKRP)AMAY_PAWN_CAPTURES(sq,
WKR2,Piececolor WKRP))>(sq=WKR2vsqzWKR2))>((Pos(qx,WKR2)=WKRPA(Pos(P0,WKR2)=
WKRPA((PREDEGAME (qz,qx)vqz=qx)A(VALUEP Val(ax,WKRP)v(BOARD(gx,QBUD)A(Valueon

‘SOBU[))SNKRZ)=PWvValueon(QBUD,WKR2)=PB))))))>(Pos(qz,WKR2)=WKRPvPos(qz,WKR2)=
KRP

sxxxxlabel ON_WKRP;
sxxxxsimplify 1

378 (Pos(ax,WKR2)=WKRPA((PREDEGAME(qz,qx)vaz=aqx)A(VALUEP Val(qx,WKRP)vBOARD(|
ax,QBUD))))>(Pos(qz, WKR2)=WKRPvPos (qz, WKR2)=WKRP) 1

Page 158, A FOL Solution to the Chess Puzzle 4.2.11.

But the From square of any move is empty immediately subsequent to that move. Hence, neither of
these squares was the source square of the move of qz.

sss2sYE EmptyFrom gz WKBP WKBZ;
379 Pos(qz,WKB2)=WKBP>~(WKB2=From Move qz)

ssx23VE EmptyFrom gz WKRP WKR2;
380 Pos(qz,WKR2)=WKRP>~(WKR2=From Move qz)

11.3. Hence, the From square ofgz must have been WKN2.

ssx2x|abel FROM QZ;
sssestauteq From Move qz=WKN2 CALL_QZ,ON_WKBP,ON_WKRP, %1%, ROW2_WP,QX_QBUD;
381 From Move qz=WKN2 (1 9 374)

Section 4.2.12 The Route to BKN7

And, as the From square of gz was WKN2, there must have existed yet another position, (we will call
it py) for in which BKRP, pawn valued, was on WKN2.

*xx2xYE PaunlasOnThm qx, qz,BKRP,WKN2;

382 ((PREDEGAME(qz,qx)vaqz=qx)A(VALUEP Val(Prevpos qz,BKRP)a(Mover Move qz=
BKRPA(From Move qz=WKN2A-~(Pos(P0,WKN2)=BKRP)))}))>3p.((Pos(p,WKN2)=BKRPA(
PREDEGAME (p, qx)AVALUEP Val(p,BKRP)))AVALUEP Val(Prevpos p,BKRP))

sxxxesimplify -~(Pos(P@,WKN2) =BKRP) ;
383 -(Pos(P0,WKN2)=BKRP)

ssxxxxtaut PM:#2 CALL_QZ,FROM_QZ:%;
384 3p.((Pos(p,WKN2)=BKRPA(PREDEGAME(pP,qx)AVALUEP Val(p,BKRP)))AVALUEP Vail(
Prevpos p,BKRP)) (1 9)

sxxxslabel CALL_PY;

ssxx:3E T py;

385 (Pos(py,WKN2)=BKRPA(PREDEGAME(py,qx)AVALUEP Val(py,BKRP)))AVALUEP Val(
Prevpos py,BKRP) (385)

And, similarly, a move that got him there.

«xxxxVE BlackPaunMoveThm qx,py,BKRP,WKN2Z;

386 (Pos(py,WKN2)=BKRPA(~(Pos(P0,WKN2)=BKRP)a((PREDEGAME(py,qx)vpy=qx)aVal(
Pravpos py,BKRP)=PB)))>3q.((PREDEGAME(q,qx)vg=qx)a(Mover Move q=BKRPA(To
Move q=WKN2A(VALUEP Val(Prevpos q,BKRP)A((~(Row WKN2=6)a~(Row WKN2=4))>((
From Move q=Makesquare(Wsucf Row WKN2,Column WKN2)APos(Prevpos q,WKN2)sEMPTY
yv((Taken Move q=Pos(Prevpos q,WKN2)AWHITEPIECE Pos(Prevpos q,WKN2))a(From
Move q=Makesquare(Wsucf Row WKN2,L2touchf Column WKN2)vFrom Move q=
Makesquare(Wsucf Row WKN2,R2touchf Column WKN2)))))))))

s+x22VYE PaunValuedBlackPieces Prevpos py,BKRP;
387 VALUEP Val(Prevpos py,BKRP)>Val(Prevpos py,BKRP)=PB

sxxxstauteq Mi#2 CALL_PY-2,CALL_PY:%;

388 3q.((PREDEGAME(Qq,qx)vq=qx)a(Mover Move q=BKRPA(To Move q=WKN2a(VALUEP
Val(Prevpos q,BKRP)A((~(Row WKN2=6)A~(Row WKN2=4))>((From Move q=Makesquare(
wsucf Row WKN2,Column WKN2)aPos(Prevpos q,WKN2)sEMPTY)v((Taken Move q=Pos(

- Best
Available
C opy

4.2.12. A FOL Solution to the Chess Puzzle Page 159.

Prevpos q,WKN2)AWHITEPIECE Pos(Prevpos q,WKN2))Aa(From Move q=Makesquare(
Wsucf Row WKN2,L2touchf Column WKN2)vFrom Move qsMakesquare(Wsucf Row WKNZ,
R2touchf Column WKN2))))))))) (1 9)

We call that position, pz.

sxxsx label CALL PZ:

sxss¢ 3JE T pz;

389 (PREDEGAME(pz,qx)vpz=qx)a(Mover Move pz=BKRPA(To Move pz=WKN2a(VALUEP
Val(Prevpos pz,BKRP)A((~(Row WKN2=6)A~(Row WKN2=z4))>((From Move pz=]
Makesquare(Wsucf Row WKN2,Column WKN2)aPos(Prevpos pz,WKN2)=EMPTY)v((Taken '
Move pz=Pos(Prevpos pz,WKN2)AWHITEPIECE Pos(Prevpos pz,WKN2))A(From Move pz=
Makesquare(Wsucf Row WKN2,L2touchf Column WKN2)vFrom Move pz=Makesquare(
Wsucf Row WKN2,R2touchf Column WKN2)))))))) (389)

Applying the theorem that sees the possible sou:~ ~uares for a given pawn and square, we get that
BKRP reached this square from one of WKB3, WKN3 ur WKR3.

sxxxxsimplify 1

390 (PREDEGAME(pz,qx)vpz=qx)a(Mover Move pz=BKRPA(To Move pz=WKN2A(VALUEP
Val(Prevpos pz,BKRP)A((From Move pz=WKN3APos(Prevpos pz,WKN2)=EMPTY)v((Taken
Move pz=Pos(Prevpos pz,WKN2)AWHITEPIECE Pos{Prevpos pz,WKN2))a(From Move pz
=WKB3vFrom Move pzz=WKR3)))))) (389)

114. Now, we note that the WKNP, on the third row, has spent the entire game on the squares
WKN2 and WKN3.

sxx2¢YE Shor tPaunPathThm pz, gx, WKN3, WKN2, WKNP, QBUD;

391 Vsq.((MAY_PAWN_CAPTURES(WKN2,sq,Piececolor WKNP)AMAY_PAWN_CAPTURES(sa,

WKN3,Piececolor WKNP))>(sq=WKN2vsq=WKN3))>((Pos(qx,WKN3)=WKNPA(Pos(PO,WKN2)=

WKNPA((PREDEGAME(pz,ax)vpz=gx)A(VALUEP Val(qx,WKNP)v(BOARD(qx,QBUD)A(Valueon

&OBU[))SHKNS)=Pvaelueon(QBUD.\lKN.’i)-PB))))))3(Pos(pz.\lKN3)-VKNPvPos(pz.VKNZ)=
KNP

xexxxsimplify 1
392 (Pos(qgx,WKN3)=WKNPA((PREDEGAME(pz,qx)vpz=qx)A(VALUEP Val(qx,WKNP)vBOARD(
qx,QBUD))))>(Pos(pz,WKN3)=WKNPvPos(pz,WKN2)=WKNP)

115. In the move that brought BKRP to WKN2 (pz) he was certainly on the latter.

se2x2YE MoverOnTO pz, WKNP,WKNZ;
393 (Pos(pz,WKN2)=WKNPATo Move pzsWKN?} _ ."=Mover Move pz

116. And, as the From square of any move 1s subsequently (immediately) empty, and WKNP was
on WKN3, then the from square of the move gz must have been either WKR3 or WKB3.

sx22sVYE EmptyFrom pz, WKNP, WKN3;
394 Pos(pz,WKN3)=WKNP>~(WKN3=From Move pz)

12. But either of these squares implies the capture of a white piece on the white square, WKN2.
This piece must, of course, have been one of the white -ces eligible for capture.

sss2sVE WHICH_OX_TAKEN pz,Pos(Prevpos pz,WKN2),WKN2;
395 CHESSPIECES Pos(Prevpos pz,WKN2)>(((PREDEGAME(pz,qx)vpz=qx)a(Taken Move

IS e
pR——

T

ST s A A

Page 160.

12.1.

A FOL Solution to the Chess Puzzle 4.2.12.

p2=Pos(Prevpos pz,WKN2)AWHITEPIECE Pos(Prevpos pz,WKNZ)))>({Pos(Prevpos pz,
WKN2)=WQv(Pos(Prevpos pz,WKN2)=WQNv(Pos(Prevpos pz,WKN2)=WKNv(Pos(Prevpos pz
WKNZ)=WQBv(Pos(Prevpos pz,WKN2)=WKBvPos(Prevpos pz,WKN2)sywrl)))))a(~(Pos(
Prevpos pz,WKN2)syyw)a((To Move pzsWKN2AWHITESQUARES WKN2)>~(Pos(Prevpos pz,
WKNZ)=WQB))))) (1 9 252 286)

ssxxxs5implify WHITESQUARES WKN2A- (WKNP=BKRP) ;
396 WHITESQUARES WKN2A-{WKNP=BKRP)

Let us refer to the white piece captured on WKN2 in pz as Pos(Prevpos pz, WKN2). This was
certainly a CHESSPIECE (only chesspieces are ever captured).

ssxs¥simplify Vp.CHESSPIECES Taken Move p;:
397 Vp.CHESSPIECES Yaken Movae p

*xx2xVYE P pz;
398 CHESSPIECES Taken Move pz

Hence, it must have been one of the white traveling white officers, and not the fallen piece.

ssxsxtauteq CHESSPIECES Pos(Prevpos pz,WKN2)A

* Taken Move pz = Pos(Prevpos pz WKN2)a

* (Pos (Prevpos pz,WKN2)=WQv Pos(Prevpos pz,WKN2)=WLQNv

* Pos (Prevpos pz,WKN2)=WKNv Pos (Prevpos pz,WKN2) «WKBv

* Pos(Prevpos pz,WKN2) =yurl)a

* -Pos (Prevpos pz,WKN2)=yyu CALL_PZ+11114,4,ROW3_WP,OX_QBUO:

399 CHESSPIECES Pos(Prevpos pz,WKN2)a(Taken Move pz=Pos(Prevpos pz,WKN2)a((
Pos(Prevpas pz,WKN2)=WQv(Pos(Prevpos pz,WKN2)=NQNv(Pos(Prevpos pz,WKN2)=WKNv
(Pos(Prevpos pz,WKN2)=WKBvPos(Prevpos pz,WKN2)=ywrl))))a~(Pos(Prevpos pz,
WKN2)=yyw))) (1 9 252 286 389)

We need also point out that these are five different pieces.

N
n. N »
\:;B‘ PN
PANRAR |
™
8
3
5o
N
AN
NN\
i
SN

»Zv%,;: Y g
%, 8 7, %

; 7

7y 44"
;% 7 &

A7 % %
w 77 //,%// Za 7”//15
TR R, 2

s 77
7 M
7

White officers weea captured on these squares.

o 7
NN
IiiAs

7

Sigure 44

wooncd

R I T

14.2.12 A FOL Solution to the Chess Puzzle Page 161.

sssseVE DifferentTakenFour qx,pz,pl,p2,p3,p4,Pos(Prevpos pz,WKN2),xa,xb,xc, f
exd;
400 CHESSPIECES Pos(Prevpos pz,WKN2)>(((pz=qxvPREDEGAME(pz,qx))a((pl=qgxv
PREDEGAME (p1,qx))A((p2sqxvPREDEGAME(p2,ax))a((p3sqxvPREDEGAME(p3,qx))a((pd=
qxvPREDEGAME (p4,qx))A(~(Mover Move plzMover Move pz)a(-~(Mover Move p2=Mover
Move pz)a(~(Mover Move p3=Mover Move pz)a(-(Mover Move p4=Mover Move pz)a(
Taken Move pzzPos(Prevpos pz,WKN2)a(Taken Move pl=xan(Taken Move p2=xba(
Taken Move p3=xcaTaken Move pd=xd)))))))))))))a(-~(xa=Pos(Prevpos pz,WKN2))A(
;é:g;§o§§§rovpos pz2,WKN2))A(~(xc=Pos(Pravpos pz,WKN2))a-~(xd=Pos(Prevpos pz,
)

ssssxtauteq T 4242 1:1,CALL_PZ+1,CALL_PN:CALL_PN+3,DIFFMOVERS;
401 -(xa=Pos(Prevpos pz,WKN2))a(-~(xbxPos(Prevpos pz,WKN2))A(-~(xc=Pos(Prevpos
pz,WKN2))a-~(xd=Pos(Prevpos pz,WKN2)))) (1 9 310 311 312 313 389)

13. Hence, by the usual counting argument, the only piece that could have fallen from the
board was the white queen's bishop.

ssxxestauteq yyw=WAB 1, M4, WHICH_YYW, WHO_XA: WHO_XA+3,NOT_XN_EQ;
402 yyw=WQB (1 9 252)

sxssxtauteq Pos (px WKR4)=WQB CALL_YYW,SAME_ON_WKR4,*;
403 Pos(px,WKR4)=WQB (1)

Removing dependencies, and generalizing, we see that, as a consequence of our chess axioms, if a
chesspiece fell from WKR4 in a position which had GIVEN as a board, that chesspiece must have been

the white queen's bishop, quod erat demonstrandum.

sxxxx>] CALL_PX>o%:
404 (BOARD(px,GIVEN)ACHESSPIECES Pos(px,WKR4))>Pos(px,WKR4)=WQB

sxsssx {abel THE THEQREM;
sxaxx¥] 1 px;
405 Vpx.((BOARD(px,GIVEN)ACHESSPIECES Pos(px,WKR4))>Pos(px,WKR4)=WQB)

o 3 A TR S Py T vt

Page 162. Conclusions 5.

Chapter 5 Conclusions

Section 5.1 Perspective

We have here a mass of verbiage and proof. It is certainly important to step back and, in
perspective, assess just what we have learned in its generation.

Let us reiterate: we have taken a difficult problem of retrograde analysis chess, detailed a set of
axioms for the rules of chess, and have proven the solution to that puzzle within our axiom system.
While not modeling the human process of proof discovery, we have modeled the human ability to
accept a valid proof. That is, our FOL proof parallels and corresponds to the human proof,
particularly in two important dimensions. We have, in FOL, been able te model both the ability to
accept and structure inference (the basic deduction framework), and the ability to jump to the
immediate conclusions of observation (our chess eye). We are exploring the nature of (adequate)
reasoning sequences, rather than finding the (appropriate) heuristics for generating such sequences.

We also need to stress what we haven't done. We have not presented a program which would, in
any sense, model the way the human intelligence arrives at the proof. Such a system would need
elements of intuition and search, in addition to ability to correctly perform inference steps and
computations. Like almost all proofs, our chess proof gives little explanation as to why some step
was taken (other than that it worked); no dead ends or useless inferences litter the way.

Adequately modeling the human ability to generate a proof is an extremely difficult problem,
essentially equivalent to solving (much of) the Al problem itself. Presenting a solution acceptable
both to a human and a machine was, in itself, a hard problem. In a strong sense, being able to
accept correct reasoning is a prerequisite for general intelligence. We do not foresee solution of the
more difficult problem, that of a general computer intelligence, in the near future. Rather, we view
examinations of representational systems (such as this paper) to be part of the (long) process of
achieving the necessary understanding to eventually create an artificial intelligence.

Let us also emphasize that we are not, of course, asserting that the solution of the fallen piece
problem reveals all aspects of knowledge and representation. We have been examining in this proof
only several issues, particularly the interactions and interfacings of deduction and observational
computation. This is by no means adequate for a thorough representational system. We have dealt
in a highly structured and complete domain. We have not touched upon many modalities
(knowledge, belief, desire) that a truly intelligent program would need to manipulate. Qur
expression of events (moves) and tuie .+ 'he relationship between positions in the same game) while
useful and revealing, is that of a discrete system, not a general continuum. There are certainly many
properties required of generally intelligent systems that we are not even aware of, and will not
perceive the need for until we stumble into them.

Section 5.2 Representation and this Proof

One of the more interesting facets of this investigation is the comparison and selection of the
various representational devices employed in our chess axioms.

Representational choices are based upon two primary criteria. We want that our representation
should be convenient. We should be able to express (as easily as possible) the range of expected

o | ik e il i i i b

5.2 Conclusions Page 163.

problems and solutions within the model. Qur representation must, however, retain integrity with
respect to the problem domain. We are not interested in seeing how we can pervert the original
problem into another, more tractable (though equivalent) domain. Rather, we must represent the
given problem.58

Perhaps, while we are discussing natural representations, a pair of examples from our chess world
would be appropriate. When chess pieces are captured, they cease, (in some strong sense) to exist.
There is no square which we can point to, saying, that piece is on that square. Captured pieces
vanish without a trace. Most theorems about pieces and squares must therefore begin: if a piece x is
on a square sq in a position p then .. . Imagine instead that a captured piece merely changed its
value, and became a ghost, nevertheless retaining reference to its capture square. Our axioms and
proof would then be much simpler. Every piece would have a square of its own. Additionally, a
position could reference those pieces captured in reaching it by pointing to the ghosts on various
squares, rather than creating a hypothetical ancestor position in which they had been captured, and
reasoning about that position (as we do now). Qur counting arguments (most of the last hundred
steps of the main proof) would then be much briefer.

Consider secondly, the notion of value and piece (which we will explore in greater detail further on).
Let us now merely point out that the king pieces and the empty piece have unique and constant
values (we have several theorems to this effect: see, for example, KingValueThm1 and EmptylsMmT).
But these theorems could be dispensed with, and several proofs reduced several steps, if we were to
blur the distinction between VALUE and PIECE, and assert, for example, that BK=KB5% and
EMPTY=MT.60 What would result would be (slightly) smaller but less natural proofs. It is not that it
would be wrong to axiomatize in this fashion, so much as unpleasing.6!

In the following subsections, we will examine some of the more interesting representational decisions
embodied in our chess axioms.

Section 5.2.[State Variables and Computable Qb jects

The major representational dichotomy in this system is the balance between POSITIONS, a state
vector containing all of the information required to reconstruct a particular game (perhaps a list or
moves or boards), and BOARDS which is a (concrete) representation of (most of) the current status of

a game.

A passing glance at chess would reveal the necessity for the latter, though, presumably, not the
former. After all, chess problems are (typically) presented in terms of chess boards, not as the entire
game -played to reach some position. Similarly, (almost all) chess moves are defined in terms of a
chess board; this rook can move so, regardless of what line he used to reach his square, or which

58 It goes slmost without saying, of course, that the representation must be correct (we must really be solving the problem). In
most domains, generality is @ desireble sttribute; 10 be sesthetically pleasing, the selected sxiom system should be sble to express more
than the limited issue at hand

59 The piece BK is the same as the valve KB.
60 After all, sesthetics is an issue of taste.
6l. If we were embody this notion within our axiomatizetion, and to leter seek to analyze problems where pawns could promote

to kings, this simplification would get in our wey.

T TR P X, A 3T

|
|
|
|
|
|
|

Page 164. Conclusions 52.1.

square he began the game upon 62

One does not become really aware of the necessity for the state variable, (what we have called the
position) until one approaches retrograde analysis. We frequently refer to (for example) the identity
of a particular piece (which pawn was it in the opening?), to captures and moves of the game that
reached some arrangement, and to the path some piece traveled. These notions are naturally those
of the position, not inherent to a particular board. Many different games can be played to reach a
given chess board; therefore, these are not aspects of the board per se.

The importance (in retrograde analysis) of this sort of temporal reasoning is refiected in the axioms
by the predominance of the POSITIONS over the BOARDS (and over everything else). Rules are
typically defined in terms of their effect on the state of the world (position), rather than their local
effect on the playing board. Boards are employed almost exclusively for defining and computing the
local moves of the various chess values. Thus, the predominant predicate for positions becomes
SUCCESSOR, defining the (legal) transitions from position to position; for boards, MOVETO, expressing
the local, legal paths of the various values. The basic movement consequence axioms begin at the
positional level, only to descend to boards when considering the actual move.

The concepts of board and position are tied together in a predicate and a function. The function
Tboard (total-board) extracts the board that would result from playing out a given position. The
predicate BOARD is true when its second argument is either the Tboard of its first, or a less defined
board (section 2.1.5).

Within the concept of observation and inference, this position and board dichotomy has further
significance. Positions, as expressed in these axioms, are an elusive, intangible concept. There is
nothing we can point to and say: "that is the position of interest”. Rather, positions are the child of
the inference scheme; we never (except the initial position) observed something to be true of a
particular position. Boards, on the other hand, are concrete objects. The observations
(computations) on boards are more important than the deductions applied to them. Each board has
a distinct LISP model representation; they are the primary vision of the cAess eye.

In retrospect, this separation into state variables and computable ob jects seems to have been a good
decision. The problem would have been very intractable without the coherence provided by the
state selectors. Similarly, Chess induction (Sections A.2 and 2.2.4.1) has proven to be a very useful
and unifying concept, alien to the temporalities of a pure-board approach. The ability to compute
on board representations has resulted in tremendous reduction in the total inference required.

Early in this research, there existed a distinction between legal positions and ordinary positions.
Legal positions were those that (presumably) could be reached in a legal chess game. After the first
iteration of proof, we observed that, essentially, we never proved anything about the illegal positions.
The distinction between the two was then deleted from the axioms. On reflection, we find a parallel
between those “illegal” positions, and several of the other unused sorts (such as EXSQUARES®3). If we
were to use these axioms in a forward direction (as opposed to this retrograde example) to create
legal successors to a given position, we would probably axiomatize the "Nextpos” function (section
2.1.7.1), which would take a position and a move, and return the position resulting from making that

62 Castles, en passant captures, and various draw demand circumstances are exceptions to this rule.

63 Those squares the ceptured pieces occupy. For example, the function Pospcf returns an element in the domain of
EXSQUARES

e A

521 Conclusions Page 165.

move in that position. This general function would not be obliged to return a legal position (and
would not, if not referencing a legal move). Hence, the range of this function would therefore be
declared to be on all positions, not merely the legal ones. The earlier impulse towards legal positions
is therefore seen as an anticipation of this extension.

Positions, as described, are virtually not expressible within the model space; representational systems
that depend to heavily upon doing model computation as the only inference mechanism will be
unable to deduce results of the complexity of our given problem.

Section 5.2.2 Incompletely Defined Ob jects

Another perspective illuminated by the distinction between positions and boards is that of partially
defined ob jects. That is, we need a mechanism for expressing predicates about ob jects not all of
whose features are known to us.

There are two different kinds of partial definition which we consider here. The first is illustrated by
the positions sort. Positions are fully defined, in that, any question we might have about a position
can be answered by examining that position. This may seem paradoxical. After all, we never know
anything about any position until we infer it. We resolve this paradox by never having any "real”
positions.64 Rather, all statements about positions are of the form Assume we Aave a position with the
Sollowing properties... . Notice that there are no positional constants; only positional variables (and
parameters). We perform no observational computations upon positions. And we have no explicit
partial positions. Rather, an entire game can be replayed from any position.

Boards, on the other hand, are concrete objects. We want our LISP functions to be able to
manipulate these ob jects. Within the current structure of FOL, this is possible only if the ob ject is a
constant. But we are confronted immediately, in the very problem statement, with a variable board,
our problem being to complete the definition of the given, partially defined board.

There are only twelve different chess values. Clearly, one possible stratagem would be to consider
each of the twelve possible totally defined boards, and prove that only only one of them could have
arisen in a legal chess game. This approach fails, however, to satisfy both esthetic and practical
considerations. Aesthetically, we are examining reasoning, and seek to handle more than simple case
analysis. We certainly do enough of that in the rest of the proof. Practically, these case
considerations can grow exponentially with the depth of analysis. If each possible board spawns a
board with two more unknown squares, we soon have the cube of twelve cases to consider. Each
consideration is likely to be a fair sized proof in itself. And this method will flounder on any

consideration of unbounded sets.

Rather, we surmount this obstruction by the introduction of an undefined constant, to be inserted in
the board structure whenever the value of a particular square is unknown. While this is a clever
and transparent solution of the immediate problem, it has ramifications throughout the entire axiom
structure. Most obviously, values on boards and values in positions are no longer trivially identical.
Rather, that equality is conditional on the board being defined on that square.®> This is usually
painfully obvious, but demands another step. Not, however, a terrible penalty. Greater confusion

64. This subsequent discussion rightfully ignores PO, the initial position.

65. That is, Val(p Pos(p sq))eValueon(b sq) if «Valueon(b sq)elD (snd BOARD(p b)) (this is the axiom VALUETRANSPOSITION).

Page 166. Conclusions 5.2.2.

arises, however, in the cases of more complicated predicates. What should the value of MOVETO be,
say, if an undefined square blocks the way? It is certainly not true, but, in another sense, is not really
false. That is, we would (sometimes) like to use MOVETQ to show some move impossible; other times,
to demonstrate (with the appropriate assignation of values to the undefined squares) that such a
move could be accomplished. The solution adapted in this axiomatization is to make MOVETQ
demand a fully demonstrated possible move. Various theorems, such as
TransitiveSubboardOrthogonality (section A.922) and ODiagonalThm (section A.9.3.1) relate
movement on partially defined boards to that on more complete boards.

An alternate possibility was not employed. One can easily imagine, within the present axiom
structure, predicates such as MIGHT_MOVETO and MIGHT_ORTHO, which would be true if, say, the
squares on the move's path were either empty or undefined (MT or UD) instead of only explicitily
empty. Such predicates might simplify the definitions of several of the movement axioms, but
complicate the translation to the more precise forms.

Section 5.2.3 Representation of Aspects

What may seem, perhaps, the most aberrant distinction embodied in these axioms is that between
piece and value. Pieces, we recall, embody the identity of each of the thirty two chessmen, including,
particularly, their initial squares. Values, on the other hand, are a reflection of the rank of an
individual piece at a given point in the game. In playing chess, the names of the particular pieces
are never invoked. Rather, the current value of any piece is adequate for determining its available
moves. For the naive player, experience with chess comes from playing chess games, not from
solving chess puzzles. Additionally, except for the rare occasion when a pawn has promoted, pieces
do not change their value. Only in concocted retrograde analysis chess problems, is the path a piece
followed important. Only in puzzles does one see such a bizarre collection of promotions.
Therefore, perhaps, only to experienced puzle solvers is the importance of this distinction obvious.

Let us point out that this is not an entirely happy arrangement, even though it is a necessary one.
We need shave our lemmas and theorems to a tight tolerance of their intended use, matching piece
and piece, value and value, unless we are willing to expend precious steps demonstrating to the
machine (again) that this particular bishop does in fact have bishop value. Additionally, this
equivalence, performed so naturally and immediately by the human, requires theorem invocation in
the proof. We take consolation, however, in noting that the human tendency to jump to the
conclusion that any officer (especially a non-queen officer) is not a promoted pawn is avoided by this
deductive approach. Within a formal logic framework such as FOL, that rook valued piece is as
likely to be a promoted pawn as one of the original rooks. It seems that any system wishing to
generate a solution to real problems must rely heavily on grabbing the immediate, almost obvious

device [McCarthy79h)

Some of the trouble associated with the Val function could have been avoided. It is not a necessary
operator, the same result being indicated for pieces still uncaptured by the corresponding valueon
the appropriate board. That is, Val (p x) = Valueon (Tboard p, Pospcf (p x))}. This would
result in a clean partition between piece and value, along the same line that divides position and
board. It would, however, result in a larger and more cumbersome proof, as the translation, and its
preconditions, would need frequent justification. Hence, we see Val to be a simplifying function, a
short expression of a common notion.

VA

Conclusions Page 167.

o
r
-

Section 5.2.4 Expanding the Vision of the Chess Eye

Along with the more obvious (or, at least, having selected the system framework, obvious) functions
and predicates of our system, we note several more creative and intrusive functions and predicates.
These functions and predicates serve two functions. In some cases the predicate is of a definitional
nature. That us, it is a short expression of a {requently invoked notion. An example of this
definitional form is the predicate PROMOTEOPAWN. This predicate could be dispensed with by
substituting its definition (axiom MCONSEQ!) for each of its occurrences, a mechanical process. Its
sole value lies in providing economy of expression.

This use of definitional predicates 1s a common device in first order logic, and deserves no further
comment. More interesting are the constructive functions of this axiomatization, such as the
Unnkmove and SQUARE _BE TWEEN operators. They different from the simpler definitional axioms, and
from all conventional logic definitions, in that they have associated aftachments in the chess eye.

Consider the example of the Unnknove functions, which take a board and a move, and return the
board of the previous position. We are performing here what is (for a human) an essentially
mechanical and observational task. However, to do the same work in a purely inferential framework
requires both the declarations of another individual board, and a quantification check of the
essential identity of that board, and the original board, on all of the uninvolved squares. Much
effort 1s saved through the pure computation. Or, in the local colloquial, it's a winner.

What we must catalogue here instead is a pair of retrospective regrets. For one thing, a regret at not
using this device to greater advantage. A second regret at the limits of the application of this device
in our present FOL system. As the chess eye is hmited to computing on constants, there is no
mechanism for computing on the known properties of parametric ob jects, other than the clumsy use
of a constant undefined. We will consider this regret in greater detail in section 5.8..

Section 5.2.5 Other Natural and Unnatural Notions

We conclude with a few additional comments on several of the minor sorts mentioned in section
2.1.1.

Many of the declarations and much of organization of this proof is devoted to simplifying the
inference process. However, we must report that such simplification has not been pursued at the cost
of sacrificing aesthetic values. An example of this devotion is the sort MOVES. It is a very common
notion to speak of, for example, the move that reached this position, or the possible moves available
in this position, or of the move that brought some piece to some square. Hence, the sort of MOVES,
and the function Move, which extracts the last move made to reach its argument position.

However, careful examination of the entire proof reveals that never is a move referred to, except to
speak of the move of a position.66 Each of the common functions on a move, such as From and
Mover is invariably invoked on the Move of some GAMEPOSITION. The proof would be somewhat
simplified by the deletion of the MOVES predicate. However, the aesthetic criteria (it is, after all, a
natural notion) demand its retention.

Perhaps one of the most obvious sorts is that of COLORS. After all, the combat of the black and

66 A slight exception occurs here with respect to lemmas solely concerned with the structure of the move hierarchy (such as
MOVETYPES). However, like the msjor uses of moves, the use of 8 "sort” of moves i not required hers, sither

» i s A T AR B T AR o A O s e

pART_—

Page 168. Conclusions 5.2.5.

white armies is fundamental metaphor of the game. But even within this natural division, there
remains room for choice. It is convenient to have one's functions always evaluate to some value.
We speak, for instance, of the Piececolor WK as WHITE. What then should the Piececolor EMPTY
be? We considered introducing GREY, the color of the piece on any empty square. But, once again,
this can hardly be defended as a natural notion. Secondly, and perhaps more importantly, it is not
clear that having a GREY would serve to reduce the size of proofs.

Even as obvious a sort as the squares of the chessboard requires some decisions. We did not
originally perceive the need for referencing the coordinates of squares (rows and column) at all.
Later, as we needed to squeeze proofs where simplification could not carry us, these sorts became
required. [t is clear that we do not want to depend solely on coordinate pairs, however. Most
square references need be only to fixed squares. The differences between rows and columns in the
axioms could have been deleted, at the cost of a slight increase in incomprehensibility, and a slight
decrease in length of proofs. Of course, if these axioms were to be used in situations requiring more
algebraic manipulation of row and column values, the definitions of these sorts would require
suitable expansion.

Section 5.3 Alternatives

So far, we have been examining the "micro” decisions involved in generating these axioms,
considering choices from within our selected framework. While we believe that the representations
chosen have been generally appropriate, it is still worthwhile to consider the consequences of various

alternate choices.
Section 5.3.1 Levels of Axiomatization

Elsewhere in this paper (chapter 2) we spoke briefly about the choice of level of the axiomatization.
Let us reiterate on that notion.

Almost any large mathematical proof can be made arbitrarily easy or difficult by the selection of the
imitial axiom structure. The situation in the chess world is essentially similar. For example, if we
had taken all of the lemmas in appendix A as theorems (all of them are "facts” obvious to any
experienced puzzle solver), this paper would be considerably smaller. Even beyond merely
presentation of multiple lemmas, it should be possible to restructure the problem so that it is no
longer a formal proof, but, rather, the sequential application of various "rules” for the solution of
chess puzzles. But certainly, the more specific and useful the given rules to this particular problem,
the less capable they would be of expressing other kinds of chess puzzles.

We could, of course, have proceeded in the opposite direction, defining, for example, the various
piece movements as mathematical relationships, and entangled ourselves in the mathematical
structure when proving even a simple move. While there are certainly many things thereby
expressible that are difficult to state in the present axiomatization, the resulting proofs might easily

be an order of magnitude larger.

Perhaps the only moral to this section is that one can make any problem arbitrarily difficult (and
most problems arbitrarily easy) by selecting a suitable starting place, the given conditions. And that
the size of this paper, and the complexity of the proofs is a reflection of our opinion of the
appropriate generality of our axioms. Though this "moral” may seem obvious, it is an important
criterion in the evaluation of any intelligent computer system.

532 Conclusions Page 169.

Section 5.3.2 Prior's Modal Teuse Logic and Positions

We have not, of course, presented enough evidence to conclude that first order logic, even augmented
by semantic procedural attachments, is a general enough scheme to express all of the representation
issues our intelligent computer will ever need. It's probably not. Even within the context of first
order logic, our system examines only a minute corner of the universe of systems.

One notable omission is the lack, in our system, of equivalents of the various modal operators. Our
retrograde chess puzzle embodies complete knowledge; there is no issue of the beliefs of individuals
(in fact, no individuals). While a forward (competitive) analysis might include operators referring to
the desives and goals of the players, our backwards attention precludes even this.67

Perhaps the one parallel to modal systems we can draw is to modal tense logics, for example, the
modal tense logic of Prior ([Prior57), [Prior68))

Simply stated, Prior's system employes two modal operators, ¥> and W, which signify Past and
Future, respectively. Thus, for some proposition 7, ¥ 1 states that w was true at some time in the
past; similarly, 1w asserts 2's occasioned future truth.

Now, as we deal with retiograde analysis, ¥ is certainly the interesting operator. Thus, we might say,
if that pawn is on this square, then it is true that, in the past, that pawn captured an opposing piece on
that square. This may be contrasted with our present formulation of, if that pawn is on this square,
then there existed a position in the course of this game, for which the move of that position was a capture
by that pawn on that square of an opposing chessman.

Notice that our present notation is stating more than this modality. The hypothesis asserts not only
the capture, but also presents us with the occasion (position) in which the capture occurred. More
particularly, we can easily express in the present system anything asserted in the modal system.
Thus, if there is to be any advantage to employing the modal ¥ operator, it must come from
permitting the deletion of some part of our present system. The obvious candidate for this
elimination is our state vector, the position.

Now, by exphcitly inventing the state where some proposition was true, we easily get both
quantifications, there existed a time when it was true, and it was always true. Expressed in a modal
form, these become it was true in the past (¥2 W), and there was no time when it was not true (~YP-w),
somewhat clumsier, but still useable. Expressions of more complicated notion compound the
complexity produced by the modal operator; on the other hand, there are a few situations where its
employment would save a few steps.

Perhaps the major contrast between the current positions and the modal ¥ operator is that the
proposition asserted by the modal operator is one about the current situation; while the positional
state vector makes a statement about a similar state vecior, and then relates the two. This would be
true even if the modal operator was defined upon a "board like" vector, rather than our present
positions. As the axioms necessarily define attributes of states, they can easily be used to manipulate
the resulting contrived state. Effectively, the current system gives a more particular individual to
manipulate. A general moral of this research, echoed elsewhere (section 56.4) is that one is better off
with a function that returns an individual, than a predicate presumed true about some less specified

.’ This subject s touched upon in saction 542

=

RN 4 T Wb A

e e S~

i

Page 170, Conclusions 532

thing. But just as the predicate could work, our system could probably the transformed (kicking and
screaming) into the modal form.

Section 53.3 Filling in the Blanks

A naive approach to this representation problem, particularly that of someone used to programing
computers, and not considering the philosophical representation issues of artificial intelligence, would
be what we call the fill in the Manks approach. This approach goes somewhat like this:

We Aave a situation (a board) as a problem. This board consists of sixty four squares. We “write" on each
square whatever we know about that square. For example, in the given prollem, we might state that the
BQ2 square has some white rooked value, while the WQR4 square is unknown. We might Aave another
table, that of the location of each piece (the white king is on BKRI), and so forth. Eventually, by
manipulating the rules relating these tables, and filling in entries of the tales, we would amive at our
answer.

This approach bears a cursory resemblance to formal logic. The information contained in any table
entry 1s simply expressible as a WFF of the predicate calculus. The table entry form is probably
more convenient for heuristic manipulation. The programming table entry system differs from the
proof approach (and resembles the planner-like languages) in that things can be both “true” and
“false” at different points in the proof.

This system fails, however, (n two important respects. For one, lacking the development and
dependencies of the formal proof, it is difficult to express case analysis, a very important technigue.
While it is true that case selections can be made in this system by employing a recursive branching
scheme, one might then discover that one is proving the same fact repeatedly for each of the
different cases.58

More importantly, this simple scheme is unable to express first order facts about the chess world.
Thus, while we could tell this system Biskops always stay on the same color square, (and have it use that
rule its derivations), there is no way to derive or express that notion within the system.

We see that what we have here a confusion of a possible data structure (a representation) for an
epistemology (anather kind of representation).69 We have inserted this straw man not so much as an
example of a competitive system we wish to denigrate, but, rather, in the hope of clarifying the
confusion surrounding the word representation as we have been using it in this paper.

Section 5.4 Our Repeesentation Applied to Other Problems

So far, our attention has been concentrated on one specific example. 1t is worthwhile to examine
how other problems would look in our formalism, without having to detail the entire proofs.

68 Case anslysis here refers to considaring sach of the possdle values a given unknown might have Thus, in our original
problem, there we twelve possible chess values for the fallen prece In sach of these ceses, there sre six possible vakes for the
coptured black piece, and 90 forth Clearly, an uawiskdy scheme

69 We echo here some of the concerns of section 1313

T

54.1. Conclusions Page 171.

Section 5.4.1 Where was the King

Consider the following problem of retrograde analysis. We are presented with the board in figure
45, and told that the white king has fallen off; our problem is to determine his falling square. 70

77 ”/ 77
., 0,0, %
/ 77
»
7 7 ; /;7/, 0

Where was the white king?

figure 45

This problem, while of similar retrograde form, differs in a very important respect from our earlier
problem. Our earlier proof, and its axiom structure, are primarily concerned with almost completely
defined boards. Here, too, we have an almost completely defined board. In the former problem,
however, the undefined element wat confined to a single square. Here we must contend with finding
the undefined square.

Note that our earlier proof used, essentially, a list of squares and the pieces occupying them; here, we
would prefer a list of pieces and their squares.

However, despite these difficulties, the problem is still tractable within our notation. We outline its
solution.

The first step is, of course, to express the goal WFF in our formalism. Let the board of figure 45 be
called WHERE_KING. We know that there is some position, px, whose total board is the same as the
board WHERE_KING, except that on some square sq, px is not empty, but rather contains the white
king. We must therefore assume a WFF of the form:

Vsql. (Valueon (WHERE_KING, sql) =Valueon(Tboard px,sql)v
Valueon(Tboard px,sql)«=KW)

That is, the total board of px agrees with WHERE_KING, except in those squares where the total board
of px has a white king value.

We will be able to conclude a WFF of the form:

70 This problem is from (Gardner?3)

T e

Page 172. Conclusions 5.4.1.

Valueon(Tboard px,sq) =KW
where sq is the name of some individual square. (WAB3 in this case).

The proof first splits into three cases. Either the white king is on WQB2, WAN3, or some other
square. We can easily prove the general chess theorem:

Ypx. 3sq. Pos(px sq)=kK

that is, the white king is on some square in every (implicitly legal) position. We obtain a parameter
for this square, let us call it sqx. Hence, it tautologically follows that:

sqx=WAB2 v sqx=WAN3 v (-sqx=WAB2A-~sqx=WQAN3)

It is a simple chess theorem to show that the two kings cannot coexist on neighboring squares.
Hence, sgx is not WQB2.

Ypx b sql sq2. ((BOARD(px b)AKINGMOVE (sql sq2))>
~(Valueon(b sql)=KWaYalueon(b sq2)=KB))

If the white king were on WQON3, then would be checked by both the black rook and bishop. Now,
checks can occur only four ways (theorem _CheckTypes_). Black's last move was certainly not a
castle, for his king is not on a castling square. There is no bia! pawn present to have just captured
en passant. Therefore, for each check, either the checking piece made the last move for black, or the
check was a discovered check. Since neither the bishop nor the rook could have move out of the
other's way and given check, the situation is clearly impossible. Hence, the white king is not on
either of these squares.

But then these squares must be empty, and the white bishop checking the black king.
Valueon(Tboard px, WAB2)«MT A Valueon(Tboard px, WAN3)=MT
MOVETO(Tboard px, BW, WAGR4, WQAl) A Valueon(Tboard px, WQR4)e=BW A
Valueon(Tboard px, WQl)e=KB
It must be black's move.

Now, this bishop is cornered (section 3.4.2), unable to have moved to have created this check.
Hence, white's last move must have taken a white piece out from between the bishop and the king.

SQUARE_BETWEEN (WQR4, From Move px, WQAl) A -~ Mover Move px = Pos(px WAR4)

But there is only one other available piece, the white king, to have made this discovery, and only
two squares, (WQB2 and WQN3, again) between the bishop and the black king. The white king was
certainly not on WQB2, as we have stated, kings are never in mutual check.

Therefore, the white king much be on WON3 in Prevpos px. Now, we know that all the squares in
Prevpos px have the same value as in px, except the To and From squares of that move. The From

(R0 e

54.1. Conclusions Page 173.

square had the white king. The To square was either empty, or was occupied by a soon to be
i, captured black piece.

If the white king is on WAN3, a situation similar to the previous one arises. Black did not create the
check by castling, nor did the bishop nor the rook move to cause that double check. But wait. The
board in this position is not the same as the given board. We know that all of the squares have the
same value, except the square to which the white king moved in generating the position px. This
square could have contained a to be captured black piece, or, more specifically, the black pawn that
i has created this double check situation through an en passant capture. That pawn must have been
| on WAB3, and that must be the current square for the white king.

= T

F Valueon(Tboard px, WAB3) = KW

Section 5.4.2 Berliner's problem

Of course, the problem we argued in the last section is basically similar to sort of retrograde analysis
for which these axioms were composed. Let us briefly consider then, how an entirely different sort of
problem might be expressed in a suitable extension of this notation.

We consider board 1.7 from Berliner's thesis [Berliner74), the position diagrammed in figure 46.

BBl
7, /m//,///
%, //,, X127,
% ///;?&4 /‘&/
//” 2P
% /2/% 7
% 7 ///,
i / / / %

Borliner's problem.
figure 46

Here the problem is of a different nature; rather than analyzing the ingredients that composed this

R e e ————

i ——

A A NSO e

we

:

Page 174. Conclusions 5.4.2.

position, we instead have a more familiar task:’! proving a strategy to lead white to victory.

What is essential here is expressing the notion that white can move his king around the pawn
formation, and then to either capture the diagonal of black pawns, or promote his own. We expect
some evaluation function to recognize that both of these are won positions.

Our current axiomatization obviously requires some extension before tackling this task. Our axioms
look backwards; there is no expression that defines the legal successors of a position. Rather, we only
restrict these successions. We hypothesize that suitab'e conditions from the appropriate MCONSEQ
axioms (section 22.1.1) have been assembled into this definition, and that our simplifier easily
recognizes the trivial cases of succession. We also hypothesize the simplification predicate
WHITE_HAS_WON on some board or positional object, and a predicate on two positions,
WHI TE_CAN_ACCOMPLISH. WHITE_CAN_ACCOMPLISH(pl,p2) will be true if white can force a position
with the properties of position p2, starting at position pl. We might have an axiom schema of the
form:

Vpl p2. ((WHITE_CAN_ACCOMPLISH(pl p2)a -WHITETURN p2 A
Yp3. (SUCCESSOR (p2 p3)> 3p4 . ((SUCESSOR(p3 p4) A « p4)))) >
3p. (« pa WHITE_CAN_ACCOMPLISH(pl p)a ~WHITETURN pa Prevpos Prevpos p=p2))

That is, we assume that p2 could be accomplished from a position pl, and p2 has black on move.
For each of black's legal replies, p3, white has an answer, p4, for which some predicate a holds. It is
therefore the case that there then exists’2 a p which white can reach from pl, is black’s turn, and
can be accomplished by white, is two moves after p2, and in which the predicate a is still true.73

It is fundamentally true that:

Yp. WHITE_CAN_ACCOMPLISH{p,p)

that is, white can always accomplish the current state from the current state.

71 Or, ot least to those whose experience with chess comes from playing it, familier task.

72 This is, admittedly, a rather fanciful exists. What exists here is not so much & poomon, as » position for each possible
response, all of which share some common pvopomn (those indicated by the predicate par). H er, as nothing can be proven
sbout the abstract posit besides the information in the parameter, and the knowledge implicit in their epecific eommn grandfather
(p2), this device will succeed

73. A similar sxiom for white's turn may be formed by reversing the second cleuse's quantifiers.

D e e i o bt il s

bR

R e AR AN 23 o M AR TGP R0 4 MRS s 14 i -

54.2 Conclusions Page 175.

We first establish that for any position with the given pawn structure, if the black king is not on one
of the boxed squares in figure 47, then WHITE_HAS_WON.

Y A TL
////%%Lf”/ﬁ/
//%, % %
% "/%//
%, / Y, ///

The black king is limited to these squares.

figure 47

Let us call the given position px.
Now, by the hypothesized rules of WHITE_CAN_ACCOMPLISH, the successive predicates

3p;. (WHITE_HAS_WON p; v (PREDEGAME (px, p;)AWHITE_CAN_ACCOMPLISH (px, p;)a
(Pos (p;,BQl)=BKv... (through each of the boxed squares)) A
Pos(p;,sq;)=kK))

(where the 8q; range through the sequence W0B2, WON2, WOR3, WQN4, BQB4) are all derivable.

Having brought the white king around to black's side, we could complete our proof by describing
the little dance the monarchs engage as the white king pushes the black king away from the pawn
on BK3. When the white king arrives at BOB4, either the black king is on BQ2, or some other of the
boxed squares (or white has a won position). The case analysis continues for a few more ply, and is
not very instructive.

We hope with these two examples that we have indicated that our axiomatization structure is
general enough to express more that the single problem whose detailed solution we have presented.

Section 5.5 The Limitations of this Axiomatization

Of course, any statement about epistemological or heuristic approaches to A.L. ought to include a
disclaimer cataloguing what that formalization is unable to solve or express.

We have are listing two different sorts of limitations; first, those places where our proof, as presented
in chapter 4, fails to adequately model the human solution, and secondly, a consideration of our
axiomatization's ability to handle various other sorts of chess problems.

Page 176. Conclusions 5.5.1.

Section 5.5.1 Difficulties Encountered in Generating this Proof

A comparison of the informal proof of section 1.6.2 and the FOL proof of chapter 4 shows the FOL
proof to be substantially longer in handling two particular kinds of reasoning. A human puzzle
solver can quickly check if a condition is satisfied by all pieces on the board. For example, the single
human step 5.3.1, a check that none of the black pieces could have moved to discover check (if the
captured piece, Z0, had been rook or queen), is transformed into steps 101-143 in the FOL proof. In
simple cases, the quantification checking ability of FOL simplification mechanism can handle this
situation. However, in the case of complicated predicates such as those used in steps 101-143, the
preparation required to satisfy the proof checker about the appropriate simplifications was much
greater than even the forty steps expended. More concisely, FOL is not as capable of checking
predicates true of several ob jects on the board (for different reasons) as is a human.

Nor have we approached the human capacity for set mawipu. . For example, in observing pawn
captures, such as step 11, the human quickly and naturally perceives the mutual exclusion
(inequality) of the members of the capture set. That is, the human can say, “Black captured four (or
five, or six) white pieces on white squares." He understands quickly and easily the essential
inequality of these captured pieces, and the various restrictions on their values (for example, none of
the pieces currently on the board was captured). Our axiomatization, reluctant to do either
arithmetic or set theory, and bound, as it is, to the heavy quantifier manipulations of natural
deduction, cannot express this notion as easily. Rather, we must, for each capture, hypothesize the
move that the capture was made on, and the captured piece, and prove the pairwise inequality of
the various captured chesspieces. Thus, for example, the information quickly apparent to the
human puzzle solver, after he notices the four piece captures, requires steps 301-330 of the main
proof.

This problem is not, we feel, due to the clumsiness of the position (state vector) approach. Rather,
our restriction to first order formalism, and our refusal to enmesh ourselves in a generalized set
theory, has created a situation which requires dealing with each individual, individually. Our
problem is still small enough that this is a reasonable activity; however, a system that would need to
deduce truths about many ob jects would certainly need a more universal mechanism (set operators,

for example) for manipulating sets of ob jects.

Section 5.5.2 Epistemological Axiomatic Limitations

There are more things in heaven and earih, lloratio,
than are dreamit of in your philosophy.

Hamlet, Act I, Scene 5

One of the nice things about a formal logic systems is the ability to easily extend the formalism, by
the addition of new constants, axioms and attachments, to handle unforeseen or incompletely covered
situations. Thus, while we have interpretted our task to be axiomatization of retrograde chess, it is a
simple extension to include a definition of the SUCCESSOR relation, appropriate and useful Makemove
functions (with attachments) and thereon to do forward analysis for chess. We have briefly touched
upon these notions in considering Berliner's problem, section 54.2. However, as currently
constituted, our axioms of chapter 2 are not capable of handling problems requiring this kind of
forward analysis.

T

PRTRE Ty o

5.5.2. Conclusions Page 177.

In any case, the purpose of this section is to detail which kinds of chess puzzles this axiomatization,
in its current form, has trouble expressing.

Certainly the most common of all chess puzzles are the white to play and mate in n moves variety.
For n sufficiently small, we really must confess lack of interest in most examples of this type of
puzzle. Given the definitions of forward movement, and appropriate attachments, such puzzles are
easy single step simplifications in FOL. A few of these puzzles rely on the ability to castle or capture
en passant, and the justifications for en passant capture are occasionally quite complex, involving the
sort of retrograde analysis we have been doing in this paper. These axioms are, of course, quite
suited for that kind of analysis. Castling in mate in n puzzles has a more complex position; one can
almost never prove that castling is legal, though often there is no reason to presume it illegal. These
axioms can be used to prove, in the usual retrograde way, castling illegal, or the problem statement
appended to include the appropriate restrictions on the position to imply its legality.74 A minor fillip
can be provided to these mate in n problems by the addition of fairy chess pieces [Dawson73].7% Of
course, our axioms would need the natural extensions to handle fairy chess pieces.

A more complex situation is presented by the problems of the form white to play and win (draw).
What we have here is an extension described by the WHITE_CAN_ACCOMPLISH predicate of section
54.2. Additionally, there is the necessity of defining the predicates WHITE_HAS_WON and
THIS_IS_A_DRAW. Clearly, they are non-trivial predicates, though they can be well defined in certain
circumstances (particularly if white has a forced mate in n, an overwhelming material advantage of
certain kinds (king and queen against king, for example) or insufficient material exists to force a win
(king and bishop against king and knight). What might be a trivial win for a chess master can be
completely opaque to average player. We imagine the attachments to such predicates would rely
heavily on the I_DONT_KNOW response available in the attachment mechanism (section 2.1.7.2).
Similarly, self mates and help mates require different definitions of the CAN_ACCOMPISH predicates.

In some sense, these are examples of construction problems: the problem solver is to present a
sequence satisfying some property. Another type of construction problem, for which these axioms
are very ill-equipped, and which lies on the periphery of chess problems, are problems of the form,
construct the board with the most (fewest) legal moves (captures, promotions, ...). Solutions to these sorts
of problems are usually presented as “this is the best known solution”, rather than “here is the
solution, and this is why one can't do any better.” As our system is directed towards proof and
confirmation, it is naturally incapable of commenting on such results.

But, needless to say, these are not the tasks this axiomatization has been directed towards. Rather,
we were considering retrograde analysis in our definitions, and it is more reasonable to inquire
where our retrograde failures would lie.

It should be clear by now that the mathematical knowledge represented by these axioms is very
minuscule. All mathematical manipulations have been accomplished by considering each case on
our finite board separately, or by actually performing the implicit calculations in the simplification

74. One reader of a draft of this paper inquired how the question "Assume castling is legal unless you can prove otherwise"
might be handied. In general, this is an undegidable question; any axiom system as powerful as ours is incapable to proving whether or
not certain statements are theorems. This foliows from the G“dol undecidability result.

75. Fairy chess pieces are fancifu’ chess pieces with usual moves. Consider, for example, Dawson's Grasshopper and Nightrider.
A Nightrider may make consecutive knight's moves, in a straight line; the Grasshopper moves along the orthogonals and diagonals, but
only by hopping over one man of either color 10 the next square beyond. The reader interested in this mythology is invited to consuit

Dawson's book. |

/

T R T e

Page 178. Conclusions 5.5.2.

mechanism. This is clearly impractical for problems that rely on more complicated mathematical
deductions. Similarly, those inferences promoted by set theoretic and counting arguments are painful
tautology decisions in the current system; it is easy to construct examples of sets too large to be
handled this way.

The current axiomatization is orientes ‘nwards unknowns centered around particular squares.
Unknowns centered around unknown squares would cause greater difficulty for the simplification
oriented system, though ought not to be impossible (section 5.4.1).

Another difficulty with this axiomatization is its insistence upon centering the problem around a
specific squares and boards. For example, the question Is white in check on the piece of a board in
figure 48:

///
.
sy

Is white in check on this fragment?

figure 48

is obviously observationally true, but its phrasing in this axiomatization would appear as:

(Valueon(b,Makesquare(drx,dcx))=KWaValueon(b,Makesquare(Bsucf drx,
dcx))=MT A Valueon(b, Makesquare(Bsucf Bsucf drx, dcx))=RB) o
WHITEINCHECK b

Hardly the natural interpretation. It is perhaps true that a notion of board fragment should have
been included in the axiomatization. This points to a greater difficulty in this axiomatization; that
the functions and ob jects of the chess model are not robust enough to handle perversions of their
original sense. These attachments were the obvious simple direct functions to compute the obvious
values; they were adequate (with some pushing and pulling) to function as the chess eye for this
problem. However, it is now clear that a more flexible eye would be appropriate to handling a
larger variety of problems. This more flexible eye would probably involve much more complicated
functions.

A more germane example is provided by the following problem [Gardner59):

5.5.2. Conclusions Page 179.

%é@émé%é
2y By
%y%y%y%y
y%y%w%y%
%, %, %,
U D % D
WANWE QR

White to play and mate in four.
As usual, this is a legal position.

figure 42

The puzzle here is to recognize that (as the black king and queen are on the wrong color squares)
that black and white have switched sides, with the black pawns advancing to the seventh rank.
While the current axiomatization could be used to prove that the given board, supposing the black
pawns on the second rank, is not the board of any legal position, the "trick" of the problem cannot
be expressed in this fixed board form.

There are also some chess puzzle concepts, such as "blocking structure” and "path” which lack the
necessary counterparts in our axiomatization. These have their fumbling expression in our system
(see, for example, much of the last seventy steps of the main proof), but this expression is not
entirely satisfactory.

Section 5.6 General Representation Issues

Most of this paper has been dealing with representation issues of the chess world. If we did not
think that these examinations were relevant to epistemological issues in general, we could not justify
the attention we have given them. It is worthwhile, therefore, to turn our consideration to general

representations issues, considering the light shed upon them by our example.

Section 5.6.1 Multiple Representations

A description must be able to represent partial
knowledgo about an entity and accommodate
multiple descriptors which can describe the
associaled entity from different viewpoints.

Bobrow and Winograd”®

One of the more complicated problei . uy generally intelligent computer will have to face is the
difficulty of manipulating the various aspects and forms of particular ob jects. Any real world ob ject
(or class of objects) has a set of properties. For example, the book in front of me is red, weighs

76. [Bobrow?7)

Page 180. Conclusions 56.1.

about four pounds, is made of paper, occupies a certain position (particularly, its near the phone and
my drinking glass), not to mention the diversity of the information recorded within it.

Let us consider merely the problem of manipulating and examining the book in space. In general,
the color, content, and composition of the ob ject are not relevant to this task, and can be ignored.””
They serve merely to confuse the heuristic portion of the program.

Even within the narrow domain concerned with the locus of the book, there exist many formats for
storing locational information. The bulk and location of the book might be represented by marking
the occupied squares on a visual grid [I). We might encode much of the same information at a
higher level, as a series of coordinates for the vertices of that rectangular parallelepiped [2). If we've
analyzed the scene, a linguistic description, such as the book is to the right of the glass, and in front of
the telephone [3]), or as a WFF or network, with explicit links or predicates, such as
RIGHT_OF(Book, Glass), and IN_FRONT_OF(Book, Telephone) [4] might be the appropriate
structure. Notice that we have here four different ways of representing what is essentially similar
information.

TR

It is not the case that one of these forms is the correct one. Rather, each is heuristically appropriate
to uses at some time. The grid is both a typical input expression, and a possibly useful form for an
algorithm seeking to quickly comparing scenes. The coordinate structure could be used to easily
locate the desired object. A program whose primary task was human interaction might find storing
sentences such as [3) a useful facility, while inference might require [4). A program that needed to
do all of these might very well keep several or even all four representations. Nor is it the case that
these are equivalent representations. They represent different combinations of inference and
deletion, and are not mutually rederivable.

We feel the pain of this problem very acutely, even within our limited set of chess problems.
Particularly the dichotomies of board/position and value/piece reveal an aspect of this problem. As
we have already devoted a section to their comparison (section 5.2), we shall restrict ourselves to a
few brief conclusions here.

It is clear from this experience that representing information in canonical form (every fact has a
particular, highly structured format to which it must fit) is a losing proposition. Such structuring
must, of course, be to the most general form; however, most frequently, it is the particular form, with
its implicit information, that is the most pliable for heuristic manipulation. Thus, while the
positional notation is the most general form of representing a chess situation, actual computation is
easiest when dealing with concrete boards. The same constraint applies, of course, to dealing with
pieces and values.

Multiple representations require the ability to translate between forms. In the case of the
board/position dichotomy, this translation is explicitly related in the TRANSPOS axiom and theorems
(sections 2.1.9.2 and A6). It is considerable trouble to interchange representational forms in mid-
proof; unfortunately, unless great care is taken in matching proof segments and lemmas, it is a
frequent occurrence.

An alternate facet of the multiple representation problem is the difficulty of transferring properties
between different, but similar states of the world. The book is on the table. If I walk out of the

77. However, imagine the helivm balloon; the manipulator ignores its compositional properties st its own peril.

54&.1 Conclusions Page 181.

room, around the building, and back in, will the book still be on the table in this new state? The
entire issue transferring properties between similar states is a very complex "can of worms." This
problem is visible in our chess system; while any move changes only a few of the pieces on the
board, it creates an entirely new state, with unexplained properties. We have, however, one
prominent success to report oa this matter, that our the ckess induction schema. We have found this
schema to be very useful in tying together the properties of not only “close” states, but also relating
states separated by many moves.”$

In many respects, this requirement of transferring between different representations can be viewed as
a metaphor for the heuristic portian of the A.l problem itself. In that view, intelligent action
consists of transversing some search space; multiple representations merely pervert that space (like
other operators), adding short cuts and cul-de-sacs.

Section 5.6.2 Abstract and Concrete Representations

The previous section discussed the varieties of representations. Our experience with this chess proof
leads us to an important conclusion about these formats: a system requiring complex and detailed
deductions must frequently retain both abstract and concrete representations of its input.

Let us consider this vision example. The program knows that it is viewing some “scene”. In some
general sense, this is the abstract form for this hypothetical vision understanding system. As it
manipulates the raster input, abstracting and specifying features, the abstract form becomes qualified,
just as the abstract form of the position px is qualified in the course of our proof. Practically, the
vision system might extract features, manipulate the resulting data structures, and return to the
concrete input format only for clarification. Rarely, an inconsistency might force another analysis of
the input.

The chess example has a parallel structure. Any problem is explicitly an element of the set of
positions. Various features, such as the values on a given square, are concrete facets of the input
analysis. In forward analysis (as, for example, outlined in section 5.4.2) we would use less of the
abstract form, preferring to live in the secure computation of specific boards. Retrograde analysis, on
the other hand, deals with a more “unsure” situation, and demands a more flexible representation.
Hence, the predominance of the more abstract form (the position) in our proof.

Section 5.6.3 Heuristics and Representation

As we mentioned in section 1.2, the general A.l. problem naturally divides into epistemological and
heuristic parts. This paper has been concerned with the minimal requirements for an
epistemologically effective representation. However, a few words on the heuristic devices employed
in generating this proof might prove interesting. It is to be remembered that these comments are of
an introspective nature; that is, we describe what we found difficult and easy, and how a heuristic
system might eventually be organized to acheive such a long deduction.

Both the generation of this proof, and its surface structure, show a clear division into three types of
activities. First, a specification of the general proof outline must be obtained. In this proof, that
corresponds to the "human” proof described in section 1.6.2. Then, into this outline, the appropriate

78 There is a third "multiple representation” issue that FOL handies for us automatically, that of keeping the context of any
deduction. The dependency mechanism performs this task fairly well, though naturally, in a very conservative fashion.

s

Page 182. Conclusions 56.3.

lemmas and theorems must be formed. Finally, individual proofs must be constructed for each of
the particular theorems.

This outline misstates slightly, in that the second and third activities, lemma selection and proof,
occur concurrently, difficulties in proof often prompting new subgoals (lemmas) for the selection

process.

It is clear that both for the human proof solver, and any future program, that these steps are listed
in order of increasing difficulty. It 1s not clear how to generate an outline of the correct solution,
given the problem. It is also clear that this more efficiently done the more the solver knows about
the tricks and short cuts of solving chess puzzles. Thus, a human unacquainted with chess, and
presented only the rules, would finding solving this problem a very difficult task, while it is trivially
easy for the chess master. Proving actual lemmas, once one had the "hang” of it, was relatively easy.

Working within the context of a proof outline, the main difficulty in generating this proof arises
from specification of the lemmas and sub-theorems to be used along the way. In a strong sense, the
proof of almost all of the lemmas is relatuvely trivial, given the existence of all of the axioms they
employ. In practice, if the proof of some theorem became too difficult, a useful lemma was assumed,
the lemma's proof becoming another subgoal. Within the proof of any lemma, almost all of the steps
are either axiom instantiations or simplifications.

Effectively, we are offering a personal confirmation of a judgment of Sacerdoti [Sacerdoti73], that it
is more important (and more difficult) to determine the plan for a course of action, than to worry
about filing in the detailed descriptions of that plan. Of course, one’s proof can flounder on either

set of hard places.

There has recently been some work on incorporating goal direction into the FOL system. The
reade: is referred to [Bulnes 79] for a description of that work.

Section 5.6.4 Functions and Predicates

In section 5.2.5 we mentioned the use of special functions, essentially, the use of an algorithm to
compute a value (when the algorithm is known). This principle can be expanded into a general
“moral” for axiomans: . ¢ ..ctons are (usually) more tractable objects than predicates. In this
section, we contrast the functional and predicate styles of axiomatizations.

A functional axiomatization is one where (relatively) unique relationships are expressed as the
values of particular functions; a predicate system denotes these relationships as predicated
relationships. That is, to find the instance satisfying some predicate, one manipulates the axioms of
that relationship, and proves a unique correspondent.

What we are contrasting here is an intra-representational choice. That is, in generating an axiom
system to represent some domain, one often has the choice of expressing some notion as either the
value of a function, or the set of things true of some predicate.

An example of a "bad" axiom from our axiomatization may clarify this issue.

Consider the axiom MCONSEQL which defines the pawn promotion.

AXIOM M H

56.4. Conclusions Page 183.

Yp . (PAUNPROM Move pa (LASTRANKER(To Move p,Color Prevpos pla
SIMPLELEGALMOVE (Prevpos p pla
PALNS Mover Move pa
VALUEP Valueon(Tboard Prevpos p,From Move p)a
((BVALUES Promoted Move psBVALUES Val (Prevpos p Mover Move p))a
(UVALUES Promoted Move peWVALUES Val (Prevpos p Mover Move p)))a
Val (p Mover Move p)=Promoted Move p))::
It states that a pawn promotion takes a pawn to the last rank, by an ordinary move, that the piece
must have had pawn value at the start of the move, that black pawns promote to black pieces, that
white pawns promote to white pieces, and the promotion value is from the set of possible promotion

values (as defined by the definition of. Promoted).

Now, this axiom is not incorrect. It is merely clumsy, and we regret having written it this way. We
leave it in, however, to be the ob ject lesson of this section. The axiom would have been more easily
used if it had stated: 79

AXI0M MCONSEQL:
Yp . (PAUNPROM Move p=(SIMPLELEGALMOVE (Prevpos p, plal
(WHITETURN p A
Rou To Move p = 8 A
Val (Prevpos p, Mover Move p) = PB A
(val (p, Mover Move p)=0B v Val (p, Mover Move p)=RB v
Val (p, Mover Move p)=BB v Val (p, Mover Move p)=NB))
v (-WHITETURN p A
Row To Move p = 1 A
Vai (Prevpos p, Mover Move p) = PU A
(Val (p, Mover Move p)«QW v Val (p, Mover Move p)=RW v
Val (p, Mover Move p)«BW v Val (p, Mover Move pl=NWII}))33
that is, if it had explicitly stated, referring to individuals and equality, what was intended, rather

than referring, through the indirection of predicates, to sets of ob jects.

If this lesson seems too obvious, perhaps it is important to mention there are reasons for a predicate
approach, to wit, that the various tautology deciders currently in FOL (TAUT, TAUTEQ) are
much happier with predicates than with either equality (which TAUT cannot handle) or functions
(with which TAUTEQ_ has trouble).

Section 5.6.5 Whorf's Law

The last section illustrates an important moral of representation theory, a Whorf's law of artificial
intelligence [Whorf56).

Whorf's hypothesis was a linguistic one; that a person’s language shapes the way he thinks. Our
experience with fitting a chess proof into formal logic gives strong evidence that this notion extends
to include formal representational systems, and is a useful notion to remember in generating them.

Obviously, a limited representation can only express limited notions. More significantly, the

structure of the inference system, and the axioms, will subtly mold the resulting deduction. For
example, FOL tautology decider TAUTEQ is capable of substituting equals for equals in predicates,

79. Recall thet "WHITETURN p” implies BLACK just moved.

Page 184. Conclusions 56.5.

but not in functions 8 This promotes an axiom structure incorporating more predicates and fewer
functionals (an unhappy situation).

The FOL system has grown as this proof has progressed. When the proof was begun, the only
supplemental inference commands (beyond the Prawitzian natural deduction rules) were TAUT and
TAUTEQ, Semantic simplification, so essential to our chess eye, was developed concurrently with
our experimental axiomatization. Copious use 1s made of these commands. More recently, after the
first few iterations of proof had been completed, syntactic simplification (a massive substitution
command), and a decider for monadic predicate calculus were introduced. It is noteworthy, however,
that even if we wrote another iteration of this proof, these commands would probably not be
important. This is because the axioms are not structured to take advantage of their presence. Such
structuring would imply more equivalences and monadic predicates, while our current structure tends
toward implicatives and dyadic (and greater) predicates.

Similarly, it is difficult in FOL (largely because it is a formal mathematical proof system, partially
because a lot of effort would be required to check any change) ta correct the course of a proof, to
delete an offending command, to make a slight adjustment to an axiom, to change an incorrect 3
declaration. This arrangement promotes a stiffiess of expression; once incorporated, change is "
difficult. Because change 1s so difficult, it is easier to become set in ones ways, and harder to .
experiment. Again, we see an example of language influencing representation.

Section 5.6.6 States and Representations

Perhaps a section on the value of state vector representations in general epistemological situations is
warranted. After all, the position, our state vector, has proven very successful at capturing some of
the important aspects of our domain. For example, the notions of must Aave Aappened in this game,
though | don't know when and it was true then, and can't have changed, hence is true now are very well
specified by having the position as a history vector, and through the use of chess induction.

We contend that a similar ideas can for the basis for powerful representational mechanisms for A.L.
For example, retaining a notion of the present state of the world, including the history of reaching it
resolves some of the confusions inherent in the naming of objects. A person who has lived but is
now dead does not, in some sense, exist in this world. However, by retaining the history of the
world in reaching this state, we are able to speak of him in the appropriate context. Similarly, a
God that was able to know the rules involved in all state transitions would be a good resolution of

the issue of omniscience.

But, of course, reasoning within this state of the world, and not knowing all of its rules, we cannot
predict the future. We can, however, if we know the current state, reference that state as the
expected descendant of some past state, and reason about the future (up to the current) in the past.
We can not reasonably reason about the future, even in the past, beyond the current state, other 8
than to say, "if the future has the following properties, then ..". Note that of all possible states and 3
histories, we can distinguish one and call it, reality. This is typically the state we are in, just as the
‘ game that reached GIVEN, the problem board, was reality for that situation. We can name
£ individuals in chess, such as the grasshoppers and nightriders, that have properties, just as we can
- name mythical flying horses, and state that this flying horse was named Pegasus, who sprang from
the body of Medusa at her death, and so forth. We can speak of Pegasus if we are careful of

»
£
g

80 From ssb, TAUTEQ can deduce p(a)sp(b), bur not F(aleF(b)

T e SN SR———y

56.6. Conclusions Page 185.

mentioning the context within which we are speaking, just as we can speak of nightriders, if we
mave beyond the context of "real” chess, or “real” reality.8 A full notion of such a state/reality
duality might require additional predicates and individuals into that state.

Reasoning within specific siates can have other benefits. For example, the reasoning about
knowledge can sometimes be resolved by retaining the context within which each wise man is
reasoning. Note that as an omniscient observer, we retain the right to reason about all contexts.

Transitions between states can be seen as the fiow of reality. This chess problem has been very over
simplified, for things happen in a discrete, regular fashion. In a more general, real world, processes
will not behave as nicely. We will be able to find some regular laws (if x is dead in state s, then x
will be dead in all successor states to s.), and able to use our induction schema to manipulate such rules
(if x is dead now, then, by induction, x will be dead in all future worlds).

Reasoning in this state transition formalism has a distinct disadvantage, however; we can rarely be
sure that what was true in state s will be true in the successor of x. We have heuristics for processing
such situations (if x leaves the room, all of x's clothes go with him) but even such ordinary rules as when
! awake, things will basically be the same can be violated, as Rip van Winkle discovered, much to his
discomfort.

Section 5.7 Historical Context

It 1s perhaps uscful to place this work within the historical context of representation systems in
Artificial Intelligence.

The inference mechanisms employed by Al systems can profitably be divided into two varieties:
syntactic and semantic. Syntactic inference is performed by considering the form of a particular goal
and set of rules. If that form matches the standard required by the set of rules, one can conclude a
result whose form is determined by both the result form of the rules, and the binding of entities in
the match. Thus, for example, in a system structured as ours is, one employed the axioms and
already proven WFF's, through the natural deduction rules of inference, to obtain new WFF's.

Semantic inference mechanisms are magic. The particular goal WFF is offered to some set of
functions and data structures, and that oracle decides if the particular conclusion is correct. While it
1s (theoretically) possible to describe these data structures and functions in a mathematical form,
raising them to the syntactic level of the first kind of structure, such an attitude is both unlikely to
succeed, and, in some strong sense, wrongthink. Typically, the "black box of semantic routines”
embodies some model of the world viewpoint of the system programmer.

This is not to imply that by calling such mechanisms "magic” we want to denigrate them. Rather,
they will be the fundamental mechanisms of any successful Al system. The interactions allowed in
purely syntactic constructs are too broad to be able to avoid exponential search.

However, it is also important to point out that model based reasoning is invariably too limited in its
expressive power to perform complicated and varied inference. We need not only to compute in our
models, but also to talk about them. It is the assertion and demonstration of this paper that deep
inference is possible through a combination of both forms of representation.

81. Prior's modal logic spproach to time was discussed in section 53.2,

" " o - - ’ ety 4 - ¢ R
SR,

Page 186. Conclusions 5.7.

: Neither representational system is new to artificial inteligence. Purely syntactic approaches, such as
; resolution based theorem provers were once in vogue. But even in the ultimate example of such a
system, QA3 [Green69) one sees the stirrings of the use of models. But Green employed model based
computation only out of necessity and last resort.

At that time, Winograd's SHRDLU [Winograd?2) was somewhat a competitor of QAS. While the
Planner antecedent and consequent theorems employed in SHRDLU have a surface resemblance to
formal logic, their employment in a simulation system made them essentially semantic conventions.
While perceived as a great success at the time, the limitations of such a purely semantic approach
have now become apparent (section 1.3.1.2, see also [Moore?5). Essentially, a purely model based
system can efficiently manipulate the ob jects in that model, but has no mechanism for talking about
those ob jects or the manipulations in a non-manipulative sense. Hence, Winograd's program could
fail to place a block on a pyramid, but could not talk about the possibility of placing a block on a

pyranid.

There have, however, been several successful combinations o - iactic and semantic representations.
Perhaps the earliest and most impressive was the combination of diagrammatic based computation
and syntactic deduction presented in the geometry machine (Gelernter63A)(Gelernter63B). Gelernter
and his associates employed computation on a geometric model to aid in the discovery of syntactic
proofs of elementary plane geometry thecorems. The mathematics of the model system employed by
the Geometry machine is explored in [Reiter). Other, inore recent programs have employed simple,
explicit models to perform some of their necessary inferences. Examples of these programs are the
electrical circuit systems at BBN [Brown73)[Brown74) and MIT [Sussman?75), Funt's system for
precicung the paths of falling blocks [Funt?7), and Rieger's [Rieger76]) (Rieger77] program for
approximating the workings of devices.

i R

We can, perhaps, attempt a minor taxonomy of such model based systems. Besides the above
distinction about the use and availability of both syntactic and semantic forms, we note two other
distinctions. First certain of the above systems employ their models not only as inference
mechanisms, but also as heuristic aids. The Geometry machine is a prime example of this use. The
deduction presented in this paper has, of course, ignored heuristic issues, considering only
epistemological questions.

Secondly, these programs can be divided by the kind of model they employ. Our model for the
chess proofs has been an exact one. We are as sure of its correctness as we are of our axioms; we are
sure that its functions completely and accurately model our knowledge of chess. To the limit of their
electrical consideration (races, hazards, etc.) the electrical programs were also accurate models. Funt's
block’s program, however, applied an approximate model of the situation, performing a simulation of
the falling blocks, under the watchful gaze of a simulated eye. Rieger's system is a similar
simulation. Gelernter introduced unnecessary approximations into his system to keep it from being
too accurate and helpful a model.82

Thirdly, all of the systems considered so far have employed a single model in their inference
mechanism. Whether only single models are appropriate (to reflect the natural "human” single-
minded view of the world) or multiple models are merely a further step is an open research question.

One important, complex anu hecessaiy step has been avoided by all these systems: a reification of

82 Gelernter wanted 10 study vsing the model as a heuristic, rather than inferentisl axd

5.7 Conclusions Page 187.

models, treating the models themselves as objects of the system. One can see an important
suggestion in this direction in [Weyhrauch78), though it remains a research opportunity.

Section 5.8 FOL

On many occasions in this volume we have complained about the various limitations and privations
imposed by our proof checker, FOL. This is not to imply that things are all that bad; FOL does
what it does fairly well. However, while familiarity may not breed contempt, it at least breeds an
awareness of deficiencies. We are obliged to attempt a rudimentry catalogue of our perceptions of
where FOL could be improved.

The most elementary changes (at least from a structural point of view) involve the inclusion of
additional inference rules. For ‘example, a tautology resolver that could do substitutions inside of
functions as well as on predicates would be a ‘relatively” simple fix that would have a large
beneficial effect on total proof size. One can imagine, for example, that most of the uses of SUBST
and SUBSTR, and many of the applications of ASSUME could be dispensed with were it not for
the necessity of convincing TAUTEQ (again) that a=b > F(a)l=F(b). We have partially
circumvented this constraint by the uses of the 8 functional parameter and the Substitution axiom;
these temporary solutions are not, however, completely satisfactory.

Similarly, the FOL user should be allowed to define his own inference rules, providing the code to
decide them. This proposal works in parallel to the more powerful semantic simplifier discussed
below. Merely being able to substitute for parameter predicates and functions is not enough.

There are, of course, several more radical changes that the earnest FOL user would desire. The
primary emotional complaint about writing FOL proofs is the necessity for stiffly expressing each
(almost incorrectable) step. This problem is exhibited in several ways. In its simplest form, it can be
perceived in FOL's refusal to forget any (unreferenced) declarations, or remove any (unused)
inferences from the proof. The relatively inflexible syntax is also a source of annoyance. Similarly,
the necessity of generating a permanent, particular proof step, particularly one that is only a
propositional derivative of some other inference line (what FOL calls a VL) for use in only one
instantiation, is a corresponding clumsiness.

In a larger sense, this stiffness is seen in the necessity of repetition of identical (or nearly identical)
arguments (on different ob jects) to produce similar results. One frequently wishes to say, this case is
just like the last one, but use the axioms for white rather than black in proving it. In its simplest form,
this proposal might be incorporated as a proof schema; that is, follow arguments of the following
form, and reach a similar result. A more grandiose schema might include a provision for reasoning
by analogy, that is, taking a proof and finding the parallels to generate a similar proof.83 The moral
here, perhaps, is that communication is facilitated by informality, the ability to omit or abbreviate
objects. FOL (like most programming languages, particularly the "lower level” programming
languages) requires a fairly formal statement of action. This is uncomfortable. Writing a FOL
proof of this size leaves one with the same feeling as writing a large assembly language program.

FOL can be a very uncooperative proof checker; while it is quit willing to deny the legality of some
step, it is usually unable to explain why. It would be easier to write interactive proofs if the proof

83. We see some of the elementry steps for this work in the thesis of Kling [Kling7 1] on reasoning by analogy. Kling, however,
only used the previous proof for selecting the axioms to be given to & resoiution theorem prover; we suggest that this inference
scheme try to follow the form of the given proof.

2

Page 188. Conclusions 58.

process included some guidance. We are all familiar with how debugging facilities easy the
programming process. However, the inclusion of such facilities is not a trivial request; while a
quantification check in semantic simplification could easily trace a failed step, such a facility within
the present decision procedures would certainly be a difficult to implement.

We have here a giant example of a FOL proof; many different lemmas and theorems have been
pieced together to accomplish the end result. However, we have received virtually no help from
FOL in producing this structuring. While FOL permits one to declare any arbitrary WFF an axiom,
it has no other mechanisms for structuring a proof. Two possible improvements might be suggested.
One would like a theorem command, which would take and save a given result. Additionally, either
a block structuring method or an analogical inference command would aid the engineering aspect of
proof generation. The recent meta level faciities [Weyhrauch79) and goal structure commands
[Bulnes?9) could be used to alleviate these difficulties.

Of course, our major impressions and recommendations are reserved for the semantic simplification
mechanism.

Our primary complaints concerning simplification center on the inability to apply all of the
observational knowledge available to a given simplification. This Hydra rears its heads in many
ways. In its simplest form, it is seen in the demand of simplification that all arguments to functions
be "well defined” before they can pass through the FOL - model barrier. For example, if A is a
constant, and y, a variable, simplification (and the common call by value implementations of LISP)

are unable to compute:
(CAR (CONS A y)) = A

Having such a symbolic evaluation would have been quite helpful in generating this proof. For
example, on many occasions we would have a parameter board, a parameter value, and two constant
squares, and wish to show that MOVETO was not true on these arguments (the squares resting at an
angle beyond the movement of any piece, say, BKRl and WQR2). A parameterized semantic
simplification would accomplish this; as it is, we need to resort to the hack of instantiating the axiom
MayMove, and simplifying the result.84

There are times when even this dodge will not work. It these axioms we employed to do forward
analysis, then the following object would prove useful: a position built up from a parameterized
position (presumably, the given position of a problem) with successive generations of moves and
boards appended. Now, there are many simplifications that are, by nature, observations, and should
possible on such an object. However, as it is not an INDCONST, it would not even be passed to the
simplification mechanism.

A partial solution of this problem would include tagging those objects that were “variables” to
simplification, and allowing the user program to distinguish those tags.

Permitting the user program to see the variables of the FOL model could have other beneficial
results. Consider the case of quantification checking. In the current simplification mechanism, the
only quantification checking permitted is the check of a finite sort whose elements have been listed in

84 MayMove is defined ss: Vb v 8ql 8q2 (MOVETO (byv, sql, q2) > (Column sql = Column 8q2 v KNIGHTMOVE (sql, sq2) v
Row 8q! « Row 8q2 v SAMEDIAG (eq1, 8q2) v KINGMOVE (sq 1, 8q2) v (TWOTOUCHING (Column eq1, Column 8q2) A (WSUC (Row sq),

Row 8q2) vBSUC (Row sql, Row 8q2))))).

T

58. A Conclusions Page 189.

an EXTENSION command. This usually works well enough in the chess world for the simple
problems we have considered (there are, however, some lemmas we have not proven because the
desired simplification were too complex). But quantification checks can also be accomplhished by
other divisions of the variable set than into individuals. For example, it is true that all integers are
either positive integers, negative integers or ze¢i.. A division into these sorts might permit the
simplification and verification of some sentence of number theory or arithmetic. However, we would
certainly not want to check every integer in establishing the validity of that WFF. Rather, the user
should be allowed to define his own quantification checking mechanisms, either in addition to, or
instead of the current extension checks.

In the current organization of FOL one must invariably know what one wants (that i1s, what WFF
one wants in one's FOL proof) when commanding any inference step.85 A more powerful scheme
would be to permit the prompting of the simplification mechanism, which would then complete the
assertion in the appropriate manner. In a simple form, as prompt of V x. WFF might, instead of
returning =Y x. WFF instead counter with the more useful ¥x. (WFF v xey v x=z). If =V x.WFF
were what was desired, it would have been asked for.

On a grander scale, this mechanism could begin a approximation of the inference schemes of
humans. Our proof i1s a very good case in point. The competent human puzzle solver can observe
our problem chessboard and state: The only legal move for white was to have just promoted a pawn to a
rook, moving from BAB2 to BQ1, and capturing a black piece. This (for the good puzzle solver) is an
observation, not the deduction. It is the only possible legal (last) move for white. To generally mimic
this ability in FOL, however, would require a simplification mechanism that could take an input
board, and return a set of WFFs, one of which would be true of that board. This might be
accomplished with an appropriate set of meta level reasoning commands.

A final point on the relationship between the FOL level WFFs and the semantic simphfication's
attachments. These attachments, you may recall, were presented in the axiom section (chapter 2) of
the proof. This is because they share many attributes with the axioms, both conceptually and
functionally. Conceptually, they are among the building blocks from which the rest of the proof was
created. Functionally, these attachments can serve the same crucial role as axioms. That is, defects
in these functions can permit the horror of a contradictory deduction (and hence the deduction of
any WFF.) By the semantics of the LISP programming language in which they are imbeded, these
axioms acquire meaning. It is an unhappy circumstance that the meaning incorporated by these
semantics 1s not somehow transferable to the FOL axiom level. Similarly, it is unfortunate that the
FOL level axioms cannot be compiled, somewhat automatically, into simplification level attachments.
While it is true that this inability places the burden of a redundant inefficiency on the FOL user,
this is not our major point. Rather, our intention points towards the time when some similar scheme
might be incorporated into an intelligent program. QOptimally, such a program would build up
frequent action patterns, effectively learning new processes. With our representation formalism, this
could well be modeled by the compilation of FOL WFFs into the corresponding model attachments.

85 There is » small, but important exception to this rule. One can semantically simplify on expression of the form F(x 2 X
ond obtain as an inferred otep: F (lrlz,..lh)'y. for function F and terme X ond y.

Page 190. Conclusions 59.

Section 5.9 Evaluation and Summary

The reader is probably by now feeling somewhat overwhelmed by the mass of argument and detail,
proof and text that we have presented. Let us conclude, therefore, by summarizing and evaluating
our important points.

Many doctoral dissertation seems to be of the form: "I've solved the A.l problem, except for a few
implementation details I've not bothered to work out.” It is a primary premise of this work that
“solving the A.l. problem" is a very difficult task, and much fundamental work on both
representations (epistemology) and search (heuristics) remains to be done before its solution.

This particular paper has been centered upon consideration of epistemologically effective
representations. There is a common fallacy in most A.l. work, that because some particular
representation, invariably employed in some particular task, was sufficient to solve some of the
problems of that domain, that that representation can be extended to the rest of that domain, and
onwards to the rest of whatever we want our computers to do. Our perspective has been from the
opposite direction. We have started with a very general representation (formal logic),8¢ discovered it
inadequate for modeling even a limited problem domain (chess puzzles), and extended it (by the use
of the Chess Eye) to where it can more easily and naturally represent certain interesting problems.
However, there are many questions about chess puzzles that are inconvenient or impossible to ask
within our representation as presently formulated.

It is important to remind the reader that the fact that our representational formalism is based on
first order logic does not imply that we are suggesting the use of general purpose theorem provers.
Rather, our comments in this work have been reserved primarily for the epistemological part of the
A.l problem; we have spoken very little, if at all, about appropriate heuristic mechanisms. Our
approach has been, in some sense, bottom up (consideration of the nature of reasoning sequences)
rather than top down (discovery of the appropriate state search methods).

It should be remembered in evaluating all of the particulars of the individual representational
choices that we have made, that first order logic is a family of representations. The failure of one
particular example of a formal logic system is a failure of that selection of individuals, predicates
and functions, not the failure of the entire notion of formal systems.

There are several general representational issues illuminated by this work. In earlier sections, we
have pointed out the distinction between concrete (board) and abstract (positional) entities, and the
importance and value of state vectors (positions) in durational deductions. We have seen many
facets of the multiple representation issue, such as differing representations for the same ob ject
(board and position, piece and value) and preserving properties between similar ob jects (chess
induction) illustrated by our axiomatization. We have noted the necessity for both syntactic and
semantic representations; there are many important syntactic type deductions which are not
expressible within a model.

Our major emphasis, however, has been on the interrelation between observation (the Chess Eye) and
deduction (the overlying FOL language). We have closely examined a particular observational
framework and found it adequate for computing certain properties (functions on closed ob jects).

86 It is trve that formal logic is & general representation schema. It is slso true that certain Turing machines are universal
computing devices. However, this lstter knowledge is of littie use in actually programming computers.

I S T

A = 2 TR

5.9. Conclusions Page 191.

However, we have been left with the sense of the impotence of this scheme: not all of the
computation and observation we wish to make is on fully defined, well structured ob jects. The issue

of adapting and generalizing the simplification mechanism to include these observations remains a
ma jor place for future exploration.

e TR P M

P

ARy et

U R

Page 192. Chess Lemmas A.

Appendix A Chess Lemmas

Due to space limitations, Appendix A, the proofs of the general chess lemmas and theorems, has not
been included in this volume. Those proofs may be found in the author’s Ph.D. dissertation, which
is available from University Microfims, 300 North Zeeb Road, Ann Arbor, Michigan 48106.

IV TR VY T S O I U

B. Proof Lemmas Page 193.

Appendix B Proof Lemmas

This appendix presents the various lemmas and theorems relevant only to our given puzzle, yet too
detailed to belong in the main exposition, chapter 4. As such, its form is essentially similar to
appendix A. However, unlike that appendix, these lemmas are listed chronologically; that is, in the
order of their use in the main proof.

Section B.l Undefined Squares on the Given Chessboard

Our first problem lemmas are, trivially, a single simplifications. Just as there are many useful facts
about chess derivable in a single simplification, and useable in many contexts (as presented in section
A1), similarly, there are observations about the interesting boards of this problem. (Observations
we prefer to have to compute only once.)

We observe that the only undefined square on the problem board 1s WKR&

~

sseselobe! i venll;
sessen implity Vsq. (Vaiueon (GIVEN 8q)eUDasqeikRe);
1 Vsq. (Valueon(GIVEN, sq)sUDasqankRde)

We also note which squares on GIVEN have white pieces on them.

evesslabe!l GivenkV;

svesos implify Veq. (KVALUES Vaiueon (GIVEN 8q)>(sqeBKRiveqeBlliveqeBl2veqeilR2veqellNIveqekQBlveqsil3veqekiBlvea
eenkNIveqekRY))

2 Vsq. (WVALUES Vaiueon(GIVEN,sq)>(sqeBKRlv(sqeBQlv(sqeBQ2v(sqekQR2v (sqeiQNIV (8qelQB2v (8qelQIv (sqekkBlv (8qe
NKN3veqekkR2))))))))))

Section B.2 "Blocked on the Total Board, Too"

This lemma proves a precondition for the CORNER theorem. That theorem assumes that a piece
checks the opposing king, and that the check did not arise from a castle, en passant capture, or pawn
promotion. We wish to show that the checking piece does not have any entry square to move to
make the check that does not also check the king. (Starting a move with the opposing king in check
1s clearly impossible.) The theorem will then let us conclude that the check was a discovered check.

Unfortunately, the theorem must speak of the total boards of the relevant positions. We do not have
a total board, rather, a (fairly complete) board fragment. What can we conclude of the relationship
between these two? We would like the appropriate predicates (MOVETO, Valueon) to correspond
between the two boards. But proving this is some work. This illustrates the difficultly of
transferring properties between similar ob jects within our formalism.

Our lemma begins with a lemma of its own. One of the orthogonality theorems, OrthoThmX (section
A 9.2) states that the ORTHO relation (on a board, two squares lie on the same horizontal or vertical,
with no pieces between them) is sometimes equivalent between a board and its sub-board. More
specifically, ORTHO will remain true around a square if that square has no undefined squares sharing
its rows and columns. The lemma considers orthogonality between GIVEN and the total board
(Tooard) of some position for which GIVEN is a BOARD. A square sq is proposed, which shares
neither a row nor a column with the x-ed square, KKR4. As this is the only undefined square on
GIVEN, then orthogonality is equivalent, on this square, between the two boards. We label this
lemma BLOCKLEM (blocking lemma).

mr———

Page 194. Proof Lemmas B2

ssssviabel | 1;
ssssvassume ~(Rou WKRésRow 8q)A~(Column NKRésloivan sq);
1 ~(Row WKR4sRow sq)A~(Coiumn WKR4eCoivan sq) (1)

S00eeassume 8QlekkRe;
2 8Ql=kKR4 (2)

ssesensubst T in Th
3 ~(Row sqlsRou sq)a~(Column sgleloiuvmn sq) (1 2)

ssssed] T1OT;
4 8QJaikRe> (~(Row sqleRou 8q)A~(Column sqleloivan sq)) (1)

seeseVE GivenUD sqd;
S Vaiveon (CIVEN,sqd)sU0esql«ikRe

sseestautl Vaiueon(GIVEN,sq3)eUD>(8qdesqv(~(Rou 8q)eRou 8q)A~(Coiumn sq3sColuvan sq)lit, t1;
6 Valueon(GIVEN,8q3)sU0>(sqlesqv(~(Row sqleRon 8q)A~(Coiumn sqlsCoiuan sq))) (1)

ssasaV] T gql;
7 V¥sq3. (Valueon (GIVEN,5qd)eUD> (8qlesay (~(Rouw 5q3eRou sq)a~(loiumn sq3sCoiumn 3q)))) (1)

es00eVE OrthoThmX q,GIVEN,sq,sql;
8 BOARD (g, GIVEN)>(Vsqld. (Vaiueon (GIVEN, 8q3)eU0> (sq3esqv (~(Row 8q3eRon 8q)A~(Column 8q3«Column 8q))))>(ORTHO(
Tooard q,8q,8q))sORTHO(CIVEN, sq,8ql)))

esssetaut BORRD (q,GIVEN)>(ORTHO (Tooard q,sq,sql)sORTHO (GIVEN,sq,sql)) Tt 1)
9 BORRD(q,GIVEN)>(ORTHO (Tooard q,8q,8q)) sORTHO(CIVEN,sq,8ql)) (1)

seesed] LIdT,;
10 (~(Row WKRéaRou 8q)A~(Column WKRésCoiumn 3q))>(BORRD (q,CIVEN)>(ORTHO (Tooard q,8q,8ql)s0RTHO (GIVEN,sq,sql))
)

sveseiabel BLOCKLEN;
sseeeV]l T q 8q sql;
1L ¥q sq sql. ((~(Row WKRésRow 8q)A~(Coiumn WKR4sloiumn 8q))>(BURRD (q,GIVEN)>(ORTHO (Tboard q,sq,8ql)s0RTHO (

GIVEN,sq,sql))))

We know that for rooks, the MOVETO predicate is equivalent to the ORTHO predicate.

eseseVE NMOVING! Toboard q,Rid, BQ2,sql;

12 MOVETO(Tboara q,RW,BQ2,sql) s ((VRLUER RNAORTHO (Tooard q,BQ2,8ql))v((VRLUEB RUADIRG (Thoard q,B02,8ql))v((
VALUEQ RWAORTHO (Tboard q,B02,8ql))v((VALUEQ RNADIRG (Tboard q,B802,8ql1))v((VALUEK RWAKINGMOVE (8Q2,sql))v((
VALUEN RWAKNIGHTAOVE (BQ2,8q1)) v(VRLUEP RWAPAUNMOVE (Tooard q,RW,8Q2,841))))))))

ewessVE NMOVING! Thoard q,Rd, BAN2,sql;

13 MOVETO(Tboard q,RW,BQN2,sql)a ((VALUER RNAORTHO (Tooard q,BAN2,sql))v((VALUEB RWADIRG(Tooard q,BON2,sql))v((
VALUEQ RWAORTHO (Tboard q,BQN2,eql))v((VALUEQ RWADIAC (Tboard q,BON2,sql))v((VALUEK RWAKINGHMOVE (BAN2,sql))v((
VALUEN RNAKNIGHTMOVE (BGN2,sql))v(VALUEP RNAPRWNMOVE (Tboard q,RW,BAN2,8q1))))))))

c:elabel L2;
evesesimplify t1
14 NOVETO(Tboard q,RW,BQ2,8q1)s0RTHO (Tboard q,B802,sql)

ssdensimplity 11
1S MOVETO(Tooard q,RN,BON2,8q1)a0RTHO (Tocard q,BOUN2,sql)

And, by our lemma above, on the interesting squares (BQ2 and BAN2) orthogonality is equivalent
between GIVEN and the total board.

B.2 Proof Lemmas Page 195.

so9esVE BLOCKLEN q,B02,sql;
16 (~(Row WKR4sRow BQ2)A~(Column WKRésColumn BQ2))>(BORRD(q,GIVEN)>(ORTHO(Tboard q,8Q2,sq1)sORTHO (GIVEN,BQ2,

sql)))

sxensVE BLOCKLEN q,BQN2,sql;

17 (~(Row HKRésRow BAN2)A~(Column WKRésColumn BQN2))2(BORRD (q,GIVEN)2 (ORTHO (Teoard q,BGNZ,sql)sORTHO (GIVEN,
BAN2,sql)))

skexslabel L3;

sennasimplify 11
18 BORRD (q,GIVEN) > (ORTHO(Tboard q,802,8ql1)80RTHO (GIVEN,BQ2,8q1))

sukessimplify T
19 BORRD (q,GIVEN)> (ORTHO (Thoard q,BQN2,8q1)wORTHO (GIVEN,BON2,8q1))

We would have our result, except that we must prove that the rook could not have moved from the
undefined square. But no piece can make that giant L jump, as consultation to a move excluding
theorem shows.

ssausVE MayMove Tbhoard q,RW,BQA2,HKRé;
20 MOVETO(Tboard q,RW,B02,HKRé)>(Column BA2sColumn WKRév(KNIGHTHOVE (BQ2,UKR4) v(Row BQ2eRom WKR4v (SAMEDIAG (BA2
,HKR&) v (K INGMOVE (BQ2,WKR&) v (THOTOUCHING (Column BQ2,Column WKR4)A(HSUC (Row BQ2,Rou WKRE)VvBSUC (Row BQ2,Rom WKRé

IRRRRRRD]

sxsexlabel L4;
sxsussimplify 1
21 -MOVETO(Tboard q,RN,BQ2,WKR4)

We can see the desired result is true on the given board. The steps above prove the equivalence
between this observation, and the result on the total board.

sxssssimplity Vsq2. (ORTHO(GIVEN,BQ2,8q2) 3 (~(Valuson (GIVEN,sq2) «NT) VORTHO (GIVEN, BAN2,8q2)))
22 Vsq2. (ORTHO (GIVEN,B0G2,8G2) > (~(Valueon (GIVEN,8q2)=NT)«ORTHO (GIVEN,BON2,892)))

wyenlabel LS;
sususVE T sql)
23 ORTHO(GIVEN,BQ2,8q1)5(~(Valueon (GIVEN,sql)=NT) vVORTHO (GIVEN,BON2,8q1))

wusesVE SubBoardséX q GIVEN sql;
24 BOARD (q,GIVEN)>(Valueon (GIVEN,sql)sValueon(Thoard q,8ql1) vVaiueon(GIVEN,sql)elD)

suxesVE GivenUD sql;
25 Valueon(GIVEN,sql)=UDssqlsNKRé

sxsesassume BOARD (q,CGIVEN);
26 BORRO(q,GIVEN) (26)

sevestauteq MOVEVD (Tooard q RN B2 sql)>(<Valuson(Tboard g sql)eNT vNOVETO(Tboard q RW BAN2 sql)) L2,L241,L3,

sL3+1,L0: 1
27 HOQETD(Tbocrd q,RH,B02,8q1)3(~(Valuson(Thoard q,8q1)sNT)vIOVETO (Thoard q,RH,BQN2,8q1)) (26)

Generalization and removal of dependencies.

sxeeaVl 1 sql;
28 Vsql. (MOVETO(Tboard q,RNW,BQ2,8q1)3(~(Valueon(Tboard q,sql)eNT)vHOVETO(Tboard q,RH,BON2,8ql))) (26)

saaped] 1111
29 BOARD (q,GIVEN)5Vsql. (WOVETO (Thoard q,RW,BA2,8q1)5(~(Valueon(Thoard q,8q1)eNT)VOVETO (Tooard q,RW,BAN2,sql)
)

PPRAREIY o Wb 3 WAL VRN

Page 196. Proof Lemmas B2

svesniabel BiogkedlivenTnm

seeeVl T q
30 Vq. (BOARD (q,GIVEN) oVeql. (NOVETO (Tooard q,RN,B02,8ql)3(~(Vaiueon(Teoard q,0ql)eAT)VAOVETO (Tooard q,RN,BON2,
sql))))

Section B3 Where A White Pawn on BQB2 Goes

A lemma for the main proof, to derive the possible moves of the promoting pawn on BQB2.
Naturally, we turn first to the move defining axioms, MCONSEQ.

evesviabel (1

eeeseassume SUCCESSOR(r,p)A(~CASTLING (r,p)A(~ENLPRSSANT (r,p) A (PAKNPRON Move pA(~WHITETURN pa(From Move psBOB2
*ABOARD (p,b)))))),

1 SUCCESSOR(r,p)A(~CRSTLING (r,p) A(~ENPASSANT(r,p) A (PAKNPRON Nove pA(~MHITETURN pa(From Move peBOB2ABORRD (p,b
IRRRRR NN

A NS 1 G F e

*seoVE Mconseq!X r,p;

2 SUCCESSOR (r,p) > (PRNNPRON Move pa (LASTRANKER (To Move p,Color r)A(SIAPLELECALMOVE (r,p)A(PANNS Nover Move pal
VALUEP Valueon(Tooard r,From Move p)a(((BVALUES Promoted Move psBVALUES Val(r Nover Nove p))a(NVALUES
Promoted Move palVALUES Val(r,Mover Move p)))AVal(p, Nover Nove p)ePromoted Nove p))))))

sssseVE NCONSEQK r,p;

3 SINPLELEGRLMOVE (r,p)a(~(From Move psTo Move p)a(MOVETO(Toosrd r,Valueon(Tooard r,From Nove p),From fove p,
Yo Move p)At(SINPLE NMove paVaiueon(Tboard r,To Move p)eNT)viICRPTURE Nove pA(PIECEVALUES ValueontiTboard r, Vo
Move p)a<(Valuecolor ValueoniTboard r,To Nove plsCoior r))))))

eeaeeVE NCONSEQR r,p;

4 SUCCESSOR(r,p)>((~HHITETURN rakHITETURN p)a(Prevpos para(~POSITIONINCHECK (p,Color r)AC(NNITEPIECE Mover
Move paWHITETURN r)A(Pos(r,From Nove p)shover Move pa(Pos(p,To Nove plefover Move pa(Pos(p,From Nove p)=ERPTY
A((CAPTURE Move p>Pos(r,To Move plaTaken Move p)A(CRSTLING (r,p)v(EN_PRSSANT (r,p) vSINPLELEGALROVE (r,p)))))))))
))

We not that the Val, Valueon, and Pos functions all express different representations of similar
ob jects, and that these representations are intimately connected.

eseeeVE ValueTranspositionR r Mover Nove p,From Move p;
S Pos(r,From Move p)sfiover Nove p>Valueon(Tboard r From Nove p)eVal(r, Mover Nove p)

One awkward point is the necessity of reminding the proof checker of the differences between black
and white.

eeeeeVE BorN_Piece~ Nover Move p;
6 ~(BLACKPIECE Mover Move pukHITEPIECE Mover Move p)

And we can see that any pawn valued white value piece must be Pu.

esvvesimplify Vv, ((VALUEP vA-~BVALUES v)avePW)y
7 Vv. ((VALUEP vA-~BVALUES v)avsPW)

svuseVE T Valueon(Tboard r,From Nove p)
8 (VALUEP Valueon(Tboard r,From Nove p)A~BVALUES Valueon(Tboard r From Nove p))aVaiueon(Tboard r,From Nove p)
PN

sveaniabel L2

seveeVE ColorChoices r,Mover Move p;
9 (BVALUES Val(r,Mover Move p)aBLACKPIECE Mover Move p)A(NVALUES Val(r,Rover Nove p)alRITEPIECE Nover Nove p)

More specifically, ws zonsult the definitions of the PW's moves, and simp!ify the result. :

B.3. Proof Lemmas Page 197.

sssssVE MOVING] Thoard r,PW,From Nove p,To Nove p;

10 NOVETO(Tboard r,PH,From Hove p,To Move p)s((VALUER PUAORTHO(Tboard r From Move p,To Move p))v((VALUEB Pl
0IRG (Thoard r,From Move p,To Move p))v((VARLUEQ PUADRTHO (Tboard r, From Move p,To Move p))v((VALUEQ PHADIRG(
Thoard r,From Hove p,To Move p))v((VALUEK PHAKINGNOVE (From Move p,To Nove p))v((VALUEN PHAKNIGHTROVE (From
Move p,To Move p))v(VALUEP PHAPAUNNOVE (Tboard r,Pl,From Nove p,Te Move p))))))))

sassssimplify Ty
11 MOVETO(Tboard r,PH,From Move p,To Move p)sPRUNNOVE (Tecard r,PU,From Nove p,Te fove p)

sse53VE PRUNMOVINGL Tboard r,PW,From Nove p,To Nove p;]
12 PRAWNMOVE (Tboard r,PH,From Move p,To Move p)s ((HPAUNNOVE (Tooard r,From Move p,To Move p) ANVALUES PH)v(
BPAUNNOVE (Tooard r,From Nove p,To Move p)ABVALUES PN))

wkiasimplify 1
13 PRUNNOVE (Thoard r,PH,From Move p,To Move p)sNPRUNNOVE (Tecard r,From Nove p,To Move p)

sx20sYE PRUNMOVING2 Tboard r,From Move p,To Move p;

14 WPAKNMOVE (Thoard r,From Move p,To Move pla((Column 7-om Move psColumn To Move pa(WSUC(Row From Move p,Row
To Move p)aValueon(Tboard r,To Move p)shT))v((Column From Move psCoiumn To Move pA(Row From Move pe7a(Vaiueon
(Tooard r,To NMove p)sNTa(Valueon(Tboard r, MNakesquare(6,Column From Move p))sfiTaRou To Move psS))))v(
THOTOUCHING (Column From Move p,Coiumn To Move p)a(HSUC(Row From Nove p,Row To Move p) ABVALUES Valueon(Tboard
r,To Hove p)))))

It therefore tautologically follows that a white pawn can move in only one of three (ordinary)
maotions.

sxssitauteq T142 L1tT;

15 (Column From Move ps=Coiumn To Move pA(HSUC(Row From Move p,Row To Move p)aValueon(Tboard r,To Move p)=NT))
v((Column From Move psColumn To Move pA(Row From fove ps7a(Vaiuson(Tboard r,To Move p)sNTa(Valuson(Tbhoard r,
Nakesquare (6,Column From Move p))sMTaRow To Move peS))))v(THOTOUCHING (Column From Hove p,Column To Move p)a(
NSUC (Row From Move p,Row To Move p)ABVALUES Valueon(Tboard r,To Move pi)i) (1)

Substitution the square we know it moved from, and simplifying, we get:

sussstaut From Move p=BQB2 L1;
16 From Move peBQB2 (1)

axpasubstr T in T1;
17 (Column BQB2sColumn To Move pa(HSUC(Row BAB2,Rou To Move p)aValueon(Tboard r,To Hove p)shiT))v((Column BAB2
=Column To Move pa(Row BAB2=7A(Valuson(Tooard r,To Move p)sNTA(Vaiueon(Tboard r,Nakesquare (6,Column BQB2))=NT
ARow To Move ps5))))v(THOTOUCHING(Column BAB2,Column To Move p)A(HSUC(Row 8AB2,Row To Move p) ABVALUES Valueon
(Thoard r,To Hove p)))) (1)

sxxskiabel L3;
wxgsxsimplify T
18 (3sColumn To Move pA(HSUC(2,Rou To Move plaVaiueon(Tooard r,To Move p)shHT))v(THOTOUCHING (3,Column To HMove

p)A(NSUC (2,Rom To Move p)ABVALUES Valueon(Tboard r,To Hove p))) (1)

Now, we check all of the squares, and discover only three possible destinations for our promoting
white pawn.

sxexnsimplify Vsq. (((3aColumn SqANSUC(2,Ron 8q))38q=B0B1)A((THOTOUCHING (3,Columi 8q) ANSUC (2,Rom 8q))> (sq=BaN1

svsq=B80Q1)));
19 Vsq. (((3=Column sqANSUC (2,Rom 8q))a8qeBABL)A((THOTOUCHING (3,Column 8q) ANSUC (2,Rom 8q))>(sqeBONIvaq=B01)))

susesVE T To Move p;
20 ((3sColumn To Move PANSUC(2,Rou To Move p))aTo Nove psBAB1)A((THOTOUCHING(3,Column To Move p)ANSUC(2,Rom

To Nove p))>(To Move p=BANivTo Move p=B01))

&
2

B 75 5 S R R A g

Page 198. Proof Lemmas B.S.

A little rearrangement of the result, molding it into a more convenient form for the main proof.
Effectively, we clutter this lemma with substitutions, rather than the main proof.

sosesVE VALUETRANSPOSITION p,Mover Move p,To Move p,b;
21 (Pos(p,To Move p)efover Nove pABORRD (p,b))>(Valueon(b,To Move pleVal(p,Nover Nove p)vValueon(b,To Move ple
uo)

ssesstauteq HVRLUES Valueon (b To Move p)vValueon(d To Move plelD T,L11L1e3,L2)
22 WVALUES Valuesonib,To Nove p)vVaiusonib,To Nove plslD (1)

sssvvassume To Move pesgx)
23 To Hove pesgx (23)

ssesesubstr T in T4
24 WVALUES Valueon(b,sqx)vValueon(b,sqx)sUD (1 23)

sxesed] Tt O 1y
25 To Nove pesqxd(NVRLUES Vaiueor (b,sqx)vValueon(b,sqx)sU0) (1)

sveseV]l T sqx;
26 Vsqx. (To Nove pssqx>(HVALUES Valueon(b,sqx)vValuson(b,sqx)slD)) (1)

sseveVE T BONI;
27 To Nove p=BANI>(NVALUES Valueon(b,BAN1)vVaiueon(b,BAN1)eUD) (1)

swenaVE 1T BQABY,
28 To Move peBQBL>(NVALUES Valueon(b,BQB1)vVaiueon(b,BQB1)eUD) (1)

seeseVE T11 BQL;
29 To Nove p=BQi>(HVALUES Valueon(b,B8Ql1)vValueon(b,B8Ql)eUD) (1)

ssnsstauteq (To Move psBANIA((NVALUES Valueon (b,BAN1)vValueon(b,BAN1)sUD)ABVALUES Valueon(Tboard r,To Hove p)
#))v((To Move psBQLIA((NVALUES Valueon (b,BQL)vValueon(b,BQ1)sUD)ABVALUES Valueon(Tboard r,To Move p)))v(To
#Move p=BABIA(NVALUES Valueon(b,BQB1)vVaiueon(b,BQB1)=UD))) TTTiT 18,204

30 (To Move psBANIA((NVALUES Valueon (b,BAN1)vValueon(b,BAN1)sUD)ABVALUES Valueon(Tboard r,To Move p)))v((To
Move ps=BQAlA((HVALUES Valueon(b,BQl)vVaiueon(b,B801)=UD)ABVALUES Valueon(Tooard r,To Hove p)))v(To Move p=BABIA
(WVALUES Valueon(b,BQB1)vValueon(b,B0B1)sUD))) (1)

Removing dependencies, and generalizing, we get our lemma.

sauend] LloT

31 (SUCCESSOR(r,p) A<CASTLING (r,p) A(=EN_PRSSANT (r,p) A (PAUNPRON Move pA(~HHITETURN pa(From Hove p=BQB2ABOARD (p
,0)))))))3((To Move paBANIA((NVALUES Valueon (b,BAN1)vVaiueon(b,BAN1)«UD)ABVALUES Valueon(Tboard r,To Nove p))
)vi(To Move p=BQlA((HVALUES Valueon(b,BQl)vValueon(b,801)sUD)ABVALUES Valiueon(Tboard r,To Move p)))v(To fove
peBAB 1A (NVALUES Valueon(b,BQB1)vVaiueon(b,B0B1)sUD))))

ssesnlabel PXPaunToj

sxeseV]l T r p by

32 Vr p b. ((SUCCESSOR (r,p) A(~CRASTLING (r,p) A(~EN_PRSSANT (r,p) A (PRNNPRON Move pA(~NHITETURN pa(From Move p=BQB2
ABORRD (p,b)))))))3((To Move psBANIA((NVALUES Vaiueon(b,BQN1)vValueon(b,BQN1)sUD) ABVALUES Valueon(Tboard r,To
Move p)))v((To Nove peBALA((NVALUES Valueon(b,B801)vVaiueon(b,BQ1)sUD) ABVALUES Valueon(Tboard r,To Hove p)))v(
To Move p=BABIA(NVALUES Valueon(b,BQB1)vValueon(b,8Q81)eU0)))))

Section B.4 A Rook or Queen on BQ] is Cornered

The purpose of this lemma is to set up one of the more complicated conditions of the corner theorem
for the main proof. Effectively, somewhat similar in direction to the proof of section B.2, though a
bit more complicated.

B4 Proof Lemmas Page 199.

We seek to prove that, for any position g, which has a a board QBUD, that a black rook or queen
valued piece on BQl can move only to squares that still check the white king on BKR1. We will use
this conclusion in the main proof to show that if the piece the pawn captured was a black rook or
queen, then that checking rook or queen must have arrived at that state by a discovered check.

We begin, of course, by assuming the existence of a position g, which has GBUD as a board.

sssvelabel L1;
ssese assume BOARD(q,QBUD);
1 BOARD(q,QBUD) (1) :

We consider first the case of diagonal moves. As QBUD is a board of this position, and, as we can
observe, QBUD is well defined and not empty on the two diagonal blocking squares (BGB2 and BK2),
we know that the total board (Tboard) of q must also have those squares occupied.

essesVE SubBoardséX q,QB8UD,BQB2;
2 BORRD (q,QBUD) > (Valueon (QBUD,BQB2) «Va iueon (Tooard q,8082) vValueen (QBUD,BQB2)=U0)

sssesVE SubBoardséX q,QBUD,BK2;
3 BORRD (q,QBUD) > (Valueon (QBUD, BK2) sVaiueon (Thoard q,BK2)vValueon(QBUD,BK2)=UD)

sevsesimpl ity ~(Valueon (QBUD,BK2)sMT)A (= (Valueon(QBUD,BK2)eUD) A (~(Vaiueon (QBUD,BQAB2) eUD) A~ (Valueon (QBUD,BQB2)

eefiT)))y
4 ~(Valueon (QBUD,BK2)eNT) A (~(Valueon(QBUD,BK2)eUD) A (~(Vaiueon (QBUD,BQB2) «UD) A= (Va lueen (QBUD,BQB2) =AT)))

ssessiabel LI,
«oaee tauteq ~(Valueon(Tboard q,B0QB2)sNT)A~(Valuson(Thoard q,BK2)eAT) L1ity
S ~(Valueon(Tboard q,BQB2)eNT)A~(Valuson(Tboard q,BK2)sAT) (1)

Of course, TAUTEQ will not be pleased unless we do its function substitutions for it.

sesesassume 8qleBQB2;
6 sqleB0B2 (&)

sesvsassume 8qlsBK2;
7 sqleBK2 ()

sssessubst Tt in TTT
8 ~(Valueon(Tooard q,sql)efiT)a=(Valueon(Tboard q,8K2)efiT) (1 &)

ssevesubgt TT in TT1T;
9 ~(Valueon(Tboard q,B80B2)sNT)A~(Valuson(Tboard q,sql)sliT) (1 7)

seened] TTTTOTT
10 sqleBQB2>(~(Valueon(Tboard q,sql)sfT)A~(Valueon(Tboard q,BK2)aiT)) (1)

sunesd] TETTOTH,
11 8qleBK2>(~(Valueon(Tboard q,8082)sNT)A~(Valuson(Tboard q,sql)sfT)) (1)

We employ a lemma, DiagBQ1Lemma, which states that for any position with chesspiece on BAB2
and BK2, there are no diagonal moves from BQl. DiagBQ1Llemma is proven in the next subsection.

sueesVE DiagBQiLemma Thoard q,sql
12 ~(DIRG(Tboard q,B8Q1,8q1)A(~(8qleB0B2)A(~(8qleBK2)A(~(Valueon(Thoard q,BQ82)eNT)A~(Valuson(Thoard q,BK2)eNT

NN

Page 200. Proof Lemmas B4

We can therefore tautologically conclude that, on the total board of g, the only squares diagonally
reachable from BQl are occupied.

sensiabel L4
sseee tauteq ~DIRG(Thoard q,801,8ql)v~(Vaiueon(Tboard q,sql)efiT) LI, ttHi Ty
13 -DIRG(Tvoard q,8Q1,8ql)v~(Valueon(Thoard q,sql)sNT) (1)

We proceed to the orthogonal cases. The board QBUD is undefined on exactly two squares, BQl and
WKR4 (the fallen piece square). Essentially, we seek those conditions which must be true of a sub-
board, before we can deduce that movement relations on it are equivalent to those on a more defined
board. We have a theorem, OrthoThmX8? that related orthogonality between sub-boards and total
boards. It states that undefined squares that neither share a row nor a column with the given
square (or are equal to it) do not effect the ORTHO relation. We seek to establish that the undefined
squares of QBUD (BQ! and WKR4) are not relevant to the current orthogonality question. As usual, we
require copious substitutions.

soeus implify ~(Row NKR4=Row BQL)A~(Column WKRéeColumn BGL))
14 ~(Row WKRésRow BQl)A~(Column WKRé=Column BOL)

ssesvassume sqlskKRé;
15 sqlelKR4 (1S)

ssesnsubat T in T
16 ~(Row sqleRou BQL)A~(Column sqleColiumn BQL) (1S)

sesved] t1ot;
17 8qlelKR4d («(Rou sqlelou BQL)A=(Column sqleColumn §Q1))

ssevesimplify Veq. (Valueon(QBUD,8q)=UD> (sqeBQivaqelkRé))
18 Vsq. (Valueon (QBUD,sq) =UD> (sqeBQlveqelkRé))

seenaVE T 8q3;
19 Valueon (QBUD,8q3)eUD>(8q3«B01veqIakkRé)

sseeetauteq Valueon(QBUD,sqd)sUD3(8q3eBOlv(~(Rom 8qleRow BAl)A~(Column sqdsColiumn BAL))) T, 11
20 Valueon (QBUD,sq3)eUD> (8q3«BAlv (~(Row 8q3sRomn BQl)A~(Column sq3=Coiumn 8Q1)))

seevelabel (S
vense VI T ogqd;
21 Vsq3. (Valueon (QBUD,sq3)eU0> (8q3eB0lv (~(Row 8q3sRow BA1)A~(Column sq3aColiumn 8Q1))))

We invoke our chess eye, the simplification mechanism, to show that BQl is orthogonally cornered,
and adequately defined.

seavesimpl ity Veq. (ORTHO (QBUD,BAL, 8q) 5> LORTHO (QBUD, BKR1, 8q) v(=(Valueon (GBUD, 8q) #UD) A~ (Va lueon (QBUD, 8q) «NT))))
22 Vsq. (ORTHO (QBUD,BQ1,8q) > (ORTHO(QBUD,BKR1,8q) v (=~(Vaiveon (QBUD,8q) «UD) A= (Valueon (QBUD, 8q)eNT))))

seeselabel L6,
seeee VE T sql;
23 ORTHO(QBUD, P01, 8ql) > (ORTHO (QBUD,BKR],8q1) v (~(Valueon (QBUD,sql) «UD) A= (Vaiueon (QBUD,sql)aNT)))

And, of course, invocations of various theorems to show the equivalence of our different
representations.

sseeeVE OrthoThmX q,QBUD,BQ1,sql

87. Section AD2.1.

!
|
!
i
:

3
o

sk S Sy

B4. Proof Lemmas Page 201.

24 BOARD (q,QBUD) >(Vaq3. (Valueon (QBUD,sq3)eU0> (8q3eBLv (~(Row sydsRow BGl)A~(Column aqdeCelumn B01))))>(ORTHO (
Tooard q,BQ1,sql)s0RTHO(CBUD,B01,8ql)))

seeseVE TransitiveSubboardOrthogonality QBUD,Tboard q,BKR1,sql}
25 SUBORRD (QBUD, Tboard q)>(ORTHO(QBUD,BKR1,8ql)>0RTHO (Thoard q,BKR1,sql))

sseesVE SUB.BOARDS3 q,QBUD;
26 BORRD (q,QBUD) aSUBOARD (QBUD, Thoard q)

seeseiabel L7;
wesss VE SubBoardséX q QBUD sql;
27 BORROD (q,QBUD) > (Vaiueon (QBUD,sql)«Valuveon (Thoard q,sql)vVaiueon(QBUD,sql)=UD)

We have enough here to show the desired relationships for orthogonality and diagonality. However,
the theorem stipulates the relation be on MOVETO, not some lesser predicate. So we must show the
adequacy of our deduction for each of the rook and the queen. Ladies first.

MOVETO is defined by the axiom MOVING1. Simplification narrows the choices.

sssesVE NOVING] Tboard q,08,8Q1,sql;

28 NOVETO(Thoard q,08,B01,sql)e((VALUER QBAORTHO (Tboard q,8Q1,8q1))v((VRLUEB QBADIRAG (Tboard q,8Q1,8q1))v((
VALUEQ QBAORTHO (Tooard q,B0J,sql))v((VALUEQD OBADIAG(Tboard q,BQ1,8q1))v((VALUEK QBAKINGMNOVE (8Q1,sql))v((
VALUEN QBAKNIGHTMOVE (BQl,sql))v(VRLUEP QBAPRNNNOVE (Thboard q,08,801,8q1))))))))

suessVE MOVINGL Toboard q,08,8KR1,sqly

29 MOVETO(Thoard q,Q8,BKR1,sql)s ((VALUER QBAORTHO(Thoard q,BKR1,sql))v((VALUEB QBADIAG(Tboard q,BKR1,sql))v((
VALUEQ QBAORTHO (Tooard q,BKRI,sqi})v((VALUEQ QBADIRG (Tboard q,BKR1,sql))v((VALUEK QBAKINGNOVE (BKR1,sql))v((
VALUEN QBAKNIGHTMOVE (BKR1,sql))v(VALUEP QBAPRUNNOVE (Tboard q,08,BKRi,sql))))))))

seesssimplify 11,
30 NOVETO(Tboard q,08,801,8q1)a (ORTHO (Tooard q,801,8ql1)vOIRG(Tooard q,8Q1,8q1))

seenssimplity 11
31 MOVETO(Tboard q,QB,BKR1,sql)as (ORTHO(Tboard q,BKRI,sql) vDIRG(Tboard q,BKR1,sql))

We can then tautologically conclude the desired WFF for the black queen (valued) piece.

ssseelabel QUEENMOVE;

sssss tauteq NOVETO (Thoard q,08,801,891)> (=~(Vaiueon(Tboard q,sq1)«NT)VAOVETO(Tboard q,Q8,8KRI,8qi)) LI,L4,LS
o, L6iL7, 011,

32 novt?omo.ru q,08,B801,8q1)3(~(Valuson(Thoard q,8ql)eNT)VIOVETO(Tboard q,08,8KR1,sql)) (1)

Similarly for the rook.

sseasVE MOVINGL Tboard q,RB8,8Q1,sql;

33 MOVETO(Thoard g,RB,B0J,sq1)s ((VALUER RBAORTHO (Tboard q,B0Q1,8q1))v((VARLUEB RBADIRG (Tboard q,B0Q1,8q1))v((
VALUEQ RBAORTHO (Tboard q,BQ1,sql))v((VALUEQ RBADIRG(Tboard q,BQ1,8ql))v((VALUEK RBAKINGNOVE (8Ql,sql))v((
VALUEN RBAKNIGHTMOVE (BQ1,sql))v(VALUEP RBAPRUNMOVE (Tboard q,RB,8Q1,8q1))))))))

ssessVE MOVING! Tboard q,RB,BKR1,sql;

34 MOVETO(Thoard q,RB,BKR1,eql)s ((VALUER RBAORTHO(Tboard q,BKRI,sql))v((VALUEB RBADIAG (Thoard q,BKR1,sql))v((
VALUEQ RBAORTHO(Tboard q,BKR1,sql))v((VALUEQ RBADIAG (Tboard q,BKR1,891))v((VALUEK RBAKINGHOVE (BKR1,sql))v((
VALUEN RBAKNIGHTMOVE (BKR1,sql))v(VALUEP RBAPRWNNMOVE (Tboard q,RB,BKRI1,sql))))))))

ssensimplify 1)
35 MOVETO(Thoard q,RB,801,8q1)sORTNO(Thoard q,B8Q1,8q1)

sesvasimplify 1
36 NOVETO(Tboard q,RB,BKR1,sql)sORTHO (Tboard q,BKR1,sql)

Page 202. Proof Lemmas B.4.

sseeslabe | ROOKMOVE;

u;uuuuq NOVETO(Tboard q,RB,BA1,8ql1)> (~(Valueon(Tboard q,8ql1)eNT)VNOVETO(Tooard q,RB,BKR1,sql)) L1,LS,L6:
L7,T0: %

37 NOVETO(Tooard q,RB,8Q1,8q1)3(=(Vaiueon (Tboard q,8ql)sNT)VvIIOVETO(Tocard q,RB,BKR1,sql)) (1)

It will be more convenient for use to have the theorem in terms of some rook or queen valued v. So
a little more fiddling.

susssassume veRBvveQB;
38 veRBvveQB (38)

ssesstauteq QUEENMOVE: [QB+~v] QUEENMOVE,ROOKMOVE,t;
39 NOVETO(Tboard q,v,801,8ql)3(~(Valueon(Tboard q,sql)sNT)vNOVETO(Tboard q,v,BKR1,aql)) (1 38)

ssessV]l 1 sql;
48 Vsql. (NOVETO(Tboard q,v,B8Q1,8ql)>(~(Valueon(Tooard q,8ql)sNT)vHOVETO(Tboard q,v,BKR1,sql))) (1 38)

Removing dependencies, and generalizing, we obtain our theorem.

sessud] 11T 5> T
41 (veRBvvs(QB)>Vsql. (NOVETO(Tboard q,v,B0l,8ql)3(~(Vaiueon(Tboard q,sql)=NT)vIOVETO(Tboard q,v,BKR1,sql))) (
1)

ssesl Ll > T
42 BORRD (q,QBUD) > ((veRBvveQB)oVsql. (NOVETO(Tboard q,v,BQ1,8q1)3(~(Valueon(Tooard q,s8ql)sNT) vIIOVETO (Thoard q,v

,BKR1,8ql1))))

sussslabel Trapped_0X.081_Thm;

sssss V]l T q v;
43 Yq v. (BORRD (q,QBUD) > ((veRBvv=QB)3Vsql. (MOVETO (Tooard q,v,BQl1,8q1)2(~(Valueon(Tboard q,sql)=NT)VvHOVETO (

Tooard q,v,BKR1,s8ql)))))

Section B.4.1 Blocked Diagonal Movement

We promised a proof of the blocked diagonal movement lemma used in the previous section. We
seek to prove that pieces on BK2 and BAB2 are sufficient to block bishop like movement (DIAG) from
Bal.

We observe that any square sharing a diagonal with BQl must either have BK2 or BUB2 on that
diagonal, or be one of those squares.

seaxslabel L1;
sussasimplify Vsq3. (SANEDIAG (BA1,8q3)> ((BETWEEN(1,2,Row $43)A(SAMEDIRG (sq3,BK2) vSANEDIARG (3q3,8082))) v (sq3e

*BAB2vsq3=BK2)));
1 Vsq3. (SRMEDIAG (BAL,8q3)>((BETWEEN(J,2,Ron 843)A(SANEDIRG (8q3,BK2) vSRMEDIRG (8q3,8082))) v (sq3«B0B2veq3sBK2)))

Diagonal movement is defined in terms of the SAMEDIAG predicate.

sx242VE NOVING3 b,B80Q1,sq;
2 DIAG(b,BAl,sq) s (SRMEDIAG (BA1,8q) AVsq3. ((SRMEDIAG (BA1,843) A (SRMEDIRG (8q,893) ABETHEEN (Row BA1,Ron 8q3,Ron sq)

))oValueon(b,sq3)sfiT))

We assume these squares are occupied, and that it is possible to diagonally move to some other
square. We will show this supposition to be false.

sxssvassume DIAG(b,BQ1,8q)A(~(sqsBAB2) A (~(5qsBK2)A(~(Vaiueon(b,BAB2)sNT)A~(Valuson(b,BK2)elT))))}
3 0IRG(b,B01,8q)A(~(8qeBAB2) A (~(8qeBK2)A(~(Valueon (b,BAB2)aNT)A~(Valuson (b,BK2)=NT)))) (3)

i LA R B

SRy e —

AR ST 28 T

B4l Proof Lemmas Page 203.

We abstract part of the definition of diagonal movement.

esvestaut Vaqd. ((SRMEDIRG (BAL,sq3d) A(SANEDIAG (sq,8q3)a BETUEEN (Row BQ1,Rou 8q3,Rou 8q)))oValueen(b,8q3)elT) 2u

o3,
4 Vsqd. ((SAMEDIRG (BQ1,8qd) A (SRNEDIRG (sq,843) ABETHEEN (Row BQ1,Row 843, Rou 8q)))3Vaiuveen(h,sqd)eAT) (3)

This condition on diagonal movement is true for both BK2 and BAB2.

eeeeeVE T BK2)
S (SRAMEDIAG (BQ1,BK2)A(SANEDIAGC (sq,BK2) ABETHEEN (Row BQ1,Rou BK2,Ron 8q)))3Vaiueon(,BK2)eAT (3)

ssensVE Tt BQB2;
6 (SRMEDIRG (BQ1,BQB2)A(SAMEDIRG (sq,B8082) ABETHEEN (Row BQ1,Rou BQB2,Row sq)))doVaiveon(s,BQ82)eAT (3)

We apply our original observation to the parameter square sq.

eeveeVE L1 sq;
7 SAMEDIRG (BAL,sq)>((BETHEEN(1,2,Row 8q)A(SRNEDIAG (sq,BK2) vSRNEDIRG (8q,B082))) v (sqeBQB2veqeBK2))

We compute the rows and columns of the relevant squares.

esseenimplify Row BQlela(Row BAB2e2A(Row BK2e2A(SANEDIRG (BQL,BK2) ASANEDIAG (BQ1,B8Q82)))),

8 Rou B0lela(Row BQB2e2A(Row BK2e2A (SANEDIAG (BQL,BK2) ASANEDIRG (BQL,BQ82))))

Which 1s enough to produce a contradiction. We negate our assumption, and generalize to our
theorem.

esseetauteq FALSE L1ty
9 FALSE (3

evese~] t DIRG(b,BOL,8q)A(~(5quBQB2)A(~(8quBK2)A(~(Valueon(b,BQB2)eNT)A~(Valuson(b,BK2)eliT)))),
10 ~(DIRG(b,BAL,8q) A(=~(8qeBQB2) A (~(8qeBK2)A(=(Vaiueen (b,B0B2)eNT)A=(Vaiveon(b,BK2)eAT)))))

evessiabel DiagBQiLemma)

sseseVl T b sq;
11 Vb 8q.~(DIRG (b,B8Q1,8q)A(~(sqeBAB2) A(~(8qeBK)A(~(Valuveon(b,BQB2)eNT)A=(Valueon (b,BK2)eAT)))))

Section B.4.2 Consequences of a Distant Pawn Promotion

Our final specific lemma. We apply the fact that every promotion square to the left of WKN1 requires
the capture of two white pieces, and to express this fact in the form most convenient for the main

proof.

To begin with, we need to convince the proof checker that each of the eighth row squares that aren't
WKN1 or WKR1 require two captures from BKR2. The simplest way to convince the program, is to let it
see for itself.

seeees implify Vsq. (Row 8qe8>(Pauncaptures (sq,BKR2)22veqsKRIveqelKNI))}
1 Vsq. (Row sqe8>(Pawncaptures (sq,BKR2) 22v (squbKR1veqelkN1)))

We assume we have the appropriate pawn promotion move. Hence, by the axioms of chess, this
move must have been to the eighth row, and the piece must have had pawn value at the start of the
move.

seseslabel L1;

Page 204. Proof Lemmas B.4.2.

sssssassume PRUNPROM Move gaMover Move qeBKRPA=To Move qsWKRIA=To Move qsWKNl;
2 PAKNPRON NMove qa(Mover Move qeBKRPA(~(To Move qehKR1)A=(To Move qeWKN1))) (2)

ss333VE 11 To Move q;
3 Row To Nove qe8>(Pawncaptures(To NMove q,BKR2)22v(To Move qsKKRlvTo Move qskKN1))

sssesVE BlackPromtesOn8B q,BKRP;
& (PRAKNPROM Move qaMover Move qsBKRP)oRow To Move qe8

s+sseVE NCONSEQL q;

S PRHNPROM Move qu (LASTRANKER(To Move aq,Color Prevpos q)A(SIMPLELEGALMOVE (Prevpos q,q)A(PRNNS Mover Move qa(
VALUEP Valueon(Tboard Prevpos q,From Move q)Aa(((BVALUES Promoted Move qeBVALUES Val (Prevpos q,Mover Hove q))A
(NVALUES Promoted Move qeWVALUES Val (Prevpos q,Mover Move q)))aVal(q,Mover Move q)sPromoted Move q)))))

s36ssYE ValueTranspositionR Prevpos q,BKRP,From Nove q;
6 Pos(Prevpos q,From Move q)sBKRP>Vaiueon(Tooard Prevpos q,From Move q)sVal (Prevpos q,BKRP)

sve3eVE MCONSEQA Prevpos q,q;

7 SUCCESSOR (Prevpos q,q)3((~HHITETURN Prevpos qsWHITETURN q)A(Prevpos qsPrevpos qA(~POSITIONINCHECK (q,Color
Prevpos q)A((NHITEPIECE Mover Move qzWHITETURN Prevpos q)A(Pos(Prevpos q,From Move q)sMover Move qa(Pos(q,To
Move q)=Mover Move qa(Pos(q,From Move q)=EMPTYA((CRPTURE Move qoPos (Prevpos q,To Move q)=Taken Move q)a(
CRSTLING (Prevpos q,q)v(EN_PASSANT (Prevpos q,q) vSIMPLELEGALNOVE (Prevpos q,q)))))))))))

it vt o it

ssx4esVE POSITION-RULES q;
8 SUCCESSOR (Prevpos q,q)APREDEGAME (P8, q)

(R

The BKRP started the game on BKR2. If he has made at least two captures, then, of course, in two
positions of this game, BKRP captured white pieces.]

ssesusimplify Pos (P8,BKR2);
9 Pos (P8,BKR2) «BKRP

suse3VE PawunStructure3 PO,q,BKRP,To fMove q,B8KR2;

10 (VALUEP Val (Prevpos q,BKRP)A(Pos(q,To Move q)=BKRPA(PREDEGAME (P8,q)A(Pos (P8, BKR2) =BKRPAPauncaptures (To

Move q,BKR2)22))))53ql1 q2 x1 x2.((PREDEGANE (q1,q) vqleq) A (PREDEGRME (q2,q1) A (PREDEGANE (PB,q2) A(TRKINGS Move qla “
(TAKINGS Move q2A(Mover Move qlsBKRPA(Mover Move q2=BKRPA(Taken Move qlexiATaken Move q2=x2))))))))

sussstauteq T: 42 L1t Ty

11 3q1 q2 x1 x2.((PREOEGAME (ql,q)vqleq) A (PREDEGAME (q2,q1) A (PREDEGAME (P8, q2) A(TAKINGS Move qla(TRKINGS Move q2
A(Mover Move qlsBKRPA(Mover Move q2sBKRPA(Taken Move qlsxiaTaken Move q2sx2)))))))) (2)

sxes3E T ql,q2,x1,x2;

12 (PREDEGAME (ql,q)vqleq) A (PREDEGAME (2, q1) A (PREDEGAME (P8,q2) A(TRKINGS Move qlA(TAKINGS Move q2A(Mover Move
q1=BKRPA (Mover Move q2=BKRPA(Taken Move qlexlATaken Move q2sx2))))))) (12)

These pieces were not the same piece.

susssVE DifferentTaken q2,9l1,q,x2,xl;
13 (((qleqvPREDEGAME (q1,q)) A(q2sqvPREDEGAME (q2,4)))A((~(To Move q2=To Hove ql)v(~(Mover Move q2sMover Move ql
) v (PREDEGAME (q2,q1) v~(q2eql))))A(Taken Move q2sx2aTaken Move qlexl)))d=(x2exl)

And both these captures occurred during the game that reach the presumed position.

sua34VE TransitiveGenealogy q2,ql,q;
14 (PREOEGAME (q2,q1) APREDEGANE (q1,q)) SPREDEGANE (q2,q)

Hence, all the good things we desire of them are true.

sununtauteq T1TiA-xlax2 11111
15 ((PREOEGAME (q1,q) vqleq) A (PREDEGANE (q2,q1) A (PREDEGAME (P3,q2) A(TRKINGS Move qlA(TAKINGS Move q2A(Mover Move

g a fad it | —r d it b i g e

B.4.2 Proof Lemmas Page 205.

qleBKRPA (Mover Move q2¢BKRPA(Taken Move qlexliaTaken Move 42ex2))))))))a=(xiex2) (12)
Removing dependencies and quantify, we get our lemma.

sse003l T x2 x| q2 ql

16 3ql 62 x} x2. ((mtoccm:«.1,.)«1..“\(":0(“cqz.qmmntmm.qzmmms fove qlA(TAKINGS Move
q2a(fover Move qleBKRPA(Mover Move q2eBKRPA(Teken Neve qlexiaTsken Meve q2ex2)) 1))))) a~(xlax2)) (2)

ssseed] Llot;

17 (PRUNPRON Hove qa(Mover Move quBKRPA(=(Te Move qelKR1)A~(Te Move qelXN1))))33x2 x1 42 qi. (((PREDEGAME (ql,q
Yvqleq) A (PREDEGANE (a2,q1) A (PREDEGANE (P9, q2) A (TRKINGS Move qia(TRKINGS Move q24(Mover Meve gleBKRPA(Mover Move
q2=BKRPA (Taken Move qlexlaTaken Move q2ex2))))))))a«(xlex2))

ssssslabel FarTaken;
sssesV] T q;
18 Vg. ((PANNPRON Move qa(Mover Move qsBKRPA(~(To Move qulKR1)A~(Te Move qebKN1))))>3x2 x1 q2 qi.(((PREDEGAME (

ql,q)valsq)A(PREDEGANE (q2,ql) A (PREDEGANE (P, 42) A(TRKINGS Move qia(TAKINGS Meve q2A(Mever Move qlsBKRPA(Mover
Nove q2eBKRPA(Taken Nove qlexlaTaken Meve §2¢x2))))))))a=(xniex2)))

£

B ———

—

Page 206. FOL Command Frequency

Appendix C

Command frequency for FOL rules of inference used in this proof, grouped by command. type and

use location.

Inf. rule Main proot M.P.&8App B

Quan;Eifior manipulation:

191 242
vl 4 15
3l 4 S
3 15 16
Chess eye: '
S IFY 90 118
Decision procedures:
TAUTEQ 66 79
TAUT 11 15
UNIFY 2 2
Substitution commands:
SUBSTR 6 8
SUBST 2 6
Oependency introduction and removal:
AS 6 18
ol 3 14
=1 1 2
vE 1 3
Miscel laneous:
Al 3 3
AE 0 8
al 8 8
Totals 48sS 541
LABEL 77 183

FOL Command Frequency

Chap 38App A

724
168
28
21

108

168
118
7

6l
24

139

1782
382

Total
1281
966

173
25
37

225
225

381
247
125

S

93
69
38

322
157
1583
11
1

25
16

8

1
2253

485

Per cent

53%
43%
8%
1%
2%

18%
18%

17%
11%
6%
8%

4%
3%
1%

14%
7%
7%
8%
ex

1%
1%
8x
ex

D A Constructive Solution to the Puzzle Page 207.

Appendix D A Constructive Solution to the Puzzle

To assauge the fears of those still not convinced that the fallen piece must have been a bishop, we
present a constructive proof. More particularly, a game that reaches the given position.

I P-K+ P-KR4 18. PeQ N-Q4
2 B-QR6 PB i9. P-KN$ N.QN3
3 N-KBS3 P-KRS 20. R-N2 PR

% N-KN5 B-QN2 21. RKI P-N8-N
5 N-K6 P/KB2eN 22 R-K4 N-K B6
& K-K2 B-Q4 23 R-QN4 K-NI

2, P«B P-QB4 24. Q-KBS K-R1

8. K-KB3 N.QB3 28, QQ5 N.QBI
9 K-KN4 Q-QB? 2. R-N7 N.Q7
10. K-KNS 0.0.0 27. ReR PeQ

. K-KN6 P-Q3 28. N-QB4 PN

12, P.Q3 R-Q2 29. KsR N.N8
13 B-KN5S R-KR2 30. P-QN3 K-NI
14. Q-KB3 N-QI 31, P-B7ch K-N2
15 QB Q-QB3 82 K-R8 K-N3
6. N-QR3 P-KR6 3. B-KR4 K-N2

17. R/KRI-KNI N-KB3 3¢ P«N=R

Page 208 Listing of the Chess Theorems E

Appendix E Listing of the Chess Theorems

For the convenience of the reader, a list of the general chess lemmas and theorems used in this
paper

define All1Start_: V t. 3 sq. Pos (PO sqg) =t;;
define All1StartX: V x. 3 sq. Pospcf (PO, x) =sq;;

define AlternateBlack: V r b. ((BOARD (r, b) A BLACKINCHECK b) > (POSITIONINCHECK
(r, BLACK) A -~WHITETURN r));;

define AlternateWhite: Y r b. ((BOARD (r, b) A WHITEINCHECK b) > (POSITIONINCHECK
(r, WHITE) A WHITETURN r));;

define BishopMovementValues: V r p ybi sq sql. ((SUCCESSOR (r, p) A (ybi=Mover
Move p A (sq=To Move p A sqlzFrom Move p))) > (MOVETO (Tboard r, Valueon (Tboard
r, From Move p) , From Move p, To Move p) = DIAG (Tboard r, sql, sq)));;

define BishopMoves: Y r p ybi sq sql. ((SUCCESSOR (r, p) an (ybi=Mover Move p A
(sq=To Move p A sql=From Move p))) > (MOVETO (Tboard r, Valueon (Tboard r, From
Move p) , From Move p, To Move p) > (WHITESQUARES (sql) = WHITESQUARES (sq))));;

define BishopStaysOnSameColor: ¥ r p ybi sql sq. ((SUCCESSOR (r, p) A (Pos (p,
sq) =ybi A Pos (r, sql) =ybi)) > (WHITESQUARES (sq) = WHITESQUARES (sql)));;

define BishopsIsOnSameColor: YV r sql sq2 ybi. ((Pos (PO, sql) =ybi A Pos (r, sq2)
=ybi) > (WHITESQUARES (sql) = WHITESQUARES (sq2)));;

define BlackCapturedOnThm: ¥V r q ¥ x sq. (Prevpos q=r > (To Move g=sq > (Mover
Move q=y > ((Taken Move q=x A WHITEPIECE y) > (-WHITEPIECE x A (-Row (sq) =3 >

Pos (r sq) =x)))))):;

define BlackCapturedThm: VY p sq. (To Move p=sq > ((ORDINARY Move p A BVALUES
Valueon (Tboard Prevpos p, sq)) > CAPTURE Move p));;

define BlackCastieThm: V r p sq. ((SUCCESSOR (r, p) A (CASTLING (r, p) A
WHITETURN p)) o (Pos (p, sq) =BK > (sq=BKNl v sq=BQBl))) ;;

define BlackCheckingThm: V r. ~ (POSITIONINCHECK (r, BLACK) A —~BLACKINCHECK
Tboard r);;

define BlackCornered: Y r q b vb sq sgx. ((SUCCESSOR (r, q) A (-EN_PASSANT (r, Qq)
A (~CASTLING (r, q) A (~BLASTRANK (sq) A ((BOARD (q, b) A (Valueon (b, sq) =vb A
(Valueon (b, sqx) =KW A MOVETO (b, vb, sg, sqx)))) A =VALUEP vb))))) > (V sql.
(MOVETO (Tboard g, vb, sa, sql) o (-~ (Valueon (Tboard q, sql) =MT) v MOVETO
(Tboard g, vb, sgx, sql))) > ((ORDINARY Move q A SQUARE_BETWEEN (sq, From Move q,
sgx)) A -~ (Mover Move q=Pos (q, $9)))));;

define BlackDidPromote: VY p ybp sq. (To Move p=sq > (Mover Move p=ybp > (PAWNPROM
Move p o (Val (Prevpos p, ybp) =PB A Pos (p, sq) =ybp))));;

define BlackDoesNotStartInCheck_: —BLACKINCHECK START;;

E. Listing of the Chess Theorems Page 209.

define BlackEnPassantThm2: V r q b. ((SUCCESSOR (r, q) A (EN_PASSANT (r, q) A
WHITETURN q)) > (Y dcx. - (Valueon (b, Makesquare (6, dcx)) =PB v Valueon (b,
Makesquare (6, dcx)) =UD) > -~BOARD (q, b)));;

define BlackKingThm: ¥V r sq. (Val (r, Pos (r, sq)) =KB = Pos (r, sq) =8K);;

define BlackMPCLemma: Y p b sq sqx. (((Valueon (b, sq) =PB A BOARD (p, b)) A Pos
(PO, sqx) =Pos (p, sq)) > MAY_PAWN_CAPTURES (sqx, sq, BLACK));;

define BlackPawnCaptureThm: ¥ p ybp sql sq2 sq3 b. ((Pos (PO, sql) =ybp A (Pos
(p, sq2) =ybp A (MUST_PAWN_CAPTURES (sql, sq2, Piececolor ybp) A (BOARD (p, b) n
Valueon (b, sq2) =PB)))) o> ((sq3=sq2 v (SAMEDIAG (sq2, sq3) n (SAMEDIAG (sq3,
sql) A BETWEEN (Row (sq2) , Row (sq3) , Row (sql))))) > 3 a3 x3. ((PREDEGAME (q3,
p) v a3zp) A ((TAKINGS Move q3 A (Mover Move q3=ybp A (To Move q3=sq3 A Taken
Move q3=zx3))) A (PREDEGAME (Prevpos q3, p) A (To Move q3=sq3 > (Mover Move q3=ybp
> ((Taken Move q3=x3 A -WHITEPIECE ybp) > (WHITEPIECE x3 A (-~ (Row (sq3) =6) >
Pos (Prevpos g3, sq3) =x3)))))))))):;

define BlackPawnMoveThm: Y p ql ybp sq. ((Pos (ql, sq) =ybp A (-~ (Pos (PO, sq)
=ybp) A ((PREDEGAME (ql, p) v ql=p) A Val (Prevpos ql, ybp) =PB))) > 3 q.

((PREDEGAME (q, p) v g=p) A (Mover Move q=ybp A (To Move g=sqg A (VALUEP Val
(Prevpos g, ybp) A ((~ (Row sq=6) A -~ (Row sq=4)) > ((From Move g=Makesquare
(Wsucf Row sg, Column sq) A Pos (Prevpos q, sq) =EMPTY) v ((Taken Move q=Pos
(Prevpos q, sq) A WHITEPIECE Pos (Prevpos q, sq)) n (From Move g=Makesquare
(Wsucf Row sq, L2touchf Column sq) v From Move q=Makesquare (Wsucf Row sq,
R2touchf Column sq)))))))))):;

define BlackPawnPathThm: Y p x sql sq2. (Mover Move p=x > (To Move p=sq2 > (From
Move p=sql > (Val (Prevpos p, X) =PB > (-~ (Row (sqZ) =6) > (ORDINARY Move p A
((Column (sql) =Column (sq2) A (BSUC (Row (sql) , Row (sq2)) A Valueon (Tboard
Prevpos p, sq2) =MT)) v ((Column (sql) =Column (sq2) A (Row (sql) =2 A (Valueon
(Tboard Prevpos p, $q2) =MT A (Valueon (Tboard Prevpos p, Makesquare (3, Column
(sgl))) =MT A Row (s5q2) =4)))) v (TWOTOUCHING (Column (sql) , Column (sq2)) A
(BSUC (Row (sql) , Row (sq2)) A WVALUES Valueon (Tboard Prevpos p,
sa2)))NNNi;

define BlackPawnValuelemma: V¥V p b sq. ((BOARD (p, b) A Valueon (b, sq) =PB) >
BPAWNS Pos (p, sq));;

define BlackPawnValueSquares: YV p b t sq. -~ (PROMOTEDPAWN (p, t) A (BOARD (p, b)
A (Valueon (b, sq) =PB A Pos (p, sq) =t)));;

define BlackPawnsAre_: V t. ((t=BKP v t=BQP v t=BKNP v t=BKBP v t=BKRP v t=BQBP v
t=BQNP v t=BQRP) = BPAWNS (t));;

define BlackPawnsOn2Start_: V sq. (BPAWNS Pos (PO sq) = Row (sq) =2);;

define BlackPromtesOn8A: ¥ q ybp. (PROMOTEDPAWN (q, ybp) > 3 p. ((PAV&PROH Move p
A ((PREDEGAME (p, q) v p=q) A Mover Move p=ybp)) A Row To Move p=8));; .

define B;ackProntesOn&B: Y p ybp. ((PAWNPROM Move p n Mover Move p=ybp) > Row To
Move p=8);;

define BlackValuesAre_: V vb. (vb=kB v (vb=QB v (vb=RB v (vb=NB v (vb=BB v
vb=PB)))));;

i i Py
- N L' i NS | 0 S 8 7 ol 0 T IR

! o o' o0 st nscsidl

Page 210. Listing of the Chess Theorems E.

Mk

define BlackpieceArePawnsOr_: V t. (BLACKPItCE t = (BPAWNS t v t=BK v t=BQ v
t=BKN v t=BKB v t=BKR v t=BQB v t=BQN v tsBQR));:

define BlackpiecePawnsAre_: Y t. ((BLACKPIECE (t) A PAWNS (t)) = BPAWNS (t));;

define Blocked_BKB: V r b sq. ((BOARD (r, b) A (Valueon (b, BK2) =PB A (Valueon
(b, BKN2) =PB A Pos (r, sq) =BKB))) o sq=BKBl);;

define BlockedGivenThm: V q. (BOARD (q, GIVEN) > V sql. (MOVETO (Tboard q, RW,
8023)§Ql) > (~ {Valueon (Tboard q, sql) =MT) v MOVETO (Tboard q, RW, BQNZ2,
sql)))) s

define Boardiboard: Y r. BOARD (r, Tboard r);;
define BorW_Piece_: V x. -~ (BLACKPIECE x = WHITEPIECE x);;

define BorW_Value_: VY vpc. ~ (BVALUES vpc = WVALUES vpc);;

dofine CAPPP_SortThm: V m. ((PAWNPROM m A CAPTURE m) > CAPPP m);;

define ChesspiecePieceValueThm: V r x. PIECEVALUES Val (r, x);;

define ChsInd: (P PO A Y r p. ((» r A SUCCESSOR (r, p)) 2P p)) DV r.rPr;;

define ColorChoices: V r t. ((BVALUES Val (r, t) = BLACKPIECE t) A (WVALUES Val
(r, t) = WHITEPIECE t));;

define ColorTaken: ¥V p. (TAKINGS Move p > {{WHITETURN p > WHITEPIECE Taken Move
pP) A (~WHITETURN p > BLACKPIECE Taken Move p)));:

define ColorsAre_: Y c. (c=BLACK v c=WHITE);;

define Colours_: WHT (WHITE) A BLK (BLACK) A =WHT (BLACK) A -BLK (WHITE) A
-WHITE=BLACK;;

define DiagCommute: V b sql sq2. (DIAG (b, sql, sq2) = DIAG (o, sq2, sql))
define DiagonalThm: V a b sql sq2. (SUBOARD (a, b) > (V sq3. ((SAMEDIAG (:ql
)

sq3) A (SAMEDIAG (sq2, sq3) A BETWEEN (Row (sql) , Row (sqd) , Row (sq2))
(Valueon (a, sq3) =UD)) > (DIAG (a, sql, sq2) = DIAG (b, sql, sq2))))::

’
D =~

define DieOnce: VY q p x. (Taken Move p=x > (PREDEGAME (q, p) > ~ (Taken Move
qQ=x))):;

define DifferentTaken: V pl p2 @ x y. ((((p2=q v PREDEGAME (p2, q)) A (pl=q v
PREDEGAME (pl, q))) A ((~ (To Move plsTo Move p2) v (- (Mover Move pl=Mover Move
p2) v (PREDEGAME (pl, p2) v -~ (pl=p2)))) A (Taken Move pl=x A Taken Move p2=y)))

> =~ (x=y));;

define DifferentTakenFour: V q p pl p2 p3 pd y x1 x2 x3 x4. (((p=q v PREDEGAME
(p, @)) A ((pleq v PREDEGAME (pl, q)) A ((p2=q v PREDEGAME (p2, q)) A ((p3=q v
PREDEGAME (p3, q)) A ((pd4=q v PREDEGAME (p4, q)) A (~ (Mover Move pl=Mover Move
p) A (=~ (Mover Move p2=Mover Move p) A (-~ (Mover Move p3=Mover Move p) A (-
(Mover Move pdsMover Move p) A (Taken Move psy A (Taken Move pl=xl A (Taken Move

E. Listing of the Chess Theorems Page 211.

p2ex2 A (Taken Move p3sx3 A Takan Move pdsxd))N)INI))IN))) 2 (= (xlay) A (= (x2sy)
A (=~ (x3ay) A =~ (xduy)))));:

define EmptyFrom: V q x sq. (Pos (q, sq) =x > =~ (sqefrom Move q));;
define EmptyIsMT: V r t. (t=EMPTY & Val (r, t) =MT);;

define EquiOrthoThm: V a b sql sq2. ((SUBOARD (a, b) A (~ (sql=sq2) A ((Column
{sql) =Column (sq2) A V sq3. ((BETWEEN (Row (sql) , Row (sq3) , Row (sq2)) A
Column (sq3) =Column (sql)) > -~ (Valueon (a, sq3) =UD))) v (Row (sql) =Row (sq2)
A Y sq3. ((BETWEEN (Column (sql) , Column (sq3) , Column (sq2)) A Row (5Q3) =Row
(sai;; > -~ (Valueon (a, sq3) =UD)))))) > (ORTHO (a, sql, sq2) = ORTHO (b, sql,
sq? i

define FarTaken: Y q. ((PAWNPROM Move q A (Mover Move q=BKRP A (-~ (To Move
q=WKR1) A -~ (To Move q=WKN1)))) > 3 ql q2 x1 x2. (((PREDEGAME (ql, q) v ql=q) A
(PREDEGAME (q2, Ql) A (PREDEGAME (PO, q2) A (TAKINGS Move ql A (TAKINGS Move q2 A
(Mover Move ql=BKRP A (Mover Move Qq2=BKRP A (Taken Move qlsxl A Taken Move
Q2=x2)))))))) A =~ (x1ax2))) 33

define GameRelations5: V r. -PREDEGAME (r, PO);;
dofine GivenUD: V sq. (Valueon (GIVEN sq) sUD = sqaWKR4);;

define GivenWV: V¥ sq. (WVALUES Valueon (GIVEN sq) > (sq=BKR]l v sq=BQl v sq=BQ2 v
sq=WQR2 v sq=WQN3 v sq=WQB2 v sqsWQ3 v sqsWKB2 v sq=WKN3 v sq=WKR2));;

define GrandchildGenealogy: V r q p. ((SUCCESSOR (r, q) A PREDEGAME (q, p)) >
PREDEGAME (r, p));:

define GrandparentGenealogy: YV q p. (PREDEGAME (q, p) > PREDEGAME (Prevpos q,
p))is

define GrandparentGenealogyX: VY q p pl. (((PREDEGAME (p, pl) v p=pl) A (PREDEGAME
(q, p) v q=p)) > PREDEGAME (Prevpos q, pl));

define GrandparentGenealogyY: Y rl r p. ((SUCCESSOR (r, p) A (PREDEGAME (rl, r) v
rl=r)) > PREDEGAME (rl, p));::

define KingCommute: V sql sq2. (KINGMOVE (sql, sq2) = KINGMOVE (sq2, sql))

define Kinglemma: V r p t. ((SUCCESSOR (r, p) A VALUEK Val (p, t)) > Val (r, t)
=Val (p, t))i;

define KingValueThm: ¥V r b sq. ((BOARD (r, b) A = (Valueon (b, sq) =UD)) > ((Pos
(r, sq) =WK = Valueon (b, sq) =KW) A (Pos (r, sq) =BK = Valueon (b, sq) =KB)));;

dofine KingValuesAre_: V v. (VALUEK v = (v=KB v veKW));;

define KingsAre_: V t. (KINGS t = (t=BK v taWK));;

define KnightCommute: V sql sq2. (KNIGHTMOVE (sql, $q2) = KNIGHTMOVE (sq2, sql))
define MayMove: V b v sql sq2. (MOVETO (b, v, sql, $q2) > (Column (sql) =Column

© s e <> " -

AR A DRINBUPIIT Sb015. 35 TR A 4R 1 o

§
i

B .

Page 212. Listing of the Chess Theorems E.

(sq2) v (KNIGHTMOVE (sql, sq2) v (Row (sql) =Row (sq2) v (SAMEDIAG (sql, sq2) v
(KINGMOVE (sql, sq2) v (TWOTOUCHING (Column (sql) , Column (8q2)) A (WSUC (Row
(sql) , Row (sQq2)) v BSUC (Row (sql) , Row (5Q2)))))))))) i

define MconseqfX: V r rl sq x. (((rlsr v PREDEGAME (rl, r)) A Taken Move rlsx) >
=~ (Pos (r, sq) =x));;

define MconseghX: ¥ r q b sq sql. ((Pos (q, sq) =Pos (r, sql) A ((SUCCESSOR (r,
Q) A (~PAWNPROM Move q v -~ (Pos (q, sq) =Mover Move q))) A (BOARD (q, b) A -
(Valueon (b, sq) =sUD)))) > Valueon (Tboard r, sql) =Valueon (b, sq));;

define MconseqkX: ¥V r p. ((SUCCESSOR (r, p) A ORDINARY Move p) > (-~ (From Move
p=To Move p) A (MOVETO (Tbeoard r, Valueon (Tboard r, From Move p) , From Move p,
To Move p) A ((SIMPLE Move p > Pos (r, To Move p) =EMPTY) A ((CAPTURE Move p >
(WHITEPIECE Taken Move p w WHITETURN p)) A ~ (CAPTURE Move p = SIMPLE Move

PN

define MconseqlX: Y r q. (SUCCESSOR (r, q) > (PAWNPROM Move q = (LASTRANKER (To
Move q, Color r) A (SIMPLELEGALMOVE (r, q) A (PAWNS Mover Move q A (VALUEP
Valueon (Tboard r, From Move q) A (((BVALUES Promoted Move q = BVALUES val (r,
Mover Move q)) A (WVALUES Promoted Move q = WVALUES Val (r, Mover Move q))) A Val
(q, Mover Move q) =Promoted Move q)))))))::

define MconseqmX: VY r p. (SUCCESSOR (r, p) o ((CASTLE Move p = CASTLING (r, p)) A
((ENPASSANT Move p = EN_PASSANT (r, p)) A (ORDINARY Move p = SIMPLELEGALMOVE (r,

P)))))is

define MightBeBB: V r t. (Val (r, t) =BB > ((t=BKB v t=BQB) v (BPAWNS t A
PROMOTEDPAWN (r, t)))):;

define MightBeNB: V r t. (Val (r, t) =NB > ((t=BKN v t=BQN) v (BPAWNS t A
PROMOTEDPAWN (r, t))));::

define MightBeRW: Y r t. (Va) (r, t) =RW > ((t=WKR v t=WQR) v (WPAWNS t A
PROMOTEDPAWN (r, t))))::

define Mobility: V r sq x. ((Pos (r, sq) =x A ~ (Paos (PO, sq) =x)) > 3 q.
((PREDEGAME (q., r) v q=r) A ((Mover Move q=x A To Move q=sq) v (CASTLE Move q A
(A1somover Move q=x A Alsoto Move q=sq)))));::

define MoveChoices: YV p. (((CASTLE Move p s CASTLING (Prevpos p, p)) A

((ENPASSANT Move p = EN_PASSANT (Prevpos p, p)) A (ORDINARY Move p =
SIMPLELEGALMOVE (Prevpos p, P)))) A ((MOVES p o (ENPASSANT p v (CASTLE p v
ORDINARY p))) A ((MOVES p > ~ (ENPASSANT p A CASTLE p)) A ((MOVES p > =
(ENPASSANT p A ORDINARY p)) A (MOVES p > = (CASTLE p A ORDINARY p))))));::

define Movedvalues: V r p b sq sax. (((SUCCESSOR (r, p) A (-~EN_PASSANT (r, p) A
(~CASTLING (r, p) A (~PAWNPROM Move p A BOARD (p, b))))) A (From Move p=sq A To
Move p=sqx)) > (MOVETO (Tboard r, Val (p, Mover Move p) , sq, sax) A (-~ (Valueon
(b, sgx) =UD) > (MOVETO (Tboard r, Valueon (b, sax) , sq, sqx) A ((WHITETURN p >
BVALUES Valueon (b, sqx)) A (~WHITETURN p > WVALUES Valueon (b, sqx))))))):;

define MovedValuesX: Y r p x sq sqx. (x=Mover Move p > ((-~PAWNS x A -KINGS x) >
((SUCCESSOR (r, p) A (From Move pssq A To Move pssqx)) > MOVETO (Tboard r, Val
(PO, x) , sq, sqx))));;

A SR IR

Bz ooy

E. Listing of the Chess Theorems Page 213.

define MovementValues: V r p x sq sql. ((SUCCESSOR (r, p) A (xsMover Move p A
(~PAWNS x A (sqsTo Move p A sqlsFrom Move p)))) > (MOVETO (Tboard r, Valueon
(Tboard r, From Move p) , From Move p, To Move p) = MOVETO (Tboard r, Val (PO, x)

» $ql, sq)))i:
define MoverOnTO: V q y sq. ((Pos (q, $Q) =y A To Move q=sq) > y=Mover Move Qq);;

define MovetoCommute: V v b sql sq2. (~VALUEP v > (MOVETO (b, v, sql, sq2) =
MOVETO (b, v, sa2, sql)));;

?efine NoBlackPawnsOnlRow: V r x sq. ((val (r, x) =PB A Pos (r, sq) =x) > -~ (Row
sq) =1)):;
define NoEndInCheck: V r ¢. (-~ (c=Color r) > ~POSITIONINCHECK (r, c));;

define NoPromtedInP0: V x. ~PROMOTEDPAWN (PO, x);;

define NonmoverStays: V r q sq x. ((SUCCESSOR (r, q) A (Pos (q, sq) =x A (~ROOKS
X A ~ (x=Mover Move q)))) > Pos (r, sq) =x);;

define NotBPFromlThm: V p b. ((~CASTLING (Prevpos p, p) A (BOARD (p, b) A
(~EN_PASSANT (Prevpos p, p) A (WHITETURN p A Row From Move p=1)))) > ((~ (Valueon
(b, To Move p) =UD) > MOVETO (Tboard Prevpos p, Valueon (b, To Move p) , From
Move p, To Move p)) A (~PAWNPROM Move p A (MOVETO (Tboard Prevpos p, Val (Prevpos
p, Mover Move p) , From Move p, To Move p) A (~ (Valueon (b, To Move p) =UD) >
(~VALUEP Valueon (b, To Move p) A BVALUES Valueon (b, To Move p)))))));::

define NotChesspieceEmpty_: V t. (~CHESSPIECES t = t=EMPTY);;

define NotFromBKBBlocked: Y r p sq. ((SUCCESSOR (r, p) A (Mover Move p=BKB A (Pos
(p, BK%; =BKP A (Pos (p, BKN2) =BKNP A Pos (p, sq) =BKB)))) > ~ (From Move
p=BKBl));;

define NotMPC_Black2tol_: V dcx] dcx2. -MAY_PAWN_CAPTURES (Makesquare (2 dcx1)
Makesquare (1 dcx2) BLACK);:

de;ine NotPawnValuePromotedPawns: V r yp. (~VALUEP Val (r, yp) > PROMOTEDPAWN (r,
ypP))ii
define OfficerValueThm: V r t. (~PAWNS t > Val (PO, t) =Val (r, t));;

d?;;no OfficervalueThmX: V r t tl. ((~PAWNS t A tstl) > val (PO, t) =Val (r,
t HH

define OnlyPawnsPromote: V r rl t. ((-~VALUEP Val (rl, t) A PREDEGAME (rl, r)) o
Val (r, t) =val (rl, t));;

define OrthoCommute: V b sql sq2. (ORTHO (b, sql, sq2) = ORTHO (b, sq2, sql))
define OrthoThmX: V q b sqx sql. (BOARD (q, b) > (V sq3. (Valueon (b, sq3) =UD >
(sq3=sqx v (-~ (Row (sq3) =Row (sqx)) A = (Column (sq3) =Column (sgx))))) > (ORTHO
(Tboard q, sqx, sql) = ORTHO (b, saqx, sql)))):;

define OtherSideStays: V r p sq x. ((SUCCESSOR (r, p) A ((WHITEPIECE x =
WHITETURN p) A Pos (p, sq) =x)) > Pos (r, sq) sx);;

“wm B

Page 214. Listing of the Chess Theorems E.

define PXPawnTo: YV r p b. ((SUCCESSOR (r, p) A (~CASTLING (r, p) A (~EN_PASSANT
(r, p) A (PAWNPROM Move p A (~WHITETURN p A (From Move p=BQB2 A BOARD (p,
b))))))) > ((To Move p=BQN]l A ((WVALUES Valueon (b, BQN1) v Valueon (b, BQN1)
=UD) A BVALUES Valueon (Tboard r, To Move p))) v ((To Move p=BQl A ((WVALUES
Valueon (b, BQl) v Valueon (b, BQl) sUD) A BVALUES Valueon (Tboard r, To Move
p))) v (To Move p=BQB1 A (WVALUES Valueon (b, BQBl) v Valueon (b, BQB1) =UD)))))

define ParentGenealogy: V r2 rl q. ((SUCCESSOR (rl, q) A PREDEGAME (r2, q)) >
(PREDEGAME (r2, rl) v r2zrl));;

define PawnValuedBlackPieces: Y r yb. (VALUEP Val (r, yb) > Val (r, yb) =PB) ;;
define PawnValuedPawnsThm: V r t. (VALUEP Val (r, t) > PAWNS t);;
define PawnValuesAre_: YV v. (VALUEP v = (v=PB v vsPVW));;

define PawnWasOnThm: V q p x sq. (((PREDEGAME (p, q) v p=q) A (VALUEP Val
(Prevpos p, x) A (Mover Move p=x A (From Move pssq A -~ (Pos (PO, sq) =x))))) > 3
p. ((Pos (p, sq) =x A (PREDEGAME (p, q) A VALUEP Val (p, x))) A VALUEP Val
(Prevpos p, x)));;

define PieceChoices_: V x. ((WHITEPIECE (x) = (Piececolor (x) sWHITE)) A
(BLACKPIECE (x) = (Piececolor (x) =BLACK)));:

define PiecevaluesAreChesspieces: V r b sq. ((BOARD (r, b) A PIECEVALUES Valueon
(b, sq)) > CHESSPIECES Pos (r, sq));;

define PiecevaluesAreChesspiecesX: Y r sq. (PIECEVALUES Valueon (Tboard r, sq) >
CHESSPIECES Pos (r, $q));:

define PrevGameposition: VY p sq x. ((((WHITEPIECE x = WHITETURN p) A Pos (p, $q)
=x) A =~ (Pos (PO, sq) =x)) > 3 q. Prevpos p=q) ;;

?efing)ProviousPaana]uc: Yropt. (Prevpos p=r > (VALUEP Val (p, t) > VALUEP Val
r, t)));;

define RetainvalueColor: V rl r2 t. ((BVALUES Val (r2, t) = BVALUES Val (rl, t))
A (WVALUES Val (r2, t) = WVALUES val (rl, t)));;

define RooksAre_: ¥ t. (ROOKS t = (t=BKR v taWKR v t=WQR v t=BQR));;

define RowColumnSquareThm: V sql sq2. (Row (sql) =Row (sq2) > (Column (sql)
=Column (sq2) > sql=sq2));;

define SameColorsOnDiagonals_: V sql sq2. (SAMEDIAG (sql sq2) > (WHITESQUARES
(sql) = WHITESQUARES (sq2)));:

define ShortPawnPathThm: V r p sql sq2 x b. (V sq. ((MAY_PAWN_CAPTURES (sq2, sq,
Piececolor x) A MAY_PAWN_CAPTURES (sq, sql, Piececolor x)) > (sq=sq2 v sq=sql)) >
((Pos (p, sql) sx A (Pos (PO, sq2) =x A ((PREDESAME (r, p) v r=p) A (VALUEP Val
(p, x) v (BOARD (p, b) A (Valueon (b, sql) =PW v Valueon (b, sql) =PB)))))) >
(Pos (r, sql) sx v Pos (r, sQ2) =x)));;

E Listing of the Chess Theorems Page 215.

define StandingBlackPawnThm: V r p b sq. ((Valueon (b, sq) =PB A (Row (sq) =2 A
(gOAR? (p, ?;)A SUCCESSOR (r, p)))) o> (Valueon (Tboard r, sq) =PB A Pos (r, sq)
&2Pos (P, SQ '

define SubBoardsdX: V r b sq. (BOARD (r, b) > (Valueon (b, sq) =Valueon (Tboard
r, sq) v Valueon (b, sq) =UD));;

define SubboardTransitivity: V bl b2 b3. ((SUBOARD (bl, b2) A SUBOARD (b2, b3)) >
SUBOARD (bl, b3))::

?ofine SubboardTransitivityX: V a b r. ((SUBOARD (a, b) A BOARD (r, b)) > BOARD
r, a)):;

225;?§ Substitution2: V J1 Jj2 kl k2. (Jjl=j2 > (kl=k2 > (B2 (Jjl1 k1) =82 (Jj2

define Substitution: Y j k. (Jj=k > B Jj=B Kk);;

define ThreeNB: V r b x sql sq2 sa3 saqx. (V t. ((BPAWNS t A PROMOTEDPAWN (r, t))
5> t=x) o (((~ (sql=sq2) A (~ (sql#sqld) A - (sq2=sq3))) A ((val (r, Pos (r, sql))
=NB v (BOARD (r, b) A Valueon (b, sql) =NB)) A ((val (r, Pos (r, sq2)) =NB v
(BOARD (r, b) A Valueon (b, sq2) =NB)) A (Val (r, Pos (r, sq3)) =NB v (BOARD (r,
b) A Valueon (b, sq3) =NB))))) > (PROMOTEDPAWN (r, x) A ((~ (sql=sgx) A (-
(sq2=sqx) A -~ (sq3=sqax))) o> (~ (Pos (r, sax) =x) A (~ (Pos (r, sqx) =BKN) A -
(Pos (r, sqx) =BQN)))))))::

define TransitiveGenealogy: V r p q. ((PREDEGAME (r, p) A PREDEGAME (p, q)) >
PREDEGAME (r, Qq));:

define TransitiveSubboardMovement: V a b v sql sq2. ((SUBOARD (a, b) A MOVETO (a,
v, sql, s@2)) > MOVETO (b, v, sql, sQ2));;

define TransitiveSubboardOrthogonality: V a b sql sq2. (SUBOARD (a, b) > (ORTHO
(a, sql, sq2) > ORTHO (b, sql, sq2))):;

define TransitiveSuccession: V r p x. ((PROMOTEDPAWN (r, x) A SUCCESSOR (r, p)) >
PROMOTEDPAWN (p, X));:

define TransitiveUNMKCAPPP: V p a b sql sq2 v vl. ((BOARD (p, Unmkcapppmove (a,
?ql. 7?2. v)) A (SUBOARD (b, Unmkcapppmove (a, sql, sq2, vl)) A vevl)) > BOARD
p, b))

define Trapped_QX_QB1_Thm: V q v. (BOARD (q, QBUD) > ((v=RB v v=QB) > V sql.
(MOVETO (Tboard q, v, BQl, sql) o (= (Valueon (Tboard q, sql) =MT) v MOVETO
(Tboard q, v, BKRI, sql))))) ;;

define UDIsSNotVW_: V vw. -~vwz2lD;;

define Unique: V¥ r sql sq2 x. (Pos (r, sql) =x > (Pos (r, sq2) =x = sqQl=sq2));;

define UnmovedBlackPawnThm: V r b ybp sq. ((Pos (PO, sq) =ybp A (Valueon (b, sq)
=PB A BOARD (r, b))) > (Pos (PO, sq) =Pos (r, sq) A Pospcf (r, ybp) =sq));;

define UnmovedwhitePawnThm: ¥V r b ywp sa. ((Pos (PO, sq) sywp A (Valueon (b, sq)
=PW A BOARD (r, b))) o> (Pos (PO, sq) =Pos (r, sq) A Pospcf (r, ywp) =sq));;

T

st A e AR i e

!
|

e AN s 3 5 -

Page 216. Listing of the Chess Theorems E.

define Unpromotedfrom: V r q b x sq. ((SUCCESSOR (r, q) A (~WLASTRANK sq A (BOARD
(q, b) A (Valueon (b, sq) =vw A (Pos (q, $q) =x A Mover Move q=x))))) > Valueon
(Tboard r, From Move q) sww) ;;

define ValueChoices_: Y vpc. ((WVALUES (vpc) s Valuecolor (vpc) =WHITE) A
(BVALUES (vpc) = Valuecolor (vpc) =BLACK));;

define ValueColorRetentionThm: V r rl t. (PREDEGAME (ri, r) o ((BVALUES Val (rl,
t) = BVALUES Va) (r, t)) A (WVALUES Val (rl, t) = WVALUES Val (r, t))));::

define ValueFunctionChoices_: Y v. ((WVALUES (v) > Valuecolor (v) =WHITE) A
(BVALUES (v) > Valuecolor (v) =BLACK));:

define ValueTranspositionA: ¥V r t sq. (Pos (r, sq) st > Valueon (Tboard r, sq)
=vVal (r, t)) ::

define ValueTranspositionB: V r sq b. (BOARD (r, b) o (Valueon (b, sq) =Val (r,
Pos (r, sq)) v Valueon (b, sq) =UD));;

degine ValueTranspositionC: V r sq. Valueon (Tboard r, sq) =Val (r, Pos (r,
sq));:

define WasAlwaysSomewhere: V r rl sq x. ((PREDEGAME (rl, r) A Pos (r, sq) =x) > 3
sql. Pos (rl, sql) =x);;

dogine)wasﬂore: Y rpsqx. ((SUCCESSOR (r, p) A Pos (p, sq) =x) > 3 sq. Pos (r,
$Q) =X);;

define WasOn: VY p x. (Taken Move psx > 3 sq. Pos (Prevpos p, sq) =x);;

define WasPawnValue: V rl r t. (((PREDEGAME (rl, r) A VALUEP Val (r, t)) v r=rl)
> Val (r, t) sval (rl, t));;:

define WasPawnvalueX: V q p t. (((PREDEGAME (q, p) A VALUEP Val (Prevpos p, t)) v
qQ=p) > Val (Prevpos p, t) =Val (Prevpos q, t));;

define WhereBishopTaken: V q ybi sq sqx. ((To Move qzsq A (Pos (PO, sqx) =ybi A -
(WHITESQUARES sqx = WHITESQUARES sq))) > -~ (Taken Move q=ybi));;

define WhereOfficierTaken: V q x sq. ((To Move q=sq A (Taken Move q=x A -PAWNS
x)) > Pos (Prevpos q, Q) =x);;

define WhereWhitePawns: V p q x sq sql sq2 sq3 sqd4 sq5 sqb6 sq7 sq8. ((Pos (q,

sql) =WQRP A (Pos (q, sq2) =WQNP A (Pos (q, sq3) =WQBP A (Pos (q, sqd) =WQP A
(Pos (q, sa5) =WKP A (Pos (q, sq6) =WKBP A (Pos (q, sq?) =WKNP A Pos (q, sq8)
=WKRP))))))) o (((~ (sq=sql) A (-~ (sq=sq2) A (-~ (sq=sq3) A (~ (sq=sqd) A (-
(sq=sq5) A (~ (sq=sq6) A (~ (sa=5q7) A -~ (sq=5q8)))))))) > ~WPAWNS Pos (q, sQ)) A
((x=Taken Move p A (PREDEGAME (p, Q) v p=q)) > ~WPAWNS x)));;

define WhichBlackPawn: ¥ q b sq. ((BOARD (@, b) A Valueon (b, sq) =PB) > ((Pos
(a, sq) =BQRP A (Pospcf (q, BQRP) =sq A MAY_PAWN_CAPTURES (BQR2, sq, BLACK))) v
((Pos (q, sq) =BQNP A (Pospcf (q, BQNP) =sq A MAY_PAWN_CAPTURES (BQN2, sq,
BLACK))) v ((Pos (aq, sq) =BQBP A (Pospcf (q, BQBP) =sq A MAY_PAWN_CAPTURES (BQB2,
sq, BLACK))) v ((Pos (q, sq) =BQP A (Pospcf (q, BQP) =sq A MAY_PAWN_CAPTURES

i ik R A)

= -
E

Y

Listing of the Chess Theorems Page 217.

(8Q2, sq, BLACK))) v ((Pos (a, sq) =BKP A (Pospcf (q, BKP) =sq A
MAY_PAWN_CAPTURES (BK2, sq, BLACK))) v ((Pos (q, sq) =BKBP A (Pospcf (q, BKBP)
=sqQ A MAY_PAWN_CAPTURES (BKB2, sq, BLACK))) v ((Pos (q, sq) =BKNP a (Pospcf (a,
BKNP) =sq A MAY_PAWN_CAPTURES (BKN2, sq, BLACK))) v (Pos (q, sq) sBKRP A (Pospcf
(q, BKRP) =sq A MAY_PAWN_CAPTURES (BKR2, sq, BLACK)))))I))))))::

define WhichWhitePawn: V q b sq. ((BOARD (q, b) A Valueon (b, sq) =PW) > ((Pos
(q, sq) =WQRP A (Pospcf (q, WQRP) =sq A MAY_PAWN_CAPTURES (WQR2, sq, WHITE))) v
((Pos (aq, sq) =WQNP A (Pospcf (q, WQONP) =sq A MAY_PAWN_CAPTURES (WQN2, sq,
WHITE))) v ((Pos (q, sqQ) sWQBP A (Pospcf (q, WQBP) =sq A MAY_PAWN_CAPTURES (WQB2Z,
sq, WHITE))) v ((Pos (q, sq) =WNQP A (Pospcf (q, WQP) =sq A MAY_PAWN_CAPTURES
(WQ2, sq, WHITE))) v ((Pos (q, sq) =sWKP A (Pospcf (q, WKP) =sq A
MAY_PAWN_CAPTURES (WK2, sq, WHITE))) v ((Pos (q, sq) =WiBP A (Pospcf (q, WKBP)
=sqQ A MAY_PAWN_CAPTURES (WKB2, sq, WHITE))) v ((Pos (g, 5q) =WKNP A (Pospcf (q,
WKNP) =sq A MAY_PAWN_CAPTURES (WKN2, sq, WHITE))) v (Pos (q, sq) =WKRP A (Pospcf
(q, WKRP) =sq A MAY_PAWN_CAPTURES (WKR2, sq, WHITE)))))))))))::

define WhiteCapturedOnThm: V r q ¥y x sq. (Pravpos q=r > (To Move q=sq > (Mover
Move g=y > ((Taken Move q=x A ~WHITEPIECE y) > (WHITEPIECE x A (~ (Row (sq) =6) >

Pos (r, sq) =x))))))i::

define WhiteCapturedThm: V p sq. (To Move p=sq > ((ORDINARY Move p A WVALUES
Valueon (Tboard Prevpos p, sq)) > CAPTURE Move p));;

define WhiteCastleThm: V r p sq. ((SUCCESSOR (r, p) A (CASTLING (r, P) A
~WHITETURN p)) o> (Pos (p, sq) =WK > (sq=WKNl v sq=WQB1))) ;;

define WhiteCornered: YV r q b vw sq sqx. ((SUCCESSOR (r, q) A (~EN_PASSANT (r, q)
A (~CASTLING (r, @) A (~WLASTRANK (sq) n ((BOARD (q, b) A (Valueon (b, sq) =vw A
(valueon (b, sgqx) =KB A MOVETO (b, vw, sq, sgx)))) A =VALUEP ww))))) > (V sal.
(MOVETO (Tboard q, vw, sq, sqQl) > (-~ (Valueon (Tboard q, sql) =MT) v MOVETO
(Tboard q, vw, sax, sql))) > ((ORDINARY Move q A SQUARE_BETWEEN (sq, From Move q,
sqx)) A -~ (Mover Move q=Pos (q, sa))))):;

define WhiteEnPassantThml: V r q. ((SUCCESSOR (r, qQ) A (EN_PASSANT (r, q) A
-~WHITETURN q)) > (Valueon (Tboard q, To Move q) =PW A Row (To Move q) =3));;

define WhiteEnPassantThm2: V r q b. ((SUCCESSOR (r, Q) A (EN_PASSANT (r, q) A
~WHITETURN q)) > (V dex. -~ (Valueon (b, Makesquare (3, dcx)) =PW v Valueon (b,
Makesquare (3, dcx)) =UD) > ~BOARD (q, b)));:;

define WhiteKingThm: V r sq. (Val (r, Pos (r, sq)) =KW s Pos (r, sq) =WK);;

define WhiteMPCLemma: V p b sq sqx. (((Valueon (b, sq) =PW A BOARD (p, b)) A Pos
(PO, sagx) =Pos (p, sq)) > MAY_PAWN_CAPTURES (sqx, sq, WHITE));;

define WhitePawnMovement: ¥ b bl sqx sql sq2. (sqx=sq2 > (Valueon (bl, sq2) =PW >
(MOVETO (b, Valueon (bl, sqx) , sql, sq2) = ({Column sql=Column sq2 A (WSUC (Row
sql, Row sq2) A Valueon (b, $q2) =MT)) v ((Column sql=Column $q2 A (Row sql=7 A
(Valueon (b, Makesquare (6, Column sql)) =MT A Row sq2=5))) v (Valueon (b, sq2)
=MT A (TWOTOUCHING (Column sql, Column $q2) A (WSUC (Row sql, Row sq2) A BVALUES

Valueon (b, $q2))))))))):;

define WhitePawnValuelemma: V p b sq. ((BOARD (p, b) A Valueon (b, sq) =PW) >
WPAWNS Pos (p, $q));;

¢
&
B

Page 218. Listing of the Chess Theorems E.

define WhitePawnsAre_: V t. ((t=WKP v tsWQP v tsWKNP v tsWKBP v tsWKRP v t=WQBP v
t=WQNP v taWQRP) = WPAWNS (t));;

define WhitepieceAre_: V t. (WHITEPIECE t = (tasWKP v tasWQP v tsWKNP v tsWKBP v
LaWKRP v tsWQBP v taWQNP v tsWQRP v tsWK v tasWQ v tsWKN v tsWKB v tsWKR v t=WQB v
t=WQN v t=WQR)):;

define WhitepieceArePawnsOr_: V t. (WHITEPIECE t = (WPAWNS t v tsWK v tsWQ v
t=WKN v ta2WKB v tasWKR v tsWQB v t=WQN v t=WQR));;

Berliner?4

Bobrow?7?7

Brown73

Brown?74

Bulnes79

Chomsky72

Dawson73

Filman76

Funt?77

Gardner59

Gardner?3

Gelernter63a

Gelernter63b

Gizycki72

saa il aisie-a e Skl

Bibliography Page 219.

Bibliography

Berliner, Hans], Chess as Problem Solving: The Development of a Tactics
Analyzer, (dissertation) Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Pennsylvania, March 1974.

Bobrow, Daniel and Terry Winograd, "An Overview of KRL, A knowledge
Representation Language”, Cognative Science, Vol 1, No. 1., January 1977.

Brown, J. S, R. R. Burton, and F. Zdybel, "A Model-Driven Question Answering
System for Mixed Initiative Computer Assisted Instruction”, IEEE Transactions on
Systems, Man, and Cybernetics, Vol. SMC-3, May 1973.

Brown, John Seely, Richard R. Burton, Alan G. Bell, and Robert]. Bobrow,
SOPHIE: A sophisticated instructional environment, BBN Technical report,
December 1974.

Bulnes, Juan, GOAL: A Goal Oriented Command Language for Interactive Proof
Construction, (dissertation), Department of Computer Science, Stanford University,
Sorthcoming 1979.

Chomsky, Noam, Language and Mind, New York, Harcourt Brace Jovanovich, 1972.
Dawson, T. R, Five Classics of Fairy Chess, New York, Dover Publications, 1973.

Filman, Robert E., and Richard W. Weyhrauch, An FOL Primer, Stanford Artificial
Intelligence Laboratory Memo 288, October 1976.

Funt, Brian V., "Whisper: A problem Solving System Utilizing Diagrams and a
Parallel Proessing Retina", Proceedings of the Fifth International Joint Conference
on Artificial Intelligence, Massachusetts Institute of Technology, August 1977.

Gardner, Martin, "Mathematical Games", Scientific American, Vol. 201, No. 5, May
1959.

Gardner, Martin, "Mathematical Games", Scientific American, Vol. 215, No. 5, May
1973.

Gelernter, H. “"Realization of a Geometry-Theorem Proving Machine”, in
Feigenbaum and Feldman (eds), Computers and Thought, New York, McGraw Hill,
1963.

Gelernter, H,, J. R. Hansen, and D. W. Loveland, "Empirical Explorations of the
Geometry-Theorem Proving Machine”, in Feigenbaum and Feldman (eds),
Computers and Thought, New York, McGraw Hill, 1963.

Gizycki, Jerzy, A History of Chess, translated by A. Wojciechowski, D. Ronowicz,
and W. Bartoszewski, London, The Abbey Library, 1972.

! §
at ks il oy yo— -

Page 220.
. Creen69

Hayes77
Hewitt7]
F Hewitt?3
Kling71

Kowalski76
McCarthy68

McCarthy69

McCarthy78

McCarthy79a

McCarthy79b

Minsky68

Moore?75

Moore??

Bibliography

Green, Claude Cordell, The Application of Theorem Proving to Question
Answering Systems, Stanford Artificial Intelligence Laboratory Memo 96, June 1969.

Hayes, P.], "In Defense of Logic", Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, Massachusetts Institute of Technology, August
1977.

Hewitt, Carl, PLANNER: A Language for Manipulating Models and Proving
Theorems in a Robot, (disserration) Department of Electrical Engineering,
Massachusetts Institute of Technology, February 1971.

Hewitt, Carl, "A Universal Modular ACTOR Formalism for Artificial Intelligence”,
Proceedings of the Third International Joint Conference on Artificial Intelligence,
Stanford University, August 1973.

Khing, Robert E, Reasoning by Analogy with Applications to Heuristic Problem
Solving: A Case Study, (dissertation) Computer Science Department, Stanford
University, Stanford Artificial Intelligence Laboratory Memo 147, August 1971

Kowalski, Robert A, Algorithn = Logic + Control, Department of Computing and
Control, Imperial College Research Report 77/3, November 1976.

McCarthy, John, "Programs with Common Sense”, in Minsky, Marvin (ed), Semantic
Information Processing, Cambridge Massachusetts, MIT Press, 1968.

McCarthy, John, and P. J. Hayes, "Some Philosophical Problems from the Standpoint
of Artificial Intelligence”, in B. Meltzer and D. Michie (eds), Machine Intelligence 4,
Edinburgh, Edinburgh University Press, 1969.

McCarthy, John and Masahiko Sato, Takeshi Hayashi, Shigeru lgarashi, On the
Model Theory of Knowledge, Stanford Artificial Intelligence Laboratory Memo 312,
April 1978.

McCarthy, John, “First Order Theories of Individual Concepts and Propositions”, in
D. Michie (ed), Machine Intelligence 9, forthicoming 1979.

McCarthy, John, "Circumscription Induction - A Way of jumping to Conclusions”,
submitted to Artificial Intelligence 1979,

Minsky, Marvin, “Introduction”, in Minsky, Marvin (ed), Semantic Information
Processing, Cambridge Massachusetts, MIT Press, 1968.

Moore, Robert Carter, Reasoning from Incomplete Knowledge in a Procedural
Deduction System, (Master's thesis), MIT-AI-TR 347, December 1975.

Moore, Robert Carter, "Reasoning about Knowledge and Action”, Proceedings of the
Fifth International Joint Conference on Artificial Intelligence, Massachusetts
Institute of Technology, August 1977.

Moore?9

Newell72

Nilsson71

Pratt??

Prawitz65

Prior57
Prior68
Rieger76

Rieger?7

Reiter72

Sacerdoti?8

Sussman?5

Thomas78

Bibliography Page 221.

Moore, Robert Carter, Reasoning about Knowledge and Action, (dissertation)
Department of Electrical Engineering, Massachusetts Institute of Technology,
Sorthcoming 1979,

Newell, Alan, and Herbert A. Simon, Human Problem Solving, Englewood-Cliffs,
New Jersey, Prentice-Hall, 1972.

Nilsson, Nils], Problem-Solving Methods in Artificial Inteligence, New York,
McGraw-Hill, 1971.

Pratt, Vaughn, The Competance/Perforinance Dichotomy in Programming, MIT
Artificial Intelligence Laboratory Memo 400, January 1977.

Prawitz, Dag, Natural Deduction - A Proof-Theoretical Study, Stockholm, Almquist
& Wiksell, 1965.

Prior, Arthur N., Time and Modality, Oxford, Clarendon Press, 1957.
Prior, Arthur N, Papers on Time and Tense, Oxford, Clarendon Press, 1968.

Rieger, Chuck and Milt Grinberg, The Causal Representation and Simulation of
Physical Mechanisms, University of Maryland Computer Science Technical Report
TR-495, November 1976.

Rieger, Chuck and Milt Grinberg, The Declarative Representation and Procedural
Simulation of Causality in Physical Mechanisms, University of Maryland
Computer Science Technical Report TR-513, March 1977.

Reiter, Raymond, The Use of Models in Automatic Theorem Proving, Department
of Computer Science, University of British Columbia technical report, 1972,

Sacerdoti, Earl D, "Planning in a Hierarchy of Abstraction Spaces”, Proceedings of
the Third International Joint Conference on Artificial Intelligence, Stanford
University, August 1973.

Sussman, Gerald Jay, and Richard Stallman, "Heuristic Techniques in Computer-
Aided Circuit Analysis”, IEEE Transactions on Circuits and Systems, Vol CAS-22

No. 11, November 1975.

Thomas, Arthur], Representation and Conception: An Essay in Cowmputational
Metaphysics, (dissertation) Special Graduate Program, Stanford University, 1978.

Weyhrauch77 Weyhrauch, Richard W, A Users Manual for FOL, Stanford Artificial Intelligence

Laboratory Memo 235.1, July 1977.

Weyhrauch78 Weyhrauch, Richard W. Prolegomena to a Theory of Mechanized Formal

Whorf56

Reasoning, Stanford Artificial Intelligence Laboratory Memo 315, December 1978.

Whorf, Benjamin Lee, Language, Thought, and Reality - Selected writings, John B.
Carroll (ed), Cambridge, Massachusetts, MIT Press, 1956.

Page 222.

Winograd72

Winograd?s

Bibliography

Winograd, Terry, Understanding Natural Language, New York, Academic Press,
1972.

Winograd, Terry, “Frame Representations”, in Daniel G. Bobrow and Allan Collins
(eds), Representation and Understanding - Studies in Cognative Science, New
York, Academic Press, 1975,

el i R

s Sl

21

Alsofrom 56
Alsomover 56
Alsoto 56
BBISHOPS 42
BETWEEN 47
BISHOPS 42
BKINGS 42
BKNIGHTS 42

Index to Predconst and Opconst Declarations

Index to Predconst and Opconst Declarations

BLACKINCHECK 50
BLACKPIECE 42
BLACKSQUARES 45

BLASTRANK 45
BLASTROW 47
BLK 52

BOARD 50
BOARDS 40

BPAWNMOVE 62

BPAWNS 42
BQUEENS 42
BROOKS 42
BSUC 47
Bsucf 47
BVALUES 48
CAP 56
CAPPP 56
CAPTURE %6
CASTLE 56
CASTLING 54

CHESSPIECES 39

Color 54
COLORS 41
Column 47
DIAGC 62

EMPTYPIECE 42
EN_PASSANT 54

ENPASSANT 56
EVALUES 48
EXSQUARES 40
From 56

GAMEPOSITION 53

IS_EVEN 47
ISCOLUMN 47

ISDIMENSION 47

ISROW 47
KINGMOVE 62

KINGS 42
KNIGHTMOVE 62
KNIGHTS 42

L2touchf 62
LASTRANKER 46
Makeboard 5!
Makesimplemove 56
Makesquare 47
MAY_PAWN_CAPTURES 72
Move 5¢

Mover 56

MOVES 41

MOVETO 50
MUST_PAWN_CAPTURES 72
Nextpos 54

NUMBERS 72
NVALUES 48
ORDINARY 56

ORTHO 62
Pawncaptures 72
PAWNMOVE 62
PAWNPROM 56
PAWNS 42

Piececolor 42

PIECES 39
PIECEVALUES 48

Pos 54
POSITIONINCHECK 54
POSITIONS 39

Pospcf 5¢

PREDEGAME 54
Prevpos 53

Promoted 56
PROMOTEDPAWN 54
PROMVALUES 48
QUEENS 42

R2touchf 62

ROOKS 42

Row 47

SAMEDIAG 46
SIDEINCHECK 50

SIM 56

SIMPLE 5
SIMPLELEGALMOVE 5¢
SIMPP 56
SQUARE_BETWEEN 46

Page 223.

P T TR ST

Page 224, Index to Predcons: and Opconst Declarations

SQUARES 0
SUBQOARD 51
SUCCESSOR 53
Taken 5

Takenon 5
TAKINGS %
Tboard 50

To 5
TOTALBQARDS 40
TWOTOUCHING 62
Unmkcapmove 70
Unmkcapppmove 70
Unmkmove 70
Unmksppmove 70
Val 54

VALUERB 48
Valuecolor 49
VALUEK 48
VALUEN 48
Valueon 50
VALUEP 48
VALUEQ 43
VALUER 48
VALUES 40
VVALUES 48
WBISHOPS 42
WHITEINCHECK 50
WHITEPIECE 42
WHITESQUARES 43
WHITETURN 58
WHT &2

WKINGS 42
WEKNICGHTS 42
WLASTRANK 45
WLASTROW 47
WPAWNMOVE 62
WPAWNS 42
WQUEENS 12
WROOKS 42
wSsucgC 47

Wsuctf 47
WVALUES 48

Index to Axioms and Theorems

Page 225.

Index to Axioms and Theorems
BS BP 136 MCONSEQL 182, 183
BINCHECK 108 Mobility 88
BishopslsOnSameColor 90 Nl_assume 155
BLACK GOES 108 NI_OR_RI I5¢
BlockedGivenThm 196 NB_OR_BB 130
BLOCKLEM 194 NoBlackPawnsOnlRow 104
BQ OR_BR 140 NOT_B I¢l
CALL.PN 149 NOT_BK 140
CALL_PX 107 NOT_BKB 140
CALL_PY 158 NOT_BP 139
CALL PZ 159 NOT_BQB 140
CALL.QN 152 NOT_NB 140
CALL. QX 109 NOT_QB_OR_RB 128
CALL.QY 151 NOT_XN_EQ 1851
CALL.QZ 157 NOT.ZB_KB 129
CALL.X 9% NOT_ZB_PB 129

CALL_YWR 146

CALL YYW 142

CALL ZB 119

CAPPPPX 121

CAPTURE PX 121

ChesspiecePieceValueThm 80

DiagBQILemma 203

DIFFMOVERS 15¢

DISQX 123

EmptylsMT 79

EquiCrthoThm 95

FarTaken 205

FROM QZ 158

FROMPX |14

GameRelations5 78

GivenUD 193

GivenWV 193

IF BISH 131

L1177 79, 81, 84, 89, 91, 96, 102, 194, 196, 198,
202, 203

L2 81, 85, 89, 92, 97, 102, 194, 196

L3 81, 85, 89, 92, 97, 102, 195, 197, 199

L4 82, 86, 92, 98, 102, 195, 200

L5 82, 85, 92, 99, 103, 195, 200

L6 82, 86, 93, 100, 104, 200

L7 83, 93, 201

MCONAPX 114
MCONAQX 127

NOTPXCASTLE 110
NOTPXEP 111
NOTQBUDEP 120
NOTQXCASTLE 120
ON_BLACK._SQS 138
ON_WKBP 157
ON_WKRP 157
ON_ZB 129
OnlyPawnsPromote 84
ORDPX 113
ParentGenealogy 78
PRED_QN 153
PROM _BKRP 187
PROM_KNIGHT 182
PROMPX 118
PTSIMP 148

PX_BK 119

PXIS 109

PXPawnTo 198
PXSUC 109

QB_BP 135
QBUDLBL 122
QUEENMOYVE 201
QX_QBUD 130
QX_WK 146
QX_WPAWNS l4¢
QXIS 109

Rl_assume 15%
ROOKMOVE 202
ROW2_BP 13¢

Page 226.

ROW2 WP 142

ROWS WP 143

ROWSR BP 134

ROYAL WP 44

SAME ON_WKR¢ 138
SIMPWS 149

sume 98

TAKE 2 ASSUMPTION 152
THE ONLY ONE 137
THE THEOREM 161
TOPX 119
TransitiveGenealogy 77
Trapped QX QBI. Thm 202
umption 98

WHEREPROM 1%
WHICH. QX _TAKEN {47
WHICH_YYW 147
WhiteCornered 101
WhitepieceAre_ 76
WHO_X1 158
WHO_XA 150

Index to Axioms and Theorems

R T VS

s

3
i

