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20 A B S T R A C T  Con t noedI

~ ~analysis chess , a particularly rich domain for both observational tasks and lon g
deductive sequences .

A for~ialization is embodied in its axioms, and a major portion Ji~~~~~~~~~ -4
. rW4eifis devoted to both axiomatizing the rules of chess, and discussing and
comparing the representational decisions involved in that axiomatization . Con- 

~ 4
sideration was given tol~iiot on1y~the necessity for these particular choices (and
possible alternatives ) but also the implications of these results for designers of
represe:itational systems for other domains .

Using a reasoning system for f i rs t  order logic , hFOL d , a detailed proof of
the solution of a l.iifficul t retrograde chess puzzle was constructed. The close
correspondence between this ~formal

0 solution to the problem, and an ~‘informal’,
descriptive” analysis a human might present was shown .

The proof and axioms were then ex amined for their relevance to general
epistemological formalisms . ~. The importance of several different mechanisms were
considered. These includedi 1) retaining both the notion of “current status”
(typically embodied as the current chessboard) and that of a “historical state”
(a hypothetical game played to reach a desired place), 2) evaluating functional
and predicate objects in the semantic model ( the chess eye),  3) the value of
~hj f l d U Ct L cn  schemas ” as partial solutions to frame problems , 4)  the retention of
exp1ici~. undefined elements within the representation, 5)  the importance of —

manipulating multiple representations of objects , and 6) a comparison of state
vector and modal representations.
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THE INTE RACTION OF OBSERVATION AND INFERENCE

by

Robert Filman

An intelli gent com puter program must have both a representation of its knowledge, and a
mechanism for manipulating that knowledge in a reasoning proc~ s. - This thesis is an
examination of the problem of formalizing the expression and solution of reasoning problems
in a machine manipulable form. It is particularly concerned with analyzing the Interaction of
the standard form of deductive steps with an observational analogy obtained by performing
computation in a semantic model.

Consideration In this dissertation Is centered on the world of retrograde analysis chess , a
particular ly rich domain for both observational tasks and long deductive sequences.

A formalization is embodied in its axioms, and a major portion of this dissertation is
devoted to both axiomatizing the rules of chess, and discussing and comparing the
representational decisions involved in that axiomatization. Consideration was given to not
on%y the necessity for these particular choices (and possible alternatives) but also the
implications of these results for designers of representational systems for other domains.

• Using a reasoning system for first order logic, “FOL”, a detailed proof of the solution of a
difficult retrograde chess puzzle was constructed. The close correspondence between this
“formal” solution to the problem, and an “informal descriptive” analysis a human might present
was shown.

The proof and axioms were then examined for their relevance to general eplstemological
formalisms . The importance of several different mechanisms were considered. These
Included: I) retaining both the notion of “current status” (typically embodied as the current
chessboard) and that of “historical state” (a hypothetical game played to reach desired place).
2) evaluating functional and predicate objects in the semantic model (the chess eye), ~‘) the
value of “induction schemas” as partial solutions to frame problems, 4) the retention of
explicit undefined elements within the representation, 5) the importance of manipulating
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multiple representation s ol objects, and 6) a comparison of state vector and modal
i epiesefflat.ons. V
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1. Introduction Page 1.

Chapter 1 Introduction

Section Li Synopsis: A Summary

A intel ligent computer program must have bot h a repre sentation of its knowledge, and a mechanism
for manipulating that knowledge in a reasoning process. This paper is an examination of a difficult
problem in retrograde chess, particularly with respec t to forma lizin g th e expression and solution of
that problem lfl a machine manipulable form• In effec t, th Is is both an ex ploration in the symbolic
representation of knowledge and a characterization of the shape of the resulting knowled ge space.

Our consideration centers on the following retrograde chess analysis puzzle (figure 1). Its solution
(from basic chess princip les) is certa inl y beyond the abi lity of any current computer program.

r%~~ r% ~7”/ ‘7 
- 7”/ ‘//“/

~~~~~~~~~ ~~

‘4

r4~ar~ r4/ // /,7/’/ ~~~~~~~d~%~~~ ~~ ~~,4~r4
/1 piece has fallen off of she board fro m the square marked X.
Wha t p iece wag ii? This p osition was achieved in a legal chess
genie, thoug h there ii no presiLlnption that either player was
pl aying to win.

,f igure I

Th is problem was selected because its so lution requ ires both deductive and observational
inferences, In a context isolated from other issues of correctness and sufficiency.1

The notion of deductive inference, obtaining new proof steps by the application of syntactic
inference rules, ought to be familiar to the reader. We recognize, however, t hat human reason ing
proceeds not only by deduction, but also by the immediate recognition of results , a process we
identify with observation. We have extended our representational system to include observational
inference by performance of computation in a partial semantic model. Thus, for example, a human

• I The reqt,iv•s is in .car.-quotes , for , tec hnically, any of th... funct ion, can be d,coispossd into lo~ic.l form Any pro~r.n’
can also be expressed in Tur.n~ m.clwn. form. ii is, howevsr , as much folly to wr its the.. thin e h u t  .lusuM be .v.lust.d a. pr.dicatve
a, ,1 is to writs pco ram. Ihet should be LISP in Tu,III1 Mt.lIO~L

- -. - ---- -.--J • - - .. .-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~



Page 2 Introduction II.

chess player might see a black knight checking a white king on some board. This inference is
performed in our system by computing the check predicate within the semantic model. This result
might be applyed in the deduction that the black knight was the last piece to move, or that it is now
white’s turn, by syntactic application of deductive inference rules.

Within the context of the solution of our chess problem. we attempt a synthesis of the two . In
particular , we will axiomatize the rules of chess within first order logic (our declarative
representation), but include within our system a method for evaluating (when we know how) the
values of predicates and functions (which will serve as a form of procedural representation).

We shall also highlight the various representational decisions made in the process of axiomatizing
• retr ograde chess. We will consider both the necessity for these particular choices , and their

implications for designers of representational systems for other domains.

Using a proof checker for first order logic (FOL , (Weyhrauch7 7]), we detail a proof for the solution
of the given chess puzzle. In the process, we show the close correspondence between our formal
solution to the problem, and an informal, descnp lve analysis.

This work shou ld be viewed in the context of the search for epistemologicaiiy effective formalisms for
artif icial intelligence. We need representation structures that are sufficient to express those concepts
we wish our computers to manipulate. However , if these formalisms are to be useful for our A l
purposes , they must also be able to express these I dea s concisely enough for computer manipulation.

ft should be emphasized that , un like many theses within our field , w e are not demonstratin g a
computer program. Our research is on a more basic level. We are interested in the nature of the
thin gs that an artificially intelligent program would need to be able to do, without specifying the
mechanism by which the nrogram would tie these things together. We are not asserting here that
creating an intelligent program is an easy task; quite to the contrary, there are numerous issues in
the representation and manipulation of knowledge that require solution before a general human
level intelligence could be produced. We hope here to shed some light on several of the different
representation issues and ideas, and examine the power of their interaction.

Section 1.2 Paradigm: Artificial Intelli gence

It is important to begin by expressing the underlying assumptions Involved in this examination , to
mention, in effec t, “where we’re coming from”. We consider this thesis to be primarily centered in
the subfield of computer science called Artif icial Intelligence.

The study of Artif icial Intelligence is an attempt to better understand the nature ol iui” I’i~’r’i~
processes. This endeavor is, of itself, neit her unique nor novel. Understanding cognitive processes
has long been the domain of many other sciences, especially philosophy, psychology and linguistics.
While A .!. shares many concerns with these fields, it differs in that its primary concern is with the
instrumentality of intelligent action. There exists a basic belief In A.!. that intelligent processes can
be mechanized. This com puter modeling of these processes has become the major paradigm of A.!.

The gross model for these experiments is that of search through a problem space.2 The A.!. problem
then naturall y divides into two parts: defining the elements and operators of the space to be

2. S.., for saimpis, (Niisson7 I )  or (Nswsl472~

_ _ _ _ _  
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- ~~~~ k_ ~~~~~~~ — ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—



1.2. IntroductIon Page 3.

searc hed, and describing the mechanisms that the searcher uses to transverse t hat space. This is
perhaps more familiarly represented as the distinction between the representation of knowledge and,
perhaps anthropomorphically, reasoning.3 Thus, if we are to model general intellIgent behavior we
must be capable of both symbolically encoding a representation of the world, and manipulating this
knowledge through a reasoning process. It must be emphasized that these two cannot be regarded as
separate and distinct entities; rather , the selections of particular data and control structures are
strongly Interrelated decisions. However , we seek some simplification through problem
decomposition. Hence the emphasis in this thesis on the representation Issue, rather than attempting
to encompass the entire A,!. problem.

Section 1.3 Context: T he Representation of Knowledge

This work Is directed towards general issues in the computer representation ol knowledge, not just
heuristics and data structures applicable to one small domain. Many systems have been created, for
instance , which apply specific knowledge to a single problem, obtaining powerful, though limited,
deductions. These are typified by the “expert question answer systems”. While expert behavior In a
limited field can thus be had, t hese results do not generalize over into solving other, less well.
structured problems.

A good examp le of purely specific knowledge representation systems are embodied in the game tree
searching programs. While various stratagems and heuristics, particularly the alpha-beta heuristic 4,
have been used to program competent game playing programs, the resulting programs have not been
useful for solving problems outside of their limited expectations. Thus, while the typical chess
program. confronted with a board, might be ver y good at answering the question, “What is the best
move for white”, it might well be unable to comprehend the meaning of “What is the second best
move for w hite”5. There is no way, of course, of getting the typical chess playing program to
incorporate knowledge of mathematics or geology, and therefore no way convincing the program to
manipulate such knowledge.

Even confining ourselves within the chess domain, and restricting our attention to producing the
“best ” move from a given board , It is often quite difficult to instruct the chess program. While a
suggestion like “keep your pawns in diagonal lines” or “avoid an unprotected king in the center of
the board” might easily be incorporated by addition to the board evaluation functions, notions like
“develop a strategy to obtain control of the center ” and “wor k towards checkmate” are neither easily
expressed nor simply Implemented within the tree search paradigm.

However , this is not a paper on playing chess. Rather , we are addressing ourselves to
representational issues, considering the criteria for useable knowledge representations. We would
like our representation to be “general”, not one for which we first select the domain of application,
and then fit the knowledge structure. Our ideal representation should be able to express all

3 Tb,. d,slinc t ion has b..n chiracl.r,z.d in spvsrsi diffsr.ni fashion. Fer in.tancs, McCsrthy.14.y.s call ii the
• •pist .moio~ic ai and heuristic part, of lb. Al  probl.m ((iblcCa.1hy69J, p 466), wiul. Prsti (ssl.ndin( $ notion of Chom.ky on

hnaulstics) rsf.r. to I Ii. compstsncs/p.rformancs d,chofomy (Prait77J Thus , on. can think .f “[pist.moiogical £U.ctiv.nsss” (s.ct.wu
I 3., 3) a. a form of ‘io~icai conup. t.nc.’, v.1 as Chom.ky r.fsrs o s  nohon of ~r.mmaticsi comp.t.ncs (lCl~om.ky72))

4. The ~~~ pr,c.dur. for ...rch,n~ 5.nus Irss s a dsscnbad in (Nilssosi7lj s.ction 5-i2 - •

S This .ssmpls I, by Allan fhw.ll, in. p.rso nai commvn.c.iion

_____________________________________
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Page 4. IntroductIon 1.3.

“questions” and riotlons”, or at least as many questions and notions as In human language is capable
of expressing. Particularly important, a good representation system must have some mechanism for
relatin g the mult iple perspecti ves and organizations that are associated with any object. No good
representational structure should have arbitrary limits on its extent. Rather , It should be an
expansible system, one that can easily and uniformly include additional knowledge about both
previously defined domains, and new areas. It Is convenient if the selected representation is natural,
Its (basic) knowledge both readily apparent, and humanly understandable.6 And, perhaps most
germane to the current discussion, the (deal representational organIzatIon should be able to employ
the most natural format for expressing each “fact”, be it as a static rule, or a computational
algorithm.’

Section 1.3.1 Declarative versus Procedural Representations

SectIon 1.3.1.1 The Power of Procedures

Let us consider that last qualification in some greater detail. We consider the existence of two
species of knowledge. Deciarative knowledge has each particular fact represented as a sim ple
statement, such as Laoinedon was Me father of Priain , or AU red obj ects on tlii table are blocks.
Procedural knowledge embeds the given information as an algorithm. Typically, To get to Me train
station , make a right at Ms second light , and go thre. blocks or, To find if there is a green p,ramld In a
blue box, check each object in each blue box, (to i.e If it is a green pyrumld) . What Is given here is not
so much a particular piece of Information, as a well defined algorithm for determining the desired
factor or achieving a desired state of the world. This distinction has often been characterized as the
difference between knowing what and knowi ng how.

Procedures are algorithms; recipes for action. in this respect, they model any well learned activity.• One does not do long division by reference to Peano’s axioms, considering at each step the set
- 

theoretic meaning of the computation. Rather, one knows “how to divide”, and does, just as one can
recognize the checked king on a chessboard without considerations of orthogonallty and color, or can
find a phone number In the phonebook withou t requ iring a derivation of the Interpolation search
algorithm. Here we speak of using procedures to model derivable, though well defined, recognitions.

Nor do we have to limit the power of our procedures to human size tasks. For most tasks requiring
“ inte lligence ” , a computer Is not (or, is not yet) a match for a human. However, It Is fair to recognize
that there are some things (well defined, complicated algorithms, preferably requiring either a long
computation of a great deal of memory) which computers can do better than humans. A procedure
that knows how to solve analytic integrals could use such a solution as a building block in some
longer derivation. Here the solution of the Integral is a single step In the larger deduction, though
the actual computation involved in the integration might well be great.

We will explore these notions in some specific cases in sectIon 1.4.

It is worthwhile mentioning that our notion of procedural knowledge differs In several important
respects from a similar (and probably more familiar concept): the procedural a.i. languages, of which
the major exemplar is PLANNER [HewItt7l]. These languages are similar to our aforementioned

S Natural form psrmi$s •..er composition, vorification and und.r.tandin~ of the rsprsS.MPd syet.*

7. Alpclthm hers Is sisant to also inciuds the .mplsymsnt .f physical doris.. by our mtndipnl soehino. Fir instanso, . robot
dsin vIsual anslysi. ml~hl si ss apscial proc.soir, squi~ipsd with Islavisiss cssisra, this found Wp. or rs~isno li lt. vIsual S laid

• ~~~~~~~~~ ~~b

• _ •.._. •..~J......_.____.. _,L ~~~~~~~~~~ •L - — t~ .J - ±_ L __
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scheme, in that much of the knowledge of programs written in Planner is embedded in procedural
definitions They diffe r, however , in that our nouon does not include the iniplicu control st ructure

• (particularly pattern matched invocation) doiritnanc in the procedural languages Our functions state
h~ru to compute some value~ there is no exp licit or implicit demand when the actua l computation
should take place Additionally, we shall see that our notion of the procedure to compute x is
subordinate to our notion of x , we discuss this mapping in section I.S.I.4.

Section 1.S.l.2 The Defideascics of Procedures

• One might well expect . after reading the previous sect ion, that we are about to hoist a banner ,
Knowled ge • Procedure Not so We recognize that procedural representation is sometimes
appropriate. Most particularly, when one knows how to compute some value, computing it might
well be the best idea

Rut procedural represent ations have their limitations For one thing. procedures are best wi it ten in
a structured and modular form That is. we would like the procedure that computes X to be able to
do that without regard for “the rest of the world”, (subject , of course , to conventions about data
structures , communicat ions , and the like). In the same spirit , and with in those assumptions . we want
our procedures to perform the most ett~cient computation possible I~ut this black boxing of a
procedure presupposes that the internal st ructure of the procedure will not be examined . 1-lence, we

• will need some other w ay to ex press the relationships between procedures . and the invaz iants of the
part icular procedural computation. In effect , we may need to reason about some procedure . and the
program semantic formalisms avai lable to do this are not strong enough Note that our notion of Me

p~~edure as a black box corres ponds strong ly with human limitations on intros pection For iriu ~~~~~

no one can describe how he sees some scene, for exam ple, what makes a particular object red

This f ixation of the procedural definition delimits the possible uses of a given piece of knowledge
Ty pically, procedural representatio ns of enti re predicates (as embodied by most purely procedural
languages) implicitly specifies the only uses of that knowledge. Thus, if we know that 4/i compu ter
scien ce graduate students are bright and overwork ed we may want to use this knowledge to prove that
Tom, a computer science graduate student is bright, or that Dick, who is not overworked , can not be
a computer science graduate student , or chat , combined with the fact that all A l .  graduate students
are computer science graduate students , there is no dumb Al .  graduate stt’dent. 8 The procedural
language formalism demands that each possible use be associated with an explicit occurrence of that
infor mation.

Lastly, procedural representations dependent upon computation on completely specified objects. such
as a complete data base of objects , will be unable to reason about situations involving incomplete
knowledge and multip le representations.

To summarize , while procedural representations are often quite powerfu l. they retain certain
madequacies. Our list is by no means exhausted ; comparison with section l.~ show several ot her .
obvious deficiencies . A more complete discussion of the problems of purely procedural
representations can be found In (Moore7SJ

If the meaning of natural language (that is, English, Latin, Basque ) expressions were more
• precisely defined, and suitable for algorithmic reasoning, then perhaps a natural language

6 The.. b.i,~C a sh lht ssl .na,on ~f idsas at Ww~o~rad in (Wins rad75~

.~~~~~~ ~~~~~~~~-• • • ~~~~~~~~~~~~~~
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representation would be appropriate. Language is, after all, one of the major mediums of thought.
But the “pretend it’s English” ~Hayes77] approach to representation runs into problems of inherent
ill-definition. What, after all, does this English structure mean? And how is it to be used?
Language, we see, reveals itself to be too imprecise and ambiguous to serve as our representation.
Rather , we need a firmer epistemological foundation for our knowledge system.

Sec ioii 1.3.1.3 A Declarative Alternative

Modern formal logic is the most succen jut precise
lang uage every developed to express human thoug ht
and Inference. Measured across any reaso na bl y
broad spectrum , includin g philosophy, linguist ics ,
computer science, mat hema tics and ar t if ic ial
intelli gence, rio ot her fornrolisin has been anything
like so succe ssf u l.

P. 1. h ayes9

To fill the gap between a natural language system and a pure procedural representation , we propose
the use of formal logic, particularly an extended first order predicate calculus.~

0

Logic was originally conceived in an attempt to precisely delimit the nature of human reasoning.
This is a theme extending back through to Aristot le. It is a notion that reached its apogee by the
middle of the nineteenth century, perhaps best exemplified by George Boole’s magnum opus , An
investigation into the Laws of Thought, OS) Whi ch Are Founded the Mathematical Theories of
Logic and Probabilities.

Modern logicians are not quite as dogmatic on this point. it is now recognized that there are many
domains which formal logic does not (yet) model well. Particularly of interest to those of us in A .l.
are the various model logics of knowledge, belief, tense and ability. These are areas of current stud y
in both mathematics and philosophy. Until these problems are resolved, we can hardly assert the
universality of formal logic as a representational system. Even so, using formal logic for computer
representations has several advantages:

1. The sentences of first order logic are fairly natural. With a little practice , one has no
difficulty with either composing such sentences, or understanding the meaning of a given sentence.
In fact , they have a much clearer semantics than ambiguous natural language. Similarly. it is fairly
easy (for humans) to translate between many natural language constructs and first order logic.

2. First order logic has explicit quantification (V and 3). Some other formalisms, particularly
network formalisms, have no ex plicit method of producing existential quantification. Other network
formalisms lack ex plicit negation.

3. There are partial decision procedures for first order logic (procedures which can sometimes
decide the validity of a WFF), and decision procedures for parts of first order logic (such as

9 fHayss ?7J

10 The “first order logic” u,sd in this volum. is the propositional calculus (connsctivs. A V • . and .) .,ctsndsd by the ncius,on
of pr.dicates, quantification (V .ed 3), function. (op.raIocs), 11 notion of squsidy, and ths ability to do inf.p.nc. by compuistion ,n a
s.vn ani.c modal.

4
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propositional logic with equality and monadic predicate calculus). Here we look ahead to the
heuristic side of the A .!. problem. The validity of some first order logic sentences is determinable by
certain decision procedures. In particular, the tautologies of propositional logic, tautologies of
propositional logic with equality without substitution in functionals, and monadic predicate calculus
are all examples of decidable logics. A reasoning program using a first order logic representation
could easily take advantage of these procedures. Similarly, there are heuristic procedures for first
order logic. For example, the various forms of resolutions are heuristic method s for logic.11 As
automatic theorem proving progesses. these better and more powerful procedures become
immediately available to a logic based system.

4. First order logic satisfies our criterion of generality. It is obviously not tailored to one
particular domain. One hears a complaint from the gallery, “But logic is for mathematics.” Perhaps
so, but this paper is especially a demonstration of an application of first order logic to a non-
mathematical (though well structured ) domain.

5. Knowledge can be added to a declarative system through the addition of lemmas and
theorems. There should not be any need to k now how this new information the Interaction will with
the current data base, other than to insure that no contradiction, deducible by the heuristic portion
of the program, is thereby introduced.12

6 . We propose a method for keeping the power of procedures that know how within the
framework of the formal logic system. In effect, have some of the best of both worlds. We consider
this notion In greater detail in section 1.3.1.4.

7. We haye within first order logic a good mechanism for describing the equivalence of
different representations . We can do so explicitly, especially through the use of the equality relation,
and universal generalization.

8. In some sense, the alternate representations currently extant are just other , and sometimes
fuzzier forms of logic. For example, most of the notions currently titled semantic networks are as well
expressed as well formed formulas, deductions and representations in one can be mapped to the
other . Similarly, anyone familiar with LISP must recognize the interchangeability of data and
functions. But there is an inherent problem with other systems that formal logic, with its strong
syntactic and semantic restraints does not share. The meani ng (semantics) of the particular
constructs within these other representations are not well enough understood to be completely
analyzable. Non.monotonlc systems are particularly prone to this problem. The truth value of’ the
various functions within systems of this kind Is frequently tied up to the heuristic mechanisms
involved in computing that value. Statements about such systems , for examp le, whether they can or
cannot deduce some particular result, must therefore lead into a dynamic analysis of the action of the
entire system. And such analysis, as our brief experience with program verification should show us,
is a difficult problem. Formal logic systems, with their notion of truth , have the property that
any Ming once deducible, will remain deducible des/ rite the addition of any other infontiation (axioms).

I I. W. irs riot .5.5,1mg that on. want , to rsaso n strictly by using rssoiution (or that on. even w ants to u.s rssolut ,on at all).
Path ,, ens wanua to us. us.ful infs ,.ric~ nil. ., arid, in certain Sircum staness , reso lut ion might b. usefu L

I 2. Wa ara , admittadly , skimming over a pair of important points. Wa have hers proposed a consis lsnt data bass , or at isast on.
wh os a incons,sts nc ,.s are not apDarsnt . But dstarmining if a s t  of asi oms is consistent is , in gsn.r.i, undecidable Whether on. wa nt.
• con s ist ent data based Is an arguab le question It is csr ta in ly not true that huisana issintain a eonsist.nt knowisdg. sy ,t.m. How.v.r,
ws sash hat’s to modsl human ssl srna l actions, not intarna l procases .. Secondly, we have pushed of f to 5k. problem spacs searcher the
qu.stion of what to do with this additionai information.

-- - —- , - -“..l ~~~~~~ _ _____  ____ _____
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Systems such as PLANNER ([Hewitt7 l]. [W lnogradl2j ). where negation is used interchangeabl y with
a truth value that is, effect ively, I can ’t find a counter examp!e. lack this property .’3

We are not alone in recognizing the importance of a uniform semantics for a representation system.
(Hewitt73] considers this issue in detail in his design of his procedural ACTORS formalism.

Perhaps a word on the value of first order logic, in contrast to higher order or simpler logics. It is
clear that purely propositional logic is insufficient for our task ; one of the major reasons we want
first order logic is Its ability to ex press quantification and predicates.

Dismissing higher order logics is not quite as easy. First order logic is capable of expressing set
theory, and therefore , all of mathemat ics . It is not obvious that a higher level logic might not
provide a more convenient expression for some real world domains. However , first order logic is
complete; additional axioms can add any needed extension. Higher order logics are not comp lete;
not every true statement has a derivation. Additionally, first order logic provides us with a well
defined semantic model; the more interesting higher order logics lack this feature . One of the
demonstrations of this paper is that an appropriate semantic model can be a very useful aid to the
deduction process. So, we consider first -order logic here; this is a is very powerful logic, with a large
existing literature on its manipulation . Note that some of the things that computer scient ists think
they need higher order logics for can be accomplished through the use of axiom schema (see ,
perhaps, sections 2.2.4. 1 and A.2.l) in first order logic.

It is important to mention that use of a first order logic representation system is not at all the same as
marriage to a resolution style proof mechanism . Pure resolution proof checkers have proven to be
failures. While such an algorithm might be a small portion of a full artificial intelligence system , it
is clear that it cannot be the sole (or even the major) inference mechanism. We mention this caveat
because , unfortunately, formal logic and resolution are “married ” in the minds of too many people in
the A.!. community. What we are dealing with here are primarily representation issues; even to the
limited extent that we touch upon heuristics, we wish to state that we are not Implying a resolution

• st yle approach.

We also wish to emphasize the distinction between representational formalisms and representa tional
data st ructures. A parallel to automata theory might clarify this difference. There are many
machines that retain a given degree of computing power: various automata equivalent, for example,
to finite state machines or Turing machines. Any class of machines can solve certain problems.
though some particular machine within that class might solve the given problem more quickly or
require less storage to do so.

The state of representational formalisms is similar. Certain formalisms can express certain truths
about the world. Formalism have certainly not reached the Turing level of expression; there are
many issues of representation we do not how to adequately ex press. A mong them are the issues of
representing knowledge about how to use knowledge, representing belief’s, and representing
chronological developments.

For any given set of axioms and Inference rules, there is a set of statements provable from those 3

axioms and rules. In a complete logic, such as first order predicate calculus, the set of provable

53 This is not to asSert h u t  5k. truth value es p rass ad by lack of a cou nter •xam ple is not a u.sfuI heurist ic quant ity.
4owev ar , it is probably b.It.r if star r.p,.aent.tional syats ma rscognuza the d,.tinct ions betweon prevsn” and “unable to prove, but
curr.ntIy a,,um.d true”.

— 
~~~~~~~~~~~~~~~~~~~~~ —-.-~~~~-. - ~~~~~~ L~ ..... ~~~~~~~~~ 
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theorems is equivalent to the sec of true statements. Clawcally. an axiomatization is adequate if all
of the desired truths can be derived in it.

Now , A .!. is a more practical sort of an affair. It Is not merely sufficient for us that a given result be
eventually obtainable; we ideally desire two other things: that the result be concisely derivable, and
that there be some methodology a program could employ to find that derivation.

The second of these Is the heuristic adequacy problem, and is beyond the scope of the current
discussion. Rather , we are concerned with two things: finding representations in which what we
want to say can be expressed, and Insuring that that expression is of’ manageable magnitude. We
call this the search for epistemologically effective representation formalisms.

Epistemologically effective formalisms are not a question of data structure. Rather , it is the
combination of classical epistemotogical adequacy (expressiveness of logical language) with an
appropriate set of inference rules to allow reasonable proof to be obtained.

We notice that one of the things that human problem solving does to shorten derivations is to
employ both standard deduction, and a quicker noticing a conclusion , something we have associated
with observation, and suggested can be performed by procedural computation on ground instances.
We ex plore this combination in the next section.

Section 1.3.1.4 A Suitable Marriage

We desire a composition that will permit us both the effective advantages of procedures, and the
expressive quality of declarative methods. We also want that this unification retain the
mathematically valid foundation accrued by use of our original formal system.

To perform this marriage, we turn to model theory, and postulate the following. We assume that (as
an underlying structure) we have a LiSP world. This world contains individuals (S-express ions.
hereafter abbreviated Sexpers), and functions and predicates in the usual LISP - lambda function
notation. Above this world, we have our formal first order logic system. the usual collection of
individuals, variables, predicates, and functions. We then create a map between our logic constants
and the LISP world model, prescribing for some constants a LISP Sexpr, which we then assert wIll
act like that constant. Thus, In a system reasoning about arithmetic, we might map the individual
constants ONE, TWO and THREE to the respective LISP atoms 1, 2, and 3, the predicate < to t he
LISP predicate LESSP, and the operator • to the LISP function PLUS. Our logic system would
then be able to derive the validity of sentences using these constants by invoking the computational
mechanism In the LISP model. For example, the sentence 2 <( 1 • 3) would be seen to be semantically
true In the LISP model, and therefore valid in the formal logic system.24 In effect, we retain the
ability to easily compute how, when we can compute, while still being able to reason about the
computations. We have not increased what we can say; however, use of this device will free us to
talk about more Interesting things than, for example, set theory and Peano axioms.

We hope that the resulting system will retain the advantages of both; that the computational
functions can be Invoked when most appropriate, while retaining the powerfu l descriptive ability of’
the formal logic represenhatlon.

- 

I 4 Fir a tore formal saplariatiefi sf this rsl.ttenship, ..e !Weylwavshllj
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Earlier (section 1.3.1.1) , we suggested that the most appropriate use of this computational ability
would be to model the human ability to observe . Persisting in this notion, we dub our semantic
procedural attachment , our Eye. Thus, for our chess problem, we have a Chess Eye . Similarly, an
automated physician. ca pable of doing its own chemical analysis, might perceive this knowledge
through its Lab Lye. or an electrical design facility might consult a simulation Tech Eye to verify the
correctness of a circuit. An y computer individual performing a test on the real world will need to
employ some sort of device; quite likely, this device will be some computer system “called ” ob ject .
The intelligent part (as opposed to the perceiving part) of our computer individual could easily refer
to this perception action as the evaluation of the particular device function , just as the semantic
model evaluation performs simulated functional evaluation. Hence, computation can be used just
like perception.

Sect ion 1.3.2 Our Scheme

To summarize: we have, as our representational framework , a system founded on first order logic.
We declare predicates . functions and constants in this logical system, and express some of our

• knowledge as axioms of the logic. Additionally, we wi ll attach functions and constants in our LiSP
model to the constants of our logic system . and will use these LISP objects to compute the values of
predicates and functions (attachment of semantic procedures). The legal operators of our system are
fundamentally the rules of inference of the first order logic; we extend them to include corn put ational
evaluation within the LISP model (our EYE) , and whatever decision procedures for this logic we have
availab le. We use this system to examine the topography of long reasoning sequences.

It is perhaps useful to emphasize that this structure constitutes the framework within which we
work . It is, we believe , a broad enough structure to accommodate most consistent formalisms for any
particular problem. We will, in the following chapter , be demonstrating the feasibility of this
framework for a particular formalization of the given chess problem; in the concluding chapter
(cha pter 5), we will consider how alternative formulations of the problem might be expressed within
t he framework of first order logic with semantic procedural attachment.

We presume the reader is more familiar with the inference rules of predicate calculus than with our
particular implementation of semantic procedural attachment. Perhaps a word about simp lification
would be appropriate. Our simplification system employs two major computational mechanisms. As
initially conceived , its purpose was to use the attached functions to compute on constants of the logic
system . Thus, one could take a (constant ) board, such as the puzzle board of our problem (figure 1)
and compute a predicate (fo r examp le. Black is in check) on It. It has since been extented to include
the ability to evaluate WFFs quantified over finite sets .~ Thus, one can simplify a predicate that asks ,
Is there a black bis/s op on a square of Me given board.2 We shall consider in the section 5.8 various
desirable extensions to this scheme.

Proofs of the size we contemplate would be impossible to write (correctly) were it not for the
existence of a mechanical (computer) proof checking. We are fortunate to have available, for
verification of our proof, FOL. FOL is a proof checker in the first order logic. It originally checked
proofs of the natural deduction style of Prawitz (Prawitz65); it has since been extended to include

i 5 The psrformaiucs of thi s computation var,as, of courss . with the a,za of the sets involved Pract ically, we hive bean patient
5nou~h to check W~F’. with up te 2 i2 caa.e

6 The simp hf ,cat ion mechanism , as embodied in FOL, also performs other wi fare ree tasks, suc h as dec is ion proc adura. or, the
so rt hisrerchy, and mfe rencss about the membershi p of S ruts eats 
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decision procedures on tautologies, and the begrnings of deductive ability within a LISP model
(what we have been denoting semantic procedural reasoning or an eye).

This proof’ checker acts much like the Missouri Program (“show me”) described by Mccarthy and
H ayes [McCarthy693. It “allows the ex perimenter to present tt proof’ steps and checks their
correctness”.17 The various decision procedures incorporated Into FOL may be viewed as either
making this Missouri Program more discerning, or as being steps towards the Reasoning Program
mentioned in that paper.

The bulk of the remainder of this paper presumes knowledge of the FOL system. An introduction
to FOL, of adequate detail for understanding the FOL used In this paper, may be found in
(FiIinan763. A full description of the syntax and semantics of FOL is the FOL manual
~Weyhrauch77J.

Section 1.4 Analogs: Other Eyes

Back at the beginning of this thesis (section 1.1) we mentioned that this is primarily (at least by the
measure of physical paper use) a demonstration of the proof of’ a chess puzzle. However , we are
concerned with the general representation issues, and find it profitable to present a few short
examples of our representational scheme applied to some other domains, particularly emphasizing
the employment of procedural Eyes. In contrast to our major proof’, which is a highly detailed
though unidirectional derivation, this detour is best perceived as speculation and hypothesis. We
are not presenting a system of axioms and attachments for these worlds, but rather, a brief overview

of’ how these techniques might be applied in them.

It Is Important to point out here that this section is not dealing with how perception might be
performed; rather, we are describing a system that, through the semantic procedural attachments, Is
able to talk about Its perceptions in the same language as the “rest of Its thinking”.

Section 1.4.1 The Mechanic ’s Eye

We consider first a representation to embody some of the knowledge employed by an automobile
mechanic in diagnosing a malfunctioning automobile. Of course, whatever we say can be related to
the maintenance of any similar machinery. What must such a person know? Primarily, the
mechanic knows the interconnections and functions of the various parts and subassemblies,
particularly with an eye towards recognizing malfunctions (and potential malfunctions) of individual
components.

k How could a computer be employed in such a task? One imagines an extension of the current
engine electrical analysis systems. Instead of (or In addition to) displaying the current levels and
frequencies of various wires on a CRT, such a monitor would pass the Information back to the
computer through an appropriate ADC. Special devices might be attached to, say the exhaust pipe
or water pump, to measure composition or pressure, and convert these signals to digital values.
Effectively, these devices would permit the machine to observe the state of the running engine. They
would act (combined with appropriate functions to transmute these real time signals) as part of the
computer’s eye.

Typically, our automated mechanics would have axioms such as:

17. (McCa,tliy69j p~ 469 

_ _ _
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Vx .( Voltage( Battery( x kM inivoltage(Cartype(x9).N EEDR EPLACEM ENT(Battery(x)))

which would be read to mean: for all cars x , if Me voltage on Me batters of x Li less than Me ‘rtinlmuin
voltage reqsUr. ’d for cars of x ’s miake, Men Mat battery needs replaceittent (or repair). The mechanic
program could then simply observe (by simplifying the given formula) whether the battery was
performing correctly. Note that (from the point of view of the logical language level) we are able to
perform both the perceptual task involved in measuring the battery’s current, and checking (in the
mechanics manual) the appropriate voltage for this car by employing the same mechanism. From
the computer’s point of view, observation inside its “head ” is the same as observIng the real world.

Given the prevailing technology, we can hardly expect the computer to fix the car alone. Rather , we
imagine it to be the partner of a human mechanic, who could both ask help from the computer . and
provide non-digital measurements. The computer might request the tire-tread wear statistics for the
car , and then ask the human mechanic to push the front end up and down. His reply (and the 

-~~~

questions) could be used In (and generated by) evaluating:

Yx.3s.((ZR REGULAR.WEAR(Tire( x ,s))ABOUNCES(x ,s))’
NEEDREPLACEM ENT(Shock-absorber(x ,s)))

That is. If. for a car x , Mere Li a si de of x (left-front, right.rear, ...) whose tire is wearing irregula~1y. and
which bounces after pusMng, Men the shock absorbe r on Mat side of Mat car needs replacement. The
simplification (computer observation) would request the appropriate Information from the human
mechanic, in addition to doing the calculations.

Meta.knowledge, that is. general rules applicable to systems, might also be expressed axiomatically:

Yj k .((CONNECTED(j~k)A CURRENTTHROUGH ( J)A-’CUR RENTTHROUGH (k)) ’
NEEDREPLACEMENT(k))

or, for any two electrical componsn:s j  and A , If j and A are connected electrically, and Mere Li current at
j ,  but not A , Men A Li defective. For example, if there is current leaving the distributor, but no spark
at the plug, then the ignition wire is broken. By looking at the electrical connections, our automatic
mechanIc sees the validity of any instantiation to this axiom. But it Is up to the main mechanic
program to (heuristically) decide what instantiation to make.

Section 1.4.2 The Personal Assistant ’s Eye

Here is a second example of the combination of procedural observation embedded in a formal
system. One thing I would like of my computer, is for It to be my personal assistant , effectively, my
secretary. It should be capable of tasks such as scheduling appointments, planning trips, and making
coffee. To do these tasks most successfully Involves both actions of a simple procedural nature (such
as table look up or message transmissIon) and of deductions of a more complex, reasoning variety.
For instance, I might want my assistant to arrange a trip to Pittsburgh for me. To accomplish this
task , the program would need to look up the airline schedule, relate the information found to its
knowledge of my flight preferences and other appointments, call the airline and hotel for
reservations, find a way to and from the various airports, print a list of directions, and so forth.
There are several different abilities involved here. The program must reason about my knowledge
and desires (it doesn’t need to tell me, for Instance, how to get to the San Francisco airport -- but I
might need information about ground transportation In Pittsburgh). It should realize that I prefer

- .~ 
-
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flights with a movie and meal. It might believe that I have axioms telling it to use the least
expensive flight, or to avoid a particular airline. But it does not need to do an involved reasoning
sequence to find out what flights exist . Rather , it can see the flight schedule merely by lookIng It up
in a table, an observat ional activit y . We see that we need a formalism strong enough to be able to
reason about knowledge and desires, but which can still efficiently solve simple algorithmic problems.
The semantic procedural attachment mechanism to a full logic seems the appropriate solution.

My secretary program would (in this ideal, non-existent world) also communicate with other
programs and machines. It could call the airline and hotel computers to arrange the reservations .
Another Interesting communication domain involves scheduling appointments with the programs of
the other people on our system. Our ideal program can observe my schedule (table lookup), consider
my preferences ’(avoid appointments before 11:30), and send and receive messages from the other
secretary programs. Note that the acts of sending and receiving are procedural actions, naturally
expressed by executing functions. The updating of various tables associated with particular states
accomplishes a large portion of fixing the tense logic. Within this general formalism, this updating
and searching is accomplished by attaching the executing procedures to the associated functions.
And this system allows us to reason about the actions of sending messages. Our system need also be
able to distinguish between thinking about sending a message, a purely gedanken experiment, and
actually sending it. Thus, it can reason, if / send him a message asking for an appointment tomorrow , it
will probably gi ve us a /0.00 am meeting. But If 1 ask for a more preferable time, like 2:30, 1 may get
it

Making coffee involves turning on some real, physical device. Once again, it is accomplished
through some function call. We imagine, perhaps, an execution of the COFFEE UUO. Once
again, we seek interac uon with the real world represented by the use of a function call. Needless to
say, simplification of some other function permits the program to observe when the coffee is ready.

Section 1.4.3 The Engineer’s Eye

As our last example, we consider the representation of knowledge for a computer engineer.
Basically, we will wish to describe physical systems to this program, and have it verify properties of
these systems. For example, our engineer could be given a circuit, and asked to prove some
functional property of the outputs, relative to the input currents, or given a system a moving bodies
in some force field, and asked to determine the possibility of collision. Such a procedure might be
part of a hardware design and verification program, or a module of a computer aided instruction
system.

Our system will know general laws about objects, suitably expressed as formulas of our logic. Thus,
a typical axiom about moving bodies would have

Yx t v~ a.s(x,t)— .5’ aat2 • v1u~t

or, the distance reached by body x, by time t, is the product of the (constant) acceleration of x
between t and t~

, and t2, plus the distance traveled by * due to its Initial velocity during interval t.

The program must be capable of both manipulating such formulas as formulas, and using them to
produce numeric answers. The natural rules allowing substitution of equals, and instantiation of
axioms allow for the formal manipulation. When a program using such a representation needed to
solve for a particular value, in could observe (vIa the simplification mechanism) and compute it.

: . . ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Our engineer might also be called upon to design systems. Humans have ready access to familiar ,
solved subproblems . For example. adder: and registers are the components from which human
designers build bigger digital systems. Our computer engineer can have a list of solved subproblems
of his own, and (with an appropriate procedural call), can consult this list for the correct device.
Once again, we have an observational operation obtained by procedural semantic attachment within
our general formalism.

SectIon 1.5 Why Cheu

It Is not that the games and mat l,emaeical problems
are chosen because they are clear and simple; rather
it is tha t they give us, for the smallest initial
structures , the greatest complexity.

Marvin Minsky 18

The end of our detour. Though concerned with general epistemological issues, we are presenting,
primarily, one particular example of the use of our representation system. As we stated in section
1.1, this thesis pivots around the demonstration of a solution of a chess puzzle, within the fir~t nrrter
logic (and semantic simplification) formalism. It Is perhaps useful to detail some of the j ustification
for examining puzzles about chess, and not some other problem domain.

SectIon 1.5.1 Structure and Search Spaces

There are several dimensions to be considered in the selection of a domain for A l. research. The
primary one, shaping the entire model, is the degree of structure inherent to the task. Recall that we
described computer Intelligence in terms of a search through a problem space (section 1.2). We
introduce the notion of measuring the structure of this space, along two different dimensions. Such a
space can vary both in the specificity of its elements, and the degree of definition of the operators for
transferring between these elements. In general, the more limited the elements of the space, and the
clearer the transference operators, the more amenable the problem is to computer solution. The
current generation of A l. programs are mostly concerned with those problems for which there is
typically a fairly large number of states, but clear rules for state definition and transition.
Intelligence for programs such as these lies in selecting the appropriate heuristics for navigation.
Beyond the ability of present machine intelligence is negotiation of spaces with ill specified operators
or states. Effectively, we have no programs that can creatively generate and select operators and
states; we have difficultly representing the operators and states of ill-structured domains.

Spaces are also distinguished by the size of their solution sequences. Obviously, the fewer the
number of steps needed to solve a given problem, the easier it is to obtain the solution. With
several choices of applicable operators at any point, longer solutions can become ex ponentially
difficult. Typically, current problem solvers produce long, but certainly not very long, solutions.

This measure is reflected in the current “state of the art” of generating “smart” machines. We see
successful “ex pert” programs, dealing with well structured and relatively small problem spaces,
mediocre mathematical programs, dealing with very well structured but very large spaces, but no
“creative” or “common sense” programs, dealing with both large and Ill-structured domains. More
specifically, the better one is able to formalize the rules and structure of some domain, the more
successful one’s program can be at “solving” the problems of that domain.

I & (Mink.ySSJ~ psi. 12.
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In this thesis, we are concerned with extending the length of solution sequences, within the context
of fairly well structured problem spaces . We view this activity as laying the groundwork for much
longer and more complex reasoning programs. Effectively, we need to know the lie of the terrain,
before sending our computer out to transverse it. We also need a measure of the obstacles and steps.
to be considered in designing the right “legs” for our exp lorers, gauging the difficulty of the course,
and, perhaps, the building of special tools.

We are not presenting specific methods for improving the most ill-structured domains. Rather, we

seek to extend the present structured domains (though not artificially well-structured domains). More
particularly, we want a problem space that is not purely artificial but, rather, corresponds to the
irregularities of natural systems . We want a problem we can solve, not one we must defend from
semantic object ions and different interpretations .

Similarly, this domain should be complex enough to require long reasoning sequences. Most hard
problems of the “real ” world do not derive their difficulty from the depth of the reasoning required
for their resolution. Rather, problems arise out of the poor structure and broad knowledge base
Inherent to “real” domains. The problem is not then not merely the storage of information, but,
more importantly, its selection.

One domain obviously satisfies some of the above criteria: mathematics. Deduction sequences in
mathematics can be arbitrarily long; mathematical proofs are presumably not (very) open to
qucstions of semantic validity. But the mathematical domain retains shortcomings. parsimony
within mathematical structures that is not paralleled within more synthetic systems. Effectively, we
find mathematics too well structured a domain.

So we step away from orderly mathematics , and towards a more ill-structured task. By considering a
game system, with rules delimiting the domain, we acquire a well specified structure. We will not be
bothered with semantic quibbles, for it is clear from any state what legal transitions exist. But with
as old and dynamic a game as chess, we also get an arbitrary and irregular rule system. As we shall
see in chapter 2, these irregularities dramatica ly increase the complexity of the representation.

Chess retains yet another appeal. We profess to be interested in extending the size of deduction
sequences. From the (relatively) small set of initial rules, we can produce problems of enormous
complexity. Since our goal is not to test the sIze of initial structure we can store,19 we find this an
additional boon.

Section 1.5.2 Chess and the Eye

Chess puzzles have yet another attraction. We defined one of the purposes of this paper as an
examination of the semantic simplification mechanism (our form of observation) as applied in
detailed deduction sequences. Chess provides a good forum to display this notion. Our chess eye
can roam freely in this world. It can, for exam ple, be used to look at a board (or board fragment),
and determine a checking or movement relation. Various theorematic knowledge, such as limits on
the movements of pawns, can also be incorporated Into the functions that make up the chess eye.
And we permit our proof to observe the values nf .~~ 

. ~‘ssions. rather than requiring their
derivation. All these effectively parallel the observational auiiity of humans.

I,. Our u.n~,, topthsr with ths proof ch.cksr, .lr..dy as his avaiiibli momsry of our computor syeIs~

___________________ ___________ 
________________________________________________________________________-~~~~~~~~~~ -,~-~~~- . -.-— ~~~~ .i: ~~~~ ::~~~~~ ~~L~~~_



I

Page 1€. Introduction 1.5.3.

Section 1.5.3 Which Chess Puzzles

Before the reader becomes too mislead, let us state that we are (by and large) not talking of chess
puzzles of the mate in n (n — l,2,3_..) variety. For sufficiently small n, such puzzles become trivial
tree search. Rather , we are examining the world of ret rograde chess problems, puzzles where
examination of a board fragment leads to deductions and constraints about the moves that led to
that board.20 Retrograde chess problems (and their solutions) can be extremely long and complex; a
suitably difficult domain for analysis.

Let us also note that we seek these deductions from chess “first principles”. That is, we will derive
our solutions (by and large) from the rules of chess, rather than from the “theorems” familiar to
chess puzzle solvers . This serves both to display the generality of our system, and to preserve our - -

“honesty ”, for from a suthuently powerful set of lemmas, any theorem is easily proven. - 
-

Sect ion 1.6 Topography : The Path of Our Proof

We continue our descent from the general to the more specific. As we stated in the introductory
summary (section 1.1), our attention is focused on the representation of the knowledge and reasoning
implicit in the solution of one particular chess puzzle. Having kept the reader waiting long enough,
it is perhaps time to state and solve that problem. -~~

We examine the FOL solution to the chess puzzle illustrated in fi gure 2. It is a difficult problem, one
whose solution requires inferences both about the given board and the game that preceded it.
Deducing the identity of the fallen piece requires the use of many of the more subtle nuances of the
chess rules.

20 Thu rS.d.F mt.r..tsd in otlior •~amplss of r.Iro~r.ds chuss. prøblsmi is r.fsrrsd to (D.w.on73~ Whuil. thu, book is
primarily “fairy ” cPus., problsm., ft also contain. a nuobsr of r.troVsds analysis puizlsa.

_______________________ ____________________________________________________ 
L
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r4~~ ~
j

1~4

~~r4~~ -
~

~r4~r 4 i~ i~r%~r4~~~r%
/J place has /allesi off of the board fro m the squar. marked X.
What piece was I t? Tills position was achieved In a legal chess
game, though there Is no presumption th at either p layer was
p laying to win.

fi gure 2

The reader may be unconvinced of the difficulty of this problem, and the complexity of its solution,
if he has not himself attempted its solution. So we defer Its answer to the next page. r

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~,. ~~~~ :. ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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SectIon 1.6.1 The Solution

The reader has, of course, by now deduced that the piece that fell off of the X.ed square was the
white queen’s bishop. If the reader had reasoned the problem In sufficient detail, his analysis
probably resembled the following.21

SectIon 1.6.2 The Reason

1. We see, in figure 3 the white rook checking the black king. The king’s check is a function
of only the boxed three squares of figure ); hence, the king will still be In check no matter what the
fallen piece might have been.

1.1. It therefore must be black’s turn to play.

1.2. And white must have made the last move.

ç~5~r4~~
~ r% r%r%~~ r 4 r 4

~~~ ~%,
u& //~1////

~ ~‘4
The whIte rook checks the black king.

It ii black’s turn to play.

figure 3

2. What was white’s last move? There are several ways a check can be made. The checking
piece can make the check, the check can be discovered by a piece moving out from between the
checked king and the checking piece, the check can be discovered by the removal of a pawn
captured en passant. To these we add a fourth method, to accommodate our (to be developed)

21. We ob.srve thus fsl$owm dies, notation in this discussioft Squsnas are nainsd first by thus color of the perepsctiv. side
(Whit, or Black), thsn deff.r.ntiat.d a. b.in on thu s Kind’. or Qus.n’s sids. A modifyin g piscs (Rook, kNlh t, Bishop) may ho ussd to
select thus appropriate coliniwu, while thus final digit describse thu. di.t.nc. to that squar, from thu. edg. of thus board. Thu., thus whit s
qusom bsgins thus cams en WQ 1i she is làewl.s on 008 Thu. a~usre that thus piec, fall from, in out ss.mpls, is both BKP5 and WKR4
Cheespisces sri similarly ,ismsd, by color , suds and rank. Thus, thus white kin is WK~ thus pawn (is front of black’s queen sid, rock
b.comea BQRP (black qusen’s rook p.wn). This is basically an abbreviation of the standard “En llsh” system of chess names. Ws shall
psr .iet in this amine conv,ntioru tPwou(hsvt the ,emainsr of th i , paper.

- - _________ . ..  
__I~~ _~_,~~.
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formalism. As we will consider the king to be the “moving piece of a castle, we consider the case
when a just castled rook has made the check .

2.1. The last move was obviously not a castle by white. The white king is not
on one of his castle destination squares. Nor is either w hite rook on a square
reachable by a castle .

2.2. This check could not have been made after a capture en passant. En
passant capture leaves a white pawn in the on the sixth rank . There is no white
pawn on this row to have just captured en passant . Hence the last move was not an
en passant capture.

2.3. Obviously, the only square the rook could have moved from is WQB7
(white queen’s bisho p seven, the distinguished square in figure 4). But the white rook
checks the black king from that square too, and white can not begin his move with
black in check.

r%~~ r% ~xr%~r; r%r%

The square between the rook and king.

figure 4

2.4. Hence, the check must have been a discovered check.

3. Well, then, what piece made th-~ discovered check?

3.1. If the check was discovered, it must have been from a square between the
rook and the king. But there is only one square between these two, WO,~7 (noted in
fi gure 4). Hence, the last move must have been made from that square.

3.2. What ty pe of move was the last move? We have already concluded that
it was not a castle or en passant capture. How about an ordinary move?

~ 

-~~— - -  — ~~~~~~~~
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3.3. If the move was not a pawn promotion, one of the white pieces on the
board (see figure 5). in its present incarnation, (that is , uripromored) , must have made
that move.

3.3.1. The white king on WKR8 certainly could not have been
next to the black king on BQJ’12.

3.3.2. None of the white pawns could have moved from that
square.

3.3.3. We have already eliminated the rook on BQ2 as a
possible mover. This piece is making the check, not moving to
discover It.

3.3.4. A rook on WQB8 could not have moved on that
diagonal.

3.3.5. Nor could it have been the piece that fell off the board.
No matter which piece It was , it could not have moved from WQ,N7.
No piece can make the jump from WQ~N7 to BKR5.

None of the (possibly) white pieces (in Its presen t incarna tion)
could have m oved to discover the check

fi gure 5

3.4. Therefore, the last move must have been a pawn promotion.
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4. How did this pawn promotion go?

4.!. As we see in figure 6, a white pawn can move from WQ$7 to one of
three squares. Only one of these, WQ8, has a white piece on it. Thus, the last move
must have had a white pawn moving from W QB~ to WQB, promoting to a rook.

- /
/“/ :7”~

~x~~’ ~~~ ~~

r%~r%r % r %
Where did the promo ting pawn move?

figure 6

5. But to make this move, the white pawn must have captured a black piece. Let us call that
piece Zb (figure 7). What place was Zb?

zUA~ ~,%~~ ‘4 r4

The white pawn captured black’s Zb

~ 

~~~~~~~~~~~~~~~~~~ ~~~~~ ~ -



Page 22. Introduction 1.6.2.

figure 7

5.). Clearly, black s last move was neither an en passant capture nor a castle.
His pieces (pawns, king) are not appropriatedly arranged to have just completed one
of these moves.

5.2. Perhaps Z. was a black rook or black queen.

5.2.!. If that were the case, then white’s king would be in
check. And Z, would be cornered, like the white rook on WQ7,
unable to have reached that square except from another checking
square.

5.3. So if Zb was a rook or queen, It must have made that check through a
discovered check.

.5.3.!. But once again, none of the black pieces could have
moved from between the checking piece and the white king. Nor
could the piece that fell off have moved from any of those three
squares.

~~r%r % r4
Non. .f the black pieces could hov, discovered check.

figure 8

5.4. Maybe the captured piece was a pawn?

5.4.1. But pawns (at least unpromoted pawns, and here we are talking
about the value of the captured piece) do not find their way to the first
row.

5.5. The captured piece certainly was not the black king.

.

~

-
I

‘1 -
~~ 
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5.6. Could the captured piece have been a bishop?

5.6.1. It certainly was not the black queen’s bishop. That is
the black on white bishop (the black bishop that moves on the white
squares). He would not be caught dead on a black square.

5.6.2. It was not the black king’s bishop, either. Notice the two
pawns in figure 9 on BK2 and BKN2, They have not moved, and the
bishop could not have gotten out from behind them.

‘4 ~~r4rL~ Rr4 ~
~~~~~~~~~~~~~ t ~~~~~~~4 1%

These paw ns stymie the exit of th. black bishop,

fi gure 9

5.7. Hence, If the captured piece had bishop value, it must have been a
promoted pawn.

~~~~~~~~~~~~~~ ——— -— - ,  —-- - 
-- - - ~~~~ ~~ - ——
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5.8. And , we can see in figure 10, that ~f the captured pIece was a knight, then
black had three knights on the board before white’s last move. Anyone with three
knight., on the board at the same time (and who is not cheating ) has promoted a
pawn.

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~

iV%~~~~4 V 4r~~~r~r%
~4i~4~~4~~~~~~~~~~ ~

~~~~~I f  block has three kni ghts, then he has promoted a pawn.

figure 10

5.9. We have not learned the idenuty of the captured piece, but we have
discovered an importan t fact: black must have promoted at least one of his pawns.

6. But which pawn?

6.1. In figure ii , we see the three black pawns on black’s second rank. These
must have been the pawns that started on these squares.

~~~42F% ~
_ _ _ _ _

Thos. black pawns have not moved.

figure ii

______________ ______________________________________________________________________  ~~~~~~ 
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6.2. There is a pawn on BQ,R3. Since only two black pawns can reach this
square, and we have concluded that one of them is on BQ~2, this must be black’s
queen’s knight pawn (BOJ4P, figure 12) .

~~~~~~ 
‘
~i(

r%~r4 r % r %
Black’s queen ’s knig ht p awn (JI QNP) .

figure 12

6.3. Of the remaining pawns , there are only two unaccounted for pawns that
could be on BO~B4 and BQ3. the black queen’s bishop and queen’s pawns. We have
not established which is which, but then again, we do not care (figure 13).

7”/ •“/“/
‘ 

~7~’// “,“/

~i & ~3~L~ ~iL~xrA_r~ r % r %r4~~ r%r i~i41~4

r4~r%r4 r %
Black queen’s and queen’s bishop p awns~

figure 13

— 
~~~~~~~~~~~~~~ ~~ — 
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.

6.4. Which means the pawn on Bq&5. boxed In figure 14, must be the black
king’s bishop pawn .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

‘4 ~ 4
Black king’s bishop p awn (BK HP) ,

figure 14

6 ~ So all the pawns except the black king’s rook pawn are on the board.
Hence, i~ a black pawn promoted (as we have already established), it must have been
that pawn

7 Could a black piece have falkn off the board?

.1 Well , we have accounted for all the black pawns.

‘2 We have also determined that in the position prior to the given board,
the tw o knag hta must have been on two of three squares.

I The black on white bishop does not traffic on black squares.

‘4 The black on black bishop never escaped from his original square (as we - 
-

hu t  already demonstrated (figure 9)). He could not have been the piece that fell.

15 The black king is on ROJ42.

—

~

—---

~
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7.6. If the fallen piece were rook or queen, then both sides would be in check
on the original board (figure 15) . This is clearly impossible.

3 % r I~’f~r%
~%i~%~ 4 J ~J

Hr%~r%r % r %
If the fallen piece were a black rook or queen, then both sides
would b. In check,

figure 15

8. Hence, the fallen piece must have been a white piece.

9. Could the fallen piece have been a white pawn?
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9.1. By a process similar to that employed for black, we can Identif y all of the
white pawns. In fact, Just before the last move, all of them were on the board, In
pawn Incarnation. Hence, the fallen piece was not a white pawn (figure 16).

7/1/ //“ / 7,1/

~~~ ~~~ ~~
LPJ~~i~~~4~~ 4r%~~ r % r %

All of th. whit, p awns a,. on the board ,

figure 26

10. The fallen piece was obviously not the white rook on WQ7, nor was It the white king.

10.1. Thus, we have accounted for all the white pieces except the other white
rook, both white knights, both white bishops, and the white queen.

11. We observe that the black queen’s knight pawn, now on BO~R3, and the black king’s
bishop pawn, now on BO~ 5, have captured four white pieces between them in reaching their
current squares. Addit ionally, and most pecu liarly , all of these captures have occurred on the white
squares (figure 17).

.‘.‘/// /r’.7 7~/ /////‘ ‘

- - f—•~~1,’j I~ 
/
::~//~A~

__dvJJJ~

Four white p ieces captured on white aquas...

fi gure 17

~~~~~~~~~~~~~ ~~~~~~—. , — -.------ —-- -—- . -- ~~~~—. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~
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12. We recall that the black king’s rook pawn has promoted. What can we say about the path
to his elevation?

12.1. If he promoted on any square to the left of BKN7 (figure 18) , he would
have had to make two or more captures .

‘/“/ ‘/“/ 7”/ 7”/

~ ~~ ~~

_ _ _ _ _ _

If  any of these were the black promotion square then BKRP
captured at least two white p iece..

figure 18

12.!.!. This would have required the capture of a total of six
white pieces. There are already ten white pieces on the board. The
capture of six white pieces would leave no white piece to have fallen.

- - 
.

~~~~~~~~~ ~~~~~~~~~~~~~~~~ ‘— ~~--- - ________________ - ~~~~~~~~~~~~~ ~~~~~~~~~~~~ 
- ________
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12.2. Hence, the pawn must have promoted on BKR8 or BKN8 (fi gure 19) .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

i~~~~I~~~~~~

~41~4 3%
P423423% ~~~~~/23423% ~~~~~~~_ _r%~r%’ 3 % V~1

The two po ssible pro motion squares.

fi gure 19

12.2.1. If the black king’s rook pawn promoted to BKR8 or
BKN8, then he must have moved into one of these squares on some
move. What square would he have been moving from?

12.2.2. The white king’s rook and king’s bishop pawns,
distinguished in figure 20, have not, for the duration of this game, left
those squares.

7.~’/’ ‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

13% ~

‘
i’

~ 3% P4
,

~
Yi,

3413% 3% ~~~~~“/7

3423423% ~23423%r%~r% r)3%
These pawns have sot moved.

figure 20

[ 1   
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~ =~ ~~~~~~~Z’L~. -~~---. ~~~~~ £~~~~~~~~~ 
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12.3. Therefore, the black king’s rook pawn must have been on BKN7 (figure
21) before moving to promote.

7~”/ ‘/“ / ‘7”/ ‘7”/

~i~~ 1i~~L~ ~~

3413% 3%
3423423% ~

~~J~~~234 ~aEI~
— r4~r 4 r %~~BKRP was on t his square.

flgure 2l

13. How did that pawn get to RKN7?

13.1. The white king’s knight pawn was a good deal more widely traveled than
his neighbors. He has spent the game on two squares, WKN2 and WK NS (figure

-. 

- 

22).

3~~~ 3~
13% ~ r% 3%
34134 3%

34,2k ~~a 3%, ~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~P4 1I&LJ2~

WKNP remained on these squares.

fi gure 22

J 
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1.12 In the move that brought the black king’s rook pawn to BKN7, white
king ’s kn ight pawn must have been on W KNS

/3 3. Hence, the black paw n must have made a capture in moving onto BKN7.

14. But BKN7 ii a white square. Five wh ite pieces have been captured, all by pawns , and all
on white squares (figure 2)).

x 
J

Whit. pieces wor, cap tured on she., square..

figure ~3

14.1. There are only six unaccounted for white pieces, all officers (non.pawns).
Five of them have been captured on white squar es. The white queen ’s bishop Is
never on a white square. Between the fallen piece. and the f ive captured pieces. we
must arrange the falli ng squ are and the f ive capture squares. No piece is ever
captured twice ; no piece once captured , ever reappears.

—~~ . - .. ~~~~k-. - -

L.. . — ,
--- ..-- ---_
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/5 . Obviously, we can conclude that the fallen piece must have been the white bishop (figure
24) .

/1’
~~~~~~~~/ L~/
i 

/

/

// R / /2,~~~/~
:;
, £~

2~//~~~~7/ / ~~

~~~~~~~~~~~~~ ~~~ _ _
_ ;~ - - -~

_ _ _ _  
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Th. boa rd before she F.U.

figure 24

Sect Io n 1.6.3 An Analysis

Several differences between the reader ’s reasoning process. and the above solution may be apparent.
For one thing. quite trivially, the order of some of the steps may be permuted . This is of little
consequence. Of more importance. however , is the detail to which we have developed our pioot.
We have included many of the steps that most humans would have avoided noting, for instance ,
statements to exclude kings In certain situations, where the human chess player would flt’t .

~~ “II

mention the possibility of their presence. This is partially an issue of heuristics , some sr ~’~ a r e
virtually automatic (and unmentioned) in a familiar reasoning sequence. But it is mostly bt au~e we
presume that we are reasoning from the basic chess rules , and not from the theorems obvious to an
experienced player . The restraint , the refusal to “jump to conclusions”, is what permits the proof to
“see ” the promoted pieces as knights and rooks, when the experienced chess player (though not the
chess problem solver) would quickly skip to the more “logical” conclusion that pawns ptoniote to
queens.

We have, however , availed ourselves of the ability to look at a board and “see which pieces c

move where. We cite this as an exam ple of of the observational knowledge mentioned in section
1.3. 1.1. Within our representational model, deductions of this kind are performed by function
evaluat ion in the (LISP) model structure. Similarly, we leave to computation arithmetical evaluation .
this is not a treatise on proving equations by Peano’s axioms. Rather, mathematical calculations will
be automatic , p rot~edural in our system.

Section 1.6.4 Reasonin g in a First Order Logic Formalism

We have a problem and a representation formalism, and with them, the assertion that the problem
can be “solved” within the formalism. In some sense, much of the rest of this paper is chat
demonstration. We will first axio m at ize the chess world in first order logic and then deduce , with in
our formalism, the unique solution of our chess puzzle .

This proof is the other side of the Intelligence problem. the path through the problem space defined
by our representation. Note that we are not claiming a program that can do this reasoning; this
proof is human powered . Instead, we are exploring the path that a mechanized problem solver ,
using our formalism, would take. What results then is a map of the terrain; a guide for future
exp lorers, an example of what is required to get through this particular “wi lderness”.

We assert that this proof, while not matching the level of deta il of human analysis .22 corresponds on
grosser level to the human solution. That is. the Individual Inferences used in this proof are
typically much smaller and weaker than human deductions. We will show, however , the correlation
between the chunks of lines in our proof, and the individual steps of the natural deduction. We
Imply thereby the ability of our formal logic!semantlc attachment system to model the human ability
to accept problem solutions.

The analysis of the puzzle in section 1.6.2 will serve as the model of the “ human solution”.

22 Only th. author, aft. , toliwi to 1w. prsof cl~scksr all w~lu, thffiks m pure S rat order ~~ic

L~. _ _
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Sectio n 1.7 Perspect Ives : Other Poi nts of Interest

While exploration of representational systems is the dominant direction of this research , it retains
several tangential Interesting properties .

Section 1.7.1 Mathemat Ics and a Chess Proof

We find this proof interesting for several mathematical reasons, unrelated to the problems of
artificial intelligence.

Historicall y, mathematicians have used formal logic in two ways. Proofs of short mathematical
theorems have occasionally been detailed with in first order logic. But more commonly,

L 

mathematicians have used logic as a field to reason about , rather than In. One proves that a formal
proof is possible, rather than presenting that elephantine object as a demonstrat ion of its own
existence. One writes proofs about proofs, rather than the proof itself .

This proof breaks with that tradit ion in both respects . It is an application oc logic to a non~mathematical domain. As we will discuss in the conclusion, it exposes several strengths and
weaknesses of the natural deduction system. In particular , the value of stronger inference rules, and
semantic modeling will be considered. The difficulties of handling multiple representations and long
proofs wi~ also be mentioned .

It is also unusual for being a long, formal logic proof. A proof of this size , even with the help of a
proof checker , has proven to be a non.trivial cask . It is no surprise that there are not more of them.

Section 1.7.2 Machine Proof Ceneration and a Chess Proof

This paper should also be of interest to those interested in programming automatic theorem provers.
We have, particularly in the appendices. numerous examples of first order proofs. which can be used
as bench marks for those interested in creat ing their own systems. Effectively, we have a set of
machine level examples that can be compared to computer deductions.

Section 1.8 Format: A Guide for Reading This Paper

This thesis is divided into several chapters and appendices. This first chapter has been the
introduction, where we have presented our problem domain and motivation.

In the second chapter . we proceed to axiomatize the rules of chess in FOL. Concurrent with
detailing these axioms, we describe and defend the various representation decisions embodied
therein.

We begin to present FOL proofs in the third chapter . This section is a well commented sample of
the proofs of several lemmas. It serves not so much to expound interesting theorems, as to

— familiarize the reader with FOL and our style of proof.

We present the proof of the fallen piece problem In the fourth chapter. In an Important sense, this
is the heart of this research. In the process, we draw the correspondence between this proof and the
human proof of the first chapter. 

...
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The final cha pter contains our conc lusions , basicall y , what we have learned about the design and
implementations of representational systems, with an eye towards their improvement.

There are several appendices, principa lly the proofs of many lemmas, and statist ics about the proofs.
and two indices, one (or the document in general. and the other for the various labels and names
used In the proofs.

I
The reader who has not the patience to read the whole volume is pointed towards the Introductory
and concluding chapters. A skimming of chapter two, the chess axioms , and a cursory glance at
chapter four, the main proof, will aid in understanding the conclusions.

SectIon 1.8.1 The Proof Checker FOL

The reader unfamiliar with FOL will not receive the full benefit of reading this paper, though we -. -

hope the comments surrounding the various FOL sections will be of great value. For an
introduction to FOL suitable for understanding this proof, the reader Is referenced to (Filman76].
The complete description of FOL, Including some Its the mathematical motivation, can be found In
(Weyhrauch7 7].

Section 1.8.2 ReadIng Proofs

Understanding a proof in first order logic Is somewhat similar to reading an assembly language
program. The level of detail is basically similar, and without annotation, the reader Is sure to get .

lost.

In an attempt to avoid that tragedy, the proofs In the various chapters have been copiously
commented.

Additionally, certain lexicographic and typographic conventions have be used in proofs in this
paper. Any Identifier in capital letters (CHESSPIECESI EKR) is either a predicate (PREDCONST) or
individual (INOCONSI). Functions (OPCONST) have only their initial letter capitalized. Lower case
identifiers are used for variables (INOVAR). Predicate and operator parameters have been printed in
script. Axiom names and labels are in capitals; theorems and lemma identifiers use both upper and
lower case. A theorem name ending in an underbar (_) was obtained from a single simplification; a
theorem name both begining and ending with unde rbars Is an unpn~ven theorem (section 2.2.5).

~~~~ ______ ________________
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Chapter 2 The Chess Axioms

In any epistemological domain, we have a basic collection of information, w hat the system knows
without further inference. This of course applies to our chess deduction. in a system like ours , of
formal logic combined with a computational model, this knowledge takes several forms. We must
first select the individual constants , predicates and operators of our formal system . Then the axioms
of chess must be written . We need to organize the underlying model structure , and prescribe the
mapping between the constants of our logical space, and the predicates , functions and individuals in
our model. Throughout all of this defini tion , the correspondence between our definitions and the
rules of chess should remain transparent.

We have decided to study chess partially because chess provides a well.defined set of rules. One
might think that this regularity would prescribe some specific approach. But just as one can do
formal proofs in arithmetic by computing on sets or Peano axioms, one has a choice in chess of the
level of one’s axioms. There exist both decisions to be made on a complexity dimension, and
irregularities in the rules to complicate any organization.

The problems generated by the latter will be dealt with In depth in the remainder of this chapter ,
particularly as we handle each intricacy. It would be useful, however , to justif y at this point the
general complexity level of our approach, and the reasons for rejecting either a more or less ba.tic set
of axioms.

This proof is meant to be an examination of the reasoning that could be involved in the solution of
retrograde chess problems. We wish to show the correspondence between the reasoning in this form,
and the human deduction, while retaining the validity advantages of a formal proof.23 It is not an
attempt to prove mathematical theorems, nor do we wish to do with deduction what could be more
easily observed . For these reasons, we have incorporated into the computational model functions to
compute relations like individual piece movement. We have also passed to the computational model
all arithmetic responsibility. In that sense, this is not a low level approach.

However , we also desire that our system be general in its ability to express many different kInds of
retrograde analysis chess puzzles. We thereby become limited from above. We do not wish this
analysis to be based on theorems applicable only to some small set of problems. Hence, we have
expended considerable energy deriving general c/iesj Meorems from our axioms, and have used these
theorems as individual steps in our main proof. These theorems are proven in chapter 3 and
appendix A. But we are restrained by this generality restriction to consider chess at the piece and
move level, rather than considering notions of general board geometry. A board geometric approach
would express legal moves in terms of the pieces on a board, and procedures for expressing their
movement ability. While easier to manipulate in the Mort term (proving things about the immediate
predecessor or successor of a given board) such an approach would have difficulty expressing long
term (“sometime, during this game, the following has happened”) notions.

We are also bounded from above by the limitations of our proof checker. There are some things
that are, by nature, observational, but nevertheless not computable within the present
implementation of the proof checker. These restrictions, we might add, are discoveries of experience.
We will consider possIble improvements to the model computational method in sectIon 5.8.

23 T 1w. is not to assert that we an modsli~ lii. way humans r.aso i- nathsr. vs are isol~ing for a rsp ress M.t,on that a
computer can r.ason with~ whac k is stall understandable (and ver,f..bls) for a human mtellipnc. 
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Section 2.1 DeclaratIons and Definitions

This chapter naturally divides into cwo sections: defining the objects of the chess world (with their
FOL declarations), and expressing the rules of chess with these defined object. We begin, our
course, by detailing and declaring the tokens of the chess axiomatization.

Interspersed with the description of this chapter are the text of the various FOL declarations and
axioms used in generating this proof. Several of the declarations and functions here declared, while
not mentioned in any of the proofs in this paper, have been included for completeness.

Section 2.1.1 Very Primitive Notions

In any axiomatization, there will be certain base notions, upon which the rest of the structure is
built. Chess, of course, Is no exception. We should display the distinction between the basic objects,
and the less basic operations and predicates upon them. For this discussion, there exist seven basic
sorts24 of chess objects .. chesspieces, squares, piece values, positions, boards, moves and colors.
While the necessity for some of these concepts is obvious (what car we say about a chess problem
without referring to a chess board, or speaking of black and white?) the reasons for some of the
others are more obscure, and will require some explanation. This section will detail each of these
sorts, and their objects and objectives.”

Section 2.1,1.1 Positions

The fundamental object In this chess world is the position. A position is, effect ively, a state vector
containing all of the information needed to reconstruct an entire chess game. While this might, for

instance, be conceptually encoded as a list of the moves made to reach that moment, or a list of the
chess boards visited in the course of the game. it is generally not possible, in our system, to do so.
More particularly, a position is not a concrete object (one that we can (usually) display or compute
upon), but, rather, a conceptual notion.

Typically, a retrograde chess puzzle will be presented not as a position. but, rather , as an
arrangement of chess pieces2’ on a chessboard , (what we will call a board) . The puzzle is then to
deduce the common factors of all possible games that could have led to such a board, effectively, the
predicates true on any position with such a board. Nevertheless, we still wish to be able to retain our
computational ability on the given (and associated boards). Hence, we see the necessity for
representing what is essentially the same object (the board and the common factors of the games that
lead to it) in several different representations. The lesson here for writers of programs that would
seek to solve problems like this (and problems of similar complexity) is of the necessity for retaining
multiple representations of objects.27

So, rather than having axioms manipulating positions themselves, our axioms will constrain the

24. A sort is a monadic prsdacats; oats that thar.f on di Vats, a s.f (the s.f of hin(. for which It I. true).

25 In the ,em.iatdar of this paper , at as .,s.rted th.t all m div ii. , sncspt squa res and dimsatsion., an. repr.asntsd uniform ly
a. chess object.. W. declare this r.pn.ssntatmon with the command declare R~PRESENTATCN CHESS~
26. Or, ma.’. pr.cmeiiy, an arran(sman t of chess valise.

27. Ws will consider this ,..uif is greater detail in ..ctioat 56.1.
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transfe r from one position to the next. Similarly, we will draw conclusions about the properties of
successor and predecessor positions. It is wort hwhile noting that from a given position, one can
derive the previous position (the position on the previous move), and determine, of two positions, if
one occurred In the game of the ocher .21

For exam ple, we consider the following notions involving positions. We will have occasion to speak
of the paM some piece must have used to get to some square. without havIng to detail the
interleaving between the moves of that piece and the other moves of that player, or to describe the
capture of some particular chess piece. without detailing the particulars of the move (which piece
made the capture?) involved. Thus, we will conclude, for examp le, that in any game played to reach
a given board, there must have been another position (In that game) with some certain property, (for
example, an unknown piece captured a bishop on that square) without ever having to state explicitly
which prior position It was (which move during this game the captured occurred).

There is also an additional motivation for retaining the entire history of a game in our encoding.
More specifically, one of the chess rules refers to the entire game. The castling rule requires that
neit her of the castling pieces have moved in the course of that game. That is, for some positions,
the entire game must be considered to determine the legal moves.29

Our FOL declaration for POSITIONS:30

dec lare PREOCONST POSITIONS 1(PRE] I

Section 2.1.1.2 Pieces

Perhaps the most obvious sort needed in the solution of chess puzzles is one to represent the
individua l chesspieces. The implementation of this concept, however, is not so trivial. One quickly
discovers31 that not all pawns are the same; each of the thirty two chessmen has his own identity,
distinguished mostly of his value and square at both the begining of the game. and at any later
position . Note that we are differentiating between the identity of a chessman and his value; a pawn
may promote to a queen, but in our eyes he remains a pawn in drag.

We will have need to ta lk of the piece on a squa re in a position. We therefore are required to add a
thirty-third “piece” to our system, the EIIPTY piece, the piece that sits on any square with no other
occupant. Thus, the major sort of this scheme Is PIECES, which includes the set of the thirty two
CHESSP I ECES. The FOL declarations are:

dec l are PREOCONST PIECES 1 (PRE];

dec lare PREOCONST CHESSPIECES(PIECES) (PREJ ;

28 An ssc.ption to muc h of what we say is, of course , the initisl po.itioc~ We have a complets d.scriptlon of the game that led
to it, and can snicods a particular represent at ion for it.

29 Though the affec t of th is rule could be obtained by in a shorter term representat ion by “f laggi ng” the “position” when on.
of the c.st ling piecee moved .

30 This command declares the existence of a one piece (monadic) predicate POSITIONS. POSITIONS I. a prefix (PRo predicate,
and may be used withcut parentheses around it. argument.

31. Particularly when dealing with chess puutco , paths, than playing chess.



-w

Page 40. The Chess Axioms 2.1.1.3.

Section 2.1.li Squares

Another group of individuals is the set of squares of the chessboard. As with pieces, we have an
extra member in our set, a heaven or hell for chesspieces, a place for them to be after they are
captured and removed. We call this sort of extended squares EXSQUARES, and will occasionally
speak of the extended square that a chesspiece is on In a given position, or which piece is on a
given square in that position.

dec lare PREDCONS T EXSQUARES 1;
dec 1 are PREDCONST SOUARES (EXSQUARES) CPREJ ;

Section 2.1.1.4 Values

Just as we spoke of the thirty two chessmen in a chess set, we will still often find it necessary to speak
of their rank in a given position. To avoid confusion with rank and column, we shall henceforth
speak of the VALUE of a ches.spiece. Thus most pawns will promote to have a queen’s value. We
shall prove general chess theorems such as A? pawn valued pieces are pawns and AU non-pawn (offwer)
pieces rif rain Me sa~ie value Mroug/i vve~y position (no officer ever promotes).

We also distinguish the color of a piece in Its value. Thus, the black king’s pawn (BKP) will usually
have a value of pawn black (PB), but might occasionally32 promote to be a knigh t black (NB). Failure
to understand the fundamental distinction between the name of a piece and Its value in a position
will cause trouble understanding the motivation and detail of many of the proofs In this paper.

t dec lare PREDCONST VALUES 1(PREI ;

Section 2.1,1.5 Boards

Most chess problems are stated not in terms of what we have called a position, but rather, as boards
of distributed chess values. Similarly, most chess moves are defined in terms of the board structures

- - they can to be made on, rather than the varieties of games that could precede different moves.33

Therefore, we find it useful to have the primitive notion of a Board in our chess axiomatization. On
the individual squares of a board , we meet the various values, including the value NT, which
represents an empty square, and UD, a square on a board whose value is unknown. Note that one
can speak of a pawn on a board without specifying which pawn it Is. Our formalism Includes
partially and fully defined boards, and naturally lends Itself to a partial ordering on boards by
increasing definition. We speak of a fully defined board, one with no unknown squares, as being a
TOTALBQAA D.

dec l are PREDCONST BOARDS 1 EPRE);

dec I are PREOCONST TOTALBOARDS (BOARDS ) [PREJ 1

It Is reasonable to question the necessity for the partially defined boards Introduced above. They

32 Particularly in puzzles

33 There aee, however, Olceptions to lit .. rule. The sat peccant captu re , for instance, ref.,, not only to the proseM board, but
also the last move. Castling is not permitted if either the king or the rook has ever (in this game) been moved. Evefi more complicated
are the var ious draw conditions, which demand the repetition ad particular boards.

-
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serve two primary purposes. First, they provide a structure for the representation of partial
information about a situation. For example, we may know that a certain bishop has moved and
captured, though we may not know what the captured chesspiece was. Nevertheless, through the
employment of partial boards, we can compactly express the situation prior to the capture

A parallel, and perhaps more Important reason, resides the in nature of FOL’s simplification
mechanism. Partial boards are computable objects; particularly, our LISP functions can make
computations on expressions with explicitly undefined values, but not on partially defined
expressions. This is similar to call-by.value LISP’s inability to evaluate CAR(CONS(A x)) if x is
undefined. Each of our attached functions and predicates on boards must know how to handle the
partial piece. Partially defined squares typically restrict validity of predicates, for more information
does not accrue from a less specified object.

Section 2.1.1.6 Moves

Our next sort is something of a pseudo-sort. A common chess notion Is that of the move. We would
like to be able to speak of the last move of a position as being a castling, or the white queen as the
mover (piece that moved) of the last move of this position. Practically speaking, however, there are
no occasions when a predicate or function on a move is used without first extracting the move from
the position in question. As the state vector , the position retains all of the information in the move;
hence, the sort itself Is not needed; rather , it gets In the way. However , we are attempting to model
reasoning, not distort ft. A move Is a natural notion, and this demands Its inclusion.

dec l are PREOCONST MOVES 1 (PREJ ;

Section 2.1.1.7 Colors

There remains one basic, though nevertheless trivial sort to be mentioned. Chess is organized as a
competitive game; there is not much we could say without recognizing the existence of the two
armies, BLACK and 14H1 TE.

dec I are PREOCONST COLORS 1 IPRE] ;

Section 2,1.2 Piece Declarations

A large sort hierarchy for pieces is declared, most of which is not used. It is worthwhile mentioning
the existence of EMPTY, the piece on any not otherwise occupied square, and that the variables for
pieces are the t’s Ct and tI), whereas the variables for chesspieces are those variables starting with
the last three letters of the alphabet Cx , ~~, and z).

The naming scheme for the constant chesspieces might also be mentioned; the encoding is color, side
(klnç’s or queen’s), column or rank, and the designation p for pawns. Thus, the WKR is the white
king s rook, and the BONP is the black queen’s knight pawn.

The function P I ecico I or, on chesspieces, returns the color of the given chesspiece.

Pieces are represented Internally to the FOL simplification mechanism by the atom of the same name
as the piece.
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The rest of this section is a series of rather monotonous declarations.34

dec l are PREDCONST EtIPTYPIECE (PIECES) (PRE] ;
dec lare PREOCONSI UHITEPIECE BLACKPIECE (CHESSP!ECES) (PRE] ;
dec lare PREDCONST PAWNS BISHOPS KNIGHTS KINGS QUEENS ROOKS

(CHESSPIECES) (PRE];

dec l are PREDCONST BPAWNS UPAL.JNS (PAWNS) (PRE] ;
dec l are PREOCONST BBISHOPS WBISHOPS (BISHOPS) (PRE] ;
dec lare PREOCONST BKNIGHTS W KNIGHTS (KNIGHTS) CPREJ ;
dec l are PREOCONSI BROOKS WROOKS (ROOKS) (PRE] ;
declare PREOCONST BK I NGS UKINGS (KINGS) (PRE] ;
dec l are PREOCONST BQUEENS WQUEENS (QUEENS) (PRE]; -

declare OPCONST P i ececo b r  (CHESSPIECES) -COLORS (PRE];

dec l are INDVAR t ti C PIECES;
declare I NDVAR x xl x2 x3 x4 y z xa xb xc xd c CHESSPIECES;

declare INDCONST BK C BKINGS, 14K C UKINGS ;
dec l are I NOCONST BQ c BQUEENS, WO C UQUEENS;
declare INOCONST 8KB BOB c BB I SHOPS, 14KB 1408 C WBISHOPS;
declare I NOCONST BKN BQN c BKNIGHTS , WKN WON c i.JKNIGHTS~dec l are I NOCONST BKR BOR c BROOKS, WKR WQR c WROOKS:
declare I NOCONSI UORP I4KRP WQNP WKNP WKBP WQBP WQP WKP C WPAWNS;
dec l are I NOCONST BQRP BKRP BQNP BKNP BKBP BQBP BQP BKP £ BPAWNS;
dec l are INOCONSI EMPTY ETIPTYPIECE;

dec l are I NOVAR ~jb zb c BLACKPIECE , w~ 
c WH ITEP IECE ;

dec l are INOVAR Wk c KINGS , ywr ~wr l c UROOKS ;
dec l are I NOVAR yb ic BISHOPS, yn c KNIGHTS, ywn c WKNIGHTS;
dec l are INOVAR yp ( PAWNS, ywp C WPAWNS, ybp c BPAWNS;

mg PIECES~ {CHESSPIECES,EMPTYPIECEI ;
mg CHESSPIECES~(WHI TEPIECE ,BLACKPIECE ,PAWNS,BISHOPS,KNIGHTS,KINGS,QUEENS,ROOKS);
mg WHI TEPIECE� (UPAWNS ,WBJSHOPS,WKNIGHTS,WKINGS,WQUEENS,WROOKS);
mg BLACKPIECE? IBPAWNS , BBISHOPS,BKN I GHTS ,BK INGS ,BQUEENS ,BROOKSI ;
mg PAWNS� (BPAWNS, UPA WN SI ;
mg BISHOPS~ (BBISHOPS ,I4BISHOPSI ;
mg KNICHTS� IBKNICHTS ,WKN I GHTS I ;
mg KINGS� (BKINGS,WKINGS);
mg OUEENS� (BQUEENS,WOUEENS);
mg ROOKS� IBROOKS,I4ROOKS} ;

Here are some attachments for the chess eye. All simplification is done In the (partial) model named
CHESS; we shall usually attach (map or associate) atomic primitives to the atom of that name in this
model.

34 In thee . declarat ions , PPEDCONST ’. are predicate constant. , OPCOPJST’s operator constants (or funct ions, if you prefer ),
INOCONSI’s, individual constants , end INDVAR’ a, individual variables. (PRE) application terms can be written without parent hesizing their
•rgument~ (INFJ term. , between their argument .. It is worthwhile pointing out that while every port has an infinite collection of variables
(theoret ically) available to ii, ws hers only ds lared those va riab les that we shaH actually use.

- . ~~~~~~~~~~~~ ________
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a t tach  BK (CHESS] BK; attach BKP (CHESS] BKP;
at tach 8KB . (CHESS] BKB; attach BKBP ~ (CHESS) BKBP~ 

- -
~

attach BKN ~ (CHESS) BKN~ attach BKNP ‘. (CHESS] BKNP;
attach BKR ‘. (CHESS) BKRi attach BKRP .. (CHESS] BKRPi
attach 80 — (CHESS) 80; attach BOP — (CHESS) BOP:
attach BQB — (CHESS] BOB; a t tach BQBP .. (CHESS) BOBP;
attach B~N — (CHESS) BON ; attach BQNP — (CHESS] BCNP ;
atta ch BQR — (CHESS] BOR i attach B~~P — (CHESS) BQRP;
attac h L.iK .. (CHESS] 14K; attach L.XP .‘ (CHESS] WKP;
attach ~KB .. (CHESS) 14KB; attach L~KBP .. (CHESS] I4KBP ;
attach ~~N .. (CHESS] WKN; attach I,J~NP — (CHESS) L4KNP;
att ac~i ~~R — (CHESS] WKR; attach ~KRP (CHESS) WKRP;
attach ~~ .. (CHESS) 1.10; attach ~.1CP ‘. (CHESS] 1.JQP;
attach ~~B (CHESS) 1408; attach WQBP .. (CHESS) 1408P;
a t t ac r~ ~~N ‘. (CHESS] WON; attach WGNP .. (CHESS) WQNP;
attach ~~R ‘. (CHESS) WQR; attach WQRP — (CHESS) WQRP;
atta ch EMPTY — (CHESS] EMPTY ;

attach LPA~NS (CHESS] IDE 1.JPAL4NS (x )  (MEMO x
(QuOTE (WKRP 1.JKNP 1.JKBP WKP UQP WQBP WONP UQRPW);

attach BPA~NS (CHESS) IDE BPAL(NS Ix) (MEMO x
(QUOTE (BKRP BKNP BKBP BKP BOP BQBP BQNP BORPWh

atta ch BB(SNOPS (CHESS) IDE B8ISHOPS Ix) (MEMO x (QUOTE (BKB BOB))));
attach 1.JB I SHOPS (CHESS] (DE UB I SHOPS (xi (MEMO x (QUOTE ((4KB WQB))));
attach BKMIGHTS (CHESS) IDE BKNIGHTS lx ) (MEMO x (QUOTE (BKN BaN))));
attach 1.JKNIGHTS (CHESS] (DE WKNIGHTS l id  (MEMO x (QUOTE (UKN WQN)))h
attach BROOKS [CHESS) IDE BROOKS Ix) (MEMO x (QUOTE (BKR BQR)Wi
attach WROOKS (CHESS] IDE WROOKS (~

) (ME MO x (QUOTE (W KR UQR ) ) ) ) ;
attach BK I NGS (CHESS] WE BK INGS (xi (MEMO x (QUOTE (BK))));
attach UK I NGS (CHESS) IDE UK I NGS Ix) (MEMO x (QUOTE ( U K ) ) ) ) ;
attach BQUEENS (CHESS] (DE BOUEENS Ix) (MEMO x (QUOTE ( 8 0 ) ) ) ) ;
attach WC-UEENS [CHESS] (OE WQUEENS (xi (MEMO ~ (QUOTE 

(140))));
attach QUEENS (CHESS) (CE QUEENS (xi (MEMO x (QUOTE (140 BO))));
attach ROOKS (CHESS] (CE ROOKS Ix) (MEIIQ x (QUOTE (BKR WKR BOR UQR))));
attach BISHOPS (CHESS] IDE BISHOPS Ix) (MEMO x (QUOTE (BKB BOB UKB 1408))));
attach KNIGHTS (CHESS) IDE KNIGHTS Ix) (MEMO x (QUOTE (14KW WON BKN BON))));
atta ch KINGS (CHESS] (CE KINGS (x )  (MEMO x (QUOTE (14K BK))));
at tach BLACKP IECE (CHESS) IDE BLACKP]ECE Ix) (MEMO x (QUOTE

(BKRP BKNP BKBP BKP BOP BQBP BQNP SOAP 8KB BOB BKN SON BKR BOA BK 80))));
atta ch WHITEPIECE (CHESS] WE WH ITEPIECE Ix) (MEMO x (QUOTE

(LJKRP WKNP 1.JKBP WKP I4QP WOBP WQNP I.JORP 14KB I4OB WKN WON UKR WOR 1.1K 140))));
.it tach EtIPTYPIECE (CHESS] IDE EMPTYPIECE Ix) (MEMO x (QUOTE (EMPTY))));
i t t arPi PAWNS (CHESS) (CE PAWNS (xI UIEMQ x (QUOTE

~~~ BKNP BKBP BKP BOP BQBP BQNP BQRP
(4KRP I4KNP WKBP (4KP I.JQP WQBP WQNP WQRPI)));

attach CHESSPIECES [CHESS) (CE CHESSPIECESIx) (MEMO x (QUOTE (BKRP BKNP
BKBP BKP SOP BQBP BQNP BQRP 8KB BOB BKN BOW BKR BOR BK BO WKRP WKNP
WKBP 1.JKP 1.JOP L4QBP WONP WQRP 14KB 1408 14KW WON WKR WQR UK 140))));

attach PIECES (CHESS) IDE PIECES Ix) (MEMO x (QUOTE (BKRP BKNP BKBP BKP BOP
BOBP BQNP SOAP 8KB 808 BKN SON BKR BOA BK 80 EMPTY WKRP (JKNP WKBP WKP
UQP I4QBP WQNP WORP WKB WOB WKN WON WKR WOR 14K 140))));

attach Piececo lor (CHESS-.CHESS] (CE Piececo lorlxi
(COND ((I4H I TEPIECE x)WUOTE I4HITE))((BLACKPIECE xi (QUOTE BLACK))));

.1:—li ii.. :.~
_ 

-. ~~~~~~~~~~~~~~~ ~~~~~_ .-- -- ~~~~~~~~~~~~
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extension SK INGS IBK); extension WKINCS Ii~JiC) ;extension BQUEENS (50); extension WQUEENS IWO) ;
ex tension BROOKS (BKR SaRI ; exten sion 1.JROOKS (UKR WORI ;
extension BB I SHOPS 18KB BOB), extension WBISHOPS (14KB WOW ;
extens ion BKN1GHTS (BKN SON); extension WKN]GHTS (WKN WON);
extension WPAWNS IWKRP UKNP WKBP UKP WQP WQBP WONP WORPI ;
extens i on SPAWNS IBKRP BKNP BKBP BKP SOP BQBP BQNP BQRP);

ex tension KINGS (14K BK};
extens i on QUEENS IWO BOl ;
extension ROOKS IBKR WKR BQR WOR);
exten sion BISHOPS 18KB BOB 14KB WOB);
extension KN I GHTS (I4KN WON 8KW SON);
extension PAWNS (BKRP BKNP BKBP BKP GOP BOBP BQNP SOAP

WKRP UKNP WKBP WKP WOP WOBP UQNP WORPJ ;

extension BLACKPIECE IBKRP BKNP BKBP BKP SOP BQBP BONP SOAP
BKB BOB 8KW BUN BKR BOA BK BO);

extension WHITEPIECE IWKRP WKNP WKBP UKP WOP (4QBP WQNP UQRP
UKB 1408 WKN WON WKR WQA UK 140);

extension EMPTYPIECE (EMPTY) ;
extens ion CHESSPIECES
(BKRP BKNP BKBP BK)’ BOP BOB)’ BQNP BORP BKB BOB BKN BON BKR BOR BK 80
WKRP I4KNP WKBP WKP WQP 4QBP WOMP WQRP 14KB WQB 14KW (JON WKR WOR UK 1401 ;

extension PIECES
(BKRP BKNP BKBP BKP BOP BOB)’ SON)’ BURP BKB BOB BKN BON BKR BOA BK 80 EMPTY
WKRP t.JKNP WKBP WKP 140)’ WQBP WON)’ WORP 14KB 1408 WKN WON WKR WOR UK (401 ;

Note that were it not for a small bug in the FOL implementation, the functional definitions of
various sorts would not have been required. This has since been corrected.

Section 2.1.3 Squares and Dim ensions

Section 2.1,3.1 Square declarations

Squares are represented in FOL as the acronym of the squar&s name. Thus, the POL INDCONST for
black queen’s rook one is BOR1. The perspective (relative to white and black) Is chosen to be the
nearer side. Black king’s knight five (which is also white king’s knight four) therefore becomes
14KN4. This notation is seen to be a subset of the standard English system.

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~.-.
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Internal to the LISP chess model, squares are represerued at the dotted pair formed of the squares
coordinates (row , column). Thus, 801 in FOI.. (black queen’s one) is (I . 4) to the LISP n~ del. The
coordinates used are illustrated in fig u re 2~.

1 2 3 4 5 6 7 8
1 ~~~~~~~~~~~~~ 1
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8 ~~~~~~~~~~~~~~~ 8
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f igu re 25

There are also several sub.spec;es of squares. We Identify the WHI TESQUARES and BLACKSQUARES.
by the traditional checkerboard pattern of the squares. Squares are also specialized by their row.
We thereby acheive sorts such as W LAS TA A NK and BLASTRANK (white and black’s last rank (row)).

declare PREOCONST WHI TESQUARES BLACKSOUARES BLASTRANK WLASTRANK
(SQUARES) (‘RE];

dec l are I NDVAR sqx sq sql sq2 sq3 sq4 sqS sqG sq7 sq8 ( SQUARES;
cI~ ciare I NDCONST
BORI BON1 BOBI BOl BK1 BKB1 BKW1 BKR1 BQR2 BON2 BOB2 802 8K2 BKB2 BKN2 BKR2
8083 80N3 9083 803 9K3 BKB3 BKN3 81(83 80R4 BQN4 80B4 804 BK4 BKB4 BKN4 81(84
14084 UON4 UQB4 1404 141(4 WKB4 WKN4 WKR4 14083 WQN3 14083 W03 141(3 WKR3 WKN3 WKR3
14082 WQN2 14092 1402 141(2 141(92 WKN2 (41(82 (4081 WON1 14081 1401 141(1 141(81 WKN1 WKRI

SQUARES ;

mc~ EXSQUARES� ISQUARES);Mg SQUARES~ ((JUl TESQIJARES,BLACKSQUARES,WLASTRA NK ,BLASIRAt4K);

And the various sorts have the obvious attachments.

attach SQUARES (CHESS) IDE SOUARES(x)
(AND (NOT (ATOM x i )

INUMBERP ICOR k))IGREA’TERP ICOR x)B)ILESSP ICOR x) 9)
(NUII8ERP(CAR x ))( GREATERP (CAR x )B) (LESSP (CAR x ) 9) ) ) ;

attach BLASTRANK (CHESS) (LAMBDA (w ) (EQ 8 (CAR x ) ) ) ;
attach WLASTRANK (CHESS) (LAMBDA (x) (EQ 1 (CAR x ) ) ) ;
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attach WH1TESQUARES (CHESS] (LAMBDA (S) (ANO (SQUARES 5)
(ZEROP (REMAINOER (PLUS (CAR S)(COR S))2)))h

attach BLACKSOUARES (CHESS] ILAIIBOA (S) (AND (SQUARES 5)
(NOT (ZEROP(REMAINOER (PLUS (CAR S) (COR S) )2) ii )),

ex tens i on  SQUARES IBORI BONI 8081 801 BKI BKBI BKN1 BKR1 BQR2 BQN2 BQB2
802 BK2 BKB2 BKN2 BKR2 BOR3 BON3 BQB3 803 BK3 BKB3 BKN3 BKR3 BOR4 BON4 BQB4
804 BK4 81(84 BKN4 BKR4 14084 WON4 14084 WO4 141(4 (41(84 WKN4 WKR4 14083 WQN3 WQB3
1403 (41(3 WKB3 WKN3 WKR3 WOR2 WQN2 14082 1402 141(2 141(82 WKN2 WKR2 WORI WQN1 IJQB1
1401 WKI WKBI 1.JKW1 WKR 1I ;

a t tach  BQRl~~[CHESS] I l , 1) ;a t tach BON1~~(CHESS] ( 1 ,2 ) ;a t tach  8QB1~~[CHESSJ ( 1.3) ;
at tach 801 .. (CHESSI ( 1.4) ;at t ach 81(1 .. (CH ESS)( 1,S) ;attac h BKB1~~(CH ESS) ( 1.6) ;
a t tach  BKNI— (CHESS ) ( l . 7 ) ;a t t ach  BKRI—(CHESS ] ( 1 .8 ) ;a t tach  BQR2~ (CHESS) (2 .1 ) ;
attach BQN2~ (CHESS] 

(2.2);attach BQB2~ (CHESS](2.3);attach 802 — (CHESS) 
(2.4);

atta ch BK2 — [CHESS) (2,5);attach BKB2~ (CHESS) (2,6);attach BKN2— [CHESS) (2.71;attach 8KR2~ [CHESS]( .8);attach BQR3’.(CHESS)I3.1);attach BON3— [CHESS) (3.2);
attach BOB3~ (CHESS] (3,3):attach BQ3 ~(CHESS1 (3,4):attach BK3 ~

(CHESS] (3.5):
attach BKB3~ [CHESS] (3.6);attath BKN3~ (CHESS](3.7i;attach BKR3~ [CHESS)(3.8),
attach BOR4~ (CHESS] (4.1);at tach BQN4— [CHESSI (4.2);attach BOB4w [CHESS) (4.3);
attach BQ4 ‘.(CHESS] (4.4);attach 8K4 ~[CHESS]

(4.S);attach BKB4H(CHESS] (4.6);
attach BKN4..(CHESS) (4.7i;attach BKR4N[CHESS] (4.8);attach 1.J0R4~ (CHESS1 (5,1);
attach WQN4~ (CHESS] (S,2);attach WOB4~ (CHESS] (5.3);attach 1404 — (CHESS] (5.4):
att ach WK4 ..[CHESS) IS.S);attach (4KB4..(CHESS) (S.6);attach WKN4~ (CHESS) 15.7);
attach 1.JKR4~ [CHESS] IS.8):attach WQR3H ICHESS] (6,1);attach WQN3— [CHESS) (6.2);
attach WOB3ø (CHESS] (6.3);attach 1403 ~.(CHESS](6.4):a ttach WK3 ~(CHESS] 

(6.5);
attach 1.lKB3.~ CHESSJ (6.6);attach 1.JKN3~ [CHESS)(6.7):attach WKR3— (CHESS] 16.8):
attach LJOR2~ (CHESS] (7.1);a ttach 1.JQN2~ (CHESS] (7.2);attach WQB2w (CHESS) 

(7.3);
attach WO2 ~(CHESS] (7.4);attach 14K2 ~(CHESS

] (7.S);attach WKB2~ tCHESS) (7.6);
attach 14KN2~ (CHESS3 (7.7);attach WKR2H(CHESSJ (7.8);attach WQR1~~(CHESS] 

(8.1);
attach WONIw(CHESS](8.2i;attach WQB1~ (CHESS ](8,3);attach UQ1 — (CHESS) (8.4):
attach WK1 ..(CHESS3 (8.S);ettach WKBI..(CHESS] I8.Shattach WKNI’.(CHESS)(8.7);
attach 1.JKRIw(CHESS](8.8);

The predicates LASTRANKER (is squar e the last rank (pawn promotion rank) of the given color),
SAIlED LAG (are the arguments on the same diagonal), and SOUARE..BETIJEEN (Is the middle argument
between the other arguments, either orthogonally or diagonally) are also declared. Attachments are
provided for the latter two .

dec lare PREOCONST LASTRAN KER (SQUARES COLORS );
dec l are PREDCONST SAMEDIAG (SOUARES ,SQUARES) ;
declare PREOCONST SQUARE_BETWEEN (SQUARES, SQUARES ,SQUARES)~

- 
~

- 
attach SArIEDIAG (CHESS ,CHESS] (CE SAMEDIAG Ix u)(ANO

(SQUARES xi (SQUARES y ) (NOT (EQUAL x
(E0(ABS (OIFFERENCE (CAR x) (CAR y ) ) )

(ABS (OIFFERENCE (COR x)(COR ~~~~H;

a t tach  SQUAR E_BETWEEN (CHESS, CHESS, CHESS] (CE SQUARE_BETIJEEN(q r Si
(AND (SQUARES q) (SQUARES rI (SQUARES Si (OR
(AND (EQ (CAR q)(CAR r)i (EQ (CAR r)(CAR S))(BETWEEN (COR q)(COR ri (COR SI))
(AND (EQ (COR q)(COR r))(EQ (COR r)(COR S))(BETWEEN (CAR q)(CAR r)(CAR Si))
(AND (SA(IEDIAG q r)(SALIEOIAG q S)(SAMEOIAG r S)(BETWEEN (CAR q)(CAR r)(CAR Si
I))));

_ 
_ _ _  _ _ _

_ _ _ _ _ _ _ _ _ _
~~~~~~~~ 
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SectIon 2.1.3.2 CoordInate Declaratlo;is

We will also have occasion to refer to the individual coordinates of particular squares and to prove
leii~mas about these coordinates . We call the class of square coordinates di~senssons , and speak of the
ww and c~ u”i n of a particular square. The numbering scheme for rows and columns corresponds to
the numbering in the internal LISP model. This, we might axiomat ically have, If Square U in
Wiuce ’s last row Men i ts row is ~quaI to I. Dimensions are represented In the LISP model as natural
numbers.

A compositor. Makesquar i . for taking a row.column pair . and producing the appropriate square. Is
also declared. This compositor is stated to be equivalent to the LISP function CONS in the
computational model.

dec l are PREOCONSI ISOIMENSION (NATNUM ) (PRE) :
dec l are PREDCONST ISROW ISCOLUtIN (ISOIMENSION) (PRE);
dec lare PREOCONST BLASTRO(4 ULASTROW (ISRO(.Ji;

represent (ISOIMENSION I SROW I SCOLUMN BLASTROU WLASTAOI4) a. NATNUIIREP;

dec l are OPCONST Row (SQUARES)-ISROW (PRE):
dccl are OPCONST Co l umn (SQUARES) .ISCOLUMN (PREI;
dec l are OPCONSI Ilakesquar. (ISROLJ I SCOLULIN)-SQUARESs

dec l Rre PREOCONSI IS_EVEN (ISROIJ ,I SCOLUMN);

dec l are INDVAR dx dxl dx2 dSO I MENSION;
dec l are I NOVAR drx drxl drx ISROl4~dec l are I NOVAR dcx dcxl dcx2 t ISCOLUMN i

mg ISDIMENSION� (ISROW . ISCOLU1iNl~
mg NATNUM� (ISDIMENSIONI ;

Successor functions are defined on the rows , succession being relative to the moving side. A black
pawn in row drx moves to row BSUC(drx) on his next (single square) move. The last row is the
pawn promotion row.

dec l are PREOCONST BSUC USUC (ISROU .I SROW 1 :
declare PREOCONST BETWEEN (ISOIMENSION , ISO I MENS I ON .ISC IMENSION);
dec l are OPCONST Bsuc f Wsucf IISROW).ISROW (PRE];

It should be noted that the operators Bsuc f , W suc( (and. similarly L2touc hf and R2touchf . section
2.2.1.2) are functions of convenience, not definition. There are no axioms that mention these
functions. However , we can (and do) use the simplification mechanism to compute the value of these
functions in every (interesting) case, and thereby produce useful inference steps involving their use.

Attachments to implement rows , columns and successors.

_ _ _
~~~~~~~~~~~~~~~~~~~~~~~~

- - ‘ ,
. “_ - - - - -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
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extension I SRO(.J (1,2,3,4,5,6,7,8);
extension ISCOLUMN 11,2,3, 4 ,5 ,6,7 ,8) :
extension 1SO IMENSION (1,2,3, 4 ,5,6,7,8) ;

attach Row (CHESS-.NATNUMREP) CAR;
at tach Co lumn (CHESS-.NATNUMREP] COR ;
attach Makeequare (NATNUMREP , NATNULIREP4CHESS) CONS;
attach ISOIMENSION (NATNUFIREPJ (CE ISDIMENSION (xi

(ANO (NUMBERP x)(LESSP x 9)(GREATERP x 8)));
attach I SROW (NATNUMREP) ISDIMENSION;
attach ISCOLULIN (NATNUMREP] ISOIMENSION ;
attach Bsucf (NATNUMREP-.NATNULIREP) IDE Bsucf (r) (COND ( (EQ r 8)8) (T(ADD 1 r))));
attach Wsucf (NATNUMREP-.NATNUIIREP] (DE Wsucf(r) (CONO ((EQ r 1)1) (T(SUB1 r))));
at tach BLASTROW (NATNUMREP) (CE BLASTROW (r)(EQ r 8));
attach WLASTRO W (NATNUMREP) (CE WLASTROW (r)(EQ r 1));
attac h BETUEEN (NATNUMREP ,NATNUMREP,NATNUMREP] IDE BETWEEN (x y z)

(AND (NUMBERP x) (NUMBERP y) (NUIIBERP z)
(OR (AND (LESSP x y) (LESSP y z))

(AND (LESSP z y)(LESSP ~j x i ) ) ) ) ;

Notice that we can easily observe (simplif y) that the predicates ISROW , ISCOLUMN and ISOIMENSION
are equivalent. However , we find it more natural to retain the distinction, for, af ter all, rows and
columns are hardly equivalent in their chess interpretations.

Section 2.1.4 Value Declarations

There are fourteen VALUES in this system, corresponding to the twelve different Incarnations of the
chessmen on the chessboard, an empty value, and an undefined value. It is perhaps worthwhile to
emphasize that the value of a given chesspiece is a function of the position in w hich we are
considering that cheaspiece. Of course, the value of non-pawn pieces does not change during a game
(and we shall prove a theorem to that effect (section 3.3.1).

Chessboards, being a manifestation of the current situation in a chess game, rather than a
description of the history of that game, have values filling their squares. Our desire to have
partially defined chessboards leads to the existence of the undefined value (UD) of our system.

The naming scheme for values is the converse of that of pieces. Thus, Q,W is a value of any piece
that is a white queen. In competitive chess, a promoted white pawn would therefore be likely to
have the value Q,W after his promotion. Value variables begin with the letter v. Each value is
represented in the Internal LISP world as the atom of the same name.

dec l are PREDCONST VVALUES NVALUES (VALUES) (PRE];
dec l are PREDCONST PIECEVALUES EVALUES (VVALUES) [PRE);
dec lare PREOCONSI WVALUES BYALUES (PIECEVALUES) (PRE] ;
dec lare PREOCONST PROMVALUES VALUEK VALUEQ VALUEB VALUEP

VALUER VALUEN (PIECEVALUES) (PRE);

dec l are INDCONST KU OW BU NW RW P14 C UVALUES
dec lare INOCONST KB OB SB NB RB PB C BVALUES;
dec l are INDCONST MT C EVALUES, UD C NVALUES;

— ,—~~ - - . ~~~~~~~~~~~~ . ~~~~~~~~~~~~
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declare INDVAR vw c WVALUES . vb c BVALUES;
dec l are I NDVAR v v i C VALUES, vpc vpcl vpc2 t PIECEVALUES;
declare I NOVAR vvx C VVAL IJES;
dec lare INOVAR vbi ( VALUEB;

attach MT .. (CHESS] MT; attach NB .. (CHESS] NB; attach 1(14 — (CHESS] KU;
attach RW — (CHESS] RU; attach PB .. (CHESS) PB: at tach PU — (CHESS] P14;
attach KB (CHESS] KB; attach RB w (CHESS] RB; attach OB (CHESS] 08;
attach OW ‘~ (CHESS) OW; attach (JO (CHESS) (JO; attach 88 (CHESS) 88;
at tach  NW .. [CHESS) NW; attach 814 ii (CHESS) 814;

mg PIECEVALUES�
(PROMVALUES , WVALUES, BVALUES, VALUEK , VALUEQ, VALUEB , VALUEN, VALUER, VALUER)I

mg PROi1VALUES~ (VALUEO, VALUES, VALUEN , VALUER);
mg VVALUES� IPIECEVALUES,EVALUES) ;
mg VALUESaiNVALUES ,VVA LUES) ;

extens ion VALU EK (1(14 KB) ; ex t en s ion  VALUEQ (014 08) ;
ex tension VALUEB (814 88); extension VALUEN (NW NB):
extension VALUER (RU RB); extension VALUER (PU PB);
extension WVALUES (KW ,QW ,BW ,NW,RW ,P14);
extension BVALUES (KB ,QB,BB,NB,RB ,PB);
extension EVALUES (MI); extension NVALUES ((JO);
extension PIECEVALUES (KB OB RB GB NB PB KU OW RW BW NW PU) ;
extens ion VVALUES (MT KB 08 RB BB NB PB KU 014 RI,) 814 NW PU) ;
extension VALUES (UD MT KB OB RB SB NB P9 KW OW RU BW NW P14);
extension PROMYALUES (08 RB BB NB OW RU 814 NW);

attach VALUEK (CHESS) IDE VALUEK (x )  (MEMO x (QUOTE (KU KB))))
attach VALUEQ (CHESS) (CE VALUEQ (xi (MEMO x (QUOTE (OW O B i ) ) )
attach VALUEB (CHESS] (CE VALUEB Ix) (MEMO x (QUOTE (SW SB))))
at tach VALUEN (CHESS] (DE VALUEN (xi (MEMO x (QUOTE (NW NB))))
attach VALUER (CHESS) (CE VALUER (xl (MEMO x (QUOTE (RU RB))))
atta ch VALUER (CHESS) (CE VALUER (xi (MEMO x (QUOTE (PU PB))))
attach WVALUES (CHESS] (CE WVALUES (xi (MEMO x (QUOTE (KU 0(4 814 NW RU PU))));
attach BVALUES (CHESS) (CE BVALUES Ix) (MEMO x (OUOTE(KB QB BB NB RB PB))));
attach EVALUES (CHESS) (CE EVALUES (xi (EQ x (QUOTE LIT )) )
attach NVALUES [CHESS) (CE NVALUES (x i (EQ x (QUOTE UD))) ;
attach VVALUES (CHESS] (CE VVALUES (xi

(OR (BVALUES x)(WVALUES x)(EQ x IQUOTE LIT))));
at tach PROMVALUES (CHESS] (OE PROMVALUES (x i

(IIEMQ x (QUDTE (QB RB NB BB OW RU NW BU))));
atta ch PIECEVALUES (CHESS) (CE PIECEVALUES (x) (OR (BVALUES x)(UVALUES x)));
attach VALUES (CHESS) (CE VALUES (xi (OR (VVALUES x)(EQ x (QUOTE (JO))));

PROLIVALUES are the values a pawn can promote to. More specifically, a pawn can promote to be a
queen, rook, bishop or knight.

The Va luecolor of any PIECEVALUES is the color of that value. Thus, the Va lueco lor of KU Is
WHITE.

dec lare OPCONST Va l uecolor (PIECEVALUES) .COLORS (PRE];

attach Valueco lor (CHESS-.CHESS) IDE Va)u.col or(v)(COND
((WVALUES v) (QUOTE WHI TE)) ((BVALUES vi (QUOTE BLACK))));

~-~~~-~- —- -~~~~-~~~~~~~~~~~~~~~~~—~~~~~--~~ 
- ----- - - . ,. ___I 

-



Page 50. The Chess Ax ioms 2.1.5. 
—

SectIon 2.1.5 Board Declarations

We have several interesting functions and predicates defined on boards. Two of the most complex
are the predicates WHITE INCI4ECK and BLACKINCHECK. These are true when the given side is in
check on the given board.35

Similarly, we have the composite predicate, SIDEINCHECK, on boards and colors. SIDEINCHECK on
WHITE and a board is true If and only if WHI TEINCHECK Is true for that board. The corresponding
statement about BLACK and BLACKINCHECK also holds.

Since a position is a state vector, we are theoretically able to obtain the total board (board with no
undefined squares) of any position. The function which extracts that board is Tboard. However , as
a position Is almost Invariably a variable (rather than a constant), we will never actually compute the
Tboard of any position.

One board is a SUBOARO of another if the second is equal to the first, on every square the first is not
undefined (UD). SUBOARD is therefore a partial ordering relation on boards. We state that the - V
predicate BOARD, on positions and boards, is true if the given board is a SUBOARD of the Tboard
(total board) of that position. Thus, this predicate Is true if the undefined squares of the given - :

board could be filled in to make the board obtained by playing the game that the position defines.36

The predicate BOARD is particularly appropriate for the kinds of puzzles we solve. Typically, we
shall be presented a board or board fraction, and need to reason about any POSI lION which has

t 

this board fragment as one of its boards.

We also have a constructor for boards, Makeboard, which takes a board, a square and a value, and
constructs the new board formed by inserting that value on the stated square.

The function Va lueon, on boards and squares, returns the value on that square of that board. The
predicate LIOVETO, on boards, values, squares and squares, Is true if the given value could move, on
the given board, from the first square to the second. MOVETO encompasses our notion of ordinary
movement. If the piece in question is, for example, a rook, then 110 VETO will be true for that piece
and board, if, the two squares share a row or column (but not both), and every square between them
is unoccupied (LIT, not UD).

dec lare PREDCONST WHI TEINCHECK BLACKINCHECK (BOARDS) (PRE);
dec lare PREOCONST BOARD (P051 TIONS,BOARDS);

group
• dec lare OPCONST Tboard (POSITIONS).TOTAL BOAROS (PREJ;

dec I are OPCONST Vat ueon (BOARDS, SQUARES) -VALUES;

declare INOVAR a b bi b2 b3 c BOARDS, bt C TOTALBOARDS ;
dec lare PREDCONST SIDE INCHECK (BOARDS ,COLORS);
dec I are PREOCONST LIOVETO (BOARDS, VALUES, SQUARES, SQUARES);

mg BOARDS? ITOTALBOARDS ,WHI TEINCHECK,BLACK INCHECKI ;

35. The allacPwn.nt p to the.e pred icates are in section 222.

36. Th.,.for ., (and trivially) the toisHy undsfinsd board i. ê BOARD of every posiIioi ~
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declare OPCONST Makeboard (BOARDS , SQUARES, VALUES) -BOARDS;
dec lare PREOCONST SUBOARO (BOARDS ,BOARDS);

We shall call initial board, the configuration of pieces before the start of the game, START. This
board Is illustrated In figure 26.

r~,r~r% r~
‘4,4,4 ,4

~~~~~~~~~
,, /, /,

_ _ _ _ _ _ _ _ _ _

The board START.

figure 26

dec l are INDCONST START c TOTALBOAROS;

• We represent a board in the internal LISP system as a list of the eight rows, each row being a list of
the eIght values on it. This is illustrated in figure 27.

( (BQR1 BOWl BOBi BQ1 BK1 BKB1 BKN1 BKR1)
(BQR2 BQN2 BQB2 B02 BK2 BKB2 BKN2 BKR2)
(BOR3 80N3 80B3 803 BK3 BKB3 BKN3 BKR3)
(BOR4 BON4 50B4 BQ4 BK4 BKB4 BKN4 BKR4)
(WQR4 WQN4 14084 (404 14K4 14KB4 WKN4 WKR4)
(UQR3 WQN3 WQB3 1403 WK3 14KB3 WKN3 WKR3)
(W QR2 WQN2 WQB2 (402 WK2 WKB2 WKN2 WKR2)
(WOR1 WQNX WOB1 (401 WK1 WK81 WKN1 WKR1))

LISP arrangement of a board, with square locations

figure 27

With this representation in mind, we make the appropriate attachments.

j 
_______________ _________ _________

~~~~~~~~~~~~ .~A ~~~r ~ ~~~~~~~~~ ~~~~~~ — -~ ~~~ *M~~ L.
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attach START .. (CHESS] ((RB NB BB QB KB 88 NB RB)
(PB PB PB PB PB PB PB PB)
(MT MT MT LIT MT MT LIT LIT)
(MT MT MT MT LIT MT MT LIT)
(LIT MT MT MT (IT MT MT LIT)
(MT MT MT MT LIT LIT LIT LIT)
(P14 P14 PU PU PU PU PU PU)
(RU NW BU OW KU 8(4 NW RU));

attach Valueort CCHESS,CHESS-’CHESSI
IDE Va luson lb S) (CAR (NIH (CAR (NTH b (CAR Si ))  (COR S i ) ) ) ;

attach BOARDS (CHESS) (DE BOARDS(b) (AND (EQ (LENGTH b) 8) (ALLROWS b ) ) ) ;
FUNCTION (DE ALLROUS (b) (COND ((NULL b) I) -t

((AND (EQ (LENGTH (CAR b)) 8) (IIELIBOARD (CAR bi) (ALLROWS (COR b) ) ) ) ) ) ;
FUNCTION (OE LIEMBOARO (Row) (CONO ((NULL Row) I) I( (AND (VALUES (CAR Row) ) (LIEMBOARD (CDR Row ) ) ) ) ) ) ;
attach TOTALBOARDS (CHESS]

(DE TOTALBOARDS (b) (AND (EQ (LENGTH bi 8)(ALLTROWS b)));
FUNCTION (DE ALLTROWS (b) (CONO ((NULL b) T)((AND (EQ (LENGTH (CAR b)) 8)

(MEMIBOARD (CAR b))(ALLTROWS (COR b))))));
FUNCTION (DE LIEMIBOARD (Row) (CONO ( (NULL Row) Ti

( (AND (VVALUES (CAR Row) ) (IIEMTBOARO (CUR Row) ) I) ) ) ;
attach SUBOARO (CHESS,CHESS) IDE SUBOARD (a b) (COND ..

~
((NULL a)T)
( (EQUAL (CAR a) (CAR b)) (SUBOARD (COR a) (CDR b)) )
( (OR (EQ (CAAR a) (CAAR b))

(EQ (CAAR a) (QUOTE UO))) •~(SUBOARD (CONS (COAR a) (CDR a))
(CONS (COAR b) (COR b ) ) ) ) ) ) ;

Section 2.1.6 Color Declarations

We develop a much richer set of predicates and variables on colors than a two element sort deserves.

dec lare PREOCONST (
~JHT BLK (COLORS) (PRE] ;

dec lare INDCONST WHITE WHT , BLACK C BLK;
dec lare INOVAR c COLORS;
mg COLORS � 1141(1, BLK)

exten eion BLK (BLACK) ;
•xt•ns ion UHT (WH I TE);
•xtene iort COLORS WHT U BLK;

attach BLACK in (CHESS] BLACK;
attach WHITE ~ (CHESS] WHITE S
attach WIlT (CHESS) (DE WH T(c) (EQ c (QUOTE WHITE)));
attach BLK (CHESS] (0€ BLK(c) (EQ c (QUOTE BLACK))) ;

~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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Section 2.1.7 More oii Positions

Section 2.1.7.1 Position declarations

It is worthwhile to emphasize that these chess axioms apply only to situations that might arise in a
legal game. Just as formal logic is very sensitive to inconsistency, allowing a proof of any WFF from
a false premise, so these axioms, when presented with, for example, an impossible board, do not
know which of their axioms to doubt, and will permit the proof of any conclusion about that board.
Therefore, the use of the word position in this paper should be understood to mean legal position. If
it were necessary to consider almost legal positions, then these axioms could be suitable subverted to
reflect whatever the subverter felt were the more fundamental legalities (see section 5.2.1).

Our system recognizes another major distinction between positions. For almost every position, one
can speak of the move that was made to get to that position. The exception , of course, is the initial
position, the position before the game begins. We therefore have the subsort of GALIEPOSITION,
which is every position except the initial one.

We refer to the initial position as PB. Its LISP representation Is as the list whose only element Is the
(arbitrarily selected) atom STARTING.

Positions also naturally, and somewhat more evenly, divide themselves by the color of the player
who is to move next in that position. We therefore have the subsort of 14HZ TETURN, those positions

• for which white is on move. Consistent with the rules of chess, PB will be a WIll TETURN position.

The variables r, ri and r2 are over the domain of POSITIONS. All variables beginning with the
letters p and q range over the GAMEPOS IT! ONS.

declare PREOCONST WHITETURN GAMEPOSITION (POSITIONS) (PRE];
mg POSITIONS? (WH I TETURN,GALIEPOSI lION);

dec l are INDCONST PB c POSITIONS;
attach PB ~ (CHESS) (STARTING ) ;

declare INDVAR r ri r2 (POSITIONS;
dec lare INOVAR p q p1 p2 p3 p4 px p

~ 
pz qx q~ qz qi q2 q3 C GAMEPOSIT ION ;

W e speak of one position as being a SUCCESSOR to another If there is a legal move from the first to
the second. We also recognize the function which takes a position, and returns the previous position
(position prior to the last move), Prevpos. Thus, for all GAMEPOSITIONs, p, SUCCESSOR (Prevpos
p,p) will be true.

dec l are PREDCONST SUCCESSOR (POSITIONS,GALIEPOSITION);
dec l are OPCONST Prevpos (GALIEPOSIT ION) .POSI TIONS (PRE];

As positions are conceptually built of moves, we have the function Move, on GAMEPOSIT IONs, which
extracts the last move made to get to that position. A compositor, Nextpos , on moves and positions,
yielding the ALLPOSI TION obtained by making that move, Is also provided. Two things should be

• noted about this function. It produces elements of the sort ALLPOSITION, which includes both
legal” and “illegal” positions, depending upon whether the given move was legal in the argumen t
position. Secondly, and perhaps more germanely, we are dealing exclusively with retrograde analysis
chess; the function Ne,c tpo. and sort ALLPDSI TI ON are nowhere used in the following proofs.

- - 
- 

- 
-
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dec lare OPCONST Move (GAMEPOSI lION) .MOVES tPRE)~dec lare OPCONST Ne~ctp oe (LIOVES ,POSIT IONS)’.A LLPOSIT !ON ;

One position is PREOEGALIE (predecessor in this game) to another if the firs; occurred in the game
played to reach the second. We will also use similar kinship terms, such as ancestor and descendant
in describing positions played in the same game. The initial position Is, of course, a predecessor to
every GAIIEPOSZ TZON . It is seen, therefore, that POSITIONS form themselves into a tree, with PB at
the root, with respect to Prevpoe operator .

dec lare PREDCONST PREDEGAME (POS I TIONS, GAMEPOSITIONi ;

in going from one position to a successor position. one can employ one of three different moves -- a
castle , a capture en passant, or a si nt~Ie, legal move.~ Castles are distinguished by moving two pieces
with the same move, en passani capture by the capture of a piece on a square other than the one
moved to.

dec l are PREOCONST SILIPLELEGALMOVE EN_PASSANT CASTLING
(POSI TIONS,CAIIEPOSI TION);

Another useful predicate on positions and colors is POS!TIONINCHECK. If the given color is in check
in the stated position. this predicate is true.

dec lare PREOCONST POSITIONINCHECK (POS1TIONS ,COLORS)~
As positions are stare variables , it is possible to extract information about the status of individual
chesspieces or squares from them. The function Poe says which piece is on a given square at a r
given time. Its almost inverse is Pospcf (position-piece function) which takes a position and a •

F chesspiece. and returns the extended square occupied by that piece35 One can also ask for the value
of a piece in a position (Va I) or the color of the position itself (Co lor), a WIll TETURN position having
a WHITE color.

dec l are OPCONST Poe (POSITIONS ,SQUARES)~P I ECE S ;
dec l are OPCONST Poepc f (POSITIONS ,CHESSPI ECES).EXSQUARES;
dec lare OPCONST Va ) (POSITIONS ,PIECES) VVALUES;
declare OPCONST Color (POSITIONS).COLORS (PRE];

The predicate PROIIOTEDPAWN is true If the argument pawn has been promoted before or by the
given position (no longer has a pawn value.)

dec l are PREDCONST PROMOTEOPAI4N (CAMEPOSITION, PAWNS);

SectIon 2.1.7.2 PosItional Attachments

The following attachments have been made to the position predicates.39 These functions are, to the
minimal extent that they have been implemented, the oôvlous attachments for handling the objects In

37. A pn.rel clas,ifc.tion, m..nt to .,heum. .ve~ythsng else.

38. T ue pu ce may, of coup.., no long., b. on any “reel’ square. In that case, th. value of thin function is not defined

39 Noti the use of the I_DONTJNOW reopen.e (a special FOL const ruct ) when the .uthor didn’t feel Its writing th. rest of
these complicated funct ions.

_______________________________________ 
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the world we have defined. The notion of a position as a list of moves has been minimally
incorporated into these attachments . The attachment for POSITIONS Is only used to uniformly
recognize the initial position. W e will construct no other positions, for we will not be speaking about
any other entire game.

attach POSITIONS ICHESS) (DE POSiTIONS IL) (COND
( ( EQUAL (QUOTE (STARTING ) ) LI) IT (QUOTE 1_DONT _KNOW) ) ) ) ;

attach Pos (CHESS .CHESS- CHESSI
(LAMBD A (p S)(COND((EQUAL p (QUOTE (START I NG) ) )( GIVENF S))

(I (QUOTE LDONT...KNOW )) ) ) ;
attach Pospc f [CHESS ,CHESS-.CHESS)

(LAMBDA (p x)(CONO ((ECUAL p (QUOTE (STARTING)))(G!VENPCF * ) )
IT (QUOT E I...DONT_KNOW) ) ) ) ;

a t tach W H!TET URN (CHESS) (DE WHI TETU RN(L) (NOT(ZERO P(REMAINDER(LENGTH L )2 ) ) ) ) ;
attach Color [CHESS~.CHESS)(GE Color (LI (COND ( (WHITETURN U (QUOTE WHITE)) (I (QUOTE BLACK))));

FUNCT ION (GE GIV ENF (S) (CONO
((EQ (CAR S) 1)(CAR (NIH (QUOTE (BOR BQN BOB 80 8K 8KB BKN BKR)) (CUR S))))
((EQ (CAR 5) 2)(CAR (NIH

(QUOTE (BQRP BQNP BOBP BOP BKP BKBP BKNP BKRP)HCOR S))))
((EQ (CAR 5) 7) (CAR (NIH

(QUOTE (WQRP WQNP L.JOBP WOP WKP WKBP I.JKNP I.JKRP)) (COR 5))))
((EQ (CAR 5) 8) (CAR (NIH (QUOTE (WQR WON 1408 WQ i4K 14KB (4KM 141(R)) (CUR 5))))
(I (QUOT E E M P T Y ) ) ) ) ;
FUNCTION IDE GI VENPCF (x) (CADR (ASSOC x (OUOTE (

(BOR (1 . 1)) (BON (1 . 2)) (BOB (1 , 3)) (BO (1 . 4 ) )

(BK (1 . 5)) (BKB (1 . 6)) (BKN (1 . 7)) (BKR (1 * 8))(BQRP (2 . 1)) IBQNP (2 . 2))  (80SF (2 . 3)) (SOP (2 • 4 ) )

(BKP (2 . 5)) (BKBP (2 . 6)) (BKNP (2 . 7)) (BKRP ( , 8))
(WQ RP (7 , 1))  (I4ONP (7 . 2))  (140SF (7 . 3 ) )  (WOP (7 4 ) )
(I4KP (7 . 6)) ((4KBP (7 . 6)) (L.JKNP (7 • 7 ))  (I.JKRP (7 • 8))
(IJOR (8 . Ii) (WON (8 . 2))  (1.108 (8 , 3)) (W a (8 . 4 ) )
(14K (8 • 5)) (14KB (8 . 6)) (WKN (8 . 7)) (1.JKR (8 . 8 ) ) ) ) ) ) ) ;

at tach Va l (CHESS,CHESS...CHESS) IDE Va l (p x)(CONO ((EQUAL p (QUOTE (STARTING)))
(CONG ((SETQ TEMPORARYXXX (ASSOC * (QUOTE
((WK ,KW ) (WKN.NW) ()4KB.BW) (WKR.R l4) (WQ.QW) (L.JON.NW) (WQB.BW ) (1.JOR.RW )
(WOP.PW) (IJQNP.PW) (WOBP.PW) (WQRP.PW) (WKP.PW) (WKNP.PW ) (WKBP .PW) (WKRP .PW )
(BK .KB) (BKN.NB ) (BKB.BB) (BKR.R8) (BQ.QB) (BQN.NB) (BQB.BB) (BQR.RB)
(BQP.PB) (BQNP.PB) (BQBP .PB) (BQRP.P8 ) (BKP,PB) (BKNP .PB) (BKBP.PB) (BKRP.PB )
(EMPTY.MT)))))(CDR TEMPORARYXXX)))

(T(OUOTE 1 _DONT _KNOW)) I);

Section 2.1.8 Move Declarations

Section 2.1,8.1 Predicates on Moves

The sort of MOVES is redundant in the axioms and proof, replacable by the positions themselves.
However, the notion of a move is a natural concept in itself, and was therefore included in the
ax iomat lzation.

There are, of course, various kinds of moves. For example. we can classify the last position by
whether it was an en passant capture, castle or ordinary move:
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declare PREDCONST ORDINARY CASTLE ENPASSANT (MOVES) LPRE)i

There are several kinds of ordinary moves. They divide between the capturing and non-capturing
moves (CAPTURE and SIMPLE), and may also fall into the pawn promotions (PALJNPRON). Compound
classifications such as simple pawn promotion (SIMPP) or captures that are not promotion moves
(CAP). The predconst TAKINGS covers all capture moves, Including en pauant capture. This rich
structure uses the following declarations:

dec l are PREDCONST PAL4NPRON TAKI NGS (MOVES) ~PRE);
dec l are PREOCONST CAPTURE SIMPLE (ORDINARY) (PRE);
dec l are PREDCONST SIM SIMPP (SIMPLEUPRE) ;
dec l are PREOCONST CAP CAPPP (CAPTURE ) (PRE];
mg CAPTURE � (CAP CAPPPJ ;
mç SIMPLE ~ (SIN SIMPP};
mg PAI4NPRO M � (SIMPP CAPPPI :
mg ORDINARY � IPAWNPROtI CAPTURE SIMPLE) ;
mg TAK I NGS ~ (CAPTURE ENPASSANTI;
ing MOVES ~ (ORDINARY CASTLE ENPASSANT TAK INGS);

And, of course, each of these sorts needs a variable to call its own.

dec l are INDVAR in C MOVES, mc c CAPTURE , m o  c ORDINARY , mpp ( PAWNPRO M ,
ins SIMPLE , mtx ( TAKINGS , m spp c SIMPP;

Section 2.1.8.2 Functions on Moves

For all moves, we can speak of the square from which the move was made, the square to which it
was made, and the chesspiece that did the moving. For certain other classes of moves, we can state
the chesspiece captured. the value a pawn promoted to, how the rook of a castling move moved , or
where an en passant capture took p)ace . Collectively, these produce the following declarations.

dec l are OPCONST From To (MOVES) - SQUARES (PRE] ;
dec l are OPCONST Mover (MOVES) - CHESSPIECES (PRE] ;
dec l are OPCONST Taken (TAKINGS ) - CHESSPIECES (PRE);
dec l are OPCONST Promoted (PA1.JNPROFI) - PROt’lVALUES (PRE): —

dec l are OPCONST Meofrom A lsoto (CASTLE) - SQUARES (PRE);
dec l are OPCONST Algornover (CASTLE) - CHESSPIECES (PRE];
dec l are OPCONST Takenon (ENPASSANT) - SQUARES (PRE];

It should be noted that the 41.50 part of the castling move functions refer to the actions of the rook
in the castling move.

We can also have move constr uctor f unctions. which take the various determiners of a move, and
produce the move corresponding to those requirements. For example, a simple (SIN) move
constructor would be declared:

dec lare OPCONST Makes) mp lemove (SQUARES ,SOUARES ,CHESSPIECES) .SIM;

And would produce the move resulting from that cheupiece moving from the first square to the
second. However, as we never construct any moves, we will not need these constructors.

______ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Section 2.1.9 Definitional Ax ioms

Section 2.1.9.1 Miscellaneous axioms

in the last several sections, we have defined several predicates and functions in terms of other
predicates and functions. FOL does not, of course, know about these relationships unless we
exphcit) y axiomatize them. For example. the rule that white moves first, is expressed by
axiomatically stating that the initial position (PB) be a L4HITETURN.

ax i om INIT IAL _MOVER:W HITETURN PB;;

Similarly, the fact that the Inaugural board is the board START , Is specified as:

ax iom START ING _BOARD:Tboard PB -START 1;

As you can see, defin~ional axioms are not very exciting.

We gave a large hierarchy for move typing. It is important to state both the inclusive (all moves are
of certain sorts) and exclusive (a move is in only one of several classes) properties of this move
structure in an axiom.

axiom (IOV ETYP ES:
Vm , (ENPASSANT in vCASTLE in vORDINARY m ) ,
Ymn.-.(ENPASSANT in ,~CASTLE m
Ym.-’(ENPASSANT in AORDIN ARY m ) ,
Vm ,-’(CASTLE m nOROINARY m ) ,
Vmo.— (CAPTURE ino eSIMPLE mo 1 ,
Vmc,— (CAPPP mc uCAP mc ) ,
Vnis. — ( SIMPP ins .SlM ins
Vmpp .-.(CAPPP mpp •SIMPP mpp I ,
Vmtx ,-.IENPASSANT mtx uCAPTURE mtx ) ; ;

We claimed that the (lakesquare operator, on rows and columns , produced the appropriate square,
that the LASTRANKER predicate on squares and colors is decomposable in terms of WLASTRANK and
BLASTRANK , and that SQUARE_BETWEEN representes the betwunness relation, both orthogonally and
diagonally. Each of these definitions entails the appropriate defining axiom. Note, however, we
include the axiom for SQUARE_BETWEEN only for reference; this axiom is not subsequently invoked.
Rather, all uses of SQUARE_BETWEEN are done through simplification.

axiom SQUARED;
V sq. (sq.Makesquare (Row sq , Co lumn eq)) ,
V eq c. (LASTRANKER (sq, c )s

((c-WHI TE4ILASTRANK sq)vlc.BLACKnBLASTRANK sq)));;

ax iom SQBETWEEN:
Veqi sq2 eq3. (SQUARE_BETUEEN(sql sq2 sq3).(

(Row sql — Row sq2 nRow sq2 —Row sq3 ‘BETWEEN (Co lumn sql, Column eq2, Column sq3 ))v
(Column sql —Co l umn eq2 nCo i umn eq2 -Column eq3 n

BETW EEN(Row sql, Row eq2, Row sq3 ))v
(SAMEDIAG ( eql sq2)nSAMEOIAG(sq2 sq3)nSAIIEOIAG(sql 5q3)A

BETWEEN (Row sql, Row sq2, Row sq3 ) ))h ;  

-.- - ~~~~~~~~~~~ .~~~~ .- . - -~ — — —  __________________
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Section 2.1.9.2 PosItional Axioms

In the section on position declarations, we made several assertions about the relations between the
predicates we declared. We here axiomatize these assertions.

We stated that every position except the initial position was * GAMEPOSI TION.40

axiom POSITION_TYPES:
Vr,-.(r-P0.GAMEPOSIT ION r);;

Every GAMEPOSITI ON is the successor of its predecessor position; every GAMEPOS ITION is a
descendant of the initial position, PB.

ax iom POSITION _RULES: -
.

Vp,(SUCCESSOR IPrsvpos p ,p)nPREDEGAME (P0,p));;

Much like a number system, we can axiomatize the a partial ordering relation (PREDEGAME) on
positions. PREDEGAME is true if its first argument occurred in the game that produced its second. It
acts much like any partial ordering relation, such as <.41 If the reader keeps this correspondence in
mind, the following axioms will seem transparent ly valid.

In reading these axioms, one should also recall that the variables r, ri, and r2 range over all
POSITIONS (including the initial position, PB), and that p and q are on the domain of
GAMEPOSI TIONs only.

axiom GAMERELAT IONS:
Vr q. (PREDEGAME(r q).(SUCCESSOR (r q )v

3p. (PREOEGAME(r p)nPREOEGAtIE (p qflfl,
Vp rl r2. ( (PREOEGAME(r2 p)nPREOEGAME(rl p))D

(PREGEGA 1IE (ri r2) vPREDEGAJIE (r2 ri ) vr2-rl)),
Yrl r2•-.(PREDEGAIIE (rl r2)nPREOEGAIIE(r2 ri)),
Yrl q r2,(SUCCESSOR(rl q),-’(PREDEGAME(rl r2)nPREDEGAME(r2 q)));;

These next three axioms relate the translation between functions and predicates. The first states that
the Co lor function is equivalent to the WHITETURN predicate. The second defines the range over
which Poe (the piece on the given square in the given position), and Pospcf (the square on which
the given chesspiece rests) are inverses, to wit, when the chesspiece is still on the board (not yet
captured). The third states the equivalence of the Val (value) function on pieces, with the Va lueori
function of the corresponding boards.

ax i om PUS_COLORS: Yr c•(Co l or r.c a (WHT c . I.JHI TETURN r));;

ax i om PUS_TRANSLATION s Yr sq x, (Pos(r sq).x • Pospcf (r x).sq);;

axiom VALUETRANSP OSIT IONiYr t sq b,((Po9( r sq).tn8OARO(r b)),
(Valueon(b, sq).Val(r ,t)vVa lueon(b sq) .UD));;

40. w,. IIi.t t~i v.,ibls ~~~ ,.ng~s ow., POSITIONS, ~~ M~ i$y GAMEPOSITIONS.

4 I. R.m.mb.,ing , of c.uvs., that POSITIONS hews e Iris his , rather th.n ins., structurs

.~~~. 
—~~~~~~~~~~5g~ ~~~~~~~~~~~~ - -  -~ - 
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Section 2.1.10 Miscellaneous Declarations

We shall also have occasion to use a few universal elements, particularlly for the axiom
Substitution .42 We declare some universal variables (j  and k), and functional parameters j3 (for - -

single argument functions) and ~32 (fo r two argument functions).

declare INOVAR j ii J2 k ki it.2;
declare OPPAR 

~ 1 (PRE] ;
dec lare OPPAR ~2 2;

Section 2.2 Axioms

Section 2.2.1 Movement axioms

SectIon 2.2.1,1 Successor definition

Having cleared away most of the definitional rubble (with the exception of a few scattered bricks
and window shards , still to be presented ) we are ready to express the rules of chess In first order
logic. The major vehicle for this task are the movement consequence axioms, (MCONSEQ). These
detail sonic of the requirements and consequences of a given position being a successor (legal move
away ) to another position. In many ways , SUCCESSOR Is the fundamental predicate of this axiom
system .

ax i om MCONSEQA :
Yr q. (SUCCESSOR(r qb

((—WHITETIJRN (r).14H1 TETURN(q) )n
Prevpos (q) -rn
-‘POSITIONINCHECK (q,Co l or r)n
(WHITEPIECE Mover (love q.WHITETURN r)n
Pos(r From Move q)- llover Move qn
Poe(q ,To Move q )eMover Move qn
Pos(q.From Move q)-EMPTYn
(CAPTURE Move qDPoa(r,To Move q)-Taken Move q )n
(CASTL I NG(r q)vEN_PASSANT (r q)vSItIPLELEGALMOVE (r q)) I);;

This axiom states a series of conditions on positions needed to satisfy the SUCCESSOR predicate.43

For two positions to have the successor relationship, they must, of course, be of opposite color. As
positions retain the history of their derivation, the first must be the previous position of the second.
A caveat against moving and remaining In check Is specified. The piececolor of the mover Is the
same as the side that made the move (you only move your own pieces), and the llov.r moved from
the From square to the To square of the move. The square he left is then vacant. If the move was
an ordinary capture, the captured piece was on the square moved to. Any move Is either a castling
move, an en passani capture, or a simfrle, legal move .

42 S.ctionA 2l

43 Th, p’sd ’cs;s , (thou h ws she ll not s.pbcitly do so ), would b. dii mod is ths coniunction of soms of tho conditi ons vs w ill
stats in this ch.pt.r As all of t his analyst. vs hew . spphisd this ,. axiom s to is rstro~r.ds .nsIysi., forwsrd construction of suecossors
he. not b..n nssdsd this is many silt ., thinS., nays, bsm rsquirsd, It ma. not bsin dons. 

- - - ~~~t 
-

- - - 
- - .~~~~~~ 

.
~~ 

- . ~~~~A~-



-- - -

Page 60. The Chess Axioms 2.2.1.1.

Having defined the fate of the moving piece in any move, we reveal that any taken piece Is nowhere
to be found (or, at least , is not on any square).

ax i om IICONSEQFsYr sq x, (Taken Move r.x~-’Pos(r sq).x);;

It is also necessary to state what does not change during a move. Any piece that did not move or
was not captured is still on the same square; any square that was not the From or To or Takenon
square of the last move retains its identical contents .

axiom MCONSEQO:Vr q sq.((SUCCESSOR(r q)n-.eq-From love qn—sq-To Move qn
— (CASTLE Move qn (sq-A l eotrom Move qvsq.Aleoto Move q u A
— (ENPASSANT (love qi~sq-Takenon Move q

) )
~Pos(r sq )—P os(q sq));;

axi om (ICONSEQE :Yr q x. (SUCCESSOR(r q),((—x-tlover (love qn
— (TAK I NGS Move qnx-Taken Move q)n
-‘(CASTLE Move qnx-A l sornover Move q ) )

~Poapcf (r x)sPospcf(q x)))u

There are also the loose ends of these functions to be tied. We wish these functions to be defined - -

on ly on the appropriate positions; to speak of the Takenort square of a castling move is meaning less.
While the need for this axiom Is probably not obvious, its restrictions are required In the proofs of
several later theorems.

ax i om tICONSEOG:Yr t sq. U—TAK INGS Move rD—t-Talcen Move r)n
(-.ENPASSANT Move r~—eq-Takenon (love r)n (-’GAMEPOSITION r3-4IOVES Move 

r)n
(—CAMEPOSITION r~-’sq-To Move r)n (-’GAIIEPOSITION r~—’sq.From (love r)n
(-‘GAMEPOSITION r~-’t.Mover Move r)n(-‘CASTLE Move r~ (—sq.A l eoto Move rn-’t—A l somover Move r)))ss

These next three axioms deal with the special circumstances of pawn promotions. The first states
that the only way a piece can change its VALUE is by being the mover of * pawn promotion; we use
this fact , for instance, to prove that any non-pawn chess piece always has the same value.44 The
second is definitional for the predicate PROIIOTEDPAWN. The third places limitations on pawn
promotions. specifying that a pawn promotion moves a pawn to the last rank of his color , by a
simple, legal move, that the piece must have pawn value when he starts the move, and must have a
value from the set of possible promotion values (queen, rook, bishop and knight) when done. The
axiom bars chameleon promotions; the pawn retains its color though the move.

ax iom MCONSEQH;Vr q t,((SUCCESSOR(r q)n
(—PAWNPRO(l Move qv—t.Mover Move q)) Val(r t).Val (q t));s

ax iom (ICONSEOI:
Yr t. (PROMOTEOPAWN (r t) .

3q. (PAWNPROM UIove (q) )n (PREOEGAME (q r)vq.r)nflover (Move q).t)) i s
ax i om MCONSEQL;

Vp . (PAWNPROM Move p.(LASTRANKER (To Mov. p,Color Pr.vpo. p)n
SIMPLELEGALMOVE (Pr.vpos p pIn
PAWNS Mover Move pn
VALUEP Va lueo n(T board Prevpos p, From Move pIn

((BVALUES Promoted Move p.BVALUES Val (Prevpoe p Mover Move p))n
(WVALUES Promoted Move pUWVALUES Va l (Prevpos p Mover (love p)))n
Va l (p Mover (love p).Promoted Slov. p1);;

44 S.ct ion 33.1. 
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The definitional equivalence of the three types of successions, and their respective moves Is declared.

ax iom (ICONSEOM;
Vp.((CASTLE Move puCASTL ING (Prevpos p p))n

(ENPASSANT Move puEN_PASSANT (Prevpoe p p))n
(ORDINARY Move p.SIMPLELEGALMOVE (Prevpos p p) ) ) ; ;

The above axioms are not quite strong enough in their limitations of that special position, the initial
position. So we include this additional axiom.

ax iom MCONSEQO sYt sq. (-‘(lover Move P0.tn-From (love P0.sqn
-‘Io Move P0.sqn—Taken Move P0—tn
-‘(lOVES Move PB);;

Section 2.2.1.2 SImple legal motion

We have split the chess move world into three parts, castling, en passant and ordinary moves. We
must now define each of these classifications. Let us start with the last, certainly the most common.

The definition of a SZIIPLELEGALMOVE is given in the axiom MCONSEQ((. It demands that the
move source (From) square differ from the destination (To) square. that in non.capturing moves, the
move always go to an empty square, and that in capturing moves, the captured piece always be a
member of the opposing army. The predicate IIOVETO, on the (total) board of the moving from
position, need also be satisfied. Notice that, in some important sense, we are not cheating; for
retrograde analysis, It would be much more convenient to define the move in terms of the destination
board. However , this is not the way the rules of chess are naturally ex pressed. MOVETO defines the

• different moves of the individual values.

ax i om MCONSE QK:
Yr q. (SIMPLELEGAL MOVE (r q).

(—From Move q.To Move qn
1IOVETO (Tboard r Valueon (Tboard r,From Move q) From Move q To Move q)n

(SIMPLE Move qnVa l ueori (Tboard r,To Move q)—MT)v
(CAPTURE Move qnPIECEVALUES (Valueon (Tboard r ,To Move q))n

-‘Va l ueco l or(Valueon (Tboard r,To Move q))—Color r))));;

The predicate MOVETO is, of course, the composite of five different predicates, representing the
possible major movement types of chess. Chess pieces can move orthogonally, like rooks and queens,
on a bishop’s (and queen’s) diagonal, to the king’s adjacent square, by the knight’s Jump, or In the
slow, advancing move of a pawn. A predicate for each of these styles is declared; it is true when
that move is legal on the given board, from the first square to the second. Notice that MOVE TO . as we
have defined it here, does not include consideration of the end squares of the move. This is because
we wish to more easily conclude, if that unknown 0cc. u a rook , then ii could move to that square.
However , this makes it subtly and slightly more difficult to prove moves about completely defined
situations. Life is a trade off,

The auxiliary predicate TWOTOUCHING (are the column arguments next to each other; that Is, can a
pawn capture from the first column to the second) is also declared. The functions L2touchf and
R2touchf embody the next column left and next column right notions.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 
.
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dec l are PREDCONST ORTHO (BOARDS, SQUARES, SQUARES);
dec l are PREOCONST DIAG (BOARDS, SQUARES, SQUARES);
dec l are PREOCONST PAWNMOVE (BOARDS, VALUES, SQUARES, SQUARES);
dec l are PREDCONST KING (IOVE (SQUARES, SQUARES);
dec l are PREOCONST KNIGHTMOVE (SQUARES , SQUARES);

dec l are PREOCONST TWOTOUCHING (ISD IMENSION, ISOIMENSION);
declare OPCONST L2touchf R2touchf (ISDIMENSION).ISO IMENSION (PREI ;

The attachments to the next column touching functions have a convenient inversion; when the
function would be otherwise undefined (at the edge of the board) the opposite direction Is selected

attach L2touchf (NATNUMREP-.NATNUMREP)
(OE L2touchf (r)(COND ((EQ r 112) (T(SUB1 r))));

attach R2touchf (NATNUMREP-.NATNUMREP]
IDE R2touchf(r)(CONO ((EQ r 8)7)(T(ADO1 r))));

Orthogonality and diagonality are given predicate logic definitions, in the obvious manner . Pawn
moves are broken into black and white pawn movements, and the three types of pawn moves (single
space ahead, capture diagonal advance, and two space first move) are described for each of black
and white. As the geometry of king and knight moves are purely a function of the squares involved
(at least in the sense that the limitations are imposed elsewhere), we do not need a formal logic
definition of their potential actions. Rather, we invariably rely upon our chess eye for decisions of
this kind. The axioms that we would have defined for king and knight moves are derivable from
the chess eye’s functions.

Note that if our chess eye were capable of computing on incompletely defined qu antities (variable
objects with known properties, for example), we might be able to avoid having definitions of ORTHO
and DIAG. That is, if FOL permitted the passing of a variable board to these functions, then many
of the derivations that use the definitions of ORTHO and DIAG could be done merely by simplification.
However, in the more complex cases , simplify might have to consider four thousand square pairs or
a quarter of a million triplets. The former, while painful, Is computationally feasible. The latter is
not. Hence, the definitions of these predicates.

dec l are PREOCONST WPAWNMOVE (BOARDS, SQUARES, SQUARES);
dec l are PREDCONST BPAWNIIOVE (BOARDS, SQUARES, SQUARES);

ax iom MOVING i
Yb v sql sq2.fflOVETO lb v sql eq2).

((VALUER (v)nORTHO (b sql sq2)) v
(VALUEB (v)nD IAG (b sql sq2)) v
(VALUE Q (v)nDRTHO(b sql eq2)) v
(VALUE Q (v)nDIAG(b sql eq2)) v
(VALUEK (v)nK INGMQVE(eql sq2)) v
(VALUEN(v)nKNIGHT(IOVE(sql eq2)) v
(VALUEP (v)nPAWNtIOVE(b v sql sq2)))),

_____  
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Yb sql sq2. (ORTHO(b sql sq2).
‘ (-‘sql-sq2n

((Co l umn sql-Column sq2 ~
Vsq3.((BETWEEN (Row sql , Row sq3, Row sq2)

nCo l umn sq3-Column sql)D
Va l ueon(b sq3).flT))v

(Row sql-Row sq2n
Vsq3,((BETWEEN (Co l umn sql, Co l umn sq3, Co l umn sq2)n

Row sq3-Row sqib
Valueon(b sq3).IIT))))),

Yb sql sq2, (OIAG (b sql sq2) •
(SAMEOIAG (sql sq2) n
Vsq3. ((SAMEO1AG (sql sq3) n

SAMEO I AG (sq2 sq3) n
BETWEEN (Row sql, Row eq3, Row eq2))~Va l ueon (b sq3) — MI)));;

ax iom PAWN (IOVINGt
Yb v sql sq2. (PAL4N(IOVE(b v sql sq2).

((WPAWNMO VE (b sql sq2) n UVALUES v) v
(BPAWN(IO VE (b sql sq2) n BVALUES v))),

V b sql eq2. (W PALJNMOVE(b sql eq2).
((Column sql-Co l umn sq2n
WSUC (Row sql, Row sq2)A
Va l ueon(b sq2).MT) v
(Co l umn sql-Co l umn eq2A
Row sql-7n
Valueon (b sq2)-tlTn
Valueon (b Makesquare (6, Column sql)).MTn
Row sq2-5)v
(TWOTOUCI1ING (Column sql , Column eq2)n
USUC(Row sql, Row sq2)A
BVALUES Va ueon (b sq2)))),

V b sql eq2, (BPAWNIIOVE(b sql sq2).
((Co l umn sql-Co l umn sq2n
BSUC(Row sql, Row sq2)n
Va l ueon(b sq2).MT) v
(Co l umn sql-Column sq2n
Row sql.2n
Val ueon (b sq2)-MTn
Va l ueon(b Makesquare (3, Column eql))-MTn
Row sq2.4)v
(TWOTOUCHING (Co l umn sql, Column eq2)A
BSUC(Row sql , Row sq2)n
WVALUES Va lueon (b sq2))));;

Each of the possible moves also has an attachment in the LISP model. These attachments are to be
part of our C~ess Eye.~

5 The chess eye functions are defined and explained In the following sections;
their correspondence to these definitional axioms should be obvious.

43. S.ct,en 152 .
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SectIon 2.2.1.2.1 Ortho Attachments

The auxiliary LISP function ALLFREER (all free (empty) in the row) is given. It takes a board, a row ,
a from column, and a to column, (from being arithmetically less than to) and returns t (true) if every
square on that board, in the given row, between the given columns, Is empty (has MT as Its
Valueon), NIL (false) otherwise. The function ALLFREEC performs the corresponding action for
columns.

FUNCTION (CE ALLFREER (b r from to) (COND( (EQ from (SU8I tofll)
((EQ (Va l ueori b (CONS r (SUB1 to)))(QUOTE MI))
(ALLFREER b r from (SUB1 to)))));

FUNCTION (DE ALLFREEC (b r from to) (COND
((EQ from (SUB1 to))T) 

-
. -

((EQ (Valueori b (CONS (SUB1 to)r))(QUOTE MT))
(ALLFREEC b r from (SUBI toll)));

Using these two functions, the orthogonality check for two squares merely becomes a check to see if
they share a row or column, and if all the squares between the argument squares are free. Note that
no square is ORTHO to itself.

attach ORTHO (CHESS ,CHESS. CHESS] (CE ORTHO(b r S) (OR
(AND (EQ (CAR r) (CAR 9))

(OR (AND (LESSP (CUR r)(COR 5))
(ALLFREER b (CAR r) (CUR r) (CUR 5)))

(AND (CREATERP (CUR r)(COR SI)
(ALLFREER b (CAR r) (CDR 5) (CUR r)))))

(AND (EQUAL (CUR r) (COP S))
(OR (AND (LESSP (CAR r)(CAR S))

(ALLFREEC b (CUR r) (CAR r) (CAR S)))
(AND (GREAIERP (CAR r)(CAR S))

(ALLFREEC b (COR r) (CAR S) (CAR r ) ) ) ) ) ) ) ;

SectIon 2.2.1.2,2 DIag Attach m ents

Diagonal movement attachment is similar to orthogonal. The predicate ALLFREED checks if all the
squares on the diagonal between two given squares are empty. SAMEDIAG (defined earlier) Is true If{ the two squares lie on a diagonal. SIGN is simply the sign function of mathematics.

FUNCTION (CE SIGN(x)(COND((MINUSP x)(SUB1 0))((ZEROP x)0)(I 1)));

FUNCTION (DE ALLFREED(b ri ci r2 c2) (PROG (x 
~

)
(SETQ x (SIGN (DIFFERENCE r2 ri)))
(SETQ y (SIGN (DIFFERENCE c2 ci)))

LOOP (SETU ri (PLUS ri x ) )
(SETQ ci (PLUS ci ç~

))
(CONO ((EQ ri r2)(RETURN I))

((EQ (Va l ueon b (CONS ri ci))(QUOTE MT))(GO LOOP)))));

The attachment to DIAG then simply becomes:

t 
_ _ _ _ _  

_~— -~~-~-—~~~



2.2.1.2.2. The Chess Axioms Page 65.

attach WAG (CHESS,CHESS,CHESS] (CE OIAG (b sql sq2)
(AND (SAMED IAG sql sq2)

(ALLFREED b (CAR sql) (CUR sql) (CAR sq2) (CUR sq2))));

SectIon 2.2.1,2.3 Knlghunove Attachments

As a knight can effectively Jump over other chesspieces, the function that computes the KNI GHTMOVE
between two squares does not need to refer to any board. Rather, two squares have this relationship
purely geometrIcally; If the differences of their coordinates are two and one, the squares are a knights
jump apart.

attach KNIGHTMOVE (CHESS,CHESS]
(CE KNIGHTNOVE(x 

~
)

(AND
(SQUARES x)
(SQUARES u)
(OR (ANO (E Q 1 (ABS (OIFFERENCE (CAR x)(CAR u) ) ) )

(EQ 2 (ABS (DIFFERENCE (COR x)(COR y)))))
(AND(EQ 2 (ABS (DIFFERENCE (CAR x)(CAR y))))

(EQ 1 (ABS (OIFFERENCE (CUR x)(CDR 
~

) ) )
~~
)
~~

;

Section 2.2.1.2.4 Kingmove Attachments

Like the knight’s move, the king’s move is not limited by any squares beside the • ‘imrce and
destination.

attach K!NGMOVE (CHESS,CHESS) (CE KINGIIOVE (x w) (AND
• (NOT (EQUAL x

(SQUARES x)
(SQUARES y)
(LESSP(ABS (DIFFERENCE(CAR x)(CAR u) ) )2 )
(LESSP (ABS (OIFFERENCE (COR x) (CDR u) ) )2 ) ) ) ;

Section 2.2.12.5 Pawn Moves

Attachments are given for the predicates used in the pawn move axioms. These functions are a
fairly straightforward translation of their definitional axioms.

attach I1.JOTOUCHING (NATNUMREP ,NATNUMREPI (CE TWOTOUCHING (x y)
(AND (NUMBERP x)(NUIIBERP u)(EQ 1 (ABS (DIFFERENCE x ~W fl ;

attach WSUC (NATNUMREP ,NATNUMREPi
(CE WSUC (x ~)(AND (NUMBERP x)(NUMBERP u)(EQ 1 (DIFFERENCE x u) ) ) );

attach BSUC (NATNUMREP,NATNUMREP3 (CE BSUC (x ~) (WSUC ~ x));

—- -~~~~ L .,~~~~~~~~~
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attach WPAWNMOVE (CHESS,CHESS,CHESS) (CE L4PAWNMOVE(b sql sq2)
(OR (AND (EQ(CDR eql)(COR eq2))

(EO (Valueon b eq2) (QUOTE fIT))
(OR (EQ (CAR sql ) (AUDi (CAR sq2)))

(AND (EQ (CAR sql) 7)
(EQ (CAR sq2) 5)
(EQ (Va l uson b (CONS 6 (CUR •ql)))(QUOTE fIT)))))

(AND (OR (EQ (COP eql )(ADOI (COR 1q2)))
(EQ (AOO1 (COR eql))(CDR sq2)))

(EQ (CAR eql)(ADD1 (CAR eq2)))
(BVALUES (Va l ueon b e q2 )) ) ) ) ;

attach BPAWNMOVE (CHESS,CHESS,CHESS] (CE BPAL4NMOVE th sql sq2)(OR (ANO (E Q (COR sql) (COP sq2))
(EQ(Va l ueon b sq2) (QUOTE MI))
(OR (EQ (ADOl (CAR eq1WCAR eq2))

(AND (EQ (CAR sql ) 2)
(EQ (CAR sq2) 4)
(EQ (Va l ueon b (CONS 3 (CUR sql)))(QUOTE MI)))))

(AND (OR (EQ (COR sql)(ADO1 (CUR eq2)))
(EQ (ADO1 (COR sql))(COR sq2)))

(EQ (ADOI (CAR sql))(CAR sq2))
(I4VALUES (Valueon b sq2)))));

attach PAWNIIOVE (CHESS,CHESS,CHESS,CHESSJ (CE PAWNMOVE (b v sql sq2)
(CONO (U.JVALUES v)(WPAWNrIOVE b sql sq2))

((BVALUES v)(BPAWNIIOVE b sql sq2))));

Section 2.2.1.2.6 BrIng ing It All Together

With the above functions, the definition of a LISP attachment for MOVETO becomes quite trivial.
For efficiency’s sake, we take the liberty of using our knowledge that chess piece sorts are disjoint In
the translation of the axiom. Otherwise, the initial COND would be an OR.

a t tach  MOVETO (CHESS ,CHESS,CHESS,CHESS) (DE MOVETO (b v sql sq2)(COND
((VALUEQ v) (OR (ORTHO b sql sq2)(DIAG b sql sq2)l)
((VALUER v)(ORTHO b sql sq2))
((VALUEB v)(OIAG b sql sq2))
((VALUEK v)(KINGMOVE sql sq2))( (VALUEN v) (KNIGHTIIOVE sql sq2))
((VALIJEP v)(PAWNMOVE b v sql sq2)fl) ;

Section 2.2.1.3 Castling

An axiomatic definition of the CASTLING predicate is given. One position obtains from another by
castling under the following conditions. The mover of the move must be a king, and the
A I somover , a function peculiar to the castle move, a rook. The rook Is constrained to be In an
Al so from square before the move, just as the general movement rules constrain the Mover to the
From square. Similarly, the Al somover moves to the Al soto square.

The next two conjuncts state that both the rook and the king must have been on these squares in
every move that preceded this position. Every square between the rook and the king must be empty.

Castling can not be used when in check, nor can the king pass through check in making a castle.

I
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The last two conditions specify the destination squares In castlings.

Fortunately, we will not have to use this hairy axiom to prove that a castle took place in any given
situation. However , we will frequently have to prove that a castle did not take place. We will
develop theorems to make this easier.

axiom CASILEMOVES:Vr p. (CASTL I NG (r p).
(KINGS Mover Move ~~A

ROOKS Alsomover Move ~A
Pos(r, Alsofrom Move p )—A l soniover Move ~A
Pos(p, A lsofrom Move p)-EfIPTYA
Pos(p, Alsoto Move p )-Alsomover Move p~Yrl. (PREOEGAME (rl p)~Pos(r From Move p)-Mover Move p)AYrl. (PREDEGAME(rl p)DPos(r Alsofrom Move p).A l eomover Move p)A
Vsq3. ((Row sq3.Row From Move ~A

BETWEEN (Co i umri From Move p, Column sq3 , Column Alsofrom Move p)l~Pos(r sq3)SEMPTV)A
-.POSIIIONINCHECK (r, Color r)A
Vsql x.-’(Pos(r sql).XA fIOVETO (Tboard r, Val (r xl , sql, Aleoto Move p)A

Piececo l or x-Co l or p)A
(WH ITETURN r~ ((AIsomover Move p-WKRAAISot0 Move p4JKB1ATO Move p.WKN1)v

(Al eomover Move p-WQRAA I S0t0 Move p-WQ1ATo Move p.WQB1)))A
(-41HIIETURN r~ ((AIeomover Move p-BKR’~.M eoto Move p.BKB1AT0 Move p.BKN1)v

(Aleomover Move p.BQR~Aleoto Move p—BQLATo tlove p.BQBI)))));i

Section 2.2.1.4 Capture En Passant

As chess was originally defined, pawns moved forward only one rank at a time. In an effort to
quicken the opening, the rules were modified to allow a pawn to step two spaces on its first move.
To avoid permitting a pawn to thereby jump and pass an opposing pawn in an adjacent column
(and thereby, perhaps, become a valuable passed pawn), the en passani capture rule was Introduced.
This permitted a player whose pawn could have captured a two steppIng pawn (if It had taken only
a single step) to do so, effectively, move the pawn back and capture it, though this right was only
extended for the Immediately subsequent move.

A complicated rule produces a complicated axiom. This axiom must refer to both the current
position (q) and the move that reached the previous position (r). Here we refer to the Takenon
square as the square the captured piece moved to on the previous move. After the move, the square
that the captured pawn occupied is now vacant.

The previous move must have satisfied several conditions; the mover must have been the piece
captured, it must have moved to the Takenori square, it must have done so with a simple (SIM)
move, which stayed In the same column. The capture move will move into that column. The mover
and the captured piece both have the value pawn when the capture takes place. The actual rows of
the particular moves are given, depending upon the side making the capture. From the row and
column information, it Is possible to reconstruct the various relevant squares.
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adom ENPASS:Yr q.(EN_PASSANT (r q).(
GAMEPOSITION r~
Pos(q Takenon Move q)-EMPTYA
To Move r.Takenon Move q~Mover Move r.Taken Move q~SIM Move r~Co l umn From Move r.Column To Move r~Co l umn To Move r- Co l umn To Move q~TUOTOUCHING (Co l umn From Move q, Col umn To Move q )A
(WHITETURN q,(Val (q Mover Move q)-PBA

Val (r Mover Move r).PWA
Row From Move q SA
Row To Move q-6A
Row From Move r-7A
Row To Move r.5))A

(-4.JHITETIJRN q~ (Va l (q Mover Move q)-P14I~Va l (r Mover Move r).PBA
Row From Move q.4n
Row To Move q.3A
Row From Move r-2A -

~~

Row To Move r—4))));;

We (fortunately) shall not use this axiom, except to prove the last move was not an en pa~ssant
capture. For this purpose, we will develop several simplifying lemmas. 

I 

-

Section 2.2.2 In Check Definitions

Having specified the different moves of the chesspieces, we can now define what it means to be in
check on a board or in a position. The axiom CHECXEAS states the necessary conditions.

axiom CHECKERS:
Yb. (14H1 TEINCHECK (b).
3vb sql eq2. (Valueon (b •q2).KWAVaiueon (b sql).vbt~IIOVETO (b vb sql sq2))),

Yb. (BLACKINCHECK (b).
Jvw sql eq2.(Va l ueon (b sq2).KBAVa l ueon (b sql).vwd’lOVETO(b vu sql 5q2))) ,

Yb c, (SIDE INCHECK (b c)u
((WH I TEINCHECK (b),d.JHT(c))v (BLACKINCHECK(b),~8LK(c)))),Yr c.(PO5ITIONINCHECK (r c)u3b. (SIDE INCHECK (b c),BOARO (r b)));;

The attachments to WHITEINCHECK , BLACK INCHECK and SIDE INCHECK differ somewhat, in spirit,
from the other attachments. Here we use our knowledge of the unique king of any chessboard to
simplify the computation. Note also the scanning of the board to find possible checking pieces used
in the auxiliary functions.

FUNCTION (CE FINOK ING (x b)(PROG (rw ci)
(SETQ rw 1)
(SETO c i 1)

ROWLOOP (CONO ((NULL b)(RETURN NILL))
((NULL (CAR b))(SETQ b(CDR b))(SETQ rw (ADO1 rw))(SETO ci 1)))

(CONO ((EQ (CAAR b) x)(RETURN (CONS rim ci))))
(SETQ b (CONS (COAR b)(CDR b ) ) )
(SETQ ci (AUDi ci))
(GO ROWLOOP)));

A ~~~~~~~~~~~~~~~~ _ _ _ _ _  
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FUNCTION (CE INCHECK (b ki ngsq Colormovingf)(PROG (bl rw cI )
(CONG ( (NULL kingsq) (RETURN NILL)))
(SETQ rw l)(SETQ ci l ) (SETQ bl b)

PULP (CONG ((NULL (CAR bi))
(SETQ bl (COR b l) ) (SETQ rw (AUDi rw ) ) ( SE TQ c i 1)) )

(CONG ((NULL bl)(RETURN NILL)))
(COND ((Co i ormov i ngf (CAAR bi))

(CONG ((MOVETO b (CAAR bi) (CONS rw ci) kingsq) (RETURN I)))))
(SE TQ bi (CONS (COAR bl)(CDR bi)))
(SETO c l (AUDi CL))
(GO RL.ILP)));

attach I.JHITEINCHECK (CHESS)
tOE WHI TEZNCHECK U,) (INCHECK b (FINDKING (QUOTE KU) b)(QUOTE BVALUES)));

attach BLACK INCHECK (CHESS]
(CE BLACKINCHECK (b) (INCHECK b (FINOKING (QUOTE KB) b)(QUOTE UVALUES)));

att ach SIOEINCHECK (CHESS ,CHESS) (CE SIOE INCHECK (b c)(CONO
((EQ c(QUOTE UHITE))(UHITEINCHECK b ) )
((EQ c(OUOTE BLACK))(BLACK INCHECK b ) ) ) ) ;

Section 2.2.3 Board Axioms

The SUCCESSOR definitions determine the effect of the various moves on the total boards (Tboard) of
positions. However, we still require primitives for the manipulation of the partial boards, those with
undefined (UD) squares.

Section 2.2.3.1 Sub-board Definition

In the section on board declarations, we asserted var ious proper ties for sub-boards and board
constructors. These need axiomatization. The axiom SUB_BOARDS consists of four such definitions.
The first WFF defines the Makeboard function. This functions takes a board, a square, and a value,
and creates a board identical to the original board on every square except the argument square. On
this square, Makeboard places the given value.

The second part of the axiom states that every total board has no undefined squares. The third
defines the relation BOARD , between a position and a partial board, in terms of the SUBOARO predicate
and Tboard function on that position. The last part of the axiom defines the SUBOARD relationship.
One board subsumes another If they are everywhere the same, except on those squares where the
less defined board is undefined.

ax iom SUB_BOARDS;
Yr b sq t v.((Vai (r t)-v#~Pos(r eq)-tABOARO (r 

b)),
BOA RD(r ,Makeboard(b eq v ) ) ) ,

Ybt •q.—Va i ueon(bt eq)u’UO,
Yr b . (BOARD(r b)uSUBOARO (b Tboard r)),
Va b. (SUBOARO(a b).Ysq. (Va i ueon (a sq).Va l ueon (b sq)vVa l ueon (a sql-liD)),
Ybi b2 sql vi. (blsMakeboard(b2,sqi,vi).

(V sqx. (-‘sqx—sqiD
Va i ueon (bi , sqx) aVa l uson (b2, sqx) ) AVC iueon (bi , sql) —v i) ) ;

An att achment for the Makeboard operator is declared.

. - -

~ 
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FUNCTION (CE IIKBOAROI (r N v) (CONO
( (EQ 1 N) (CONS v (COR r)))
((CONS (CAR r)UIKBOARDI (CUR r)(SUB1 N)v)))));

attach Makeboard (CHESS,CHESS,Cl-IESS-.CHESS) (DE Makeboard U, S v) (COND - -

((EQ (CAR S) 1) (CONS (MKBOARO1 (CAR b)(COR Si v)(COR b ) ) )  - -
((CONS (CAR b)Ulakeboard (CUR b)(CONS (SUB1 (CAR S))(CDR S)) v)))))~

Section 2.2.3.2 Board Manipulation

We have provided a mechanism for building boards up from less well defined boards. However,
unless we want to be limited to always constructing from the totally undefined board, a very long and
painful process, we need board decom posers, to take a board and the Information from a move, and
produce wha t can be determined of the previous board

For example, we declare the following four move unmakers , which take move Information and a
board, and compute a sub-board of the previous position.

declare OPCONST Unmkmove (BOARDS , SQUARES , SaUARES).BOAROS 1
dec l are OPCONST Unmkcapmove (BOARDS, SQUARES , SQUARES, VALUESI-BOARDS;
dec l are OPCONST Unmksppmove (BOARDS, SQUARES, SQUARES).BOARDS;
dec l are OPCONST Urimkcapppmove (BOARDS , SQUARES, SQUARES, VALUES).BOARDS~

The functions undo, respectively, all ordinary, non-pawn promotion moves, ordinary, non-
promotional captures, simple pawn promotions. and capturing pawn promotions. The more specific
a decomposer function used, the better defined the resu)ting board, of course. These are just a
sample of the possible set of decomposer functions; however, combined with the Ilakeboard function,
they are powerful enough for our needs.

These functions come with both attachments , and axioms dictating their use. The attachments rely

L 

heavily on the Makeboard function.

attach Unmkmove [CHESS ,CHESS,CHESS-.CHESS) (OE Unmkmove (b r SI
(Makeboa rdUlakeboard b S (QUOTE UD))r (Valueon b S i ) ) ;

attach Unmkcapmove (CHESS,CHESS,CHESS,CHESS..CHESSJ (CE Urimkcapmove (b r S v)
(MakeboardUlakeboard b S v)r (Va l uson b S) i h

attach Unmksppmove (CHESS,CHESS,CHESS-.CHESS) (CE Unmksppmove (b r 5)
(flakeboardUlakeboard b S (QUOTE IIT))r

(COND ((W VALUES (Valueon b S)HQUOTE PW))(I(QUOTE PB)))));
attach Unmkcapppmove (CHESS ,CHESS,CHESS,CHESS-.CHESSJ

(CE Unmkcapppmove (b r S v)
(flakeboard (flakeboard b S v) r

(COND ((WVALUES (Va iueori b S))(CUOTE PW))(T(QUOTE PB)))));

The use of these functions is delimited by this axiom, UNDO.

axiom UNDO;
Yr q b sql sq2.((SUCCESSOR Cr q)ABOARD (q b)AORDINARY Move q~-.PAWNPROrI Move q’~From Move q-sq lATo Move q.sq2),

BOARO(r tlrimkmove (b sql eq2)fl ,
Yr q b sql sq2 v, ((SUCCESSOA(r q)ABOARD (q b)ACAP Move q~From Move q.sqlATo Move q.sq2AVa i (r ,Takeri Move q).v)D

BOARD(r Unmkcapmove(b sql sq2 v ))) ,

—-a —.---.- -- — -~ 
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Yr q b sql sq2. ( (SUCCESSOR (r q),~.BOAR D(q b)AS IMPP Mo ve q~From Move q.Sq1ATo Move q.sq2)
BOARO (r Unmksppmove (b sql sq2))),

Yr q b sql sq2 v.((SUCCESSOR (r q),~BOARO (q b)ACAPPP Move q~Va l(r ,Taken Move q)-vAFrom Move q.sqlATo Move q—sq2)~BOARO (r Unmkcapppmove (b sql eq2 vi));;

Section 2.2.4 Global Notions

So far, the definitions and axioms presented have been of a local nature. That is, they detail the
transition from one position to the next, or the effect of a given move on a board. We now lay the
groundwork for more global notions, useful for proving what must have happened during the game
that reached some position.

Section 2.2.4.1 Chess Induction

Perhaps the most aesthetically pleasing notion of the entire axiomatization Is that of C/mess Induction.
Chess induction is a natural extension of the correspondence between the numerical predicate less
Man on the natural numbers, and the chess predicate PREDEGAIIE of the chess world. A
mathematical induction proof has two parts , the first a proof in an Initial state , the second a proof
on a transition from state to state by successor function. For these premises, mathematical induction
concludes a predicate true of all states.

Chess induction action is similar in principle. A proof of some proposition on POSITIONS, cx, is firs t
a proof on some specific position, r, that a tn is true, then a proof that the proposition a holds over
the SUCCESSOR relation. We can then conclude that the proposition holds for all positions which
have r as one of their ancestors. As all GAIIEPOSITIONS have the initial position, PB, in their
history, we will often use PB as the position r. The resulting theorem will then be true of all
POSITIONS.

Just as many powerful mathematical theorems are proven through the use of mathematical
induction , so we will be able to prove many interesting chess theorems by chess induction.

Chess induction is an axiom schema. For axiom schema, we need a predicate parameter , declared:

dec l are PREOPAR a (POSITIONS) (PRE];

Note that a is a prefix predicate, and can be used without parentheses around its arguments.

The axiom schema itself is written:

ax iom CHESS_INDUCTION:

Ynl p2.((a nlA (PREOEGAME (r nl)vr-rl)ASUCCESSOR(rl p2 ) ) ~ a p2))~Yr2. ( (PREOEGAME(r r2)vr- r2)Da r2 )) ; ;

Our ex planation, so far, has paralleled one of the more general explanations of ordinary
mathematical induction. Mathematical induction, while is an expression of if It is true of x, (and Me
ind uction /m ypoM sits Li satisfied) Men , for all y >x , it must also be true. In practice, however,
mathematical Induction Is almost invariably used with x.0, resulting in validity on all Integers. Our

- . .___~~i~~~~~
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practice with chess induction is similar. Almost all of our proofs involving chess Induction pick PB
for an Initial case; they thereby produce proofs valid on all positions. This simplified for of chess
induction we call Chslr,d:

(a PønYr p.((a rASUCCESSOR (r,p))~a p))~Yr,u r

The derivation of Chstnd from CHESS_INDUCTION is section A.2.

Section 2.2.4.2 The Mathematics of Pawn Captures

Section 2.2.4.2.1 Pawn Capture Definitions

There is another, though perhaps more parochial, group of theorems and predicates still to be
considered . Any aficionado of chess problems knows that the position of a pawn on a board puts a
minimum on the number of pieces it had to capture to reach that square. Basically speaking, a
pawn must have captured at least one opposing piece for each column it is away from its initial
column (presuming, of course, that the pawn has not promoted in the meantime). While this is both

- - an extremely useful and interesting limit, practically, it leans more towards mathematics than we
would prefer to go. Consequently, though we declare the predicates to FOL, we leave the actual
computations to the attachment mechanism.

No pawn can move more than seven columns from his original column; nor less than none. We call
this set , zero through seven, the NUMBERS. We also need the mathematical predicate ~ , (less than or
equals) to compare our numbers. The declarations and attachments look like:

declare PREDCONST NUMBERS (NATNUfI);
dec l are PREDCONST � (NUMBERS ,NUMBERS) [INF) ;

extension NUFIBERS I8 1 2 3 4 5 6 71;
mg NATNUfI� (NUMBERS! ;
attach NUMBERS (NATNUMREP)

(LAIIBOA(x) (AND(NUMBERP x) (LESSP x 9)(NOT (LESSP x 0))));
attach � (NATNUMREP ,NATNUIIREP] (LAMBDA Cx y) (NOT (LESSP x y) I I ;

We also desire a function to compute the pawn capturing distance between two squares.

dec l are DPCONST Pauricaptures (SQUARES, SQUARES) -NUMBERS;
attach Pauncaptures (CHESS, CHESS-.NATNUMREP)

(LAMBDA (x y)(ABS (OIFFERENCE (COR x)(CDR g))fl;

Lastly, we declare two predicates on squares and colors. The first, MAY_PAWNCA PTURES , takes two
squares and a color, and returns true if a pawn of that color could have reached the second square
from the first. The second, MUST_PAWN _CAPTURES is true if a pawn of that color, In going from the

— 
first to the second square, must have captured a piece every time it moved.

dec l are PREDCONST MAY PAWN_CAPTURES (SQUARES,SQUARES,COLORS);
dec I are PREDCONST MUST_PAWN_CAPTURES (SQUARES, SQUARES, COLORS);

— ______._._________ nI___ -a_- a — — -”-~” ..~a A—.
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at tach MAY _PAWN _CAPTURES (CHESS.CHESS.CHESS]
(DE MAY PAI4N_CAPTURES Cx ~j ci (CONO

( (GREATERP

(DIFFERENCE (TIMES (COND ( (EQ c (QUOTE W HITE )) (SUBI 0) 1( 1 1))
(DIFFERENCE (CAR ij)(CAR )d))

(ABS (DIFFERENCE (CUR ~j ) (COR i d) ) )
(SUBI 0 ) ) ) ) ):

at tach MUST _PAWN _CAPTUR ES (CHESS ,CHESS,CHESSJ
IDE MUST_PAi4N_CAPTURES Cx ~j c)(ANO (NOT (EQUAL x Li) )( CONO

((ZEROP (DIFFERENCE ~TIMES (CONO 
((EQ c (QUOTE WH ITE ))  (SUB1 0))
(1 1))

(OIFFERENCE (CAR u)(CAR x)))
(ABS (OIFFERENCE (COR y) (COR x i ) )  i ll ))) ;

Section 2.2.5 Asserted Theorems

There are several theorems in this volume which we have not proven. These are theorems, in th at
they are provable horn the axi oms we have given . (with , perhaps. a little help from standard
math ematics). However, a certai n misguided sense of honesty compels their mention In the axioms
chapter. For some of these, the proof Is so trivial (perhaps a change from white’s point of view tO
black ’s, or a proof that knights do not promote. when we al read y have one for bishops) as to make
the actual proof more an exercise in mindless substitution than In logic. Obviously. the value of
detailing another special examp le is minimal. Hence, we shall simply declare such theorems when
we prove the associated , similar theorem, rather than presenting their proofs.

There are also a few moderately complex theorems, of a general nature, obviously true In themselves ,
but for which time and energy constraints have not allowed proofs. We present these theorems in r
this section.

Sect ion 2.2.5.1 Pawn Capture Theorems

The first of these are the theorems using the pawn capture functions and predicates . P6wnStructure .
PawnScructure l is a sufficient condition on the satisfaction of the NAY _PAWN_CAPTURES predicate .
it states that if a pawn can move from one square to another in the course of a legal game. without
promoting, then the predicate MAY _PAW N. CAPTURES is true between those two squares. We could
have defined MAY _PAWN CAPTURES to be the predicate satisfying this relationship, however , the
just ification for the associated attachment would then have been much more complex.

The second “theorem” consists of seven parts , of which we have listed three.46 It states that the value
of Pawncapture s for two squares places a minimum bound on the number of capturing moves a
pawn has to make to get from Its first argument to its second. For each such move, there is a
position with the properties such as the pawn made a capture to get to that position, and that these
positions are distinct . This theorem is difficult to prove with complete generality within our chess
predicate logic system, as It involves both the ax iomatization of elementry numerical properties. and

~ correspondence between a count of objects, and an existentially quantified WFF. Wishing to avoid
this hassle, we leave this as an unproven theorem .

~~~~~~~~~~ P.wn$i,uctur.3 ..~d P.w,,St,ucmvr.X i -

—

~
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The last pawn capture theorem states that if a pawn is diagonally extended from an earlier position
(MUST _PAWN _CAPTURES Is true of the two squares) then the pawn must have made a capture on
every square within that diagonal segment. The proof of this theorem would involve showing that
the MUST _PAWN _CAPTURES predicate remains true if a capture occurs, but goes false, forever to stay
false, if the pawn makes any other move. Chess induction would surely be needed, and the difficulty

L of the resulting proof would, in some sense, be inverse to the specificity of the definition of
MUST _PAWN_CAPTURES . Unfortunately, the more usable said definition, the less closely it would
correspond to the attachment. A more basic proof would again involve more mathematics then we
want to approach. Hence, it Is also an unproven theorem.

ax t om _PawnStructure _i
Yr p x sql sq2.((Pos(p sql).xAPos(r 9q2)-xAPREOEGAME(r p)A

VALUEP (Va I (Prevpos p x ) )  )DMAY_PAWN_CAPTURES (sq2 sql Piececo l or (x))),
Yr p x sql sq2. ((VALUEP (Va l (Prevpos p x))APoS(p eql)—xAPoe (r eq2)—XA

PREDEGAME (r p)tPawncaptures (sql sq2)~ 1)D3q1 xl.((PREOEGAME(ql p)vql-p)APREOEGAIIE (r ql)A
TAK I NGS(tlove(ql) )Aflover (Move (ql))—xAlaken Ulove(ql) )-xl)),

Yr p x sql sq2. ((VALUEP (Va t (Prevpos p x))AP05(p sq1)~ x PREOEGAME(r p )A
Pos(r sq2)—xnPai.incaptures (sql sq2)�2b

3q1 q2 xl x2.((PREOECAME(ql p)vql-p)APREOEGAIIE (q2 ql),PREOEGAME(r q2)A
TAK INGS (Move (ql) ‘,~TAKINGS fl1ove(q2))i’~J1over li1ove (ql) i-xis
Mover (Move (q2)} .xAlaken Ulovetql)) .x lAlaken (t ’ love (q2 ) )— x2 )) ; 1

axiom _Pawr iStructureX _i
Yr p x sql sq2.UVALUEP (Val (Prevpos p x)),~Pog(p sql)—xAPos (r sq2)—XAPREDEGAME (r p)isPawncaptures (sql sq2)�3b
3c;l q2 q3 xl x2 x3.((PREOEGAME(ql p)vql-p)APREOEGAME (q2 ql)A
PREOEGAME (q3 q2) APREOEGAME (r q3)nTAKINGS (Move (ql ) IA
TAK (NCS(tlove(q21) AK INGS(MoveCq3iIAMover (tlovs(qlI).XA
flover (Move(q2)).xAMover (Move(q3)).xAlaken(flove (ql))—xlA
Taken (Move 1q21 I —x2Alakeri (Move 1q31 I

Yr p x sql sq2.((MUST _PAWN_CAPTURES (sq2 sql Piececolor (x))n
YALUEP (Va I (Prevpos p x))t’sPo~(p eql ).xAPREOEGAME(r p)APoe(r eq2).x)~

Ysq3. ((sq3-sqlv (SAMEOIAG (sql sq3)ASAMEDIAG (sq3 sq2)A
BETWEEN (Row (sql) ,Rowlsq3) ,Row(sq2)))}D

3q3 x3 , ((PREOEGAME (q3 p)vq3~p),sPREOEGAME (r q3)ATAKINGS (Move (q3) IA
Mover (Move (q3) ) .xisTo (Move (q3) ) —eq3Alaken (Move (q3) ) —x3) ));;

These theorems enable the usual problem solver tricks involving pawn structures .

Section 2.2.5.2 Other Unproven Theorems

Several other unproven theorems remain to be mentioned. CheclcTypes states the well known chess
fact that on any check, either the piece doing the checking was moved last, an en passant move
captured a piece with discovered check , the rook in a castling move made the check, or an ordinary
move was made, and the check was a discovered check.

The proof of this theorem would be just a large and painful case analysis, to show that the only
change to the board can occur on those squares, so that the conclusion naturally follows.

-
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axiom _CheckTypes_:
Vp b sql sq2 x vpcl vpc2.((POSITIOF4INCHECK (p Color (p ))A8OARO(p blA

IIOVETO (b vpcl sql eq2)APOS (p sql).xisVa l ueon(b sql)*vpclA
Val ueon (b sq2).Vpc2AVALUEK (vpc2)A—Va l ueco I or vpcl sVaIueco l or vpc2)D

(Mover Move p.xv
(EN_PASSANT (Prevpos p ,p) A(SQUARE_BETIJEEN(8q1 ,From Move p. eq2)v

SQUARE ..8ETWEEN (sql , Takerion Move p. sq2)) iv
(CASTLING (Prevpos p, p)AA I somover Move p.vpcl)v
(ORD INARY flove pASQUARE_BETWEEN (eql ,From Move p. ,q2) I));;

The theorem MoveBacik states that all moves, except pawn moves , are symmetric. That is, if the
piece could move from the first square to the second on a board, then it could move back again.

This theorem could be proven by the use of the simplify mechanism and a lot of manipulation.
Particularly useful would be the commutation theorems (section A.9.5).

ax iom _floveBack _;
Yr p v sql sq2.((SUCCESSOR(r p)AOROINARY (love pA-’VALUEP(v))~(MOVETO(Tboard p,v sql sq2}.1IOVETO(Tboard r,v eq2 sq l))) ;;

_  
iii
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Chapter 3 Chess Lemmas and Theorems

Of course, no complicated proof Is achieved without the use of some theorems and lemmas. These
serve several functions, somewhat similar to the functions served by procedures in a programming
language. They provide structure , pointing out the natural conclusions and breaking points, and
increasing general proof readability. They also serve to reduce the actual volume of the proof,
permitting the condensation of several similar Inferences into a single general scheme and the
avoidance of repetition of an identical computation. In the case of computer proof checking, where
the memory size of the program and its data structures often needs be minimized, the use of lemmas
serves to remove from the main computation large sections of proof, replacing them with only a
reference to the desired conclusion. For our axioms, with their many equivalences between the
defined terms, they also aid by rephrasing an axiom into a farm more usable in another part of the
proof. This chapter is devoted to the proof of several representative general chess theorems and
lemmas from the basic chess axioms described in the previous chapter. We present several thoughly
explained sample lemmas and theorems, with the proofs of the other chess lemmas and theorems,
less thoughly explained, in the appendices.

Section 3.1 Simplification Lemmas

Among these lemmas are several that are both trivially deduced, and frequently referenced. These
are the lemmas obtained through a single application of the simplify command (a single call to the
semantic computation of the chess eye). Many of these refer to the extension of various sorts. For
examp le, the simplification:

LABEL Wh -$te pleceAr e _;
SIMPLIFY Vt.(WH ITEPIECE tu (

t :WKPv t WQPvt:W KNPvt~WKBPvt :W KRPvtsW QBPvt~WQNPvtRWQRP v
t~WK vt ’W Q vt ’WKN vt~WK 8 vt .WKR vt’WQB vtuWQN vt .WQR));

Gives a membership definition for the set of white pieces. This lemma is henceforth referred to as
Whlteplece4re_. These simplifications would arise from definition or observation, rather than
deduction. In the cases where a large number of individuals must be considered to establish the
validity of some WFF. they are also quite slow. These qualities have led us to list them in their own
section , section A l , rather than repeatedly computing them in the different theorems. We will use
these lemmas freely in the rest of this paper. In no case should they express any fact whose validity
is not observationally apparent to the reader.

Section 3.2 Simp le Proofs

Section 3.2.1 Proofs on Positions

We begin with several simple examp le proofs. First , three lemmas about the PREDEGAME relation.
Recall that PREDEGAME (p1 ,p2) is true If position p1 occurred sometime in the play that reached
position p2. In this usage, the PREOEGAME relation is like the predicate (less than) on a partially
ordered, half closed set . The first lemma we prove on this relationship is Its transitivity. PREDEGAME
is defined either directl y by the successor relationship, or recursively in terms of the existence of an
intermediate position satisfying PREDEGAME with the original arguments. The position p, common in
PREDEGAr1E to r and q in the assumption, Is shown to be the intermediate position for them of the
definition.
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We Mall include comments about Me structure of Me proof cAecker In ItalIcs .

s s s s *  l abe l U.;
asassassume PREDEGAIIE(r ,p)APREDEGAME (p,q);
1 PREDEGAME(r ,p)APREDEGAIIE(p.q) (1)
sssss 3 I 1’ p;
2 3P.(PREDEGA ME(r .D)A PREDEGAME (P,q)) (1)

Here, step one creat es a line wiM Me assumption Mat r came before p, and p before q. Ste/a twogener ali2es Mis to some individual p. A ser ies of n l’s impli es Me mM previous step.

Assigning a label to a line gives us anoMer inet/iod for referring to it. 411 of (lie Meorems in (Au volumehave Me label used in Melt proof associated wit/i them; temporary label, such as LI and L2, have been usedin many different proofs.

Part of the definition of the PREDEGAIIE relation is given in the axiom G.4MEAEL1 (game relatIon I).

*****YE GAMERELATIONS1 r,q;
3 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

YE is used to specialize a universally quantified statement (usually an axiom) to a specific list ofindividuals.

PRED EGAME is therefore obviously true of r and q.

assastaut PREDEGAME(r ,q) 19’:1’;
4 PREDEGAME( r ,q) (1)

FOL lias two tautology deciders, TAUT, for tautologies of Me frro/ ~ositionoJ calctduj , and TA UTEQfortautologi es of Me frroposi:ional calculus, includi ng equality. We gi ve Me deciders Me WFF to be proven,and Me reasons (list of previous steps and axioms) from w/iic .A it follows.

As we will do for all the theorems in this volume, we remove dependencies, and generalize: —

s*sss ~ j L1~ 15 ;
5 (PREDEGAME (r,p)APREDEGAME(p,q) )~PREOEGAME(r,q)

‘/ Is a natural deduction ride, one Mat indi vidually introduces (1) or eliminates (E) propositionalconnectives. ~/ Is also usefulfor removing dependencies.

*5*5* l abe l Transit i veGeneptpciu;
*s *ss V I ‘P r p q;
6 Yr p q.((PREDEGAME(r,p)APREoEGAr1E(p,q))~pgEoEcME(r,q))

This last , sixth step is a universal quantification. It asserts Mat, as Me statement is true of some general r,
p, and q, It must be true for all r, p, and q.

The next lemma we prove is about the predecessors of positions immediately preceding a given
position. If, of two positions, r and p, p is a successor to r, then, for any position that came before p,
At either also came before r , or is equal to r. We employ three parts of the defining axiom for

- - , -.— .- —. - —*..— -
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PREDEGAME, GAMERELATIONS. The first part (GAMEREL4) states that there Is no position between
two successor positions. The second part is a law of the excluded middle for the PREOEGAME
relation. If two positions are in the game tree of another position, then they are either equal, or one
came before the other. The third part is a repetition of GAMEREL1, used above. This time, we
employ the fact that the relation SUCCESSOR implies that of PREDEGAME. Together, these three Imply
that a position has, by and large. the same predecessors as its successors.

ssss*YE GAIIERELATIONS4 rl,q,r2;
7 SUCCESSOR(rl ,q),-’(PREDEGAME (rl ,r2)APREDEGANE(r2 ,q))

ssa**YE GAMERELATIONS2 q,rl,r2;
8 ( PREDEGA M E(r2 ,q)APREDEGAME (rl ,q))D(PREDEGAME(rl,r2)v(PREDEGANE(r2.rl)vr2.
r i ) )

**s*sYE GAMERELATIONS1 rl,q;
9 PREDEGAIIE(rl ,g).(SUCCESSOR(rl ,g)v3p . (PREDEGAIIE(rl ,p)APKEDEGAME (p,q)))

ssssstaut (SUCCESSOR(r1 ,q)~PREDEGAME (r2,q)) ~ (PREOEGAME (r2,rl)vr2—rl) 1’l’l’i

10 (SUCCESSOR(rl ,q)APREDEGAME(r2 ,g)b (PREDEGAME(r2,rl)vrz.rl)

We call this lemma P arentOenealogy.

***** labe l ParentGenea lociu;
esess VI ‘P r2 ri q:
11 Vr2 ri q.((SUCC ESS0R(r 1 ,q)APREDEGAME(r2 ,q))~ ( PREOEGAME(r2 ,r1)vr2~r1))

The last part of our triplet concludes that , since all GAMEPOSI lIONS have the Initial position in their
game trees, and the PREDEGAME relation Is defined to be antI-reflexive, that no position can precede
the initial position. This lemma is called GamefielaUons5.

•s s s s V E  GAMERELATIONS3 r ,Pø;
12 -‘(PREDEGAtIE(r ,PO)APREDEGA PIE(PO,r))

ss** sV E POSITION _RULES r;
13 GAMEPOSITION r~(SUCCESSOR(Prevpos r,r)APREDEGAME (P0,r))

sssssVE POSITION _TYPES r;
14 -‘(r.PO.GAMEPOSITION r )

**s**tauteq -‘PREOEGAME (r,Pø) ‘Pl”P;t;
15 -.PREDEGAIIE(r,P0)

ssss*Iabe l GameRe lationsS ; -

ssss * V I 1’ r;
16 Yr .-ePREOEGANE(r ,PO)

Section 3.2.2 Simple Theorems on Values -

As an example of the use of the simplify command on the extensions of sorts, we present the proofs 
—

of the lemmas ErnptyIsMT and ChessplecePleceVeiu.Thm. —

. - 
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EmptylsMT states that having a value of MT is equivalent to being the EMPTY piece. This result is
obtained using the theorem Retalnh/eiuaColor, which states that the blackness or whiteness of the
value of any piece in any paIr of positions is the same. The proof of AetalnValuecolor is in section
A.8.S. This proof also twice employs the simplification mechanism. We first check that, in the initial
position, having value Ill Is the same as being the piece EMPTY. Then, each of the VVALUES (values
a piece can have) is checked to show that the value MT is the only value that Is neither a black value
(BVALUES) nor a white value (WVALUES).

***sssimp l if y Vt. (tsEMPTYsVa I (P0 t)41T);
1 Yt .( t =EMPTY~Va 1(P0 ,t):IlT)

s****label U.;
s*ssss i mpl I f y Vvv~. ((—BVALUES VVXA-44VALUES vvx).vvx—t1T);
2 Yvvx .((—BVALUES vvxA-’WVALUES vvx).vvxsMT)

These two facts are certainly true of our typical piece, t, and its values In the initial position,
Va l (P0, tI , and in a general position r (Va I (r ,tfl.

s**ssV E ‘P’Pt;
3 t :EMPTY.Va l(P0 ,t):MT

*ssssVE ‘P’P Va l (P0 t) ;
4 (-.BVALUES Val (P0,t)A—WVALUES Val(P0,t))aVal(P0,t)~MT

sssssYE ‘P11’ Va l (r t);
5 (-.BVALUES Val(r,t)A-’WVALUES Val(r,t)).Val(r t).MT

Our lemma RetalaValueColof tells us that the color of the value of any piece is the same in all
positions.

*****VE Reta i nVa l ueColor P0 r t;
6 (BVALUES VaI(r,t).BVALUES VaUPO ,t))A (WVALUES Va~(r,t).WALUES Va1(P0.t))

But if this is the case, then the equivalence between having MT value in the initial position, and
being the EMPTY piece, must also hold in the position r.

***sstaut ‘P’PP’P:#ltl’1’:#2 1’1”Pl’:’P;
7 t=EMPTY.Va~(r,t):MT

We generalize this to all POS I TIONS and PIECES. Let us call this theorem EmptylsMT.

s*ss*label EmDtuI sflTI
*s *ss VI 1’ r t ;
8 Yr t.(t~EMPTY.Va1(r,t)~MT)

We next attempt the lemma ChessplecePleceVe!ueThm, which states that the value of any
CHESSPIECE in any POSI lION is always one of the PIECEVALUES. Recall that PIECEVALUES are the
VALUES less the empty value (MT), and the undefined value (UO). We first Inquire of simplify If all
BVALUES and WVALUES are PIECEVALUES.

ss*sse imp li fy Vvb,PIECEVALUES vb;
9 Vvb .PIECEVALUES vb

L~~. .
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t

sssss sim p li f ~ Vv u.PIECEVALUE S vu;10 Yvw.PIECEVALUES vw

As our lemma EmptvlsMT is true of all PIECES, it must therefore be true of all CHESSPIECES.

s*sssV E EmptylsilT r x;
1 1 x:EMPTY.Val(r,x):MT

And the two simplifications on PIECEVALUE S must also be true on the value of x in r. Note the
conditions inserted by the YE command.

sssssY E 1’11’ Va l (r x ) ;  -;
12 BVALUES Va1(r,x)~PIECEVALUES Val(r,x) -~~~

sssssVE I’l1’ Va l (r x);
13 WVALUES Ve~(r,x),PIECEVALUES Val(r ,x)

Simplification can also be used to obtain SORT information.

s * s sss i m p l i f y CHESSPIECES xA-’CHESSPIECES EMPTY;
14 CHESSPIECES xA-.CHESSPIECES EMPTY

We also need the simplification of line two, applying it now to Va l (r ,x).

*sss *V E Li Va l ( r  x ) ; ~15 (-.BVALUES Val (r,x)A-’WVALUES Va1(r,x)).Va1(r,x)~MT

Since x is a chesspiece, it is not EMPTY. Therefore, it does not have~ value MT in any position. But if
the value of x in a position is neither black nor white, then It Is MT. Hence, x must have either a
black or white value in every position. As all such values are PIECEVALUES, x must always have a
PIECEVALUES value. A single TAUTEQ,gives us this result.

*ssss tauteq PIECEVALUES Va l (r x) 1”P’P11’i’P;
16 PIECEVALUES Val(r,x)

We generalize, calling the result ChesspiecePieceValueThm.

*sss * l abe l Chesso i ecePieceVa l uelhm;
s*s*sY I Pr x ;
17 Yr x.PIECEVALUES Va l(r ,x)

Section 3.3 Chess Induct ive Proofs

Section 3.3.1 Only Pawns Promote

Having sampled several simple, small proofs, we next attempt the proof of a more complex and
interesting theorem. We want to prove the theorem On! yPawnsPromote, wh ich states that if any
piece has a non-pawn value at some point in a game, its value will not subsequently change. This
theorem implies that the only piece whose value ever change is a pawn, these only by promotion,
and that not pawn ever promotes twice (in one game). OnlyPawnsPromote Is an interesting example
of a C/tess inductive proof. From this theorem will spIn off several useful corollaries, includIng the
fact that pieces of value pawn are always pawns.

~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _
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We have not ex plained in detail several of the lemmas used in this proof. Their proofs, with some
commentary, may be found in appendix A. In many cases, these lemmas are merely a rephrasing of
some axiom.

This proof uses the simplified form of chess induction, which we call Clis!nd. The general chess
induction theorem refers to predicates true In the descendants of a position. The simplified form
assumes that the ancestor position is the initial one. As all GAMEPOSIT IONs are descended from P0,
theorems true of all GAMEPOSIT IONs can be easily proven from this form.47

The predicate we wish to prove is:

Yr ri t.((-.VALUEP Val Cr1 t)nPREOEGAME (rl r)),Val(r t)—Va l (rl t))

That is, if in some position ri, a piece t does not have the value of pawn, then, in any descendant
of ri, r-, then the value of t is the same in ri as ,~1.

We substitute this predicate for the predicate parameter a in Chslnd.

*s *s * labe l Li;
*s*s*AI ChsInd k~-)~r.Vr1 

t, ( (-.VALUEP Val Cr1 t),~PREOEGAME (r1 rfl~ Val (r t)—Va I
s r i. t))];
1 (Yrl t.((-’VALUEP Val(rl ,t)APREDEGAME (rl,P0))DVa1(P0,t) VS1 (rl ,t))AYr p.((V
ri t.( (-‘VALUEP Val (rl ,t)APREOEGAME (rl ,r)bVal(r,t):Val(rl,t))ASUCCESSOR(r,P)
)~Vr] t.((-.VALUEP Va~(r1, t)APREDEG ME (r1,p)),VaUp,t) Va~(r1 ,t)))bVr ri t.(
(—VALUEP VaUr1,t)APREDEGAME(r1,r ) )~Va~(r ,t):Va~(r1,t ) )

First, we must establish the validity of the proposition in the initial position (P0). As no position is
a predecessor to the initial position, this is trivial.

*****VE GanieRelations5 rl;
2 -‘PREDEGAPIE(rl,PO)

***s*taut L1:#1#1#1~ 1 1’;
3 (-.VALUEP Va~(r1 ,t)APREDEGAME(r1,P0))~Va1 (PO,t) Va~(r1 ,t)

***** l abe l LZ;
s **s * VI 1’ ri t;
4 YrI t.((-.VALUEP Va1(r1,t)APREDECAME(r1,P0)),Va~(P0 ,t)ZVa1(r1,t))

We now make two assumptions. As the inductive form is assume its true of n, prove it is true of n.I,
we assume the validity of the theorem in position r, trying to prove its validity in its successor p.
Secondly, as the sentence we are trying to prove of p is also of the form A~B, we assume the A part,
seek ing B. Note this sequence; It is our general schema for chess inductive proofs.

s *sss label U;
*s*s* assume L1:#1#2#1#i#i;
5 Vrl t.( (-.VALUEP Va1(r1,t)APREDEGAtlE(r1,r)),Vel(r,t)RVa~(r1 ,t))ASUCCESSOR(r
,p) (5)

ssss*assume L1~#1#2#1#1#2#1#1#1~6 ~VALUEP Val(r l ,t)APREOEGAME(rl ,D) (6)

47. A d.r iv.tion of Cii,Md from CHESS_INDUCTION ie in siction ~ 2.
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*ss *SAE L3z#1 ;
7 YrI t .((—VALU EP Va l(r1, t)APRE0EGA1’1E(r1,r ) )~Va~(r ,t) .Va1(r1.t))  (5) 

—

— There are three pertinent positions in this proof. We seek to prove that the Va 1 of t is the same in
both positions ri and p. We have assumed that the Val is the same between ri and r, the position
previous to (Pravpo.) of p.

s *ss * VE ‘P rl, t;
8 (-‘VALUEP Va~(r1 ,t)APREDEGAME (r1,r))~Va~(r,t)’Va~(r1 ,t) (5)

We need to show that ri Is also a predecessor of p. Our lemma ParentGenealogy 45 Is used to
establish this.

*sss*VE ParentGenaalogy rl,r,p;
9 (SUCC ESSOR(r ,p)APREDEGAt1E(r1,p))~( PREDEGANE(r1 .r )Vr1’r)

The heart of this proof lies with the axiom that states that pieces change value only when they
move in a pawn promotion. The axiom MCONSEQH, part of the move definitional axioms, tells us
that, between a position r and its successor p, if the piece. t, was riot the mover of p, or p was not a
pawn promotion, then t retains the same value from r to p.

sss*slabe I L~;*sss s  YE IICONSEQH r ,p, t;
10 (SUCCESSOR(r ,p)A(-’PAW NPROM Move pv—(txtlover Move p))),Va~(r ,t).Va~(p, t)

We have a special case to consider: when the position ri Is the same as the position r (line 9).
TAUTEQ, will not make the substitution in functions for us, we must do it ourselves. Assume they
are the same.

s *s ss labe l L~;ssss* assume
11 r°rl (11)

*****eubst L5 in L3+1;
12 -‘VALUEP Va~(r,t)APREDEGAME(r,p) (6 11)

*s**ssubstr I_S in L4;
13 (SUCCESSOR (rl ,p )A(-’PAWNPROII Move pv-’(tsMover Move p)))~VaUrI ,t).Ve (p , t)

(11)

SUBST and SUBSTR substitute for equals in WFFs. 
-

If they are the same, then, as t does not have a pawn value in rl, It wIll not have one In r.

**s ** labe l L~i 
- -

***s * ,I LS~’Pt; 
‘~ I

14 rorl,(-’VALUEP Val(r,t)APREDEGAME(r,p)) (6)

*ss*s,I L5,’P’P;15 rorl,((SUCCESSOR(rl ,p)A(-’PAWNPROM Move pv-’(t’tlover Move p)))~Va~(r1,t)’ -
. 

-

Va l(p , t ) )  

—.-.._._.-.---—-—-.. —..--—.-—_-—-. .—..-... _.-—--- .---_.---- ...--—-- ...— — 

48 S.ction 3.2.1.
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By the definition of pawn promotional moves, the moving piece is a pawn on the total board of the
move.

ss *ssV E MCONSEQL Pt
16 PAWNPROM Move p.(LASTRANKER(To Move p,Color Prevpos p)A(SIMPLELEGALMOVE(

• Prevpos p,p)A( PAWNS Mover Move pA (VALUEP Valueon(Tboard Prevpos p,Fr om Move
P)A ((( BVA LUES Promoted Move p.BVALUES Val (Prevpos p,Mover Move p))A (WVALUES
Promoted Move p.WVALUES Vai (Prevpos p,Mover Move p)))AVSl(p,Mover Move p)z
Promoted Move p ) ) ) ) )

By the definition of SUCCESSOR, the previous position (Prevpos) of a position shares the SUCCESSOR
relation.

**sssV E FICONSEQA r ,p;
17 SUCCESS OR(r ,p)D((-.WHITETI.JRN roWHITETURN p)A(Prevpos pErA(-.POSITIONINCHECK
(p,Color r )A((WHITEPIECE Mover Move p.WHITETURN r)A (Pos(r,From Move p):Mover
Move pA(Pos (p ,To Move p):Mover Move pA (Pos(p,From Move p)=EPIPTYA((CAPTURE

Move p,Pos(r,To Move p):Taken Move p)A(CASTLING (r,p)v(EN_PASSANT(r,p)v
SIMPLELE GALMOVE(r ,p)))))))))))

**s*staut Prevpos psr L3,1’;
18 Prevpos p:r (5)

*s*sssubstr ‘P in ‘P19’;
19 PAWNPROtI Move po(LASTRANK ER(To Move p ,Co~or r)A (SIMPLELECALMOVE(r ,p)A(
PAWNS Mover Move pA ( VALUEP Va lueon(Tb oard r,From Move p)A( ((BVALUES Promoted
Move p~BVALUES Val (r,Mover Move p))A (WALUES Promoted Move p.WVALUES Val (r,Mover Move p)))AVa1(p,Mover Move p):Promoted Move p))))) (5)

A mention of the equivalence of the Va l and Va lueon functions.

s*sssVE Va l uelranspositionA r,Mover Move p,From Move P1
20 Pos(r,From Move p)zMover Move p~Va1ueon (Tboerd r,From Move p).Val(r,Mover

Move p)

More substitutions for the sake of TAUTEQ,

***sslabe I LZ;
*ss*s assume t—Ilover Move p;
21 t~Mover Move p (21)

*****subst L7 in ‘P1’ 0CC 2;
22 Pos(r,From Move p)oMover Move p,Valueon(1board r,Froin Move p)aVaI(r,t) C
21)

sssss~~1 L7~t;23 t~Mover Move p,(Pos(r,From Move p)aMover Move pDVilueon(Tboard r,From
Move p )oVal(r,t))

We have a form that can be handled by TAUTE4 One invocation produces our desired Identity.

ss*sstauteq Val (p,t)aVa l (rl ,t) L3tL4,L6;20,t;
24 Va~(p,t)oVa~(r1 ,t) (5 6) 

-~~-~~ -- — —-4 :: ~~~~-
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We remove the dependencies, and insert the universal quantifiers in the proper order so as to obtain
the theorem.

*OSSS DL G~1;
25 (—VALUEP Val( r1.t)APREDE~AtlE(r1,p)),Va1(p. t)oVa1( r1,t) (5)
sss *s VJ 1’ ri t ;
26 Yrl t .((—VA LUE P Va~(rl,t )a’~PREDEG ME(rI,p))~Va~(p, t)sVal(r1,t ) )  ( 5 )

;*sss,I L3D’P;
27 (Yr l t.((-’VA LUEP Val(r l ,t )APREDEGAME(rI ,r)),Ve1(r ,t) .Ve1(rJ ,t))A5(JCCESSOR —

(r ,p)),Vri t.((—VALUEP Va1 (ri,t)APREDECA$E(r1,p)),Va~(p,t):Va1 (rI,t)) -
~~ 

-

1’ r p;
28 Yr p.((Yrl t.((—VALUEP VaUr1,t)APREDEGA1lE(r1,r)),Val(r,t)=Va~ (r 1 ,t))A
SUCCESSOR(r,p)bVrl t.((-’VALLIEP Va1 (r1,t)APREOEGAflE (r1,p)bVel (p,t):Va~(r1 ,t4 ) ) )

We have satisfied the two conditions of chess induction. Our theorem naturally follows. 4
*s*s* l abe l On l uPpwnsPrpmote; I 

-

*5*5* taut L1:#2 L1,L2,1’;
29 Yr ri t,((-’VALIJEP Va~(r1 ,t)APREDEGAME (r1,r)),Val(r,t)~Val(r1,t))

Section 3.3.2 Mobility

Another exam ple of a proof by chess induction. We wish to prove that if any theaspIece is on a
square differing from the one it started upon, then there must have existed a position, earlier in that
game, where that piece moved.49 We take this proposition, and substitute it for the predicate -

parameter a in Chslnd.

**s ** labe l U;
**ss *A I Chslnd Ea.-)~p.Vsq x. ICPos(p, sq)axn.-Pos (PO, gq)~ x)~ 3q. ((PREOEGAtIE (q,p)v
*q-p)A ((h over Move q~xATo Move q.sq)v (CASTLE Move qt~AIsomover Move q~x~sA lso to Move q~sq))))3;I (Vsq x .( (Pos(PO ,sq)~xA-’(Pos(PQ ,sq)ox))~3q. ((PREDEGAME(q, P0)vq:PO)A( (MoverMove q=x#~To Move q=sq)v(CASTLE Move qA(A~somover Move q~xAA~soto Move q=sq))
)))AYr p.((Ysq x.((Pos(r,sq)~xA—(Pos(P0,sq):x)),3q.((PREDEGANE (q,r)vq=r )A((Mover Move q=xATo Move q~sq)v (CASTLE Move qi~(A 1somover Move q:xAA~soto Move
g=sq)))))ASUCCESSOR(r ,p))~Vsq x.((Pos(p,sq)IxA— (Pos(PO,sq):x)),3q.((PREDEGAME(q ,p)vq:p)n((Mover Move q:xATo Move q:sq)v(CASTLE Move qn (Alsomover
Move q:xAAlsoto Move q:sq)))))))~Vr sq x.((Pos(r ,sq)oxA-’(Pos(PO,sq)=x))~3q.((PREDEGA ME(q, r )vq:r)A((Mover Move q~xnTo Move q:sq)v(CASTLE Move QA(

Alsomover Move qoxAAlsoto Move gzsq)))))

As this theorem refers to a position where the piece is on a different square from the initial position,
it automatically is true of the Initial position.

ss s*staut  1’;#i#l#l#l
2 (Pos(PO ,sq)oxA~(Pos(P0 ,sq)sx)),3q.((PREDEGAIjE(q,PO)vqaPO )A((Moyer Move qoxATo Move qzsq)v(CASTLE Move qA(Msomover Move qsxAAlsoto Move q:sq))))

49. TI,. notion of moved, in liii, centict, includs. both b.in1 the mover of a particular position, or bug the rook in . castling
move.

_______ -~~ 
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sssssVI1’sq x;
3 Vs q x . ( (P os( pQ ,5q) .xA_ (Pos(PO~5q)sx ) b3q.(( PREDEGA ME(q, PO )Vq P0 )A ((MOver
Move qixATo Move qssq)v(CASTIE Move qI%(Msomov•r Move q.xAAlsOtO Move q.sq))

Following the form of the other chess inductive proofs. we make two assumptions. The first
assumption is that the theorem is true in some position r; we then seek to prove its validity in a
successor of r, p. The theorem itself is of the form A~b, we assume A, and work to conclude b.

.s*s*l abe l 12;
sss*sassu nie L1:#1#2# 1#1# 1 ;
4 Ysq x . ( (Pos ( r ,sq)sxA_ ( Pos(PO ,sq)sx )~~3q.(( PREOEGAME(Q , r )VQ 0r)A (( MOVer Move

q~xATo Move q.sq)v(CASTLE Move q,(klsomover Move 
qexAMsoto Move qesq)))))A

SUCCESS OR(r ,p) (4)

*sss*assume L1:#1~2#~#1#2#1#1#l;5 Pos(p ,sq )~xA -’(Pos(PO ,sq)’x) (5)

Let us call the chesspiece In question ~~ , and the square it is on in p, sq. The first half of the firs t
assumption is therefore true of ~ and eq.

*****AE tI’ :#l
6 Vsq x .((Pos(r ,sg)=xA_ (Pos( P0 ,sq)ex) ) ,3q. ((PREDEGA ME(q, r )VQ r)A((MOVer Move
q:xATo Move qzsq)v(CASTLE Move qA(Alsomover Move qsxAMsoto Move q:sq)))))
(4)

s s s **  l abe l IS-;
sss*sVE ‘P sq , x 1
7 ( Pos(r ,sq) :xA_ (Pos( P0 ,sq) :x)) ,3q .(( PREDEGA ME(Q, r )vq r)A ((MOV er Move q:XATO

Move qasq)v(CAST LE Move qA(A lsomover Move q.xAA~soto Move q :sq)))) (4)

We have to consider , in this problem, two cases . Either the piece c is one the same square in both p
and r , or it has changed location in the transition between positions. We examine first the occasion
when it is on the same square in each.

***** l abe l U;
ss***assume Postp sq).Ros(r sq);
8 Pos(p, sq).Pos(r ,sq) (8)

By our assumption, there exists some position, a predecessor of r, in which x was the moving piece,
and it moved to sq. Let us call this position q.

ssss stauteq 1’t :#2 ‘P ,tl”Pt,’Pl’;
9 3q.((PREDEGAM E(q, r)vq: r)A((Mover Move q=xATo Move qesq)v(CASTLE Move q,(
Alsomover Move ci:x,~A 1soto Move q~sq ))) )  (4 5 8)

* * * * * 3E 1q;10 ( PREOEGAME(q , r)vq:r )A ((Mover Move gexATo Move qssq)v(CASTLE Move QA(
Alsomover Move QzxAAlsoto Move qeag))) (10)

But by the lemma GrandparentGenealogyY , this position q Is also a predecessor to p. Hence, we
have a position to satisfy the theorem for p.

ss*ssY E GrandparentGenealog~Y q r Pt

__________________________________ ~~ — ~~~~~~~~~~~~~
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11 ( SUCCESSOR (r ,p)A (PREOEGAME (q,r)vq~r))DPREDEGAME(q,p)

s***staut (‘P:#2vq—p)A ’P’P:#2 ‘P ,’P1’,L2;
12 (PREDEGAME (q,p)vq:p)A((Mover Move q~xATo Move q.sg)v(CASTLE Move q,’~(Alsomover Move q:xAA lsoto Move q:sq))) (4 10)

13 Jq .((PREDEGAME (q,p)vq=p)A((Mover Move q=xATo Move g~sq )v(CASTLE Move qn(
Alsomover Move q:xAA lsoto Move q=s q))))  (4 5 8)

ss ** s I abe l L4;
***** D1 L3D’P;
14 Pos(p ,sq)s Pos(r ,sq ) DJq. (( PREDEGAME (q ,p)vq :p)A( (Mover Move q~xATo Move q=
sq)v (CASTLE Move qA(A lsom over Move q:xAAls otO Move q~sq ) ) ) )  (4 5)

We consider the other possibility . If the occupant of sq in r is not the same as in p. -~~~

ossaslabe l L6;
*sss*assume -‘Pos(p sq)—Pos(r sq);
15 ~(Pos( p ,sq) :Pos(r ,sq)) (15) -

~~~~

We consider the various ways the piece x could have changed squares. We have a theorem that
states that the only way the contents of a square changes between positions Is if it is either the source
or destination of a move (or castle), or is the square vacated by a piece captured en.~passant.

ss *ssV E MCONSEOO r,p,eq;
16 ( SUCCESSOR ( r,p)A(~ (sq:Fron Move p)A (~ (sq:To Move p)A(— (CASTLE Move pA (sq~A lsofrom Move pvsq=A lsoto Move p))A— (ENPASSANT Move pnsq:Takenon Move p)))))
DPoS(r ,sq )s Pos( p, sq)

We know from the axioms about successors , that after a move the source square (From, A l  so f rom )  is
occupied by the piece EMPTY. The square of a piece captured en_passant is likewise vacant. And
EMPTY is not a chesspiece (it is, of course, one of the PIECES).

**s*sVE MCO NSEOA r ,p;
17 SUCCESSOR( r , p )~ ( (-.WHITETURN reWHITETURN p )A( Prevpos p:rA(-.POSITIONINCHECK
(p, Color r)A ((WHIT EPI ECE Mover Move paWH ITETIJRN r)A(Pos(r ,From Move p):Mover

Move pA( PoS (p , To Move p):Mover Move pA (Pos(p, From Move p)C EMPTVA( (CAPTURE
Move p~Po s(r ,To Move p)~Taken Move p)A (CASTLING (r ,p)v(EN_ PASSANT(r ,p)v
SItl PLELE GALM OVE ( r ,p ) ) ) ) ) ) ) ) ) ) ~
sssssVE NotChesspieceEmp t~

_ X l
18 —CHESSPIECES x .xzEMPTY

All moves are of one of the three types.

*ss **V E (lconseqmX r ,p;
19 SUCCESSOR (r ,p),((CASTL E Move paCASTLING (r ,p))A( (ENPASSANT Move p.EN_
PASSANT (r ,p))A(O RDINARY Move p.SIMPLELEGALMOVE(r ,p))))

And no piece is on two different squares in the same position.

ssss *Y E Un i que p, eq. To Move p,x;
20 Pos(p,sq)sx.(Pos(p,To Move p)sx.sq.To Move p)

- ~

__________________ - _ •  ~~~~~~~~~~~~~~~~~~~~~~~~~  ~~~~~~~~~~~ 
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sisseVE Uni que p,sq,From flove p,x~21 Pos(p,sq)sx~(Pos(p,From Move p)sx.sq’From Move p)

We search the castling and en .passant ru les f or their special cases.

**** sV E CASTLENOVES r ,p;
22 CASTLING(r~~)u(KINGS Mover Move pA(ROOKS Alsomover Hove p,%(Pos(r,A lsofrom
Move p)sAlsoinover Move pA (Pos(p,Alsofrom Move p):EMPTYA (Pos(p.Alsoto Move p
)sAlsomover Move pA (Yr1.(PREDECAME(r1,p)~Pos(r ,From Hove p)~Mover Move p)A(Vrl. (PREDEGAME(rl p),Pos(r,Alsofrom Move p)sAlsomover Hove p)A (VSQ3.((Row sq3
zRow From Hove pABETWEEN(Column From Move p,Column sq3.Column Alsofrom Move
p))~Pos(r,sq3)zEMPTY)A(-.PQSITIONINCHECK(r,Color r)A(Ysql x.~(Pos(r,sq1):xA (MOVETO(Tboard r ,Val (r,x),sql ,Alsoto Move p)APleCeColor xsColor p))A((
WHITETURN r~((A~somover Move psWKRA(Alsoto Hove p.WKB1ATO Hove psWKN1))v(A lsomover Move p.WQR~(A1aoto Move p’WQlATo Move pXWQB1))))A (-’WHITETURN r~((A lsomover Move psBKRi (Alsoto Move pIBKBIATo Move p.BKNI))v(Msomover Move p~BQR,~(Alsoto Move p.BQ1AT0 Move p.BQ81)))))))))))))))

sssssVE Unique p,eq,Aleoto Move p,x;
23 Pos(p,sq)ax~(Pos(p,Alsoto Move p)~x.sqsA1soto Move p)

sssssVE Un i que p,eq,Aleofrom Move p,xi
24 Pos(p,sq)ax~(Pos(p,Alsofrom Move p)vx.sq~Alsorrom Move p)

s*s*sYE ENPASS r,p;
25 EN...PASSANT(r,p).(GAMEPOSITION rA (Pos(p,Takenon Move p)~EMPTYA (To Move r=Takenon Move pA(Mover Move r:Taken Move pA (SIM Move rA(Column From Move r
Column To Move rA (Column To Hove r:Column To Move pA(TWOTOUCHING(Column From
Move p1Column To Move p)A ((WHITETIJRN p~(Val(p,Mover Move p)sPBA (Va~(r,Mover
Move r):PWA (Row From Move p:5~(Row To Move p:6A(Row From Move r:lARow ToMove r=5))))))A(~WHITETURN p,(Val(p1Mover Move p)=PWA (Val(r,Mover Move r) P8

,%(Row From Move ps4A(Row To Move p:3A (Row From Move re2ARow To Move r~4)))))) ) ) ) ) ) ) ) ) )

sssssYE Unique p,~q,Takenon h ove p, i;
26 Pos(p1sg).x,(Pos(p,Takenon Move p)sx.sqsTakenon Move p)

sessesi mp Ii 
~ 

(CASTLE Move p~SQUARES (A l soto Move p) )A (CASTLE Move pDSOUARES (
sAleofrom Move p))A (ENPASSANT Move p,SQUARES(Takenon Move p))A CHESSPIECES
cx;
27 (CASTLE Move p,SQUARES Alsoto Move p)n((CASTLE Move p,SQUARES Alsofrom
Move p)A((ENPASSANT Move p,SQUARES Tekenon Move p)ACHESSPIECES x))

ft therefore tautologicauy follows, that In the move that created p, x and eq must have performed
the desired roles.

ssasstauteq ((PREOEGAIIE(p p)vp.p)A( (Mover Move p.XATo Move p=eq)v(CASTLE
sMove pn (A l eomover Move p .xAAleoto Move p.eq)))) L6s~P,L2sL6;28 (PREDEGAME(p1p)vp~p)A ((Mover Move pixATo Move p:sq)v(CA~TLE Move p~(Alsomover Move p:xAAlsoto Move p’sq))) (4 5 15)

p is thus seen to be the position whose existence we were trying to prove.

*ssss3 I1’p~-q 0CC 1 3 5 6 7 8 9;
29 3q.((PREDEGAME(q,p)vq~p)A((Mover Move q’x,~To Move q~sq)v(CA5TLE Move ql%(
Alsomover Move qaxAAlsoto Move qasq)))) (4 5 15) 
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All this was , of course, based on the assumption that the piece was on a different square.

sss . s ~~l L6DI ;
30 — (Pos(p,sq).Pos(r,sq))~3~.((PREDEGAME (q,p)vq.p)A((Mover Move quxATo Move
g.sq)v (CASTLE Move qA (Msomover Move quxAMsoto Move quag)))) (4 5)

We have obtained the desired WFF in both cases~ when * had changed squares. and when x had not .
It is therefore always true.

* s s s s  ta u t t~#2 1~.L4;
31 3q.((PREDEGAME(q,p)vqap)A((Mover Move q.x~To Move q.sq)v (CASTLE Move qi~(Alsomover Move q.xAAlsoto Move q.sq)))) (4 5)

We insert the assumptions back in the correct order, so as to obtain the premises (or the chess
induction form.

s * S * $ D I  L2+1,t;
32 (Pos( p ,sq)zxA- .(Pos(P0 ,sq)!x)~~3q .((PR [DEGAME(q,p )vqzp)A ((Mover Move q:x,%
To Move q*sq )v(CASTLE Move qA(Alsomover Move qaxAAlsoto Move q.sq)))) (4) 4
ss sssYl ~~sq x;
33 Vsq x.((Pos(p,sq)sxA~(Pos(PO ,sq)vx)),3q.((PREDEGAME (q.p)vqIp)A ((Mover
Move q:xATO Move qasq)v(CAS T LE Move q,~(A1somov.r Move q’xAAlsoto Move q.sq))
) ) )  (4)

S S s S s D I L2D1~;34 (Ysq x . ( (Pos ( r ,sq)sxA-.( Pos( P0 ,sg ) sx ) )~3q .(( PREDEGAM E(q, r)vq. r)A((Mover
Move q=xATo Move q.sq)v(CASTLE Move qA (Alsomover Move q’xAAlsoto Move qasq))
)))ASUCCESSOR(r .p))~Vsq x.((Pos(p1sq ).xA— (Pos(PO,sg).x))~3q.( (PREDEGAME(Q,p)vq lp)A ((Mover Move q.XATO Move qssq)v (CASTLE Move q~(A~somovor Move q.x~Alsoto Move qisq)))))

sssssYIl r p :
35 Yr p.( (Ysq x.((Pos(r,sq).xA-.(Pos(P0,sq).x)),3q.((PREDEGAME (q,r )vq.r)A (
Mover Move q’xATo Move q.sq)v(CASTLE Move qA (Alsomover Move q.xAAlsoto Move
qzsq))) ))ASUCCESSOR(r ,p))DYsq x. ((Pos(p1sq )’xA-.(Pos(P0,sq)sx))~3q.((PREDEGAME(q,p)vq’p)A( (tlover Move qixAlo Movs q.sq)v(CASTLE Move qA (Alsomovsr
Move q.xAAlsoto Movi q.sq))))))

Having satished both requirements, the theorem is now ours. We call it Mobul~y.

s s ss * Ia be l r l o b i l j t u ;
* ss s s teu t  L1i H2 ? ,L2—1 ,L1;
36 Yr sq x . ( (Pos ( r ,sq) .xA- ’(Pos (P0 ,sq) .x)) ,3q.( (PREOEGAME(q, r )vq.r)A((Mover
Move q~xATo Move q~sq)v(CA ST LE Move qe~(A 1somovsr Move q.xAAlsoto Move qr~q ))

Section 3.3.3 Segregate

For our last example of a chess inductive proof . we prove the well known chess fact that bishops
stay on squares of the same color. The key predicate for this proof is IIHI TESQUARES, a sort on
squares, which Is true, of course, on the white squares.

.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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In proving this theorem we employ the lemma BIshopSt .ysOnSemeColor.50

BishopSteysOn$arn Coloi states that between any position, r, and a successor, p. if a bishop Wb i is
on square sql in r, and sq In p, then sql and sq are of the same color. Expressed as a WF’F In our
axiomatizauon, this Is:

Yr p ~bi sql eq. ( (SUCCESSOR(r ,p)A (Pos (p ,sq).~jb iI~Poe(r ,eql).~bi) )~(WHITESQUARES (sq).UHITESQUARES(sql))) ;;

This theorem also employs the lemma WasHere, which states that for any piece x, in a position p. if
x is on some square in p, then x was on some square in the position previous to p.~

The proof of BlshopslsOnSameColor follows the form of our other chess Induct ive proofs. First the
simplified form of chess induction, Chslnd, is instantiated with the theorem to be proven.

sss ssl ab e l Li.;
sssssAl Chelnd (u4-).p. (Ysqi sq2 ybi. ((Pos(P0,sq1).ybiAPos(p,eq2)~~ibi )~sWHI TESCUARES (sql) .WH I TESQUARES (sq2)) Wi
I (Ysqi sq2 yb1,((Pos(P0,sq1)syb1APos(P0,sq2)Iybi)~ (WHITESQUARES sql.WHITESQUARES scI2))AYr p. ((Ysql sq2 yb1.((Pos(P0,sq1)~yb1APos (r,sq2)~yb1)~(WHITESQUARES sql.WHITESQUARES sq2))ASUCCESSOR(r,p))~Ysq1 sq2 ybi .((Pos(P0,sq1)vybMPos(p,sq2)zyb1)~ (WHITESQUARES sql.WHITESQUARES sq2)))),Yr sql sq2ybi .((Pos(P0,sq1):ybiAPos(r,sq2)zyb1~~(WHITESQUARES sql.WHITESQUARES sq2))

Proving the proposition for the initial position is trivial. No piece can be on more than one square
In any position. So, of course, our bishop ~b i is on the same color square in P0 as in P0.

sssssYE Un i que P0,sql ,eq2,ybi;
2 Pos(PO ,sql)=ybb (Pos(P0,sq2)sybl.sqlasqZ)

ssssstauteq (Pos(P8,sql).ybiAPoe (P8,sq2).~bi )~~(WH l TESOUARES(sql).
*WH ITESQ(JARES (eq2)) 1’;
3 (Pos(P0 ,sql ).yblAPos( P0,sq2).ybl )~(WHITESQUARES sql.WHITESQUARES sq2)

*15*5 labe l LZ;
***** YI 1~ sql sq2 ybi ;4 Ysqi sq2 yb1,((Pos(PO ,sq1).yb1APos(PO,sq2)syb1)~(WHITESQUARES sql.WHITESQUARES sq2) )

We make the two usual assumptions for chess inductive proofs.

sssss l abe l L3;
sssssassume L1:#l#2#l#1#l;
5 Ysqi sq2 yb1.((Pos(PO,sq1):yb1APos(r,sq2).yb1)~ (WHITESQUARES sql.WHITESQUARES sq2) )ASUCCESSOR(r ,p) (5)

**sssassume Pos(P0,eq1).ybiAPos(p,sq2).~bi;6 Po s(P0,sql)syblAPos(p,sq2)sybi (6)

*ssss,E L3:#l;
7 Ysqi sq2 ybi .((Pos(PO,sq1)syb1APos(r,sq2).yb1)~(WHITESQUARES sql.WHITESQUARES sq2) )  (5)

50. Ths proof of BisMpSt.ys0øS.mIC.lor is is .scboo At 3.2,

5%. Ths proof of WisHs,s is is sction Al 1.1.2.1.

— .— ,., ~~~~~~~~— .~~~ ~~-~~~~~~ ----~— ——
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As Vb i Is on square sq2 in p. it muss have been on some square in r. Let us call that square eq.

•ssssYE Wa H.r. r,p,sq2 ,~ b is
8 (SUCCES5OR(r,p)APOS(p.$q2).ybl),35q.pos(r.$q).ybl

seses taut )eq.Pos(r ,sq).~b~ L3i?fl,1;
9 3sq .Pos(r ,sq)uyb l (5 6)

**ses 3E t sqx i
10 Pos(r ,sqx).ybt (10)

t This square eq is , by our assumption, the same color as the square ~bl started on (sql)

s.sssYE 19i’1~ sql ,sqx ,~bi;
11 (Pos(P0.sql)uyblAPos (r,sqx)Iybl)3(WHITESQUARES sql.WHITESQUARES scpc) (5)

And by the lemma BishopS taysOnSameColor , it is the same color as the square ubi Is on in p
(sq2).

ss.ssYE BishopStaysOnSa.eColor r,p,ybl ,sqx,sq2i
12 (SUCCESSOR(r ,p)A(Pos(p.5q2)sybIAPos(r,sqx).ybl)),(WHITESQUARES sq2.
WHITESQUARES sqx)

So it obviously follows that the Initial square, sql is the same color as the final square, sq2. t
ssssstauteq WHITESQUARES (eql).L.IHITESQUARES(sq2) L3s6,?ttil’;
13 WHITESQUARES sql.WHITESQUARES sq2 (5 6)

We remove the dependencies and generalize in the appropriate order.

s s sss ~ I L3+b?i
14 (Po s (PO .sq1).yb$APos(p,sq2).ybi)~(WHITESQUARES sql.WHITESQUARES aq2) (5)

sssssYI ~ sql sq2 Wb it15 YsqI sq2 yb I.((Pos(P0 ,sqt).yb1APos(p, sg2 ).ybj )~(WH1TESQlJARES sql.
WH ITESQUARES sq2)) (5)

sssss ~ ! L3~1’i
16 (Ysql sq2 yb1.((Pos(PO,sql)Iyb1APos(r,sq2)sybi)~(WHITESQUARES sql.
WHITESQUAISES 5q2))ASUCCESSOR(r ,p))~Vsq t sq2 ybi .((Pos(P0,sql)syblAPos(p, sq2)
.ybI)~ (WHJTESQ1JARES sql.WHITESQUARES sq2))

sssssYI ~P r P1
17 Yr p.((Ysql sq2 ybi.((Pos(P0,sq1)’ybiAPos(r~sq2)%ybi),(Wt41TE5QUARES sql.
WHITESQUARES sq2))ASUCCESSOR(r,p)) Vsgl sq2 ybl.((Pos(P0,sq1).yblAPos(p,sq2)
•yb1)~(WHITESQUARES sql.WHITESQUARES sq2)))

Having satisfied both chess inductive requirements, we have our theorem.

sssss l abe l ~iehoD~I ameCo lori
sssss  taut L1s~ 2 L1,L , *18 Yr sql sq2 ybt .( (Pos( P0 .sql).ybMPos(r ,sq2)sybl),(WHITESQUARES sql.
WHITESQUARES sq2))

— 
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Sect ion 3.4 More Complex Chess Theorems

Section 3.4.1 Proof by Cases: Symmetric Orthogonality

‘The ORTHO relation, on a board and two squares, is true If the argument squares are on the same
orthogonal (row or column), and all squares between the two are empty on that board. It is used In
defining the rook and queen moves. There is an attachment to ORTHO that, given a board and
squares , will compute the value of the ortho relation. However, much as LISP can not compute cat-i
by fldMC function evaluations, the simplify mechanism cannot handle simplthcations of equally
fragmentary information. We will have occasion to conclude the ORTHO relation on sub-boards from
that on of total boards, and vice-versa.

One can conclude this equivalence, of course, when none of the squares between the given squares is
F undefined.

The proof itself is an example of proof by cases. We will have to prove the theorem for both rows
and the columns, and in each direction. We will accomplish this by the use of four p ar allel proof
th reads, which , properly Riemannian, will converge to the our theorem.

We begin by assuming that board a Is a sub-board of of board b, that our two squares, sql and
sq2, are different, and that either the two squares are in the same column, and every square between
them on that column is not undefined (UD) on a; or that they share the same row, and every square
between them on that row is not UO.

*** s * la be l Li:
sss *aa9s ume~~UBOARO(a, b)A (— (s q l- s q2 )A ( (CoIumn ( sql).Co Iumn ( 8q2)A Yoq3. ((
sB ET1~lEEN(Rou(sq1) , Row ( sq3) ,Row ( sq2))A Columri (sq3) ’ .Co lumn ( sq l)) D -‘(Va lueon(a ,
ssq3).. UO))) v (Row ( sql ) .Row ( sq2)A Ysq3. ( (BET W EEN(Column(sq l) ,Co lumn(sq3) ,
sCoIumn(sq2))ARow (sq3).Row (sq1))~ — (Valueon (a,eq3)-UO)))));1 SUBOARD(a ,b)A(— (sql’sq2)A ((Column sqlsColunn sq2AYsq3.((BETWEEN (Row sql,
Row sq3,Row 5q2)ACOlUInn sq3.Column sql):,-.(Valueon(e,sq3)sUO)))v(Row sqirRow
sq2AVsq3.((BETWEEN (Column sql ,Column sq3,Column sq2)ARow sq3~Row sql).-’(Va lu eon( a ,sq3)aUD))))) (I)

If a is a sub-board of b, then they differ only on the squares where a is undefined.

* * * ss V E SUB _BOARDS4 a , b ;
2 SUBOARO(a ,b).Ysq.(Valueon(s ,sq)RValueon(b ,sq )vValueon(a ,Sq)SUD )

ss *s * ta ut  lh :#2 t , t ti
3 Ysq. (Va lueon(a ,sq).Va lueon(b ,sq)vValueon(a ,sq)sUO) (1)

Let us call the typical square between sql and sq2, sq3. Either this square Is undefined (UD) on a,
or It has the same Valuson It In both a and b.

sssss  labe l ~~~ss.ssYE t sq3;
4 Va lueon(a ,sq3)sVa lueon(b ,sq3)vValueon(a.5q3)sUD (1)

We invoke the lemma AowColumrtSqu.reThm, which states that If two squares have the same row

_ _ _ _  —-h-.-- _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~
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and column, they are equal.SZ

sssssVE RowColusn$quar.Tprn sql • sq2 ;
5 Row sql.Row sgb(Column sq1.Co~uan sqbsqlssq2)

Since sql and sq2 are assumed to be unequal, they must differ In row or column.

We consider each possibility. They might be equal by columns, or equal by rows.

SU ssl ia bi l LZi
sssssassuuis~~oIusn (sql).Column (,q2);6 Column sqlsColwsti sq2 (6)
ssss.assums Row(sql ) .Row(sq2 )~7 Row sqisRow sq2 (7)

The definition of CR1140, applied to both a and b.

see sslabe l L~
;

.ssssYE IIOVINC2 a • sql $ sq2:a ORTHO (a ,sql,sq2).(— (sql.sq2)A((Column sq1.Co~umn sq2AYsq3.((BETVEEI~(Row
sql ,Row sq3,Row sq2)ACo~umn sq3.Coluan sq1)~Va1uson(a,sq3).MT))v(Row sqisRow “

sq2AYsg3.((BETWEEN (Column sql ,Column sq3,Column sqZ)ARow sq3.Row sq1)~ I..
Vslu.on(a.sq3)sMT)))) ‘-
sssssYE MOVING2 b , sql • sq2;
9 ORTHO(b ,sql ,sqZ).(— (sql.sq2)A( (Column sq1~Column SQ2AVSQ3.((BETWEE$(Rowsgl ,Row sq3,Row 5q2)AColumn sq3aColumn sq1)~Valuson(b,sq3).M1))v(Row sqiaRowsq2i~Ysq3.((BETWE EN(Column sql.Column sq3,Column sg2)AROW sq3.Row sql),
Valu.on(b,sq3).MT))))

As we seek to prove equivalence, we assume each of the or;ho conditions and try to prove the other. -
, 

-

s ***sl abe l 
~~~ ;

*****,~9e uMe ‘Pl’ill i
10 ORTHO(s,sql,sq2) (10)

sssssassurne 1’1’*#1~11 ORTHO(b. sql ,sq2 ) (11)

There are now four paraiiei cases through the proof, determined by whether the presumed
orthogonality Is horizontal or vertical, and on board b, or its sub.board, a. Note the dependencies,

We can conclude, in each case, from our assumptions and the definit ion of orthogonalfty. that every
square between sql and sq2 is MT. 4

*ss *s lab e l Li.: 1*ss*stauteq L5:#2#2#1#2 L5,L2,Ll,L8+l ,L3;
12 Ysq3.((BETWEEN (Row sqI,Row sq3 ,Row sg2)ACohamn sq3’Column sq1)~Va~ueon(a ,
sq3}. $T ) (1 6 10)

ssssstauteq LSz#2#2#2#2 L5,L2+l ,Ll ,L8+l,L3t
52 T*~s prs.f if this ismsi. is is ssct..~ A.4. I.

• ‘
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13 Ysq3.((BETWEEN (Column sql,Colu.n sq3,Column sq2)ARow sq3slow sq1)~Va~u•on(a ,sq3)~MT) (1 7 10)

sssss tauteq L5+1:#2#2#1#2 LS+l,L2,Ll ,L8+l ,L3+l i
14 Ysq3.((BETWEEt4(Row sql ,Row sq3,Row sq2)AColumn sq3sColusm sq1)~Valuson(b,sq3).M1) (1 6 11)

ss .sstauteq L5+1:#2#2#2#2 LS.l ,L2+l,Ll,L8+l,L3+l~15 Ysq3 .((BETWEEN(Co lumn sql, Cohimn sq3,Column sq2 )AMow sq3.Row sq1)~Va 1ueon
(b ,sq3)’MT ) (1 7 11)

We apply this fact to our typical square, sq3. —

sss ss lab e l L~:sssss YE sq3:
16 (BETW EEN(Row sql ,Row sq3 ,Row sq2 )AColumn sq3.Column sql),VaIueon(a,sq3).
MT ( 1 6 1 0 )

sssssYE ~1~t1~ eq3;
17 (BETW EEN(Column sql,Cohimn sq3 ,Column 5q2 )ARow sq3’Row sq1)~Vslu.on(..sq3
).NT (1 7 10)
sssssYE ttii~ sq3s
18 (8ETWEEN (Row sql ,Row sq3 ,Row 1q2)ACo~umn aq3’Column sql),V.lueon(b,sq3).
MT (1 6 11)

~~~~~~~~ sq3i
19 (BETW EEN(Column sql ,Column sq3 ,Column sq2 )ARow sq3sRow sql),Va lueon(b ,sq3
).MT (1 7 11)

eq3 must either be the same on both boards, or undefined on a. By our assumption, all squares on
a between sql and sq2 are not undefined. Therefore, sq3 will have the same Vs I uson It in both
boards.

ssssstautsq Lh#2#2#l#2 Ll.L2.L8+l;
20 Ysq3.((BETWEEN(Row sql ,Row sq3,Row 5q2)AC0’lumn sq3.Column sq1)~-.(Valueon(a.sq3)uUD)) (1 6)

sssss ta ut eq L1:#2#2#2#2 L1,L2+l ,L8+l ;
21 Ysq3 .((B ETW EEN(Column sql ,Column sq3,Column 5q2 )ARow sq3sRow sql),-’(
Valueon(a,sq3).UD)) (1 7)

isass labe l L_Z:
sssssYE ~~‘? sq3;
22 (BETWEEN (Row sqt ,Row sq3,Row sq2 )AColumn sq3.Column sq1)~—(Valuson (a ,sq3 )
.UD) (1 6)

sesseVE tt sq3i
23 (BETWEEN(Co lumn sql ,Column sq3 ,Column sq2)ARow sq3sRow sql),-’(Valueon (s,
sq3).U0) (1 7)

And , in each case, this value will be lIT.

sss sslabe l 
~~~~sssseteut eq L7a11 ,Valu .onIb sq3).MT 17,L$,L8i
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_
~~~~.
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24 (BETWEE N(Row sql,Row sq3 ,Row 5q2 )AColu n sq3.Column sql),Valu.on(b,sq3).
MT (1 6 10)

s s sss t aut eq L7+1 t #l )Val ueon (b .q3) .lIT L7+1,L6+1,L8;
25 (BETW (EN (Column sql ,Column sq3,Coluan sql )AR0w sq3.Row sql)~V .lueon(b ,sq3).NT (1 7 10)
sssss taut , i L7s11 ,Valueon (a sq3).1IT L7,L6+2 ,L8:
26 (B( 1WE~N(Row sql,Row sq3 ,Row sq2)*Colu.n sq3sColu.n sql),Valu .on(a ,sq3).
MT (1 6 11)

ssssst auteq L7.lil1~VaIueon(a sq3)~tIT L7+l,L6+3 ,L8;
27 (BETWEEN (Column sq1 ,Co~umn sq3 ,Colu.n sq2 )ARow sq3sRow sql),Va luson (a ,sq3
).$T (1 7 11)

We generalize this result to all squares sq3.

ssss sVl t~ttsq3:28 Vsq3 .((8ETWEEN(Row sql ,Row sq 3 ,Row sq Z )ACo lumn sq3 .Co lumn sq 1)~Va1ueon (b ,
sq3)sMT) (1 6 10)

sssss Yl ~tttsq3:29 Vsq3.((B E TWEEN (Coluan sq1 ,Co~uan sq3 ,Cohimn sg2 )ARow sq3sRow sqlbVa ~ueon(b ,sq3).MT ) (1 7 10)

sss ssYl t It t s q3:
30 Ysq3 .((BETWE EN(Row sql ,Row sq3 ,Row 5q2 )AColumn sq3 .Column sq1)~Va lueon(a ,
sq3).PIT) (1 6 11)

ssss sYl ~tt1’sq3i
31 Ysq3 .((BETWEEN (Column sql ,Co~umn sq3,Column sq2 )ARow sq3sRow sql),Valueon
(a ,sq3).MT) (1 7 11)

But this is the defining condition for ORTHO on the other board.

ssssstauteq ORTHO(b sql sq2) tt~?,L5.l,Ll ,L8+1,L2~
32 ORTHO (b,sql ,sq2) ( 1 6 10)

sss ss tauteq ORTHO (b sql sq2) tf~~,L5+l,Ll,L8+1,L2+1i
33 ORTHO(b,sql,sq2) (1 7 10)

ssssst auteq ORTHO(a sql sq2) ~tI’I’,L5,L1,L8+l ,L2~34 ORT HO (a ,sql,sq2) (1 6 11)

ssssstauteq ORTHO (a sql sq2) ~tfl ,L5,L1,L8+1,L2+1 s
35 OR T HO(a ,sql ,sq2) (1 7 11)

We remove the dependencies of each case assumption.

sssss ,l L3,t1~ ts
36 ORTHO(a,sql ,sq2),ORTHO(b,sql ,sq2) (1 6)

sssss~ I L3,1?tl’i
37 ORTHO(a,sql,sq2 ),ORTHO(b.sq l, $q2 ) (1 7)
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*S*S*ID I ~~~~~~~~~~~~
38 ORTHO(b ,sql ,sq2 ) ,ORTHO(a ,sql ,sq2 ) (1 6)

*5S$*D 1 L3+l~~~ t:
39 ORTHO ( b ,sgl ,sq2),ORTHO(a.sql ,sq2) ( 1 7)

sssss~ I L2 11’tt1
40 Column sq1sCo~unn sq2D(ORTHO(a ,sql ,5q2)DORTHO(b ,sql ,sq2)) (1)

sssss~ I L2+bI’I1’1’~41 Row sqisRow sqb (0RTHO(a,sq1 ,sq2)~0RTH0(b,sq1 ,$q2)) (1)

s***SDI L2~IhI~Pt;
42 Column sqlsColumn sqb (ORTHO(b,sq1 ,sq2)~0RTH0(a,sql ,sq2)) (1)

55u sD! L2+l~ I’1~fl:43 Row sqisRow 5q2,(ORTHO (b,sql ,sq2)DORTHO (a,Sq1,$q2)) (1)

Having proven the theorem for each case, we can conclude that it is always true.

sss*stauteq ORTHO (a sql sq2)uORTHO (b sql eq2) Ii’:t ,Ll;
44 ORTHO ( a ,sql ,sq2).ORTHO(b,sql ,sq2 ) ( 1)

*s***DI LlD1~:45 (SUB0ARD(a ,b)A(— (sq 1:sq2 )A( (Co~umn sqlsColumn sq2AVsq3 .((BETWEE H(Row sql,
Row sq3,Row sq2)AColumn sq3sCo~umn sql)D-.(Valueon(a ,sq3)RUD)))v(Row sqisRowsq2AVsq3.((BETWEEN(Column sql ,Column sq3,Column 5q2)AR0w sq3sRow sq1)~-.(Va lueon (a ,sq3)sUD)))))),(ORTHO(a,scil ,sq2).ORTHO(b,sql.1q2))

ss s*slabe l Eau i 0rthelhm;
sssss V lIa b sql sq2;
46 Va b sql sq2 .((SU BOA RD(a ,b)A(-I(sql.sq2 )A((Column sqlsColumn sq2AVsq3 .((
BETWEEN(Row sql ,Row sq3,Row sq2)AColumn sq3’Column sq1),-(Va~ueon(a ,sq3)sUD)
))v(Row sql=Row sg2AVsq3. ((BETWEEN(Column sq1 ,Co~umn sq3,Column 5q2)ARow sq3zRow sql),-’(Valueon(a,sq3)sUD)))))),(ORTHO(a,sql,sq2).ORTHO(b,sql,sq2 ) ) )

Section 3.4.2 Cornered Checking Pieces

This is a theorem about checks. It states that if a piece is checking the opposing king on a board,
and , if on each of the squares that the piece can move to on that board, the piece sti ll checks the
king, then the original check was a discovered check. This situation is illustrated in f igure 28, where
the marked white queen is a cornered checking piece. This check must have been produced by the
white bishop moving out from between the black king and the white queen. The theorem excludes
certain exceptional conditions, such as pawn promotions, castles, en passant captures, and checks by
pawns. These restrictions are necessary for these non-reversible moves. If this sounds like a
complicated theorem, please be patient; it is the most intricate agen~ al chess theorern we prove.

L. - - - ~~~~~~~~~~~ *  
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Th. white quiets Is eorswrü *figure 28

We start with the assumption of some of the conditions for the theorem, We presume to have a
position, q. whose immediate predecessor was r . The transition from r to q was not accomp lished by -

~~~~

a castle or en passant. q has a board, b, and, on some square of this board, sq. is a white value, vii .

On some other square. sqx, is the black value KB (king black), and a piece of vii can move on b

from eq to eq~. v ii is not a pawn; sq is not in white’s last rank. These last two conditions prevent
the move from being either a pawn promotion, or a pawn’s move.

We label this assumption L i .

,sss s~ abe I U.:
ss sssaesume SUCCESSQR(r ,q)A(-.EN_PASSANT(r ,q)A (-CAS1LING (r,Q)A l~’l4LASTRANK sq’s.(80ARD(q,b)A (VaIu.on(b,sq).vw~(Va l u.on(b.sqx}.KBA (MOVE10(b,vW ,5q,eq)~)A
iV ALUEP v~

. t ) ) ) )) ) ) ;

I 5UCCESS0R(r ,q)A(_ EN_ PASSANT(r ,q)A(~ CAST LING(r ,Q)A (- .W LA STRANK sq,(BOARD(q,b
)A(Valu.on(b ,sq).vsw~(Va1u.on(b,sqx)sKBA(M0VETO(b,VW ,Sg,SgX )A .VALUEP vw))fl))
) (1)

Since there is a white value on sq. it must belong to a chesspiece. Let us call that piece *.

sssssVE P eceva 1 uesAreCP~essp~eces q.b,eq:2 (BOARD(q,b)APIECEVALUES Valuson(b ,aq))~CHESSPIECES Pos(q,sq)

ss * sssim p l i f ~ PIECEVALUES vi.i;
3 PIECEVALUES vw

ssssstauteq Pos(q,sq).Poe(q,sq) ;
4 Pos(q.sq)*Pos(q,sq)

sssss3I f’ Pos(q,sq)~s 0CC 2i
S 3x .Pos(q,sQ)sx

asi sslauteg 3x ,Poe (q,sq).u Ll ,2i3,5;
6 3x .Pos (q, s q) sx (1)

ssss s l abel CALL.XI
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.es.s3E 1
7 Pos (q ,sq)sx (7)

We have presented sufficient conditions to prove the black king in check. We establish this fact ,
with the help of the lemma A/1e~nsteB!ac k~

3 Alternate8lack also incorporates the knowledge that
when black ’s king is in chec k, it must be black’s turn to move .

u s u s u tau t Va~ueonIb ,sqx ).KBA (Valueontb ,sq).vwAt10VETO (b,vw ,eq,eqx)) Li;
8 Valueon (b ,sqx)ZKBA (Valueon(b ,sq)SvwAMOVETO(b ,vw ,sq,sqx)) (1)

sssss3~ ? sqx sq vw;
9 3vw sq sqx. (Valueon(b ,sqx)ZKBA (valueon (b ,sq)SvwAMOVETO(b ,vw,sq,sqx))) (1)

ss.ssVE CHECKERS : 0;
10 BLACKINC HECK b.3vw sql 5q2. (Valueon (b ,sq2)ZKBA (Valueon(b ,sql )ZVWAMOVETO(b
,vw ,sql ,sq 2)))

sssss VE A lter nateB l ack q, b;
11 ( BOARD(q , b)A BLAC KINCHECK b)D(POSITI ONINCHECK(q ,BLACK)A-’WHITETURN q)

•s sss I abe ~ L2 ;
sss sstaut POSlTIONINCHECK (q .BLACK )A-’i..~4ITETURN q LlsI~;12 POSITIONINCHECK( q,BLACK)A- .WHITETURN q (1)

Also, if black is check ed, then the color of position q must be black.

sssssVE POS COLORS q,BLACK :
13 Color q;BLACK.(W HT BLAC K.WH ITETURN q)

The various type simp lifications needed in the rest of the proof.

ssssss ~mp H f~ Vvw vo,-’ (Valuecolor vw .Valueco l or vb);
14 Vvw vb.-’(Valuecolor vwsVa lueco lor vb)

sssssVE ? vw ,KB;
15 — (Valuecolor vwsValueco ’lor KB)
ssssss mp l f 11j -44HT BLACKAVALUEK KB;
16 —14141 BLACKAVALUEK KB

The proof will also employ parts of the definition of successor, and various facts about the colors of
pieces.

sssss l abe l ~~sssssVE ~1CONSE QA r ,qt
17 SUCCESSOR(r ,q)~ ((- ’WHITE TURN r.WHITETURN q)A(Prevpos qsrA(-’POSITIONINCHECK
(q,Co~or r)A ((WHITEPIECE Mover Move q.WHITETURN r)A (Pos(r,From Move q).MovsrMovs qA(Pos(q,To Move q)’Mover Move qA (Pos(q,From Movs q)5EMPTYA((CAPTURE
Move q,Pos(r,To Move q)sTaken Move q)A(CASTLING (r,q)v(EN_PASSAPIT(r,q)v
SI MPLELE GALMOVE(r ,q)))))))))))

sssa staut Prevpos q.r Ll ,L3;
• 18 Prevpos qsr (1)

53 Prov.i~ in ..cI,on &75l .
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By the theorem _ChecAl ypea , there are four ways a check can occur. The piece that is making
the che~ can have moved into the check, the check could have occurred on a discovery from an en
pa.sian: capture. the rook of a castle could have moved and checked, or the check could have
resulted from a piece moving out from between the king and the checking piece, a discovered check-

sss ssVE _Check T14pes... qo, eq,sq,i,u,vw.KB;
19 ( POSITIONINCHECK(q ,Color Q)A( B0ARD(q, b)A(MOVETO( b,vw ,sq,sqx )A(Pos(q, sq)~x
A(Valueon(b , sq)svw~( Vahieon(b, sqx)ZKBA(VALUEK KBA— (VaIuecolor vwzVsluecolor
KB))))))))~(Mover Move qsxv((EILPASSANT(Prsvpos q,q)A(SQUARL8ETWEEN(sq,From

Move q,sqx)vSQUA RL8ETWEEN(sq, Takenon Move q,sqx)))v ((CASTL ING(Prevpos q ,q)
,%Alsomover Move qsvw)v (OROINARY Move QASQUARL.8ETWEEN(5Q. FrOIs Move q, sqx))))

*s * ss g u0~~tr ~? in  t;
20 (POSITIONINCHECK (q,Color q)A(BOARO(q,b)A (MOVETO (b,vw,sq,sqx)A(Pos(q,sq):x
A(Valueon (b,sq)svwA(Va~uaon (b,sqx)sKBA(VALUEK KB,~-.(Vs~ueco~or vwsVelueco~orK9))))))))~(Mover Move Q=xv((EN_PASSANT(r,q )A (SQUARE_BETWEEN(sQ,From Move q,
sqx )vSQUARL.BETWEEN (sq,Takenon Move q,sqx)))v((CASTLING(r,q)AAlsomover Move
qsvw)v(ORDI$ARV Move q,SQUARLBETWEEN(sq,From Move q,sqx))))) (1)

By our assumption Li , we can eliminate the special move (capture en pas.zant. castle) possibilities.

u sss el abe l L~
;

ssssct auteq Mover Move q- cv (ORD Z NARY Move qASOUARE~~ETWEEN (eq,From Move q,s sqx) ) L1,CALLJ(,L2:13,1S;lS,t;
21 Mover Move q:xv (ORDINARY Move qa~SQUARE _8ETWEEN (sq,From Move q,sqx)) (1 7
)

Let use assume that the move was not a discovered check, but rather, that the checking piece, x,
made the last move, into the checking position. We call this assumption urn p1! on.

ssssslabe l um~tion ;
sssssassume Mover Move q—x ;
22 Mover Move q:x (22)

if the last move was not a pawn promotion, then x has the same value in q as It had In r.

s*ss*~abe l 
~~~~~~~~~~ussasassume Veqi . (NOVETO (Tboard q.vw ,eq, sq l)D(— (Valueon(Tboard q,eql) .IIT)v

s r’IOVETD(Tboarca q,vw ,sqx ,eql)fl ;
23 VsqI.(MOVETO(Tboard q,vw,sq,sq1)~(-’(Valueon (Tboard ci,sql)sMT)vMOVETO(
Tboard g,vw,sqx,sql))) (23)

We assume that every square that this piece could have moved from, either is not empty, or also
checks the black king.

*ssssYE sume From Move q;
24 1IOVETO (Tboard q,vw,sq, From Move q)~(-~(Valueon(Tboard q,From Move q)sMT)v
MOVE TO(Tboard q,vw,sqx ,From Move q)) (23)

s,sssVE _MoveBaclc .. r ,q, vw ,To Move q,From Move a;
25 (SUCCESS OR(r ,q)n(ORDINARY Move QA-.VALUEP vw))~(MOVET0(Tboard q,vw.To Move
q,From Move q)uMOVETO(Iboard r ,vw ,From Move g,To Move q))

r 
_ _ _ _ _ _ _I- . ~~. ~

—— ~~~~~~~~ 
- - . -
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Now, most piece moves at e wenmutative. We need only show that this (nort.pawn valued) piece did
not just promote, and this value is also the value of the piece on the square sq in the boards of r
and q.

s * s * aV E MCONSEQK r ,q;
26 SIMPLELEGALMOVE(r ,q).(-.(Fron Move q u o Move q)A (MOVETO(Tboard r ,Valueon (
Tboard r ,From Move q),From Move q,To Move q)A ((SIMPLE Move qnVelueon(Tboard
r ,To Move q)’MT)v(CA PT URE Move QA (PIECEVALUES Ve’lueon (’Tboard r,To Move q)A-e(
Va lueco l or Va~ueon(Tboard r ,To Move q):Color r ) ) ) ) ) )

asasu V E McoriseqmX r ,q;
27 SUCCESSOR(r ,q) D((CASTL E Move g.CASTLING(r ,q))A(( ENPASSANT Move q.EN_
PASSANT(r ,q))A (ORD INARY Move q.SIMPLELEGALMOVE(r ,q))))

uss us labe l L~;
sus s uV E UnpromoteciFrom r ,q, b,x ,sq;
28 ( SUCCESSOR(r ,q )A (—WLASTRANK sqA ( BOAR D(q, b)A(Va lueon(b ,sq)uwA( Pos(q.Sq):X
AMover Move q’x))))),Valueon(Tboard r,From Move q)svw

sssssVE MOVETYPESI Move q;
29 ENPASSANT Move qv( CASTLE Move qvORDINARY Move q)

as*ssV E Unique q, To Move q, sq, x ;
30 Pos(q,To Move q)=xD(Pos(q,sq)sx.To Move q:sq)

s*s*stauteq — (Va lueori (T bo ard q,From Move q).MT)v IIOVETO(Tboard q, vw,sqx ,From
sMove q) L1,CALL _X .L3, umpt ion ,eume+1:~P;
31 — (Valueon(Tboard q,From Move q)sMT)vMOVETO(Tboard q,vw,sqx ,From Move q)
(1 7 22 23)

Now , the source square of this move is obviously empty. Hence, the MT squares of our assume sume
can be eliminated. The piece must be able to make the indicated move.

ususuVE ValueTra nspositionC q,From h ove q;
32 Va~ueon(T boar d q ,From Move q)sVal (q,Pos( q ,From Move q ))

s*s *sV E Empty From q ,Poe(q,From Move q),From Move q;
33 CHESSPIECES Pos(q,From Move q),(Pos(q,From Move q).Pos(q,From Move q),-’(
From Move qsFrom Move q))

sussuVE Empt ylsMl q,Pos(q,From Move q):
34 Pos(q,From Move q)=EMPTY.Val (q,Pos(q,From Move q))=MT

sss**VE NotChessp i eceEmpty... Pos(q,From Move q);
35 -.CHESSPIECES Pos(q,From Move g)sPos(q,From Move q)sENPTY

sau te tauteq MOVETO (Tboarc~ q,vw,sqx ,From Move q) ‘Pl’l’li:l’;36 MOVETO(Tboard q,vw ,sqx ,From Move q ) (1 7 22 23)

The movement commutivity rules also hold for this MOVETO. We need to show that the values of the
pieces haven’t changed by this last move. As the move was not a pawn promotion, this follows.

susseVE _MoveBack_ r,q,vw ,eqx ,From Move q;
37 (SUCCESSOR(r ,q)A (ORDINARY Move qA-’VALUEP vw)b(MOVETO(Tboard q,vw, sqx,
From Move q).MOVETO(Tboard r,vw,From Move q,sqx))

~~~~~~~~~ -—~~~~~~~~
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•sssstauteq MOVETO (Tboard r ,vw ,From Move q,eqx) L1 ,L5-.1,L5+1,?1,~ ;
38 MOVETO(Tbosrd r,vw,From Move q,sqx) (1 7 22 23)

sassuVE OtherS i deStays r.q,sqx ,BK:
39 (SUCCESSOR (r ,q)A ((WHITEPIECE BK.WHITETURN q)APos(q,sqx)sBK))~Po e(r ,eqx).
BK

ssssi sVE Klng ValueThm r ,Tboar.d r ,sqx;
40 (BOARD(r ,Tboard r )A— (Valueon (Tboard r ,sqx).U0))~((Pos(r sqx).WK.Valueon(Tboerd r ,sqx).KW)A(Pos(r,sqx)sBK.Va~uson (TbOard r,sqx).KB)5

s uass l abe l L_~:
sssssVE BoardTboard r;
41 BOARD(r ,Tboard r)

sssssV E SUB_BOAROS2 Tboard r ,sqx;
42 — (Va lueon (Tboard r ,sqx) uUD)

s u s a ss i m pli f y -44NITEPIECE BKA—(KB.UO);
43 —WHITEPIECE BKA— (KB’UO )

ssassVE King ValueThm q.b,sqx:
44 ( BOAR 0( q ,b)A— (Va ~ueon(b, scx) u UD ) ),( (Pos(q,sqx)uWK.Valueon(b ,sqx)RKW)A ( Poe
(q,sqx)sBK.Va~uaon (b ,sqx).KB))

Hence, black must also have been in check in the previous position.

s aa s s tau t e q  Va lueo n(Tboard r ,sqx).K BA (Va lueon(Tboard r ,From Move q) .vwA
*FIOV ET IJ(T board r ,vw ,From Move q,sqx)) L1,CALL..X,L2,umption ,L5,1ht1~tt t t s t:
45 Valueon(Tboard r ,sqx)SKBA(Valueon (Tboard r,From Move q)svw~MOVETO(Tboardr ,vw,From Move q , sqx)) (1 7 22 23)

saass 3l 1’ eqx..sq2 From Move q.-sql vii
46 3vw sql sq2.(Valueon(Tboard r,5q2).KBA (Valueon(Tboard r,sql).vwAMOVETO(
Tboard r ,vw ,sql ,sq2) )) (1 7 22 23)

sssssYE CHECKERS2 Iboard ri
47 BLACKINCHECK Tboard ru3vw sql sq2. (Valueon (Tboard r,sq2).KBA(Valueon(
Tboar d r ,sql)BvWAMOVETO(Tboard r,vw,sql ,sq2 ) ) )

- : This is clearly impossible.

sussuVE AlternateB i ack r,Tboard r;
48 ( BOARD(r , Tboard r )ABLACKINCHECK Tboard r ),(POSITIONINCHECK(r ,BLACK )A’-’
WHITETURN r )

sss s s tau teq  FALSE L 1, L2,L3,L6,1~t?s1 i
- 

- 49 FALSE (1 7 22 23)

Therefore, we can negate our assumption that this cornered piece made the last move.

asses— I P,Mover Move q—x~50 -.(Mover Move qsx) (1 7 23)

We arrange this conclusion in a more useful form.

~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ _______ _________ .~~~~~~~~ — —~ .~~~ 
—

~~
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sssss taut (ORDINARY Move qASQUARE_8€TWE EN(sq, From hove q,eqx))A— ((lover Move
sq—x ) L4,t;
51 (ORDINARY Move QASQUARL.BETWEEN(sq,From Move q,sqx ))A-(Mover Move q~x)1723)

•s sa *s ubs t  CALL _K in t;
52 (ORDINARY Move q’~SQUARE_8ETWEEN(sq,From Move q,sqx))n— (Nover Move q-Pos(q
,sq) ) (1 23)

And , after removing the dependencies, we generalize.

*5*5 5 , 1  eume~~:53 Vsql.(MOVET O( Tboard q,vw ,sq ,sq1)~ (—(V a1 ueon(T board q, sql )s MT )vMOVETO(
Tboard q,vw ,sqx ,sql))),((ORDINARY Move q,SQUARLBETWEEN (sq,From Move g,sqx))
A— (Mover Move qsPos(q,sq))) (1)

ssss*,I Ll ,~:
54 (SUCCESSOR(r ,q)A(—EN ..PASSANT(r ,q)A(—CASTLING(r ,q)i~(—WLASTRM4K sqi (BOARD(g,b)A(Va1ueon (b,5q).vwA (Va~ueon(b ,5qx)sKBA (NOV (TO(b ,vw ,sq,sqx )A—VALUEp vw))))
)))),(Ysql.(MOVETO(Tboard q,vw,sq,sq1)~(— (Va1ueon(Tboard q,sql).MT)vMOVETO(
Tboard q,vw,sqx ,sqi))),((ORDINARY Move QA5QUARE_BETWEE$($q,From Move q,sqx))
A— (Mover Move clsPos(q,sq))))

We call this theorem WhlteCornered. BlackCoutered is the same theorem for black checking white.
We forego the repetition required for its proof.

e u s s e  labe l W hi teCprriered;
sssssVl ~ r q b vii eq 5q~c~55 Yr q b vw sq sqx .( (S UCC ESSO R(r ,q)A( —E N_ PASSANT(r ,q)A (— CAST LI NG( r ,q) A (—
WLASTRANK sqA( BOARD(q, b)A (Va~ueon(b ,sq)svwA(Va~ueon(b ,sqx)zK BA ( MOVETO(b ,vw,
sq,sqx )A—VALUEP vw)))))))),(Vscil.(MOVETO(Tboard q,vw,sq,sql),(-’(Valueon(
Tboard q,sql).MT)vMOVETO(Tboard q,vw,sqx ,sql))b ((ORDINARY Move QASQUARE....
BETWEEN (sq,From Move q,sqx))A— (Mover Move qsPos(q,sq ) ) ) ) )

The corresponding result for checking the white king Is:

def ine BlackCornered:
Yr q b vw sq sqx .((SUCCESSOR(r ,q)t~(-’EN_PASSAHT( r ,q), (~CASTL1NG(r ,q)
A (-.WLASTRANK (sq)A ((BOARD(q,b)A (Valueon(b ,sq)SvwA (Valueon(b ,sqx).KBA
MOVETO(b ,vw,sq,sQx))))A—VALUEP vw))))),(Vsql.(MOVETO(Tboerd q,vw,
sq,sql)~ (-’(Va1ueon(T boara q,sql).MT)vMOVETO (Tboerd q,vw,sqx ,sql ) ) ) ,
((OR DINARY Move aASQUARE._ BETW EEN(SQ. FrOm Nov. q,sqx ) )A-.(Movsr Move

Section 3.4.3 No Black Pawns oii the First Row

A final annotated chess lemma. We prove the theorem NoBlackPawnsOn?Aow, which states that no
piece whose value is PB (black pawn) is ever In on any square of the board’s first row. This is of
course true, as all the black pawns start on the second row, and, while they still have the value of
pawn, never move backwards.

An elenctlc proof. We assume that such a condition exists. In some position p, a chesspiece x is to
have value PB. In p, x Is on square sql. The row of sql Is 1.

-~ - ‘ N  ‘ .-“.~‘~P’~~~~~~~~~~~~~~~~ ------- - 
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sssss labe l U.;
sesse assume Va Iip,x).P8i~Pos(p,.ql)sq
1 VaI(p,x).PBAPOS(p,$ql)ax (1)

sssssassume Row (sql ).11
2 Row sql.1 (2)

x must, of course, be a black piece.

sssss label LZ;
seess YE Co lorCho ic.. p,x;
3 (BVALUES Val(p,x).BL.ACKPIECE x)A(WVALUES V.~(p,x).WHITEPIECE x)

sssas e imp l i f ~ BVALUES PBAVALUEP PB ;
4 BVALUES PBAVAUJEP PB

sssssYE PleceChoicee_ K;
5 (WH ITEP IECE x .P1acec o~or x.WHITE)A(BLACKPIECE x.Plecscolor xuBLACK)

*sssslabe l L~~;ususs tauteq Piececo lor x.BLACK L1,L2*t;
6 P~ececo~or XaBLACK (1)

Every piece started on some square. Let us call the square that x was on In the Initial position, .q2.

ss*ssVE A l lStar t_ x~7 3sq. Pos(P0 ,sq).x

ss*ss3E 1’ sq2;
8 Pos(P0 ,sq2)sx (8)

If x has pawn value, ft must be a pawn. Since ~ Is a blackplece. it must be a black pawn.

esasuVE PaunValuedPaw-sslhm p,x; - -
9 VALUEP Va I( p,x),PAWNS x
ssss sYE BlackpiecePawneAre _ 

~~ ;10 (BLACKPIECE XA PAWNS x).BPAWNS x

Simplification tells us that alt black pawns start in the second row.

sussu l abe l 
~~~~~;

cuss. YE BlackPawneOn2Star t.. eq2;
11 BPAWNS Pos(P0,sq2).Row sq2s2

sssss-tauteq Row(eq2)e2 L1 ,L2iL2+2,L3+2sL4;
12 Row sq2s2 (1 8)

Each of sql and sq2 Is the composite of its row and column.

- 
- sssssVE SOUARED1 sq2;

13 sq2.Mekssquere(Row aq2,Co1umn sq2)
- 
I sssssYE SQUARED1 sql;

I
II
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14 sq lsMake squa re(Row sq1, Co~umn sql)

s*ssssub str 199’ Ifl

15 sq2sMakesquar.(2,Column sq2 ) ( 1 8) -

s**s$Subst r Ll+l in t?1
16 sq lsMakesquara (1.Column sq l) (2)

By the theorem ~_PewnS ructure_ 1, every path that a pawn takes must satisfy the predicate
MAY _PAWN_CAPTURES. We substitute the tiakeequare value for sql and eq2 in this WFF.

sssssVE $awnStructure_l P0 ,p, x ,sql,sq2;
17 (PoS(p,5ql)SXA(POS(PO ,5q2)sXA (PREDEGAME(P0 ,p)AVALUEP Va~(Provpos p,x))))~MAY _ PAWN _CAPT URES(sq2 ,sql ,Placeco lor x)

*s**ssub str 1’1’1’ in 1’ 0CC 2;
18 (Pos(p,sql)zxA(Pos(P0,sq2)uxA (PREDEGAME (P0 ,P)AVALUEP Va~(Prevpos p,x))))~MAY_pAW N_CAPTURES(Makesciuare (2,Co~umn sq2),sql,Piececolor x) (1 8) P

ssss*subetr 1’t~ in 1’ occ 2;
19 (Pos(p,$ql)sxA(Pos (PO ,5q2) xA(PREDECAME (PO ,p)AVALUEP Val(Prevpos p,x ) ) ) ) ~MAY _PAWN_CAPTURES (Ma kesquar.(2,COlunn sq2),Makesquare (1,Co~umn sql),Piececo lor x) (1 2 8)
sssss l abe l L~;us$55 substr L3 in t;
20 (Po$(p,$ql)zxA (Pos(P0,sq2):xA (PREDEGAME(P0,p)AVALUEP Va)(Prevpos p,x))))~
MAY _ PAWN_C APT URES(Mak .square(2 ,CO~Iiiflfl sq2) , Makesquare(1,Columfl sql),Bl.ACK )
(1 2 8)

We know PU to have occurred in the game of p.

sssss YE POSIT ION _RULES p;
21 SUCCESSOR(Prevpos p,p)A PREDECPJIE(P0,p)

And that if a piece has pawn value, it has always had pawn value.

sssssVE PreviouePawnValue Prevpos p.p.x;
22 Prevpos paPrevpos p,(VALUEP Val(p,x ),VALUEP Val(Prevpos p,x))

Simplification reveals that there are no two squares satisfying the MAY _PAWN _CAPTUURES predicate
for black , such that the transition goes from the second row to the first. Thus, we have a
contradiction.

sssssYE NottlPC_Black2tol _ Co l umn (sq2t ,Co lumn (eqlh
23 —MAY_PAWN...CAPTURES(Makesquare(2,Co~umfl sg2),Makesquare(1,Column sql),BLACK )
ssssstauteq FALSE L1,L2+1.L3+2,LSzi’;
24 FALSE (1 2)

Our original assumption must be wrong. No piece with value black pawn can be on a square whose
row is one in any GANEPOSIT ION.
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5aus$ —I P.Row(.ql).1;
25 — (Row sql.1) (1)

sssss~ I Ll,t:
26 (VC~(p, x).PBAPos(p,sq1).x)3-’(Row sql.1)

*5 5 5*  labe l L~~
;

sass . VI I~ p sql ;
27 Yp sg 1.((Val (p, x)aPBA Pos(p. eq1).x )~—(ROW sql.1))

However, we wish to prove our theorem for all POSITIONS , not just GAMEPOSITIONs. Hence, we
must establish it for the initial position. This is trivial, as all black pawns are on the second row at
the beginning of the game. not the first. We first establish that all things with value of pawn black
in the initial position are the black pawns; we then Instantiate our just concluded lemma to any
position, r, show by simplIfication that that if r is P$,the theorem Is still true. As all positions are
either GAIIEPOSIT IONs or P8, we have our theorem.

ssssssimp li f y Yx.(Val (PU,x).PB.BPAWNS x);
28 Vx.(Va~ (P0 ,x)sP8.BPAWNS x)

sssssVE 1’ x ;
29 Va1 (P0 ,x)sPB.BPAW NS x

ss ssssi mp l i f y — (2.1);
30 — (2~1)

sssss tauteq (Va l(P8 ,K).PBAP0S(PU,sq2).xb—(Row(.q2) .1) L4,fl*1’;
31 (V a l (P 0 ,x).PBAPO5(PO ,sQ2)sx) ,—(Row sq2.1)

sssssassume r..PU;
32 raPO (32)

- 
- ss*5*subet 1’ in pt’;

33 (Va~ (r ,x).PBAPos(r,sq2)sx)~-’(Row sq2’l) (32)

s*.ss~ I 19’~1’;
34 r.P0~((Va1(r,x).PBAPos(r ,sq2)’x)3—(Row sq2sl))

s*sssYE LB r ,eq 2;
35 GAMEPOSITION r,((Val(r,x).PBAPos(r,sq2)sx)~ -(Row sq2.l))

s*sssV E POSITION_TYPES r;
36 — ( rsPO.GAMEPOSITION r)

ssssstaut (Va l (r ,x).PBAPoe(r,sq2).x)~-’tRow (sq2).l) 111* 1’;
37 (V a1(r ,x)sPBAPos(r ,sq2).x)D-~(Row sq2.1)

sssss labe l NoB lpckPawnsOnlRow;
sees. VI ~ r x sq2~eq;
38 Yr x sq.((Va1(r,x)aPBAPos(r,sq).x)~— (ROw sqal))

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ L . ~~ _ . - 
. -

~~~~~~

- - — _______



____ -- 
~~~~

-

4- A FOL Solution to the Chess Puzzle Page 105.

Chapter 4 A FOL Solution to the Chesg Puule

Syste ms. of natural deduction . . . constitute a form
for t he det ’elopm.n of logic that is natura l in map,~
resp ects. In the first place. Slier. is a si m i larity
between natura l deduction ond intuiti ve , informal
reaso.si,sg. u se inference ruløs of the syst ems of
natura l deduction correspond closel y to procedures
com m on in intuitive reasoning, and when informal
proofs -- such as are encountered in ,nathes,ia tics
for exam pie -- are form alized within these syste m s,
t he main st ructure of the informal proofs can often
be preserved. This in itself g ives the syste m s of
natural deduetios an interest as an erp licotion of
th, informal concept of log ical deduction.

Dog Pro wisa ~4

This chapter details our proof, in FOL, of the solution to the chess puzzle presented in section 1.6.
This proof follows closely with the solution presented in that section.

Section 4.1 Declarations for th is Proof

First order logic is somewhat distinguished by the proliferation of constants. If one needs a new - 
-

entity, one creates a new constant; if a particular formula is a frequent referent , one defines a new
predicate to abbreviate that formula. This particular proof shall not spawn any new predicates for
the chess world. However, perhaps obviously, we shall need names for the individuals mentioned in
the problem and solution. More particularly, we define INDCONSTs for some of the more important
boards of section 1.6.

Most obviously, we need a constant to represent the puzzle board, the board Illustrated in figure 29.
Let us call this individual GIVEN.

dec l are INDCONST GIVEN BOARDS;

j Pr.wdiSS). p . s  7-
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The boardGIVE N

flgur~ 29

The attachment to GIVEN is therefore:

attacPi GIVEN s. LCHESS) ( (MT MT NB RU MT MT III KU) (PB KB MT RU PB MT PB FIT)
(PB MT FIT PB MT MT (IT FIT) (MT MT PB MT lIT MT FIT MT)
(FIT FIT PB MT FIT (II MT 1.10) (MT PU FIT PU FIT MT P1.1 MI)
(PU MT PU FIT MT PU MT PU) (MT NB MT (IT FIT FIT FIT ( I T ) ) ;

Our proof also dealt at length with the position of the board just prior to the last move. We
concluded that a white pawn on WQB7 had captured some black piece on Bal. We shall need to refer
to several of the possible identities of that piece. In the base situation, that piece Is undefined, and
we get the board OBUO.55 When we wish to consider that piece a rook or a queen, we will use the
boards QBR and OBQ. Recalling the definitions of section 2.1.5, we see that OBUD Is a sub-board of
both QBR and QBQ. OBUD As illustrated In figure 30.

dec l are INDCONST OBUO QBR 060 C BOAROS;

55. In thi. proof , WI will vif.r to the positson pr.soated in ThI problem is pe, its prsvisus position, qa. Tlems, thI n.m. QBUD
signsfisu tha t this in position Os,, this Board is UnDefin.d on ths mtsr.st l1 square (SQl). kuWiorly, QBR see a blsck roots On that
squarI. 080, a black qus~~

— 

.~~ . - - ___________ - - .1
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~ ~~ ~~
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~~~~~~~~~~ ~~

The board QBLJO

figure 30

attach QBR a. (CHESS) ((MT MT NB RB MT MT MT KU) (PB KB PU RU PB MT PB MI)
(PB MT MT PB MT MT FIT FIT) (MT MT PB FIT MT MT FIT MT)
(MT MT PB MT FIT FiT MT UO) (MT PU MT PU FIT MT PU MI)
(PU MT PU MT MT PU MT PU) (MT NB MT MT MT FIT MT FIT )) ;

attach OBO a. (CHESS) ( (MT MT NB 08 MT FIT FIT KU) (PB KB PU RU PB FIT PB FIT)
(PB MT MT PB MT MT MT FIT) (MT FIT PB MT FIT MT MT MI)
UIT (IT PB MT FIT MT MT (JO) (MT PU MT PU MT (IT PU MI)
(PU MT PU MT MT PU MT PU) (FIT NB MT FIT MT MT MT FIT )) ;

attach QBUD.. [CHESS) ( (MT MT NB UD MT MT MT KU) (PB KB PU RU PB MT PB FIT)
(PB MT MT PB MT FIT MT MI) (FIT MT PB FIT FIT MT FIT FIT)
(MT MT PB MT MT MT MT UD) (MT PU MT PU MT MT PU FIT)
(PU FIT PU MT MT PU MT PU) (MT NB MT (IT MT MT MT F IT )) ;

Section 4.2 The Proof

Declarations completed, we plunge forward into our proof. One of the major propositions of this
paper is the existence of a correspondence between the human solution to our chess puzzle (presented
in 1.6.2), and our FOL encoding of that proof. In support of this hypothesis, this chapter is
organized like section 1.6.2; we number the description of our FOL proof to illustrate the
relationship.

Section 4.2.1 Black is in Check

We seek to prove that, if the given board (CI yEN) is the board of some legal positIon, and there Is a
chesspiece on the square WKR4, then that piece must be the white queen’s bishop (14DB). Expressed as
a FOL WFF, this becomes:36

Vp. ((BOARD (p GIVEN)ACHESSPIECES Poe(p l.JKR4)) ~ Pos(p l.IKR4) • 14DB)

ft is therefore reasonable to begin our proof with the assumption of the antecedent of this WFF~.
Rather than p, we select the distinctive parameter px to symbolize this original position. For fu ture
reference, we label this line CALL_PX

s*ss s labe l CALL PX;
esessassume BOARO(px ,GIYEN)ACHESSPIECES Pos(px ,WKR4 );

56. I4us we have boSses by prasun,in that tim. givsn board I. a posim on of a GAMEPOSITION, not Pot any POSITIONS. This is,
of courss, trivially sstabli.h.d. Th. only non GAMEPOSITION POSITIONS is P0, th. initial (cams start in ) positiom~ A quick consultation
to the simplification mechanism will show they ddfsr on many squarss. (sec., ws take tlis liberty of usiM pi, r.thsr thin sam.
POS(TIONS variable.

— --.  -—- — - _ _  _ _ _ _ _ _ _ _ _ _
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1 BOARD (px ,GIVEN)ACHESSPIECES Pos(px,WKI4) (1)

1. We see that , on the given board, the black king is in check (figure 3!). We obtain this
through a single invocation of the samplthcation mechanism. Notice how we have transformed this
observation into a simp le computation. We will use this computational ability In this proof whenever
possible; more particularly, when we have the ground instances (constants) to compute about, and
have the appropriate functions to do the computing.3’

~i1~J~~JA~ ~‘A1~

Vi,,~i4~ %~ 4
Sin *p lif icatio n aces ti,. check .1 sh. black ki.,t.

f ig ure 31

see ssl ab e l BINCHECK;
s ee ss oi mplif y BLAC~ INCHECK GIVEN;2 BLACPZINCHECK GIVEN

1.!. One of the more trivial chess lemmas, AItornafeBlacIr.. informs us that any position which
has a BLACKINCHECK board must have black on move. Additionally, the lemma fills in the
P05 1 TI  ON I NCHECK predicate for us. Let us call this line BLACK...GOES.

asses l abe l BLACK GOES;
sesseVE Alte rnateB lack px ,GIVEN;
3 (BOARD (px ,GIVEN)ABLACKINCHECK GIVEN)~(POSITIONINCHECK(px ,BLACK )A-’WHITETURNpx)

1.2. If this position Is black’s turn , then white must have made the previous move. We want a
name for this position, too. We will call it qx. Implicit in using a name from the sort of
LEGALPOSITION, rather from POSITIONS is the obligation to show that the stated position is not the
In itial position. It is obvious to us that the board GIVEN was not achieved one move from the start
of the game. But to convince our proof checker, we invoke the lemma PREVLEGAL. which demands 

57 Wi have tried to have all of the approp riate func t ion, defined in our •o,omatizat,oe (chapter 2). Occasionally, compuling - —
somsthm w,IPs tim. cP..ss .y., and thsr.by coCssd.rwmg each case of a QUSIIIitiId WFF , would be too tim. coneumiM. in hoes m.lancie,
w• issy attempt time proof tlwcu~li the usual dsduc t iv. means.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
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the display of a black piece not on it s original square. What piece to use? Kings are the easiest
commodity; from th. lemma i~lngV&u.Thm we know that any king valued piece must be the king,
and we can see (can simplify) h. black king on 8~N2.

.sss s ~’E Kinç ~~aIu•1hm px .CIV EN ,90P42;
4 (8OARD (px ,GIVEN)A— (Vs~u.on(G1VEN.BQN2)sUD)),((Pos(px ,8QN2).WK.Va1ueon(GIVEN ,BQNZ)SKW)A (Pos(px.BQNZ).BK.Vsluson(GIV(N ,BQ$2)sK8))

sses ss~mp li f u  ~;5 B0A RO (~ x ,GIVEN),(— (Pos(~x.8QN2)sWK),..Pos(~x ,B~N2)sBK)

sssssYE PrevCaiu.posit~on pK , BQN2 ,BK ;
6 (((W HITEP IECE BK.WHIT(TURN px),~Pos(px ,BQN2).Bk)A-’(Po s(PO ,BQN2).8k))~3q,
Prevpos pxsq

sesss ~~mp ts f ~ ?;
7 (—WHITETURN pxAPo5 (px ,8QN2)sBK )~3Q.Pravpos px.q

essss t 6m~m t 3c~,Prevpos p*.q CA~L_PXi&ACK ,..GOES,Ii’1~,~~B 3q.Prevpos px’q (1)

sesse l abe l CALL Q;~sesssJE I~ qx;
9 Prsvpos px’qx (9)

It is also useful to have around (for the conditional parts of various theorems) fac ts about the
ancestry and relationships of px and qmc. We create and label these auxiliaries.

ss .se l ab e l e~j_~;
ess ssVE POSITION RULES p~:
10 SUCCESSOR(Prsvpos px ,px)’~PREDEGAME(P0 ,px )

s.s*slab e l Q~j~ ;
sees eV E POSITION _RULES qx;
11 SUCCESSOR(Prevpos Qx ,qx )APREDEGANE (P0 ,qx)

ssssslabe l PXSUç;
sesas taut.q SUCCESSOR(qx ,pmt ) CALL_QXs PXIS;
12 SUCCESSOR(qx ,px ) (9)

Section 4.2.2 White ’s Last Move

2. Our attention turns to discovering white’s last move, the one that put black Into check. We
consider each of the possible checking maneuvers (castling rook makes the check, a pawn captured
en paJsan: leaves a discovered check, the checking piece made the last move, and the piece that move
last discovered check) and discard the first three.

-. -~-~ - - -  -- - , .. .~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

L~ ~~~~~ ~~~~~ -~~~~~- _ _  - -a-



________ - - -

Page 110. A FOL Solution to the Chess Puzzle 4.2.2.

2.1. We wish to prove that white did not castle to reach this position. This is easy. We
observe that on GIVEN, a board of p~, white’s king is on BKRI. This Is not, of course, a square a
castle can leave the king upon. (as the lemma WhlteC.stleThm informs us) (figure 32) .

1V4 11~,r%a~r%~~
~423%2J~ ~~

Th, king ~id not just castle.

f igure 32

*s sssV E KingVa lueThm px ,GIVEN, BKR1;
13 (BOARD(px ,GIVEN)A— ( Va1ueon(GIVEN ,BKR1)zUD))~ ((P os(px ,BKR1)oWK.Va 1ueon(
GIVEN,8kR1).KW)A (Pos(px ,BKRI)IBKSValuSon(GIVEN ,BKRI).KB))

sssssVE l4hiteCastlelhm qx ,px ,BKR1; -
~~

14 (SUCCESSOR(Qx ,px)A (CASILING(qx ,px)A-’WHlTETURN px))~ ( Pos( px,BKR1)sWX~,(BKR1 - :-

•WKNIvBKR1sW QB1))

sssss s i mp l i f y  1~1h ;15 BOARO( px ,GIVEN)~ (Pos ( px ,BKR1)sWK’-’(Pos(px,BKR 1 )~B K ) )

s**sss impli f~ 11;
16 (SUCCESSOR(qx ,px )A(CASTLING (qx ,px)A—W HITETURN px) )~-’(Pos(px ,BKR1).WK )

We can conclude, tautologically, that white did not just castle.

asse s labe l NOTPXCASTL E;
ssasst auteq -‘CASTLING(qx ,px) CALL_PX;BLACK _GOES,PXSUC,fl:1’;
17 - CASTL ING(qx ,px) (1 9)

2.2. Similarly, if white has just captured en passan:, then he would have a pawn on black’s
third row (from the theorem WhlteEnPassan:Thm2). Since GIVEN Is a board of px, and inspection
reveals neither an undefined piece on the third row, nor a white pawn, we can quickly dismiss en
passan: capture as a possibility (figure 33) .

~~~~~~~~
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No whit. , p awns on black ’a th ird row.

fi gure 33

sssssYE UhiteEnPa esantThm2 qx p* GIVEN;
18 (SUCCESSOR( qx ,px)A(EN_ PASSANT ( qx ,px)A—WHITETIJRN px)b (Vdcx.— (Valueon (
GIV EN ,Makesquar.(3 ,dcx)) .PW~,Vahison(GIVEN ,tjakesque rs(3 ,4cx)).UD),-4OARD(px ,
GIV E N ) )

*sssss~m p l i f~ 1’;
19 (SUCCESSO R(GX ,PX)A ( EN _ PASSA NT(QX ,PX)A —WH ITETURN px ) ),—BOARD(px ,GIVEN) —

ssssslabe l NOTPXEP ;
*as sstauteq -.EN_PASSANT (qi~,px) CALL_PXiBLACK _GOES,PXSUC,

lh ;
20 -‘EN...PASSANT(qx ,px ) (1 9)
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Section 4.2.2.1 The Check Must Have Been Discovered

2 3. Proving that the piece that moved last generated the check is more difficult . Knowing
chess, and with broad pattern recognition abilities, we can see that the checking white rook is
blocked on ever side except the king’s, and that only moves that started with the king In chec k could
have lead him to that square (figu re 34)-

- 
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The white rook is cornered.

figure 34

We have a theorem. WhfleCornerecl, with that effect: if a checking piece is trapped on all sides, then
t hat piece did not make the last move, but , rather, the check was a discovered check . (This is only
true with assumptions which eliminate the special moves.) The validity of this condition is obvious
on the problem board (GIVEN). However, some deduction is needed to show that it still holds on the
total board of px (which is not undefined on W KR4, the x.ed square.) We have shoved this deduction
to the back ground; it is presented in the lemma BloclcedGlvenThm In section B.2. That derivation is
a good examp le of both the problems accruing to different representations of the same object, and
the difficulties involved in proving predicates true on similar objects.

We invoke our theorem about cornered checking pieces.

s s * s s VE l4hiteCornered qx px GIVEN RW B02 BQN2:
21 (S1iCCESSOR (qx ,px )A(_EN_ PASSANT (qx ,px )A(~ CASTL IN G( qx ,Px )A(— WLASTRANK BQ2n(
( BOARO(px ,GIV EN)A(V a~ueon(G IVEN ,BQ2) :RWA( Va~UeOfl (GIVEN ,BQN2):KBAMOVET0(GIVEN
,RW ,8Q2 ,BQN2 )) ))A—VA LUEP RW) )))), (Vs q l .(MOVETO (T boa rd px ,RW ,BQ2 ,sq1)~ (-’ (
Va lueon(Tb oard px ,sq l)aMT)v MOVET O(Tboard ‘~x ,RW ,BQN2 ,sg1 )))~ ( (ORDINARY Move
pxASQUARE _ BETWEEN (BQ2 ,From Move px ,BQN2 ) )A-.(Mover Move px:Pos(px ,BQ2) ) ) )

Some of the antecedents of this W FF have been established ‘arlier in this proof (such as the
successor relationship between qx and px , and the non castlin g nature of the last move). Others we
can see by observat ion, We need here observe that the checking piece is not on the last rank , it can
capture the king. and pieces on that board are where we claim them to be.

osse s s i mp I i f y  -4JLASTRAN K BQ2AVa l ueon(GIVEN ,BQ2).RWAVa lueon(GIVEN ,BQN2)-KB
s ,jIOVETO(GIVEN, RW .BQ2, BON2)n-’VALUEP RU;
22 -‘WIASTRANK BQ2A (Valueon (GIVEN ,8Q2).RWA(Valueon(GIVEN ,BQN2)RKBA (MOVETO(

~ 

~
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GIVE N ,RW ,BQ2, BQN2 )A—VALUEP RW ) ) )

The quantified part of the conditional is obtained through the use of our lemma.

*sss*VE BlockedGivenThe piq
23 BOAR D ( px ,GIVEN),Vsql.(MOVETO(Tboard px ,RW ,BQ2,sq1)~ (-’(Ve~ueon(Tboerd px ,
sql)sMT)vMOVETO(Tboard px ,RW ,BQN2,scil)))

2.4. Hence, the check was a discovered check; the piece that made the last mov e moved out
from between the king and rook.

asses labe l OROPX;
*sssstauteq ttt:#2#2 1’~1~ t~,PXSUC ,NOTPXEP ,NOTPXCASTLE ,CALL _PX;
24 (ORDINARY Move pxASQUARE_BETWEEN (BQ2,Froin Nova px,BQN2))A— (Mover Move px:
Pos( px ,BQ2))  ( 1)

Section 4.2.3 Which Piece Discovered the Check

Section 4.2.3.1 Where the Last Move Originated

3. We seek the identity of the piece that moved last.
3.1. We observe that there is only one square between the rook and the king, BQB2. If the
piece that moved last moved out from between them, if must have come from this square.

7” ~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~

~r%~I!r4 r %

The FROM square of the move.

f lgu r e 35

s * s s s s i m p l i f ~ Ysq , (SQUARE_BETI.JEEN(BQ2 sq BQN2)~ sq.BOB2) :
25 Vsq .(SQUARE_BETWEEN(8Q2 ,sq,BQN2bSOsBQB2)

***ssV E ? From tiove px;
26 SQUARE_ BE TWEEN (B Q2,From Move px,BQN2bFrom Move px4QB2
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ss *ss lab e l FRO~~X:
ssssstauteq From Move px.BQB2 1~P1~,tt27 From Move px.BQB2 (1)

SectIon 4.2.3.2 The Last Move was a Pawn Promotion

3.2. Perhaps the last move was not special. We have already eliminated the possIbility that the
move was a capture en passant or a castle. Let us assume that the last move was not a pawn
promotion.

We know several facts about all moves. In pai::cular. moves are either castles, captures en passant.
or satisfy the SIMPLELEGALMOVE predicate.

a s s e s  l abe l MCQNAPXI
i t s ssV E  NCONSEQA qx p~;
Z8 SuCCESSOR(qx ,px~~((—WHITETURN qx.WHITETURN px )A (Prevpos pxsclxA (-.
Pi)SI IIONINCHECK (px ,Color qx )A((WHITEPIECE Mover Move px.W HITETURN cix)A(Pos(
qx ,From Move px)sMover Move pxA(Pos (px ,To Move px)sMover Move pxA (Pos(px ,
From Move px)REHPTYA( (CAPTURE Move px,Pos(qx,To Move px)sTeken Move px)A (
CAST LING(qx ,px)v(EN_ PASSANT(qx ,px)vSIMPLELEGALMOV E(qx , p x ) ) ) ) ) ) ) ) ) ) )

We have a lemma Moved Values (section A.7.2.l) applicable to this situation. It states that for all
ordinary, non.pawn promoting moves, the moving piece, with Its current value, could MOV ETO , on the
total board of the previous position, from the From square of that move, to the To square.
Additionally, when the ensuing position has black on move, then a w hite piece occupies the To
square of that i~ove (and similarly for white). We consider each of the white and undefined pieces
on GIVEN in turn (figure 36) .

r -1/ 
~~~/ 4

Which of those pi eces mad. the last move?

f lgu r~ 36

___________ - ~~~~~~~~~~~~~~~~~~~~ - - -
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s a s s e V E  MovedVal ues qx p~ G~\ E~’. BQB2 To Move p~~
29 ((SUCCES5OR (qx ,px )A(-.EPLPASSANT(cp~,px )A(—CASTLING (qx ,px )A(-.PAWNPROM Move
pxA BOA RO(px ,G1V EN) )) ) ) r ~(From Move pXIBQB2AI0 Move px.To Move px) )~ (MOVE TO(
Iboard qx ,V al (px ,Mov.r Move p~ ) ,BQB2, To Move px )A (-.(Valueon(GIVEN ,To Move px
)sIJD)~ (MOVE T O(Tb oard qx ,Va~ueon(GIV EN ,To Move px ) , 8Q82 ,To Move px )A ( (
WHI T E TURN px~ BVALUt:S Va lueon(GIVEN ,To Move px ))A(—WHITETURN px,WVALUES
Va~ueon(GIV EN ,To Move p x ) ) ) ) ) )

3.3. There are ten white pieces on the board GIVEN. Could any of them have made the last
move, out from between the rook and the king?

sss.s YE G venWV Tø Mo ve ~~~30 WVALUES V al ue on (G IVEN ,To Move px), (T o Move px’BkRlv (To Move pxsBQlv (To
Move px ’BQ2v(To Move px sWQR2 v(T o Move px ’W QN3v(To Move pxtWQB2v(To Move px~WQ3v(To Move pxsWKB2v (To Move px ’WKN 3vT0 Move px ’W k R2 ) ) ) ) ) ) ) ) )

3.3.!. Ot~viously. the king on BKRI could not hav e made that jump.

ssss sv E Mautlove T board q~ Va lueo niGI VEN ,To Move i,x) B062 BKRI ;
31 MQVETO(Tboard qx,Va~uoo n (G I VE N ,To Move px),8Q82,BKR1),(Column BQB2zColumn
BKRIv(KNIGHTtIOVE(BQB2,BKR1)v(Row 8QB2sRow BKR1v (SAMEDIAG (BQB2 ,BKR 1)v(

KINGMOVE(BQB2,BKRI )v(TWOiOUCHING (Co~umn 8Q82,Colu mn BKMI)A(WSUC (Row BQB2 ,Row
BKR1)vBSUC(Row BQB2 ,Row BKR1))))))))

S $ $ S s 5 u m p l f y 1~;
32 —MOVETO(Tboard qx ,Va~ueon (G1VEN,To Move px),BQB2,BKR1)

3.. 2 We check each of the wh ite pawns on GIVEN , and observe (using our C~hess Eye, the
simplification mechanism) that none o ~hem could have just moved from BOB2.

s a s seV E llaurlove Tbc~ard q~ Va l ueon (GIVEN ,To Move px) BQB2 I4KB2i
33 MOVE TO (Tboard qx ,V al ueon ( GI VE N ,To Move px),8Q82,WKB2)D (Column BQB2eCo~umnW KB 2v(KNI GHTMOV E ( BQB2 ,Wk 8 2)v (R ow 8Q82’Row W K82v(SA IIEDIAG(8Q62,WK B2 )v(
KINGMQVE(8Q82 ,WKB2 )v(TW OTO UC HING(Colurn n 8Q82 ,Column WK B2),~(W SUC(Row 8Q82 ,Row
WKB2)vBSIJC (Row 8Q82,Row WKB2))))))))

ssss ssirn pH fu 1~;34 -“tIOVETO(Tboard qx,Va lu e on(GI VE N ,To Move px),BQB2 ,WK82 )

*a*ssVE Ma~Move Tboard qx V at ueo n(GIV EN ,To Move px) 8Q82 1.403;
35 MOVETO (Tbo ard qx ,Va luoon(GIV EN ,To Move px) ,8Q82 ,WQ3),(Co~umn BQB2sCo~umn
WQ3v (KNIGHTMOVE (BQBZ,WQ3)v(Row BQBZ’Row WQ3v (SAMEDIAG (BQB2,WQ3)v (KINGMOVE (
BQB2,WQ3)v(TWOTOUCI4ING (Co~umn BQB2,Column WQ3)A (WSUC(Row BQB2,Row WQ3)vBSUC(

— Row BQB2 ,Row WQ3) ) ) ) ) ) ) )

s s s s s s i r n p l i f y  1’;
36 - .MQVETO(Tboard qx ,Va luao n(G IV EN ,To Move px) ,BQB2 ,WQ3 )

sessaVE Ma~jt’love Iboard qx Valueon (GIVEN ,To Move px) BQB2 WQN3;
37 MOVETO(Tboard qx ,Va~u e on( G1 VEN ,To Move px),8QB2,WQN3),(Column BQB2’Column
WQN 3v ( K NI G HT MOVE ( BQB2 ,WQN3)v(Row 8Q92’Row WQN3v (SAMEDIAG (BQB2,WQN3)v(

KINGMOVE( BQB2 ,WQN3)v ( TWOTOUCHING (Column BQB2,Column WQN3)A(WSUC (Row BQB2 ,Row
WQN3)vBSUC (Row 8Q82,Row WQN3))))))))

s * sees im p l l f ~ ?;

_ _ _ _ _  ~
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38 —MOVETO (Tboard qx ,Valuaon(GIVEN ,To Move px) , 8Q82 ,WQN3)

sessaVE Nau?love Iboard qx Val ueon(GIVEN ,To Move px) BOB2 WQR2;
39 MOVETO (Tboard qx ,Va~u o on ( G I V E N ,To Move px),BQB2,WQR2)~ (Co1u mn BQ82eCo~umn
WQR2v (KNIGHTMOVE(BQB2,WQR2)v (Row BQB2sRow WQR2v(SANEOIAG (BQB2 ,WQR2)v (

KINGMOVE (BQB2,WQR2 )v ( TW OI OUCH IN G ( Co Ium n BQB2 ,Column WQR2)A(WSUC(Row BQB2,Row
WQR2)vBSUC(Row BQBZ,Row WQR 2 ) ) ) )) ) ) )

*sssseimp lif ~ t;40 -‘MOVETO(Tboard qx ,Va ’lueon (GIVEN,To Move px ) ,BQB2 ,WQR2 )

Note that we are invoking two different lemmas here. MayMove is useful for showing that , between
a pair of squares, no piece can ever move. WhitePawnMovement (white pawn motion) is more
specific: it applies only to white pawns, and is basically a telescoping of the conditions on white pawn
movement (as defined in the axioms MOVING I and PAWNMOV!NG) so that they can be checked In a
single simplification.

asss *V E W hitePawntlovement Iboard qx GIV EN To Move px BQB2 WKR2;
41 To Move pxeWKR2~(Vahieon(GIVEN ,WKR2)ePW,(MOVETO(Tboard qx,Valueon(GIVEN ,To Move px) , 3Q82 ,WK RZ) .((Co lumn BQB2~Co1umn W KR2A(W SUC (Row BQB2 ,Row WKR2 )A
Valueon (Tboard qx ,WKR2)eMT))v((Co~umn BQB2sColumn WKR2A (Row BQB2C7A (Valueon (
Tboard qx ,Make squ are (6 ,Co ’lunn BQB2)):MTARow WKR2:5)))v(Valueon(Tboard qx ,
WK R2 )~t1TA (TWOTOUCNING (Co 1umn BQB2,Co~umn WKR2)A(WSUC(Row BQB2,Row WKR2)ABVALUE5 Valueon(Tboard qx ,WKR2 )) ) ) ) ) ) )

sss * *s i m p l i f U ~:42 To Nova pxaWKR2~-.MOVETO(Tboard qx ,Valueon(GIVEN ,To Move px),BQB2,WKR2)

*ss*sVE WhitePauntiovement Tboard q~ GIVEN To Move px BQB2 WKN3;
43 To Move px:WKN3,(Va1ueon(GIVEN ,WKN3) PW~(MOVE TO(TbOard qx ,Va lue on ( GIVEN ,
To Move px),BQB2 ,WKN3)s ((Column BQ82~Co~unn WKN3A(WSUC(Row 8Q62,Row WKN3)A
Valueon (Tboard qx ,WKN3)eMT))v( (Co~umn BQB2:Column WKN3A (Row BQB2:7A(Valueon(
Tboard qx ,Makesciuare (6,Co ’lu mn BQB2)):MTAR0w lIKN3z5)))v(Ve~ueon(Tboerd qx.
WKN3):MIA (TWOTOUCHING(Coluinn BQB2 ,Cotwnn WKN3)A(WSUC(Row BQB2 ,Row WKN3)A
BVALUES Va~u eon (T boar d qx ,WXN 3) ) ) ) ) ) ) )

*ssss s im p l if g II,:
44 To Move px=WKN3~-41OVETO(Tboard qx,Va)ueon (GIVEN ,To Move px),BQB2,

WKN 3)

sasseVE WhitePawntiovement Tboard qx GIVEN To Move px BQB2 14082;
45 To Move px:WQ82,(Va~ueon (GI VEN ,WQ82)~PW~(MOVETO(Tboard qx ,Valueon(GIVEN ,
To Move px) ,BQB2 ,WQBZ).((Column BQ82eCo~umn WQB2A (WSUC (Row BQB2,Row WQB2)AVa~ueon(Tboard qx ,WQB2)thT))v((Co~umn BQB2sColumn WQB2A (Row BQB2:7A(Va~ueon(
Tboard qx ,M akes qu a re(6 ,Colu mn BQB2))~MTARow WQB2:5)))v(Va~ueon(Tboard qx ,
WQ82):MTA(TWOTOUCHING(Colunn 8Q82,Column WQB2)A (WSUC (Row BQB2,Row WQB2)A
BVALUES Va~ueon(Tboard qx ,WQ B 2 ) ) ) ) ) ) ) )

*ss*ssimp lif jj 1’;
46 To Move px~WQB2~-44OVETO(Tboard qx ,Va ’lueon (GIVEN ,To Move px ) ,BQB2 ,WQB2 )

3.3.3. We have already eliminated the checking rook as the moving piece in the last move.

asassassume To Move px.802;
47 To Move pxxBQ2 (47)
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ea se s subst ? IN ORDPX;
48 (ORDINARY Move PXASQUARE_BETW (EN (TO Move px,From Move px ,BQN2))A—(Mover
Move px.Pos(px ,To Move px)) (1 47)

s sse s ) I tl5t;
49 To Move pxsRQ?,((ORDINARY Move pxeiSQUARE_BETWEEN (To Move px ,From Move px ,
BQN2))A— (Mov ” in ve pxuPos (px ,To Move px))) (1)

~ 4 Nor could the rook on 801, ii it was a rook in the last position, have moved on the
diagonal.

* s s s s V E  t1OV ING2 Iboarci qx 13082 BOlt
50 ORTHO (Tboard qx ,BQB2 ,8Q1).(— (BQB2~8Q1)A ((Co1umn BQB2.Column BQ1AVSQ3.((BETWEEN (Row 8Q82,Row sq3,Row 8Q1)AColumn sq3.Column BQB2),Valueon (Tboard qx ,
sq3):MT))v (Row BQB2~Row BQ1AV5Q3.((BETWEEN (Column 8Q82,Column sq3,Column BQ1)ARow sq3~Row 8QB2)~Valueon (Tboard qx ,sq3).MT))))

ss*ss simp l~ fy —Column 13082-Column BQ1A-’Row E3082-Row BO1A
* Va)ueoniCdV EN, BQ1).RL4,’~VALUER Rl4,~-.VALUEB HWA-’VALUEN RIJA—VALUEK RWA
* —VALUEP RL4A—VALIJEQ RW;
51 -‘(Col umn BQB2zColumn BQ1)A(— (Row BQB2sR0w 8Q1)A(Va~ueon ( GI V E N ,BQ1)IRWA (
VALUER RWA (—VALUEB RWA (—VALUEN RWA (-.VALUEK RWA (-.VALUEP RWA—VAIUEQ RW)))))))

s s s s s Y E MOVING1 Tboard qx Va lueon (G IVEN 1301) 80132 1301;
52 MOVE IO(Tboard qx ,Va l ueon ( G I VEN ,BQ1),8Q82,BQ1).((VALUER Va~ueo n ( GI VE N ,BQ1)
A ORTHO (T board qx, BQB2 ,8Q 1))v((VALUEB Va lueon(G IVEN ,BQ 1)ADIAG (Tboard qx ,BQB2 ,
BQ1))v((VALUEQ Valueon(GIVEN ,BQ1)AORTHO(Tboard qx ,BQB2,BQ1))v((VALUEQ
Va l ueon (G IVEN ,BQ 1)A DIAG(Tb oard qx ,BQB2,BQ1))v((VALUEK Va lueon (G IVEN ,BQ 1)A
KINGMOVE ( BQB2 ,BQ 1))v ( (VA LUEN Val uaon(G IVE N ,BQ1)AKNIGHTMOVE ( BQB2 ,BQI))V (
VALUEP Valueon(GIVEN ,BQI)APAWNMOVE (lboerd qx ,Va lueon (GIVEN ,BQ1),BQB2,BQ1))))
) ) ) )

sssssassu me To Move px.801;
53 To Move px.BQ1 (53)

*eess ~ub~ t 1’ IN Pt 0CC 1,2;
54 MOV EI O(T board qx ,Valu eon (GIVEN ,To Move px),6Q82 ,To Move px).((VALUER
Valueon(G IVEN ,BQ1)AORTHO( Tboerd qx ,8Q82,BQ1))v((VALUEB Valueon (GIVEN ,BQ1)A
DI AG( T boar cl qx ,BQB2 ,BQ1))v((VALUEQ Va~u eon ( GI V EN .BQ1)AORTHO(Tboard qx ,8Q82 ,
BQI))v ((VALUEQ Valueon (GIVEN ,BQ 1 )ADIAG(Tboard qx ,8Q82 ,BQI))v((VAIUEK Valueon
(GIVEN ,BQ1)AKINGMOVE (BQB2,BQI))v((VALUEN Valueon(GIVEN ,BQ1)AKNIGHTMOVE(RQB2.
BQ1))v ( VALU E P Va lu e on (GI VEN ,BQ1)APAWNMOVE(Tboard gx ,Velu e on( G IVEN ,BQ I ) ,BQB2,
BQI)))))))) (53)

sssss~ I t15t;
55 To Move pxzBQb(MOVE TO(Tbo a rd qx ,Va)ueon(GIVEN ,To Move px),BQB2,To Move
px) .((VA IUER V al uoon (G IV EN ,BQ1)AORTHO (Tboerd qx ,BQB2 ,BQ1 ) )v( (VAL IJEB Va lueon (
GIVEN ,BQ 1 )A DIAG( T board qx ,6Q82 ,BQ 1))v ((VA LUEQ Va lueon(GIV EN,BQ1)AORT I4O(
Thoard qx ,8Q62,BQ1))v((VALUEQ Valueon(GIVEN ,BQ1)ADIAG (Tboerd qx ,BQB2,BQ1))v(
(VALU EK Valueo n(GIVEN ,BQ1)AKINGMOVE(B QB2 ,BQ1))v ((VALUEN Valueon(G IVEN ,BQ1)A
KNIGHTMOVE (8Q82 ,BQI))v(VALUEP Valueon(GIVEN,BQI)APAWNMOVE(tbosrd qx ,V.lueon (
GI V EN .B01 ),BQB2 ,BQ1 ) ) ) ) ) ) ) ) )

3.3.5. We have shown that (if the last move was not a pawn promotion), none of the white pieces
on the board could have moved out from between the rook and king, discovering the check. We
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must also consider each of the undefined pieces on GIVEN. We can see (simplify) that there is only
one such piece, and can ihow that , (if it was white) it was also Incapable (no matter what vilue It
might have had) of discovering the check. Once again we turn to the lemma Moved Values , and
observe that no piece can make that giant knight ’s move .

sesseVE G~venU0 To Move p’c;56 Va lu.on(GIV EN,To Move px)sUO.To Move px’WKR4
s ese eV E tlaytlove Iboard qx ValusoniTboard qx From Move px) BQB2 IJKR4;
57 MOV(TO(Tboard qx ,Valuoo n ( T boar d gx ,From Move px),8QB2,WKR4b (Column 8Q02’
Co’umn WKR4V(KNIGHTMOVE(8Q82.WKR4)V(ROW BQB2.Row WKR4V(SAMEDIAG(BQB2,WKR 4 )v(
KINGMOVE (8Q82,WKR4)v (TWOTOUCHING(Co1u~~ 8Q82 ,Column WKR4)A(WSUC(Row 8Q82,Row
WKR4)vBSU C (R ow 8Q82 ,Row W KR4)) ) ) ) ) ) )  

-
•

*ssss s~mp l i f y  ti
58 —NOVE TO (Tboard qx ,Va lueon(Tboa rd qx ,From Move px),8Q82,WKR4 )

ee*s*VE MCONSEQK q~ pxi
59 SIMPLELFGALMOVE(qx ,px).(-.(From Move p~sTo Move px )A (MOVETO(Tboard qx ,Vahison (Tboerd qx ,From Move px),Froai Move px,To Move px)A( (SIMPIE Move ~XAValueon(T board q~,To Move px)’MT)v(CAPT$.JRE Move pxA (PIECEVALUES Valueon (Tboard qx ,To Move px )A— (Valueco)or Valueon(Tboard qx,To Move px).Color qx)))

3.4. Ii therefore tautologically follows (all other alternatives having been disposed), that the last
move must have been a pawn promotion-

Ceas e l abe l ~RQI1PX1
eases tauteq PAL$fROIl Move p~
* PXSUC,N0TPXCASTLE,NOT PXEP ,FRO PX ,CALL PX,~~ACK~~~ S,BI~~~~CK .
* MCONAPX , 29,38,32, 34,36,3$,4a,42,44,46,49,5Ø,51,55,56,58,59~60 PAWNPRO Ij Move px (1) p

SectIon 4.2.4 How the Pawn Promoted

4. The promoting pawn could , of cou rse, have moved to only one of three squares. In any
case, the square he moved to must now have a white piece on it . We prove a lemma (section B.3) to
condense this computation. This lemma states that, for any position just reached by a pawn
promotion, a promoting white pawn on B082 could have moved to one of three squares, 8081 by a
simple move, or BQN1 or 801 by a capture. In either case, there is now a white piece on any board
of that position (that isn’t undefined on those squares). In the latter case, there must have been a
black piece on the capture square of the previous position’s board .

eesesY E PXPawnTo qx ,p~,GIVEN~61 (SUCCESS0R(QX ,PX)A (~CASTLING (QX ,PX)A (-.EN..PASSANT(qX ,PX )A(PAWNPR~~ Move pxA(—WHITETURN pxA (From Move px~8Q82A80AR0(px ,GIVEN)))))))~((To Move pxsBQNIA((WVALUES Valueon(GIVEN,80N1)vValueon (GIVEN ,BQN1)IUD)ABVALUES Velueon(Tboard
qx ,To Move px)))v((To Move px~BQ1A((WVALUE5 Va lueon(G IVEN ,BQI )vValueon (GIVEN 

-~ -,BQ1)sUD)ABVALUES Valueon (Tboerd qx,To Move px)))v(To Move pxtBQBlA (WVALUES
Ve)ueon (GIVEN,BQB1 )vValueon (GIVEN ,8Q81 )‘UD))))

4.1. We observe tha t only one of these three squares has a white piece on It on the board
GIVEN.
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a sses s imp l i f111 t;
62 ( SU CCE S5OR( qx ,px)A (~ CAST1ING( qx ,px)A (—EN...PASSANT(qx ,px )A (PAWNPROtl Move px

~(—W HI1ETURN pxA (From Move px.BQB2A8OARD(px ,G I V E N ) ) ) ) ) ) ) ~ (TO Move pX.BQLA
BVALUES Va~ueon(Tboard qx ,To Move px))

5 Hence, the destination (To ) square of the last move must have been BOl. Additionally. this
pawn promotion resulted in the capture of some black piece.

e sa seVE Valuel ransposut ionC cp~,T~ Move pxi63 Ve~ueon (Tboard qx ,To Move px)aVal (qx,Pos(Qx ,To Move px ) )

as ss sV E  Co l orChoices cp~,Pos (qx ,To Move px);
64 (UVALUES Va~(qx ,Pos(qx ,To Move px)).BLACKPIECE Pos(qx,To Move px ))A(
WVALUES Va~(qx ,Pos( qx ,To Move px))sbIHITEPIECE Pos(gx,To Move px ) )

sssss tauteq Io Move px-BQ1’BLACKPIECE Pos(qx ,To Move px) A

* BVALUES Valuconllboard qx To Move px)

* CALL PXIBLACK COES, PXSUC,NOTPXCASTLE ,NOTPXEP ,FROtIPX ,PROtIPX ,ttt i t;
65 To Move px.BQIA (BLACKPIECE Pos(qx,To Move px)ABVALUES Valuson(Tboard qx ,
To Move px)) (1 9)

asses l abe l TQPX;
se*ss taut ~~~ t;
66 To tiove px~BQ1 (1)

Let us call that black piece zb.

aaeee t a uteq Pos(qx To Move pic)-Pos(qx To Move px)
67 Pos (qx,To Move px).Pos(qx,To Move px )

sssss3 l P , t # 2  zb 0CC 2;
68 BIACKPIECE Pos(qx,To Move pxb3zb.Pos(qx,To Move px) .zb

ea ses taut 3zb.Pos(qK To Move pK)~ zb t , l ’ttti
69 3zb.Pos(qx ,To Move px)’zb (1 9)

sass . l Cbe l CALL Z Bs
s*sss3E t zb;
70 Pos(cix,To Move px)szb (70 )

We proceed to seek the identity of the captured black piece.

5 1 .  Black’s king is on BON2. As whlt~ moved last, and didn’t capture this king, we know that
he was on BQN2 in qi . A black king that just castled would not be on this square. Hence, we can
conclude that black has not just finished a castling move.

sesss l abe l PXJKi
sassaVE K~nç~Va l ueThm px,GI VEN,BQN2;
71 ( BOARD(px ,GIV EN)A- ’(Val ueon(G IV EN ,BQN2)IUD) b((PO5(PX ,BQN2)BWkuValUSOfl (
GIVEN , BQN2 )CKW)A ( Pos(px ,BQNZ)sBKsValusOfl(GIVEN,BQNZ)SKB))

sss*sVE OtherSldeSta~4S qx ,px ,BON2,BK;72 (SUCCESSOR(qx,px)A ((WHITEPIECE BK.VHITETURN px)APos(px,8Qt42).BK))~ POS(qX ,
8QN2).BK
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ss s s s V E BlackCaet leThm Prevpo, qx ,qx ,BON2i
73 (SUCCESSOR (Pr.vpos qx ,qx )A (CASTLING(PrIvpos qx,qx)AWHITETURN qx) ),( Pos(gx
,BQN2).BK~ ( BQN2.8KN1v8QN2.8Q81))

*sas sel mp l l f ~ Va lueon (GIVEN ,BQN2).KBA-K8.UDA-44HI TEPIECE BKA
F 

* —80N2-BKNXA- BQN2.BQ91;
74 Valueon(GIVEN ,BQN2).KBA(~ (l(8sUD)A(-’VHITEPIECE BKI’i(-’(BQN2SBKN1)A-’(BQN2.
B Q B I ) ) ) )

eases l abe l NQTQXCAS7L:~~ssses tauteq —CASTL I NG (Prevpoe qx qx)
L a PXSUC .CALL P X ,BINCHECK ,BLACK GOES,MCONAPX ,QXIS, tt?tz t;

75 -‘CASTLING(Prevpos qx ,qx )  (1 9)

Proving that black ’s last move was not an en passani capture Is slightly more difficult. More
particularly, we must account for e&ther each of his pawns, each of the squares that a black pawn,
capturing en passan:, would land In, or demonstrate the existence of all of the white pawns.
However, it is sufficient for our purposes to show that if QBUO Is a board of qx, then a capture en
p as.sant was not just completed.

ssessYE BlackEnPaseantThm2 Prevpos qx qx QBUO;
76 (SUCCESSQR(Prevpos ox , qx)A (EN...PASSANT(Pravpos qx ,qx)AWNITETURN qx))~ (Ydcx.— (Va1ueon(QBUD ,Ma kesquar e( 6,dcx))sPBvValu,oa(QBU0,M.kesquare(b ,dcx))RUD)~~BOARD(qx QBUD))
ss *ssei m p lif ~ 1’1
77 (SUCCESSOR(Prevpos qx ,qx)A(EN_PASSANT(Prevpos qx,qx)AWHITETURN qx)),-~BOARD( ox ,QBUD )
ssssslabe l NQTQBUOE;~asses tauteq BOARO(qx 0BU0)~ -’EN_PASSANT(Prevpoe qx qx)
a P, PXSUC , QXIS,11C0NAPX ,BLACK GOEs,CALL pX,9INCHECK~78 BOAR D( qx ,QBUD )3—EN_PASSANT(Prevpos qx ,qx) (1 9)

Section 4.2.4.1 The Pawn Did Not Capture a Rook or Queen

5.2. We proceed by assuming the promoting white pawn captured a black rook or queen
(valued) piece on 801. This part of the proof is the first time we employ any of the move undoi ng
functions, UNMK_NOV E. The axiom delimiting their use requires we establish the sort of the last
move.

We know that all pawn promotions are ordinary moves, and that any move (by white) to a square
occupied by a black piece Is a capture.

se ss es imp lif y Ympp,ORQINARY mpp:
79 Vmpp.ORDINARY mpp

ssss eV E t Move px;
80 PAWNPROM Mov e px~ORDINARY Move px

see seV E BlackCaptur.dThsi px To Move px;
81 To Move px.To Move px,((ORDINARY Movi pKABVALUES V.~u.on(Tbosrd Pr.vpospx ,To Move px ) )~CAPTURE Move px)

- ~~~~~~~~~~~~~~~~~~~~~~~ - -
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asse s l abe l CAPTURE PX;
s a e* * s u b s t r  CALL ..0X IN t;
82 To Move px:To Move px~((0RD1NARV Move pxABVALUES Valueori (Tboard qx ,To
Move px))DCAPTURE Move px) (9)

We can therefore conclude that the last move was a capturing pawn promotion.

e sss eV E CAPPP .Sort lhm Move px;
83 (PAWNPROM Move pxACAPTURE Move px)~CAPPP Move px

s a s s e l a b e l CAPPPPX ;
asses tauteq CAPPP Move px t ,tt ,t t tt ,TOPX- 1,PROI’lPX;
84 CAPPP Move px (1)

If the last move (the capturing pawn promotion) captured a black rook, then the board QBR was a
board of that position. If it captured a queen , then QBQ

assssV E UNOO4 qx px GIVEN BOB? BOl RB:
85 (SUCCESSOR(qx ,px)A(BOARD(px ,GIVEN)A (CAPPP Move pxA (Val (qx,Takan Move px)z
RBA (From Move pxSBQB2AT0 Move pxsBQl))))),BOARD(qx,Unm kca pppmove (GIVEN ,BQB2,
BQ1, R B ) )

aasaaVE UNOO4 qx px GIVEN B082 801 08;
86 (SUCCESSOR(gx ,px )A (BOARD(px ,GIVEN)A(CAPPP Move pxA (Val (qx ,Taken Move px).
Q8A(From Move pxRBQB2AT0 Move pxaBQl))))),BOARD(qx,Unmkcepppmove (GIVEN ,BQB2,
BQ1 ,QB ) )

The board OBUO is a sub.board of both.

e e s s s  s i m p l i f y tt : #2#2 .QBRAt:#2#2-QBQASUBOARO(QBUO, 0BQ)ASUBOARD (OBUD, OBR);
87 Unmkcapppmove (GIVEN ,BQB2 ,BQ1 ,R8)rQBRA (Unlnkcapppmove (GIVEN ,BQB2 ,BQI ,Q8)a
QBQA(SU BOARD(Q BUO ,QB Q)ASUBOARD (QBUD ,QBR )) )

ssss sVE Subboardlrans it iv ity X OBUD OBO qx;
88 (SUB0ARD(Q8UD ,QBQ)A80ARD(qx ,QBQ))~ 80AR0(qx ,QBUD)

ss ss s V E SubboardTrar is i t iv ity X OBUO GBR qx;
89 (SUB0ARD(QBUD ,QBR)AB0ARD(qx ,QBR))~80ARD(qx ,QBUD )

Therefore, if the captured piece (zb) was rook valued, QBR is a board of qx~ if queen valued, UBO.
In either case, OBUD Is a board of qx.

ssssst auteq (Val (qx Taken Move px).RB , BOARO(qx QBR) ) 
~a (Va l ( qx  Taken Move px).QB ~ BOA RO(qx 080)) A

* ((Va I (qx Taken Move px)-RB vVa l (qx Taken Move px).QB ) ~
* BOARD (qx OBUO))
* t t t t t t:  t,PXSUC,CALL_PX ,FROMPX , TOPX;
90 (Val (qx ,Taken Move px)IRB,BOARD (qx,QBR))A ((Val(gx ,Taken Move px)sQB,BOARD
(gx ,QBQ))A ((Val(gx,Taken Move px)aRBvVa (qx ,Teken Move px)zQB),8OARD(qx,QBUD
) ) )  (1 9)

We know that the captured piece of position px was zb. We substitute that equivalence into the
previous conclusion.

— _.L . ~~~~~~~~~~~~ - .  —-. . -
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asses tauteq Taken Move px - zb
a MCONAPX PXSUC, CAPTURE ...PX , CAP TURE...,PX-2 , PROIIPX, TOPX-1 , CALL_ZB;
91 Taken Mov e px.zb (1 9 70)
eaes sl abe l QBU0~,.8L;*ssss ~ubstr t IN tt;
92 (Va1(qx .zb)sRb8OARD(qx ,QBR))A((Va1(qx ,zb)aQbB0ARD(qx ,QBQ))A ((Va~(qx,zb)•R8vVa~(qx ,zb).Q8)D8OARD(qx ,QBuD))) (1 9 70)

Section 4.2.4.1.1 The Cornered Rook or Queen

5.2.!. just as the white rook on B02 was cornered , unable to have moved Into its check, the
(presumed) black rook or queen on BOl is cornered. We use the same theorem to show Its last move
was a discovered check.

I ~ 3 ?1L~ ‘I~I~~ ~ ~i~;v~; ~~~~~~ :~ ,
~~~~~ ‘z~//

~~~~~~~ 
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~~ ~~~
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Th~
, checking queen is sea pped.

figure 37

sesssVE BlackCorr iered Prevpos ~x qx OBO 08 801 BKRX ;
93 (SUCCESSOR(Prevpos qx ,qx)n(-’EN_PASSANT(Prev pos qx ,qx)A (—CASTLING(Prevpos
OX ,OX )A(—BLASTRANK BQIA( (BOARD(qx ,QBQ )A( Valueon (QBQ,BQ1 )CQBA (Valueon(QBQ,
BKR1)ZKWAMOVETO (QBQ,QB ,BQ1,BKR1))))A—VALUEP Q8)))))D(Vsql.(MOVETO(Tboard ox ,
QB,BQ1 ,sq1)~ (-’(Va 1ueon(Tboard cix ,sql) ’MT)vMOVETO(Tboard qx ,QB ,BKR1, sq 1)))~ ( (
ORDINARY Move QXASQUARE_BETWEEN (8Q1,FroITI Move qx,BKRJ))A-’(Mover Move qx=Pos(
ox ,B Q I ) ) ) )

se sss V E BlackCornered Prevpos qx qx QBR RB 801 BKR1;
94 (SUCCESSOR (Prevpos qx ,qx )A(- ’EN_ PASSANT(Prevpos qx ,qx )A(—CASTLING(Prevpos
~x ,qx )n(-’BLASTRANX BQ1A((8OARD(qx,QBR)A(Va1ueon(Q8R ,BQ1)’RBA(Va~ueon(QBR ,BKRI)XKWAMOVETO (QBR ,R8,BQ1,BKR1))))A—VALUEP R8))))),(Vsql,(MOVETO(Tboard ox ,
RB ,BQ1 ,sql)D(-’(Valueon (Tboard gx ,sql)sMT)vMOVETO(Tboard qx,RB ,BK R1, sq 1) ) ) ~ ((
ORDINARY Move qx,~SQUARE _BETWEEN(BQl ,From Move Qx,BKR1))A-’(Nover Move qx.Pos(
cix .BQ 1)))) -

_ _ _ _ _  
~~~~~

. --— — ——--—.-. A _.__ .. — _.....~~_ . _  k... ... ~~~~~~~~~~~~ .— ——.~ - — .  .~ _ 4  . . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
£_ .__ _



1.2.4.1.1. A FOL Solution to the Chess Puzzle Page 123.

The quantified portion of the premise of this WFF is somewhat more complex . We need to prove
theorems about the movements of the pieces on the total boards of qx, when we have onl y partial
boards. Once again, we retreat to the security of a lemma. The theorem
TRAPPED OX BQI THM, proven in section 8.4, shows that, for any position which has QBUD as a
board, a rook or queen valued piece is cornered on 801, in just the form we need for steps 93 and 94.

sss ss VE Trapped _QX _QB 1_ Thm qx 08;
95 BOAR D(QX , QBUD)D((QBZ RBv QBZQB),y SqI (MOVETO( TbOard qx ,QB,BQ1,sqI)~ (-.(Va lueon ( Tboard Qx ,sq l)ZMT )vMOVETQ(T board gx QB ,BKR1 ,sq l )) ) )
se sseVE Trapped_.Q)(_Q81 Thrn q* RB;
96 B0ARD(qx ,Q8UD)~ ((RB:RBvR8:QB)~YsqI,(MOvETo(1board qx ,RB ,BQ1 ,sq1)~ (—(Valueon(Tboard cjx ,sq1)~MT)vIlOVETO(Tboard qx ,R8,BKR),sq l) ) ) )

Other conditions for this theorem are more easily established. For examp le, we can observe that , on
both BOA and BOB, the white king on BKR1 is checked by a black officer on BQ1. We imply that this
officer did not just complete a promotion move.

a s s e s s  imp I i f~ -‘BLASTRANK BQ1A-’VALUEP QB’~-.VALUEP RBAtIOVETO (QBR,R8 ,BQI ,BKR1 )
a ,

~t1OVETO(QBQ,Q8 ,Bo1 ,BKR1)AVa lueon(QBQ ,BQl h,QBAVa lueon(QBR ,BQ1),.RB
* AVaIueonlOBO,BKRI )_KWAva l ueon (QBR,BKRI )_KW;
97 -‘BLASTRANK BQ1A (—VALUEP QBA (—VALUEP RBA (MOVETO (QBR ,RB ,8Q1,8KR1)A(MOVETO(
QBQ,QB,BQI IBKR1)A(Va~ueon(QBQ,BQ1)IQB~%(Va 1ueon(QBR ,8Q1)sp8A(VaIueon(QBQ ,BKR 1
) ~k WA Va lueon( QSR , BKR1) .KW) ) ) ) ) )  )

5.3. It therefore tautologically follows that , if zb was a black rook or queen, the check must
have been a discovered check.

a e s as l a b e l DISOX ;
e a ses tauteq (Va l tqx ,zb).RBvVal (qx ,zb).,QB)~~((OROINARy Move qx~a SQUARE _BE TI.JEEN (801 ,From Move qx ,BKR1) )n-4lover Move qx.Pos(qx,BQ1))
s OX I S ,NOT QXCASTLE ,NOTQBUQEP,QBUOLBL1 t;
98 (Va~(qx ,zb)’RBvVa1 (qx ,zb)sQB )~ ((ORDINAR y Move QxASQUARE_ BETW EEN(BQ1 ,FromMove qx ,BKRI))A -.(Mover Move qx:Pos(qx,BQ1))) (1 9 70)

Section 4.2.4.1.2 Which Piece Discovered the Check

We have concluded that the discovering move must have started upon a square between the(presumed) queen (or rook), and the white king. We consult the simplification mechanism, which
informs us that the only squares between these two are BKI, BKB1, and BKNI. Hence, (if the captured
piece had rook or queen value), one of these squares must have been the From square of the last
move (figure 38) .
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If a black piece moved so discover check,
iheis is moved from one of these squares.

fi gure 38

e s s e s s i m p H f y  Vsq. (SQUARE BETL4EEN{8O1,eq,BKRIb (sq.BKIv (sq.BKBlvaq=BKN1)))i
99 Vsq. (SQUARE.jETWEEN(BQ1,sq,BKR1)~(sqeBK1v(sq’BKB1vsqzBKN1)))

e ss eeV E ? From Move qx;
100 SQUARE _ BETW EEN(BQ 1 ,From Move qx ,8KR1)~ (From Move qx*BK Lv(Fron Move qxs
BKBlvFrom Move gx .BKNI))

5.3.!. So we must consider each of the black (possibly) pieces. to determinr if any ot’ them could
have moved from one of these three squa res on the last move. The theorem NotBPFrom lThm Is
useful in this respect. From severa l suitable premises (black’s move, the source square of the move is
on the first row , and this isn’t a special move) it permits various useful conclusions. Most relevantly,
it asserts that the destination of the last move is now either occupied by a non.pawn, black value, or
by the undefined value, and that the last move needed to satisfy several MOV ETO conditions.

ess eeV E NotBPFromllhni qx .OBUO;
101 (-‘CASTLING(Prevpos qx ,qx)A(BOARD(qx ,Q8UD)A (—EN_PASSANT (Prevpos qx ,qx)A(
WHITETURN qxARow From Move qx:1))))~ ((~ (Va1ueon(QBU0 ,To Move qx).UD)~M0VETO (
Tboard Prevpos qx ,Velueon (QBUO ,To Move qx),Froin Move qx ,To Move qx))A(-’
PA WNPROM Move qxA (MOVETO (Tboard Prevpos qx ,Val (Prevpos qx ,Mover Move ox),
From Move qx ,To Move qx)A(— (Vsl ueon( QBUD, To Move qx):UDb(—VA LUEP V e% ueon (
QBUD ,To Move gx )ABVALUES Valueon(Q8UD,To Move qx))))))

This simplifies our task enormously. There are now only four possible destination squares for the
last move, BON2 , occupied by the black king, 8081 and WON 1 , occupied by black knights, and, of
course, W KR4, whose occupant is still unclear. The other undefined square (of the partial board we
compute upon), 801, has already been dismissed as a possible destination.
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The squares that need checking.

fi gure 39

ssss s s imp l ~fy i’sq. ((BVALUES Va i ueon (QBLJO,eq)A-.VALUEP Va l ueon (OBUO,sq))~a (eq.BQN2v (sq.BQBlvsq-WQN1)));
102 Vsq.((BVALUES Va~ueo n (Q8UD ,sq)A-’VALUEP Va1ueon (Q8UD ,sq)),(sq~BQN2v(sq~
BQ6 1vsci~WQN1 ) ) )

ses *s sim p H f y Vsq, (Va lueon (QBUO ,sq)-UO D(sq-W KR4v sq—B Q 1)) ;
103 Vsg.(Ve~ueon (QBUD,sq):ULb(sq:WKR4vsq:BQ1))

s s s s s V E ti’ Ic Move q~;104 (BVALUES Va~ueon (Q B U D ,To Move qx)A- ’VALUEP Va lueon(QBUD ,To Move qx ) ),(To
Move qxsBQN2v (To Move qxzBQBlvTo Move qxzWQNl))

aesesV E t~ To Move qx;
105 V alueo n (Q BUD ,To Move qx) *UD~(To Move qx:WKR4vT0 Move qx:BQI)

We consider each of the possible pieces (and its associated square) in turn, showing how a piece with
that value (on OBUD) could not have moved to any of the possible From squares. Note that six steps
are required for each piece: three to instantiate the axiom, and three for simplification.

The knight on wnite’s first row;

sssss VE MayMove Tboard Prevpos qx ,NB,BK1,WON 1 ;
106 MOV ETO (Tboard Prevpos qx ,NB ,BK 1 ,WQN 1b(Co~umn BK 1’Co~umn WQN 1v(
KNIGHTMOVE (BK1 ,WQN1)v (Row BKlrRow WQN1v(SAIIEDIAG(BK1,WQN1)v(KINGMOVE(BK 1,
WQN3)v (TWOTOUCHING(Column 8K1 ,Column WQN1)A (WSUC(Row BKI,Row WQN1)vBSUC(Row
BK1, Row WQN 1) ) ) ) ) ) ) )

es aseVE MayMove Iboard Prevpos qX ,NB,BKB1,UQN1:
107 MOVE TO (Tboard Prevpos Qx ,NB ,BKB I ,WQN1)D (Column BKB1:Column WQN1v(
KNIGHTMOVE(BKB1 ,WQN1)v(Row BKB1sR0w WQN1v (SAMEDIAG(BKB1,WQN1)v(KINGMOVE(BKB1
,WQN1)v(TWOTOUCHING(Column BKB1,Column WQN1)A (WSUC(Row BKBL ,Row WQN1)vBSUC(
Row BKB1 ,Row W Q N I ) ) ) ) ) ) ) )

sssesVE MayMove Tboard Prevpoe qx ,NB,8KN1 ,WQNI ;
108 PIOVETO (Tboard Prevpos qx ,NB ,BKN1 ,WQN1),(Co~umn BKNlsColumn WQN1v(KNIGHTMOVE (BKN1,WQN1)v(Row BKN1.Row WQN1v(SAMEDIAG(BKN1,WQN1)v(KINGMOVE(BKN1 - 
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.W Q N1)v(TWOT O UC I4ING (Co lun n BKNI , Column WQN 1 )A (WSUC(Row BKNA ,Row WQN 1)vBSU C(
Row B K N1 ,Row WQN 1 ) ) ) ) ) ) ) )

s s e e s s i m p l i f y t1~1~;
109 -‘MOVETO(Tboard Prevpos qx ,NB ,BK1 ,WQN1)

s.ses s~nip J i f y t1~1~:
110 - ‘MQVETO (Tboard Prevpos qx ,NB ,BKB 1 ,WQN1)

s s s e e~~ mpl i fy 111;
111 —MOVETO(Tboard Prevpos gx ,NB ,BKN1 ,WQN 1)

The knight on black ’s first row:

ss s seV E MOV ING1 Iboard Prevpos c~x ,NB,BK1 ,BQB1;
112 MOVETO(Tboard Prevpos qx ,NB ,BK1 ,BQB1).((VALUER NBAORTHO (Tboard Prevpos
qx ,BK1,BQBI))v((VALUEB NBADIAG(Tboard Pravpos qx ,BK1 ,BQ B1))v((VALUE Q NBA
ORTHO( T board Prevpos qx ,6K1 ,BQB1))v((VALUEQ NBADIAG (Tboard Prevpos qx ,BK 1 ,
BQB 1 ))v((VALUEK NBAKINGMOVE (BK1,BQB1))v ((VALUEN NBAKNIGHTMOVE(BK1 ,BQB1))V(
VALUEP NBAPAWNMOVE(T board Prevpos ~x ,NB ,BK1 ,BQBL)))))fl)

e s seeV E MOV I NC1 Tboar~, Prevpos qx .~~ ,BKB1,BOB1;
113 MOVETO (T boar d Prevpos qx ,NB ,BKB1 ,BQB 1) .((VALUE R NBAO RTHO(Tboar d Prevpos
qx ,B KB I ,8Q81 ) )v ((VAL UE8 UBA OIAG (Tboard Prevpos qx ,BKBI ,BQB I))v ( (VAL UEQ NBA
ORTHO(Tboard Prevpos qx ,BK B 1 ,BQB 1))v ( (VALUE Q NBADIAG(TbOard Prevpos qx ,BKB 1 ,
BQB1))v((VALUEK NBAK INGMOVE(BKBI ,BQB1))v((VALUEN NBAKNIGHTMOVE (BKB1 ,BQB1))V(
VALUEP NBAPAWNMOVE(Tboard Prevpos qx ,NB ,BKB1 ,BQB 1) ) ) ) ) ) ) )

s*sss VE MOV I NG1 Tboard Prevpos qx ,NB ,BKN1 ,BQB1;
114 MOVETO(Tboard Prevpos qx ,NB ,BKN1 ,BQB1).((VALUER NBAORTHO(Tboard Prevpos
qx ,BKN1 ,BQB1))v((VALUEB NBnDIAG (Tboard Prevpos qx ,BKN1 ,BQBI)) v ((VAL UEQ NBA
ORTHO(Tboard Prevpos QX ,BKN1 ,BQB1))V( (VALUEQ NBADIAG (Tboard Prevpos qx ,BKN1 ,
BQB L ))v((VALUEK NBAKINGMOVE (BKN1 ,BQB1))v((VALUEN NBAKNIGHTMOVE (BKN1 ,BQB1))V(
VALUEP NBAPAWNMOVE (Tboard Prevpos qx ,NB ,BKN 1,BQB1 ) ) ) ) ) ) ) )

a s se s s i mp l i f y t1’~ ;
115 -‘MOVETO(Tboard Prevpos qx ,NB ,BK1 ,B Q BI )

ass*ss~mp ii1 y 1’l’l’;
116 - .MOVETO(Tboard Prevpos qx ,N8, BKB1 ,i~QB 1)

sassas ~m pI i f y 111;
117 -4IOVETO(Tboard Prevpos qx ,~~ ,BKN1,BQB 1 )

And , of course, the black king is too far away to have discovered the check.

sssesVE MOVING1 Tboard Prevpos qx ,KB,BK1, BQN2;
11 8 MOVETO (Tboard Prevpos qx ,KB ,8K1 ,BQN2).((VALUER KBAORTHO(Tboard Prevpos
qx ,BK 1 ,BQN2))v ((VALUEB KBADIAG(Tboard Prevpos qx ,BK I ,BQN2))v ((VALUEQ KBA
ORTH O(Tboard Prevpos qx ,BK1 ,BQN2 ))v ((VALUE Q KBADIAC(Tboard Prevpos qx ,BK1 ,
BQN2 ) )v((VALUEK KBi’~KINGMOVE (BK1, BQN2))v ( (VALU EN KBAKNIGI4TMOVE(BK 1, BQN2 ) )V(
VALUEP KBAPAWNMOVE(Tboard Prevpos qx ,K8,BK1,B Q N 2 ) ) ) ) ) ) ) )

sa ** sV E MOV ING1 Tboard Prevpos qx ,KB ,BKB 1, BQN2;
119 MOVETO (Tboard Prevpos qx ,KB ,BKB 1 ,BQN2)u ((VALUER KBAORTHO(Tboard Prevpos
cix ,BKB I ,BQN2) )v( (VALUEB KBADIAG(Tboard Prevpos qx ,BKB 1 ,BQN2 ) )v( (VALUEQ KBA
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ORTHO(Tboard Prevpos qx ,BKB1 ,BQN2))v( (VALUEQ KBADIAG(Tboard Prevpos qx ,BKB 1 ,
BQN2) )v ((VAIJJEK KBAKINGMOVE(BKB 1 ,BQN2))v((VALUEN KBAKNIGHTMOVE(BKB1 ,BQN2) )v(
VALUEP KBAPAWNMOVE(Tboar d Prevpos qx ,KB ,BKB 1 ,BQ N 2 ) ) ) ) ) ) ) )

a**aaYE IIOVINGI Tboard Prevpos qx ,KB ,BKN1 ,BQN2;
120 MOVETO(Tboard Prevpos cix ,KB ,BKN 1 ,8QN2)s ((VALUER KBAORTHO (Tboard Prevpos
qx ,BKN1 ,BQN2))v((VALUEB KBADIAG(Tboard Prevpos qx ,BK N1 ,BQN2) )v((VALUEQ KBA
ORTHO(Tboard Prevpos qx ,B KN I ,BQN2))v((VALUEQ KBnDIAG (Tboard Prevpos qx ,BKN 1 ,
BQN2))v( (VALUEK KBAKINGMOVE (BKN1 ,BQN2))v((VALUEN KBAKNIGHTMOVE(BKN1,BQN2 ) )v(
VALUEP KBAPAWNMOVE (Tboard Prevpos qx,KB ,BKN1,BQN2)) ) ) ) ) ) )

asas*s~mp li f y l’tt;
121 —MOVETO (Tboard Prevpos ~x ,KB ,BX1 ,BQN2 )

s a s s a s i m p l i f y  tl’t;
122 -‘MOVETO (Tboard Prevpos qx ,KB ,BKB 1 ,BQN2 )

**ssssimp Hfy til’;
123 —MOVETO(Tboard Prevpos qx ,KB ,BKN 1 ,8QN2 )

A little substitution for the tautology decider.

s*s ssA I Subst itut ior i (Ø~-)~x ,V alueon (QBUO,xf l ;
124 Vj  k.(j: k~V a 1ueon ( QBUD ,j ) Va 1ueon( Q8UD ,k ) )

seasaVE t To Move qx ,BQN2;
125 To Move qx:BQN2,Va~Iueon ( Q BUD ,To Move qx)sValueon(QBUD ,BQN2 )

sassa VE 1’1’ To Move q~c ,BQB1;
126 To Move qx:BQB1,Va~ueon(QBU0,To Move qx)sValueon(QBUD ,BQB1)

sasseVE 1’1’1’ To hove qx ,UQN1;
127 To Move cjxsWQNbVa~ueon (QBUD ,To Move qx)sValueon (QBUD,WQN1)

And we appeal to the chess eye, to confirm that various squares of QBUD have the values we asserted:

ass a s s imp i i f y  Val ueon (QBUD, BQN2)EKBAVa lueon (QBUO,BQB1)SNBA
* Va l ueor,(QBIJO ,WQNI)-NB;
128 Va lueo n (QBU O ,BQN2):KBA(Valueon(QBUD ,BQB1):NBAVa1UeOfl (QBUD,WQN1)SNB)

Our attention turns to proving the undefined squares of QBUO do not harbor the last move mover.
This piece must, of course, be on the To square of the last move. And we have already determined
(step 98) that this is not the square 801.

***** labe l IICONAQX;
sasseV E IICONSEGA Prevpos qx ,qx;
129 SUCCESSOR(Prev pos qx ,qx )~ ((-’WHITETURN Prevpos qxuWHITETURN qx)A (Prevpos
clx=Prevpos cixA(-’POS1TIONINCHECK (qx.Co~Or Prevpos qx)A ((WHITEPIECE Mover MoveqxuWHITETURN Prevpos qx)A (Pos(Prevpos qx,From Move qx)~Mover Move QXA (POS(
cjx ,To Move qx):Mover Move qxA(Pos(qx ,From Move qx):EMPTVA ((CAPTURE Move qx~
Pos(Prevpos qx ,To Move qx)slaken Move qx)A (CASTLING(Prevpos qx,qx )v(EN_
PASSANT(Prev pos qx ,qx)vSIMPLELEGALMOVE(Prevpos qx ,qx)))))))))~)

***5*AI  Subst itut ion (a ~ ~ x. Pos(qx x ) 3 ;  L
4 130 VJ k,(jsk,Pos(qx,J)sPos(qx ,k))

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~-- .~~~~~~~~~~= 
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ses e eV E t~ To Move qx ,BQ1;
131 To Move qx~BQlDPos (qx ,1o Move qx).Pos(qx ,BQI)

All of the candidate source squares fr” this move are in the first row.

a s s a s A l  S ub st i tu t i o n l~3 .. ~ * .Row )~)i
132 V .j k .( j~kDRow jsRow k)

ssas sVE 1’ From Move qk ,BK1~133 From Move qx’BKl,Row From Move qx.Row 8K1

sasssVE 1’1’ From Move cp~,BKB1;
134 From Move qx~8KB1~Row From Move qx.Row BKB1

*ss esVE ttf From Move qx ,BKNI:
135 From Move gxx BKNl,Row From Move qx*Row BKN 1

~ sese s s i m p l I f i 4  Roi~i BK1.1~~t~ oi.~ BKB1-IAROW BKNI.1)i .~~ 

-

136 Row BK1ZIA(Row BKB1=IA Row BkN1~ 1)

And, the fallen piece, no matter what value it might have had could not have moved to one of these
first row squaies - 

-

saseaVE IlauMove Tboard Prevpos qx ,VaUPrevpos qx ,Mover hove qx) ,BK1, W KR4 ;
137 tIOVETO ( Tboard Prevpos qx ,Va l (Pre v pos qx ,Mover Move qx) , BK1 , KR4 )~ (Cohimn
BK1~ Coluni n WKR4v(KNJGHTMOVE (8K1,WKR4)v(ROW BK1sR0W WKR4v(5AMEOIAG(8K 1,Wl~,R4)v(K I NG M OVE ( BK1 ,WKR4)v(TWOTOUCHING(COlumn $K1 ,Column WKR4)A(WSUC(Row BKI ,Row

WK R 4)vBS tJ C( Ro w BK1 ,Row WKR4 ) ) ) ) ) ) ) )

se s e eV E tlaurlove Iboard Prevpos qx ,V al t Prev pos qx ,Mover Move q~),BK81,WKR4;
138 MOVETO(Tboard Prevpos qx,Va l(Prevpos qx ,Mover Move qx),8KB1,WKR4)~(Colu mn 8~81zCo1umn WKR4v(KNIGHTMOVE (BkBl,WKR4)v(ROW BKBI.Row WKR4v(SAMEOIAG(
tW81 ,WKR4 )v(KINGMOVE (8KB 1 ,WKR4)v (TWOT0UCH1NG(CO~UtI%fl BKB1 ,Column WKR4)A(WSIJC(
Row BKB1 ,Row WK R4 )v BSUC(Row BX BI. Row W K R 4 ) ) ) ) ) ) ) )

sssss ’v’E Mautlove T hoa rd Prevpos cp~,V al (Prev pos qx ,Mover Move cpd ,BKNI ,WKR4 ;
139 MOVETO(Tboard Prevpos qx ,Va~ (Pr ev pos ~x ,Mover Move qx),BKN1 ,WKR 4 )~(Column BKNI:Column WKR4v(KNIGHTMOVE(8KN1 ,WKR4)v(RQW BKN1sRow WKR4v(SAMEDIAG(
BKN I ,WKR4 )v(KINGMOVE (BKNI ,WKR 4)v (TWOTOUCHING(Columll BKN 1,Column WKR4)A(WSUC(
Row B KN1 ,Row WKR4)vBSUC(Row BKN1 ,Row WK94) ) ) ) ) ) ) )

4 *ssass imp Uf~i 
.?tt;

* 140 -‘MOVETO (Tboard Prevpos qx ,Va l ( Prev pos gx ,Mover Move qx),BK1 ,WK R4 )

e s e e s s i m p l i f q . ~ P1’ti
141 -.MOVETO(Tboard Prevpos qx ,Val (Prevpos qx.Mover Move qx),BK81,WKR4 )

s * a s s 9 i m p I t f y 1’1’1’;
142 —PIOVETO (Tboard Prevpos qx ,Vel (Prevpos cpc ,Mover Move qx),BKN1 ,WXR 4 )

It then tautologicafly follows that the value of the captured piece In qx, zb, was neither a rook nor a
queen.

e a se s l abe l NOT OB OR_RB;
s a s s s  tauteq ~1Val~ q~,zb).RBvVa llq~,zb)-QB)

~ ~~~~. 
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a CALL _ PX; BLACK _GOES ,QX IS, PXSUC ,MCONAPX ,NOTQXCAST LE ,NOTQ8UOEP,
s QBUOLBL,DISQX ,MCONAQX ,100:1O1,184:1ø5,109i111,11S,117 ,121i123 ,
e 125;129,131,133;136, 140i142 ;
143 — (V.l(qx,zb).RBvVa1(qx ,zb)aQB) (1 9 70)

Section 4.2.4.2 The Paw ii Did Not Capture a K~i;g or Pawn

There ac six varieties of black pieces that the promoting pawn could have captured. We have
already eliminated a black rook or queen as a possible victim. What about the others?

5.4. Perhaps the captured piece had pawn value?
5.4.!. But that black pawn would have been in black’s first row. We have a theorem that
prohibi ts black pawn (valued) pieces from black first row. Hence, the captured piece (while it might
have been a pawn) did not have pawn value.

ssaseV E No8 IackPaI4nsOn~~ow qx , :h,BQ1;
144 (V el(qx ,zb)~ PBAPos (qx ,BQ1)~ zb)~ — (Row B QI ’l)
a s s s s l a h e l QN....Z~

;
*ssee sutis tr IOPX IN CALL _ZBi
145 Pos(qx ,BQ 1)~zb (1 70)

s e s e e s i m p l i f y Row 801;
146 Row BQ I ’l
a sses l abe l NOT ~B 

P;~es a se tau t —t VaI( q~,~ b)— l ’8l tth~~147 — ‘ (V el (qx ,zb )m P8 ) ( 1 70)

5.5.  The captured piece was certainly not the black king. We have already shown the black
king to be on 80N2 on GIV EN (steps 7! through 74). As the king did not Just move, he must still be
there.

ssse sV E Blac kK inçilhm qx ,BQ1:
148 Val (qx,Pos(qx ,BQI ) )~K8uPo s (qx ,8Q1 ).BK

see seVE Un ique q~,B0N2, B01,BK;
— 149 Pos( qx ,8QN2)sBK~(Pos(qx ,BQ1)cBK.BQN2sBQ1)

s see s e i rn p l if y ~(Va l uCon (GIVEN ,BQN2).UO)A (Va l uson (GIVEN ,BQN2).KBA
s(-’I4HITEP IECE BKA —(BQN2.BQ11)) i
150 — (Valuoon (GIVEN ,BQN2)sUD)A (Va1uIofl(GIVEN,BQN2 )~KBA (’WHITEPIECE 8KA— (BQN2
~BQ 1)) )

e ssaataut eq —Va ; (qx ,Pos(qx BQ1))-KB
* l’tt’; i’,PXSUC,CALL ...PX ,BINCHECK ,BLACK_GOES,PX...8K,PX_BK+1 s
151 -‘(Va~(qx ,Pos( qx ,BQ1))’KB) (1 9)

essss abe l N j Z ~..,
;

aaeas e ub et r  ON_ZB IN t;
152 “ (Va l ( qx ,zb) .K B) (1 9 70)

Hence , the cap tured piece must have had , Just before being captured, either bishop or knight value. 

~~i :
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assessi mpl i fy Vvb, (vb.KBvvb.QBvvb.RBvvb.P8vvb.NBvvb.B8 ) t
153 Yvb.(vb:kBv(vb:QBv(vb:RBv(vb:P8v(vb;NBvvb*BB)))))

sss s s VE t Val (q~ Zb) t
154 BVALU E S Ve 1(gx ,zb)~(Va 1(gx ,zb)sKBv (Ve~(QX ,Zb)*Q8v (Vl1 (qX ,Zb)*RBV(V5~(QX ,
zb):P8v(Val(qx,zb):N8vVa~(qx.zb)IBB)))))

stesaVE Va l ueTranepositionA qx zb To Move pK;
155 Pos(qx ,To Move px)szb,Valueon(Tboard qx,To Move px) .Val (qx,zb)

asses l abe l NB OR_B8;
*s*s*tauteq Va I(qx zb) .N8vValtqx zb)-BB
* 1’?: 1, TOPX- 1 ,CALL _ZB, NOT ...OB_OR_RB ,NOT ....ZB_PB,NOT_ZB_KB;
156 Val(qx ,zb)~NBvVa~(qx ,zb)sBB (1 9 70)

And we can also deduce, from this limited selection, that 08110 was, In either case, a board of the
position qx. -

‘

easeeVE Tran sit i veUNt’IKCAPPP qx,GIVEN,QBUO,BOB2,B01,Val (qx ,Zb),BB;
157 (BOAR ~(qx,Unmkcapppmove(GIVEN,BQ82,BQ1,Vol(qX.Zb)))A(SUBOARD(Q8U0,

4 Unmkcapppmove(GIVEN,8Q82 ,BQ1 ,BB))AVa J (QX ,Zb)588 ) )DBOAKD(QX .QBUD)

4 ssessV E Tran sit i veUNIIKCAPPP qx ,GI VEN ,OBUO,8082,BQI,Val (qx,Zb),NB;
158 (BOARD(qx ,Unmkca pppmov e( GIVEN .8Q82,BQ1,Val (qX,Zb)))A(SUBOARD(Q8UD,

L Unmkcapppmove (GIVEN,BQ82,BQ1,NB))AVal(UX,Zb)1NB))~BOARD(GX ,QBUD)

ss *sss impli fy 1’1’;
IT 159 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~H ( qx ,QBUO )

ssssss~m pli f y tt;
160 (BOARD(qx ,UnInkcapppmove (GIVEN ,8QB2,BQ1,Va1 (qX,Xb)))AVIl(QX,Zb)5NB )~ 8OARO
(gx ,QBUD)

seseaVE UNOO4 qx ,px ,GIVEN ,BQB2,B01,Val(qx ,Taken Move px);
161 (SUCCESSOR ( qx ,~x)A(80AR0(px ,GIVEN)A(CAPPP Move pxA(Ve1 (qx, Taken Move px)
=Val (qx,Taken Move px )A(From Move px’BQ82#~To Move px.BQ1))))),BOARD(qx,
Unmkcapppmove(GIVEN ,BQB2 ,BQ1,Val(qx,TakSfl Move px)))

s*ests ubstr OBUOLBL-1 IN 1’t
162 (SUCCESSOR(qx , pX )A(BOARD( px ,GIVEN)A(CAPPP Move px~(Vs1(qx ,zb) .Vel(qx ,zb)
A (From Move px’BQB2ATO Move pxsBQI))))),BOARD(qx ,UmmkCspPp OV I(GIVEN .BQ8Z.
BQ1,Va~(qx ,zb))) (1 9 70)

aas aa labe l OX _OBUD;
asa s stauteq BOARO (qx ,QBUOI
* CALLJ’X ,PXSUC,FROI’lPX, TOPX ,CAPPPPX, N8_OR_88, ttlt, P11 ,t;
163 BOARD(qx ,Q8UD) (1 9)

Section 4.2.4.3 The Fate of the Black Bishops

5.6. We have already determined that the captured piece was either a black bishop, or a black
knight valued. However , we can infer other results from this fact.

- ~~~~~~~~
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5.6.!. We know that one of black’s bishops, the BOB, is the black on wAIt bishop. That is, that

bishop never moves to a black square. But the capture square, 801, Is a black square. Hence, the
captured piece could not have been the BOB.

sssaeV E Biehopele0nSameCoiOr qx ,BQB1,BQ1,BQB;
164 (Pos(PO ,BQB1)1BQBF POS(QX .BQ1 BQ8)~( 

TESQUARES BQB1.WHITESQUARES BQ1)

sasess~mp l i fy 1’;
165 -..(Pos(qx,BQZ)sBQB)

5.6.2. Nor could the captured piece have been the 8KB. The black pawns on BK1 and BKN1 trap

this bishop, preventing his moving until they have moved, and freed one of his exit squares. But

we can see that these pawns are still on their original squares. Hence, the 8KB can be on no square
except his original square. (He is not , of course, on that square; rather , that bishop has been
captured earlier in this game.)

sa s ssV E Bloc ked _BKB qx ,QBUO ,BQ1;
166 ( BOARD( qx ,QBUD)A(Va1UOofl (QBUD, BK2 )~~~~~~b 0n(Q ,8 2 ) 8 0 S (

~~~
BQI ) -‘

s BKB)) )~BQ1RBKB1

e* ss ssi mp l i f y ~;167 ._(BOARD(qx ,QBUD)A POS(QX ,BQ1)IBKB)

5.?. However , any black bishop valued piece must be either the BOB, the 8KB, or a promoted

black pawn. Hence, If the captured piece was a black bishop. it must have been a promoted pawn.

seseeVE Mi ghtBeBB qx ,zb;
168 Val(qx ,Zb)z8B,((Zb1BKBVZb18Q8)v(8Pl~~~ 

gb,~PROPfOTEDPAW$(GX.Zb))) —

asses l abe l IF BISH;
ssssstauteq Val (qx ,zb).BB~ (BPAWNS ~

bAPR0M0TE0PA1JN(qK ,Zbfl

* 0N_ZB,OX_OBUD,’P1’~~.’t”t, 
¶‘ ;

169 V el (c ix ,zb)SBB,(BPAWNS zbAPROMOTEDPAWP4(QX,Zb ) )  (1 9 70)

5.8. W e know that 08110 is a board of qx. Hence, there must be black knights on both BQ1 and

WQN1 on the total board of qx (or, equivalently, knight valued pieces on these squares in the position
qx). It’ the captured piece was a black knight . then black had three knights on the board in qx.

Having three black knights is proof of having a promoted pawn on 
one of those three squares.

However , the conditions (and conclusions) of the lemma we really invoke are stronger. It states that

if at most one black pawn has promoted. and the three black knight valued squares situation exists ,

then that pawn is on one of the three squares. and no other square (in particular, its not 
on the

fallen square.) In this step. we’re looking Io’wa’d to phrase our conclusion in the form that will be

most useful in the future. 

- .—~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—_ .. —,—.—.—.-.—...

- 
- 

~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L -



-- - -.-.- --— -
~~~~~

-- -,.-- _— - —~~~—..-~.-- ---_ ..- - -----~ ---- - - .

Page 132. A FOL Solution to the Chess Puzzle 4.2.4.3.

_ _  ~~~~~~~

i~O~~~s A  ~1~~~~~~~ /~:7
i.~Y/;2 ~L

~~~i // / ~~
‘)-.,,‘~ ~~~~~~

/ ..
~~~ / /  .. ~~~~‘/,‘7’ ‘,~~

/
/ - .- ‘~~;‘ .-

~~~~~‘ ‘/“/
~~~~ ~~~~~~‘/~~~~ ~ ~

I / the ta piated piece were a kni g ht ,
glien 6lack had three knig hts in QX.

f igure 40

sssesVE ThreeNB qx OBUD BKRP BQI BOBi WQN1 WKR4;
170 Yt. ((BPAWNS ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~5Q~~uWQN1)))A ((Va~(qx ,Pos(qx ,BQ1))*NBv (B0AR0(qx,QBUD)AVa1ueors(QBUD ,BQ1)RNB))
A( (Va~(qx,Pos(qx ,BQ81))sNBv(B0ARD (qx ,QBUD)AVa~u eon ( Q8U0 ,BQBl)sNB))A(Val (qx ,
Pos( qx ,WQN1))sNBv (60AR0(qx ,Q6UO)AVa1ueon(QSUD ,llQN1)sN8)))))~(PROM0TEDPAWN (clX
,8KRP)A ((-.(BQ1sWKR4)A(~ (BQB1sWKR4 )A— (WQN1~WKR4)))~(”(PO$(QX ,WKR4)sBKRP)A(”(
Pos(qx ,WKR4)BBKN)A”I(Pos(qx ,WKR4).BQN))))))

We consult the simplification mechanism for several useful equalities and inequalities.

s s e s s s i r n p l 1 fy —BQ1.BQB1A~BQ1..I4Q~’llA-’8QB14JQN1AValueon (QBUD BQB1).NBA
s Vaiueon(QB1j 0 WQN1)~ NB;
171 ~(BQ1sBQB1)A(-I(BQ1sWQN1)A (— (BQ81.WQN1)A (Va1UeOfl(OBUD,8Q81)*NBAVI1ueOn(
Q8UD ,WQN 1)s NB)))

A little renaming. and we get a useful result from our tautology decider.

***aseubstr ON_ZB IN 1’1’;
172 Vt,((BPAIJNS tAPROMOTEOPAWN (qx ,t))DtSBKRP)D(((-.(8Q1*BQ81)A(’(BQl*WQN I)A”(
BQB1:WQN1)))A((Va~(qx,zb)=NBv (B0ARD (qx,QBUD)AVa1ueofl(QBUD,BQ1):NB))A((V8l(QX,pos(qx ,BQB1)) INBV(BOARD (qx ,QBUO )AVa lueon( QBUD ,BQBI)SNB ) )A(Va l(qx ,POs( QX ,
WQN1))i~p46v(BOARD(qx ,Q8U0)MIa1ueon (QBUD,WQN1)sN8))))),(PROM0TEDPAWN (qX ,BKRP)A((_ (8Q1sWKR4)A (_ (8QB1.WKR4)A_ (WQN1:WKR4))),(~ (Pos(qX,WKR4)sBKRP)A( .(POS(qX ,
WKR4).BKN)A— (Pos(qx ,WK R4 )~BQ N ) ) ) ) ) )  ( 1 70)

esese labe l PROM KNIGHT:
s*ssstauteq (Vat (q~c ,zb).NBAV t. ( (BPAL4NS tAPROt1OTEOPAW N(qx,t ) )~~t.BKRP))~
* (PROMOTEOPAWN (qx ,BKRPI C (-.8Q1.WKR4n-’B08l-WKR4 t~-l4QN1.WKR4)

~
* (_ Pos(qx ,WKR4 ) .BKRPA_Poa(qx ,WKR4)s BKNA’~Pos(qx ,W KR4).BQN))) QX~,.QBUD ,i,1’P;
173 (Va l ( qx ,zb).NBAVt.((BPAWNS tAPR0M0TEDPAWN(qx ,t)),t*BKRP))~ (PR 0M0TE 0PAWN (
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(Pos(qx ,WK R4)sBKN)A- ’(POs(qx ,WKR4 )~B Q N ) ) ) ) )  ( 1 9 70)

5.9. From the fact that the captured piece had either bishop or knight value (step 156), we

•
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could now conclude that black has promoted one of his pawns. However, we defer that deduction
for a few steps, until we can prove which black pawn it was that promoted. To do this, we need to
examine the black pawn structure of OBUD.

Section 4.2.5 The Black Pawns

6. Our attention turns towards identifying the black pawns on 08110. We will be (almost) able
to identify each of the pawn value pieces on that board.

6.!. We consider first the pawns in black ’s second row . These pawns have not moved, and are
obviously the pawns that started on those squares. Of course, we have a lemma for this situation. it
states that if a black pawn value is upon some square. and there was also a black pawn value upon
t hat square in P0, the initial position. then it is the same piece is on that square as was upon It in PB.
More concisely, certain black pawns have obviously not moved .

ss * aa VE UnmovedB lackPawnlhm qx ,QBUO, BORP,80R2;
174 (Pos( P0 ,BQR2)sBQRPA (Va 1ueon(QBt.l0,BQR2)sPBABOA RD(Qx ,Q8UD)) )~ (Pos(P0 ,BQR2 )

Pos( qx , BQR2 )APospcf ( ax, BQRP )aBQR2)
aeassVE UnmovedB lackPawnThm qx ,OBU0,BKP,BK2~175 (Pos(P0,Bk2)~BKPA (Va1ueon(QBU0 ,BK2).PBr~$0ARD(qx,Q8UD)))~(Pos(P0,BK2 )~ Pos
(qx ,8K2)APospcf(qx,BKP)’BK2)

ssasaVE UnmovedBlack PawnTh m qx ,OBUO , BKNP ,BKN2;
1 76 (Pos (PO ,BKN2)*BKNPA(Va~ueon (QBUD,BKN2 )~PBABOARD (qx ,Q8UD)))D(Pos(P0,BK N 2 )
:Pos(qx , BKN2 )APospcf(qx ,BKNP):BKN2 )

We consult the simplification mechanism to verify out asserted arrangement.
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* e $s s s i rn p l  I f~j POS(PB .BQR2) .BQRPAVaIUeOIi (QBUO, BQR2).PBAPOS(PB BK2I,..BKPA
* Va IUeOn (QBUO, BK2}.PBA POS PO,BKN2).BKNPAVa IUeOn (QBUO,BKN2)..PB.
177 POS(P0,BQR2 ):BQRPA( VIIIueOn( QBUD ,BQR2) :PBA ( Pos(P0,8K2)IBKPA (Valueon (QBUD ,BK2)KP8A(Pos(P0,BKN2)lBKNPnVa1ueon (Q8U0 ,BKN2 )~pg ) ) ) )

Hence, the black pawns on the second row squares are the BQRP , BKP and the BKNP.

te as e l abe l RpL.J2 BP~ssa ss t au teq  #2A1’fl’:# 2A~~:# 2 QX _QBUD,1’~~t~~178 (POS(P0,8QR2):PO$(qX ,BQR2)APOSPCf(qX gQRp):8QR2 )A((pOS(PO BK2).pOS(QX

(1 9)

6.2. The remaining deductions on the pawn structure are produced with the lemma
Wh/ch8/aclcPawn. This lemma employs the fact that , if a pawn is to move between two squares , the
I1AY PAL4N CAPTURES predicate must be satisfied between those squares. Each of the eight black
pawns is considered, resulting in a WFF which , when simplified, eliminates from consideration those
pawns that could not be on the requested square. There are only two black pawns which can reach
BQR3. We have shown that BORP is on BOR2 in qx . Hence, the pawn on BQR3 must be the BQNP.

easea VE t.JhichB l ackPa~n qx ,U8UO,BQR3~179 (BOARD(qX IQBUD)AVa1UeOn(QBUD .BQR3):P8),((POS(QX BQR3) BQRPA(pOSpCf (q~BQRP ):SQR3AMAY_PAWN_CAPTURES (BQR2 ,BQR3 ,BLACK)))V ((POS(QX ,BQR3):BQNPA(POSPCf(
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
POSPCf (qX .BQBP):BQR3AMAY.JAWN_CAPTURES(8QB2,8QR3,BLACK)))V((PO$(qX ,BQ~3)g~QpA (Pospcf (qx ,BQP):BQR3AMAY_ pAwN_cA pTuREs (BQ2,BQR3 ,BLAcK)))v((pos(qx ,BQR3)~BKp
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~BKBPA(PoSPC1(qX .BK 8P)$BQR3AMAV...PAWN_CAPTURES (BKB2,BQR 3,BLACK)))V ((p05(Q~,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ax . BQR3)ZBKRPA (POSPCf(QX .8KRP)~BQR3AMAY

_ PAWN _CAP TURES(BKR 2,BQR3 ,B L A C K ) ) ) ) ) ) )

s aeea s i r n p l i f y 1;
180 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~— BQNPA Pospcf(qx ,8QNP)~ 6QR 3 ) )

e e s e e s i m p t i f y -‘(BQR2-BQR3);
181 — (BQR2:BQR3)

s e s e e  l abe l ROL.J3R BP;
staastauteq Pos (qx ,80R3).BQNPAPOSpCf (qx ,BQNP).BQR3 QX_QBUO,R0W2_Bp,t’p;t;182 Pos(qx ,BQR3):BQNPA pospcf( Qx ,8QNp)gBQ~3 ( 1 9)

6.5. Of the remaining pawns , only the BQBP and SOP could reach 80B4 and B03. We have not
established which of these pawns is on which square, but we can show that, between them, they fill
these two locations.

asesaVE t4hichB l acicPai.jn qx ,QBUD ,BQB4;
183 (BO

~
RO(qx ,QBUQ)AVa~uoon (QBuD ,sQ94):pa) ,((pos(qx BQs4) :8QRpA( pospcf(qx

BQRP )*BQB4AMAY..PAWN_CAPTURES(BQR2 ,BQB4, BLACK)) )v( (Pos(gx , BQB4 ):BQNPA ( Pospcf(
QX .BQNP)18Q84/JIAY..PAWN _CAPTURES (BQN2 ,8Q84 ,BLACK)))v((pos(qx ,8084)$BQBpA (
POSPCf(QX ,BQ8P):BQB4AMAY_ PAW N...CAPTURES(BQB2 ,9Q84,BLACK)))V ((POS(qX ,BQB4):BQPA(POS PCf (QX .BQP)X BQB4AMAY _ PAWN...CAPT U R ES(B Q2 ,BQB4 ,BLAC K) ))V ( (POS (qX ,8Q84)*BKP
A (POSPCf (QX ,BKP)ZBQB4AMAV,..PAWN_CAPTURES(8K2,5Q84 ,BLACK)))tJ((pos(qx,8Q84)s
8KBPA (POSPCf(QX ,BKBP)*BQ84I~MAY...PAWN_CAPTUR E S( 8KB2 ,BQB4 ,B LA CK ) )) v ( (P o s ( qx ,

- -_ _ _ _ _ _ _ _ _ _ _
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BQB4) :BKNPA(Pospcf (qx ,BKNP)*B QB4AIIAY_ PAWN _CAPTURES(BKN2 ,BQB4 ,BLAC K)))v (P0S (
qx , BQB4 )‘BKRPA( Pospcf ( qx , BKRP )sBQB4AMAY_PAWN_CAPT URES ( BKR 2 • 8084 ,B L A C K ) ) ) ) ) ) )
)))

sssesVE ilhichB lackPawn qx ,QBUD,B03:
184 ( BOAR D(qx ,Q8U0)AVa1u eon(QBUD ,BQ3 )~ P8~~((Po s(qx ,BQ3)zBQRPA ( Pospcf (qx ,BQRP 

- -

)IBQ3AMAY...PA WN _ CAPTU RES(BQ R2 ,8Q3 ,BLAC K)) )v( (Po s ( ax ,BQ3):BQNPA ( Pospcf (qx ,BQNP
).BQ3AMAY_PAWN_CAPTURES (BQN2 ,8Q3.BLACK)))v((Pos(Qx ,BQ3).BQBPA (Pospcf(gx,BQBP
)=8Q3AMAY...PM1N..CAPTURES(BQB2,BQ~,BLA CK ) ) )v( (Pos( qx ,BQ3)’BQPA( Pospcf ( ~~ 8QP )g
BQ3AMAY....PAWN _CAPTURES (BQ2,BQ3,BLACK)))v((Pos(Qx ,BQ3 )~BKPA (Pospcf(~~ . ~

..flQ3
AMAY_PAWN_CAPTURES(8K2,BQ3 ,BLACK)))v ((POS(QX ,BQ3)$BKBPA(PO5PCf(Qx,Bi¼ L3I I~ I3Q3AMAV _PAWN_CAPTURES (BKB2 ,BQ3,BLACK)))v ((Pos(Qx ,BQ3):BKNPA (Pospcf(qx ,BKNP):BQ3A
MAY ...PAWN_CAPTURES (BKN2 ,BQ3,BLACK ) ) ) v ( P o s ( qx ,8Q3)*BKRPA(Pospcf(qx ,8KRP)~BQ3A
MAY _ PAWN _CA PTURE S( BKR2 ,BQ3 ,B LACK ) ) ) ) ) ) ) ) ) )

t s t * * s l f l l p l i f y t1~:185 BOARO (qx ,QBUD),((Pos(qx ,8Q64)ZBQRPAP05Pcf(qx ,BQRP):BQB4)v((Pos(qx ,BQB4)$
BQNPAPOSpcf(gx ,BQNP)sBQB4)v((Pos(qx ,BQB4)BBQBPAPospcf(qx,BQBP)*BQB4)v((Pos(
qx ,BQB4)aBQPAPospcf(Qx ,8QP)~8QB4)v(Pos(qx ,BQB4)*BKPAPoSpcf (QX ,BKP)xBQB4)))))

*s*sssirn p li fy ~1~;186 B0AR0(qx,QBUD)~ ((Pos (qx ,BQ3):BQBPAPospcf(qx ,BQBP):BQ3)v((POs(qx,BQ3):BQP
APospcr (qx ,BQP )~BQ3)v(Pos ( qx ,BQ3):BKPnPospcf (qx ,8KP):BQ3)))

5*5558 imp Li fy —BQR2.BQB4A—80R3.BQB4A-’8K2.BQB4A-’B03.BK2A-’BQB4-8Q3;
187 _ (BQR2=BQB4)A (_ (BQR3=BQB4 )A(.~(BK2:8QB4 )A(~ (BQ3~BK2)A-.(BQB4zBQ3))))

ss ass l abe l 08 BP;
eseeetauteq (Pos(qx ,BQB4)-BQBPAPospcf(qx .BQBP)-BQB4A
s Pos(qx ,BQ3).BQPA Pos pcf (qx ,BQP).8Q3)v
* (Pos (qx ,B084)-BOPAPospc f (qx ,BOP}.BQB4A
* Pos(qx ,B03).BQBPAPospc f (qx ,BOBP).B03)
* OX _QBUD,ROW2_BP,ROW3R _BP, ‘T1~ : 1’;
188 (Po s(qx ,8Q64)sSQBPA(Pos pcf (qx ,BQBP )*BQB4A (Pos(Qx ,B03)S BQPA P0Spcf (QX ,BQP)
:BQ3)) )v(Pos (c~x ,BQ84).BQPA ( Pospcf(qx ,BQP)sBQB4A(Pos(qx ,BQ3)zBQBPAPospcf(qx ,
BQBP )~BQ3) ) )  (1 9)

6.4. This imp lies that the black pawn on BOBS must be the BKBP.

as aseV E W hichB t ackPawn qx ,QBUD, 140B4 ;
189 (BOARD (Qx ,QBUD)AVa1ueon(QBUD ,WQB4).PB)~ ((Pos ( qX ,WQ84)cBQRPA(PoSpCf(qX ,
BQRP)=WQB4AMAY_ PAWN _CAPTURES(BQR2,WQB4 , BLACK)) )v( (Pos(cix,WQB4 )=BQNPA ( Pospcf(
ax , BQNP)’WQB4AMAY.. PAWN...CAPTURES(BQN2 ,WQB4 ,BLACK)))v((Pos(qx ,WQB4)tBQBPA(
Pospcf(qx,BQBP)RWQB4AP1AY_PAWN...CAPTURES(8QB2,WQ84 ,B L AC K ) ))v((Pos( qx .WQ84)~BQP
A( Pospcf(qx,BQP)SWQB4,%PIAY.. PAWN...CAPTURES(BQ2,WQB4 ,BLACK)) )v( (Pos(qx,WQB4 )*BKP
,(Pospcf (cix , BKP)CWQB4APIAY_PAWN _CAPTURES (BK2,WQB4 ,8LAC K )))v((Po s ( qx ,WQB4).
BKBPA (Pospcf(qx , BKBP)1WQB4AMAY_ PAWN _CAPTURES (BKB2 ,11Q84 ,B L AC K ))) v((Pos( qx .
WQB4):BKNPA(Pospcf(qx , BKNP) ~ t IQB4nP1AY_PAWN_CAPTURES (BKN2,WQB4 ,8LACK)))v(POS(
Qx .WQB4)SBKRPA(Pospcf(qx ,BKRP)ZWQB4AMAY_PAWN_CAPTURES (BKR2 ,WQB4 ,B L A C K ) ) ) ) ) ) )
) ) )  H

sss*ssimplsf~ 1;
190 8OARD(qx ,QBUD )~ ((P os ( qx ,WQB4)sBQRPAPospCf(qX.BQRP)~WQB4)v((POS(aX ,WQB4)’
BQNPAP0SPCf(qx ,BQNP).WQ84)v((Pos(qx ,WQB4)IBQBPAP0SPCr(QX.BQBP)5WQ64)V((POS(
ax .WQB4) IBQPA P0SPcf(qx ,BQP) .WQB4)v((Pos(c l x ,WQ84 ) BKPAP0SPCf(4X .BKP)UWQB4 )V(
Pos(gx ,WQB4) IBKBPAPospCf(qx ,BKBP) ~WQB4 ) ) ))))
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* *1*5 s i m p L i f y —BQR2.WQB4A—BQR34JOB4A—8K2.WQB4n-’803.WOB4A-.8Q84-WOB4;
191 ~(BQR2zW Q84 )A(- ..(BQR3sW Q84)A(~ (8K 2uWQ84)A( ’~(8Q3uWQB4)a- (BQ84 BW Q84))))

*ss*s l abe l BS BP:
a *se stauteq Pos (qx ,L.JQB4).BKBPAP0Spcf(qx,BKBP)—W084
5 QX ..OBUO,ROL.J2_BP,R0143R_BP,QB_BP, 1h1~: P;
192 Pos(qx,WQB4):BKBPAPospcf (qx,BKBP)~WQB4 (1 9)

Section 4.2.5.1 Which Pawn Promoted

6.5. Which pawn was the promoting pawn? A pawn that has promoted, no longer has pawn
value on a board of that position (theorem BIacAPawnl/alueSquaros) We consider each black pawn
in turn as a possible candidate for having promoted. —

The BORP is, unpromoted, on 80R2.

es ee s label WHEREPROM;
sees eVE BlackPawnVai ueSquares qx ,QBUO,BORP,BOR2;
193 -.(PROMOTEDPAWN(Qx ,BQRP)A (BOARD(qx ,QBUD)A(Valueon(QBUO .BQR2)IPBAP0s(qX ,
BQR2):BQRP)))

Similarly the BONP is on BOR3.

sssssVE BlackPawnValueSquares qx ,QBUD,BQNP,BQR3;
194 ~( PROMOTE0PAW N(qx ,BQNP)A(B0AR0(qx ,QBUD)A(Va1ueofl (QBU0,BQR3)IP8APos(qK ,
BQR3) :BQNP) ) )

The BOBP and BOP split the squares 8084 and 803 between them.

*sss sVE BlackPawr ,V alueSquares qx ,OBUD,BOBP,B084 ;
195 -,(PROMOTEDPAWN (qx,BQ8P)A (BOARD(qx,QBUD)A (Valueofl(QBUD,BQB4)’PBAPOS(qX .
8Q84)eBQBP)))

see ssVE BlackPaw nV a lueSquares qx ,OBUO,BQBP,803;
196 -~( PROMOT EDPAWN(g x ,8Q8P)A (B0AR0(qx .QBU0 )A(V a~UeOfl(QBU0,BQ3)’PBAPOS(QX ,BQ3
):BQBP)))

*as s sV E BlackPawnVa lueSquares qx ,QBUO,BOP ,8084 ;
197 ~ (PROMOTEDPAWN (qx ,BQP)A(BOARD(qx ,QBUD)A(Va~UOon( QBUD,BQ84)aP8APOS(qX ,
BQB4) iBQP)))

saseeVE Blace~PawnVaiueSquares qx,QBUO,BQP,B03;
198 ~(PR 0MOTE0PAWN (qx,BQP)A(BOARD(QX .QBUO)A(VB ’lUtOfl(Q8U0.BQ3)~PBF~PO5(QX,BQ3)
~BQP ) ) )

The BKP occupies its original square, unpromoted.

sssesV E BlackPaunValueSquaree qx ,QBUO ,BKP ,BK2;
199 ~ ( PROM OTE 0PAW N(q x ,8KP)A( 80AR0( QX ,Q8UD)A(Va~USOfl(Q8UD ,8K2)’PBi~PO$(GX ,BK2 )
a BK P)) )

14084 is occupied by a pawn valued 8KB.

aeessVE BlackPawnValueSquaree qx ,QBUD,BKBP,WOB4s
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200 — (PROMOTEDPAWN(qx ,BKBP)A (B0AR0(qx,QBUD)A (Va~ueon( Q8UD ,WQ84).PBAPos(qx,
WQB4).BKBP)))

And, similarly, the BKNP pawn sits on its original squares.

*aaes VE BlackPa u riVa l ueSquare s qx ,QBUO,BKNP ,BKN2;
201 —(  PROMOTEDPA W N(Qx ,BKNP)A(BOARD(qx ,QBUD)A(V ilueon(QBUD ,BKN2).PBAP0S(qx ,
BKN2)sBKNP)))

We confirm our expectations about the value of the occupants of these squares.

eeess simp l if y Va lueo n (QBUO,BQR2).PBA Va l ueori(OBUO ,BQR3).PBn
a Va lueon(OBUD, BOB4 ) .PBA Va lueo n(Q BUD,803).PBA Va lueori(QBUO,BOB4).PBA
* Va l ueon(QBUO ,B03)-PBA Va lueon(OBUO,BK 2)-PBA Va lueon(OBUD,IJQB4)-PBA
a Va I ueon (OBUO, BKN2) .PB Pos (P0 BQR2) -BQRPePos (P0 BK2) -BKPA
e Pos(P0 BKN2).’BKNP;
202 Va l ueon(Q BUD ,BQR2 )ZPBA ( Va1ueon (QBUD ,BQR3)zPBA (Va~ueo n (QBUD ,BQB4 )~PBA (Va 1 ue on ( Q8UD ,8Q3).PBA (Va~u a on( QBUD ,BQB4)sPBA(Va~ueon(QBU0,BQ3).P8A(Va~ueon(
QBU O ,BK2)ZPBA (Valueon(QBUD ,WQB4)=PBA (Valueon(QBUD ,BKN2).PBA (Pos(P0,BQR2)s
BQRPA(Pos(P0,BK2)aBKPAP0s(P0,BKN2)IBKNP))))))))))

Now, there are eight black pawns.

e a s s e V E BlackPa &.insAre _ t ;
203 (t=BKPv(t:BQPv (t:BKNPv(t:BKBPv(t:BKRPv(t BQBPv(t~BQNPvt:BQRP)))))))sBPAWNS t

Hence, if one of them has promoted, it must be the BKRP. We generalize this WFF to all possible
black promotions in qx .

ce ase tauteq (BPAL.JNS tr~PROt1OT EDPAWN (qx t ) )~ t-BKRP
5I4HEREPROM : ~~ , QX _QBUO, R0142_BP, R0143R_BP, QB_BP, B5_BP;
204 (BPAWNS tAPROMOTEDPAWN(Qx ,t))~t’BKRP (1 9)

stats l abe l THE ONLY ONE;
s se e s V ii ’t ;
205 Vt . ( ( BPAWNS tA PROMOTEOPAWN (qx ,t)),tIBKRP) (1 9)

So at zb was a promoted pawn, it must have been the BKRP.

assssVE THE_ONLY_ONE zb~206 (BPAWNS zbA PROMOTEDPA W N(gx ,zb))~zb*BKRP (1 9)

But, as we pointed out before, we have established sufficient conditions to prove that a black pawn
has promoted. Since a black pawn has promoted, and the only black pawn that could have
promoted is the BKRP (line 205), then BKRP has promoted.

sessslabe l PROII_BKRP;
*set stauteq PROMOTEOPAWN (qx BKRP)
s NB_OR_BB, IF_B ISH, 1, PROM_KNIGHT , THE_ONLY_ONE;
207 PROMOTEOPAWN (qx ,BKRP ) ( 1 9)
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Section 4.2.6 Did a Black Piece Fall?

7. Did a black piece fall from the board? We consider each black piece, in turn, to show that
it could not have been the fallen piece. But first, we pause to point out that, as the square WKR4 was
not involved in the last move, Its occupant was identical In both px and qx. Axiomatically, a square
not source, destination, or special square of a special move, retains the same contents f rom position to
position.

ss* saYE IICONSEQO qx px 14KR4 ;
208 ( SUCCES SOR( qx ,px )n(-~(WKR4 :Fron Move px)A(-’.(WKR4:To Move px)A (-’(CASTLEMove pxA(W KR4 :A ~5ofrom Move pxvWKR4:Alsoto Move px))A-.(ENPASSAPIT Move px~WKR4 :Takenon Move px) ) ) ) bPos(qx ,WKR4) :Pos(px .WKR4 )

We know the source (From square) and destination (To square) of the Move px. Neither of them is
14KR4. We also know that Move px was neither an en paiscnt capture, nor a castle.

ss s sas im plify -4.JKR4=8O1 A - ’  UKR4 - 8082:
209 — (WKR4:BQ1),ir.(WKR4:BQB2)

ssee eVE MconseqmX qx px;
210 SUCCESSOR ( qx ,px )~ ((CASTL E Move px.CASTLING(qx ,px ) )A((ENPASSANT Move px.
EN _PASSANT( qx ,px ))n(ORDINARY Move px.SIMPLELECALMOVE(qx.px))))

Hence, the fallen piece was also on 14KR4 in qx.

tease l abe l SAllE ON UKR4;
casts tauteg Post qx 14KR4)-Pos(px 14KR(e)
* 111’: 11.PXSUC, FROMPX . TOPX ,NOTPXCASTLE ,NOTPXEP;
211 Pos(qx ,WKR4):Pos(px,WKR4 ) (1 9)

We return to consideration of the each of the black pieces as a candidate fallen piece. We
established tha t the promoted pawn , BKRP, was on one of the squares 801, BQB2 or 140N2 In qx.
Hence, the fallen piece was not the BKRP.

*ssss  labe l ON_BLACK SOS;
aee se5 imp l ify -‘BQ1-WKR4A -‘BOB1-WKR4A ‘BQR24JKR4A ‘BQN2 WKR4A
* —BK24JKR4A -.BKN2-I4KR4A -‘80R3-WKR4A -‘8Q3~WKR4A -‘80B4-IJKR4A
* -4JQB44JKR4A -44QN1-WKR4;
212 _ (BQ1~WKR4 )A (_ (BQB1:WKR4 )A(~ (BQR2:WKR4)A (~ (8QN2*WKR4)A (’ (8K2NWKR4 )A(1(8KN2rW KR4 )A(~ ( BQR3.WKR4 )A(~ (BQ3~W KR4) A ( ’(BQ84*W KR4 )A( ’(WQ64 WKR4 )A’(W QN1
W K R 4 ) ) ) ) ) ) ) ) ) )

sseasYE Unique qx ,BQ1,WKR4 ,BKRP;
213 Pos(qx ,BQ1)=BKRP,(Pos(qx ,WKR4)zBKRP.BQ1~WKR4 )

e*seetauteq -.(Pos(qx,UKR4).BKRP) ON_ZB,N8_OR_BB,
e IF_BISH,PROM_KN I GHT , THE _ONLY_ONE;206,ON_BIACK_SOS;213;
214 — (Pos(qx ,WKR4)sBKRP) (1 9)

We know squares for each of the seven unpromoted black pawns. None of these squares Is WKR4. V

seeeeVE Un i que qx ,BOR2.I’JKR4,BQRP;
215 Pos(qx .BQR2).BQRP,(Pos(qx,WKR4)uBQRPuBQR2IWKR4)
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s as se V E Un i que qx ,BK2,WKR4 ,BKP;
216 Pos(qx ,BK2).BKP~(Pos(qx ,WK R4)sBKP.8K2.W KR4 )

sesseVE Unique qx ,BKN2, WKR4 ,BKNP;
217 Pos(qx .BKN2)~BKNP,(Pos(qx ,WKR4 )*BKNP.BKN2sW KR4 )

sess eVE Unique qx ,BQR3, WK R4 ,BQNP;
218 Pos(qx ,8QR3)sBQNP~ (Pos( qx ,WKR4)sBQNP.BQR3xWKR4)

sssss Y E Unique qx ,BQB4 ,WKR4 ,BQBP;
219 Pos(qx ,BQB4)z8Q8P~ ( Pos( qx ,WKR4)*BQBP.8QB4zWKR4)

s*sttVE Un i que qx ,803,14KR4,BOBP ;
220 Pos(qx ,BQ3)*BQ8P~ (Pos( qx ,WKR4)sBQ8P.BQ3:WKR4)

sssssVE Uni que qx ,80B4,WKR4 ,BQP;
221 Pos(qx ,BQB4)zBQP~ (Po s( qx ,WKR4):BQPuBQB4sWKR4)

sssssVE Unique qx ,B03, WKA4 ,BOP;
222 Pos(qx ,BQ3)*BQP~(Pos(qx ,WKR4)sBQP.8Q3zWKR4)

sssss Y E Unique qx ,WQB4 ,14KR4 ,BKBP;
223 Pos(qx,WQB4)=BKBP~(Pos(qx ,WKR4)IBK8P.W0B4*WKR4)

7.1. This accounts for all of the black pawns. Hence, the fallen piece was not a black pawn.

sseatVE BlackPawnsAre _ Pos(qx WKR4):
224 (Pos(qx ,WKR 4) =BKPv(Pos (qx ,WKR4) ~BQPv C POs(qx ,WKR4 )$BKNPv (POS(qX .W KR4)*
BKBPv(Po s( qx ,WKR4):BKRPv(Pos(qx ,W KR4)~BQBPv ( Pos( qx .WKR4)4QNPVPOS(QX.WKR4 )
BQRP)))))))EBPAWNS Pos(qx ,WK R4) - 

-

sates l abe l NOT BP;
ses estauteq -4:#2 212:1I,ROW2 ....BP ,ROU3R_BP,QB_BP ,B5_BP,ROU2_BP_1;
225 -‘PAWNS Pos(qx ,WKR4 ) (1 9)

7.2. If the fallen piece were a black knight, we would suffer from a surfeit of black knights.
We use the same lemma as before, ThreeNB in this demonstration.

steesYE ThreeNB qx ,QBUD,BKRP,BOB1,WON1,WKR4 ,BQ1;
226 Vt.((BPAWNS tAPROMOTEDPAWN (qx ,t))DtIBKRP),(((-’(BQB1*WQN1)A(’(BQB1~WKR4)A

~(WQN1.WKR4)))A((Va1( qx.Pos( qx ,BQB1))~NBv (BOARD(qx,Q8UD)AVa1UeOfl (QBUD,BQ81)
N8))A ((VaI (qx ,Pos( qx ,WQN 1) )~NBv ( BOARD ( qx ,QBUD)AVa ’lUeOfl(QBUD,WQN1)tNB))A(Va1(
qx ,Pos(qx ,WKR4)) zNBv ( BOARD(qx ,QBUD )AVa1u eon(QBUD,WKR 4) z NB)) )))~ ( PROl1OTEDPAWN
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Pos(qx,BQ1).BKN)A-’(Pos(qx,BQl).BQN))))))

If’ a black knight fell, it would have had NB value (knights do not promote).

s*eetVE Off icerVa l uelhmX qx,BKN ,Pos(qx,WKR4);
227 (-‘PAWNS BKNABKNsPos(qx .WK R4)) Va 1(P0 ,BKN).Va~(qX ,PO5(ClX , WK R4))

ses*sVE OfficerVa l uelhmX qx ,BQN,Poe(qx,WKR4);
228 (-‘PAWNS BQN~BQN.Pos(qx ,W KR4))~Va 1(P 0 ,BQN)IV*~(QX .POS(qX ,WK R4))

assasel mpl I 
~ 

—PAWNS BONA (Val (PB,BQN) -NBA (-’PAWNS BKNAVa I (PØ,BKN) — NB)) ;

k~ — — —------._ - - — —- .- - - - . ... .- - . . - . - * .  -. ~‘- - ,. - —,,.— —“ -—. —.-- - .  
. .
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229 -‘PAWNS BQNA (Va1 (P0 ,BQ N) SNBA (-’PAWNS BKNi~Va 1(P0 ,BKN )sNB ))

Hence , the fallen piece was not a black knight.

ses as i ab el NOT _NB;
seats tauteq — (Pos(qx,UKR4)-BKN)A— (Pos(qx ,WKR4)-BQN)
a ON_ZB, NB_OR_BB. OX_OBUD, IF_BISH,PROtI_KNIGHT-2, PROtI_KNIGHT ,
* THE_ONLY _ONE , THE_ONLY _ONE+1 ,ON_BLACK_SQS,ON_BLACK _SOS+1, 1’tt1~i ti230 -(Pos(qx ,WKR4)sBKN)A—(Pos (qx ,WKR4)~8QN) (1 ~)

7.3. The black on white bishop could not have fallen from the black square WKR4.

aas aa Y E Bishops lsOnSam eCo lo r’ qx BQB1 14KR4 BOB;
231 (Po s(PO ,BQ81)z8QBAPos(qx ,WKR4)sBQB)~(WH1TESQUARES BQBI.WHITESQUARES WKR4

‘ s e a s  l abe l NOT_BOB;
assee simp l i f y ?;
232 -‘(Pos(qx ,WK R4 )~ BQ8 )

7.4. The black on black bishop, as we have already asserted, did not escape from his starting
square.

ssss sY E Blocked _BKB qx OBUD 14KR4 :
233 (BOARD (qx ,QBUD)A (Valueon (QBUD ,BK2)SPBA (VahIeOn(Q8U0.BKN2)SPBAPOS (QX,WKR4
).BKB ) ) )~ W KR4.8KB1

ss st s la be l NOT .JKB;
s s ss e  s i m p l i f y 1;
234 ~ ( BOARD( qx ,QBU0)APos(qx ,WKR4):BKB)

7.5. The black king is on BQN2, not W KR4.

ssassVE Unique px BON2 I’JKR4 BK;
235 Pos(px ,BQN2).BK~( Pos(px ,WKR4) sBK.BQN2sW KR4 )

cease  labe l NOT BK;
sasss  tauteq -.Poe(qx I.JKR4).BK 1’,212,5,1,211 ;
236 -‘(Pos(qx ,WKR4)sBK) (1 9)

7.6. If a black rook or black queen value were on the square WKR4 In px then white would be
in check in px. Note the employment of a single simplification to observe this check on the
constructed board.

s a t e s  l abe l SQ OR BR;
s s e e s s i m p l i f u WHITEINCHECK -( ?lakeboard(GIV EN WKR4 QB))A
s I4HITEINCHECK (Makeboard (GIVEN WKR4 RB)) ;
237 WHITEINCHECK Makeboard (GIVEN ,WKR 4 ,Q8)AWHITEINCHECK Makiboard (GIVEN,WKR4 ,
RB)

esseeVE SUB_BOAROS1 p~ GIVEN W KR4 Pos(px WKR4) 08;
238 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~BOARD(px ,Makaboard(G IVEN ,WKR4 ,QB) ) 

~~~~~~
.. .. 

~~~~~~~~~~~~~~~~~~~~ 
. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. ____
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sesssV E SUB_BOARDS1 px GIVEN W KR4 Po.(px W KR4) RB)
239 (Va l ( px ,Pos( px ,WKR4 ) )~RBA (Pos (px ,WKR4).Pos(px ,WKR4)ABOARD(px ,G IVEN ) ) )~BOARD(px ,Mak.board(G IVEN ,WKR4 ,RB))

And If white were in check, it would be white’s turn in px.

sssssVE Ai ternate i4hite px 1’1:#2~2;240 ( BOARD( px ,Ma keboer d (GIVEN ,WK R4 ,QB ))AWHITEINCHECK M akeboard (GIVEN ,WKR4 ,Q8
))~ ( PO SITI0N I NC H EC K ( px ,WHITE )AWHITETURN px)

ss * s sV E A l te rna teUhi te  px 1’D:#2#2;
241 (BOARD(px ,Make boar d (GIVEN ,WKR4 ,RB))AWHITEINCHECK Makeboard(GIVEN ,WKR4 ,RB
))~ (POSITIONINCHECK(pX ,WHITE)AWHITETIJRN px)

If the fallen piece would be rook or queen valued if a rook or queen had fallen.

as t ssV E Of f  IcerVa l uelhmX px 80 Pos(px IJKR4);
242 (—PAWNS BQABQ~Pos( px ,WKR4)),Va~(P0,8Q)RVaI (px ,Pos( px ,WK R 4))

sasea V E O f f  icerValuelhaX px BOR Pos(px W KR4 ) ;
243 (-‘PAWNS BQRABQR=Pos (px ,WKR4))~Va1 (P0,8QR):Val(px ,Pos( px ,WK R4 ))

saseeVE Off icerValuethmX px BKR Pos(px WKR4);
244 (— PAWNS BKRi’~BKR.Pos(px ,W K R 4 ) ) ~Va1(P0 ,BKR)’Va1(px ,Pos(px ,W K R4) )

5ast t  &i mp I i  f y -.PAI.JNS BOA— PAWNS BQRA-’PAWNS BKRA
* V al ( P B BQ) .O BAVa I( P0 BQR).RBAVa I (P0 BKR)-RB;
245 —PAWNS BQA (-’PAWNS BQRA(—PAWNS BKRA (Val (P0,BQ)1QBA(Val (P0,BQR)ZRBAVC1 (P0,
BK R )~R8) ) ) )

But we have already determined (back in steps I, 2 and 3), that black A s In check In px, and its his
turn to move. If white were also in check , we would have a contradiction. Hence, the fallen piece
could not have been a black rook or queen.

ssststauteq —Pos (qx WKR4).BQA-.Pos(qx WKR4)-BORA—Pos(qx WKR4)-BKR
* BO_OR _BR: j I, SAME_ON _WKR4 , CALL _PX , B INCH ECK , BLACK_GOES;
246 ~(Pos (qx ,WKR4 )~BQ)A(~ (Pos( qx ,WKR4) ~BQR)A- ’(Pos(qx ,W KR4) s BKR ) ) (1 9)

S. We have considered each of the black pieces. None of them could have fallen from the
board. Hence, the fal len piece was not a BLACKPIECE.

aess eV E Blackp ieceArePaw nsOr _ Pos(qx WKR4 ) :
247 BLACKPIECE Pos(qx ,WKR4) .(BPAWNS Pos(qx ,WKR4 )v(Pos(qx ,WX R4)aBKv(Pos (qx ,
W KR4) s BQv(Pos (qx ,WKR4 )a BKNv(Po s( qx ,WKR4 ).BKBv ( Pos(qx ,WK R4).BKRv (Pos(qx ,WKR4 )
•BQBv(Pos(qx ,WKR4).BQNvP0s(qx ,WKR4)sBQR))))))))

tsest l abe l NOT B;
*ese eta uteq — ‘Pi#1 1’1~i1’,QX_QBUO, NOT _BP ,NOT_BK ,NOT_NB ,NOT_BQB,NOT _BKB~248 -‘BLACKPIECE Pos(qx ,WKR4 ) (1 9)

But all chesapieces are either black or white. We know (from our original assumption) that some
chesaplece did fall. Hence, It must have been a white piece.

sesseVE BorWjlece _ Poe(qx ,WK R4);
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249 CHESSPIECES Pos(qx ,Wi~R 4 ) ~ — (B LAC KP 1EC E Pos(qx ,WK R4).WH ITEPIECE Pos(qx,
W~R 4 ) )

Let us call that piece yyw.

ss s s sj l  5AME _ON _~~R4 Pos (pk .~4~R.. )
~-~yw;

250 W HITEP IECE Pos (qx ,W KR4 )~3yyw.Pos(qx ,WK R4) .yyw

s **a s t~iut e~q 3yyu, P (q~ ,L4KRw ) .~~~ CAL L_PX ,SA!lE_ON_WKR4 ,NOT_Bif~2~ 1 3~yw .Pos (qx ,WK R4).yyw (1 9)

e a s e s  labe l  CA~1 \“i~4 ;
s s s s s  3E l~252 Pos( qx ,WKR4)*yyw (252 )

Section 4.2.7 The Fallen Piece Wa sn ’t a White Pawn

9- By a process similar to that employed (or the blac k pawns. we can identity the locations of
eac h of the white pawns.

There are four white pawns on ~ch:;e’s second row.

s s s s s VE Unniove hitePJi~n1hn~ ~~,~ t~L-J , .~~ P.WQR 2;
253 ( Pos( PO ,W Q R2 )sW Q RPA(Va ~ueo n(Q BL D ,W QR2)sPWA B0ARD (qx ,Q8U0)))~ (PO s(P0 ,WQR2 )
.Pos(qx ,W Q R2) A Posp cf( qx . W Q RP)eW QR 2 )

ss sssV E UnmovedWhi tePa~ n~ hm Q L l . ~Q8P,WQ8 ;
254 (Pos(P0 ,WQB2):WQBPA(V uoon (QBUD,WQB2).PW~B0ARD ( qx ,QBUD))b (PO1(P0,WQB2 )
ePos(qx,WQB2)APospcf(qx ,WQBP)eWQB2)

* a s * aVE Unn~ove~ W h tePawnThm dpi. C~U 1 . I4I~.BP. W KB2~255 (Pos(P0,Wl~B2):JkBPA(Va1ueon (Q8U0 ,W~.82).PW~s8OARD(QX,QBUD))b (PO5(P0,WK B2)
.Pos(qx ,WKS2)APospcf(qx ,WKBP)’Wi~B2)

ssss sVE Unmovedi4hi tePaunTh~ qx ,QE~.~ .WKRP ,WK R2;
256 (Pos(P0 ,WKR2):WKRPA(Va1ueon (Q81JD,W~R2)aPWAB0AR0(qx ,Q8U0)))~ (PO5(PO,W kR2)
aPOs(qx ,W~R2)APospCf (qx,WKRP)~Wi.R2)

sa sas simp l i f y tPostPO,WO~~).WQRPt~Valueon (QBLi3 ,UQR2).PW)A
* (ro po,u :I.WQBP\Valueon uT~EkID,WQB2).PW)Ae t PoetP ~ ,W KB2 )

~ WKBPAV.I l ueontQ BUO, WKB~) - PW ) A
a tPOBIPB,WKR2)-WKRPAVaIUeOn (QBUO ,WKR2).PW);
257 (Po s(P0 ,WQR2)eWQRPAVa1ueon (QBU0,WQR2)sPW)~((POs(P0 ,WQBZ)1WQBPAVahiCOfl(
QBUD ,WQB2)VPW)A((Pos(P0,WK82)eWKBPAVshieon(QBUD,WKB2).PW)A (Po1(PO,WKR2)•WKRP
AVa lueon (Q8UO ,WKR2)sPW)))

t e a s s l abe l 
~_Q~~ Z.~~4~~~

;

asses tauteq  tPc i s tq~ W~R~
) -WQR P~~pc f ( q~ L.JQRP ) —WQ R2)A

* t~~~~~lq~ ~~~~~~~~~~~~~~~~~ Wt~BP
)-WQB )A

a (Poetcpi WKB~
) -WKB PAPosp ct (cpi WkBP)-WKS.)n

a iPoe (cpi WKR2).WKRPAPos(,cf(q~ L4KRP
)~.WKR2) tti1~,0X_Q8UD;258 (Pos(cpc ,W Q R2) IWQ RPA PoS pcf (qx ,W Q RP) CW QR 2)A ((POs( QX ,W Q82)aW Q8PAPO$PCf( QX .

WQBP)CWQBZ)A((PoS(qX ,Wk82)BWKBPAPOSPCV(QX ,WKBP)SWKBZ)A(PO$(qX,WKR2)*WKRPA
Pospc f (Qx ,WKR P)uW KR2))~ (1 9)

- —- ._
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The white pawns on i4~~3 and ~~~ aic the; do l e the WQNP and W~Nr, tespectively

a a t s e VE L4hichWhl teP~i~n cpi Q1~1 fl ~~N~;
259 ( BOAR O(qx ,QUUD )AVa luoo n(Q BUD , WQN3 ) ’ PW) ( (Pos( q~ ,W QN 3) eW Q RPA ( Pos pcf (qx ,
W Q Rp) .W QN3AMAy _ PAWN CAP tURES( WQ l~2 ,WQN3 ,W N111) ) )v( (Po5(qx ,W QN 3) •W QN Pn(Po~’PCf (
qx ,W QNP) IW QN3A MAY _ PAWN _ CAP 1U RES (W QN2 , W QN3 ,W H IT~ ) ) ) v ( ( P O s (Q)~,W Q N3 ) SW Q BPA(
Pospcf (qx ,W Qfl P) 1QN3AMA~~PAWN CA PT URF S (W Q B2 ,WQN3 ,W H I T t ) ) ) v ( ( P o S ( q X ,W QN 3 )tW QP
A ( poS pCf( Qx ,W Q P)R W QN3AMAY _ PAWN _ CAP It IR[S (W Q2, W QN3 ,W H I l i ) ) ) v ( ( PO S ( t T h,W QN3 ) ’W t” P
A (Pos p cf ( qx ,WK P) .W QN3A MAY .PAWN CAP T U RES (W k 2 ,WQN3 ,W H I T E ) ) ) V ( ( P O 5 ( Q X ,W QN 3)t
WK8 PA (P os pcf (q~ ,W kBP ) RWQ N3AMA\ PAW N~CAP TURFS( W kB ~ ,WQN3 ,W H 1 1 { ) ) ) v ( ( P o % ( q ~ ,
W QN3)e~~NPA( Po5pcf(q x ,W~N P) sW QN3AMA PAWN CA P1URl~S (W I~N ,WQ N3 ,W H11L )) )v ( l’ os(
qx ,WQN3).W ~RPA ,Pos pcf (qx ,W kR P) .W Q N3AM AY _ PAWN _ CAP TURE S (WkR2 ,WQN3 ,W I4 I1 [ 1) ) ) ) ) )
)))

a s e e s V E Wh chL.ih t rra~n q’~ ~1R ~
~~O (BOARO (qx ,QBUD)AVa1uoon(QBUD ,Vi~N3)’PW)~ t (Pos(q~ ,Wi~.N3)1WQRPA(Po~~cfl,q\ .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Qx ,W Q NP)eW KN3AM AY _ PAW N_ CAPTURL S (W QN2 , Wl~N 3 ,WHI1L ) ) ) v ( (Pos (QX ,WP..N3)lW QUPA(
pospcr (Qx ,wQ Bp)vw KN3A MAy~pAw N cA pT uRr s (w Q R2 ,wk N3 ,wI1I1E)) ) v ( (Pos(qx .w~N~ )sw Qr
A( pos pc f (qx ,W Q p)cW kN 3AMAY _ PA~dN .CAP 1LlR ES(W Q2 ,W~N3 ,WH IT 1 ) ) ) v ( (Po5 ( QX ,Wt1.N3 )e W ~ P
A (P Os pCf (c p i,W K P) sW k N3A MAY _ PAWN _ CAP 1L iRE S (Wk2 ,W kN3 ,W H I T [ ) ) ) v ( ( P ~ s (QX ,WKN3 )e
WK BPA( Pos pc f( qx ,WkB P).WK N3A MAY _ PAWN ..CA PT UR [S(W ~.B? ,WkN 3 ,Wl i11 [ ) ) )V ( ( POS ( QX .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~qX ,WKN3)sWKRPA (PO5pCf (QX,WKRP)IW~N3AMAY.

_ PAWN _CAPTURES (WKR2 .WP~N3 ,WH1TE)))))))

sss e s s i r ~p l  f y f~~i26 1 B0ARO(qx ,QBUO)~ ((Po5(qx ,WQN3~s~QRPAPospc !(qx ,W Q RP)~WQN3)v t (POs(g\ ,WQN3)h1
WQNPA P0Spcf( qx ,W QNP ) .W Q N3)v (Pos (qx ,W QN3) IWQBP A POS Pcf (qx ,WQ BP) IW QN 3)))

as asssim p l~ fy “;
262 B OA R D ( qx ,QBUDb ((Pos (qx ,WKN3)uWkBPnPosPcf (QX,WkBP)IWkN3)V((PO3 (QX ,WKN3)1
WKNPAPospcf(qx ,WKNP).WkN3)v(Pos(qx ,WkN3)eWl~RPAPO5PCf (QX,WKRP)1WkN3)))

cease s mpl I fy ~W0 .l4ON3 B2-14ON3~ 44KR N3 44~iL’.L4kN3i
263 ~,(W QR2 .W QN3)A ( . W Q 82 eWQ N 3)A (_ (Wk R2 1Wk N3 )A _ (WKB2 tW ~.N3) ))

a s se s  labe l ~Q~~ ,j4r:
s a a a a t au t eq ~~~i# ~#~# 1A~1h : # # # 1  ROW2 j4P.Q~_QBUD:
.‘~4 (Pos (qx ,WQN3)rWQNPAPo ,cf(,~..,WQNP)kWQN3)A(PO5(i ,WKN3) Wl~NrAPoSPCf(g\,
W k NP) tW ~N3) (1 9)

Therefore, the white pawns on 800 (in cpi) and 1403 are the W KP and WOF’ (though we don’t know
which is which )

eases VE Wh chl.Jh it  ‘f’awn qi Q(~UO 1403:
265 ( 80A RD(Qx ,QBUD)AV a1ueo n(Q BUO, W Q3). PW )~ ( (Pos(q ~,W Q3 )1W Q RPA(Pos pc f(~1~ .W QRP
).WQ3AP1AY~PAWN ...CAPTURES(WQR7,WQ3 ,WHITE)))v ((PO5(QX ,WQ3)IWQNPA (PO~PCf (qX ,WQNP
).W Q3AMAy _.pAwN cA pTu R Es( w QN2 ,wQ3, w HIT E) ) ) v ( (P os (q ~ ,wQ3) Iw Qt ;rA(PO5 Pc r(g\ ,WQB P
):W Q3A MAY . PAWN CA PItIR (5 (W Q B ,WQ3 ,WUI IE ) ) )V ( (POS( QX ,WQ 3) !W QI’A( POS PCt( Pd.W QP )t
wQ3AMAy _ pAwN .cA p1uREs (w~$,wQ3,wH1TE)))v ((pos (~\,wQ3)IwkpA(rospcr(q~ ,wkr).wQ3
~MAy_ PAW N_CAPTUKES(Wl~2,WQ3,WH1T()))v ((Pos(qx ,WQ3)sWl~BPA (Po3PCf (QX ,WKRP ) WQ3A
MAY _ PA WN ..CAPiURES(IAB2,WQ3,WHITE)))v( (Pos(qx,WQ3)~Wl~NPA(P05PCf(qX ,WkNP) WQ~A
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~MAY _PAWN_CAPTURES (WkR2,WQ3,WHITE))))))))))

_____________________________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~



—

Page 144. A FOL Solution to the Chess Puzzle 4.2.7.

s e t s e V E  l4hicht4hitePawn qx OBUD BQB ’:
266 (BOARO (qx ,QBUO )AVa~uoon (QBUD ,BQB2):PW~~((Pos(qx ,BQ82):WQRPA(Pospcf(qx ,
W QRP)s BQ82A MAY_ PA WN _ CAPT URES(W QR 2 ,BQB2, WHIT E)))v( ( Pos (qx ,8QB2)’WQNP~ (P o5pcf(
qx ,WQNP)*BQB2AMAY_ PAWN _CAPTURES(WQN2 ,BQB2,WHITE)))v((Pos(c~x ,BQB2 )~WQ8PA (
Pospcf(qx ,WQBP)CBQB2AMA Y_PAWN_CAPTU RES(WQB2,BQB2 WHITE)))v((Pos(qx ,8Q82)SWQP
A( Po spcf (qx ,W QP) IBQB2AMAY _ PAWN _CAP T URES(WQ2 ,BQBZ, W HITE )) )v (( Pos( qx ,B062)UWKP
n (Pospcf(qx ,WKP)1BQB2AMAY_ PAW N..,CAPTURES(WK2,8Q82,WHITE)))v((Pos(qx ,BQB2)a
WKBP A ( Pospcf(qx ,W KBP) IBQB2A MAY _ PA W N _CAPT URES(WK B2 ,BQB2 ,W HIT E) ) )v ( (P os(gx ,
BQB2) CWKNP A ( Pos pcf(qx ,WK NP) :BQB2A MAY _ PAWN_ CAPTURES (WKN2 ,BQB2 ,W HIT E)))v (Pos(
qx ,BQB2 )~WKRPA (Pospcf(qx ,WKRP):BQB2AP1AY_PAWN_CAPTURES (WKR2,BQB2 ,WH I T E ) ) ) ) ) ) )
) ) )

*sse*sin~p l i f y1~1’;267 BOARO(qx ,QBUO)D(( Pos(qx ,W Q3) :WQ BPA P05pcf (qx ,WQBP) :WQ3 )v((P0S(qx ,W Q3)*WQ P
APospcf(qx ,WQP )~WQ3)v(Po$(qx,WQ3)IWKPAPoSpcf (qX,WKP).WQ3)))

sss sss imp l I f y -‘140B2.WO 3AVa ueon LOBUO BQB2) .PWA ‘44QR2’.BQB2A 4IQB2 BQB2A
*-‘L.JKB2.BQB2A -4JKR2-BQB2A —140N3-BQB2A -44KN3.BQB2A -44Q3~B0B2~268 — (WQB2eWQ3)A(Va1ueon (QBU0,BQB2)xPWA (— (WQR2.BQB2 )A(-’(WQB2~BQ82)A (-’(WKB2sBQB2 )n (~ (WKR2xBQB2 )A(~ (W QN3eBQ82)A(—(WKN3sBQB2)A-’(WQ3sBQB2))))))))

scess l abe l ROYAL We;
teats tauteq
s ((Pos(qx 14Q3)44QPAPospcf (qx 140P)-W03)A
t (Postqx B082)-WKPAPospcf tqx WKP)..BQB2))v
* ((Pos(qx 1403)4JKPAPospcf(qx WKP)-l.JQ3)n
e (Pos(qx 80B2)-l4QPAPospcf (cpi WQP).BQB2))
a 1”19~: 1’,ROW2_WP ,R0143_WP ,QX_QBUO;
269 ((Pos(gx ,WQ3)eWQPAPospcf(qx ,WQP)IWQ3)A (Pos(qx ,BQB2)IWKPAP0Spcf(Qx,WKP)s
BQB2)) v ( (Pos (qx ,W Q3) aW KP~Pospcf(qx ,WK P)tW Q3)Pt( Pos(Qx ,BQB2)5W QPAPO$PCf(QX ,WQP
)~BQ82)) (1 9)

Hence, any square in qx which is not one of these squares , does not have a white pawn on it.
Similarly, no white pawn has been captured in the game that reached qx.

a t * *sV E Wh ereWni tePawns p qx x sq 140R2 WQN3 14082 1403 80B2 LJKB2 14KN3 W KR2;
270 (Pos(qx ,W Q R2) :W Q RPA (Pos (qx ,W QN3) CW QNPA (Pos(qx ,WQB2) :W QB PA(PO5(QX .WQ3)5
WQP,(Pos(Qx ,BQB2):WKPA (Pos(qx,WKB2):WKBPA(Pos(qx ,WKN3)CWK NPAP0S(qx,WKR2)E
WKRP)))))))D(((_ (sq:WQR2)A(_ (sq:~QN3)A(_ (sQ:WQ82)A(~ (sqeWQ3 )A(~ (sqr8Q82)A(_ (
sg:WKB2)A (~ (sq:WKN3)A— (sq:WKR2)fl)))))~-’WPAWNS Pos(qx ,sq))~((xtTak,n Move ~ A
(PREDEGAME (p,qx)vp:qx))D~WPAWNS x))

asasaVE WhereWhitePawns p qx x sq 140R2 140N3 140B2 BQB2 1403 WKB2 WKN3 WXR2;
271 (Pos( qx ,WQR2):WQRPA (Pos(gx,WQN3):WQNPA (Pos(gx,WQB2)SWQBPA (POS (QX ,BQB2)*
WQPA (Pos(qx,WQ3):WKPA(Pos(qx ,WKB2):WKBP,~( Pos( gx ,WKN3):WKNPAPos(qX,WKR 2) WKRP
) ) ) ) ) ) ) ~ (((_ (sc~ WQR2)A (_ (sq:WQN3)A(_ (sqsWQ82)A(_.(sqaBQB2)A (-~(sQ*WQ3 )A(.~($q*
WK82)A(~ (sq:WKN3)A~(sq:WKR2)))))))),~WPAWNS Pos(qx,sq))A((x.Teksn Move Ø (
PREDEGAME (p,qx)vp:qx)),-WPAWNS x))

a s a s at a u t  1~:#2 ?,19~,ROW2 _14P ,ROW3_WP ,ROYAL _UP;
272 ( (_ ( s q WQR2 )A (_ (sq:W QN3 )A(_ (sq :W Q B2 )A (~ ( SqsBQB2)AN(SqSW Q3)A(’~( 5QtW% B2 )A
(-~(sqeWKN3 )A-’(sqeWKR2))) ))))) —WPAWNS Pos(qx ,sq))A((xuTak.n Move ~A(
PREOEGAME (p,qx )vp:qx))~-~WPA WNS x)  ( 1 9)

ass as labe l QKi4PAWNS:
sssssV (t p ~i sq~
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273 Vp x s q . ( ( ( _ (s q =WQR2 )A (_ (sq:W Q N3)A (-~( sg:W QB2)A(_ (sq:8Q82 )A(~ (SqeWQ3) A(~ (
5q5WKB2) A( ” (sQZWKN3)A~(5 qZWKR2))))))))~’~WPA WNS Pos( qx ,sq))A ((x.Taken Move ~~A

(PREDEGAME( p,qx )vpsgx))~—WPAWNS x)) (1 9)

9.!. More particularly, the fallen piece, on WKR4 , was not a white pawn.

sssseVE QX_I4PAI.JNS p,x,WKR4;
274 ((~ (WK R4:WQR2)A(_ (WKR4~WQN3)A (-’(WKR4sWQB2 )A(-.(WKR4sBQB2)A (— (WKR4tWQ3)A(-.(WKR4RWKB2)A (-,(WKR4lWKN3)A~(WKR4eWKR2))))))))D~WPAWNS Pos( qx .WKR4))A((xs
Taken Move pA (PREOEi AME(p,~x)vp’Qx))~—WPAWNS x) (1 9)

ss ssss imp li f y 1~;275 -‘W PAWNS Pos(qx ,W KR4 )#~((xzTake n h ove pA(PREDEGAtlE (p.qx)vpaqx))~-’WPAWNS x)(1 9)

Section 4.2.8 The White Rook and King

9.2. There are two other white (valued) pieces on the board OBUD. There is a rook value on
BQ2. This is either one of the two original white rooks, BOR or BKR , or a promoted white pawn.

s ea e s V E tli ght BeRW qx ,Pos(qx ,B02) ;
276 V al (qx ,Pos(qx ,BQ2)):Rtb ((Pos(qx ,BQ2)sWK RvP0s(qx ,8Q2) IWQR)v(WPAWNS Pos(n’
.802 )APROMOTEDPAWN( qx , Pos( qx ,BQ2 ) ) ) )

- But none of the white pawns Is on 802.

* * t e eV E OX _WPAI.JNS p,x ,BQ2;
277 ((_ .(B Q2:WQR2 )n(_ (BQ2sW QN3)A (_ (BQ2 :W QB2 )A (_ (8Q2 :BQB2 )A(_ (BQ2 W Q3)A( _ ( BQ2~
WKB2)A (~ (BQ2eWKN 3)A~(BQ2:WKR2))))))))~-.WPAWNS Pos(qx ,BQ2))A((x.Tek.n Move p~(PREDEGAME(p,qx)vpzQx))D—WPAWNS x) (1 9)

easseVE Va l uelrarisposi t l oriB qx .B02,QBUO;
278 80ARD(qx ,QBUD),(Va1ueon(QBUD ,BQ2 )~Va1 (qx ,Pos( qx.BQ2))vVa1uIon (Q8UD ,BQ2)u
UD)

se s e e s i  mp I I f y  ~B02.W0 R2A—BQ2.WQ N3A—BO2-WO B2A—BQ2.80B2A-’8Q2-W03A~’8Q2-WK B2A
~ -.BQ24JKN3A-.B02.44KR2AVa I ueon (QBUO,BQ2).RWA—RW.UOA
s WROOKS WKRAL4ROOKS 1.JORA-.WKR-WQR;
279 ~(BQ2:WQR2)A(~ (BQ2:WQN3)A (~ (BQ2~WQB2)A (— (BQ2IBQB2)A(— (BQ2RWQ3)A (— (BQ2ZWKB2)A(~ (BQ2:WKN3)A (~ (BQ2:WKR2 )A(Va 1ueon (QBUD ,BQ2)zRWA (— (RW~UD)A (WROOkS WKRA
(WROOKS WQRA~(WKRsWQR)) ) ) ) ) ) ) ) ) ) )

Hence, the piece on B02 must be either the BOR or the BKR.

eee ss tauteq Pos(qx ,B02).W ORvPos(qx ,B02)4JKR 0X _0BUD,?1i’t;~ ;
280 Pos(Qx ,BQ2)ZWQRvPo S(c l x ,BQ2)CW KR (1 9)

However , this is not the most useful formula tion of this fact. What we really need is names for each
of the white rooks. We maneuver to obtain a more pliable WFF.

eeeeetauteq Pos(qx B02).WORD (Pos(qx 802) ’.WORA (WQR.WORVWQR .WK R)A
a —Pos(qx,B02)-L.JKRA (WKA.W QRvWKRSL4KR)A -‘(.JQR”WKR) t1~:t;281 Pos (qx,BQ2) .WQR3 (Pos (qx ,BQ2)eWQRA ((WQR .WQRvWQR .WKR)A (~ (POS(qX ,8Q2)*WKR)A
((WKR.WQRvWKR.WKR)A-’(WQRIWKR))))) (1 9)
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*sesttauteq Pos(qx BQ2).WKR~ (Pos(qx 8Q2).I.JKRA (W KR4IORvWKR—W KR)A
* — Poe(qx ,BQ2).WQRA (WQR4JORVWO R.I’JKR)A -44KR.WQR) tPt ilt;
282 Pos(qx,BQ2).WKb(Pos(qx ,8Q2)’WKRA ((WKR.WQRvWKR.WKR)A (-’(Pos(qx,BQ2).WQR)A
((WQRsWQRvWQRsWKR)A ~(WKR:WQR))))) (1 9)

sssssunify Pos (qx BQ2)—t4QR~ 3ywr ~wr1.((Po.(q* B02).WWrA (Vwr.WQRvWWr.WKR)A
* -‘Pos(qx ,B02)-ywr lA (y&.lrl=WO Rvywrl-W KR)A -‘ywr.~ur1)) IP;
283 Pos(qx ,BQ2)=WQR~3ywr ywr1.(Pos(qx,BQ2)sywrA( (ywr.WQRvywr.WKR)A (~ (Pos( qx ,
602 )‘ywr l )A( (ywr1sWQRvywr1aWKR)A— (ywrzywr l ) ) ) ) )  (1 9)

More specifically, we want to rename the two white rooks to be ywr and ywr l , where we know that
ywr is on the square 802, and that ywrl is not wur. With the proper manipulations, we obtain:

esassun ify Pos(qx B02)4AKRD 3yi.zr ywrl. ((Pos(qx BQ2)-ywrA (ywr.WORv~jur.WKR)Aa -.Pos(qx B02)-ywrlA (yl.lrl=WQRvywrl-WKR)A -.ywr-ywrl)) ‘Pt;
284 Pos(qx ,BQ2 )=WKlb3ywr ywr 1.(Pos(qx ,BQ2):ywrA((ywr~WQRvywr.WKR) A(-. (Pos(qx ,
802 )=ywrl )A(  (ywr1:WQRvywr1sWKR)A ~(ywrsywr1))))) ( 1 9)

assastaut  P:#2 ~~fl ” P~285 3ywr ywr l.(Pos (qx ,BQ2):ywrA((ywr IWQRvywrzW KR)A (-I(Pos(qx ,BQ2).ywr l)A((
ywr1zWQRvywr1tWKR)A~(ywr:ywr1))))) (1 9)

permitting the renaming;

ss tss labe l CALL _YW R;
stats 3E ‘P ywr ywr l;
286 Pos(qx ,BQ2)=ywrA((ywrawQRvywr:W KR)A(- .(Pos(qx ,BQ2)zywr l)A((ywrl.WQRvywrl.
W KR)A~ (ywrRywr 1)))) (286)

which implies that the rook ywr was not the fallen piece (though the rook ywrl might have been).

es a s aV E Unique qx ,BQ2,WKR4 ,ywr ;
287 Pos( qx ,BQ2)tywr~(Pos(Qx.WKR4):ywrEBQ2:WKR4)

The white king, on square BKR1, was certainly not the fallen piece.

at a saV E Unique qx ,BKR1,WKR4 ,WK ;
288 Pos(Qx ,BKR1)*WK,(Pos(qx,WKR4 )~WK.8KR1sWKR4)

atsas labe l OX 14K;
aseseVE King Va l uelhm qx ,OBLJO,BKR1;
289 (BOARD (qx ,Q8UD)A— (Va1ueon(QBUD ,8KR1).UD))~((Pos(qx ,BKR1).WKsVa1ueon(Q8UD,BKR1 )~KW )A (Pos( qx ,BKR1)*BK.Va lueon(QBUD ,BKR1).KB))

9.3. The whitepieces include the white pawns, two rooks, knights, and bishops, and a white
king and queen. But we have eliminated all but six of these pieces as candidates to be the fallen
piece. Hence, it must have been one of them.

ass stV E Whi tep i eceArePawnsOr_ yyw;
290 WHIT EPIECE yywa(WPAW NS yyw (yywzWKv(yyw5WQv(yyw.WKNv(yywsW KBv(yyw5WK Rv(
yywaWQ8v (yyw.W QNvyywzW QR))))))))

seese simp i i f~ WHITEPIECE yywA—B02-WKR4A-’BKR1.WKR4Aa Va I ueon (OBUD, BKR1) .KWA-’KW-UD;
291 WHITEPIECE yyw,~(~(8Q2IWKR4)A(~ (8KR1EWKR4 )A(Va1ueon(QBUD,BKR1).KWA— (KW~UD
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s*ss* labe l WH ICH VYW ;
tests tauteq yyw.WQ v yyw4JQB v yyw.WKB v ~yw’.ywr 1 v yyw.WQN v ~yw—14KN
e OX _OBUD. SAIIE_ON_(4KRA ,CALL_YYI4 ,QX_WPAI4NS+2,CALL_YWR ; ‘Pt
292 yywzWQv(yyw~WQ8v(yyweWKBv(yyw.ywr1v(yywsWQNvyyw.WKN)))) (1 9 252 286) - -

We set the stage for further deductions.

Similarly, only these six white pieces were ever captured. Furthermore, If the capture occurred on a
white square, then the white on black bishop (1408) was not the captured piece.

ssstsVE MconseqfX qx ,p,BKR1 ,WK;
293 ((psQxv PREDEGAME(p ,gx))Alaken Move psWK ) -i(Pos(gx .8KR1)aW K )

sas se VE llconseqfX qx ,p,802 ,ywr;
294 ((paqxvPREDEGAME(p,qx ))ATaken Move psywr)~-’(Pos(qx ,BQ2 )~ywr )

estssVE t4h i tep ieceArePawnsOr _ x;
295 WHITEPIECE x.(WPAWNS xv(xsWKv(xsWQv(xsWKNv(x~WK8v (xaWKRv (xsWQBv (x~WQNvx.WQR ) ) ) ) ) ) ) )

asaesVE WhereB i shoplaken p,1.JOB,sq,140B1;
296 (To Move psscIA(Pos(P0,WQBI)ZWQBA— (WHITESQUARES WQB1.WNITESQUARES sq)))~—(Taken Move psWQB)

eass esim p i i f y -‘UHITESQUARES WQB1APoS(Pø,WQB1).WQB;
297 —WHITESQUARES WQB1AP0s(P0,WQB1)CWQB

aa*ssVE MconseqfX cix p (4KR4 yyu;
298 ((p.QXvPREDECAME(p, dlx))Alaken Move psyyw),-’(Pos(qx,WKR4).yyw)

sateetaute q t (PREDEGAIIE(p qx)vp.qx)Alaken flove p.xi’iI4HITEPJECE x)~a ((x-WQvx.UQNvx-WKN vx..WQ Bvx.UKBvx-~wr 1)A (— x .WU w )A
a (( To Move p.sq#~L4HITESQUARES sq )

~ ’xsWQB))
a t’P’Pflt: 1 ,QX_WK,QX_WK+2,QX_QBUO,CALL_YWR ,QX_WPAWNS-4.2,CALL_YY(4;
299 ((PREDEGAME(p,qx )vpzqx)A(Taken Move p’XAWHITEPIECE x)),((xsWQv(xsWQNv(x.
WKNv(xsWQBv(xeWKBvx.ywr1)))))A(-~(xsyyw)A((To Move p.IQAWHITESQUARES sq)~— (xs
~4Q B ) ) ) )  ( 1 9 252 286)

sssss labe l WHICH OX _TAKEN;
satseV i 1’ p x sq ;
300 Vp x sq.(((PREDEGAME (p,Qx)vpsQx)A(Taken Move p~xAWHITEP1ECE x)),(~x*WQv (
xXWQNv(x1WKNv(xCWQBv(xzWKBvxeywrl)))))A (-’(xsyyw)A((To Move p~sqAWHITESQUARESsq) ,— (x .W QB))))) (1 9 252 286 )

Section 4,2.9 Black Pawn Captures

10. We see that the BQNP and BKBP have, between them, captured white pieces on the squares

L 

BQR3, BK3, B04, and 14084.

essssVE BlackPawriCaptureThm qx , BQNP , BQN2 BQR3 , 80R3 , QBUO
301 (Pos( P0, BQN2)aBQNPA ( Pos(qx,BQR3)CBQNPA(MUST_PAWN_CAPTURES(BQN2,8QR3.
Piecaco~or 6QNP)A(BOARD(qx ,QBUD)AValueon(QBUD ,BQR3)SPB)))),((BQR3.BQR3v(
SAS1EDIAG(BQR3.8QR3 )A (SAMEDIAG(BQR3.BQN2)ABETWEEN(Row BQR3,Row BQR3,Row BQN2)
)))~]q3 x3,((PREDEGAME(43,qx)vq3sqx)A( (TAKINGS Move q3A(Mover Move Q3~BQNPA(To Move q3.BQR3i~Taken Move g3sx3)))A(PREDEGAME(Prevpos Q3 ,qx)A (To Move q3s

Tr ~~~~~~~ 
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BQR3,(Mover Move q3sBQNP,((Taken Move q3sx3A-’W HITEPIECE BQNP)~ (W HITEPIECE x3
l%(-’(Row BQR3.6)~Po s(Pr evpos q3,8QR3)’x3)))))))))
aaae s V E BlackPawriCapturelhm qx , BKBP , BKB2 , (4084 , 8K3 , OBUD ;
30 2 ( P05 (PO I,BK B2)S B KB PA( POS (qX ,W084)*BK8PA(MUST_ PAWN _ CAPTU RES ( 8K 82 ,WQB4 ,
P i ocac o~or 8KBP)A(BOARD(qx ,QBUD )AVa~ueon (Q8UD,WQB4)apB))))~ ((BK3sWQB4v (S A M E D I A G ( W QB4 ,8K3)A(SA ME0IAG( 8K3 ,8KB2),~BETW EEN(ROW WQB4 ,Row 8K 3,Row BKB2))))
~3q3 x3.((PREDEGI4-It%q3,~~ )vq3~qx )A ((TAXING5 hove q3,~(Plover Move q3S8KBPA (ToMove Q3~9K3ATaken Move Q3 1x 3)))A( PRED ECAIIE(Prevpo$ q3,qx)A (To Move q3s8K3~(hover Move q3aBKBP~((Taken hove q3ex3A~WHITEPIECE BKBP),(WHITEPIECE x3A(-’(Row 8K3s6)~ Pos(Prevpos q3,BK3):x3)))))))))

asaasVE BlackPawnCapturelhm qx , BKBP * BKB2 , 14084 , 804 • OBUD
303 (POS(P0 ,BKB2):BKBPA (POS(qX ,WQB4):BKBPA (MUST..PAW N_CA P T U RE S(BK B 2,WQB4 ,
Piececolor BKBP)A (BOARD(qx ,QBUD)AValueon(QBUD ,WQB4):PB))) ),((8Q4:WQB4v(
SAMEDIAG(WQB4 ,BQ4)A(SAMEDIAG (8Q4,BKB2)ABETWEEN (ROW WQB4,Row 8Q4 ,Row BK B2) ) ) )
~3q3 x3,((PREDEGAME(q3 ,qx )vQ3:qx)A( (TAKINGS hove q3A(Mover Move q3SBKBPA (ToMove q3:BQ4ATaken Move q3=x3))),.(PREDEGA1IE (Prevpos q3,qx )A (To Move q3zBQ4~(Mover Move q3:BKBPD( (Taken Move q3:x3A-.WHITEPIECE BKBP),(WHITEPIECE x3A (-’(
Row 8Q4:6),Pos(Prevpos q3 ,BQ4) :x3 ) ) ) ) ) ) ) ) )

ss a ssV E BlackPawnCapt ureThni qx • BKBP , 8K82 , (4084 , 14084 , QBUO ;
304 (POS(P0 ,8K82):BKBPA (POS(qX ,WQB4):BKBPA(MUST_ PAWN _CA PTURES(BKB2 ,WQB4 ,
Plececolor BKBP)A (B0ARD(qx ,QBUD)AVa 1ueon(QBUD ,WQB4 )~P$)))),((WQB4rWQ84v(SAMEDIAG (WQB4 ,WQB4)A (SAMEOIAC(WQB4,8K82),BETWEEN (Row WQB4,Row WQB4,Row BKB2)
))),3q3 x3.((PREDEGAME(q3 ,qx)vq3eqx )A ((TAKINGS Move q3A (Mover hove q3 BKBPA(
To Move q3sWQB4ATaken hove q3:x3)))A (PREDEGAME(Prevpos q3,qx)A (To hove q3a
WQB43(Mover hove g3:BKBPD((Taken Move q3zx3A-’WHITEPIECE 8KBP)~(WHITEPIECE x3#~(-.(Row WQB4e6)~Pos(Prevpos q3,WQ84)ex3)))))))))

ssass l abe l PTSItIP:
asses  s i m p l i f y  (Pos(P8 ,BQN2)aBQNPA
a MUST _PAWN _CAPTURES (BQN2,BQR3, Piececolor BQNPlAVa l ueon (QBUO ,BQR3) ePBA
a BQR3.BQR3)A(Pos(Pø, BKB2)-BKBPA
* MU ST _PAWN_CAPTURES (BKB2, WQB4 ,P~ ececol or BKBP)AValueon (QBUD ,UQB4).PBA
a (SAMEDIAG ((40B4 ,8K3) ASAtI EOIAG (BK3,0K62) A
a BETI4EEN(Row WQB4 ,Row E3K3,Row BKB2)))A (Pos (Pø,BKB2).BKBPA
* MUST _PAWN _CAPTURES (BKB2, 140B4 ,P I ececolor BKBP)AVaIueon WBUO,14084).PBA
* (SAMEDIAG(14Q84,8Q4 ) ASA MEDIAG(B04 ,BKB2)A
a BETI4EEN(Row 1.JQB4 ,Row 8Q4 ,Row 8K82 ) )) A ( Pos ( PØ, BKB2).BKBPA
e MUST _PAL.JN_CAPTURES (BKEI2,W084,P i ececo I or BKBP)A
a Va i~-eon (QBUD,WQB4 ) -PBA(4QB4-(4QB4);
305 (P o s ( P 0 ,BQN2)aBQNPA(MUST _ PAW PLCA PTURE S(BQN2 ,BQR3, Pl ececolor BQNP)A(
Va lueon(QBUO , BQR3):P8ABQR3~. IQR3) ) )e~( (Pos( P0 ,8K82 )ZBKBPA(MUST_PAWN_CAPTURES(
BKB2 ,WQB4 ,PiececoIor BKBP)A(Valueon(QBUD ,WQB4)’PBA (SAMEDIAG(WQB4,8K3)A (
SAMEDIAG(B K3 ,BKB2)A BETW EEN( Row WQ B4 ,Row BK3 ,Row BKB2)))))) A( (Pos ( P0 ,BK82 )~BKBPA(MUST _ PAWN _CAPTUR ES(8K82 ,WQB4 ,Pj ecec olor BKBP)A(Valueon(QBUD ,WQB4)CPBA (
SAMED IAG(WQ B 4,BQ4)A (SAMEDIAG(8Q4,BKB2 )ABETWEEN(Row WQB4,Row BQ4 ,Row 81(82))))
) )A( P os (P0 ,8K8 2) ’BKBPA (MUST _ PA WN _ CAP TURES(8K82 ,WQB4 ,Pj ececolor BKBP)A(

V al u e on (Q BU D ,WQB4)ZPBAWQB4:WQB4)))))

Hence, there must have existed four positions in the course of this game where the move that
reached that position was one of these captures.

aeesstauteq 1’PPP’Pi#2#2 tt’PtP. PTSIMP ,R0143R_$P,QX _QBUO;
306 3q3 x3.((PREDEGAME (q3,gx )vq3.qx)A((TAKINCS Move 43A(Movsr Movs q3.BQNPA(
To Move q3.BQR3ATCkSn Move q3’x3)))A (PREDEGAIIE(Prsvpoa q3,qx )A(To Move g3.
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BQR3D (Mover Move ci3:BQNP~((Ta ken Move q3:x3A-.WHITEPIECE BQNP)~ (WHITEPIECE x3
A(-.(Row 8QR3.6)~ Pos(Prevpos q3,8QR3)zx3)))))))) (1 9)

asas a tau teq  ‘P1’1’t’P:#2~~~2 ‘P1’1 1’1,PTS IM P ,BS...BP ,QX_QBUD;
307 3q3 x3 .((PREDEGAME(q3,qx)vq3:qx)A ((TAKINGS Move q3A (Mover Move g3 .BKBPA(
To hove q3.BK3ATaken Move ct3ex3)))A (PREDEGAME(Prevpos q3,qx)A(To Move q3’BK3
D (Mover Move q3:BK8P~((Taken Move q3~x3A—WHITEP1ECE BKBP)~ (WH1TEPIECE x3A(—(
Row 8K3.6),Pos(Prevpos q3 ,8K3)ex3)))))))) (1 9)

tsaastauteq 1’t l’1’1’:#2#2 11’1’1’1’,PTSIIIP,B5 .JP,QX _QBUO;
308 3q3 x3.((PREDEGAME(q3 ,qx)vq3:qx)A ((TAKINGS Move q3A(Mover Move q3.BKBPA (
To Move q3zBQ4ATaken Move q3:x3)))A (PREDEGAME (Prevpos q3,qx )A (To Move q3~BQ4

~ ( Mov er Move q3:BKBPD((Taken Move q3:x3A—WHITEPIECE BK8P)~ (WHITEPIECE x3A (— (
Row BQ4.6)DPos (Prevpos q3,8Q4)sx3)))))))) (1 9)

sasastaut eq # # ~ ‘P1’?1’1,PTSIMP ,BS_BP ,OX ..OBUO;
309 3q3 x3.((PREDEGAME(q3 ,qx)vq3:qx)A ((TAKINGS Move q3A (Movar Move q3:8KBPA(
To Move Q3:WQB4nTaken Move q3=x3)))A(PREDEGAME(Prevpos q3,qx )A (To Move q3~
WQB4D (Mover Move q3sBKBP,((Taken Move Q3.x3A—WHITEPIECE BKBP)~ (WHITEPIECE x3A(-.(Row WQB4=6),Pos(Prevpos q3,WQB4):x3)))))))) (1 9)

Let us call these positions p1, p2, p3, and ph , respectively. We wi ll refe r to the white pieces captured
as xa, xb, xc, and xd.

s s * s e  label CALL PN;
ssass3E CIII’ p1 xa:
310 (PREDEGAME ( p l ,qx )vplcqx)A((TAKINGS Move plA(Mover Move pIsBQP4PA(To Move
plzBQR3ATaken Move pl:xa)))A (PREDEGAME(Prevpos pl ,gx )A (To hove p1~8QR3~(
Mover Move pl.BQNP,((Taken Move pl.xaA—WHITEPIECE BQNP)~ (WHITEPIECE xaA(— (
Row BQR3’6)DPos(Prevpos pl ,BQR3)zxa))))))) (310)

aseaajE ‘P111’ p2 xb :
311 (PREDEGAME( p2 ,qx )vp2eqx )A((TAKINGS Move p2A (Mover Move p2’BKBPA(To Move
p2.BK3ATaken Move p2.xb)))A(PREDEGAME(Prevpos p2,qx )A(To Move p2.8K3D(Mover
Move p2.BKBP,((Taken Move p2.xbA-’WHITEPIECE BKBP),(WHITEPIECE xbA (-’(ROW 81(3.
6)DPos(Prevpo s p2 ,BK3) :xb ) ) ) ) ) ) )  (31 1)

sasssJE 1111’ p3 xc;
312 ( PREDEGAME( p3,qx )vp3sqx )A ((TAKINGS Move p3A (Mover Move p3CBKBPA(To Move
p3.BQ4ATaken Move p3.xc)))A(PREDEGAME(Prevpos p3,qx)A(To Move p3.BQ4,(Mover
Move p3.BKBP~((Taken Move p3’xcA—WHITEPIECE BKBP)~ (WHITEPIECE xcA (—’(Row BQ4 s
6)DPos(Prevpos p3,8Q4):xc))))))) (312)

esses3 E 1111 p4 xci;
313 (PREDEGAME(p4 ,Qx)vp4:qx)A( (TAKINGS Move p4A(Mover Move p4.BKBPA (To Move
p4*WQB4ATaken Move p4exd)))A (PREDEGA1IE(Prevpos p4,qx)A (To Move p4*WQB4,(
Mover Move p4.BKBP,((Taken Move p4sxdA—WHITEPIECE BKBP)~ (WHITEPIECE xdA(-’(
Row WQB4.6)~ Pos(Prevpos p4,WQB4).xd))))))) (313)

Clearly, each of xa through xd must be one of the white pieces that could have been captured.

esees labe l $IMPW S;
- . cease  simplif y (-4.IHITEPIECE BQNPA-44HITEPIECE BKBP)A

a WHITESQUARES BQR3AI4HITESQUARES BK3AWH ITESQUARES BQ4AL4HITESQUARES (4084 ;
314 (—WHITEPIECE BQN P A—W H I T E P I E C E  BK8P)A (WHITESQUARES BQR3A (WHITESQUARES BK3

A(W HITESQUARES BQ4AWHITESQUARES WQB4)))
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e seesV E WH ICH _OX _ TAKEN pI. xa ,BQR3;
315 ((PREDECAME(pl ,gx)vp lsqx )A(Ta ken Move p1CXIAW HITEPIECE xa))~((xssWQv(xa.WQNv(xa.WKNv(xa.WQ8v(xa.WKBvxa’ywrl)))))A(— (xauyyw)A( (TO Move pl.BQR3A
WH ITESQUARES BQR3 )D — (x a s W Q B) )))  ( 1 9 252 286)

eseeeV E WHICH_OX_TAKEN p2, xb ,BK3;
316 ((PREDEGAME (p2 ,qx)vp2ucix)A (Taken Move p2.XbAWHITEPIECE xb))~ ((xb.WQv(xb.
WQNv(xb.WKNv (xb*WQBv(xbIWKBvxb’ywrl)))))A (’(xb’yyw)A((TO Move p2 .BK3A
WHITESQUARES BK3)~— (xb.WQ8)))) (1 9 252 286)

sssssVE WHICH _OX _TAKEN p3,xc,B04;
317 (( P RE D EGA M E ( p3,Qx )vp3zclx )A (Taken Move p3IxcAWHITEPIECE xc)),((xc.WQ~#(xC.WQNv(xczWKNv(xc:WQBv (xc:WKBvxc.ywrl)))))A(— (xClYyW)A((TO Move p3.BQ4A
WHITESQUARES BQ4 ) D— (x c ’W QB )) ) )  (1 9 252 286)

assssVE WHICH _OX _TAK EN p4 ,xd,UQB4;
318 ( (PR EDE GAN E ( p4 ,qx)vp4:clx)A (Taken Move p4.xdi~WHITEPIECE xd)),((xd.WQv(xd*WQNv(xd .WKNv(x d=W QBv(xd .W KBvxd .ywr1))))) ,(— (xd~yyw)A(( T o Move p4sWQB4A
WH ITESQUARES WQB4) ,- ’(xd .W QB)))) ( 1 9 252 286)

Since these are white squares, each of xa through xci was neither the 1408 (white on black bishop),
nor, of course yyw (the piece that fell from the board).

cases l abe l WHO XA ;
asses tauteq (xa~WQvxa~W0Nvxa.WKNvxa.WKBvxa.~wr1)A xa”~jywa CALL_PN , SIMPI4S, 1111;
319 (xa.WQV (xasWQNv(xa:WKNV (xa:WKBvxasywrl))))A .(Xasyyw) (1 9 252 286 310)

asase tauteq (xb .WQvxb .WQNvXb .WKNvxb .WKBvxbeWwrl)A’xb .WWW
$ CALL_PN#1 • S1t’SPWS , 1111;

320 (xb=WQv(xb .WQNv(xb zWKNv(xb sW kBvxb :ywr l))))A—(Xb IYYW ) (1 9 252 286 311)

sesse tauteq (xc.WQvxc.WONvxc.WKNvxc.WKBvxc.ywrl)n—xc.yyw
e CALL _PN+ 2 , SIMPWS, 1111;
321 (xczW Qv(xc .W QNv(xc :WK Nv(xC .W K8vxCzyWr1)) ))A” (X C~YYW ) (1 9 252 286 312)

s*s*e tauteq (xd.WQvxd.WQNvxd~WKNvxd-L4KBvxd.ywr1)A—xd.Wyw
* CALL _PN+3 , SIMPUS, 1111’:
322 (xd:WQv(xd.WQNv (xd:WKNv(xd~WKBvxd.ywr1))))A (Xd*YYW) (1 9 252 286 313)

We need also establish that these moves all captured different pieces. A lemma, DlfferentTMen,
serves us well here. It states that if a capture took place on differing squares, or by differing pieces,
or any other way of proving the capturing positions different, then the captured pieces were not the
same piece. As there are six equalities to establish, we invoke the theorem six times.

esseaVE OifferentTaken p1 p2 qx xa xb;
323 (((p2.~xvPREDEGAME (p2,c~x))A (p1aqxvPREDEGAME (P1,qx)))A( (’(TO Move pl.To
Move p2 )v(-’(Mover Move pleMover Move p2)v(PREDEGAflE (pl ,p2 )v-’(p1’p2))))A(
Taken Move plaxaAlaken Move p2.xb))) ,—(xa.xb)

sasssVE DiffereritTaken p1 p3 qx xa xc;
324 (((p3CqxVPREDEGAME (p3 ,qx))A(pl.qxvPREDEGAME(p1,qX)))A((”(TO Move p1.10
hove p3)v(-’(Mover Move pisMover Move p3)v(PREDEGAIIE(pl,p3)v-’(p15p3))))A(
Taken Move pl.xaATakSfl Move p3ixc))),-~(xa.xC)
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ssessVE Oiffere nt laken p1 p4 qx xa xd;
325 (((p4:QxvPREDEGAME(p4 ,qx ))A(p1SQxvPREDEGAME(pl ,qx)))A ((-(To Move pl=To
Move p4)v(— (Mover Move pl:Mover Move p4)v(PREDEGAIIE (pl,p4)v-’(plsp4))))A(
Taken Move pl:xaAlaken Move p4.xd))),— (xasxd)

s*eesVE OifferentTaken p2 p3 qx xb xc;
326 (((p3.qxvPREDEGAME( p3 ,qx ) )A(p2sqxvPREDEGA ME(p2 ,qx))) I’~((— (To Move p2:To
Move p3)v(-’(Mover Move p2:Mover Move p3)v(PREDEGAIIE (p2,p3)v— (p21p3))))A(
Taken Move p2.xbATaken Move p3=xc))b-*(xb:xc)

essesVE Cif ferer i tTa ken p2 p4 qx xb xci ;
327 (((p4:qxvPREDEGAME(p4 ,gx))A (p2:qxvPREDEGAME (p2 ,qx)))A((~ (To Move p2 To
Move p4)v(-’(Mover Move p2=Mover Move p4)v(PREOEGAIIE(p2,p4)v-’(p25p4))))A(
Taken Move p2.xbATaken Move p4:xd))b-’(xbzxd)

a*ssaVE OifferentTa keri p3 p4 qx xc xci;
328 ( ( ( ~i4:qxvPREDEGAME( p4 ,qx))A (p3sqxv PREDEGAME( p3 ,qx))) A ( (’~(TO Move p3.To
Move p4)v(— (Mover Move p3=Mover Move p4)v(PREDEGAIIE(p3,p4)v-’(p35p4))))A(
Taken Move p3.xcATaken Move p4.xd)))D-’(xcsxd)

And compact its result to a single step.

ss ss *s imp l i f y  -.BONP.BKBP A -.14084 • B04 A WO B4 - BK3 A’804 • BK3;
329 - (BQNP :BKBP)A (-. (WQB4=BQ4 )A (-I(WQB4*BK3)A-I (8Q45BK3)))

ss *se labe l NOT_XN EQ;
*ata*tauteq -‘xa-xb/~ —xa-~c,~ -~ a-xdA —xbcxc,~ -‘xb-xdA —xc—xda ‘Pt11”P?’Pi’P * 

CALL_PN;CALL _PN+3 ; -

330 ~(xa.x b)A (-’(xasxc)A (-.(xa:xd)A(— (xb:xc)A(— (xb:xd)A— (XC5Xd))))) (310 311
312 313)

Section 4.2.10 The Black Pawn’s Path to Promotion

11. We have proven (back on step 207) that the black king rook’s pawn had promoted.
Therefore, there must have existed some position (in the course of this game) where he moved onto
the eighth row. Let us call this position qy.

asteaVE Blac kPromtesOn8A qx BKRP;
331 PROMOTEDPAWN(qx ,8KRP)D3p.((PAWNPROM Move pA ((PREDEGAME(p,qx)vp.qx)AMover
Move p=BKRP))ARow To Move p=8)

aseastaut ‘P:#2 ‘P,PROII_BKRP;
332 3p.((PAWNPROM Move pA( (PREDEGAME (p,qx)vpsqx)AMover Move pZBKRP))ARow To
Move p.8) (1 9)

eases l abe l CALL QY;
asses 3E ‘P qy; —

333 (PAWNPROM Move qyA ((PREDEGAME(qy,qx)vqy.qx )AMOver Move qy.BKRP))ARow To
Move qy.8 (333)

1!.!. Our final lemma specifically applicable to this proof, FarTaken (section B.4.2) states that If
the BKRP promoted on any square to the left of WKN1, figure 42 then this pawn must have captured
two white pieces on the way to his elevation.
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L1I~ t i11~We ass ume that the 1JKRP p . ’omoled om one of these sqmas ’ea.

fi gure 42

ses ssVE Farlaken qy;
334 (PAWNPROM Move qyA(Mover Move qy:BKRPA (-.(To Move gy.WKR1)A-.(To Move qys
WKN 1))))~3q1 q2 xl x2.(((PREOEGAME (ql ,qy)vqlcqy)A (PREDEGAME (q2,q1)A( 4 .

PREDEGAME (P0,q2)A(TAKINGS Move Q1A(TAXINGS Move q2A(Mover Move q1.BKRPA (
Mover Move q2.BKRPA(Taken Move q1:xlAlaken Move q21x2))))))))A— (xlsx2))

Let us assume that the promotion was on one of these squares

sssstlabe l TAKE 2 ASSUMPTION;
es .seassuma — ( To Move qy—W KN 1)A — ( To Move qy-W KR1);
335 — (To Move QyZWKN1)A— (To Move qy:WKR1) (335)

3 We call the positions in which the two white pieces were captured qi and q2, the respective captured
pieces, xl and x2.

a s s e s t aut 11’:#2 111:1;
336 3q1 q2 xl x2. ( ( (PR EO EGAME (q l ,qy)vql:qy)A( PREDEGAME(q2,ql)A(PREDEGAIiE(P0 ,
ci2 )A (TAKINGS Move qlA(TAKINGS Move q2A (Mover Move Q1SBKRPA(Mov•r Move q2s
BKRPA(Taken Move glixiATaken Move q2sx2))))))))t~-’(xt.x2)) (333 335)

s ta ts  lab el CALL QN:
seeesJE 1’ ql ,q2,xl,x2;
337 ((PREDEGA ME(ql ,qy)vql:qy)A(PR EDEGAME(q2 ,ql)A(PREOEGAIIE(P0,q2)M TAKINGS
Move qlA(TAKINGS Move q2A (Mover Move ql.BKRPA (Movsr Move q2.BKRPA(Taksn Move

qlsxlATake n Move q2.x2))))))flA-’(xl*x2) (337)

As qi and q2 occurred in the game that led to qy, and qy occurred in the game that reach qx, both
qi and q2 are ancestors of qx.

asstsVE TransitiveCenealogy ql .qy,qx;
338 (PREOEGAME (q1 ,qy)APREDEGAME (qy,QX)bPREDEGAIiE(q1 ,qX )

s ss sa VE Traneit iveGe nea logy q2,ql ,qx;
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339 (PRE0EGAME (q2 ,q1)APREDEGAME (q1,qx )~~PREOEGAME(q 2,Qx )

s s s s a l abe l EREO_CN:
saeestauteq (PREDEGAtIE (ql qx)vql-qx)APREOECAME (q2 qx) 1’P’P~’P,CAL L_QY:
340 ( PRED E GA M E ( q1,qx)vgl:qx)APREDEGAME(q2 ,qx ) (333 337)

And xl and x2 must also be in the capture set.

esseeVE Wh teCapt~reciQnThn Prevpos ql,ql ,BKRP ,xl ,To Move qi;
341 Prevpos qlzPrevpos qb (To Move qisTo Move q1~ (Mo’~er Move g1.BKRP~((Taken
Move qI:xlA—WHITEPIECE BKRP)~(W HI T E PI E CE xlA (-.(Row To Move q1~6)~Pos(

Prev pos ql ,To Move ql)xxl)))))

essasYE Wh i teCap tur eciOn T hm Prevpos q2,q2, BKRP ,x2, To Move q2;
342 Prevpos q2:Prevpos q2 D(To Move q2~~iv Move qb (Mover Move q2:SKRP,((Taken
Move q2:x2A—WHITEPIECE BKRP)~ (WHITEPIECE x2~(— (Row To Move q2:6)~Pos(

Prevpos q2 .To Move q2 ) :x2 ) ) ) ) )

esataVE WHICH_OX _TAKEN ql, xl, To Move qi;
343 ((PREDEGAME (ql ,qx )vql:qx )A(Taken Move ql:x1AWHITEPIECE x1))D((x1 WQv (x1~
WQNv(x1~WKNv(x1:WQBv (x1:WKBvx1:ywr1)))))A(-.(X1:yyW)A((TO Move q1~To Move qiAWHITESQLIARES To Move qlb— (xl:WQB)))) (1 9 252 286)

a s e sa VE WHICH_OX _TAKEN q2,x ,~ o Move q2;
344 ((PREDEGAIIE (q2 ,qx)vq2:qx)A(Taken Move q2:x2AWHITEPIECE x2))~ ((x2.WQv(x2:

- 
. W QNv (x2 .WK Nv (x2 :lIQBv (x2sWKBvx 2 :ywr l)) )) )A(- ’(X2 5yyW)A(( TO Move q2’To Move q2A

WH1T ESQUARES To Move q2 )~-.(x2:WQ8)))) (1 9 252 286)

e s s s e s~ m p I i f y •-44HITEPIECE BKRP;
345 -‘WH ITEP IECE BKRP

sa s e t  labe l WH O Xl :
ssse stauteq 1’1’1’:#2#1AI’l’l’1#2#2#l 1,1’11,1?11’1,PRED _QN,CALL _QN,CALL_QY;
346 (xl.WQV (xlsWQNv (xl.WKNV(xl.WQBv(X1IWKBvXIZYWr1)))))A .’(Xl$YYW ) (1 9 252
286 333 337)

esea staut 1’P’P:#2#1A1’11’;#2~2~1 1?,’P’Pt,1’11I’1’,PREO _QN,CALL _QN ,CALL_QV ;
341 (x2.WQv (xZsWQNv (x2sWKNv (x2sWQBv (X2IWXBvx2’Ywrl)))))A— (x2=YYW ) (1 9 252
286 333 337)

Since xl and x2 were captured by BKRP , and xa through xci, by BONP and BKBP, xl and x2 are not
equal to any of xa through xd. DIII erentTakenF our is merely four instantiations of 0/f ferentlMen,
compressed In to one WFF. This is a good illustration of the Inaccuracies involved in measuring
proof size merely by counting steps.

aassaYE DifferentlakenFour qx qi p1 p2 p3 p4 xl xa xb xc xd~
348 ((ql:qxV PREDEGAME(ql ,qx ))A( (pl :qXvPRE OEGAME (Pl ,QX ) )4\(( P2 qXVPREOEGAME(P2
,qx))A ((p3*qxvPREDEGAME (p3 ,Qx ))A((p4:qXvPRE0EGAt1E (P4,qX ))A(~’(MOvar Move pts
Mover Move ql)A(-’(Mover Move p2:Mover Move q1)A (— (Mover Move p3=Mover Move
q1)A(-.(Mover Move p4:Mover Move ql)A(Taken Move ql’xlA (Taken Move pl.xaA(
Taken Move p2:xbA(Taken Move p3zxcAlaken Move p4sxd)))))))))))))~ (— (xa xl)A(
— (xb.xl )A(-’(xcsxl )A-’(xthxl ) ) ) )

eas s aVE Oiffer ent lakenFour qx q2 p1 p2 p3 p4 x2 xa xb xc xd;
349 ((q2SqxvPR EOEGAME(qZ ,qx ) )A((pl.qxvPREDE GAME(P1 ,qX ) )A((P2*gXVPR EDEGAM E(P2
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,qx))A( ( p3SqxvP REDEGAME (p3,qx ) )A( (p45QxvP REDEGA ME(p4 ,qx ) )A (— ( M over Move p1.
Mover Move q2)A(— (Mover Move p2sMover Move q2)A(— (Mover Move p3.Mover Move
q2)A(— (Movor Move p4’Mover Move c12)A (Taken Move q2sx2A (Taken Move p1~xaA (Taken Move p2sxbA (Taken Move p3.xcATaksn Move p4sxd))))) )))))))),(~ (xa.x2 )A(-‘(xb.x2 )A( — (xc ’x2 )A— (xd ’x2)) ) )
sssss l abe l DIFFMOVERS:
s s s s s  s i mp l if y —BKRP.BKBPA-.BKRP.BQNP;
350 — (BKRP~BKBP)A— (6KRP~BQNP)

saa astau teq ‘P’P1’:#2 CALL _PN:CALL _PN+3 ,CALL _OY ,CALL_QN ,PRE O_QN ,’P1”P ,’P;
351 — ( x a .x l )A (— (xb .x I )A (- . (xc zxl ) A— (xdsx l) ) )  (310 311 312 313 333 337)

esesata uteq ‘P1~P:#2 CALL_PN~CALL _PN+3,CALL _QY ,CALL_QN,PREO_ON ,?f1’,19’;
352 -‘(xa.x2)A (— (xb.x2)A(— (xc’x2 )A— (xdsx2))) (310 311 312 313 333 337)

ii.!.!. We have presume a situation that is clearly impossible. We have posited the existence of
six captured white piece, all different , and a fallen piece, all to be selected from the pool of six
unaccounted for white chessmen. Our pigeon will not fit Into this hole. We can cautologically
produce the contradiction:

asses tauteq FALSE
a ‘P’P:1’,NOT _XN_EQ,WHICH_YYW , 14H0_XA:14H0_XA+3,t.JHO_X1 :WHO_Xl+l ,CALL_QN;
353 FALSE (1 9 333 335)

11.2. This permits us to negate one of our assumptions. We of course choose the assumption
t hat the BKRP promoted to the left of W KN1. Hence, we get something equivalent to specifying the
promotion square of BKRP to be either WKN1 or WK R1.

assss~abe l Ni OR Ri:
ess ss— I ‘P TAK E_2_ASSUIIPT ION ;
354 — (-‘(To Move qyZWKNI)A-.(To Move qy:WKRI)) (1 9 333)

“/‘~? ~7”/ ~V”/ 
- .

~~~ ~, ~~ l.~ ~~ ~~

r%i~J , 4 /~
~~~~~~~_ _

DKRP promoted on one of these squares.

fig ure 43
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Sect ion 4.?. ii The Soiiri~r o the Proiiio lii~ N1o~r

In either ~~~~ the: e W.1S .1 move when the 1i .iwn valued I~~RP w.~ on I4KNI or 14XR 1 . Notice that I or

the next f ew step s . we are cnmpdled to tollow tw o patal lel proof stiands , one for each of the possible
promotion squares We wi ll mci ~e these sir ands as soon .~s possible

e s . e s ~ t ~~i.r~ k L1 F ’ ronio t c ’  q~j t k }~~~
’ W~N1;35~ lo Movu ~y.WkN l~ (Moviir Movo qy.flkRP~(PAWNPROM Move qy~(Va1(Prevpos qy,

I3kRP)”PBAPOS (qy,WkNl)UIJkRP))) -:

ssa saV E Black Oic ir rornc ’te q~j F~ RP I4KRI ,
356 lo Movo qy.WkRb (Movor Move qy.t3kRP~(PAWNPR0M Move qy~(Va 1 (Prevpos qy,
RKRP).PRAP0C (qy ,WkR1 ).RkRP)))

1! .~ I Properly composed . we can use our chess eye to see backw ards as well as j ust looking about - f
A black pawn on 11KN1 came liom one of W KB , t4K N2, or W~R~i on WK RI , from either W KN or WK F~’.

• S’s. .r~ kl’ .;ijntlovrl hiu q~~, ~~ j ,  UkR r , W~N I t

357 (t’I ((;y, wkN1)~ ItkRPA(- .~P~~~l’O . Nl)IflkRP)n((PRFLfl GAMF (qy,qx)vqyrqx)AVal (
I’rovpos qy, lJ~.RI’) rF ’ l l) )) , Iq .((PRl DE GAMt (q,qx)vq.qx)A (Movor Move qEtD~RPfs ( 1o
Movo q ’W k NIA (VA UI P V ol( P ro v pos q, IWR P)A ( (- . ( Row W KNI .6 )A- ’ (Row WK N 1a 4 ) )~ ( (
From Move q .Mnkusq unro (W s uct Row W KN 1 ,Colu mn W KNI)nPos(Pr ev pos q, W k N 1)t LMP 1Y
)v ( ( lnke n Movt: q :Pos (fr~vpos ti , WKN 1)AW )l1T~P1FCE Pos (Provpos q,WKNI))A (Frnm
Movo q.Mok~~~iidro(W sucf Row W~N I , t 2 t o u c h t  Column W k NI )vF ron Move q.
M~Iko%quero (W~ucf Row W~N1 ,R’to& ichf C o l u m n  W kNI ) ) ) ) ) ) ) ) ) L

5*  s * * ~~ El I ,~ :kP , isi~~’~- t ’ 7 i un q~ , ~ &i, I~K~i’,tJKJfl
358 (Pos( qy ,W k R I) r l tkRPA ( - . (Pos(P O ,W~R 1).f lkRP)n( (P R1D [ GAM E(Qy ,qx )v qy IQx )AV el (
l’rt ivpos qy, U~RP ) I’i~ ) ) ). it; . ( ( PRI DECA Nt q, qx )vq~qx )A(Movor Move q~llkRPA ( in I 

-

Movo t) LWkRIA ( VAt (It P V o l ( P r i~vpos ~,UkRP)A((-.(Row WKRI’6)A- .(Row WKRI.4)),((f rom Move q .MakosL lunro (W s uc f Row W kR 1 ,Column WkR1)APOS (Prevpos q,WkRI)sLMP1Y
) v ( ( lo ko n  Move q~ Pos(P revp os q.W kRI)A W HII [ P IEC E Pos( Prevpo s q,W KRI ) )A(F rom
Movo q .Makosquaro (W sucf Row W KR1 ,L2touchf Column W KR1 )v Fro m Move q.
Makosq uti re(W su cf Row W kR1 ,R.’touchr Column W k R 1 ) ) ) ) ) ) ) ) )

• . s e s n i r n p l I t u  -. ‘ t I~~f I’ iJ , t4Kf ~1 ) ..[U’.R~
) \- ‘ ‘~lf l (~’0, WKNiJ ..BKRP) ;

359 — ( Pos (P0 ,W k R 1) ’ I IkR P)A- ’ (Pos( PO,W KN1) .BkR P)

In either ~asc , there was a position when I3~SRP was on th is From square.

a s s e s  l~ihe l ~~~~~~~~~a s  see,i n~t,mn lo ~iov~ q~j — lJk N 1 ;
360 lo Move qy.WkN1 (360)

seas i l , i bøl R I r ~’.umr’ ;
•# s 5 * . ; ,~’.tifli,’ ii, ~~~ ,;~:—lJ :- -j~ 1
3o1 in Move ~IY 

W kRI ( .tnI

ass e s t.;uteq ~~Pttt II.’ ~~~~~~~ ~~,CAL L QY;
362 :h~.((l’Rt nt r,AMt (t3 ,~;~ )vqrqx)A(Movur Move qsflkRPA (To Move q.WkNIA (VALUEP
Vn i (Prevpos q,I1KRP)n(( .(Row WKNI.6)A— (ROW WkNIs4)),((From Move q.Mekosquare (
Wsucf Row WkNI ,Colurn n WKNI)APOS(Provpos q,WKNI).LMPTY)v((iahon Movo q.Pos(
Pravpos q,WkN 1)AWUI1I PIECE Pos (Provpos q,WKN1))A (From Move q.Makesquaro (
W su c f  Row WKN I ,L2toucht Column WkNI)vfrom Move q.Makesquare(Wsucf Row WkN1 ,
R21,ouchf Column WkNl))))))))) (333 360 )

hi 
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saee staut eq ‘P1i~1~:~ 2 1~~~~~~~ ? 3 S 9, 1i~,CALL ...QY;
363 3q,((PREDEGAME(q,qx)vqvqx )A (Mover Move qSBKRPA (To Move q’WXRIA (VALUEP
Val (Prevpos q,BKRP)A ((— (Row WKR1E6)A-’(Row WKR1s4))~ ((From Move q .Makesq uare(
Wsucf Row WKRI,Coiumn WKR1)APos (Prevpos q,WKRI)sEMPTY)v ((Taken Move q.Poa(
Prevpos q.WKRI)AWHITEPIECE Pos(Prevpos q,WKR1))A (From Move q’Makuquars(
Wsucf Row WKR 1 ,L2touc h f Co l umn WKR 1 )vFrom Move q’Ma kesqu ere(Wsuc f Row WKR 1.
R2touchf Column WKR1))))))))) (333 361)

We call that position qi. We use the chess eye to simplify the defining WFF of qi.

esa ss3E ‘Pl~ qi;
364 ( PREIIEGAME(q l,qx )vql.qx)A(Mover Move q l ’ B K RPA (To Move Q1IW KN1A(VALUEP
Vai (Prev pos ql ,BKRP)A ((-.(Row WKN1s6)n— (Row WKN1.4))~ ((From Move q1~Makesq uare(W sucf Row WKN 1 ,Column WKN1)APos(Prevpos ql ,WKNI).EMPTY)v ((Teksn
Move qlEPos(Prevpos ql ,WKN1)AWHITEPIE CE Pos(Prevpos ql,WKN1))A(From Move qi.
Makesquare (Wsucf Row WKN 1 ,L2touchf Column WKN1)vFrom Move qlsMakesquere(
Wsucf Row WKN1,R2touchf Colu mn WKN1)))))))) (364)

eaaes jE ‘Pl~ qi :365 ( PR EDEGAME ( q l ,qx )vql.qx)A (Mover Move ql’BKRPA (To Move q1sWKR 1i~(VA LU E P
Vol(Prevpos ql ,BKRP)A( (— (Row WKRIt6)A-.(Row WKR1 t4 ))~ ((From Move q1~Ma kesquare (Wsucf Row WKR 1,Col umn WKRI)AP0S (Prevpos ql ,WKR1)sEMPTY)v((Teken
Move ql.Pos(Prevpos q1 ,WKR1)AWHIT EPIECE Pos(Provpos ql ,WKR1))A (From Move qi.
Makosquara (Wsucf Row WKR 1 ,L2touchf Column WKR1)vFrom Move qlzMakesquare(
Wsuc f Row WKR 1 ,R2touchf Column WKR1)))))))) (365)

e s e e s s i m p l i f y ~1;
366 (PREDEGAME (ql ,qx )vqlzqx)A (Mover Move q1SBKRPA (To Move QIrWKN1A (VALUEP
Va ) (Pr evpos q1 ,BKRP)A( (F rom Move q1UW KN2A P0S(Prevp os ql ,W KN 1) .EMPTV )v((Teken
Move ql’Pos(Prevpos QI ,WKNI)AWH1TEPIECE Pos(Prevpos ql ,WXN1))A (From Move qI
sWKB2vFrom Move ql.WKR2)))))) (364)

e s s s e s i m p i i f u ‘PP ;

367 (P~ELEr .AME( qA ,qx )vq1rqx)A (Movor Move q1CBKRPA(To Move ql~WKR1A (VALUEP
Val (Provpos gl ,BKRP )A ((Fron Move ql.WKR2AP0S (Prevpos ql ,WKR 1)sEMPTY)v ((Teken

Move qlaPos(Prevpos ql ,W KR 1)A WH ITEPIECE Pos(Prevpos ql ,W X R1))A (Fr om Move ql
sW KN2vFr om Move q l .WKN2)) ) ) ) )  (365)

Hence, the from square of either qi was one of the three possibilities.

seeeetauteq (PREOEGAIIE (ql qx)vql.’qx)AMover Move qlu.BKRPAVALUEP Val (Prevpoe
sql, BKRP)A (From (love ql.4.JKR2vFrom Move ql-WKB2vFrom (love qI4IKN2) ‘P1’;
368 (PREOEGAME(q1 ,qx )vql.qx)A (Mover Move ql.BKRPA (VALUEP Val (Prevpos ql ,BKRP
)A(Fron Move cilsWKR2v (From Move qI.WKB2vFrom Move q1aWKN2)))) (364)

saeatt auteq (PREDEGAIIE (ql qx)vqi.qx)A(lover (love ql.BKRPnVALUEP Val (Prevpoe
sql, BKRP)n ~From Move ql.WKR2vFrom (love ql-(4KB2vFrom Move ql-14KN2) t’P;
369 (PREDEG A ME ( q l ,qx )vql.qx)A(Mover Move ql.BKRPA (VALUEP Vel (Prevpos ql ,BKRP
)A(From Move ql.WKR2v(Fron Move ql’WKB2vFrom Move ql.WKN2)))) (365)

By existential quantification, we obtain the same WFF as a consequence of either (promotion square)
assumption.

sae e s 3 l ‘P1’ q i :
370 3q1,((PREDEGAME (q1,qx)v q1~qx)A(Mover Move q1SSKRPA(VAL.UEP Val(Prevpos qi,BKRP)A(From Move ql.WKR2v(Fro m Move ql.WKB2vFrom Movi ql.WKN2))))) (333

-- _.—_‘.-_-__ —. —. ‘ -  -
.-
‘

— :. ~~~~~~~~~~~~~~ ~~~~~~~~~—-~~--— - 
- - - - - 

- - . .



_ _ _  _ __ _ _

‘
I H

4.2.11. 
- 

- - A FOL Solution to the Chess Puzzle Page 157.

360 )

seesa3l ‘P1’ qi;
371 3q1. ((PREDEGAME (ql ,qx)vql:qx)A(tiover Move ql;BKRPA ( VALUEP Val( Prevpos qi
,BKRP)A (From Move ql’WKR2v(From Move qlaWKB2vFrom Move ql.WKN2))))) (333
361)

We know the p romotion square to be either l~JKN1 or WKR 1.

a*ssstaut To (love qy4iKNl v To (love qy-(4KRI Ni_OR _Ri;
372 To Move qy:WKN1vTo Move qy:WKR1 (2 9 333)

Hence, the presumed position qi certainly exists , regardless. We have used an uncommon
dependency removing inference rule, or elimination to generate this step. Without yE, we would have
needed an addition inference.

a s s e av E ‘P,1’f l’,’Pf ;
373 3q 1.(( PREOEGA ME(q 1,qx )vq1:qx)A( plov~r Move q1~BKRPA(VALUEP Val (Prevpos cli
,BKRP)A(FrOm Move q1~WKR2v(From Move glsWKB2vFrom Move ql.WKN2))))) (1 9)

Let us call the position from which black promoted his pawn qz. We know that the From square of
qz must be one of L.JKB2, 11KN2 or (4KR2.

ss * ss l a be l CALL QZ;
es es s3E 1’ qz;
374 ( PREO EGAME(qz ,qx )vqz:qx)A(t ’iover Move qz~BKRP,~(VALUEP Vel( Prev pos qz ,BKRP
)A(From Move qz:WKR2v (From Move qz:WKB2v~rom Move qz:WKN2)))) (374)

11.2.2. We notice that the WKBP has not yet moved . Hence, in qz, the WKBP was on 14KB2.

saesaVE ShortPawnPathThm qz,qx ,l.JKB2,t.JKB2,L.JKBP,QB(JO;
375 Ysq.( (MAY_ PAWN.. CAPT UR ES( W K B2 ,sq,plececoior WKBP)AMAY_ PAWN _CAPTIJRES (sq ,
WKB2 ,Piecec o lor ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~WK BPA( (P R EOEGAME( qZ,Q X )V qZ: QX )A(VALUEP Val(qx ,WK BP)v(BOA RO(qx ,QBLJD)A(valu000(QBUD ,WKB2):PWvValueon(QBUD ,WK92)zpB)))))),(pos(qz,WK82)gWBpvpos (qz,WKB2).
WXBP) )

sesa s l abe l ON I.JKBP;
s s s s e s i m p l i f y  1’;
376 (POS(qX ,WKB2) :WKBPA ((PREDEGAME (QZ,gX)VQZSQX)A(VALUEP Val (qx,WKBP)vBOARD(
Qx ,QBUD ))) )~ (Pos(qz ,WK$2 ) .WKB pv po5(q z ,WK g2) sWK8 p)

A similar statement can be made about the ~4KRP. It, too, was on t.JKR2 In qz.

*aas sV E ShortPawnPathTpim qz,qx ,l.JKR2, 14KR2,WK RP ,QBUO;
377 Ysq . ((MAY _ PAWN _CAPT IJRES(W KR2 , sq, P ie cecolor WKRP ) AMAY _ PAWN _CAPTURES( s q,
WKR 2 ,Plececolor WKRP))D(sqrWKR2vsqsWKR2))~ ((Pos(qx ,WKR2)sWKRpA(po5 (pO ,WKR2)E
WKRP#~((PREDEGAME( qZ,QX)VqZ.qX)A (VALUEP Vai(qx ,WKRP)v(BOARD(qx,QBUD)A(Va iueon(Q8UD ,WKR2)zPWvValueon(QBUD,WKg2)zpg)))))),(pos(qz,WKR2).WKRpvpos(qz,WKR2).
WK R P))

asses l abe l ON I4KRP;
as sas simp l if y ‘I’;
378 (Pos(qx ,WKR2).WXRPA((PREDEGAP1E(qz,qx)vqZ~qx)A(VALyEp Val (qx ,WKRP)v BOARD(
qx .QBUD))))~ ( Pos( qz ,WKR2)iWKRpvPos(qz,WK92)sWKRP)
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But the From square of any move is empty immediately subsequent to that move. Hence, neither of
these squares was the source square of the move of qz.

eseesVE EmptyFrom qz IJKBP WKB2;
379 Pos(qz,WKB2)sWKBP,— (WKB2.From Move qz)

easseVE EmptyFrom qz WKRP WKR2 ;
380 Pos(qz,WKR2)sWKRP~— (WKR2~From Move qz)

11.3. Hence, the From square ofqz must have been WKN2.

eas es labe l FROM QZ;
eases tauteq From (love qz-WKN2 CALL_QZ,ON_WKBP,ON_WKRP, lii 1’,R0t42_WP ,QX_QBUD ;
381 From Move qz.WKN2 (1 9 374)

Section 4.2.12 The Route to BKN7

And , as the From square of qz was WK N2, there must have existed yet another position, (we will call
ft py) for In which BKRP, pawn valued, was on l’JKN2.

eaaesVE PawnWaeOnThm qx ,c1z,BKRP ,WKN2 ;
382 ((PREDEGAME(qz ,qx )vqz’qx)A (VALUEP Val (Prevpos qz,BKRP )A(Mover Move qz~SKRPA (From Move qz:WKN2A~(Pos(P0,WKN2)aBKRP)))))~3P.((POS(P,WKN2)$BKRPA(PREDEGAME(p,qx)AVALUEP Val (p,BKRP)))AVALUEP Vai (Prevpos p,BKRP) )

s s s e s s i m p l i f y  -‘(Pos(P8 ,WKN2) .BKRP); ;_~~

383 — (P os(P0 ,WKN 2)sBKRP)

aseestaut ‘P’P:#2 CALL .QZ,FROM _OZ:’P;
384 3p.((Pos(p,WKN2):BKRPA (PREOEGAME(p,qX )AVALUEP Vaf (p,BKRP)))AVALUEP Va’l(
Prevpos p,B KRP ) ) ( 1 9)

eases l abe l CALL PY;
sssea3E ‘I’ py;
385 (Pos(py ,WKN2):BKRPA (PREDEGAME(py,QX)AVALUEP Val(py ,BKRP)))AVALUEP Val (
Prevpos py,BKRP ) ( 385)

And , similarly, a move that got him there.

sseasVE BiackPawnl’loveThm qx ,py,BKRP,WKN2 ;
386 (Pos(py,WKN2):BKRPA (_ (Pos(P0,WKN2):8KRP)A((PREDEGAME(pY,qX)VPY~qX )AVai(Prevpos py,BKRP) :P8)))~3q.(( PREDEGA ME(q ,QX)v QaQX)A (MOVer Move q=BKRPn( To
Move q.WKN2A (VALUEP Val(Prevpos q,BKRP)n ( (‘-(Row WKN2.6)A-’(Row WKP42s4))~ ( (
From Move q:Makesquare (W sucf Row ~lKN2 ,Column WKN2 )APos(Prevpos q,WK N2):EMPTY
)v((Taken Move qsPos(Prevpos q,WKN2)AWI4ITEPIECE Pos(Prevpos q,WKN2))A (From
Move q:Makesquare(Wsucf Row WKN2 ,L2touchf Co lumn WKN2)vFrom Move qu
Makesquare(Wsucf Row WKN2 ,R2touchf Column W KN2)) ) ) ) ) ) ) )

esseeVE PaunYa luedBiackPieces Preypos p~,8KRP;387 VALUEP Val (Prevpos py,BKRP),Va1 (Prevpos py,BKRP)’PR

cea se tauteq 1’t:#2 CALL_PY-2,CALL_PYs 1’;
388 3q.((PREDEGAME(q,qx)vqaqx)A (Mover Move qIBKRPA (To Move QCWKN2A (VALUEP
Vel (Prevpos q,BKRP)A( (~(Row WKN2C6)A-’(Row WKN2.4)),( (From Move qsMakssquere(Wsucf Row WXN2,Coiumn WKN2)AP0I(Prsvpoa q,WKN2).EMPTY)v((TakOn Move qePos(
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Prevpos q,WKN2)AWHITEPIECE Pos(Prevpos q,WKN2 ))A (From Move q’Makesquare(
Wsucf Row WKN2 ,L2touchf Column WKN2 )vFrom Move qaMakuquere(Wsucf Row WKN2 ,
Retouchr Column WKN2))))))))) (1 9)

We call that position, pz.

asses labe l CALL PZ;
seese 3E ‘P pz;
389 (PREOEGAIIE(pz,qx)vpz’qx)A(Mover Move pz.BKRPA ( To Move pz~WKN2 A (VA LUEP
Vtil (Prevpos pz ,BKRP)A((— (Row WKN2’6)A’-(Row WKN2s4)),((From Move pz~Mokesquare(Wsuc f Row WKN2 ,Column WKN2 )A Pos(Prev pos pz, WKN 2) :EtIPTY)v( (Taken
Move pz=Pos(Prevpos pz,WKN2 )AWHITEPIECE Pos(Prevpos pz,WKN2))A (From Move pz~Makesquare(Wsucf Row WKN2 ,L2touchf Column WKN2 )vFrom Move pz.Makesquare(
Wsucf Row WKN2 ,R2touchf’ Column WKN2)))))))) (389)

Applying the theorem that sees (he possible sm r” - ;uares for a given pawn and square, we get that
BKRP reached this square from one of WKB3, (4KNJ ui i4KR3.

es eess im p li fy ‘P;
390 (PREDEGAME(pz ,qx )vpz:qx)A (Mover Move pz*BKRPA (To Move pz:WKN2A (VALUEP
Vel(Prevpos pz,BKRP)A((From Move pz:WKN3AP05(Prevpos pz ,WKN2)sEMPTY)v((Taken
(l ove pz:Pos(Prevpos pz, WKN2)M1 HITEPIECE Pos(Prevpos pz, WX N2)),~(From (love pz

:WKB3vFrom Move pz :WKR 3))) ) ) )  ( 389 )

11.4. Now, we note that the I.JKNP, on the third row, has spent the entire game on the squares
14KN2 and L41<N3.

s issaV E Shor tPaur7Path Thm pz, qx ,IJKN3,141(N2,IJXNP,QBUD;
391 Vsq .((MAY_PAWN..CAPT U RES(WKN2 ,sq,Piececolor WKNP)AMAY_ PAWN _CAPTURES(sq,
WKN3 ,Plececo lor WKNP )) ,(Sq :WKN2v sq~WKN3) ) ,( ( Pos (qX ,WKN3) :WKNP A( Pos (P0 ,WKN2) :
WKNPA ((PREDEGAME(pZ,qx)vpz:qx)A (VALUEP Val (qx ,WKNP)v(BOARD(qx ,QBUD)A(Valueon
(QBUO ,W KN3) .PWvV e lueon(QBUD ,WKN3) .P8)))))) ,(Pos(pZ ,WKN3) ~WKNPvP os( PZ ,WKN2 )~W K N P ) )

aess as imp l if y 1’;
392 ( Pos( qx ,WKN3)=WKNPA ((PREDEGAME(pZ ,qx)vpZ:qX )A(VALUEP V a i ( q x ,WKNP)vBOARD (
qx ,Q B U D ) ) ) )~ (Pos(pz,WKN3):WKNPvPos(pz,WKN2)sWkNP)

1L5. In the move that brought BKRP to WKN2 (pz) he was certainly on the latter.

ee* **Y E (loverOnTO pz, I4KNP,WKN2;
393 (Pos(pz,W KN2 )~WKNPATo Move pzvWKN’l • 

,~:Mover Move pz

11.6. And, as the From square of any move is subsequently (immediately) empty, and I4KNP was
on UKN3 , then the from square of the move qz must have been either WKR3 or WKB3.

eses s VE EmptyFrom pz,WKNP ,14KN3;
394 Pos(pz,WKN3).WKNP,-’(WKN3.Fron Move pz)

12. But either of these squares Implies the capture of a white piece on the white square, WKN2 .
This piece must, of course, have been one of the wh ite ,.,.c~ eligible for capture.

sesseYt WHICH_OX_TAKEN pz ,Poe (Prevpos pz, WKN2} ,WKN2;
395 CHESSPIECES Pos(Prevpos pz,WKN2)~(((PREDEGAME(pz ,qx)vpz’qx)A( Taken Move

-.* ~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~ - 
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pz~Pos(Prevpos pz ,W KN2)AWH ITEPIECE Pos(Prevpos pz, VK N2)))~ ((Pos(Prsvpos pz,
‘JXN2).W Qv(Pos(Prevpos pz,WKN2)~VQNv (P os(Pre v pos pz ,WX N2)sW K Nv(Pos(Prevpos pz,W KN2)sWQBv ( Pos(Provpos pz ,W KN2)aWX BvPos(Prevpos pz ,W KN2)sywr l))) ) )A(-’(Po$(
Prevpos pz,WKPL2).yyw),~( (T o  Nova pz.W KN2AWHITE$ QUARES WKN2 )~-.(Pos(Pr.vpos pz,
WKN2).WQ$))))) (1 9 252 286)

eases s imp l i f y WH I TESQUARES WKN2A— (WKNP~BKRP);396 WHITESQUARES WKN2A— (WKNP~8KRP)

Let us refer to the white piece captured on LIKN2 in pz as Pos (Pr.vpo, pz , WKN21. This was
certainly a CHESSPIECE (only chesspieces are ever captured).

es a se s i mp l i f y Vp,CHESSPIECES Taken (‘love p;
397 Vp .CHESSPIECES Taken Move p

seeesVE ‘P p:;398 CHESSPIECES Taken Move pz

12.1. Hence, it must have been one of the white traveling white officers, and not the fallen piece.

sea sst auteq CHESSPZECES Pos(Prevpos pz.WKN2)A
* Taken (love pz Pos(Prevpos pz W KN2IA -3
* (Pos (Prevpos pz,WKN2)-t40v Pos (Prevpos pz, IJKN2)-W QNv
e Pos (Prevpos pz,WKN2).WKNv Poe (Pravpos pz,WKN2).WKBv
* Pos(Prevpog pz,14KN2).ywrl}A
* —Poe (Prevpos p~,WKN2).yyw CALL_PZ+1t ‘P1”P,1’,R0W3_WP,QX_QBUO;
399 CHE SSPIECE S Pos(Prevpos pz,WKN2 )A (Taken Move pz~Pos(Prevpos pz,WKN2),~((
Pos(Prevpos pz ,WKN2) :W Qv(Pos(Prev pos pz ,W KN2) sW QNv( Pos(Prevpoa pz ,WKN2).WKNv
(Pos( Prevpos pz ,W KN2)cW KBvPos (Preypos pz ,WX NZ) :ywrl))))A’—(Po$(Pr.vpos pz ,
WKN2)ayyw))) (1 9 252 286 389)

We need also point out that these are five different pieces.

I
I~~~~

j /1 
- -

-~~ ~~~~~~~

~F’ ‘~‘~~~
/ / / ‘/ 

//,/
~2~,’// -~- - - - ~ ‘/‘// ~~“/~~~~~~~~~~~~~~~ -/o~~~~~~~~ L~~ ~~2’-~~- .-~~ ~~~~~~
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Ii~1iige of fic~rs were capiwred on these sg~aores,

figure 44
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ess asV E OifferentlakenFour qx ,pz,pl ,p2,p3,p4,Pos(Prevpoe pz,WKN2),xa,xb,xc,
ex d ;
400 CHESSPIEC ES Pos(Prevpos pz, WKN2 )~ (((pz .qxvPREDEGA ME(pz ,qx ) )A ((p 1~qxv
PREOEGAM E(pl,qx ) )A( (p2 .qXvP REDEGAME(p2 ,qx))A((p3IqxvPR EDEGAM E(P3 ,QX ) )A(( P4$
qXvPR EOEGAME ( p4 ,qx ) )A(-’(Mover Move pisMover Move pz)A(- ’(Mover Move p2sMover
Move pz )A(— (Mover Move p3sMover Move pz)A(’-(Mover Move p4:Mover Move pz )A(
Taken Move pz’Pos(Prevpos pz,WKN2)A (Teken Move plsxaA (Teken Move p2sxbA (
Taken Move p3.xcATaken (love p4:xd)) fl))))))))) ,(-’(xa:Pos(Prevpos pz ,WKN2 ) )A (
—(xb :Pos(Prevpos pz ,WKN2 ) )A(- .(xcsPos(Prevpos pz ,WKN2 ) )A—(xd:Pos(Prevpos pz ,
WKN2) ) ) ) ) )

5*5*5 tauteq 1’:# 2#2 ‘Pt: ‘I’.CA LL..PZ+1 ,CALL_PN~CALL_PN+3,O1FFMOVERS;
40 1 —(xa.Pos(Prevpos pz ,WKN2)) A (’- (xbs Pos(Prev pos pz ,WKN 2))A ( ’- (xc~Pos(Prevpos

pz ,WX N2 ) )A— (xds Pos(Prev pos pz, W KN2))))  (1 9 310 311 312 313 389)

13. Hence, by the usual counting argument, the only piece that could have fallen from the
board was the white queen’s bishop.

eases  tauteq yyw.WQB ‘P,’P1”P,UH I CH _VYI.J,WHO_XA:l.JHO_XA+3,NOT_XN_EQ;
402 yywzWQB (1 9 252)

asses  tauteq Pos(px UKR4 ) .IJQB CALL_YYW ,SAME_ON_W KR4 ,t~403 Pos(px ,WKR4) sW QB (1)

Removing dependencies, and generalizing, we see that , as a consequence of our chess axioms, if a
chesspiece fell from WK R4 in a position which had GIVEN as a board, that chesspiece must have been
the white queen’s bishop, quod erat demonstrandum.

*sss*Dl CALL ..PXDI’:
404 ( BOARO(px ,GIVEN)ACH ESSPIECES Pos(px ,W K R4) ) ~ Po s(px ,WKR4) :W QB

c eas e  labe l THE THEOREM;
sessaV l ‘P px ;
405 Vpx .((BOARD(px ,GIVEN)ACHESSPIECE S Pos(px ,WKR4 )),Pos(px ,WKR4) sWQB)
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Chapter 5 Conclusions

Section 5.1 Perspective

We have here a mass o verbiage and proof. It is certainly Important to step back and, in
perspective, assess just what we have learned in its generation.

Let us reiterate: we have taken a difficult problem of retrograde analysis chess. detailed a set of
ax ioms for the rules of chess, and have proven the solution to that puzzle within our axiom system.
While not modeling the hum an process of proof discovery, we have modeled the human ability to
ac..ep t a valid proof. That is, our FOL proof parallels and corresponds to the human proof.
particularly in two Important dimensions. We have, in FOL, been able to model both the ability to
accept and structure inference (the basic deduction framework), and the ability to jump to the
immediate conclusions of observation (our chess eye) . We are exploring the nature of (adequate)
reasoning sequences , rather than finding the (appropriate) heuristics for generating such sequences.

We also need to stress what we haven ’t done. We have not presented a program which would, in
any  sense, model the way the human intelligence arrives at the proof. Such a system would need
elements of intuition and search , in addition to ability to correctly perform inference steps and
computat ions. Like almost all proofs, our chess proof gives little explanation as to why some step
was ta ken (other than that it worked); no dead ends or useless inferences litter the way.

Adequate ly modeling the human ability to generate a proof is an extremel y difficult problem.
essentially equivalent to solving (much of) the Al .  problem itself. Presenting a solution acceptaNe
both to a human and a machine was , in itse lf , a hard problem. In a strong sense, being able to
accep t correct reasoning is a prerequisite for general intelligence. We do not foresee solution of the
more difficult problem. that of a general computer intelligence, in the near future. Rather , we view
examinations of representational systems (such as this paper) to be part of the (long) process of
achieving the necessary understanding to eventually create an artificial Intelligence.

Let us also emphasize that we are not, of course , asserting that the solution of the fallen piece
prob em reveals all aspects of knowledge and representation. We have been examining in this proof
only sev eral Issues, particularly the interactions and interfacings of deduction and observational
computation. This is by no means adequate for a thorough representational system. We have dealt
in a highly stiuctured and complete domain. We have not touched upon many modalities
(knowledge. belief , desire) that a truly intelligent program would need to manipulate. Our
expression of event s (moves) and t i l :’  - . i.’ relationship between positions in the same game) white —

usefu l and revealing, is that of a discrete system. not a general continuum. There are certainly many
properties required of generally intelligent systems that we are not even aware of, and will not
perceive the need for until we stumble into them.

Section 5.2 Representation and this Proof

One of the more interesting facets of this investigation Is the comparison and selection of the
various representational devices emp loyed in our chess axioms. S

Representational choices are based upon two primary criteria. We want that our representation
should be convenient. We should be able to express (as easily as possible) the range of expected
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problems and solutions within the model. Our representation must , however , retain integrity with
respect to the problem domain. We are not Interested in seeing how we can pervert the original
problem into another, more tractable (though equivalent) domain. Rather , we must represent the
given problem.58

Perhaps, while we are discussing natural representations , a pair of examp les from our chess world
would be appropriate. When chess pieces are captured, they cease, (in some strong sense) to exist .
There is no square which we can point to, saying, that piece A s on that square. Captured pieces
vanish without a trace. Most theorems about pieces and squares must therefore begin: if a piece x is
on a square sq in a position p Men ~.. . Imagine instead that a captured piece merely changed its
value , and became a ghos t, nevertheless retaining reference to its capture square. Our axioms and -

~ 

—

proof would then be much simpler. Every piece would have a square of its own. Additionally, a
position could reference those pieces ca ptured in reaching it by pointing to the ghosts on various
squares, rather than creating a hypothetical ancestor position in which they had been captured , and
reasoning about that position (as we do now). Our counting arguments (most of the last hundred
steps of the main proof) would then be much bnefer.

Consider secondly, the notion of value and piece (which we will exp lore in greater detail further on).
Let us now merely point out that the king pieces and the empty piece have unique and constant
values (we have several theorems to this effect: see, for example, 1(IngValuerhml and EmptyisMi).
But these theorems could be dispensed with , and several proofs reduced several steps, if we were to
blur the distinction between VALUE and PIECE, and assert , for examp le, that BK— KB59 and
EMPTY— MT .60 What would result would be (slightly) smaller but less natural proofs. It is not that it
would be wrong to axiomatize in this fashion, so much as unpleasing.61

-~~

In the following subsections , we will examine some of the more interesting representational decisions
embod ied An our chess axioms.

Section 5.2.1 State Variables and Computable Objects

The major representational dichotomy in this system is the balance between POSITIONS , a state
vector containing all of the information required to reconstruct a particular game (perhaps a list or
moves or boards), and BOARDS which is a (concrete) representation of (most of) the current status of
a game.

A passing glance at chess would reveal the necessity for the latter, though, presumably. not the
former. After all, chess problems are (typically) presented in terms of chess boards, not as the entire
game played to reach some position. Similarly, (almost all) chess moves are defined in terms of a
chess board; this rook can move so, regardless of what line he used to reach his square, or which

58 It goes almost without saying , of course, that th, r epr esentatio n must be corrsct (wu must realty be solving the problem). In
most domain., g.n.r.l ity is a desirabie attribute to b. ..eth.ticsll y pleasing, Hi. selected aiim. sy ,t.m should be abl, to expre ss more
than the limit ed issue at hand,

59. TN. piece BK is INs sam e as the value KB.

60 After al l , a,,th ,tic e is an issue of tast e

6i. if w were embody this notion wit hin our aiiom.tiiation, and ts liter seek to analyse problem, wher, pawn, could promot e
to king,, thi. simpl if icat ion would 1.t en our wsy .
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square he began the game upon.62

One does not become really aware of the necessity for the state variable , (w hat we have called the
p osition ) until one approaches retrograde analysis. We frequently refer to (for example) the identity
of a particular piece (which pawn was it in the opening?), to captures and moves of the game that
reached some arrangement, and to the path some piece traveled. These notions are naturally those
of the position , not inherent to a particular board Many different games can be played to reach a
given chess board; therefore , these are not aspects of the board per se.

The Importance (in retrograde analysis) of this sort of temporal reasoning is reflected in the axioms
by the predominance of the POSITIONS over the BOARDS (and over everything else). Rules are
typically defined in terms of their effect on the state of the world (position), rather than their local
effect on the playing board. Boards are employed almost exclusively for defining and computing the
local moves of the various chess values. Thus, the predominant predicate for positions becomes
SUCCESSOR , defining the (legal) transitions from position to position; for boards, IIOVE TO, expressing
the local, legal paths of the various values . The basic movement consequence axioms begin at the
positional level, only to descend to boards when considering the actual move.

The concepts of board and position are tied together in a predicate and a function. The function
Tboard (total -board) extracts the board that would result from playing out a given position. The
predicate BOARD is true when its second argument is either the Iboard of its first, or a less defined
board (section 2.1.5).

Within the concept of observation and inference, this position and board dichotomy has further
significance. Positions, as expressed in these axioms, are an elusive, intangible concept. There is
nothing we can point to and say: “that is the position of interest ”. Rather , positions are the child of
the inference scheme; we never (except the initial position) observed something to be true of a
particular position. Boards, on the other hand, are concrete objects . The observations
(computations) on boards are more important than the deductions applied to them. Each board has
a distinct LISP model representation; they are the primary vision of the chess eye.

In retrospect , this separation into state variables and computable objects seems to have been a good
decision. The problem would have been very intractable without the coherence provided by the
state selectors. Similarly, Chess induction (Sections A.2 and 2.2.4.1) has proven to be a very useful
and unifying concept , alien to the temporalities of a pure.board approach. The ability to compute
on board representations has resulted in tremendous reduction in the total inference required.

Early In this research , there existed a distinction between legal posicwns and ordinary positions.
Legal positions were those that (presumably) could be reached in a legal chess game. After the first
iteration of proof, we observed that, essentially, we never proved anything about the illegal positions.
The distinction between the two was then deleted from the axioms. On reflection, we find a parallel
between those “illegal” positions, and severa l of the other unused sorts (such as EXSQUARES~~). If we
were to use these axioms in a forward direction (as opposed to this retrograde example) to create
legal successors to a given position, we wou ld probably axiomat ize the “Ne~ctpoe ” function (section
2.1.7.1), which would take a position and a move, and return the position resulting from making that

62 Castles , en pass•Iit capturs. , and var ious dr aw demand circumstances are sicept ion. to this rule.

63 Those squares th. captured pisces occupy. For sumpis, th. funct ion P.spcf rstu,nS an element in the domain of
EXSQLMRES

~ 
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move in t hat position. This general function would not be obliged to return a legal position (and
would not, if not referencin g a legal move) Hence, the range of this function would therefore be
declared to be on all positions. not mere ly the legal ones. The earlier impulse towards legal positions
is therefore seen as an anticipation of this extension.

Positions, as described , are virtually not expressible within the model space; representational systems
that depend to heavily upon doing model computation as the only inference mechanism will be
unable to deduce results of the complexity of our given problem.

SectIon 5.2.2 Incompletely Defined Objects

Another perspective illuminated by the distinction between positions and boards is that of partially
defined objects. That is, we need a mechanism for expressing predicates about objects not all of
whose features are known to us.

There are two thflerent kinds of partta! defiiuti on which we consider here. The first is illustrated by
t he positions sort. Positions are fully defined, in that , any question we might have about a position
can be answered by examining that position. This may seem paradoxical. After all, we never know
anything about any position until we infer it. We resolve this paradox by never hav ing any “real ”
positions.64 Rather , all statements about positions are of the form Assume we have a pos ition wit/ i Me
following properties Notice that there are no positional Constants; onl y positional variables (and
parameters). We perform no observational computat ions upon positions. And we have no explicit
partial positions. Rather, an entire game can be rep layed from any position.

Boards, on the other hand, a~e concrete objects. We want our LISP functions to be able to
manipulate these objects. Within the current structure of FOL, this is possible only if the object is a
constant. But we are confronted immediately, in the ver y problem statement , with a variable board,
our problem being to complete the definition of the given, partially defined board.

There are only twelve different chess values. Clearly, one possible stratagem would be to consider
each of the twelve possible totally defined boards, and prove that only only one of them could have
arisen in a legal chess game. This approach fails, however , to satisf y both esthetic and practical
considerations. Aesthetically, we are examinin g reasoning. and seek to handle more than simple case
analysis. We certainly do enough of that in the rest of the proof. Practically, these case
considerations can grow exponentially with the depth of analysis. If each possible board spawns a
board with two more unknown squares. we soon have the cube of twelve cases to consider. Each
consideration is likely to be a fair sized proof in itself. And this method will flounder on any
consideration of unbounded sets.

Rather , we sur mount this obstruction by the introduction of an undefined constant, to be inserted in
the board structure whenever the value of a particular square is unknown. While this is a clever
and transparent solution of the immediate problem, it has ramifications throughout the entire axiom
structure. Most obviously, values on boards and values in positions are no longer trivially identical.
Rather, that equality is conditional on the board being defined on that square.65 This is usually
painfully obvious, bu t demands another step. Not, however, a terrible penalty. Greater confusion

64. This aubsaqu ent discuss io n rightfvll y ignores P0, th. ,nitiil position.

65. T hat a, Val(p Pos(p sq) ).Vahueon(b sq ) if .Vs lveon (b sq).iJO (and BOARD(p b)) (this is the ax iom vALUETRANSPOSITI0N). 
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arises , however , in t h e  cases of more complicated predicates . What should the value of MOVE TO be,
say, if an undefined square blocks the way? It is certainly not true, but, in another sense, is no t really
fa lse. That is, we wou ld (sometimes) like to use tIOVETO to show some move impossible; other times,
to demonstrate (with the appropriate assignation of values o the undefined squares) that such a —

move could be accomplished. The solution adapted in this axiomatization is to make t1OVETO
demand a fully demonstrated possiblr’ ii~ove. Various theorems, such as
TransitiveSubboardOrthogonanty (section A92.2’) and Dlagonalthm (section A.9.3. I) relate
movement on partially defined boards to that on more complete boards.

An alternate possibility was not employed. One can easily imagine, within the present axiom
structur e, predicates such as MIGHT _IIOV ETO and rIJGHT _ORTH O, whic h would be true if, sa y, the
squares on the move’s path were either empty or undefined (MT or 110) instead of only exp licitily
empty. Such predicates might simp lify the definitions of several of the movement axioms, but
comp licate the translation to the more precise forms.

Section 5.2.3 Representation of Aspects

What may seem, perhaps, the most aberrant distinction embodied in these axioms is that between
piece and value. Pieces, we recall, embody the identity of each of the thirty two chessmen , including,
pat-ticula rly. th eir initial squares. Values, on the other hand , are a reflection of the rank of an
individual piece at a given point in the game. In playing chess, the names of the particular pieces
are never invoked. Rather, the cu rrent value of any piece is adequate for determining its available
moves. For the naive player , ex perience with chess comes from playing chess games, not from
solving chess puzzles. Additiona lly, except for the rare occasion when a pawn has promoted, pieces
do not change their value. Only in concocted retr ograde analysis chess problems, is the path a piece
followed important. Only in puzzles does one see such a bizarre collection of promotions.
Therefore, perhaps, only to experienced puzzle solvers is the importance of this distinction obvious.

Let us point out that this is not an entirely happy arrangement , even though it is a necessary one.
We need shave our lemmas and theorems to a tight tolerance of their intended use, matching piece
and piece, value and va lue , unless we are willing to expend precious steps demonstrating to the
mac hine (again) that this particular bishop does in fact have bishop value. Additionally, this
equiv alence, performed so naturally and immediately by the human , requires theorem invocation in
the proof. We take consolation, however, in noting that the human tendency to jump to the
conclusion that any officer (especially a non-queen officer) is not a promoted pawn is avoided by this
deductive approach. Within a formal logic framework such as FOL, that rook valued piece is as
likely to be a promoted pawn as one of the original rooks. It seems that any system wishing to
generate a solution to real ptnhlems must rely heavily on grabbing the immediate, almost obvious
device (McCar thy 7clh]

Some of the trouble associated with the Va l function could have been avoided. It is not a necessary
operator, the same result being indicated for pieces still uncaptured by the corresponding valueon
the appropriate board. That is, Va I (p x) - Va iueori (Tboard p. Poepcf (p c ) ) . This would
result in a clean partition between piece and value, along the same line that divides position and
board. It would, however , result in a larger and more cumbersome proof , as the translation, and its
preconditions , would need frequent justification . Hence, we see Va I to be a simplifying function, a
short ex pression of a common notion.
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Section 5.2.4 Expandin g the Vision of th e Ch ess Eye

A long with the more obvious (or , at least , having selected the system framework , obvious) functions
and predicates of our system. we note several more creative and intrusive functions and piedicates.
These functions and predicates serve two functions. In some cases the predicate is of a definitional
nature. That is. it is a short expi-esslon of a frequently invoked notion. An example of this
definitional form is the pred~ca~e P~~~3T EOPA .~N. This predicate could be dispensed with by
substitutin g its definition (axiom MCONSEQ/) for each of its occurrences, a mechanical process. Its
sole value lies in providing economy of expression .

This use of definitional predicates is a common device in first order logic, and deserves no further
comment. More interesting are the constructive functions of this axiomatization , such as the
Unmkrnove and SQUAR E_6ET~EEN opera tors. They different from the simpler definitional axioms , and
from al l conventional logic definit ions, in that they have associated attac/i ~nen ts in the chess eye.

Consider the exam ple of the Ur’r~kniove funct ions, whic h take a board and a move , and return the
board of the previous posit ion. We are performing here what is (for a human) an essentially
mechanical and observationa l task . However , to do the same work in a purely inferential framework
requires both the declarations of another individual board , and a quantification check of the
essential identity of that board , and the original board , on all of the uninvolved squares. Much
effort is saved through the pure computation. Or , in the local colloquial , it ’s a winner.

What we must catalo gue here instead is a pair of ret rospective regrets. For one thing. a regret at not
using this device to greater advanta ge . A second regret a: the limits of the app lication of this device
in our present FOL system. As the chess eye is limited to computing on constants , there is no
mechanism for computing on the known properties of parametric objects , other than the clumsy use
of a Constant undefined. We wil l consider this regret in greater detail in section 5.8..

Section 5.2.5 Other Natural and Unnatural Notions

We conclude with a few additional comments on several of the minor sorts mentioned in section
2.1.1.

Many of the declarations and much of organization of this proof is devoted to simplifying the
inference process. However, we must report that such simplification has not been pursued at the cost
of sacrificing aesthetic va lues. An exam p le of this devotion is the sort MOV ES. It is a very common
notion to speak of, fo r examp le , the move that reached this position . or the possible moves available
in this position, or of the move that brought some piece to some square. Hence, the sort of MOV ES.
and the function Move , which extracts the last move made to reach its argument position.

However, carefu l examination of the entire proof reveals that never is a move referred to, except to
speak of the move of a position.66 Each of the common funct ions on a move, such as From and
Mover is invariabl y invoked on the Move of some CAMEPOS IT ION. The proof would be somewhat
simplified by the deletion of the MOVES predicate. However , the aesthetic criteria (it is, after all, a
natural notion) demand its retention .

Perhaps one of the most obvious sorts is that of COLORS, After all, the combat of the black and

66 A s l,~ht exceptio n occurs hera with respect to lemmas soi sly concerned with the structur, of the move hierarchy (suc h as
MOVETYPES). However , Like the mo1or uses of moves, the its of a “ s ov t of movss is nOt requir ed her. eithsr
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white armies is fundamental metaphor of the game. But even within this natural division , there
remains room for choice. it is convenient to have one’s functions always evalua te to some value.
We speak , for instan ce, of the Piececo lor 14K as I4HITE. What then should the Piececo lor EMPTY
be? We considered introducing GREY, the color of the piece on any empty square. But, once again ,
this can hardly be defended as a natural notion. Secondly, and perhaps more importantly. it is not
clear that having a GREY would serve to reduce the size of proofs.

Ev en as obvious a sort as the squares of the chessboard requires some decisions. We did not
originally perceive the need for referencing the coordinates of squares (rows and column) at all.
Later , as we needed to squeeze proofs where simplification could not carry us, these Sorts became

— required. It is clear that we do not want to depend solely on coordinate pairs, however. Most
square references need be only to fixed squares. The differences between rows and columns in the

= axioms could have been deleted, at the cost of a slight increase in incomprehensibility, and a slight
decrease in length of proofs. Of course, if these axioms were to be used in situations requiring more
algebraic manipulation of row and column values, the definitions of these sorts would require
suitable ex pansion.

Section 5.3 Altern atives

So far , we have been examining the “micro” decisions involved in generating these axioms,
consider ing choices froii~ within our selected framewor k. While we believe that the representations
chosen have been generally appropriate, it is still worthwhile to consider the consequences of various
alternate choices.

Section 5.3.1 Levels of Axiomatization

Elsewhere in this paper (chapter 2) we spoke briefly about the choice of level of the axiomatization.
Let us reiterate on that notion.

Almost any large mathematical proof can be made arbitrarily easy or difficult by the selection of the
initial axiom structure. The situation in the chess world is essentially similar. For examp le, if we
had taken all of the lemmas in appendix A as theorems (all of them are “facts ” obvious to any
ex perienced puzzle solver), this paper would be considerably smaller. Even beyond merely
presentation of multiple lemmas, it should be possible to restructure the problem so that it is no
longer a formal proof, but, rather , the sequential app lication of various “rules” for the solution of
chess puzzles. But certainly, the more specific and useful the given rules to this particular problem,
the less ca pable they would be of expressing other kinds of chess puzzles.

We could, of course, have proceeded in the opposite direction, defining, for exam ple, the various
piece movements as mathematical relationships, and entangled ourselves in the mathematical
structure when proving even a simple move. While there are certainly many things thereby
exp ressible that are difficult to state in the present axiomatizat ion, the resulting proofs might easily
be an order of magnitude larger.

Perhaps the only moral to this section is that one can make any problem arbitraril y difficult (and
most problems arbitrarily easy) by selecting a suitable starting place, the given conditions. And that
the size of this paper, and the complexity of the proofs is a reflection of our opinion of the
appropriate generality of our axioms. Though this “moral” may seem obvious, It is an important
criterion in the evaluation of any intelligent computer system.
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Section 5.3 .2 Prior ’s Modal Tense Logic and Positions

We have not , of course . presented enough evidence to conclude that first order logic, even augmented
by semantic procedural atta c hm s ’iits , is a ~

i.r1cral enough scheme to express all of the representation
issues our intelligent computer will ever need. It ’s probably not. Even w ithin the context of first
order logic , our system exam ines only a minute corner of the universe of systems .

One notable omissio’ i is the lack , in our system. of equivalents of the various modal operators. Our
retio gi’ade chess puzzle embodies complete knowledge ; there is no issue of the bel iefs of individuals
(in fact, no individuals ). Wh ile a forward (competitive) ana lysis might include operators referring to
t h e  desu es and goals of the player s . our backwards attention precludes even this. 67

Perhaps the one parallel to modal systems we can draw is to modal tense logics, for examp le, the
modal tense logic of Prior ((Prior57), (PriorG8j)

Simply stated , Prior ’s system ernployes two modal operators , V~ and 1~’, which signify Past and
Future , respectively. Thus, fo r some proposition n, 

~ ? si states that ii was true at some time in the
Past; similarly, 1~’n asserts ifs occasioned future truth.

Now , as we deal with ret ; ograde analys is , ~ is certain ly the interesting operator. Thus, we might say.
if that pawn is on Mis square ’. M n  it is true ’ Mat , in the past , Mat pawn captured an opp asi ng p iece on
that square. This may be contrasted wi t h our present formulation of, if Mat paw n is on this squar e’,
then there existed a p os i t i on in the CO1.iSi ’ of :i is gam e, for which the move of that pasit ion was a captur e
l iy that pawn on that square of an op/ ;osing chess man.

Notice that our present notat ion is stating more than this modality. The hypothesis asserts not only
the capture , but also presents us with the occasion (position) in which the capture occurred. Mote
particu larly, we can easily ex press in the present system anything asserted in the modal system.
Thus, if there is to be any advanta ge to employing the modal ~ operator , i t  must come from
pe rmitting the deletion of some part of our present system. The obvious candidate for this
elimination is our sta te vector , the position.

Now, by ex 1)hicitly inventing the state where some proposition was true, we easily get both
q uantificat iotis, the re existed a time when it was true , and it was a/wa ys (rue. Expressed in a modal
form , t hese become it was true in Me past (

~ n) , and Mere was no time when it was not tru e (—~~ —si) .
somewhat clumsier , but still useable. Expressions of more complicated notion compound the
com plexity produced by the fl)odal operator ; on the other hand, there are a few situations where its
employment would save a few steps.

Perha ps the major contrast between the current p os itions and the modal ~ operator is that the
proposition asserted by the modal operator is one about the current situation; while the positional
s ta te vector makes a statement about a similar state vector , and then relates the two. This would be
tine even if the modal operator was defined upon a “board like” vector , rather than our present
ptlsitiofls. As the axioms necessarily defme attributes of states , the y can easily be used to manipulate
hi ’ esulting contrived state. Eff ectively, the c urrent system gives a more particular individual to

ImIa nI h)ulatc. A general moral of this research , echoed elsewhere (section 5.6.4) is that one is better off
wi t h a (unct;on that returns an individual, than a predicate presumed true about some less specified

~.e s..~ ,,c t ,s Iouctwd upon in socl ion ~ 4 2

,~~~~~~~~~ 
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thing. But just as the predicate could work, our system could probably the transformed (kicking and
screaming) into the modal form.

Section 5.9.3 Fifing in the Blanks

A naive approach to this representation problem, particularl y that of someone used to programing
computers, and not considering the philosophical representation issues of artificial intelligence, would
be what we call Me fl/I in Me ~anks approach. This approach goes somewhat like this:

We have a sit uaf:on (a board) as a preNem. This board consists of sixty four squares. We “wvU e” on each
square whatever we know about Mat square. For exam pie, in Me given pm~eNem , we migh state that the
BQ2 squa7~ has some white rooked value , while the WQR4 square is unknown. We might have another
caNe , Mat of Me location of each piece (the white king is on BKRI) ,  and so forM . Eventually, by
manipulating Me ru/es relating th t’s~ laNes , and filling in entries of M tables, w would amve at ouv
answ er.

This approach bears a cursory resemblance to formal logic. The information contained in any table
entry is simply expressible as a WFF of the predicate calculus. The table entry form is probably
more convenient for heuristic manipulation. The programming table entry system differs from the
proof approach (and resembles the planner-like languages) in that things can be both “true” and
“false” at different points in the proof.

This system fai ls, however , in two important respects . For one, lacking the development and
dependencies of the form al proof. it is difficult to express case analysis, a very important technique.
Wh ile it is true that case selections can be made in this system by employing a recursive branching
scheme, one might then discover that one is proving the same fact repeatedly for each of the
different cases.~
More importantly, this simple scheme is unable to express first order facts about the chess world.
Thus, while we could tell this system Bishops always stay on the same color square. (and have it use that
r ule its derivations), there is no way to derive or express that notion within the system. ~~. 

-

We see that what we have here a confusion of a possible data structure (a representation) for an
epistemology (another kind of representation).’9 We have Inserted this straw man not so much as an
example of a competitive system we wish to denigrate, but, rather , in the hope of clarifying the
confusion surrounding the word representat ion as we have been us ing it in this paper.

Sect ion 5.4 Out 14epet ’seii ation A pplied to Other Problems

So far , our attention has been concentrated on one specific ex4mp)e. It is worthwhile to examine
how other problems would look in our formalism, without having to detail the entire proofs.

68 Cue anoty;~i f u r s ref.,. to Consi diring .s~h of the possible values a given unknown irnghl f iave Thus, in our original
probisu, ftu,,s we tw,lv, possible thus vil~,i for flu, fallen piece In ,ath of these case. , th ere .rc sea possibli vsluie for th .
captured black puce , srd so forth Clearly, sn unwieldy ec$ueeiu

69 We echo lu,re so re. if the conc .rns of section 1 3 I 3

-I 
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Section 5.4.1 Where was the King

Consider the following problem of retrograde analysis. We aie presented with the board in figure
45, and told that the white king has fallen off; our problem is to determine his falling square. ~~°

;- -
~‘~; ~~~~ ~~~~~~/ / /

/ / /  

/ 
/

,~~ - -,- - ~~~~~~ / _ / ,_
/
/

+ - ‘/- - -2~ ‘- -- i- - ;

win ihi~ whiie king?

figure 45

This problem, while of similar retrograde form, differs in a very important respect from our earlier
problem. Our earlier proof, and its axiom structure, are primaril y concerned with almost completely
defined boards. Here, too, we have an almost completely defined board. In the former problem,
however, the undefined element w at confined to a single square. Here we must contend with finding
the undefined square .

Note that our earlier proof used, essentially, a list of squares and the pieces occupying them; here, we
would prefer a list of pieces and their squares.

However , despite these difficulties, the problem is still tractable within our notation. We outline its
solution.

The first step is, of course, to express the goal WFF in our formalism. Let the board of figure 45 be
called WHERE _KING. We know that there is some position, px , whose total board is the same as the
board WHERE,.K IN G , except that on some square sq, px is not empty, but rather contains the white
king. We must therefore assume a WFF of the form:

- 
Viqi , (Valueon (WHERE KING, eql).Valueon(Tboard px ,eql )v

Va l ueort(Tboard p~,eq1).KW)

That is, the total board of px agrees with I.JHERE_KING, except in those squares where the total board
of p~ has a wh ite king value.

We will be able to conclude a WFF of the form:

10 TIer, problem I. from tOa’dn.r731

~~~~~ - -~~~~~~~~~~-. ~~ ~~
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Va lueo ri(Tboard px ,sq) .KW

where sq is the name of some individual square. (14083 in this case).

The proof first splits into three cases . Either the white king is on 14082, WQN3, or some other
square. We can easily prove the general chess theorem;

Vpx. 3sq, Pos(px sq ) .1.JK

chat is, the white king is on some square in every (imp lic itly legal) position. We obtain a parameter
for this square, let us call it eqx. Hence, it taucologically follows that:

sqx.W 082 v eqx4JQN3 v (-.sqx.WO B2A—sqx..WQN3)

It is a simple chess theorem to show that the two kings cannot coexist on neighboring squares.
Hence, eqx is not 14082.

Vpx b sql sq2. ( (BOARO(px b)AKI NGIIOVE(sql sq2)),

-‘(Va iueori (b sql).KWAVaIueon (b 5q2}—KB))

If the wh ite king were on 140N3, then would be checked by both the black rook and bishop. Now.
checks can occur only four ways (theorem CheckTypøs_). Black’s last move was certainly riot a
castle, for his king is not on a castling square. There is no bi~~ pawn present to have just c.tptured
en frassant. Therefore, for each check , either the checking piece made the last move for black , or the
check was a discovered check. Since neither the bishop nor the rook could have move out of the
other ’s way and given check, the situation is clearly impossible. Hence, the white k ing is not on
either of these squares.

But then these squares must be empty, and the white bishop checking the black king.

Va t ueon (Tboard px, 14082)—lIT A Valueon (Tboard px, 140N3).IIT

IIOVETQ(Tboard px , SW , 140R4, 1401) A ValusontTboard px , 140R4).BW A

Vaiueon(Tboarci px, 1401)—KB

It must be black’s move.

Now, this bishop is cornered (section 3.4.2), unable to have moved to have created this check.
Hence, white’s last move must have taken a white piece out from between the bishop and the king.

SQ(JARE_BETI4EEN (140R4, From Move px , 1401) A — Mover Move px - Poe (px 14QR4)

But there is only one other available piece, the white king, to have made this discovery, and only
two squares, (14092 and 140N3, again) between the bishop and the black king. The white king was
certainly not on WQ B2, as we have stated , kings are never in mutual check.

Therefore, the white king much be on WQN3 In Prevpoe px. Now, we know that all the squares in
Prevpoe px have the same value as in px, except the To and From squares of that move. The From
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square had the white king. The To square was either empty, or was occupied by a soon to be
captured black piece.

If the white king is on 1,JON3, a situation similar to the previous one arises. Black did not create the
check by castling, nor did the bishop nor the rook move to cause that double check. But wait. The
board in this position is not the same as the given board. We know that all of the squares have the
same value , except the square to which the white king moved in generating the position px. This
square could have contained a to be captured black piece, or , more specifically, the black pawn that
has created this double check situation through an en passant capture. That pawn must have been
on WQB3, and that must be the current square for the white king.

Va l ueon (Tboard px, WQB3) - KW

Sect Ion 5.4.2 Berliner ’s problem

Of course, the problem we argued in the last section is basically similar to sort of retrograde analys is
for which these axioms were composed. Let us briefly consider then, how an entirely different sort of
problem might be ex pressed in a suitable extension of this notation.

We consider board 1.7 from Berliner ’s thesis (Berliiier ld), the position diagrammed in figure 46.

‘4 ,4 ,4 ,4

3% ~%~v%
VA

3% 3%1~IC~ ~

‘4 ~/% 3%
‘4,4 ,4 ,4

Berliner’s problem,

fi gure 46

Here the problem is of a different nature; rather than analyzing the ingredients that composed this

_ _ __ _ _  _ _
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position, we instead have a more familiar task:7~ proving a strategy to lead white to victory.

What is essential here is expressing the notion that white can move his king around the pawn
formation, and then to either capture the diagonal of black pawns, or promote his own. We expect
some evaluation function to recognize that both of these are won positions.

Our current axiomat ization obviously requires some extension before tackling this task . Our axioms
look backwards; there is no expression that defines the legal successors of a position. Rather, we only
restrict these successions. We hypothesize that suitab~e conditions from the appropriate MCONSEQ
axioms (section 2.2.1.1) have been assembled into this definition, and that our simplifier easily
recognizes the trivial cases of succession . We also hypothesize the simpl ifica tion pred icate
WHI TE_HAS_WON on some board or positional object, and a predicate on two positions,
WH I TE_CAN.,ACCO(IPL I SR. WH ITE _CAN_ACCOMPLISH (p1 ,p2) will be true if white can force a position
with the properties of position p2, starting at position p1. We might have an axiom schema of the
form:

Vpl p2,t (t1H1TE _CAN_ACCOMPLISHIp1 p2)A -4JHI TETURN p2 i~

Yp3. (SUCCESSOR(p2 p3)D 3p4 .((SIJCESSOR(p3 p4) A U p4 )))) D

3p. (a ~ A WHITE _CAN_ACCOIIPLISH(pl p)A -‘W HITETUAN ~~A Prevpos Prevpos p-p2))

That Is, we assume that p2 could be accomplished from a position p1, and p2 has black on move.
For each of black’s legal replies, p3, white has an answer, p4, for which some pred icate a holds. it is
therefore the case that there then exists 72 a p which white can reach from p1, is black’s turn, and
can be accomplished by white, Is two moves after p2, and in which the predicate a is still true.73

It is fundamentally true that:

Vp, 14)41 TE_CAN_ACCOMPLISH(p,p)

that is, white can always accomplish the current state from the current state.

7 ) .  Or , St least to those who .. eaperience wi t h chess corns , from playing it, familiar task.

12. Thie is , admittedly, a rathe , fanciful m eat. What et ist s her, is not so much s position, as a poertion for •ach possible
,.spons. , all of which share son,. common properties (those ,nd icatsd by tIe. pred icate psr am.ts r). However , as nothing can be prove n
about the abstr act poett ions besides the information in the parameter, and t he know ledge implicit in their specif ic common gra ndfather
(p2), this device will succeed

73. A ,imi i., .~iom fo, whit.’. turn may be fo,in.d by reversing the second clsu e’e quantifiers.
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We first establish that for any position with the given pawn structure, if’ the black king is not on one
of the boxed squares in figure 47, then WHITE_HAS_WON.

3~ ~~~~~r4
VA V%i~t~~i~ %

r%~~~~r % r 4
34343 4 3 %

The black king is lirniied so these squares.

figure 4?

Let us call the given position px.

Now, by the hypothesized rules of W R ITE _CAN_ACCOMPLISH , the successive predicates

3p 1 . (WHITE _HAS_WON p1 v (PREDEGAIIE (px , p1 )AWHI TE_CAN_ACCO(’lPLISH(px , p; )~‘~
(Poe (p~ ,B01) — BKv... (through each of the boxed squares) ) A

Poe(p 1 , sq 1 )—WK ))

(where the .q~ range through the sequence WQB2, l,10N2, WQR3, WON4 , BQB4) are all derivable.

Having brought the white king around to black ’s side, we could complete our proof by describing
the little dance the monarchs engage as the white king pushes the black king away from the pawn
on BK3. When the white king arrives at BQB4, either the black king is on BQ2, or some other of the
boxed squares (or white has a won position). The case analysis continues for a few more ply, and is
not very instructive.

We hope with these two examples that we have indicated that our axiomatization structure is
genera) enough to express more that the single problem whose detailed solution we have presented.

SectIon 5.5 The Limitations of this Axiomatizatlon

Of course, any statement about epistemological or heuristic approaches to A.!. ought to include a
disclaimer cataloguing what that formalization is unable to solve or express.

We have are listing two different sorts of limitations; first, those places where our proof, as presented
in chapter 4, fails to adequately model the human solution, and secondly, a consideration of our
axiomaUzatlon’s ability to handle various other sorts of chess problems.

:* __________ 
_ _ _ _  _ _ _ _  

_ _ _ _ _ _ _ _
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Section 5.5.! Difficulties Encountered in Generating this Proof

A comparison of the informal proof of section 1.6.2 and the FOL proof’ of chapter 4 shows the FOL
proof to be substantially longer in handling two particular kinds of reasoning. A human puzzle
solver can qu ickly check if a condition is satisfied by all pieces on the board. For example, the single
hum an step 5.3. 1, a check that none of the black pieces could have moved to discover check (if the
captured piece. ZO, had been rook or queen), is transformed Into steps 101.143 in the FOL proof. In
simple cases, the quantification checking ability of’ FOL simplification mechanism can handle this
situation. However , in the case of complicated pred ica tes such as those used in steps 101.143 , the
preparation required to satisfy the proof checker about the appropriate simplifications was much
greater than even the forty steps expended. More concisely, FOL Is not as capable of check ing
predicates true of several objects on the board (for different reasons) as is a human.

Nor have we approached the human capacity for set mai’ l~’i .  - i i  For example, in observing pawn
cap tures, such as step I I , t he human quickly and naturally perceives the mutual exclusion
(inequali ty) of the members of the capture set. That is, the human can say, “Black captured four (or
five , or six) white pieces on white squares.” He understands quickly and easily the essential -

~~~

inequality of these captured pieces, and the various restrictions on their values (for exam ple, none of
the pieces currently on the board was captured). Our axiomatization, reluctant to do either
arithmetic or set theory, and boun d, as it is. to the heavy quantifier manipulations of na tural
deduction, cannot express this notion as easily . Rather , we must, for each capture, hypothesize the
move that the capture was made on, and the captured piece, and prove the pairwise inequality of ~~~. ,~-,

the various captured chesspieces. Thus, for example, the information quickly apparent to the
h u m a n  puzzle  solver, after he notices the four piece captures, requires steps 301.330 M the main
proof.

This problem is not, we feel, due to the clumsiness of the position (state vector) approach. Rather,
our restriction to first order formalism, and our refusal to enmesh ourselves in a generalized set
theory, has created a situation which requires dealing with each individual, individually. Our
problem is still small enough that this is a reasonable activity; however, a system that would need to
deduce truths about many objects would certainly need a more universal mechanism (set operators,
for example) for manipulating sets of’ objects.

Sect ion 5.5.2 Episternolog ical Axiomatic Urn itations

There are more thing. in heaven and earth , h ora tio,
than are dreamt of an your philosophy.

- h a mlet , iJet I . Scene S

One of the nice things about a formal logic systems is the ability to easily extend the formalism, by
the addition of new constants , axioms and attachments , to handle unforeseen or incomple tely covered
situations. Thus, wh ile we have interpretted our task to be axiomatization of retrograde chess, it is a
simple extension to include a definition of the SUCCESSOR relation, appropriate and useful Makemove
functions (with attachments) and thereon to do forward analysis for chess. We have briefly touched
upon these notions in considering Berhner’s problem, section 5.4.2. However, as curren tly
constituted, our axioms of’ chapter 2 are not capable of’ handling problems requiring this kind of
forward analysis.

_ _ _   i’~
.

________— — .- 

£—~i~~~~~~~ 
~~~~L



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

5.5.2. Conclusions Page 177.

In any case , the purpose of this section is to detail which kinds of chess puzzles this axiomatization ,
in its current form, has trouble expressing.

Certainly the most common of all chess puzzles are the white to play and mate in n moves variety.
For ii sufficiently small, we really must confess lack of interest in most examp les of this type of
puzzle. Given the definitions of forward movement, and appropriate attachments, such puzzles are
easy single step simplifications in FOL. A few of these puzzles rely on the ability to castle or capture
en passant . and the justifications for en passant capture are occasionally quite complex , involving the
sort of’ retrograde analysis we have been doing in this paper. These axioms are, of course, quite
suited for that kind of analysis. Castling in mate in n puzzles has a more complex position; one can
almost never prove that castling is legal, though often there is no reason to presume it illegal. These

• axioms can be used to prove, in the usual retrograde way , castling illegal, or the problem statement
appended to include the appropriate restrictions on the position to imply its legality.74 A minor fillip
can be provided to these mate in n problems by the addition of fairy chess pieces [Dawson73].75 Of
cou rse, our axioms would need the natural extensions to handle fairy chess pieces.

A more complex situation is presented by the problems of the form white to play and win (draw).
What we have here is an extension described by the WHITE _CAN _ACCOMPLISH predicate of section
5.4.2. Additionally, there is the necessity of defining the predicates WHITE _HAS_WON and
THIS _ IS_A_DRAW. Clearly, they are non-trivial predicates, thoug h they can be well defined in certain
circumstances (particularly if white has a forced mate in n, an overwhelming material advantage of
certain kinds (king and queen against king, for example) or insufficient material exists to force a win
(king and bishop against king and knight). What might be a trivial win for a chess master can be
completely opaque to average player. We imagine the attachments to such predicates would rely
heav ily on the 1_DONT_KNOW response available in the attachment mechanism (section 2.1.7.2).

• Similarl y, self mates and help mates require different definitions of the CAN_ACCOMPI SH predicates.

In some sense, these are examp les of construction problems: the problem solver is to present a
sequence satisfying some property. Another type of construction problem. for which these axioms
are very ill-equipped, and which lies on the periphery of chess problems, are problems of the form,
construct tile board with Me most (fewest) legal moves (captures, promotions, ... ). Solutions to these sorts
of problems are usually presented as “this is the best known solution”, rather than “here is the
solution, and this is why one can ’t do any better.” As our system is directed towards proof and
confirma tion , it is naturally incapable of’ commenting on such results.

But, needless to say, these are not the tasks this axiomatization has been directed towards. Rather ,
we were considering retrograde analysis In our definitions, and It is more reasonable to inquire
where our retrograde failures would lie.

It should be clear by now that the mathematical knowledge represented by these axioms is very
minuscule. All mathematical manipulations have been accomplished by considering each case on
our finite board separately , or by actually performing the Implicit calculations in the simplification

74. One reader of a dr aft of this paper inquired how the question “Assume castling ii legal unles. you can prove otherw ise”
might be hand led, In g,ner.l , this is an ur,d.~.dabl. quest ion~ any axiom system ae powerful as ours is incapab le to proving whether or
not certa in statements are t heorems. This fpllo ws from the G6del undecidabil ity resu lt.

75. Fairy chess piece . are fanc ifu~’ chess pieces with usual moves. Consider , for example , Daweon ’. Grasshopper and Nightrider.
A Nightride r may oak, consecutive knigt/t ’s moves , in a straight u n.; the Grasshop per move , along the orthogonal. and diagonal ,, but
only by hopp ing over one man of either color to the next squar e beyond. The reader int .,esled in this mytho log y is invited to consult
O.w.on ’s book.
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mechanism. This is clearly impractical for problems that rely on more complicated mathematical
deductions. Similarly, those inferences promoted by set theoretic and counting arguments are painful
tautology decisions in the curren t sys tem; it is easy to Construct examples of sets too large to be
handled this way .

The current axiomatization is orient.”4 “~wards unknowns centered around particular squares.
Unknowns centered around unknown s.~u~ttes would cause greater difficulty for the simplification
oriented system, though ought not to be impossible (section 5.4.1).

Another difficulty with this axiomat ization is its insistence upon centering the problem around a
specific squares and boards. For exam ple, the question Is white In check on the piece of a board in
fi gure 43:

r%r%I

Is white is. check on this fragment?

fi gure 48

is obviously observationally true, but its phrasing in this axiomatization would appear as:

(Va lueon(b ,Makesguare (drx ,dcx )) =KWAVa lueon(b ,Makesquare(Bsucf drx ,
dcx)):MT A Valueon(b , Makesquare(Bsucf Bsucf drx , dcx) ) RB ) ~WHITEINCHECK b

Hardly the natural interpretation. It is perhaps true that a notion of’ board fragment should have
been included in the axiomatization. This points to a greater difficulty in this axiomatization; that
the functions and objects of the chess model are not robust enough to handle pervers ions of the ir
original sense. These attachments were the obvious simple direct functions to compute the obvious
values; they were adequate (with some pushing and pulling) to function as the chess eye for this
problem. However, it is now clear tha t a more flexible eye would be appropriate to handling a
larger variety of’ problems. This more flexible eye would probably involve much more complicated
functions.

A more germane example is provided by the following problem (Gardner59]:

~.____________
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7”/ 7”/ ~2”/ :~“~
~~~~~~~~~~~~~~r~r~r~r~
‘4,4, 4 , 4

‘4,4 ,4,4

White so p lay and mate in four.
us  usual, this is a legal position.

fi gur ~ ‘

The puzzle here is to recognize that (as the black king and queen are on the wrong color squares)
that black and white have switched sides, with the black pawns advancing to the seventh rank .
Wh ile the current axiomatization could be used to prove that the given board, supposing the black
pawns on the second rank , is not the board of any legal position. the “trick ” of the problem cannot
be expressed in this fixed board form.

There are also some chess puzzle concepts, such as “blocking structure” and “path ” which lack the
necessary counterparts in our axiomatization. These have their fumbling expression in our system
(see, for example, much of the last seventy steps of the main proof), but this expression is not
entirely satisfactory.

Section 5.6 Ceneral Representation Issues

Most of’ this paper has been dealing with representation issues of the chess world. If we did not
think that these examinations were relevant to epistemological issues in general, we could not justify
the attention we have given them. It is worthwhile, therefore, to turn our consideration to general
representations issues, considering the light shed upon them by our example.

Section 5.6.1 Multiple Representations

- /1 descrip tion must be chic to represent partial
knowled ge about an ent ity cud accommodate
multiple descriptor s which can describe the
associated entity fro nt different viewpoints.

Bobrow and Winograd76

One of the more complicated prohl~i;.~. 
;,y generally intelligent computer will have to face is the

dimculty of manipulating the various aspects and forms of particular objects. Any real world object
(or class of objects) has a set of’ properties. For example, the book In front of me Is red, weighs

76. f Bobrow7lJ

_ _  — _ _ _  _ _ _ _ _
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about four pounds, is made of paper , occupies a certa in position (particularly, its near the phone and
my drinking glass), not to mention the dive rsity of the information recorded within it.

Let us consider merely the problem of manipulating and examining the book in space. In general,
the color, content, and composition of the object are not relevant to this task , and can be ignored.77

They serve merely to confuse the heuristic portion of the program.

Even within the narrow domain concerned with the locus of the book, there exist many formats for
storing locational information. The bulk and location of the book might be represented by marking
the occupied squares on a visual grid (1). We might encode much of the same information at a
higher level, as a series of coordinates for the vertices of that rectangular parallelepiped (2]. If we’ve
analyzed the scene, a linguistic description, such as the book is to the right of the glass. and in front of
Me tele~~one (3), or as a WEE or network , with explicit links or predicates , such as
RlCffr ~OF( Book , Class), and IN_ FRONT_ OF( Book , Teleftione) (4] might be the appropriate
structure. Notice that we have here four different ways of representing what is essentially similar
information.

it is not the case that one of these forms is the correct one. Rather , each is heuristically appropriate
to uses at some time. The grid is both a typical input expression, and a possibly useful form for an
algorithm seeking to quickly comparing scenes. The coordinate structure could be used to easily
locate the desired object. A program whose primary task was human interaction might find storing
sentences such as (3) a useful facility, while inference might require (4]. A program that needed to
do all of these might very well keep several or even all four representations. Nor is it the case that

- 

— these are equivalent representations. They represent different combinations of inference and
deletion, and are not mutually rederivable.

We feel the pain of this problem very acutely, even within our limited set of chess problems.
Particularly the dichotomies of board/position and value/piece reveal an aspect of this problem. As
we have already devoted a section to their comparison (section 5.2), we shall restrict ourselves to a
few brief’ conclusions here.

It is clear from this experience that representing information in canonical form (every fact has a
- - particular , highly structured format to which it must f it ) is a losing proposition. Such structuring

must, of cou rse, be to the most general form; however, most frequently. it is the particular form, with
its implicit information, that is the most pliable for heuristic manipulation. Thus, while the
positional notat ion is the most general form of representing a chess situation, actual computation is
easiest when dealing with concrete boards. The same constraint applies, of course, to dealing with
pieces and values.

Multip le representations require the ability to translate between forms. In the case of the
board/position dichotomy, this translation is exp licitly related in the TRANSPOS axiom and theorems
(sections 2.1.9.2 and A.6). It is considerable trouble to interchange representational forms in mid.
proof; unfortunately, unless great care is taken in matching proof segments and lemmas, it is a
frequent occurrence.

An alternate facet of the multiple representation problem is the difficulty of transferring properties
between different, but similar states of the world. The book is on the table. If’ I walk out of the

77. itowav.,, mag,ns the hel,um balloon; th. me~.pulatov ignore. it . com pos ,tsooal properties at ta own p rit
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room , arou nd the building, and back in. wi ll the book still be on the table in this new state? The
entire issue transferring properties between similar states is a very comp lex “can of worms ” This
problem is visible in our chess system; while any move changes only a few of the pieces on the
board , it creates an entirely new state , with unexplained properties. We have , however , one
prominent success to report o.i this matter , that our the chess induction schema. We have found this
schema to be very useful iii tying together the properties of not only “close” states , but also relating
states separated by many moves .78

In many respects , this requirement of transferring between different representations can be viewed as
a metaphor for the heuristic portion of the A.!. problem itself. In that view , intelligent action
consists of trar isversin g some search space ; multiple representations merely pervert that space (like
other operators), adding short cuts and cul.de.sacs.

Section 5.6.2 Abstract and Concrete Representatio ns

The previou s section discussed the varieties of representations. Our experience with this chess proof
leads us to an important conclusion about these formats : a system requiring complex and detailed
deductions must frequently retain both abstract and concrete representations of its input.

Let us consider this vision examp le. The program knows that it  is viewing some “scene”. In some
general sense , this is the abstract form for this hypothetical vision understanding system. As it
manipulates the raster input, abstracting and specif ying features , the abstract form becomes qualified.
just as the abstract form of the position px is qualified in the course of our proof. Practicall y. the
vision system might extract features , manipulate the resulting data structures , and return to the
concrete input format only for clarification. Rarely, an inconsistenc y might force another analysis of
the input.

The chess exam ple has a parallel structure. Any problem is explicitly an element of the set of
positions. Various features , such as t he values on a given square , are concrete facets of the input
analysis. In forward analysis (as , for example , outlined in section 5.4.2) we would use less of the
abstract form, preferring to live in the secure computation of specific boards. Retrograde analysis , on
the other hand, deals with a more “unsure ” situation , and demands a more flexible representation .
Hence, the predominance of the more abstract form (the position) in our proof.

Section 5.6.3 Heuristics and Representation

As we mentioned in section 1.2, the general AL  problem naturally divides into epistemological and
heuristic parts. This paper has been concerned with the minimal requirements for an
epistemologically effective representation. However , a few words on the heuristic devices emp loyed
in generating this proof might prove interesting. It is to be remembered that these comments are of
an introspective nature; that is, we describe what we found difficult and easy, and how a heuristic
system might eventually be organized to acheive such a long deduction.

Both the generation of this proof, and its surface structure , show a clear division into three types of
activ ities. First , a specification of the general proof outline must be obtained. In this proof, that
corresponds to the “human” proof described in section 1.6.2. Then, into this outline, the appropriate

78 There a a third ‘multiple represent at ion ’ iss ue that FOI. hand les for us automatically, tha t of keeping the conte nt of any
deduc t ion. The dependency mechan ism perform. this task fairly w•U, though naturally, in a very con sarv .t iv fas hion
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lemmas and theorems must be formed . Finally, individual proofs must be constructed for each of
the particular theorems.

This outline misstates slightly, in that the second and third activities , lemma selection and proof,
occur concurrently, difficulties in proof often prompting new subgoals (lemmas) for the selection
process.

It is clear that both for the human proof solver , and any future program, that these steps are listed
in order of increasing difficulty. It is not clear how to generate an outline of the correct solution ,
given the problem. It is also clear th at this more efficiently done the more the solver knows about
the tricks arid short cuts of solving chess puzzles. Thus, a human unacquainted wit h chess , and
presented only the rules, would finding solving this problem a ver y difficult task , w hile it is trivially
eas y for the chess master. Proving actual lemmas , once one had the “han g” of it, was relatively easy .

Workin g within the context of a proof outline, the main difficulty in generating this proof arises
from specification of the lemmas and sub-theorems to be used along the way. In a strong sense, the
proof of almost all of the lemmas is relatively trivial, given the existence of all of the axioms they
employ. In practice , if the proof of some theorem became too difficult, a usefu l lemma was assumed,
the lemma’s proof becoming another subgoal. Within the proof of any lemma, almost all of the steps
are either axiom instantiations or simplifications.

Effectively, we are offering a personal confirmation of a judgment of Sacerdoti (Sacerdoti73]. that it
is more important (and more difficult) to determine the plan for a course of action , than to worr y
about filing in the detailed descriptions of that plan. Of course, one’s proof can flounder on either
set of hard places.

There has recently been some work on incorporating goal direction into the FOL system. The
reade~ is referred to [Bulnes 79] for a description of that work.

Section 5.6.4 Functions and Predicates

In section 5.2.5 we mentioned the use of special functions , essentially, the use of an algorithm to
compute a value (when the algorithm is known). This principle can be expanded into a general
“moral” for axiom~~.;- . . - . t ;ons are (usua lly) more tractable objects than predicates. In this
section, we contrast the j u r i~tzona1 and predicate styles of axiomatizations.

A functional axiomatization is one where (relatively ) unique relationships are expressed as the
values of particular functions; a predicate system denotes these relationships as predicated
relationships. That is, to find the instance satisf ying some predicate, one manipulates the axioms of
tha t relationship, and proves a unique correspondent.

What we are contrastin g here is an intra-representational choice. That is, in generating an axiom
system to represent some domain, one often has the choice of expressing some notion as either the
value of a function , or the set of things true of some predicate.

An example of a “bad” axiom from our axiomatization may clarify this issue.

Consider the axiom MCONSEQL which defines the pawn promotion.

AXIOM MCONSEQL: 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ -i~~~ • ... --— —-—--- 
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Vp .(PAL.JNPROM Move p.(LASTRANKER (To Move p,Color Prevpoe p)A
- SIMPLELEGALtIOVE (Prevpos p p),~

PAIJNS Mover Move p~VALIJEP Valueon (Iboard Prevpoe p,From Move p)A
((BVALUES Promoted Move p.BVALUES Vat (Prevpoe p Mover Move p))A
(WVALUES Promoted Move p.I4VALUES Vat (Prevpoe p Mover Move p)))A
Val (p Mover Move p)—Prornoted Move pL’;:

It states that a pawn promotion takes a pawn to the last rank, by an ordinary move, that the piece
must have had pawn value at the start of the move, that black pawns promote to black pieces, that
white pawns promote to white pieces. and the promotion value is from the set of possible promotion
values (as defined by the definition of. Promoted).

Now, this axiom is not incorrect. It is merely clumsy, and we regret having written it this way. We
leave it in, however , to be the object lesson of this section. The axiom would have been more easily
used if it had stated: ~

AXIO M MCONSEQL:
Vp . (PAI4NPROM Move pm(SIMPLELEGALMOVE (Prevpos p, p)A(

(WH I TETURN p A
Row To Move p • 8 A
V a t  (Prevpos p, Mover Move p) — PB A
(Va l (p. Mover Move p) *QB v Vat (p. Mover Move p).RB v
Val (p. Mover Move p) sBB v Vat (p. Mover Move p).NB))

v (-44HITETURN p A
Row To Move p . 1 A
Vat  (Prevpos p, Mover Move p) - PU A
(V at (p. Mover Move p).OW v V at (p, Mover Move p)— RW v
Vat  (p. Mover Move p)eBW v Va t  (p. Mover Move p).NW))));;

that is, if it had explicitly stated, referring to individuals and equality, what was intended, rather
than referring, through the indirection of predicates, to sets of objects.

If this lesson seems too obvious, perhaps it is important to mention there are reasons for a predicate
approach, to wit, that the various tautology deciders currently in FOL (TAUT, TAUTEQ) are
much happier with predicates than with either equality (which TAUT cannot handle) or functions
(with which TAUTEQ has trouble).

Section 5.6.5 Whorf ’s Law

The last section illustrates an important moral of representation theory, a Whorf’s law of artificial
intelligence (Whorf 56].

Whorrs hypothesis was a linguistic one; that a person’s language shapes the way he thinks. Our
ex perience with fitting a chess proof Into formal logic gives strong evidence that this notion extends
to Include formal representational systems, and is a useful notion to remember in generating them.

Obviously, a limited representation can only express limited notions. More significantly, the
structure of the inference system, and the axioms, will subtly mold the resulting deduction. For
example. FOL. tautology decider TAUTEQ,I* capable of substituting equals for equals In predicates,

79 Rsc.ft that ‘WHiff TURN p~ impims BLACK js~st mavid.
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but not in fun ctions 50 This promotes an axiom structure incorporating more predicates and fewer
functionals (an unhappy Situation).

The FOL system has grown as this proof has progressed. When the proof was begun, the only
supplemental inference commands (beyond the Prawitzian natural deduction rules) were TAUT and
TAIJTEQ Semantic simplification, so essential to our chess eye. was developed concurrently with
our ex perimenta l axi omac ization . Copious use is made of these commands. More recently, after the
first few iterations of proof had been completed, syntactic sim~ ficaiion (a massive substitution
command), and a decider for monadic predicate calculus were introduced . It is noteworthy, however .
that even if we wrote another iteration of this proof, these commands would probably not be
important . This is because the axioms are not st ructured to take advantage of their presence. Such
structuring would imply mor e equiva lences and monadic predicates . white our current structure tends
toward imp licatives and dyadic (and greater) predicates.

Similarly. it is difficult in FOL (l~rge)y because it is a formal mathematica l proof system, partially
because a lot of effort would be required to check any change) to correct the course of a proof, to
delete an offending command , to make a slight adjustment to an axiom, to change an incorrect
declaration. This arrangement promotes a s: iff iiess of expression; once incorporated, change is
difficult. Because change is so difficult, it is easier to become set in ones w ay s, and harder to
ex periment. Again, we see an exa mple of language influencing representation.

Sect ion 5.6.6 States and Representations

Perhaps a section on the value of state vector representations in general epistemotogical situations is
warranted. After all, the position, our state vector , has proven very successful at capturing some of
the important aspects of our domain. For examp le, the notions of muU have happened in this ga me.
though I don ’t know ws1aef l and it was ini e then , and can ’t have changed. hence is tru e now are very well
specified by having the position as a history vector, and through the use of chess induction.

We contend that a similar ideas can for the basis for powerful representational mechanisms for A l..
For example. retaining a notion of the present sta te of Me world , including the histor~ of reaching it
resolv es some of the confusions inherent in the naming of objects. A person who has lived but is
now dead does not, in some sense, exist in this world. However, by retaining the history of the
world in reaching this state, we are able to speak of him in the appiopriate context. Similarl y, a
God that was able to know the rules involved in all state transitions would be a good resolution of
the issue of omniscience.

But , of course, reasoning within this state of the world, and not knowing all of its rules, we cannot
predict the future. We can, however , if we know the current state , reference that state as the
ex pected descendant of some past state , and reason about the future (up to the current) in the past.
We can nor reasonably reason about the future, even in the past. beyond the current state , other
than to say. “if the future has the following properties, then ...“. Note that of all possible states and
histories, we can distinguish one and call ii, reality. This is typically the state we are in, just as the
game that reached GIVEN , the problem board, was realit y for that situation. We can name
individuals in chess, such as the grasshoppers and nighiriders, that have properties, just as we can
name mythical flying horses, and state that this flying horse was named Pegasus. who sprang from
the body of Medusa at her death, and so forth. We can speak of Pegasus if we are careful of

10 From s.b, TAUTCO can d.dwc. p(a).p(b), b~n nol F(.).F(b).
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mentioning the context within which we are speaking, just as we can speak of nighrriders, if we
• move beyond the context of “real ” chess , or “real ” reality.81 A full notion of such a state/reality

duality might require additional predicates and individ uals into that state.

Reasoning within specific states can have other benefits. For example , the reasoning about
knowledge can sometimes be resolved by retaining the context within which each wise man is
reasoning. Note that as an omniscient observer , we retain the right to reason about all contexts.

Transitions between states can be seen as the flow of reality. This chess problem has been very over
simplified, for things happen in a discrete , regular fashion. In a more general, real world , processes
will not behave as nicely. We wilt be able to find some regular laws (if x is dead in state a, then x
iou ! be dead in all successor slates to s.), and able to use our induction schema to manipulate such rules
(if x is dead now , then, by induction, x will be dead in ali future worlds) .

Reasoning in this state transit ion formalism has a distinct disadvantage , however; we can rarely be
sure that what was true in state j  wilt be true in the successor of x. We have heuristics for processing
such situations (if x leaves the roon , all of x’s clothes go with him) but even such ordinary rules as when
I awake, things will basically be the sam e can be violated, as Rip van Winkle discovered, much to his
discomfort.

Section S.7 Historical Context

it is perhaps useful to place this work within the historical context of representation systems in
Artificial Intelligence.

The inference mechanisms emp loyed by A l .  systems can profitably be divided into two var iet ies:
syntactic and semantic. Syntactic inference is performed by considering the form of a particular goal
and set of rules. If that form matches the standard required by the set of rules, one can conclude a
resu lt whose for m is determined by both the result form of the rules, and the binding of entities in
the match . Thus, for examp le. in a system structured as ours is, one employed the axioms and
already proven WFF’s, through the natural deduction rules of inference, to obtain new WFF’s.

Semantic inference mechanisms are magic. The particular goal WFF is offered to some set of
functions and data structures , and that oracle decides if the particular conclusion is correct . While it
is (theoretically) possible to describe these data structures and functions in a mathematical form,
raising them to the syntactic level of the first kind of structure , such an attitude is both unlikely to
succeed, and , in some strong sense, wrongM ink. Typically, the “black box of semantic routines”
embodies some model of the world viewpoint of the system programmer.

This is not to imply that by calling such mechanisms “magic” we want to denigrate them. Rather.
they will be the fundamental mechanisms of any successful A.l. system. The interactions allowed in
purely syntactic constructs are coo broad to be able to avoid exponential search.

However, it is also important to point out chat model based reasoning is invariably too limited in its
expressive power to perform complicated and var ied inference. We need not only to compute in our
models, but also to talk about them. It is the assertion and demonstration of this paper that deep
Inference is possible through a combination of both forms of representation.

81. Pr,or ’s modal io~ic Ipproecis to t;m s was discussed rn ssttmon ~3.2.
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Neither representacional system is new to artificial intelligence. Purely syntacttc approaches. such as
resolution based theorem provers were once in vogue. But even in the ultimate example of such a
system . QA~ (Greeu69) one sees the stirrings of the use of models. But Green employed model based
computation only out of necessity and last resort.

Ac that time, Winograd’s SHRDLU (Wiiiograd7ij wa s somewhat a competitor of QA 3. While the
Planner antecedent and consequent theorems employed in SHRDLU have a surface resemblance to
formal logic, their employment in a simulation system made them essentially semantic conventions.
While perceived as a great success at the time, the limitations of such a purely semantic approach
have now become apparent (section IJ 32, see also (Moore7SJ. Essentially, a purely model based
system can effic iently manipulate the objects in that model, but has no mechanism for talking about
those objects or the manipulations in a non .manipulative sense. Hence, Winograd’s program could
fail to place a block on a pyramid , but could not talk about the possibility of placing a block on a
pyramid.

There have , however , been several successful combinations ot lactic and semantic representations .
Perhaps the earliest and most impressive was the combination of diagrammatic based computation
and syntactic deduction presented in the geometry ma hine (Celeriiter63A](Gelernter63B). Gelernter
and his associates employed computation on a geometric model to aid in the discovery of syntactic
proofs of elementary plane geometry theorems The mathematics of the model system employed by
the Geometry machine is explored in (Reiter) . Other , more recent programs have employed simple.
e ..plicit models to perform some of their necessary inferences. Examp les of these programs are the
electrical circuit systems at BBN (Browii73][Brown74) and MIT (SussinaiilS). Funt ’s system for
prec~icting the paths of falling blocks (Fuiit77]. and Rieger’s (Rieger76] (Rieger77 J program for
approximating the workings of devices.

We can , perhaps. attempt a minor taxonomy of such model based systems . Besides the above
distinction about the use and availability of bot h syntactic and semantic forms, we note two other
distinct ions. First certain of the above systems employ their models not only as inference
mechanisms , but also as heuristic aids. The Geometry machine is a prime example of this use. The
deduction presented in this paper has, of course , ignored heuristic issues, considering only
epistemological questions .

Secondly, these programs can be divided by the hind of model they employ. Our model for the
chess proofs has been an exact one. We are as sure of its correctness as we are of our axioms; we are
sure that its functions completely and accurately model our knowledge of chess. To the limit of their
electrical consideration (races, hazards, etc.) the electrical programs were also accurate models. Funt’s
block ’s program, however , applied an app roximate model of the situation , performing a simulation of
the falling blocks , under the watchful gaze of a simulated eye. Rieger ’s system is a similar
simu lation. Celernter introduced unnecessary approximations into his system to keep It from being
too accurate and helpful a model.82

Thirdly, all of the systems considered so far have employed a single model in their inference
mechanism. Whether only single models are appropriate (to reflect the natural “human” single.
minded view of the world) or multiple models are merely a further step is an open research question .

One important . compl.’~ ~~e s ’  ite. 
~~~~~ 

y step has been avoided by all these systems: a reification of

82 G.I.cM.e w.ntid to study vs,n th. model as a i*u,,st,c, r.thsr than mf.r.nt,eI sid
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models, treating the models themselves as objects of the system. One can see an important
• suggestion in this direction in LWeyhrauch78~ though it remains a research opportunity.

Sect ion 5.8 FOL

On many occasions in this volume we have complained about the various limitations and privations
imposed by our proof checker, FOL. This is not to imply that things are all that bad; FOL does
what it does fairly well. However, while familiarity may not breed contempt, it at least breeds an
awareness of deficiencies. We are obliged to attempt a rudimentry catalogue of our perceptions of
where FOL could be improved.

The most elementary c~anges (at least from a structural point of view) involve the inclusion ofadditional inference rules. For example, a tautology resolver that could do substitutions inside of
functions as well as on predicates would be a “relatively ” simple fix that would have a large
beneficial effect on total proof size. One can imagine, for example , that most of the uses of SUBST
and SUBSTR . and many of the app lications of ASSUME could be dispensed with were it not for
the necessity of convincing TAUTEQ (again) that a-~ ~ F (a) —F (b). We have partially
circumvented this constraint by the uses of the ~ functional parameter and the Substitution axiom;
these temporary solutaons are not, however, completely satisfactory .

Similarly, the FOL user should be allowed to define his own inference rules, providing the code to
decide them. This propo al works in parallel to the more powerful semantic simplifier discussed
below. Merely being able to substitute for parameter predicates and functions is not enough.

There are, of course, several more radical changes that the earnest FOL user would desire. The
primary emotional complaint about writing FOL proofs is the necessity for stiffly expressing each
(almost incoriectable) step. This problcm is exhibited in several ways. In its simplest form, it can be
perceived in FOL’s refusal to forget any (unreferenced) declarations, or remove any (unused)
inferences from the proof. The relatively inflexible syntax is also a source of annoyance. Similarl y,
the necessity of generating a permanent, particular proof step, particularly one that is only a
propositional derivat ive of some other inference line (what FOL calls a VL) for use in only one
instantiation , is a corresponding clumsiness.

in a larger sense, this stiffness is seen in the necessity of repetition of identical (or nearly identical)
arguments (on different objects) to produce similar results. One frequently wishes to say, this case is
j ust like the last one, but usc the axioms for white rather than black in proving it. In its simplest form,
t his proposal might be incorporated as a proof schema; that is, follow arguments of the following
foi in, and reach a similar result. A more grandiose schema might include a provision for reasoning
by analogy, that is, taking a proof and finding the parallels to generate a similar proof.83 The moral
here, perhaps, is that communication is facilitated by informality, the ability to omit or abbreviate
c~bjects. POL (like most programming languages, particularly the “lower level” programming
1a’c’uages) requires a fairly formal statement of action. This is uncomfortable. Writing a FOL
proof of this size leaves one with the same feeling as writing a large assembly language program.

FOL can be a very uncooperative proof checker; while it is quit willing to deny the legality of some
• step, it is usually unable to ex plain why. ft would be easier to write interactive proofs If the proof

$3. We see som. .1 the .Iem.nDy ste ps for this wo rk in the th esis of Kiing (Kingl I) on reasoni ng by sna iogy. KIing, how vs r ,
• only void the previous proof for selecting th. aic iorns to be 5iven to a resolution theore m proven we svg(eet that this inference

scheme try to foiiow Ihs form of the ~iv.n proof.
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process included some guidance. We are all familiar with how debugging facilities easy the
programming process. However , the inclusion of such facilities is not a trivial request; while a
quantification check in semantic simplification could easily trace a failed step, such a facility within
the present decision procedures would certainly be a difficult to implement.

We have here a giant example of a FOL proof; many different lemmas and theorems have been
pieced together to accomplish the end result. However , we have received virtually no help from
FOL in producing this structuring. While FOL permits one to declare any arbitrary WFF an axiom,
it has no other mechanisms for structuring a proof. Two possible improvements might be suggested.
One would like a theorem command, which would take and save a given result. Additionally, either
a block structuring method or an analogical inference command would aid the engineering aspect of
proof generation. The recent meta level facilities [Weyhrauchl9j and goal structure commands
[Suliies79) could be used to alleviate these difficulties.

Of course, our major impreuions and recommendations are reserved for the semantic simplifIcation
mechanism.

Our primary complaints concerning simplification center on the inability to apply all of the
observational knowledge available to a given simplification. This Hydra rears its heads in many
ways. In its simplest form, it Is seen in the demand of simplification that all arguments to functions
be “well defined before they can pass through the FOL model barrier. For example, if A is a
constant, and ~~, a variable, simp lification (and the common €all by value implementations of LISP)
are unable to computt

(CAR (CONS A y ) )  . A

Having such a symbolic evaluation would have been quite helpful in generating this proof. For
example, on many occasions we would have a parameter board, a parameter value, and two constant
squares, and wish to show that MOVETO was not true on these arguments (the squares resting at an
angle beyond the movement of any piece, say. BKR1 and WQR2). A parameterlzed semantic
simplification would accomplish th.s, as it is, we need to resort to the hack of Instantiating the axiom
MayMov•, and simplifying the result.84

There are times when even this dodge will not work. It these axioms we employed to do forward
analys is , then the following obj ect would prove useful: a position built up from a parameterized
position (presumably, the given position of a problem) with successive generations of moves and
boards appended. Now, there are many simplifications that are, by nature, observations, and should
possible on such an object. However, as it is not an JNDCONST, it would not even be passed to the
simplification mechanism.

A partial solution of this problem would include tagging those objects that were “variables” to
simplification, and allowing the user program to distinguish those tags.

Permitting the user program to see the variables of the FOL model could have other beneficial
results. Consider the case of quantification checking. In the curren t simplification mechanism, the
only quantification checking permitted is the check of a finite sort whose elements have been listed In

84 hlayMove a def,n.d as Yb v sql iq2 (MOVETO (b,v, sq l , sq 2) ~ (Column sql • Column sq2 v KNIGHTMOV( (sq l , eq2) V

Row s ql • Pow sq2 v SAMEDIAG (s ql, eq2) V KifIGMOVE (sq l, .q21 V (TWOTOUC$ING (Column sql, Column .42) A (WSUC (Row sql ,
Row eqa) vBSUC (Pew sql , Row sq2)))))
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an EXTENS ION command. This usually works wel l enough in the chess world for the simple
problems we have considered (there are, however, some lemmas we have not proven because the
desired simplification were too complex). But quantification checks can also be accomp lished by
other divisions of the variable set than into individuals. For examp le. it is true that all integers are
either positive integers , negative integers or ze. .. A division into these sorts might permit the
simplification and verification of some sentence of number theory or arithmetic. However , we would
certainly not want to chec k every integer in establishing the validity of chat W FF. Rather , the user
should be allowed to define his own quantification checking mechanisms, either in addition to, or
instead of the current extension checks.

In the current or~anizat ion of FOL one must invariabl y know w hat one wants (that is, what WFF
one wants in one s FOL proof) when commanding any inference step.85 A more powerful scheme
would be to permit the prompting of the simplification mechanism, which would then complete the
asserti on in the appropriate manner. In a simple form, as prompt of V x. 14FF might , instead of
returning -V x .  1.4FF instead counter with the more useful Yx. ( 14FF v x .~ v K.z). If —Y x.L4FF
were w hat was desired, it would have been asked for.

On a grander sca le, this mechanism could begin a approximation of the inference schemes of
humans. Our proof is a very good case in point. The competent human puzzle solver can observe
our problem chessboard and state: The only lega l move for white was to have just promoted a pawn to a
rook , movi ng fro m BQB2 to BOl , and capturing a black piece. This (for the good puzzle solver) is an
observation, not the deduction. It is the only possible legal (last) move for white. To generally mimic
this ability In FOL, however , would require a simplification mechanism that could take an input
board, and return a set of WFFs , one of which would be true of that board. This might be
accom plished with an appropriate set of meta level reasoning commands.

A final point on the relationship between the FOL level WFFs and the semantic simplification’s
attachments. These attachments , you may recall, were presented in the axiom section (chapter 2) of
the proof. This is because they share many attributes w ith the axioms , both conceptually and
functionally. Conceptually, they are among the building blocks from which the rest of the proof was
created . Functionally, these attachments can serve the same crucial role as axioms. That is. defects
in these functions can permit the horror of a contradictory deduction (and hence the deduction of
any WFF.) By the semantics of the LISP programming language in which they are imbeded. these
axioms acquire meaning. It is an unhappy circumstance that the meaning incorporated by these
semantics is not somehow transferable to the FOL axiom level. Similarly, it is unfortunate that the
FOL level axioms cannot be com piled, somewhat automatically, into simplification level attachments.
While it Is true that this inability places the burden of a redundant inefficiency on the FOL user,
this is not our major point. Rather , our intention points towards the time when some similar scheme
might be incorporated into an intelligent program. Optimally, such a program would build up
frequent action patterns , effectively learning new processes. With our representation formalism, this
could well be modeled by the compilation of FOL. WFFs into the corresponding model attachments.

$5 Ther e ‘s • em l~ but ,mporlvtt incept ion to th is eule One can emeanticaMy swaphfy an sspnes slon of the fo rm ~~ i “ 2’ n~)~
and ebtaut as an inferred step . 

~t ’ i ”~’ ’n~~’ for funct ion F and terms a, and y.
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Section 5.9 Evaluation and Suuii inary

The reader is probably by now feeling somewhat overwhelmed by the mass of argument and detail,
proof and text that we have presented. Let us conclude, therefore, by summarizing and evaluating
our important points.

Many doctoral dissertation seems to be of the form: “I ’ ve solved the A .!. problem, exce pt for a few
implementation details I’ve not bothered to work out.~ It is a primary premise of this work that
“solving the A. !. problem” is a very difficult task , and much fundamental work on both
represenlations (epistemology) and search (heuristics) remains to be done before its solution.

This particular paper has been centered upon consideration of epistemologicoily effective
representations . There is a common fallacy in most A,!. work , that because some particular
representation, invariably employed in some particular task, was sufficient to solve some of the

• problems of that domain, that that representation can be extended to the rest of that domain , and . -

onwards to the rest of whatever we want our computers to do. Our perspective has been from the
opposite direction. We have started with a very general representation (formal logic),86 discovered it
inadequate for modeling even a limited problem domain (chess puzzles), and extended it (by the use
of the Chess Eye) to where it can more easily and naturall y represent Certain interesting problems.
However , there are many questions about chess puzzles that are inconvenient or impossible to ask
within our representation as presently formulated.

It is important to remind the reader that the fact that our representational formalism is based on
first order logic does not imply that we are suggesting the use of general purpose theorem provers .
Rather , our comments in this work have been reserved primarily for the epistemological part of the
A.!. problem; we have spoken very little , if at all , about appropriate heuristic mechanisms. Our
approach has been, in some sense, bottom up (consideration of the nature of reasoning sequences)
rather than top down (discovery of the appropriate state search methods).

It should be remembered in evaluating all of the particulars of the individual representational
choices that we have made, that first order logic is a family of representations. The failure of one
particular example of a formal logic system is a failure of that selection of individuals, predicates
and functions, not the failure of the entire notion of formal systems.

There are several general representational issues illuminated by this work. In earlier sections, we
have pointed out the distinction between concrete (board) and abstract (positional) entities , and the
importance and value of state vectors (positions) in durational deductions. We have seen many
facets of the multiple representation issue, such as differing representations for the same object
(board and position, piece and value) and preserving properties between similar objects (chess
Induction) illustrated by our axiomatization. We have noted the necessity for both syntactic and
semantic representations; there are many important syntactic type deductions which are not
expressible within a model.

Our major emphasis, however, has been on the interrelation between observation (the Chess Eye) and
deduction (the overlying FOL. language). We have closely examined a particular observational
framework and found it adequate for computing certain properties (functions on closed objects).

86 Ii is true th.t fo,m.I isgic us a general ,epreaant.t.oui scheme it is also t rue th.t certain Turing machines are univ.re.l
compuling device.. However , this alter knowledge is of litt le us. m aclu.iiy programming computers. 
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• However, we have been left with the sense of the impotence of this scheme: not all of the
computation and observation we wish to make Is on fully defined, well structured objects . The issue
of adapting and generalizing the simpllAcation mechanism to Include these observations remains a
major plac. for future explorauon.

I
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Appendix A Chess Lemmas

Due to space limitations, Appendix A, the proofs of the general chess lemmas and theorems, has not
- : been included In this volume. Those proofs may be found in the author’s Ph.D. dissertation, which

is available from UniursU , MSCYOJVItIS, 300 NorM 7,seb Road, Ann A,*or, Mlc/slgan 48106.
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Appendix B Proof Lemmas

This appendix presents the variou s lemmas and theorems relevant only to our given puzzle. yet too
detailed to belong in the main exposition . chapter 4. As such, its form is essentially similar to
appendix A. However , unlike that appendix . these lemmas are listed chronologically; that is. in the
order of their use in the main proof

Section 8.1 Undefined Squares on the Given Chessboard

Our first problem lemmas are , trivial ly, a single simplifications. Just as there are many useful facts
about chess derivable in a single simplification, and useable in many contexts (as presented in section
A l), similarly, there are observations about the interesting boards of this problem. (Observations
we prefer to have to compute only once.)

We observe that the only undefined square on the problem board is WX R4

e.sa sIabe I .~~“UOi
55155515p I t~ ~~~~~~ IVaIugon iGtV tN sq ).UDus 5sbi ~.Rai~
~ Ys q . (VsIueoniGIV ..q )sUO,sq. ~~I~

)

We also note which squares on GIVEN have white pieces on them.

•...eIaO. I G u v , ’ ~WV i
easCes api u ~~ Vsq . (iiV~4.u(S Vi~u.en(~ tVE k ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
•.I~l.h3~ s q . W L R 2 ) ) u
2 Ys q. (WV a L IJES Va Iusor ~ G!V( h , s~ ) ( sg4I (sq.5Q ~v (sq.8G2v (i~eUQR2v (.q.WQ N3v ( .aeWQ$2v (sq .WQ3v (5q.WL8 vtsq.

Section 8.2 “Blocked oil the Total Board. Too”

This lemma proves a precondition for the CORNER theorem. That theorem assumes that a piece
checks the opposing king, and that the chec k did not arise from a castle , en passant capture , or pawn
promotion. We wish to show that the checking piece does not have any entry square to move to
make the check that does not also check the king. (Starting a move with the opposing king in check
is clearly impossible.) The theorem will then let us conclude that the check was a discovered check.

Unfortunately, the theorem must speak of the total boards of the relevant positions. We do not have
a total board, rather , a (fairly complete) board fragment. What can we conclude of the relationship
between these two? We would like the appropriate predicates (MOVETO. Va iueon) to correspond
between the two boards. But proving this is some work. This illustrates the difficultly of
transferring properties betwee n similar objects within our formalism.

• Our lemma begins with a lemma of its own. One of the orthogonality theorems, OrthoThmX (section
A.9 .2) states that the ORTNO relation (on a board, two squares lie on the same horizontal or vert ical,
with no pieces between them) is sometimes equivalent between a board and its sub-board. More
specifically, ORTHO will remain true around a square if that square has no undefined squares sharing

• its rows and columns. The lemma considers orthogonality between GIVEN and the total board
(Iboard) of some position for which GIVEN is a BOARD. A square eq is proposed. which shares
neither a row nor a column with the x-ed square, WKR4. As this Is the only undefined square on
GIVEN, then orthogonality is equivalent, on this square, between the two boards. We label this
lemma BLOCI~LEM (blocking lemma).



Page 199. Proof Lemmas 13 2.

eC.i i I~~bi) ~~~
•SasIass I4ue (lOa ~iR 4.R w •q )* — i C o h.wi i&R4e Ca h~an 

~~
) i

L “(.R w I&~ R~~sRCw Sq )A . It C iWaf l  ~~*4.Ce i~~~ sq 1 (1)

es..eaa$u.e •q3sMUa~
2 sq3.i~.R4 (2)

•spssswVII t IA t t~3 — (Row •q~ .R*w $q )A—t CeIiIuI ~ .q3.Coi ..w sql ( 1 2)

•e.s.~ 1 tt3t~
4 sq3.i~~R4 (— (Row sq3.R w aqi a— (C elw.v i sq3.CoII ,,wI iq)) (1)

ussssYt G,v.nUO sq3 ;
S Vs ,aeo~’(Gi VEN .aq3).UOsiq3.~WI4

eaaaeta u l Vslu.on(G~VzN ,aq3).UO) (.q3.sq~ i..(R.a •q3.Row sq )A— (CoI ~ an aq3 .Co~ .isn sq )) ) t ,tt 1
6 Vsiu .on (GIVIN. sq 3).UO,(aq3..qv (.(Ro.. ,q3.Rew sq ) A — ( CoII ,~~ •q3 .Coiw ~~ sq )) 1 (1)

..a.eV i t sq3~7 Ysq 3. (Va I u.oniCIVt~ ,sq3).UO,tsq3.sq~ (—( Row iq 3.Row sq),.—(COUeSVI 1q3 .Co)wan sql))) U)

•...sYE Or (P,oTPi eX q .GIVE W , sq, iq li
8 80 D ( q , G I V  ) , (Y sq3 .(V siuaon (GiV tt~,aq3).U0,(sq3.sq~ i— iIow sq3.Row aq )A— (Coiw an sq3 .Colu.n .q ) ) ) ) , ( OR1H0 (

-
• Tbol r d q , aq, sql ) .ORT$OIG IVI M , sq. sq l ) ) )

•.,..,auI BOR RO (q . GIVzN ) ,( ORT )s 0(T Do sre q, s q, sq a0R T P,0(GtVc N,~q, iq1I) ?t ,t ;
S 80~R0(q . GiVEl ) ,(OR T NO(1oostd q,pq, sq~)s0R fl (0(GiV~~,sq, sq1)i (~~l

s.sss ~l Lb? i
II  (— (Row ~&t i.Iow sq ).— (Coiw~~ ~~R4.C~ Iv~~ sQ)))( B0~fi0(q,ClV tN1)(0RT$Oflboard q ,sq,sq l)aORTNO (GIVE N ,sq,sql))

— •*eee 1,0. 1 BLOCkLEII i
.s...VI t q sq sql~IL Yq sq sqL. (C-. ( Row ISUS.*pw $q)A —I C O Iw ~~ 1,~Rè.Coh,eA iq )),i6013R~~(q, GI VtN ),(0RTNO(TbO.r d q, sq, sql)SORTHO (
G1VV d ,sq, sqI))))

We know that for rooks, the MOV ETO predicate is equivalent to the ORTHO predicate.

•..s.VE NOVINCI Tboerd q,RW ,5Q2 ,sqli
• - 1~’ ~IOV1TO(Tbosrd q, R~i,$Q2 ,pq 1) .((V ~LU(R Ld~O11HO(Tbo4r d q,8Q2 ,sq i) ) v ( 1VW..U(B RU~0i~G(Tboard q.BQ2 ,sq1))~ ((

- , 

•
; VgLUEQ RWA O R T~4O (Tbo5rd q,102,sql))v(1VA ..U(Q RMA0IAC(T bosr~ q,BQ2 ,iq1))v((VRLUD ~ RIIALINGIIOVE(5Q2 ,sql ))v ((

VQLIJL% Ru~~Ni T~OVt ($Q2 ,sqL ) ) ’.(V~i.Ut P I P~iSPilW Vt(Tboeri q,Ii~,IQ2,sq&iI ) l1) ))

esesaVE flOV INGI Tbea~d q, IW ,BQNZ ,sqt;
13 ?~OVE1’0(1boar d q. IW ,BQtd2,sq1) .iiV~L~ (R Ri~ ORTMO(Tsosr d q, 10N2,; ii.~((Vfil,UEB RWA DIAG(Tboard q,8QN2 ,sql))v I(
VgLuEQ IWAORIHO(Tboard q,SOt42,,q2 ) 1v((V ~iUEQ RW AOZa C(T boar d q,BQN2 ,.q1)h((V ~Lu(i R x INGIIOVC(6Q 42 ,sqii)v ((
YP LUEN RWAkNI C$Tfl OV E (BW(2 ,sql))v(Vg LUEP R~AP~~!~i0VE(Tbo5rd q,Rid ,IQN2,.ql)))W))

- ~.Isb.I 
~L•~~.~~.s~~m p I .f y  ti’ 1

14 IIOVETO (Tboard q, *W ,8Q2 ,,ql).O* T HO(TDosr d q,BQ2,sql)

• eePses lx , p i I (j,( tt 1
15 NOVETO (Tboerd q ,RM ,10N2 ,sql).ORThO lTIo.r4 q ,BQN 2 ,uql)

• And, by our lemma above, on the interesting squares (BQ2 and BON2) orthogonality Is equivalent
between GIVEN and the total board.

• 

• 

_w .~ —~
-
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.- - -.  -
~~~~~~~~~~

-. . - •.— ———,. .  -- I



B.2. Proof Lemmas Page 195.

.*.s.VE BLOCKLEM q,B02 ,aql;
16 (— (Row WK R4.Røw BQ2)A— (Coklmn 11K64.C•iumn B02)) (BORRD (q, GIVCN ) (ORTHO (T board q,8Q2,.ql)uORTHO (GIVEN ,BQZ,
sql)))

.ssssVE BLOC KL(fl q ,BQN2 ,sq l;
17 (— (Row 11K14.Row BQN2)A— (CoiwmI~ MKR4.CoiMen BON2)) (BOIiRb(q,GIV(N)~ (ORTNO (TIoerd q,IQNZ,sql)uORTHO (GZVEN ,
80N2 ,sql)))

e**** labs i ~,jjssesssiv ,p i if y ti ;
18 BOARD (q,G1VEN), (ORTHO (Tbo.rd q,6Q2,sql)IORTHO (GIVE N ,$Q2,sql))

s*ssssimp iif y ti ;
19 BOARD(q ,GI VEN),(ORTNO (Tbeai’O q ,BQN2 ,aql)sORTHO (GIVE N ,BON2,sql))

We would have our result, except that we must prove that the rook could not have moved from the
undefined square. But no piece can make that giant L jump, as consultation to a move excluding
theorem shows.

s.ss.’VE flsy llove Tboa rd q, RW ,B02 , IiKR4i
20 ?IOVETO (Tboard q,RW ,802,WXR 4),(Coiumn 8Q2 .Coiumn UKR6v (KNIGHTMOVE (B02 ,UKR4)v(Row 602.Row UKR4 v (SP1IEDIAG (802
,WKR4)v (K ING IIOVE (BQ2,UKR4 )v (TUOTOUCH 1NG (Coiiam.~ 8Q2 ,Co;uan UKR4 )A (USUC (RON 802,Rsw U1R4)vBSUC (Row 802,Row UIZR4
1) ) ) ) ) ) )

.*sssi~b.i Li;
5Ss**s im p i i f y t ;
21 •9IOVETO (Tbesrd q,RU ,802 ,11K14)

• We can see the desIred result is true on the given board. The steps above prove the equivalence
• between this observation, and the result on the total board.

ssssss~mp t  i f y Vsq2. (ORTf4O(G1VEN ,BG2 ,sq2) i~ (Va iu .on(G1VEN ,sq2).flT)vORTNO(GIVEN ,BQN2,sq2)))J
22 Vaq2 . (ORTHO(G ZVEN ,8O2 ,sq2)~(— (V1 iu.on(GIVEN ,aq2).flT)i.ORT$O(GIVEN,BQN2,sq2)))

s****Iab.i 1.5;
*~e*sVE t sql;
23 ORTHO (GIVEN ,802 ,sql) (— (Va i ue ,n(GIVEN ,sql).NT)vORTHO (CIVEN ,80N2 ,sql))

sasseVE SubBoard ;4X q GIVEN sql;
24 BO RRO (q, G IVE N),(Vaiueoi ~(GIVE N,sq 1).V4lueon (Tbo ard q,sql)vVaiueon (GIVE N,sql).UOI

ss*ssV E Giv anUD sq l;
25 Vaiu.on (G IVEN ,sql ).UDssql.IiKR4

s*sssassum. BOPRD(q ,GIVEN) ;
26 8OPRO~q,G1VEN ) (26)

.***a teut.q flOVE)~ (Tboard q RU B02 sql)~ (’Vs iu.on(Tbe*rd q sql).flT vflOVETO (Tbosrd q RU ION? sql )) L2,L2.l,L3,
•L3,l ,L4 ,t;
27 #OVETO (Tboard q,R14,802 ,sql) (— (Vaiuson (Tboard q,sql).NTIvMOVETO (Tboard q,IU ,BQN2,sql)) (2$)

Generalization and removal of dependencies.

essssVl t sq l;
2$ VaqI. (flOVETO(Tboa.’d q,RW ,BO2 ,sql),(.(VaIueoi~(Tbosrd q,sql).PIT)vIIOVETO (Tbosrd q,RU ,10N2 ,sql))) (26)

.ssss,I ttbt ;
29 BORRO (q,CIVEN),Vaql. (flOVE TOITboai~ q,RU ,BG2,sql) (~(Va iueon (Tboerd q,sql)eIIT)vflOVETO (Tboard q,Rii,80N2 ,sql)
1)
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SS5,.ISD,I I;,c~sdG,~.~iTPia i
..eeeVi t q;

- • 36 Vq . ($OaRO( q,Gi V (N),Vsql. (MOVETO (T ~o~r d q, Ii~,$Q2 ,aq l) i_ (V slwson(T ~s0rI q,sqD.MT i vfiOVtTO (Tbsar~ q,NU ,10N2 ,
sq l))))

Section I1~ Where A White Pawn on BQB2 Goes

A lemma for the main proof, to derive the possible moves of the promoting pawn on 8Q82.
Naturally, we turn first to the move defining axioms, MCONSEQ.

e,*.,I*b .I U’
•saSs,ssu.e SUCCES$0R (r ,p)A (~C~STL lNG(r ,p ) A ( ~tNJASSAIfT ( r ,p)A(PRWNPR OIl Novs pA -’ INITIt URN pv,IFro. Me vs p.1062
ev8OA ID( p ,b ) ) ) ) ) ) ;
A SUCC(SSOI (r ,p) A ( ,CRSTLING (r ,plA( 4NJ~SS~NT (r ,p)v(P4iiNPI0N I1o~e pv( ’IiNITITURN ~~~~~~ N~vs •.l0$24D~RO(0,~- • I) ) ) ) )  ( A )

•s.ssVE lco nsaqli r ,p;
2 SUCC(SSOI(r ,p ),(PAUNPRON love p.ft.RSTRANV.ER ( To Nose p ,Color r)~~iSiMPL ( LEG~LN0 r ,p)~ IPRWNS Nov.r Nob. p~ IV~LU(P Vsl uson(Tb osr~ r ,Fr O. Move p)v l ( i BV R L UL S Proao;.d flo~• paIVALUE S V ,I (r,Nover Nov. p))kIISVaLUL S
Pro.ol sd Mov e 1aUVaLUES V5 I ( r , Mover Move p) ) )AVCH p, Nover Mov e p).Pro.oI.I Move p) ) )) ) )

e.s.sV( 11CON SE0)~ r ,p;3 SIII PL LL (GALM OV (( r ,p )s (— ( r ro .  love p.To 11ev. p)~ (MQV (T0 (T board r ,VsIveon(Tbosrl r ,Fro. Move p ) ,rro. flove p,
To Nov a p ) ’* IIS IMPLE flov S p~Vmliaeon (1boa rd r , Io Nov. p ).fl1 )v ( Ca PTU RE fl ows •AIPI(t(V~LUI S VmIv .onITbo$rl r ,1o
f owl • ) a — (V aiwe co l or VàIw.on (Tbo * rd r , To Move p)eCoIor r ) ) ) ) ) )

ss*s.V( NCON SEQQ r ,p;
4 SUCCESSOR(r ,p),((’UHITETUR N r .UHITETURN p )% iPr .%po. p.r~ t~P0S iTI0N1N CNE C~ (p, Coi or r)~ (lUHiT (Pi(C ( flo~.r
Move paU HITLTUIN r)A( Pos (r,FrOm los p).Mover Nov . p ’.IPos (p,To Nov • p).Nov.r Move pki Pos(p ,Fro. Nov . p ).IMPTV

~1 (CflPTURt Move p,Pos(r,To Nov. p).Ta~en Nov. p).~(CA STLiNG (r ,.)v (tN-PRSSANT (r.P)vSI IVttLtCaLM OVt (r,P)))))))))

We not that the Vai , Va l ueon , and Poe functions all express different representations of similar
ob jects, and that these representations are intimately connected.

.s.ssVE V 5lueT ransposll sonR r ,Novsr Move p,~ roa Nov. 01
S Pos ( r ,~ro. Nov. p).flov.r Move p ,Vsita.on (TDosrl i-,croa Nov. •).Va I (r ,Nevsr Move •)

One awkward point is the necessity of reminding the proof checker of the differences between black
and white .

s.e.5V( 8orW~P’.ce~. Mover Move Pi
6 — ( ILA CIP IECE Mover Move ps W HIT EPIE C E Mover Move p )

And we can see that any pawn valued white value piece must be P14.

•sssss mp l I f~j  Vv . ( ( VA L U EP VA4VA L U(S v ) iv .PW ) ;
7 Vv . ( ( V RL Ut P VA4VRLU(S v )uv.PU )

•ssseV ( t Valu e o n (Tbo s rd r , Fro~ Move p) ;
$ (VA LU EP Va ueon (1~osrd r ,rro . Move p )A4VQLU (S VèIue oa(T~o e d  r ,Fre. Move p)).Va l ueon (Tbo rd r ,Froa Nov. p)
•PU

s.sss i~ b.I L_~ ;
•ss..VE CoIo rC I~oEc.. r ,flover Move p;
$ (BVRLUC S Va i fr ,ilover Move p)a$LR Cf ~PlLCE Mover Mews p)

~ (UVALUtS Va ; (r ,Mevsr Mows p )aU HITC PIECC Mover Nov. p)

More specifically, we consult the definitions of the PW’s mov es, and simplify the result.

_ _ _  -

- , ~~~~~~~~~~~~~~ •———--—.- -. -
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**.**VE NOVZNGI Tbojr d r,PW ,Fr.m Nov. p, To Move p;
16 MOVETO (T bo ard r~PM ,Fro m Move p, To love p)a ((VALUER PMvORT$O (TDoard r,From love p,To Nova p))v ((VRLUEI PUA

OIAG (Tbo ard r ,Fro. Move p , To flo vi p))v ((VPL UEO PiJADRT$O(Tboard r,Froa Move p,To Mo ve p))v( (VALUEQ PUADIAG I
Tboard r ,Fro . Move p,To Move p )) v ( (V R LU EK PUAXI NGMOV E(Fro m Move p,Io Nov . p))v ((VA UJ EN PUAKNIGHTMOVE (From
Move p ,To Mo ve p))v (VRLUEP PIIAPRUNNOVE(Tbosrd r,PU,)roa Move p,T• Move p))))))))

sos sos imp il fy 1’;
11 MOVETO (Tbo5rd r,PIi,Fro. Move p,To Move p)aPPIINIIOVf(Tboard r,PU ,Fre. Move p, Te Move p1

... s.VE PAUNIIOVINGI Tboard r ,PiJ ,From Nov. p, Te 11ev. p~ -
12 PAI NIIOVE(Tb oard r ,PI1,From (love p, Te Move p)u((WPAMN MOV( (TboarI r,Frs. Move p,To Move p)#~MVAL UtS PU)v (
BPAUN IIOVE(Tbosrd r ,From Move p, Ts (love •)4VAI Ut$ P11))

54555 slmp Iif 9 t;
13 PA JNPIOV((Tboard r ,PU ,From Move p,To (love p)sUPAU)(NOVI(Tb.ard . ,From Move p,To Move p)

•osssVE PA 1JNMOV ING2 Tbolrd r,From Move p,To (levi P1
14 WPRhiNI1 OVE (Tbo~rd r ,From Move p,To Move p)u ((Colimn F.m Movs p .Coiumn Ti (love pA (USIJC (Row From Nov. p ,Row
To Move p )AVCi ueon (Tb oar d r , Te ?Iov • •).IIT))v ( lColwam From Move p.Ceiumn To (love pA (Row Fr.. Move p .TA(Vaiueon
(Tbo~rd r ,To Move p )e I1TA (V Oiueon (TboCr d r ,Makesquae e(6 ,C.iwmn From lievi p)).NTARoW To Move p$))))v (
TWO T OUCHING (Column From Move p,C,iumn To (love p)AW$U C(Row From (liv. p,Isw To Move p)4VRLUC$ Va I u.on (Tboard

• r ,To love p)))))

It therefore tautologically follows that a white pawn can move In only one of three (ordinary)
motions.

e**sotauteq 1~12 L1~t ;
15 (Column From Nov. p.Co;umn To Mov e pA(IiSUC(Row From Move p, Row To Move p )AVaiueon (Tboard r ,To Move p ).flT))
v UCoi u mn From Move p.Coiumn To Move pA(Row From (love p.7A (VaIueon(TDoCrd r’,To Nov. p)a (lTA(VIIv.on(TDoar-d r,
Ilskesquare (6,Column From Move p )).M TA R0W T. Move pe5))))v (TIIOTOUCHING (Column Fre. Move p,Coiumn To (lo ve p)A (

USUC(R ow From Move 0,10w To Move p)4VRLUES Vslueon (Tbssrd r,Te (live p Ill ) (LI

Substitution the square we know it moved from, and simplifying, we get:

00005tCu t From Move p.8082 LI;
16 From Move p.8082 (1)

o***osubs tr t in ti;
17 (Column BOB2.Colu~n To Move pA (W SUC ( Row B082 ,Row To Move p)AVOIU.on (Tboard r ,Te Move p).( lT ))v ((Co iumn 80B2
.Coiumn To Move pA (ROw 80B2 .7A(V .luCon (Tboard r,To Move p).IITA (Vaiueon(Tboard r,flak.square (6,Co iumn 80B2)).MT
AR ON To love puS))))v (TI1OTOUCHING(Celumn 8082,Co iumn To Move p)A (ISUC (Row 6082,10w To Move pIABYPLUES Valueon
(Tboard r ,To Move p)))) (1)

sosso lab. ; LI;• 04000s ,mpIif M t ;
18 (3.Col umn To Move pA(USUC(2 ,Row To (live p )AValv.on (Tboard r,To (love p).NT))v (TUOTOUCH1NG(3,Co umn To Move
p)A(1JSUC (2,Row To low . p)4VALUES Vaiu.on(Tboard r,To Il .v. p))) (1)

• Now, we check all of the squares, arid discover only three possible destinations for our promoting
white pawn.

.**oeslmp l I f  y Ysq. (((3.Coiumn SqA1JSUC (2,Row .q)),.q4081)A((TUOTOUCHING(3,Co kamn sq)MSUC(2 ,Row sq )).(sq. SQNI
• ovs q. 8O L ) ) ) ;

19 Vsq , (((3.Coiumn SqAWSUC (2,Row sql )asq.8081)AC(T1IOTCUCNING (3,ColUan sq)AIISUC (2,low sq))a (sqmBONlvsq$U1)))

**.ssVE t To Move p ;
2$ ((3.Coiumn To Move pAIISUC (2,Now To Nov. p))aTo Nov. ,4031)A( (TUOTOUC$ING (3 ,Co Iumn To Move p)MISUC(2,Ros
To Move p))~ (To Move p .BONIvTo love p.801))
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A little rearrangement of the result, molding it into a more convenient form for the main proof.
4 

Effectively , we clutter this lemma with substitutions, rather than the main proof.

sesoeVE VALUET RANS POSIT ION p, flover Mow . p, To (love
21 (Pos (p , To love p).Movsr (love p4OARO(p,b) 1 (Value on (b ,To M ove p).Vai(p,Mover Move p)vVa i we.n(b,To Nov. p).
UD)

0000e;aul eq UVALU ES V4leeo n (b To Move p )v V Olueon (b To Nov. p).U0 t,LI sLI,3,L2;
22 UVALUES Valu.on(b,To (love pivVeiv .on (b , To Move p).UD (1)

e5000as sume To (love p.sqsj
23 To Move p.sqv (23)

S* Osssu bs tr I in  It ;
24 UVALUES Valueon (b ,s qs )vV aiu eo n (b , s qe ) .UO U 23)

ss.o e)1 It ) I;
25 To Move p.sqs (UVRL.UCS Valueol - (e ,sqs )vV elu eon (b , sq K) .UD) (1)

•o .eeV l t sq e;
26 Yaqv. (To Move p.iqs~ (UVALUES Vaiue o n(b ,s qs )vV aiue o n (b ,s qs ).U0)) (1)

• .oo.oVE I BQNI;
27 To (love p .BQN1~ (WVALUES Và l taeon (b ,BQNA)vVale.on(i ,BQNI).UO) U)

sos ssfl It 8081;
28 To Move p.80B13(UVRLUCS V. Iueon(D ,BQBA ) v V alu eon h b ,BQBL ) .UD ) (1)

os5ooVE Itt 801;
29 To Move p.BQA~ (WVR LUES VC lueon(b ,80l)vValuoon(b ,B0l).U0) (1)

e.se.tauteq (To Move p .BQNIA ((UVALUES Valu eon (b ,BGN I)vVa lu eon (b ,BONI ).U0 )ABVALUES Va l ueon (Tboard r ,To Nov. p)
- - o ) ) v t C l o  Move p .BQIA ((IIVALUE S V .lueon (b ,BQA )vV alu e on (b ,BQI).UD )ABVALUES V~lueon (Tboa rd r,To (love p)))v(To

- 
~

- sh ove p .BQ8IA(UVALUES Valu eon (b ,BOB I)vV alu eon (b .B081).UD)l) ttt l t .1$,2,(
30 (To Move p .BQN IA ((UVALUE S Valu.on(b ,80N 1)vV alueon( b ,BONI ) .UD )ABVALUES Vatu .on (Tboard r ,T. Move p )))v ((To
love p.BQIA ((UVALUE S Valueon (b ,801)vValue on (b ,801).UD)v8VALUE S Valu.on (Tboard r,To Move p )))v (To Move p .BQBIA
(UVALUES val ueon (b ,B0Bl )vVaeueon (b ,BOB I).UD))) U)

Removing dependencies. and generalizing, we get our lemma.

oeooo~ I Lbt ;
• 31 (SUCCCSSOR (r ,p)A (~CASTL INS(r ,p)A(..E N_ PASSANT (r ,p)A (PAUNP R0M Move pAt-.UH ITETURII pAWrom Nov. p403240a10tp

,b ) ) ) ) ) ) ) ~ ((T o Move p.BONIA ((WVALUE S Valu .on (b ,BG NI)vValu. on (b ,BQNI).UD)4VALU (S VaIu.on(Tboar~ r~To love p 1)
)v((To Move p.BOIA ((WVALUE S VO l iaeon (b ,BOllv VClueon (b ,B0l l.UO)4VALUES Vaiueon(Tboard r,To Nov. p)))v (To (love
p.BOB LA(W VA LUES Va lueon (b,I081)vVa l ueon(b ,808l).UD) II)

s.o.s lab. PXPawni,~sas~ sVi I r p b ;
32 Yr p b. ((SUCCESS0R(r ,p)A (~CA ST L ING(r ,p )v (~EN-PASSANT (r ,p)A ( PAW NP RO M Move pA(-.JHiT (TURN pA( From (lovs p.8082
ABOARD (p ,b))) )))1 ((To Move pe $ON IA ((WVA LUE S Valu.on (b,BONI )vV aiueon(b ,BQNI).U0)4VALUES Va l u.on (Tbo*rd r,To

- 
. Move pl))v ((To Move p .BOLA ((UVALUCS Valu.on (b,$Ql)vVa uesn(I ,BQL)sUD)4VALU(5 Vaiueon(Tbosr~ e ,To Nov . p ) ) )v (

To Move p .BOBIA(WVA LU E S Vaiw eon (b ,B08l)vV alu eon (b ,BQBI).UD)))))

Section B.4 A Rook or Queen on SQl is Cornered

The purpose of this lemma is to set up one of the more complicated conditions of the corner theorem
for the main proof. Effectively, somewhat sim&lar tn directLon to the proof of sectIon 3.2, though a

• bit more complicated.
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We seek to prove that , for any position q, which has a a board OBUD, that a black rook or queen
valued piece on BOl can move only to squares that still check the white king on BKR1. We will use
this conclusion in the main proof to show that If the piece the pawn captured was a black rook or
queen. then that checking rook or queen must have arrived at that state by a discovered check.

We begin , of course, by assuming the existence of a position q, which has OBUD as a board.

e.os.l ~b.i U;
ss.se assu me 80A10(q ,QBUO) ;
A SOARO (q,OBUO) (A )

We consider first the case of diagonal moves. As OBUD is a board of this position, and, as we can
observe, QBUD is well defined and not empty on the two diagonal blocking squares (8082 *nd BK2),
we know that the total board (Tboard) of q must also have those squares occupied.

eessoVE Sub8oar~a4X q,OBUD ,6082;
2 BOARD (q.0BuO),(va;ueon (Q8uO ,BQB2).Va l w.en(To.arl q,I0I2)vVa iwe.n(0$U0,1Q$2).UO )

sssssVt Sub8oards4K q,QBUO ,6K2;
3 BOARD (q,OBuO),lva ;ueonlOBuD ,8x2).V.i ueon (Tboaru q,lK2)vVa lweon(0SU0,ll ~2).U0)

• oe. se s èm p i 
~~~ 

.(Vaiu eon (Q BU0 ,$i~2) .MT )A ( .(V . l w eom (06U0 ,IK2l .UD)A(~ (V aIweom (0IU0 , I0$2)uUO)A.(V0Iueon (0IUD ,SQl2)

4

sosso~abei U;
so ... au;eq — (Vaiw eo ni T bo a rd q, BO BZ ).MT )A— (V alu.o n (T boa r d q, 6K 2).MT ) LL ~t ;
S ..(Va lu.on(Tboard q,6082).(lT)A-’(V.lu.on (Tboard q,B~2)e NT) (1)

Of course, TAUTEQ will not be pleased unless we do Its (unction substitutions for It.

000eoassume aqA4Q$2;
6 sql.8062 (6)

.ssosassum. iql4K2;
7 sql.BK2 (7)

se050subit It in Itt i
8 - (Valu.on(TDoard q,aql)UM T)A— (Valueon (Tboard q,$~2l.MTl (I II

eeoe es u bs t tt In t Ilt ;
9 — (V alueon (Tbo ard q,8GB2).MT)A~ (Vaiueon(Tboard q,sql).hlT) (1 7) 

- •

osese,I tttt,tt;
1$ sq1.S082,(~ (Valueon (Tboard q,sqA). (lT)A— (Vaiueon(Tboard q,1K2).NT)) (I)

sooss,I tttt,tt ;
11 sqlulK2,(. (Va u .on (Tboard q,10B2).NT)A— (Va lweon(Tboard q ,sql).MT)) (1)

We employ a lemma, Dl.gBQlLemma, which states that for any position with cheuplece on BQB2
and 8K2, there are no diagonal moves from 801. DIag8Q 1L.mrr.a Is proven In the next subsect ion.

oseseVE blagBOl Lemme Tbo4rd q,sql;
12 — (D IAC (Tb oard q,lQl ,sql)A(.(sqi.$012)A(— (sqlu$k2)A(— (VsIuson (Tbo*’d q,$0$2).MT)A— (Va uemn (Tboar-d q,1K2).MT 

~~~~~~~~~~ •
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We can therefore tauto logical ly conclude that , on the total board of q, the only squares diagonally
reachable from 801 are occupied.

ss050(abei Lj;
is... t a ut eq ..DA AG(Tboerd q,$Q1,,qA ) v — (V a lveon(Tboar d q,sq*).MTI .3 ???,? ;
13 ~0IAG (T board q,IG1,sq1)v~(Va iveom(TboarI q,sql).MT) (A )

We proceed to the orthogonal cases. The board OBUD is undefined on exactly two squares, BQ1 and
WKR4 (the fallen piece square). Essentially, we seek those conditions which must be true of a sub-• board, before we can deduce that movement relations on it are equiva lent to those on a more defined
board. We have a theorem, OrthoThmX17 that related orthogonality between sub-boards and total
boards. It states that undefined squares that neither share a row nor a column with the given
square (or are equal to Ii) do not effect the ORTNO relation. We seek to establish that the undefined

r squares of OBUD (SQl and WKR4) are not relevant to the current orth ogona lity question. As usual , we
require co pious subst itut ions.

eeOo,sim p i l l 11 — (Row UKR4.Row $QL)A.(Coiumn 11114.Column 801);
14 — (low Uk14.Row $01)A— (Col wmn Uk14.Cslumn $01)

e.ssoassume sq3.U~R4i
15 sq 3.U)~R4 (15)

ee eeesub~~ I in It ;
— 

16 —( Row sq3.Row $Q lla—(CeIu.t sq3.Coiwmn $01) (1$)

e.ees, i ?t,t1
17 sq3.UVZI4~ (— (low sq3 .Rew I01)A—(Co ;m~ sq3.Celwmn 101))

ee.ses ,mp I I~ V .q. (Va i ueen(0$UD ,sq).UD (sq .$QLvsq.M ~R4))~ 
.

•
18 Vaq. (Vaiu. on(OBUO ,sq ).U0 (sq.$Ql vsq. MKR4)l

... ..V( t sq3;
19 Va Iweo n (08UD,sq3).UD,(sq3.$0lvsq3.U~R4)

eseee tau teq Valueon(0$U0 ,sq3l.U0 (sq3.$Qlv (— (Rew sq3.Row 101)A— (CoIumn eq3.Coiwmn $01))) ?,t?t 1
2$ Vauueon (OBUD ,.q3).U0,(sq3401v(— (Rom sq3.Row $Gl )A— (Coiwmn aq3.Coiwmn 801)))

se..o labe l L_~ ;
.o... VI t sq3;
21 Vsq3. (Valus on (0BUD ,sq3).UD~(sq3.I01v (— (Row sq3.Row $01)A—(CoIuun eq3.Colu.n $01))))

We invoke our chess eye, the simplification mechanism, to show that BQ1 Is orthogonally cornered,
and adequately defined.

•sso es * mp l 11 11 Vaq . (ORTN0(Q$U0 ,$Q A ,sq ),(0lTH0 (Q$U0 ,$KR1 , eq )v (~ (Valweon (08UD ,Sq).U0)A.(Va iweon(0$UO,Uq).NT)))) ;
22 Vsq. (ORTNO (0$U0,I01,.q),(ORTNO (0$UD ,$kl1 ,sq )v(.(Va Iuemn(0IUO ,sq).U0)A~(Va ha,en(0$U0,sq)eMT))))

550eoIab e i 
~1icoo.. YE I sq l;

23 0RTHO(O$UO ,$O1,eq1)3(0RTN0(0$U0 ,$kR A, sq1)v(~ (Va w.en(0$UD,eq1)uU0)A ~(V aiween(QlUO,sq1).MT )))

And , of coutse, Invocations of various theorems to show the equivalence of our different
representations.

oooe sY E Or%hoThmX q,0$UD,$01,sql;

17. Sec t ion &S2.i .
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24 BOAR D(q.Q BUO),(Vsq 3. lVaiueon(OBUO ,sq3).U0,(uq3.$Qlv(—(R.w sq3.*ow J0I)A~ (Ce1oiiot eq3aCe lum t l01))))~~
(ORTHO (

Tboard q,$01,sql)sORTHO (CSUO ,$0A ,sql)))

e.sosVE Trans i t lv.SubboarOOr t)io9ona l it y OBUD ,Tbeard q, IkR1,sq l;
25 SUBOARO (08U0 ,Tboerd q),(ORTKO (QSUO ,1kRl ,1q1))ORTHO (Tboerd q,IUA ,sqll)

esee sY ? SUB4OARDS3 q, QBUO ;
26 8ORRD(q, 08UD)aSU80~iRD(0BUD ,Tboard q)

es...lab.i 
~esess YE SubBoards4X q OBUO sql ;

27 BOARO (q,QBUO),(Valu eon(QOUO ,sql).Va l veon (Tbohrd q,sql)vVaiueon (OBUO ,sql)eUO)

We have enough here to show the desired relationships for orthogonality and diagonality. However .
the theorem stipulates the relation be on MOVETO, not some lesser predicate. So we must show the
adequacy of our deduction for each of the rook and the queen. Ladies first.

110 VETO is defined by the axiom MOViNG 1. Simp lification narrows the choices.

.eeseVE M OV I NG A T~oerd q,GB,101,iql;
28 h0VETO1T~oard q,Q$, b01..q1)a ((VAL U CR QBAORTHO (tboOr d q,IQI,sql))v ((VALUE$ 08ADlAG (Tboar~ q,I01,sql))v((
VALUED Q8AORT$O Tboard q ,B01 ,.qA))w I(VALU(Q OBADIAGCTDoS rd q,8Q1 ,sql))v( (VALUE~ 0$4INGMOVE ($G1 ,eql))v ((
VA LUEN 08*~HlGHT N0VE (8D1 ,sq1))v(VRL UEP OBAPRIJNMOVE (Tbobv’I q,08,80&,sql))))))))

seoseVE M OV ING I Tboard q,08,$~RZ ,sq1 ;
29 MOV ETO IT bo a rd q, QB , Bl~Rl ,sq1 ) .((V RLU ER Q$AORT NO(Tboa rd q ,BKRI ,s ql ))v ((VA L UEB OBADIAG (Tboard q,BK NI ,sql ))v ((
VALUED QBAORIHO (Tboard q,$4R1 ,sqI)lv((VALUCO OBAO (AG(Tboard q ,BXR I ,sqi))v ((VALUEK 0l~x1NGMOVE (IxRl,sq1))v((
VALUE N GBAKNI GHTM OV (($~R1,sq1 )lv (VALUE P @IAPAUNNOVE (Tboerd q,G$,$K11 ,sql))))))))

essesslai p l I f y ~ti30 IIOVETO (Tboara q,Q8,8D1,sql)u(ORTHO (Tboard q,$0L ,sq Al vOlPC ( Tboard q,BQI ,sqP)

•ese*s i mplit ,~ It;
31 MOVETO (Tboard q,0B,BKR1 ,sql)s (ORTHO (Tboard q ,BKRA ,sqA)vDlAG (Ibo rd q,BKRI,sql))

We can then tautologically conclude the desired WFF for the black queen (valued) piece.

so ... ; abe l DUE ENMOVE ;
•OsS s tau i.q MOVETO (Tboar d q, QB ,801,sq l) (— (Va lu eo n(Tboa rd q, sql ) .NT)v f )OVETO(Tboa r d q, QB ,BKRI ,eqll ) L1,L4 ,L5
e ,L6iL7 ,Itit ;
32 (lOVETOiTboard q,OB,801,sql),(— (V*luSOn (TbOOl’d q,sql)t(lT)vMOVETO (Tboard q, 0$,IKRI ,sq l)) (1)

Similarly for the rook.

sese. VE MOV INGI Tboard q,RB ,BQI ,sql;
33 NDVETO (TbOIrd q,R8, 803 ,sqI )s ( (VALU ER RBA ORT HO(T board q, $Q1,sqlU v ((V RL UEB RBA DIAG(Tboa rd q, SQl ,s q l ) )v ((
VALUED RBA OR T HO (Tboard q,B01,.ql))v ((VALU(0 RBADIAG (TboCr l q ,$01,sql))v ((VALUEK R8~~iNGNOVE (801 ,sq1))v ((
VA LUEN RBAKNIGHTMOVE (801,sql))v (VALUEP R$A PAINM OVE (TboSrd q,RB,SOl ,sql))))))))

ssss.VE MOV I NG1 Tbo~rd q,R8,BX RI ,sq l;
34 NOVETO (Tboard q ,RB ,BKR1 ,~ql1u ((VALU (R RBAORThO (Tboard q ,$KRI ,sql))v ((VALUEB RSADIAG (TbOaI’d q,$P~N1,sql)lv( (
VALUED RBA ORT I4O (Tboard q,8~R 1,aq1))v ((VALUEQ RBAD IAG (Tboar~ q,IKRI ,sq1))v ((VALUEK Rft~~INGMOVE (BKR1 ,eq1))v((
VALUEN R8AKNIGHTIIOVE (BKRI ,sql))v(VRLUEP RBAPAUNNOVE (Tboard q,ft$ ,$KR1,sql)))) )) ))

ss s sss , m p i i f y It ;
35 MOVE TO(Tbo ard q,18,101,.ql)iORTNO (T004rd q, $01,sql )

es eess è.pl i f y I?;
36 MOVETO (Tboard q,R$ ,$KRI ,.qll.ORTNO (Tboerd q ,$KR1 ,sql)

-. ~~~~~~~ — 
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s s e c . 1 b 1  RO0~M0VC;
e*ssotaulsq MOVCTO (Tboard q,R$,$01,sq1) (— (V~lv.on(Tboard q,sql).NT)vIIOVETO(Tboard q,R$,$Ul,sql)) L1,LS,LSi
eL7 ,tt ;t;

• 37 MOVETO(Tboaed q,ft$ ,$Qi,sql) ,(—(Va lw,on(Tb.a.-d q,sql).(lT)vIIOVETO(Tbosrd q,R$,IXR1,.ql)) (A)

It will be more convenient for use to have the theorem in terms of some rook or queen valued v. So
• a little more fiddling.
• I ses.sassume v .RBvv.OBi

38 v. RØvv aG5 (31)

ssss.tauteq DUEEN 1OVE;t0J..v3 QUEENMOVE ,ROOKI OV E,t;
39 NOVtTO (T~oard q,v ,IQI,sql) (—(Va lu.on(Tboard q,sq1).(lT)vN0VET0 (Tboa~d q,v,$KR1,sql)) (1 3$)

..os.V I I sql;
4$ Ysqi .(NOVETO(Tbo ard q, v ,BQI ,sq l),(—(Va iueon (Tbo ard q, sql ).MTIv MOVETO(Tbo at ’d q, v ,IKI1,sql ))) (1 38)

Removing dependencies, and generalizing, we obtain our theorem.

5.5*532 ttt ~ I;
41 (v.R$vv.Q$ )

~Vsq1, (MOVETO(Tboara q,v,B01,sq1), (— (VaIueon~Tboard q ,sql).MT)v(IOVETO (Tboard q,v,B$ZRI ,sqi))) (
1)

• 
ees*s3l Li 3 1;
42 BOARD (q,Q$UD) ((v.RBvv .Q8),VsqA. (MOVETO(Tboard q ,v,501,sql)) (— (Vaiuaon (Tboard q,sqi).(lT)v (lOVETO(Tboav’d Q,v
,BK11 ,sql))))

s*e.*Iabe i Traoo.d...DX..C8J,...Thm;
sos.. VI l q v ;

t 43 Vq v. ($OARD (q, QSUD))((v.RBvvaOB))Yiql.(MOVETO (Tboard q,v,801,sql)3 (.(Valueon (Tboard q,sql).IIT)vIIOVETO (
Tboard q,v ,BKRI ,sql))))) ‘ -.

Section B.4.1 Blocked Diagonal Movement

We promised a proof of the blocked diagonal movement lemma used in the previous section. We
seek to prove that pieces on 81(2 and 8082 are sufficient to block bishop like movement (DIAG) from

j  BOl.

I We observe that any square sharing a diagonal with BOl must either have 8K2 or BQB2 on that
diagonal, or be one of those squares.

s*ssslab.I U;
.****s i*p I Ify Vsq3. (SAIIEOIAG (B01 ,sq3), (( BEIIIEEN(1,2,Row sq3)n(SANEDIRG (sq3 ,BK2)vSRMEOIAC(sq3 ,B082)))v(sq3.
•BQB2vsq3 .BK2) ));
A Vaq3, (SAMEOIAC (BG1 ,eq3) ((BETMEEN (1 ,2,Row 1q3)A(SA (lEDIAGIIq3,8K2)v$RMEDIRG (1q3,1082)))v(sq3u$OIZvsq3.8K2)))

Diagonal movement is defined In terms of the SAP1EDI AG predicate.

ss*.sVE MOVING3 b,B01,sq;
2 DIAG (b ,B01,sq)I(SRMEDIAG($Q1,eq)AVsq3~ ((SAIIEOIAG(8G1 ,sq3)A (SA (lEDIAG (sq,sq3)4ETUEEN(Row $01,Rew .q3,Row sq) - •

)) Valueon (b ,sq3).NT))

We assume these squares are occupied, and that it is possible to diagonally move to some other
square. We will show this supposition to be false.

es.ssassum s 0IPG(b ,B01,sq )A (~ (equB0 B2 )A (—(Iq u BK 2)A ( ’ (Va l ueon (b ,80B 2)sNT)A—(V a i uSon(b ,BKV .hiT )))) ;
3 OjP6(b ,$Q1,sq)A(~(aq4Q821A(~(aq.BK2 A(~(Vahueon (b ,BQB2)eflT)A~(Va iwson ($,8K2).(lT)))) (3)

_ _ _ _  • 
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We abstract part of the definition of diagonal movement .

..s es t aut Vsq 3. ((SAMEOIA G (B01 ,.q3)A(SA NLOIA G (sq,eq3)A $(TIiE(N (Rew I01,Row sq3 ,Rse sq))),Va Iu.on(b,sq3).MT) 2*
•3i

* V5q3. ((SAflEO IAG (801 ,s53)A( SANLOIAG (sq, s13)4ITUCEN (Rew I0l ,R.,i s~3,Reei s q ))) Va iu...*(b ,eq3).NT) (3)

This condition on diagonal movement is true for both 81(2 and BQB2.

eseecYt I
S (SAME OIAG ($01,1K2)A (SA (lLOIRG (Iq,$k2)4ETIIEEN (Row SOl ,Row S l A b . .  sq)) ) Vs Iwsen(b ,IkZ).MT (3)

seeseYt It BOB?;
6 (SAMEOIRG( 8Ql ,$Q$2)A( SAM(OIAG (sq ,$082)4ETWE(ld(Ro w $Q1 ,bos 5012 $... sq))) VaIweee (I,I0$2).lII (3)

We apply our original observation to the parameter square sq.

e.sssVt Li eq;
7 SAME DIAG (801 , sq ), ( ( BL T UE(N(1 ,2 ,Row •q )A(SRfl (0 IAG(sq,$xA )v SaflL DIAGtsq ,IQ$2)))v (s ,.$0$2v.,s$x2))

We compute the rows and columns of the relevant squares.

ee.ees .p l I f y Row $Q1.1AIR0M 8Q82.AA (Row ll2 .AA ($A(lE0IAG ($01,8k 2)ASA (lE OIAG($Q1,$0I2)))) I
$ Ro,i 8D1.IA(Row 1Q82.2A (bow $L2.2A(SAMEOIAG($01,IKA)ASAIILOIRG (101,I0$2))))

Which is enough to produce a contradiction. We negate our assumption, and generalize to our
theorem.

s,,,ctau teq rALSE L1,t~9 FAL SE (3)

e.e.c— I t , O IRG ( b ,~ O1 , sq )A (_( sq . 8Q g 2)A (_ (s qs 8l 2 )A (_( v a l ueo n(b , $Q 82)u (lT )A. (Va ueon (o ,$x Z ) . f lT ) ) ) ) I
II _ (DIRG (b ,$0L ,sq)A (~ (sqs80$2)A(.(sq.$l~2)A(.(Va l wseRlb ,I0$2)eNT)A .(Va i wSei*4b ,Ik2).flT)))))

.e.e.Ia b el Qi,QBQALemIM ;
e....V1 1 b sq;
IA VP sq. _ ( DIAG (b , BQ1 ,sq )A (_ (s q . B08 2)A ( (sq.$l2 )A (_ (Va iw een (b , IQ$2)S( lT )A .(Va h.eenlb ,112) ( l T ) ) ) ) )

Section B.4.2 Consequences of a Distai;t Pawn Promotion

Our final A pecific lemma. We apply the fact that every promotion square to the left of WKN1 requires
the capture of two white pieces, and to express this fact in the form most convenient for the main
proof.

To begin with, we need to convince the proof checker that each of the eighth row squares that aren’t
14KN1 or WKR1 require two captures from BKR2. The simplest way to convince the program, is to let it
see for itself.

ese e.simp l i f y Vsq. (Row sq.8,(Pawncaptures (sq,$&R2)Z2vsq.UP.Rlvsq.IIKN1))i
I Veq . (Row sq.$ ,(Pawncaptures (sq,$k *2)~2v(iq .U~Rivsq.Wl Ni)))

• We assume we have the appropriate pawn promotion move. Hence, by the axioms of chess, this
move must have been to the eighth row, and the piece must have had pawn value at the start of the
move.

eos s.I abei U;

• ~~~~~~~~~~~~~~~~~~~~~~~
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ee000assume PRI~NPROM (love qAfi over (loss q .BlRPA.To (love q.iiKR1a—To (love q.WKN1;
2 PAUNPR OM Move qAill ove r Move q4KR PA (— (Ts Move q .UKRL)A— (TO (love q.UKNI))) (2)

•..*.YE I? To love q ;
3 Row To (love q.$3 (Pawncapt.ares (To (love q,8~R2)~2v (To Mo ve q.WKRIvTo toys q.UlN1))

•ss eeVE B lac ePro mt es On$8 q,8lRP ;
* (PAUNPROII Move q~(lov er (love q4~RP)~Row To Move q.$

.e...VE 1ICONSEOL q;
5 PAIJNPROM Move q.(LASTRAN ~Eb (To Move q ,Co lor Pr.vpoi q)A($IIIPLELEGRLMOVE (Prsvpos q ,q)A (PAUN S (lover (love qA(

VALU EP Va kaeon(Tboard Prevpoe q ,~ro. Move q ) A ( ( ( BVALUES Promoted (love qIBVR LUES V.l (Prevpos q,lfover (love q))A
(UVALUES Promoted (love qsUVA LUES Va l (Prevpos q, Ilover (love q)))AV4I (q, (lover (love q).Pro.oted (love q)))))

ssoesVE V alu eTra nsp os it ionR Prevpo ; c ,BKR P ,Froe (love q ;
6 Pos (Pr.vpos q,Fro. (love q).BKRP,Va Raeon (Tboard Prevpos q, rros (love q ) .Va I( Prevpos q, BKRP)

-i
s..esV E IICONSEQA Pr.vpe. q,q;
7 SUCCESSOR(Prevp os q ,q )( (4KITETURN Prevpos qiIIHITETURN q)A(Prevpos q.Prevpos qA(—POSITIONINC14ECK (q,CoIOr
Prev pos q)A((WNITEPIECE (lover (love qsUHITETURN Prevpos q)A(Pos (Prevpos q,Froa Move q)sfl over (love qA (Po s ( q, To
Move q ).Move r Move qA (Pos (q,crom flovt q).EflPTYA ((CP.~TU R E Move q~Pos (Pre vpos q,To Move q).Taksn (love q)A(
CA STLING (Prevpos q ,q)v(ENJASSANT (Prevpo s q ,q)vSIIIPLELEGAL (lOVE (Prsvpos q,q)))))))))))

... ssVE POS ITION .RULES q;
8 SUCCESSOR (Prevpos q,q)A PREDEGAME (P$ ,q)

The BKRP started the game on 8KR2. If he has made at least two captures, then, of course, in two
pos itions of this game, BKRP captured white pieces.

*** oesim p lif y Pos (P$,BKR2 ); . ~~~
_ 

‘

9 Poe (P$ ,BK R2)~BKRP

.oo,.VE ...PawnStructure.,.3 P$,q,BKRP ,To M ove q,8rR2 ;
10 (VA LUEP Va ; (Prevpos q,BKRP)A (Pos (q ,To Move q) .8KRPA (PREOEGRME (Pe ,q)A (PO5(Pe ,BKR2).BKRPAPI wnCaPtUreI (To
Ploys q,8KR2)?2) )))33q1 q2 xl x2. ((PREQE6AIIE (ql ,q)vql.q)A(PREDEGAME (q2,ql)A (PREOEGA (lE (P$,Q2)A(TAKINGS (love qiA

(TA KINGS Move q2A(llover Move ql.BKRPA (Iiover Move q2 .BKRPA (Taken (love ql .xlA Taken (love q 2 i .x2 )) ) ) ) ) ) )

sos.atauteq 1*12 Lii? ;
11 3q1 q2 xi x2 .((PREDEGAPI E (ql ,q)vq lsq )A ( PR EOEGAM E(q2 ,ql)A (PR EDEGAME(PS ,q2)A(TRKING$ (love qiA(TRKI NGS (love q2
Atf lo v e r Move ql$K RPA(flov er (love q2.BK RPA (Take n (love q1.x1AT a~en (love q2 .x 2 ) ) ) ) ) ) ) )  (2)

.o.o,3E I q1 ,q2 , xl , x2 ;
12 (PREDECAIIE (ql ,q)vqlsq)A(PREQEGAME (q2 ,q l)n(PREDECA II( (P$ ,q2)A (T RKI NGS (love qlA (TA ~INGS (love q2A(Mov er (love
ql=BKR PAfll over (love q2 .BKRPA (Taken (love qI.xAA Taken (love q2ux2))))))) (12)

These pieces were not the same piece.

s~eee YE D ,ffere nt Ta k .n q2 ,ql ,q,x2 ,xl ;
13 (((q 1.,qvPREOEGAflE (q1,q))A (q 2~qvPREDEGA M E(q2 ,q ) ) ) A ( ( — (To Move q2.To (love ql)v (—(( lover (love q2s(lover (love qI
)v(PREOEGAllE (q2 ,ql)v~(q2.ql))))A(Taksn Move q2.x2ATaken (love qiux1)))~— (x2.x1)

And both these captures occurred during the game that reach the presumed position.

eoeooYE Transit Iv eGeneal ogy q2 ,ql ,q;
14 (PREOEGAII E(q2 ,ql)APREDECAM E (ql,q)),PRE DEGAI E(q2 ,q )

Hence, all the good things we desire of them are true.

so o*sta uteq ?tt ;A—xl.w A ttt it ;
15 ((PREDEGAIIE (qi ,q)vql.q)A (PREOLGRIIE(q2,ql)A (PREQEGAME (P$,q2)A (TAKINGS (love qIA(TAKI NG$ (love q2A((love r (love

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~ -~~~ - . -  .~ ~~~ .. ~~~~~~~~~ - .~~~____________ 
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qi.BKRPAUisveP (love q24XRPA (TMen toys qisxlATa& em Itove qA.xZ))))))))*— (xi.xA) (12)

Removing dependencies and quantify, we get our lemma.
esses3l I x2 xi q2 qi ;
16 3qi q2 xi x 2. (((PREOCORIIC (ql ,q)vql.q)*(P* (G~ IC (q2,q1)A(P DEGML(PI,q2)a(TRE INGS Ilsvi q1*(TR~ INGS Ifoveq2AMo ver (love ql.$UPeffisy.r it.v. ~2.$XbPs~(Taaen Itove qiumlATalen Itove q2.*VflI))))*—(x1s~2)i (2)

*5.55,1 Li~?;
17 (PAUNPR OM (love qA((lover (love q. IERPA(~ (Y• Iteve q.UER1)A’. (T• N.y. q.iENi ))))~3x2 ci qZ qj ,  (((PEOEGaIIE (q1,q)vq iuq)A(Pb(O(GAfl((q2,q1)A(p$E0(G$1fL(p$ ,q3)A(T$~Ii~~ (love qiA(TRk ING$ Move qZA(NSVSr Move ql.I&RPA(Novsr Nov.
q2.BKRPA (T.icen (love qiuxl*Tsse.i Move qA.xl))))))))a (xiuxZH

.ssssiabe i FarTaken ;
ssessVl I q;
18 Vq.((PRi4NPROM Mo ve qAffiover Move q.5KRRA (— (Te Move q.i*Ri)*—(T. Move q.UKN1))))~ 3x2 ci q2 ql.(((PREOCGA(lE(
ql ,q)vql.q)A (PRtOECAflE(q2,qi)A (pR(pEC$IlL(p$,q2)A(Tg.~~~$ Move qln(T*INCI Move qZA(Mover Nsve ql.SiRP*(M.ver
Nov. q2.IKRPA(T*IISA Move qiuxia Taicen Move qA.s2))))))))a.’(xl.,4)))

_ _ _ _ _ _- •• - • • - -- - - •

~~~~~~~~~~~~

•--

~~~~

-

~~~~~~~~~

• - •

~~~~~~~~~~~~~~~~~

_

~~~~~~~~~

- - -•-•.•-• - - _ _ _



—---—, - • •~~~— -

r -
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Appendix C FOL Command Frequency

k t Command frequency for FOL rules of inference used in this proof, grouped by command. type anduse location.

m t .  ruls flairt proof I1.P.8App B Chap 38App A Total Pir cent
F • Quantif ier man ipulations 1281 53%

YE 191 242 724 966 43%VI 4 IS 158 173 8%
31 4 S 28 25 1%3E 15 16 21 37 2%

Chess sue; • 

225 10%
SIMPLIFY 90 115 108 225 10%

E Osci *ori procedures; 381 17%
TAUTEG 66 79 168 247 11%
TAUT 11 15 118 125 6%UNIFY 2 2 7 9 0%

Subst i tut ion commands ; 99 4%
SUBSIR 6 8 61 69 3%
SUBST 2 6 24 30 1%

Dependency introduction and removal; 322 14%ASSUME 6 18 139 157 7%
3 14 139 163 7%

-‘1 1 2 9 11 8%
yE 1 1 8 1 0%

Miscellaneous ; 25 1%
Al 3 3 13 16 1%
AE 0 0 8 8 8%.1 8 0 1 1 8%

Totals 405 541 1782 2253

LABEL 77 183 382 485 1

-

I 
‘ 3 !
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D A Constructive Solution to the Puzzle Page 207.

Appendix D A Constructive Solution to the Puzzle

To assauge the fears of those still not convinced that the fallen piece must have been a bishop, we

present a constructive proof. More particularly, a game that reaches the given position.

j. ~~~ P-KR4 18. P.Q~ N.Q4
2 B.QR6 P~& 19. P-KNS N.QN3

P.KR5 20. R.N2 PeR
4 N-K NS B-QN2 21. R.K l P-N8-’N
5. N -K6 P/KB2oN 22. R.K4 N-KB6
6 K - K ?  ~.Q4 2~- R-QN4 K.N l
7. P~B P.0~ 4 24. Q-KB5 K - R i
8. K- KB 3 N-Q83 25. N-QSl
9 K-KN4 Q.Q82 26. R-N7 N.Q7
10. K-KNS 0-0.0 27. RvR P~Qi i -  K. K N6 P-Q3 28. N-Q84 PMN
12. P.Q% R-Q2 29. KoR N-N8
l ’~ B .KN S R - KR2 30. P-QN3 K-N i
ii. Q .K R3 N.QI 31. P-B7,ch K-N2
I S. O,~B 32. K-R8 K .N3
16. N-QR 3 P-KR6 53. B-KRI K-N ?
17. R / K R I - K N I  N-KB3 34. PeN-sR

~
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~. Appendix E Listing of the Chess Theorems

For the convenience of the reader, a list of the general chess lemmas and theorems used in this
paper.

define A l lStart _ : V t. 3 sq. Pos (P0 sq) et ; ;

define Af lS tartX: V x. 3 sq. Pospcf (PD , x) :sq;;

defin e A lt er na t eB~ack: V r b. ((BOARD (r, b) A BLACKINCHECK b) ~ (POSITIONINCHECKC r , BLACK ) A —WH ITETURN r ) ) ;

define Alternate Whlte: V r b. (( BOARD (r , b)  A WHITEINCHECK b) ~ (POS I T I ON INCHE CK
(r, WHITE) ~ WH ITETURN r));;

define BishopMovementValues: V r p ybi sq sql. ((SUCCESSOR (r, p) A (ybi:Mover
Move p A (sqeTo Move p A sql:From Move p))) ~ (MOVETO (Tboard r , Valueon (Tboardr , From Move p) , From Move p, To Move p )  • DIAG (Tboard r , sql, sq)));;

define BishopMoves: V r p ybi sq sql. ((SUCCESSOR (r, p) A (ybi Mover Move p A

(sq~ 1o Move p A sql:From Move p))) ~ (MOVE TO (Tboard r , Va~ueon (Tboard r , From
Move p) , From Move p, To Move p) ~ (WHITES QUARES (sql) c WHITESQUARES (sq))));;

def ine BishopStaysOnSameColor : V r p ybl sql sq. ((SUCCESSOR (r, p) A (Pos (p,
sq) :yb i A Pos ( r , sql) :yb~)) D (WHITESQUARES (sq) • WHITESQUARES (sql)));;

def ine Bishops isOnSameCo lor : V r sql sq2 yb i . ((Pos (PD , sql) :ybl A Pos (r, sq2)
:ybi ) , (WHITESQUARES (sql) • WH ITESQUARES ( s q2) ) ) ; ;

define BlackCapturedOn lhm : V r q y x sq. (Prevpos q:r D (To Move q:sq ~ (Mover
Move q:y ~ ((Taken Move q=x A WHITEPIE CE y)  D (-.WHITEPIECE X A (—Row (sq) ~3 ~Pos (r sq) :x ) ) ) ) ) ) ; ;

define BlackCapturedThm: V p sq. (To Move p:sq ~ ((ORDINARY Move p A BVALUES
Va~ueon ( Tboard Prevpos p ,  sq)) ~ CAPTURE Move p));;

define BlackCas tleThm: V r p sq. ((SUCCESSOR (r, p) A (CASTLING (r, p) A
WHITETURN p ) )  ~ (Pos (p, sq) :BK ~ (sq:BKN1 v sq:BQB1))) ;;

define BlackCheckinglhm : V r. — ( POS I TI ON I NCHECK (r , BLACK) A —BLACKINCHECK
Tboard r);;

define BlackCornered: V r q b vb sq sqx . ((SUCCESSOR (r, q) A (—EN _ PASSANT ( r , q)
n (—CASTLING (r, q) A (—BLASTRANK (sq) A ((BOARD (q, b ) A (Va l ueon  ( b , sq) =vb A
(Vaiueon (b, sqx) :KW A MOVETO ( b , vb , sq, sqx ) ) ) )  A -‘VALUEP vb))))) ~ (V sql.(MOVETO (Tboard q,  vb . sq. sql) ~ (-. (Va~ueon (Tboard q, sql) ~MT) v MOVETO
(Iboard q, vb , sqx , sql))) ~ ((ORDINARY Move q n SQUARE_BETWEEN (sq. From Move q,sqx)) A — (Mover Move q:Pos (q, sq)))));;

defi ne BlackD ldPromote: V p ybp sq. (To Move pcsq ~ (Mover Move p:ybp ~ ( PAWNPROM
Move p , (Va l (Prevpos p, ybp) :PB A Pos (p, sq) :ybp))));;

define BlackDoesNotStartlnCheck_ : —BLACKINCHECK START;; 

~~~~~~~~~~~~~~~~~~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~ .-~~~ - -
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define BlackEnPassantlhm2 : V r q b. ((SUCCESSOR (r, q) A (EN_PASSANT (r, q) n
W H I T E T U R N  q ) )  D (V dcx . -. (Valueon (b, Makesquare (6, dcx)) :P8 v Va lueon (b ,
Makesquare (6, dcx)) =1)0) D —BOARD (q, b))) ;;

define BIackK ingThm : V r sq. (Val (r, Pos (r , sq)) =KB ~ Pos (r, sq) =6K);;

define B~ackMPCLemma ; V p b sq sqx . (((Valueon (b, sq) =PB A BOARD (p, b)) A Pos
(P0, sqx ) :Pos (p, sq)) ~ MAY_PAWN

_CAPTURES (sqx , sq, BLACK));;

define BlackPawnCaptureThm: V p ybp sql sq2 sq3 b. ((Pos (PD , sql) ybp A (Pos
( p ,  sq2) :ybp A (MUST_ PAWN _CAPTURES (sql , sq2 , Piececolor ybp ) A (BOARD (p. b) A
Va lueori (b, sci2) :PB)))) ~ ((sq3:sq2 v (SAMEDIAG (sq2 , sq3) A (SAMEDIAG (sq3 ,
sql) A BE T WEEN ( Row ( s q2 )  , Row (sq3) , Row (s q l ) ) ) ) )  ~ 3 q3 x3. ((PREDEGAME (q3 ,
p) v q3=p) A ((TAKINGS Move q3 A (Mover Move q3=ybp A (To Move q3:sq3 A Taken

• Move q3:x3))) A (PREDEGAtIE (Prevpos q3, p) A (To Move q3=sq3 ~ (Mover Move q3 ybp
~ ((Taken Move q3:x3 A -.WHITEPIECE ybp) ~ (WHITEPIECE x3 A (-‘ (Row ( sq3) :6) ~Pos (Prevpos q3 , sg3)  : x 3 ) ) ) ) )) ) ) ) ) ; ;

define BlackPawnMove lhm: V p qi ybp sq. ((Pos (ci i , sq) :ybp A (— (Pos (P0, sq)
=yhp ) n ((PREDEGAME (qi , p) v ql:p) A Va l (Prevpos qi , ybp ) P B ) ) )  ~ 3 ci.
((PREDEGAME (q, p) v q=p) A (Mover Move q:ybp A (To Move q sQ A (VALUEP Val
(Prevpos q, ybp) A ((-i (Row sq=6) A — (Row sq=4)) ~ ((From Move q:Makesquare(Wsucf Row sq, Colu mn sq) A Pos (Prevpos q, sq) :EMPTY) v ((Taken Move q:Pos
(Prevpos q, Sq) A WHITEPIECE Pos (Prevpos q, sq)) A (From Move q:llakesquare
(Wsuct Row sq, L2touchf Co’umn sq) v From Move q=Makesquare (Wsucf Row sq,
R2touchf Column sq))))))))));;

define BlackPawnPathThm: V p x sql sq2. (Mover Move p=x ~ (To Move p=sq2 ~ (FromMove p:sql D (Val (Prevpos p, x) :PB ~ 
(— (Row (sq2) =6) ~ (ORDINARY Move P A

((Colunn (sql) =Column (sq2 ) A (BSUC (Row (sql) , Row (s q2 ))  n Valueon (Tboard
Prevpos p, sq2) =MT)) v ((Column (sql) :Column (sq2) A (Row (sql) =2 A (Va~ueon
(I boar d Prev pos p , sq2) =MT A (Valueon (Tboard Prevpos p, Makesquare (3, Column
(sql))) =tlT A Row (sq2) =4)))) v (TWOTOUCHING (Column (sql) , Column (sq2)) A
(BSUC ( Row (s q l ) , Row (sg2)) n WVALUES Valueon (Tboard Prevpos p,
sq2))))))))))); ;

def ine BlackPawnValueLerwna : V p b sq. ((BOARD (p, b) A Valueon (b , sq) =PB) ~
BPAWNS Pos (p. sq));;

def ine BlackPawnValueSquares : V p b t sq. — ( PROMOTEOPAWN ( p, t )  A ( BOARD ( p , b )
A ( Va lu e o n  (b , sq) ‘PB A Pos ( p , sq) i t ) ) ) ; ;

def ine BlackPawnsAre _ : V t. ((tiBKP v t’BQP v t’BKNP v t BKBP v t BKRP v t BQBP v
t:BQNP v t=BQRP ) i BPAWNS (t));;

def ine BlackPawnsOn2Start_: V sq. (BPAWNS Pos (P0 sq) • Row (sq) ‘2);;

def ine BlackPromtesOn8A : V q ybp. (PROMOTEDPAWN (q, ybp) , 3 p. ((PAWNPROM Move p
A ((PREDEGAME (p, g) v p’q) A Mover h ove psybp)) A Row To Move p.8));;

define BlackPromtesOn8B: V p ybp. ((PAWNPROM Move p A Mover Move p ybp) ~ Row To
Move p:8);;

define BlackVa ~uesAre_ : V vb. (vb’KB v (vb.QB v (vb’RB v (vb =NB v (vb=BB v
vb .PB))))); ;

~~~~~~~~~~~ ~~~~ 

;
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define BiackpleceArePawnsOr_ : V t. (BLACkP~tC1 t • (BPAWNS t v tsBK v taBQ v
t’BKN v t.BKB v t.BKR v tSBQB v t’BQN v tsBQR));;

define B’lackplecaPawnsAre_ : V t. ((BLACKPIECE (t) A PAWNS (t)) • BPAWNS ( t)) ; ;

define Blocked _ BKB: V r b sq. ((BOARD (r, b) A (Valueon (b, 8K2) •PB ~ (Va lueon
(b , BKN 2) ‘PB A Pos (r , sq) .6KB))) ~ sq.BKB1);;

define BlockedGivenlhm : V q. (BOARD (q, GIVEN) , V sql. (MOVETO (Tboard q, RW .
8Q2, sql)  

~ (— (Valueon (Tboard q. sql ) sMT ) v MOVETO (Tboard q, RW , BQN2 ,
sql)))) ;;

define Boardlboard : V r. BOARD (r . Iboard r);;

define BorW_ Plecs_ : V x. — (BL .ACKPIECE x a WHITEPIECE x);;

define BorW_Value_ : V vpc . — ( B VALUES vpc • WVALUES vpc);;

define CAPPP _SortTh m: V m. ((PAWNPRO M m A CAPTURE m) , CAPPP m);;

define ChesspiecePieceValueThm : V r x. PIECEVALUES Vol (r , x) ; ;

define Chslnd: (P P0 A V r p. ( ( ~ r A SUCCESSOR (r , p ) )  ~ p p ) )  ~ V r. p r;;

define ColorChoices: V r t. ((BVALUES Vol (r, t) • BLACKPIECE t) A (WVALUES Vol
(r, t) • WHITEPIECE t));;

d e f i n e  Co~orTaken: V p. (TAKINGS Move p ~ ((WI IIT E TURN p ~ WHITEPIECE Taken Move
p) n (—WHITETURN p ~ BLACKPIECE Taken Move p)));;

define ColorsAre_ : V e. (c.BLACK v c’WHITE);;

define Colours_ : WHT (WHITE ) A 61K (BLACK ) A —WHT (BLACK ) A —BLK (WHITE) A
—W HIT E.BLACK;;

define DlagCommute: V b sql sq? (DIAG (b, sql , sq2 ) • DIAG 1-a , sq2, sql ))

define DlagonalThm : V a b sql sci2 . (SUBOARD (a , b) , (V sq3. ((SAMEDIAG (sql ,
sq3) A (SANEDIAC (sq2, sq3) A BETWEEN (Row (sql) , Row (sq3 ) , Row (sg2)))) ~ —
(V al ueon (a , ~q3) ‘UD)) ~ (D IAG (a . sql, sq2) • DIAG (b, sql , sq2))));;

define DieOnce : V g p x. (Taken Move p’x , (PREDEGAME (q, p) , -. ( T a k e n  Move

define Differentlaken : V p1 p2 q x y. ((((p2’q v PREDEGAME (p2, q)) A (pl~q v
PREDEGAME (p1, Q))) ,, ((-. (To Move p1.10 Move p2) v (— (Mover Move pisflover Move
p2) v (PREDEGAME (p1, p2) v — (pl’p2)))) A (Taken Move plax A Taken Move p2sy)))

—

define DifferentlakenFour : V q p p1 p2 p3 p4 y xl x2 x3 x4. (((p q v PREDEGAME
(p, ~

)) A ((plag v PREDEGAME (p1, q)) A ((p2’q v PREDEGAME (p2, q)) A ((p3.q v
PREDEGAME (p3, ci)) A ((p4*q v PREDEGAME (p4, ci)) A (— (Mover Move pliMover Move
p) A (— (Mover Move p2sMover Move p) A C-’ (Mover Move p3’Mover Move p) A
(Mover Move p4sMovsr Move p) A (Taken Move psy A (Taken Move pl.xl A (Taken Move

— • - ~~~~~~~~~~~~~~~~~~~~~~ - - -- T ~~~~~~~~~~~~~~~~~~ ~~- - - • ~~~~~~~~~~~~~~~~~~~
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p2’x2 A (Taken Move p3’x3 A Taken Move p4s x 4 ) ) ) ) ) ) ) ) ) ) ) ) )  ~ (— (xlay ) A (-. (x2 .y)
A C— (x3.y) A — (x4sy)))));;

define Empty from : V q x sq. (Pos (g, ag) ex ~ -‘ ( sqeFrom Move q)); ;

define EmptylsMl : V r t .  (tiEMPTY • Vo l (r , t) •MT);;

define EquiOrth oThm : V a b sql sq2. ((SUBOARD (a, b) A (— (sql .sg2 ) A ((Column
ssq l) ‘Column (sq2 ) A V sq3. ((BETWEEN (Row (sql) , Row (sq3) , Row (sq2)) A
Column ( sq3)  ‘Colu mn (s q l ) )  ~ -. (Valueon (a, sq3) •U0))) v (Row (sql) aRow (sq2)
A V sq3. ((BETWEEN (Column (sql) , Co lun n (s q3 ) • Column (sq2)) A Row (sq3) cRow
(sql)) D — (Valueon (a, sq3) ‘LID)))))) (ORTHO (a, sql , sq2) • ORTHO (b , sql ,
sq2)));;

define Farlaken : V q. ((PAWNPROM Move q A (Mover  Move q ’B KRP A ( —  ( T o  Move
q:~JkR l) A — (To Move q:WKN1)))) ~ 3 qi q2 x l x2. (((PRE DEGAME (qi , q) v ql.q) A
( PREDEGAME (q2 , ci i) A ( PREDEGAME (P0 , q2) A ( TAKINGS Move ~i A ( TAKINGS Movi qZ A
(Mover Move ql’BKRP A (Mover Move q2’BKRP A (Taken Move qluxl A Taken Move
q 2 .x 2 ) ) ) ) ) ) ) )  A — (xl.x2))) ;;

define GameRelations5 : V r. —PREDEGAME Cr , P0);;

define GivenUD : V sq. (Valueon (GIVEN sq) cUD • sq.WKR4) ;;

define GivenWV : Y sq. (WVALUES Valueon (GIVEN sq) ~ (sq.BKR1 v sq.BQ1 v sq.BQ2 v
squWQR2 v sq’WQN3 v sqeWQB2 v sqcWQ3 v sq.WKB2 v sq.WKN3 v sqiWKR2));;

define Grandch ildGenea logy : V r ci p . ((SUCCESSOR Cr , g) A PREDEGAME (q, p)) ~PRE DEG A II E ( r , p));;

define GrandparentGenealogy : V q p. (PREDEGAM E (q, p) ~ PREDEGAME (Prev pos q,

define GrandparentGenealogyX: V q p p1. (((PREDEGANE (p. p1) v papi) A ( PREDEGAME
(ci, p) v cup)) ~ PREDEGA ME (Prevpos q, p1));;

def ine GrandparentGenealogyY: V ri r p. ((SUCCESSOR (r , p) A ( PREDEGAME (ri , r )  v
rl’r)) , PREQEGAME Cr1 , p));;

define KingCommute: V sql sq2. (KINGMOVE (sql , sq2) • KI N GN OVE (s q2 , sq l ) )

def ine Kinglemma : V r p t. ((SUCCESSOR (r , p) A VALUEK V ol (p. t ) )  ~ Vol (r , t )
uVa l (p. t ) ) ; ;

define KlngValuelhm : V r b sq. ((BOARD (r, b) A — (Valuson (b , sq) .1)0)) ~ ((P o s
(r , sq) •W K • Valueon (b, ag) .KW) A (Pos (r , sq)  ‘BK • Valueon (b, sq) .1(8)));;

define KIn9VOluesAre_ : V v. (VALUEK v a (v.1(8 v v .1(W));;

define KingsAre_ : V t. (KINGS t • (t.BK v

def ins KnightCommuts; V sql sq2 . (KNIGHTMOVE (sql , sq2 ) • KNIGHTMOVE (sq2 , sql))

define MayMovi : V b v sql sq2 . (MOVETO (b , V . sql , sq2 ) ~ (Column (sql) •Co lumn

La _ 
_ _ _ _ _ _
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( sq2 ) v (KNIGHTMOV E (sql , sq2 ) v (Row (sql) ‘Row (sq2 ) v (SAIIEDIAG (sql, sq2 ) v
(KINGMOVE (sql, sq2 ) v (TWOTOUCHING (Column (sql) , Column (sq2) ) A (WSUC ( Row
(sql) • Row (sq2)) v BSUC (Row (sql) , Row ( s q 2 ) ) ) ) ) ) ) ) ) )  ;;

• define MconseqfX: V r ri sq x. (((rl.r v PREDEGAME (ri , r))  A Taken Move r i ux) ~— ( Pos ( r , sq) ix ));;

define MconseqhX: V r q b sq sql. ((P os (ci, Sc ) ‘Pos (r , sql) A ((SUCCESSOR (r ,
q) A (— PAWNPRO M Move q v — (Pos (ci , sq) uMover Move q))) A ( BOARD (ci , b) A —
(Va lueon (b , sq) .1)0)))) ~ Valueon (Tboard r, sql) ‘Valueon (b, sq));;

define MconseqkX : V r p. ((SUCCESSOR (r , p) A ORDINARY Move p) D (-‘ (From Move
p:To Move p) A (MOVETO (Tboard r , V olue on (T boar d r , Fr om Move p ) , From Move p.
To Move p) A ((SIMPLE Move p ~ Pos (r , To Move p ) ‘E MPTY ) A ((CAPTURE Move p ~(W HITEP IECE Taken Move p • WHITETURN p)) A — (CAPTURE Move p • SIMPLE Move
p)))))); ;

define MconsecilX: V r q. (SUCCESSOR (r , q) ~ ( PA WNP ROM Move q • (LASTRANKER (To

Move q, Color r) A (SIMPLELEGALMOVE (r , q) A ( PAWNS Mover Move ci A (VAL UEP
Valuoon (Tboard r, From Movo ~ ) A (((BVAIUES Promoted Move q • BVALUES Vol (r,
Mover Move q)) A (WALUES Promoted Move q • WVA LUE S Vo l fr , Mover Move q )) )  ~ Vol( ci , Mover Move q) ‘Promoted Move q)))))));;

define MconseqmX: V r p. (SUCCESSOR C r , p) ~ ((CASTLE Move p • CASTLING (r , p ) )  A
((ENPA SSANT Move p • EN_ PASSANT (r , p)) A (ORDINARY Move p • SIMPLELEGALMOVE Cr ,

—

define MightBeBB : V r t. (Val (r, t) zBB ~ ((tuBKB v t’BQB) v (BPAW NS t A
PROMOTEO PAWN (r , t ) ) ) ) ; ;

define MightBeNB: V r t. (Vo l (r , t) ‘NB ~ (( t’BKN v t’BQN) v (BPAWNS t A
P R OM OTEDPAWN (r , t ) ) ) ) ;;

define MightBaRW : V r t . (Val (r , t) uRW ~ ((t’WKR v t.WQR) v (WPAWNS t A
PROMOTEOPAWN (r , t ) ) ) ) ; ;

define Mobility : V r sq x. ( (Po s  (r , sq) =x A — (Pos (PD , sci) xx) )  ~ 3 q.
• ((PRED EGAME (q, r) v qur) n ((Mover Move qux A To Move q’sq) v (CASTLE Move q A

(Alsomover Move q’x A Alsoto Move q’sq)))));;

define MoveCho ices : V p. ( ( (CASTLE Move p • CASTLING (Prevpos p, p)) A
(( ENPASSANT Move p • EN_PASSANT (Prevpos p. p)) A (ORDINARY Move p •
SIMPLELEGALMOVE (Prevpos p. p)))) A ((MOVES p ~ (ENPASSANT p v (CASTLE p v
ORDINARY p ) ) )  A ((MOVES p ~ — (ENPASSANT p A CASTLE p)) A ((MOVES p D —
(ENPASSANT p A ORDINARY p)) A (MOVES p ~ — (CASTLE p A ORDINARY p))))));;

define MovedValues: V r p b sq sqx . (((SUCCESSOR (r, p) A (—EN _PASSANT (r, p) A
(—CASTLING (r, p) A (—PAWNPROM Move p A BOARD (p. b ) ) ) ) )  A (From Move p’sq 1% To
Move p’sqx)) ~ (MOVETO (Tboard r , Vol (p, Mov er Nova p) , sq. sqx) A ( -  (Valueon
(b, sqx) ‘UD ) ~ (MOVETO (Tboard r , Va lu eon (b, sqx ) , sq. sqx) A ((WH ITETU RN p ~BVALUES Valueon (b , sqx)) A (—WHITETURN p ~ WVALUES Valueon (b, 

sqx) ) ) ) ) ) ) ; ;

define MovedValuesX: V r p X s~ SQX . (xuMover Move p , ((— PAWNS x A —KINGS x ) ~((SUCCESSOR (r , p) A (From Move p’sq A To Move p’sqx)) ~ MOVETO (Tboard r, Val
(P0, x) , sq, sqx)))) ; ;

- - 
- 
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• 
. def ine MovementVa lues: V r p x sq sql. ((SUCCESSOR Cr , p) A (x.Mover Move p A

(— PAWNS X A ( sq iTo Move p A sq ls From Move p ) ) ) )  ~ (MOVETO ( Tboard r , Valuson
(Tboard r, From Move p) , From Move p. To Move p) • MOVETO ( Tboard r , Vol (P0, x)

sql , sq ) ) ) ; ;

define MoverOnlO : V q y sq. ((Pos (q, sq) .y A To Move q’sq) ~ y.Mover Move q);;

define MovetoCommute : V v b sql sq2 . (—VALUEP v ~ (MOVETO ( b , v, sql , sq2) •
MOVETO (b. v, sq2, sq l ) ) ) ; ;

define NoBlackPawnsOnlRow: V r x sq. ((Val Cr , x) ‘PB A Pos (r, sq) xx) ~ — (Row
(Sc) ‘1));;

define NoEndlnChec k: V r c. C— (c.Color r) , —POSITIONINCHECK (r, C));;

define NoProntedlnPO : V x. —PROMOTEOPAWN (P0, x ) ; ;

define NonmoverStays : V r q sq x. ((SUCCESSOR (r , q) A (Pos (q, sq) ‘x A (—ROOKS
x A -. (x’Mover Move c i ) ) ) )  ~ Pos Cr , sci) ux);;

define NotBPFromllhm: V p b. ((— CASTLING (Prevpos p, p) A ( BOARD (p. b) A
(—EN _PASSANT (Prevpos p. p) A (WHITETURN p A Row From Move p’l)))) , CC-’ (Va lueon

(b , To Move p) ‘UD) , MOVETO (Tboard Prevpos p. Valueon (b. To Move p) , From
Move p, To Move p)) A (-‘PAWNPROM Move p A (MOVETO (Tboard Prevpos p, Vol (Prevpos
p, Mover Move p) , From Move p, To Nova p) A (— (Valueon (b , To Move p) cUD) ,

• -~ (-.VALUEP Valueon (b , To Move p) A BVALUES Valueon (b, To Move p ) ) ) ) ) ) ) ; ;

define NotChesspieceEmpty_ : V t. (-.CHESSPIECES t • t.EMPTY);;

define NotFronB KBBlocked: V r p sq. ((SUCCESSOR (r , p) A (Mover Move p=BKB A ( Pos
(p. BK2 ) ‘BKP ,~ (Pos (p. BKN2) ‘BKNP A Pos (p, sq) ‘81(8)))) , — (From Move
paBKB1));

define NotMPC_Black2tol_ : V dcxi dcx2. —MAY_PAWN_CAPTURES (Makesquare (2 dcxl)
Makesquare (1 dcx2) BLACK);;

define NotPawnVa luePromot edPawns: V r yp. (-‘VALUEP Val (r , yp) ~ PROMOTEOPAWN (r ,

define OfficerVa luelhm: V r t. (— PAWNS t ~ Vo l (P0 , t) ‘Vol Cr , t ) ) ; ;

define Off icerValuelhmX: V r t tl. ((— PAWNS t A t’tl) ~ Vol (P0 , t) ‘Vo l (r ,

define OnlyPawnaPromote : V r ri t. ((—VALUEP Vol Cr1 , t) A PREDEGAIIE Cr1 , r ) )  ~
Val (r, t) ‘Vo l (rl , t));;

define OrthoCommute: V b sql sq2 . (ORTHO (b , sql , sq2) • ORTHO (b , sq2 , sql))

define OrthoThmX : V q b sqx sql. ( BOARD (q, b)  ~ (V sq3. (Valueon (b , sq3 ) ‘UD ~( sq3.aqx v C-’ ( Row ( sq3 ) ‘Row ( sqx)) A — (Co lumn (sq3) ‘Column (sqx))))) ~ (ORTHO( Tboard q, sqx , sql) • ORTHO (b , sqx , sql))));;

define OtherSideStays : V r p sq x . ((SUCCESSOR (r , p) A ((WH ITEPIECE x a
WHITETURN p) A Pos (p . sq) ix)) 3 Pos (r , sq) •x); ;

I • - ,
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define PXPownTo : V r p b. ((SUCCESSOR (r , p) A (-‘CASTLING (r, p) A (-.EN_PASSANT
Cr , p) A (PAWNPROII Move p A (—WH ITETURN p A (From Move psBQB2 A BOARD (p,
b ) ) ) ) ) ) )  , ((T o Move pxBQN1 ~ ((WVALUES Valueon (b, BQN1) v Valueon (b, BQN1)‘UD) A BVALUES Va lueon ( Tboard r , To Move p))) v ((To Move p’BQl A ((WVALUES
Va lueon (b, 801) v Volueon (b, BQI) ‘UD) A BVALUES Valueon ( Tboard r, To Move
p)))  v (To Move paBQB 1 A (WVALUES Va lueon (b , BQB1) v Va lueon (b , 8081) •UD)))))

define ParentGenealogy: V r2 ri q. ((SUCCESSOR (ri , q) A PREDEGAI4E (r2, ci)) ‘
( PRE DEGAME Cr2 , ri) v r2srl));;

define PawnValuedBlackPleces: V r yb. (VALUEP Va l (r , Yb) 3 Vol Cr , Yb) iPB) ;;

define PawnValuedPawnslhm : V r t. (VAL.UEP Va l (r , t )  ~ PAWNS t);;

define PawnVa luesAre_ : V v. (VALUEP v a (v’PB v vs PW));;

define PawnWasOnThm : V q p x sq. (((PREDEGAME (p. q) v pug) A (VALUEP Vol
(Prevpos p, x) A (Mover Move pux A (From Move p’sq A — ( Pos (P0 , sq) ix))) )) ~ 3
p. ((Pos (p, sq) ‘X A (PREDEGAME (p. Q) A VALUEP Va) (p, x))) A VALUEP Vo l
(Prevpos p . x)));;

define PieceC holces_ : V x. ((WH ITEP IECE Cx) a (Plececolor (x) ‘WHITE)) A
(BLACKPIECE (x) • (Plececolor (x) ‘BLACK)));;

def Inc Pleceva luesAreChesspiecss : V r b sq. ((BOARD (r , b) A PIECEVALUES Vs lueom
(b , sg))  , CHESSPIECES Pos (r , s q ));; 4

define Plec•valuuAreChesspiecesX: V r sq. (PIECEVALUES Volueon (Iboard r, sq) ~ 4
CHESSPIECES Pos Cr , sq));;

define PrevGamepo sltlon : V p sq x. ((((WHITEPIECE x a WHITETURN p) A Pos (p , sq)
ux) A — (Pos (PD , sq) ix)) ~ 3 q . Prevpos psq) ;;

define PrevlousPownValue: V r p t. (Prevpos pur ~ (VALUEP Val (p. t) ~ VALUEP VolCr , t ) ) ) ; ;

define RstalnVolu.Color : V ri r2 t. ((BVALU ES Vo l Cr2, t) • BVALUES Vol (ri , t))
A (WVALUES Val Cr2 . t )  • WALUES Val Cr1 , t)));;

define RooksArs_ : V t. ( ROOKS t • (t’BKR v t.WK R v t’WQR v t ’ BQR));;

define RowColwnnSquoreThm: V sql sq2 . ( Row (sql) ‘Row (sq2 ) ~ (Column (sql)
‘Co lumn (sq2) ~~ sqlasq2));;

define SomeColorsOnDlagonols_ : V sql sq2 . (SAMEDIAG (sql sq2) ~ (WHITESQUARES
(sql) • WHITESQUARES ( sq2)));;

define ShortPownPathThm : V r p sql sq2 x b. (V sq. ((MAY_ PAWN_CAPTURES ( sq2 , sq,
Plecscolor x) A MAY_PAWN_CAPTURES (sq. sql , Piececo lor x ) ) , (sq’sq2 v sq’sql)) .
((Pos (p. igl) ax A (Pea (P0 , sg2) uX A ((PREDE AME (r , p) v rap) A (VALUEP V.1
(p. x) v (BOARD (p, b) A (Valuson (b, sql) •PW v Valuson (b, sql) sPB)))))) ~
(Pos Cr , sql) ax v Pos (r, sq2) ax)));;
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define StandingBlackPawnThm: V r p b sq. ((V.lueon (b . sq) ‘PB A (Row (sq) ‘2 A
( BOARD (p. b) A SUCCESSOR (r , p))))  ~ (Va lueon (Tboard r, sq) ‘PB A Pos (r , sq)
.Pos (p. sq)));;

define Sub8oerds4X: V r b sq. (BOARD Cr , b) ~ (Valueon (b. sg) •Valueon (Tboardr , sq) v Vo lueon (b , sq) a UD));;

define SubboardTransit lvlty : V bi b2 b3. ((SUBOARD (bi, b2) A SUBOARD (b2 , ba)) ,
SUBOARD (bl, b3)) ; ;

define SubboardTransit lv ltyX : V a b r. ((SUBOARD (a , b) A BOARD Cr , b ) )  ~ BOARD
(r, a ) ) ; ;

define Substltution2 : V j i j2 kl k2. (.11sj2 ~ (kl’k2 ~ (~2 (Jl kl) .02 (32

define Substitution : V J k. (Jak ~ 0 J’~ k ) ; ;

define ThreeNB : V r b x sql sq2 sq3 sqx . (V t. ((SPAWNS t A PROMOTEOPAW N (r , t ) )

~ tux ) D ( ( ( —  (sql’sq2 ) A (— (sqlxsq3) A — (sq2.sq3))) A ((Vol (r , Pos (r , sql))
=N8 v (BOARD (r, b) A Va lucon C b, sq l) .NB)) A ((Vol (r , Pos (r, sq2))  =N8 v
( BOARD (r , b) A Va lueon (b , sq2 ) sNB)) A (Val (r, Pos (r, sq3)) ‘NB v (BOARD Cr ,
b) A Valueon (b, sq3) iNS))))) ~ ( PROMOTEOPAWN (r , x )  A (C-’ (sql’sqx ) A
(sq2’sqx ) A -, ( sq3ssqx))) ~ (-. (Pos (r , sqx) cx) A C— ( Pos (r , sqx) .51(N) A —
( P os ( r , sqx ) ‘BQN))) ) ) ) ) ; ;

• 
- define Transitive Genaclogy : V r p g. ( ( P REDE GAM E (r , p) A PREDEGAME (p, ci)) ~PREDEGAM E (r, q));;

define Transit iveSubboardMovement: V a b v sql sq2 . ((SUBOARD (a , b) A MOVETO (a,
v , sql , sq2) ) ~ NOVETO (b. v , sql , sq2));;

define TransitiveSubboardOrthogonality: V a b sql sq2 . (SUBOARD (a , b)  ~ (ORTHO
(a , sql , sq2 ) ~ ORTHO (b, sql , sqZ)));;

define TransitiveSuccess lon : V r p x. ((PROMOTEDPAWN Cr , x) A SUCCESSOR (r , p)) ~PROMOT EDPAW N (p, x ) ) ; ;

define Trans It IveUNMKCAPPP: V p a b sql sq2 v vi. ((BOARD (p, Unmkcopppmove (a,
sql , sq2 , v))  A (SUBOARD (b , Unmkcapppmove (a , sql , sq2 , vl)) A v’vl)) ~ BOARD(p, b) ) ; ;

define Tr apped_QX_QBI_ Thm: V q v. (BOARD (q, QBUD) ~ ((v’RB v vaQB ) ~ V sql.(MOVETO (Iboard q, v , 801, sql) ~ (-
~ 

(Valuson (Tboard q, sql) aNT ) v MOVETO
( Tboard q, v, BKRI, sql))) ))  ;;

define UDIsNotW _ : V vw. -.vw’UD;;

define Unique: V r sql sq2 x . (Pos Cr , sql) ax 3 (Pos (r, sq2) ax • sql’sg2));;

define UnmovedBlackPawnlhm: V r b ybp sq. ((P01 (P0, sq) aybp A (Valuson (b, sq)
aPB A BOARD (r, b ) ) )  ~ ( Pea (PD , zq) aPes (r, sq) A Pospcf (r , ybp) •sq));;

defi ne UnmovsdWhlt sPawnThm: V r b ~~~~ sq. ((Pos (PD , sq) ayWp A (Volueon (b , ig)
•PW A BOARD (r, b))) ~ (Pos (PD , sq) sPos Cr , sq) A Pospcf Cr, ywp) .sq));;



- ~~~~~~~~- • - - - - 
~~~~

w
~~-c-r •— — .~~

Page 216. Listing of the Chess Theorems E.

define UnpromotedFrom : V r q b x sq. ((SUCCESSOR (ir- , g) A (—W LAST RANK sq A ( BOARD
(ci, b) A (Valuson (b, sq) 1W A (Pos (q, sq) ‘X A Mover Move qix))))) ~ Va lueon
(Iboord r , From Move ci) ivw ) ;;

define ValueChoices_ : V vpc . ((WVALUES (vpc ) a Valuscolor (vpc) ‘WHITE ) A
(BVALUES (vpc ) , Valuecolor (vpc ) ‘BLACK));;

def ins Valu.ColorRet.ntionThm: V r rl t. ( PREDEGANE Cr1 , r) ~ ((BVALUES Vol (ri ,t) • BVALUES Vol (r. t)) A (WVALUES Vol Cr1 , t) a WALUES Vo l (r , t ) ) ) ) ; ;

define ValueFunctionChoices_ : V v. ((WVALUES Cv) ~ Valuecolor (v) ‘WHITE ) A(BVALUES (v) ~ Valuecolor (v) ‘BLACK));;

define ValuslranspositlonA : V r t sq. (Pos Cr , sq) at 3 Valuson (Tboard r, sq) 4
‘Vo l (r , t ) )  ;;

define Va lueTranspos it ionB: V r sq b. (BOARD Cr , b)  ~ (Valueon (b , sq) •Val (r ,
Pos (r, sq)) v Volueon (b. sq) ‘UD));;

define Va lueTronspos itionC: V r sq. Vo lueon (Iboard r . sq) iVol (r , Pos (r, 4
define WasAlwaysSomewhare : V r ri sq x. ((PREDEGAIIE Cr !, r)  A Pos Cr , sq) ‘x) ~ 3sql. Pos Cr1 , sql) ax);;

define WosHere: Y r  p sq x. ((SUCCESSOR (r, p )A Pos (p, sg) ‘x) ~~3 sq. Pos (r, I ~~
.

sq) ix) ;;

define WasOn : V p x. (Taken Move pax ~ 3 sq. Pos (Pr.vpos p, sq) ‘x);;

define W asPawnVal ue: V ri r t. (((PREDEGA ME (ri, r) A VALUEP Vol (r , t)) v ran )
Vol (r, t) ‘Vo l Cr1 , t)) ;;

def ine W as PawnVal ueX: V q p t. (((PREDEGAME (q, p) A VALUEP Vil ( Prevpos p, t)) v
qup ) 3 Vol (Prevpos p, t) ‘V a) (Prevpos ci, t));;

define Wher eBishopTaken : V q ybi sq sqx . ((To Move q’sq A (Pos (P0, sqx) ‘ybl A —

(WHITESQUARES sqx • WHITESQUARES sq))) ~ — (Ta ken Move q’ybl));;

define WhereOfficlerTaken : V q x sq. ((To Move q’Sq A (Taken Move q’x A —PAWNS
x)) ~ Pos (Prevpos q, sq) ax) ; ;

define WhereWhitePawns: V p q x sq sql sq2 sq3 sq4 sq5 sq6 sql sq8. ((Pos (q,
sql) =WQRP A (Pos (q, sq2) :WQNP A (Pos (ci, sq3) .WQBP A (Pos (q, sq4) aWQP A
( Pos ( q, sq5) aWKP A (Pos (q, sq6) ‘WKBP A (Pos (q, sq l) ‘WKNP A Pos (q, sqB )
‘WXRP))))))) ~ ( ( C —  (squsqi) A (-‘ (sqssq2) 1% (— (sqasq3 ) A (— ‘ (sq.sq4) A C—’
(sq:sq5) A (-. (sq’sq6) A (-

~ 
(sq:sql) A — (sg’sqB)))))))) ~ -IWPAWNS Pos (q, sq)) A - ‘

((xaToken Move p A (PREDEGAM E (p, q) v p’q)) ~ -.WPAWNS x)));;

define WhichBlackPown : V q b sq. ((BOARD (q, b) A Valueon (b, sq) ‘PB) 7 ((Pos• (q, sq) ‘BQRP A (Pospcf (q, BQRP) ‘sq A MAY_PAWN_CAPTURES (BQR2 , sq, BLACK))) v
• ((Pos (q , sq) iBQNP A (Pospcf (ci, BQNP) ‘SQ A MAY_PAWN_CAPTURES (BQN2. sq. :

BLACK))) v ((Pea (q, sq) aBQBP A (Pospcf (q, BQBP) ‘sq A MAY_PAWN_ CAPTURES (8Q82. •

sq, BLACK ))) v ((Pos (q. ,q) aBQP A (Pospcf (q, BQP) ‘Sq A MAY_PAWN_CAPTURES

--
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( BQ2 , sq. BLACK ))) v ((Pos (a, sq) aBKP A (Pospcf (ci , BKP) asg A
• MAY_PAWN_CAPTURES (81(2, sq, BLACK))) v ((Pos (q, sq) .BKBP A (Pospcf (q, BKBP)

‘sq A MAY_PAWN_CAPTURES (BKB2 , sq. BLACK))) v ((Pos (q, sq) ‘BKNP A (Pospcf (q,
BKNP) ‘5Q A MAY_PAWN_CAPTURES (8KN2 , sci, BLACK))) v (Pos (q, sci) .BKRP A (Pospcf• (ci. BKRP) ‘sq A MAY _ PAWN _CAPTURES (BKRZ , sq 8LACKfl)))))H));;

define WhichWhltePawn : V q b sq. ((BOARD (ci, b) A Volueon (b . sq) ‘PW) ~ ((Pos
(ci, sq) •WQRP A (Pospcf (q, WQRP) ‘sq A MAY_ PAWN_ CAPTURES ( WQR2 , sq. WHITE))) v
((Pos (a, sq) aWQNP A (Pospc-f (q, WQNP) ‘sq A MAY _ PAWN_CAPTURES (WQN2 , sq
WHITE))) v ((Pos (ci, sq ) aWQBP A ( Pospcf (g, WQBP) ‘sq A MAY _ PAWN_CAPTURES ( WQB ,
sq. WHITE)))  v ((Pos (g , sq) •WQP A (Pospcf (q, WQP) ‘Sq A MAY_ PAWN _CAPTURES
( WQ2 , sq, WHITE))) v ((Pos (q, sq) ‘WK P A ( Pospcf (q, W KP) ‘SQ A
MAY _ PAWN _ CAPTURES (W K2, sq. WHITE))) v ((Pos (q, sq) ~~~~~ A ( Pospcf (q, WKBP)
‘SQ A MAY _ PAWN_CAPTURES (WK82 , sq. WH I T E ) ) )  v ( ( P o s  (q, ~q) ‘WKNP A ( Pospcf (ci,
W KNP) SQ A MAY _ PAWN _CAPTURES (WKN 2 , sq. WHITE))) v (Po s (q, sq) ‘WKRP A (Pospcf
(q, WK RP) ‘sq A MAY_PAWN_CAPTURES (WKR2 , sq, WHITE)))))))))));;

define Wh iteCapturedOnTh m: V r q y x sq. (Prevpos qur ~ (To Move q’sq 3 (Mover
Move gay 7 ((Taken Move qax A —WHITEPIECE y) ~ (WHITEPIECE x A (- ‘  (Row (sq ) ‘6) ,
Pos (r, ~q) ax))))));;

define WhiteCapturedT hm : V p sq. (To Move p’sq ~ ((ORDINARY Move p A WVALUES
Va)ueon (Tboard Prevpos p, sg)) , CAPTURE Move p));;

define Wh IteCost leThm: V r p sq. ((SUCCESSOR (r, p) A (CASTLING Cr , p) A
—WHITETURN p)) ~ (Pos (p. sq) cWK ~ (Sg ’WKNL v squW QB l))) ;;

define Wh iteCornered: V r q b vw sq sqx . ((SUCCESSOR (r, q) A (— EN_ PASSANT ( r , q)
A (—CASTLING (r , 

~ ) A (-.WLASTRANK (Sc ) A ((BOARD (ci, b) A (Valueon (b , sq) ‘VW A

(Valueon (b , sqx ) ‘KB A PIOVETO (b , vw. sq, sqx))))  A —VALUEP vw ) ) ) ) )  ~ (V sql.
( MOVETO (Tboard q, vw, sq. sql) 3 C-. (Valueon ( Tboard q, sql) ‘NT ) V MOVETO
(Tboord q, vw , sqx , sq l ) ) )  , ((ORDINARY Move q A SQUARE_ BETWEEN (sq , from Move q,
sqx)) A — (Mover Move q’Pos (q, sq ) ) ) ) ) ; ;

define Wh iteEnPossantT piml : V r q. ((SUCCESSOR Cr. ci) A (EN_ PASSANT Cr . ci) A
—WHITETURN g)) ~ (Va lueon ( Tboard q, To Move q) iPW A Row (To Move q) ‘3));;

d e f i n e  W h i t eEnPas sant Thm2 : V r q b. ((SUCCESSOR (r. q) A (EN_ PASSANT (r , q) A
-.WH ITET IJRN ci ) )  ~ (V dcx . - (Va)ueon (b, Makesquore (3, d c x ) )  .PW v Valueon (b ,
Makesquere (3 , dcx)) ‘UD) 3 —BOARD (ci , b) ) ) ; ;

define WhiteKlngThm : V r sq. (Vo l (r , Pos (r , sq)) ‘XV a Pos (r , sq) a W K ) ; ;

define Wh iteMPCLe mma : V p b sq sqx . (((Va luson (b , sq) sPW A BOARD (p, b))  A Pos
(P0, sqx ) ‘Pos (p, sq)) ~ MAY_ PAWN_CAPTURES (sqx , sq, WHITE));;

define W hltePawnMovement: V b bi sqx sql sq2 . (sqxisq2 ~ (Va lueon (bl , sq2 ) :PW ~(MOVE TO (b , Valueon (bi , sqx ) , sql , sq2 ) a ((Column sqlaColumn aq2 A (WSUC (Row

sql , Row sq2 ) A Valueon (b , sq2 ) ‘NT)) v ((Column sqlaColumn sq2 A (Row sql’? A
(Valueon (b . Makesquare (6 , Column sql)) iMT A Row sq2a5))) v (Valucon (b, sq2 )
‘MT ~ ( TWOTOUCHING (Column sql , Column sq2) A (WSUC (Row sql , Row sq2 ) A BVA LUES
Valueon (b ,  sq2))))) ))));;

define WhltePawnValueLemma: V p b sq. ((BOARD (p, b) A Valu.on (b, sq) aPW) ~WPAWNS Pos (p. sq)) ;;

- -



Page 218. Lisung of the Chess Theorems E.

define W hitePawnsAne_ : V t. ((t ’W K P v t’W QP v taWK NP V taWK BP V t’WKRP V t’WQB P V
t’WQNP v taW QRP) • WPAWNS Ct ) ) ; ;

define W hitepieceAre_ : V t. (WHITEPIECE t a ( tsWX P v taWQP v tsWKNP v t’WKBP v
tiW KRP V t iWQBP v t iWQNP v t’WQRP v t aWK v taWQ v taWKN v taWXB v tiW KR v t’WQB v
t’WQN v t ’W QR));;

define Wh ltepleceArePawnsOr _ : V t. (W HITEPIECE t a (WPAW NS t v taW K v t’WQ v
taWK N v t’W KB v t’WK R v t’WQ B v t’WQN v t’WQR)) ;;

.
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Index to Predconst and O~bconst Declarations

� 72 KINGS 42
A lsofrom 56 KNICHTMOVE 62
Alsomover 56 KNIGHTS 42
A lsoto 56 L2touchf 62
B BISHOPS 42 LA STRANKER 46
BETWEEN 47 Makeboard SI
BISHOPS 42 Makesimplemove 56
BKINGS 42 Makesquare 47
BKNIGHTS 42 MAY ...PAWN CAPTURES 72
BLACKINCHECK SO Move Sl
BLACK PIECE 42 Mover 56

• BLACKSQUARES 45 MOVES 41
BLASTRANK 45 MOVETO 50
BLASTROW 47 MUST PAWN CAPTURES 72
BLK 52 Nextpos 54
BOARD 50 NUMBERS 72
BOARDS 40 NVALUES 48
BPAWNMOVE 62 ORDINARY 56
BPAWNS 42 ORTHO 62
BQUEENS 42 Pawncaptures 72
BROOKS I2 PAWNMOVE 62
BSUC 47 PAWNPROM 56
Bsucf 4, PAWNS 42
BVALUES 48 Piececolor 42
CAP 56 PIECES 39
CAPPP 56 PIECEVALUES 48
CAPTURE 56 Pos 54
CASTLE 56 POSITIO NINC HECK 54
CASTLING 54 POSITIONS 39
CHESSPIECES 39 Pospcf 54
Color 54 PREDECAME 54
COLORS 41 Prevpos 53
Column 47 Promoted 56
DIA G 62 PROMOTEDPAWN 54
EMPTYPIECE 42 PROM VALUES 48
Er~LPASSANT 54 Q.UEENS 42
ENPASSANT 56 R2touchf 62
EVALUES I8 ROOKS 42
EXS~~~ARES 40 Row 47
From 56 SAMEDIAG 46
GAMEPOSITION 53 SIDEINCHECK 50
IS..E YEN 47 SIM 56
ISCOLUMN 47 SIMPLE 56
ISDIMENSION 47 SIMPL.ELEGALMOVE 54

• ISROW 47 SIMPP 56
KINGMOVE 62 SQJJARLBETWEEN 46
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: 3
SQuARES 40
SU BOARD 51
Su CCESSOR 53
Taken 56
Takenon 56
TAKINGS 56
Tboard 50
To 56
TOTALBOARDS 4O
TWOTOUCH ING 62
Unmkcapmove 70

- • Unmkcapppmove 70
Unmkmove ‘70
Un rnksppmove 70

• Val S-i
VAL UEB 4S
V a I u e~olor 49 —

VALUEK 4S
VALUEN 4S •

- 
-

V a%ueon 50
\ A L U E P 4S
\-‘ALU EQ 4S
VALUER 48
\‘ALUES 4O
\VA LUES48
~vBlSHOPS 42WH ITEINCHECK 50
\VIIITF PIECE 42
W HIT ESQU ARES 45
WHITETURN 5S

~VHT ~2W KINGS 42
WKNICHTS 42
WLASTRANK 45
WLASTROW 47
W}’AWNMOVE 62
WPAWNS 42
WQUEENS 42
WROOKS 42
WSUC 47

• W sucf ‘17
WVALU ES 48

S ~~~~~~~~~~~ ~~~~~~~~~L-~~~ - - - ~~~~~~~~~~~~~~~~~~



• Index to Axioms and Theorems Page 225.

Mdex to ~cioi,u and Theorem.u

85 BP $36 MCONSEQJ., 182, 18$
flINCH ECK 108 MobilIty 88
BishopslsOnSameColor 90 NLassume 155
BLACK. GOES 108 NLOR..RI 154

• BlockedGivenThm 196 NB~OR BB 130
BLOCKLEM 194 NoBlackPawnsOnlRow 104
BQ,OR BR 140 NOT B Iii
CALL. PN $49 NOT..BK 140
CALL PX 107 NOT.BKB 140
CALL. PY 158 NOT.BP 139

• CALL PZ 159 NOT BQB 140
CALL ..QJI 152 NOT..NB 140

• 
. CALLQX $09 NOT QB...OR RB $28

- 
- CALL ~ Y 151 NOT..XN.EQISI

CALL Q7 $5 7 NOT. ZB.K8 $29
CALL..X 96 NOT1B.PB 129
CALL YWR 146 NOTPXCASTLE 110
CALL YYW $42 NOTPXEP Ill
CALL ZB 119 NOTQBUDEP 120
CAPPPPX 121 NOTQXCASTLE $20
CAPTURE PX 121 ON BLACK SQS 138
ChesspiecePieceValueThm 80 ON..WK BP $57
DiagBQI Lemma 203 ON...WKRP 157
DIFFMOVERS 154 ON.Z8 129
DISQ)~ 123 OnlyPawnsPromote 84
EmptylsMT 79 ORDPX 113
Equ;OrthoThm 95 ParentGenealogy 78
FarTaken 205 PRED QN 153
FROM QZ 58 PROM BKRP l37
FROMPX lii PROM KNIGHT 532
GameRelations5 78 PROMPX 118
GivenUD 199 PTSIMP $48
GivenWV $99 PX BK 119
IF BISH 131 PXIS $09
LI 77, 79,81,84,89,91, 96, $02, 594, $96, 199, PXPawnTo $98

202, 209 PXSIJC 109
L2 81, 85, 89, 92, 97, 102, 194, 196 Q) 8P 135
L9 85, 85, 89, 92, 97, 102, $95, $97, $99 QBUDLBL 122
L4 82, 86, 92, 98, 102, 195, 200 QUEENMOVE 20$
L5 82, 85, 92, 99, 10$, 595, 200 QX QBUD ISO
L6 82, 86, 93, 100, $04, 200 Q~X WK 146
L7 89, 93, 201 QX_WPAW NS 44
L891 Q~CIS l09
L9 93 RI_assume $55
MCONAPX 114 ROOKMOVE 2O2
MCONAQ)( $27 ROW2 BP $34



—. -~~ ----— —~~ -• -•~~-- .• -~~~~-.---- r~~~~ - -

Pig. 226. Index to Axioms and Theorems

ROW2. WP 142
ROWS WP $49
ROW3R. BP 134
ROYAL WP 144
SAME ON. W KRI 38
SIMPWS $49
sume 98
TAKE 2 ASSUMPTION l52
THE ONLY ONE 137
THE THEOREM 16 1
TOPX 119
TransltiveGenealogy 77
Trapped. QX Q)I..Thm 202 . 

-

umptlon 98
WHEREPROM 36
WHICH. ~~ TAKEN 14?WHICH YYW $47 •

WhiteCornered $01
W hftepteceAre _ 78
WHO X I lbS
WHOiCA ISO

- - - - . . • • , -. ~~~~~~~~~~~~~~~~~~~~~~~ L~~~~~ ., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-


