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Abstract
Experimental psychologists often use multifactor repeated-measure designs
in which interactions are the most important effects to be assessed. An
experimenter has at least five ways to evaluate such interactions: (1)
a univariate repeated-measures analysis of variance (ANOVA), with (probably)
inflated estimates of the degrees of freedom; (2) a univariate repeated-
measures ANOVA with the Greenhouse-Geisser conservative estimate of the
degrees of freedom; (3) the Greenhouse-Geisser stepwise analysis; (4)
a multivariate ANOVA; and (5) specific interaction contrasts. We show
that no matter which of the above paths is chosen, the careful experi-
menter must compute specific interaction contrasts (i.e., t-tests). A

worked example is given.
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Specific Interaction Contrasts:

A Statistical Tool for Repeated-Measures Designs

R. A. Fisher (Fisher & MacKenzie, 1923) used the concepts of inter-
action and additivity when he invented the Analysis of Variance (ANOVA)
method for dealing with multifactor experiments. Until recently, these
concepts did not play a primary role in any theoretical models commonly
used in experimental psychology. However, in 1969, Sternberg incor-
porated both concepts directly into his additive-factor method for
decomposing reaction time (RT) into processing stages.

Assuming that RT is composed of a number of additive stages in a
known order, Sternberg proposed that each stage be studied by influencing
its duration with various treatments. Two treatments which influence one
or more stages in cormon should have an interaction effect on RT. But
if the two treatments influence different stages, then each should have
an additive effect on RT.

Taylor (1976) recently extended this methodology to conditions in
which some dependence may occur between processing stages. His primary
restrictive assumption is that stage dependence must be expressable as a
linear function of the stage times involved. Under these conditions,
Sternberg's hypothesis concerning additivity does not hold. That is,
the absence of a significant interaction between the effects of two
variables does not imply that these variables influence different
processing stages. However, two treatments influencing one or more

processing stages in common still should have an interaction effect on

RT. Thus, the important question becomes: How do we test for interactions?
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The traditional significance test of interactions is the F-ratio
in the analysis of variance (ANOVA). We find two major difficulties in
using this test with the form of experimentation advocated by Sternberg
: (1969) and Taylor (1976). First, multifactor repeated-measure designs,
such as those required by Sternberg (1969) and Taylor (1976), do not meet
a critical assumption of the ANOVA--independent scores. Second, the
F-ratio is a vague test, telling the experimenter almost nothing.

R. A. Fisher's first use (1923) of the ANOVA was to study the effect
of treatments on plots of ground. His most important assumption was that
the criterion score (yield) for any particular plot was independent of
the score for any other plot. The F-ratio, consequently, has some
problems in its application to a repeated-measures experiment. For
l example, Sternberg (1969) and Taylor (1976) advocate exposing a subject
to all possible conditions in a multifactor experiment. Even if we
‘ assume that the carryover effects of every treatment on all subsequent
' treatments are negligible, we must deal with the fact that any two scores

measured on the same organism, can have (and usually do have) non-zero

correlations. This makes the usual univariate repeated-measure f-ratio
misleading or uninterpretable (e.g., see Lana & Lubin, 1963 and the
justification section of the present paper).

An even greater difficulty is that the calculation of F-ratios in
conjunction with a completely general (i.e., unspecified) ANOVA model
tells the experimenter almost nothing about a hypothesized interaction
effect. A significant F-ratio tells us nothing about the direction,
amount, or location of the underlying interaction; while a nonsignifi-

cant F-test may simply lack the power to detect a single large inter-

s RO
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action effect. J. A. Nelder (see Plackett, 1960, p. 213) has criticized
such general ANOVA models on the grounds of vagueness. He suggested,
instead, that the model be specialized to fit the particular application,
thus gaining power and supplying more information to the experimenter.

Professor G. A. Barnard, also commenting on the paper by Plackett
(1960), noted that the ANOVA essentially reduces to a set of independent
contrastsJ and that we are free to seiect groups of contrasts in any
manner we choose (see Plackett, 1960, p. 215). Since efficient use of
the ANOVA involves selecting a specific model to fit the chosen appli-
cation, why not devise specific contrasts to test one's hypotheses? As
Geisser has said: "Wwhen there are contrasts of scientific importance the
omnibus F is irrelevant" (personal communication). Contrast weights
specify the size, sign, and location of the putative effects. A contrast
can be tested by a t-ratio. In this way we avoid the vagueness and lack
of power of the F-ratio. In particular, contrasts do not require the
many assumptions necessary for a repeated-measure ANOVA.

Sternberg (1969), in fact, recommended that interactions be
evaluated with specific interaction contrasts. Unfortunately, he provided
no detailed worked examples of his procedure. Furthermore, the inter-
action in his one example, in which computation is briefly discussed,
has only one possible degree of freedom, so it does not reveal the true
potential of the procedure. We have seen no other use of this technique,
s0 we can only assume that Sternberg's description was insufficient for
most of his readers. The purpose of this paper, therefore, is to detail
the computational procedures involved and give some theoretical justifi-

cation for the use of contrasts.
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Specific Interaction Contrasts: Computation

A specific interaction contrast is an estimate of the variation due
to interaction based on an explicit set of contrast weights. In a multi-
factor, repeated-measures design, the contrast procedure requires that
one first obtain a2 set of contrast weights. These may be obtained by
prior reasoning or from prior empirical knowledge. Fach of the p conditions
in the interaction must have a contrast weight, and the sum of these weights
will be zero, by definition. The next step involves calculating the
residuals from additivity (i.e., the interaction effect) for each
subject, obtained by subtracting the overall mean and the main effects
from a subject's score for each of the p conditions. Again, by definition,
the residual from additivity should be a set of numbers which sum to zero.
The contrast weights are then applied to the interaction effect of each
subject to obtain a contrast score. Given n subjects, the set of n
contrast scores can be used in a routine t-test of the null hypothesis,
50. that the interaction effect is zero. If ﬁo is accepted, then
additivity of the main effects is implied only for this particular {
weighted combination of treatment levels. Generally, the maximum number
of independent, specific interaction effects is limited by the degrees

of freedom for the interaction term in the ANOVA model.

Let Y, be the contrast score for the kth subject. Then
&'H“uﬁm i=ltor
j=1toc (1)

where “44 is the contrast weight for the ijth cell, and 9 5k is the
residual from additivity for the ijth cell within the kth subject.

First, we will give the standard method of computing g‘j. the residual
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from additivity. Then we will discuss the more difficult problem of
estimating the contrast weights, wig°
Let us look at an example (Tharp, 1975) in which the time required
to name pictures is measured under alcohol and baseline conditions.
The designated correct names to the stimuli came from five different
word-frequency (WF) categories. The deleterious effect of alcohol on
verbal reaction time is expected to increase as word-frequency decreases--
an interaction effect.
In this example2 there are five levels of WF and two levels of
drug, giving us (5-1) (2-1) = 4 degrees of freedom for the interaction.
Thus, there are four possible independent specific interaction effects.

Table 1 illustrates summary data for one subject. There are ten scores

per subject.

- .- ® wm e m wm e e e wm = o=

Residuals from Additivity
Let Z‘J be the average score in row i and column j. First, the
effect of the ith row, R, fis equal to:
X
jM. g, ER R (2)

2
where X.. is the grand mean. Second, the effect of the jth column,

R

gd. is equal to:

c-g‘”-z.. f=1tS5 (3)
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Finally, the residual from additivity qij' in row 1 and column j is
equal to:

Q,-j'ZiJ~E,~-,C.J--Z-- (4)
Note that gi and Qj are row and column effects, respectively, not
means. For example, for the score in row 1 and column 1 of Table 1,
the row effect (g,) is equal to the row mean minus the grand mean
(i.e., 859.5 - 1035.3 = -175.8). The column effect (Q]) is equal to
the column mean minus the grand mean (i.e., 1124.8 - 1035.3 = 89.5).
Finally, to obtain the residual from additivity (g]]). the row effect,
the column effect, and the grand mean are all subtracted from the cell
score (i.e., 901 + 175.8 - 89.5 - 1035.3 = 48.0). All the residuals

from additivity, computed from Table 1, are shown in Table 2.

..............

--------------

Each residual is equal to a random error term (e.. ), plus a putative

1jk
interaction effect, 4
Determination of Contrast Weights

Assume that the true interaction effect in the ijth cell is T4
Then the best estimate of the contrast weight, wige is i If the
set of ten contrast weights is equal to (or proportional to) the set
of ten interaction effects, then the contrast score of equation 1

is maximized.

Theoretical Weights. To the extent that an experiment is based on

experience, sound judgment and prior scientific knowledge, one should

have little difficulty predicting the amount and direction of any

I
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hypothesized interactions. In our example, the effect of alcohol was
expected to remain relatively constant from NF] to HF3 and to increase
dramatically at HF4 and HFS. These results were expected because (1)

an exponential increase in a priori stimulus-response uncertainty occurs
from HF] to HFS and (2) the effect of alcohol increases as a function of
experimentally defined stimulus-response uncertainty (Tharp, Rundell,
Lester, & Williams, 1974). Thus, based on prior knowledge, we might
postulate the set of weights, ..., shown in Table 3.

1

--------------

There are two restrictions on these interaction contrast weights. First,

R |

“13 = 0 for every row j=1,2 (5)
and second

§ “ij = 0 for every column i=1¢t5 (6)

One can adjust any set of weights to fit these rules by subtracting
from each weight the appropriate row mean, finding column means of the
row-adjusted scores, and then subtracting the appropriate column mean
from each cell.s

Contrast weights are usually given as single digits lying between
-9 and +9. Single digit weights might be obtained by smoothing and
dividing all scores by their lowest common denominator. Two-digit
accuracy might be justified with 50 or more subjects.

Cross-Validation Procedure. If one cannot ask questions about

interaction effects in terms of prior contrast weights, then empirical




e Podin £, anal Liss o - Abal d Ay

Specific Interaction Contrasts

9

post-hoc contrast weights can be estimated from the cell means for half
the experimental subjects (analysis group) by setting “ij = gij'
The remaining subjects (cross-validation group) then can be used to get
an unbiased estimate of each putative interaction effect and to test
the obtained effect for significance. This cross-validation method is
standard operating procedure for psychometricians in multiple regression,
test construction, etc., (Mosier, 1951). Cross-validation is rarely
used as such by statisticians. However, the "jack-knife method",
popularized by Tukey, as well as the Geisser "predictive sample reuse
method", can be viewed as a generalization of the usual two-group cross-
validation procedure (see Mosteller & Tukey, 1968; Geisser, 1975).

Our example consisted of 24 subjects, so 12 of them (i.e., the
analysis or training group) are used to estimate the weights while the
remaining 12 are the cross-validation (testing) group. Table 4 gives

the set of weights derived from the analysis group.

Notice that these values are quite similar to our theoretical values in
that most of the alcohol effect occurs at HFS.
Significance Tests

The significance test will have maximum power when the interaction
effect, L for each cell is equal to, or proportional to, the contrast
weight for that cell. For simplicity in what follows, we omit the case
of proportionality. Thus, the experimenter's hypothesis is:

!‘: TiJ .N‘IJ' (7)

PP P T

PR T BT
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and the null hypothesis is:

o i =0 (8)

Both hypotheses assume that ‘ij equals the expected value of qij' SO

H, is equivalent to iij = 0, where

n
a 9 jk (9)
G,y - b1 K

and n refers to the number of subjects.4 The contrast score for the
kth subject is defined by equation 1. The expected value of Y, computed
over the n subjects, will equal zero if ﬂo is true. If ﬁ‘ is true, then

the expected value is:

2 2
W, » = “E T:z (]0) 3

£ - T oy

We now have a between-subjects t-test, eliminating the repeated-measures

problems.

Theoretically, under Hy the Y{ scores for the cross-validation

S
group will range from zero to % 3 uﬁj. Under H_, the Y, scores can

be positive or negative, centering on zero. The conventional t-test

is simple to obtain.

|=<i

te ¥/ m ()

—-y
where H_ is E(Y) =0

H, is E(Y) > 0

1

and the t-ratio has (n-1) degrees of freedom.
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To complete our example, Table 5 illustrates the X* scores for the
cross-validation group using the weights obtained from the analysis

group (right) or the theoretical weights (left).

- e ® e ® e owm e e e e e =

For Sternberg (1969) additive effects between two treatments are as
meaningful as interactive effects. Thus, he suggests that
. one might present findings in terms of
mean interaction contrasts of theoretically
interesting magnitudes, and adjust tests so
that errors of Types 1 and 2 have equal
probabilities with respect to such alterna-
tives. {p. 310)
One could, for exarple, use the appropriate t-ratio at the 50% level as
a rejection point. This adjustment cannot be used to infer additivity,
however, within the context of the test we recommend for interactions.
That is, rejection of a specific interaction hypothesis does not imply
additivity. In view of Taylor's (1976) cautions against interpreting
additivity, this inability to infer an additive relationship from a
specific test does not appear to be a serious drawback.
Several Interaction Hypotheses
The major interest of the study may not be the comparison of !o
with ﬂl' In some cases, divergent theories might lead to divergent
hypotheses as to the nature and direction of the interaction. For

example, suppose that some evidence predicted a "golden-mean” theory
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in which the optimal effect of alcohol occurs at the median word
frequency level, HFJ. while decrement occurs at the extreme word
frequency levels, HFl and HFS. Thus, the theoretical weights might

be those shown in Table 6. We now have two experimental hypotheses,

- e, e m e e e e ® e e = o= o=

ﬂ] and Hy. Llet the vector of weights given in Table 4, y]. represent
Hy and the vector of weights given in Table 6, Vo represent Hy. Each
vector will yield a t-ratio--the higher the t-ratio, the better the
hypothesis fits the data. To make an accurate estimate of the signi-
ficance of the t-ratios, the rejection levels must be adjusted to take
account of the fact that two similar significance tests have been
obtained from the same data.F

Al though there are many solutions to this multiple-comparison
problem (e.g., Miller, 1966), we prefer the Dunn-Bonferroni method
(Dunn, 16959). Assume that you want to hold your experimentwise Type 1
error at .05 (i.e., when H, is true then either t-ratio or both t-ratios
will be significant in five percent of all comparisons). In the simplest

version of the Dunn-Bonferroni, the chosen alpha level is divided by

the numbor of comparisons to obtain a critical level of significance

for each comparison. Thus, in this example we would divide .05 by two
to obtain .025--the level at which each t-test would be evaluated.
This is a very conservative test which guarantees that the Type 1 error

will be .05 or greater, so it lacks some of the power of other tests.

In general, it will be more conservative (i.e., the Type 1 error will
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be larger) as the correlation between V, and yz increases. Thus, the
experimenter should be careful to avoid testing redundant hypotheses.’
wWhen the weights of y] correspond exactly to the true interaction

effects, “i3" then the contrast scores for V' will account for all
interaction variance (i.e., any vector which is orthogonal to Vl will

have a Yk

Most experiments contain several families of statistical hypotheses.

of zero).

The Dunn-Bonferroni adjustment may apply separately to each family
(Miller, 1966). For example, one might be interested in the effect of
a new treatment on various information processing stages, and thus
introduce that treatment into a8 multifactor design with several treat-
ments whose locus of effect has already been "established" by means of
the Sternberg-Taylor procedure. Such an experiment would involve a
two-step analysis. Step one, constituting one family of statistical
tests, would involve confirming the interactions between the established
treatments in data which did not include the new treatment. The second
step, constituting the second family, would be a search for interactions
between the effects of the new treatment and the established ones.
Justification

Let us review the remaining four ways to evaluate interactions in
a repeated measures design: (1) the univariate repeated-measures
ANOVA using the (probably) inflated estimate of degrees of freedom;
(2) multivariate ANOVA: (3) conservative degrees of freedom with a uni-
variate ANOVA: and (4) the Greenhouse-Geisser stepwise analysis. We
will demonstrate that no matter what the outcome of the given procedures,

the careful experimenter must use specific interaction contrasts.
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nivariate Repeated-Measures ANOVA

For the conscientious experimenter few problems are so exasperating
as the analysis of a repeated-measures design. In 1954, Box showed that
the exact analysis of a repeated-measures design is a multivariate analysis
and that the basic answers must be given in terms of multivariate F-ratios
(see, also, Winer, 1971, sections 4.4 and 4.9). The usua) univariate
F-ratio approach, set forth in almost every psychological statistics text,
is strictly valid only under a set of necessary and sufficient conditions
known variously as (a) the "circularity property"s (Rouanet and Lepine,
1970); (b) “equality of variances of differences" (Huynh and Feldt, 1970);
or (c) "homogeneity of interaction variances" (McNemar, 1962, pp. 315-316).

AVl F-ratios with only one degree of freedom for the numerator are
valid under the standard multivariate normal assumptions (see Appendix).
With three or more measures per subject, one could test for the “"circularity
property"” and drop the univariate approach when it does not hold. When
the circularity property does hold, one need only worry about interpreting
the meaning of a significant F-ratio.

Multivariate Znalysis of Variance

One possible solution for analyzing repecated-measures data is to
avoid the univariate approach--do a multivariate ANOVA as soon as we
have three or more measures per subject. Unfortunately, the multivariate
ANOVA presents many problems unless one has a large number of subjects.

Given rc scores per subject, the number of subjects must be equal
to or greater than (rc-1) in order to compute a multivariate ANOVA.

This absolute bar is present because every multivariate ANOVA demands the

computation of the inverse of a within-group covariance matrix. When
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n+tl is less than the number of measures per subject, the determinant
of the covariance matrix must be zero, and the inverse does not exist.
Most experimenters probably can slip under the (rc-1) barrier with

one or two degrees of freedom to spare. If so, then we usually run into

the problems of the ill-conditioned covariance matrix and the inherently
large sampling variance of correlation coefficients and variances. The
idea of estimating the inversie of a 4x4 or 5x5 covariance matrix, which
is based on less than 20 degrees of freedom, only appeals to those who
have an overwhelmning faith in small samples.

The inherent sampling instability of second-order statistics (e.q.,
correlations, variances, etc.) will interact with small sample size to
emphasize the problems of the multivariate-normal model. The unbiased
estimate of a covariance matrix demands many more assumptions than the
unbiased estimate of a difference between two independent means. Some
of these assumptions are given in the Appendix. Ordinarily, even when
we do not have exact normality or homogeneous variances, the Central
Limit Theorem guarantees that the difference between a pair of indepen-
dent means goes very quickly towards a normal distribution with homog-

eneous variance, provided that scores are independent and that there

are enough of them. But second-order statistics are very sensitive to
even slight deviations from normality (e.g., the fourth moment), and

the Central Limit Theorem has very little effect with small sarples.
Furthermore, if some fundamental assumption such as linearity or indepen-
dence has been violated, then the Central Limit Theorem simply does not

apply. For example, if one measure has a non-monotonic relation to

another, then no increase in the sample size will linearize that relation.

——
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In summary, then, multivariate analysis of variance is an exact way
to evaluate repeated-measure interactions. Nevertheless, a multivariate
ANOVA is practical only (a) if one has fifty cases or more (given that rc
is more than 5) and (b) if the important assumptions of linearity, a well-
conditioned covariance matrix, etc., hold (see Appendix).

Conservative Estimate of the Degrees of Freedom

Some investigators have attempted to avoid the repeated-measures
problems of the univariate ANOVA by using the conservative test advo-
cated by Greenhouse and Geisser (1959). This approach is based on a
statistic, epsilon, developed by Box (1954). When epsilon equals unity.g
then the usual univariate ANOVA of repeated-measures is valid. When
epsilon is less than unity, myltiplying the degrees of freedom for the
numerator and the denominator of the univariate F-ratio by epsilon,
gives the approximate degrees of freedom for a valid evaluation of the
univariate f-ratio.

The Greenhouse and Geisser (1959) conservative test avoids the
estimation of epsilon. It uses the fact that epsilon cannot go any
lower than 1/(p-1) where p is the number of measures per subject.
Consequently, by using this minimum value of epsilon, one usually
underestimates the degrees of freedom and the significance level of
the F-ratio. [If the conservative test is significant. then the multi-
variate analysis would also be significant. But, the Greenhouse-Geisser
conservative test will only reject the null hypothesis for rather large
F-ratios. When the conservative test is not significant, the experimenter

fs given very little information.
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Greenhouse-Geisser Stepwise Analysis

Greenhouse and Geisser in describing their stepwise analysis (1959,
p. 110) advised that one should test the univariate F-ratio first, using
the nominal degrees of freedom without the epsilon correction. When this
F-ratio is significant, one must then perform the conservative test. The
epsilon correction is needed only when the F-ratio with inflated degrees
of freedom is significant and the conservative test is not. This stepwise
approach, also recommended by Lana and Lubin (1963), assumes that no
further analysis is needed when the univariate F-ratio with possibly
inflated degrees of freedom is not significant. This assumption is
wrong. Davidson (1972) showed that one could easily obtain a significant
Hotelling 1? (i.e., a significant multivariate F-ratio) on the same
data.zo Thus, a non-significant F, with possibly inflated degrees of
freedom, also gives the experimenter very little information.

In summary, if a significant F is obtained with the conservative
test or by using epsilon to approximate the valid degrees of freedom,
then the only problem is to interpret the meaning of the F-ratio. Other-
wise, one can turn to a multivariate ANOVA if enough subjects are available
(e.g., 50 or so, given that p is about 5) and the important myltivariate
assumptions are met.
Specific Interaction Contrasts Versus the Omnibus F-Ratio

Justification. When a non-significant F is obtained either with the
Greenhouse-Geisser conservative test or by using epsilon to approximate
the valid degrees of freedom and the conditions are not appropriate for
a multivariate ANOVA, only one of our suggested solutions remains--specific
interaction contrasts. Such a situation always justifies the use of

specific interaction contrasts.
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However, the most powerful argument for the use of interaction
contrasts is a pragmatic one. Even when F-ratio tests (univariate or
multivariate) are appropriate, only two outcomes are possible--a
significant F-ratio or a nonsignificant F-ratio. Both outcomes should
lead the careful experimenter to test for specific interactions.

A nonsignificant F-ratio may be due to a lack of power, the result
of considering all possidble interaction contrasts simultaneously. There- f
fore, a careful experimenter should always apply any prior interaction |
contrast (derived from hypothesis or an analysis group) to the data to
see if the t-test is significant even though the overall F-ratio was not.

If the F-ratio is significant, then the experimenter still has to
determine which cells yielded the significant interaction effect, as well
as the direction and amount of each cell effect. A significant F-ratio
does not guarantee that the experimenter's hypothesis about the interaction
is correct. For example, the cell sizes may be as hypothesized, but with
opposite signs; all signs may be as hypothesized, but the amounts may be
wrong;, or possibly the experimental hypothesis may be wrong about both the

direction and magnitude of the interaction effects.

In surmary, a nonsignificant F-ratio tells one almost nothing. A
significant F-ratio is merely a hunting permit, with the interaction

contrast and its associated t-test as weapon.

Advantages. A specific interaction contrast is pragmatic, powerful,
robust and easy to compute. Moreover, as we have shown, it is unavoid-

able when evaluating interactions in a repeated-measures design.

Specific interaction contrasts allow the experimenter to test his

interaction hypothesis exactly. Since a specific hypothesis is tested,




Specific Interaction Contrasts

19

the t-test performed is one-tailed and always more powerful than the
comparable F-ratio.

Only three basic assumptions are required of the data in order to
test an interaction contrast: (1) independence of the n contrast scores,

(2) a normal distribution, and (2) homogeneous variance. Independence

fs guaranteed by independent selection and scoring of the n subjects.
The latter two assumptions--normality and homogeneous variance--are not
guaranteed, but can be tested by using the Wilcoxon signed rank test in
tandem with the t-test. As n increases, normality and homogeneous
variance become irrelevant. Thus, specific interaction contrasts, in

conjunction with appropriate rank-order tests, are robust.

- B mw—_—d
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1A contrast is a weighted combination of scores where the sum of
the weights equals zero.

“Since there are only two levels of drug {(i.e., 1 df), one can
subtract baseline from alcohol scores to simplify the computational
procedures for computing residuals from additivity. We have not simpli-
fied in the above example in order to show how such residuals are com-
puted with both rows and columns. Finding residuals for the simplified
scores is a straightforward generalization of the example given.

3This procedure is equivalent to the method detailed for finding
residuals from additivity.

“We assume that the interaction effect for the ijth cell, T4
is a constant for all n subjects. Any interaction with the subjects
is thrown into the error deviance.

“When the specific interaction hypothesis is correct, under most

circumstances the contrast weights will be proportional to the actual
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interaction effect. For example, we recommend smoothing the contrast
weights, but not the residuals from additivity for each subject, to

single digit numbers. Thus, the theoretical maximum value can be stated
more accurately as being k § 3 “%j' where kK is the constant of proportion-
ality. :

®Fach t-ratio may have a different between-subjects variance in this
example. The completely general ANOVA demands that every F-ratio and
t-ratio for interaction must have the same error variance to comply with
the assumption of homogeneous variance.

’The routine application of stepwise multiple regression (e.g.,
Dixon, 1975) to the matrix of vectors representing the hypotheses will
guarantee linear independence and thus eliminate redundancy. If there
are h degrees of freedom for the interaction deviance in the ANOVA, then
one can construct h vectors that are mutually orthogonal to one another.

8These "circularity properties” are less restrictive than the
"compound syrmetry" property (Votaw, 1948). Compound symmetry holds
when, given p repeated-measures, the p variances are equal and the
p(p-1)/2 correlations are identical. Rouanet and Lepine (1970) have
shown that compound symmetry is sufficient but not necessary to
guarantee the validity of all f-ratios in a univariate ANOVA of a
repeated-measures design. To confuse the issue further, the Greenhouse
and Geisser 1959 article has a slip (p. 95): the word necessary was
applied to the compound syrmetry model rather than sufficient, as was

implied by their first paper (Geisser and Greenhouse, 1958). This slip
was copied by Lana and Lubin (1963), Gaito (1961), Winer (1962) and

others. Winer corrected this slip in his second edition (1971, pp. 282-283).
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SRouanet and Lepine (1970), as well as Huynh and Feldt (1970),
verified that when the circularity property holds, the Box epsilon
criterion equals unity.

101f some of the measures with small variances have very high
correlations with one another, and if the remaining measures have
high variance and low inter-correlations with all other measures, then
the multivariate ANOVA will unerringly pick out the linear compound
that gives maximum weight to the differences between the means of the
highly correlated mcasures. The univariate ANOVA gives equal weight

to all differences, and so may end up with a nonsignificant result.




Alcohol Baseline
WF ) 901 818 X
WF, 932 854 X
WF 5 949 870 X
WF 4 1109 982 X
WFg 1733 1205 X
X., = 1124.8 X., = 945.8 A
Table 2
Residuals From Additivity For One Subject
Alcohol Baseline
WF ) -48.0 48.0
WF, -50.5 50.5
WF 4 -50.0 50 .0
WF 4 -26.0 26.0
WF g 174.5 -174.5
Column
Effects 89.5 -89.5
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Table 1

Verbal RT in Milliseconds, N=1

"

L

it
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859.5

893

909.5
1045.5

1469

1035.3

Row Effects
-175.8
-142.3
-125.8

10.2
433.7

= 1035.3
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Table 3
A Set of Theoretical Contrast Weights
Alcohol Baseline  “uea
WF) -1 1 0 1
W, -1 1 0 1
WF -1 1 0
HF4 0 0 0
HFS 3 -3 0
0 0
Table &
Contrast Weights Obtained Empirically
from the Analysis Group
Condition
Baseline Alcohol
W -1 1
wF, -5 5
WF 4 1 -1
UF‘ -4 4

“FS 9 ‘9




Subjects

Contrast Scores

Using
Hypothesized

648
3,101
2,055
4,446

438
3,616

2n

580

-524

155

530

818

1,344,
1,574.
48

Table 5

Weights

500
214
959

.006

.443
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Using
Analysis Group Weights

2,458
8,293
6,547
13,388
1,096
9,800
2,249
1,888
-1,594
-15
1,528
618

3,854.667
4,570.038
2.922
.007

.437




(1)

(2)
(3)

(4)

(5)

(6)
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Table 6

A Golden-Mean Set of Contrast Weights

Alcohol Baseline
HF] -1 1
HFZ 0 0
HFJ 2 -2
WS '] ]
Appendix

Some Assumptions of Multivariate Analysis of Variance
Independence of Subjects. Each subject was selected independently
of any other subject.

Normality. FEach of the p measures has a marginal normal distribution.
Homogeneity of Residual Variance (Homoscedasticity). When we

predict one of the p measures from any linear component of the
remaining (p-1) measures, all errors of prediction must have the

same variance.

Linearity. Ffach of the p measures has a linear regression on any
weighted combination of the remaining (p-1) measures.

Homogeneous Universe. Each subset of subjects in the sample has

the same covariance matrix as any other subset.

well-conditioned Covariance Matrix. The determinant of the p by p

covariance matrix is clearly greater than zero.
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20. (Continued)

ANOVA; and (53 specific interaction contrasts. We show that no matter which
of the above paths 1s chosen, the careful experimenter must compute specific
interaction contrasts (i.e., t-tests). A worked example is given.
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