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It is ghown that the problem of finding a point in the
p intersection of a finite number of balls in n-space is

equivalent to solving a very simple (one constraint)
quadratic program.
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SOLUTIONS OF SPHERICAL INEQUALITIES
by

David Gale

There are many examples of natural geometrical problems which can be
solved by linear or quadratic programming. For example the problem of
finding the largest ball contained in a given convex polytope (the inscribed
ball) turns out to be a linear program, while the problem of finding the
smallest ball containing a convex polytope (the circumscribed ball) is
equivalent to a quadratic program [l]. In this note we extend the result of
[1] by showing that the following problem can be solved by a simple quad-

ratic program:

Problem:

Given a finite set of balls in Rn decide whether their intersection
is nonempty and if so find a point in it.

To formulate the problem algebraically let ¢ the

redius of the 1°® ball, £ % I, veus 0 «

i be the center, Py

Problem:

Solve the system of inequalities

2*

{0 1= 1, ¢vvy 1,

1) (x - ci)2 So

or show that no solution exists.
An obvious modification of this problem is to find a vector x and

number 2z such that

+In this paper the scalar product of vectors x and y 1is written xy

the scalar product of x with itself is xz .
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(2) z 1is a maximum
subject to
2 2
3) (x-ci) -oi+z§0.i-1,...,m.

Letting (x,z) be the solution of (2), (3), it is clear that (1) has
a solution if and only if z > 0 . For the special case oy = 0 for all
i it is also clear that z is negative (unless all c, are equal) in
which case, by definition, X is the center and -z is the radius of the
circumscribed ball.

The point of this note is to show that the problem (2), (3) has a dual
which is a very simple quadratic program and hence can be solved by well
known techniques. It then follows that if the <y and py are rational
then (2), (3) have a rational solution which is perhaps not immediately
obvious.

Our result is the following. Consider the quadratic program of finding

a nonnegative m—vector A = (Al, cuey Am) and a number u such that

(2)* u 1is a minimum
subject to
# 2 2 2

3 w= (I A1"1) +1 A1("’1 - <)

and
m

Z Ay =1 <Z is short for Z ) .

i=1

e

e T




*
We assert that (2), (3) and (2) , (3)* are dual problems. More

precisely:

Theorem:

Let (X,u) solve (2)*, (3)*. Then (x,n) solves (2), (3) where

x = Z iici .
@We first prove the usual inequality (so called "weak duality"). Let

*
(x,z) be any solution of (3) and (A,u) any solution of (3) . Multiplying

(3) by A, and summing gives

i

0> ') Ai(x - ci)2 -} xipi +zm=x%- 2(2 Aici)x + ] Ai(ci -

- (" | A1"1)2 o (Z Aici)z g

= (x - z Aici)2 +z-u2z-u, (from (3)*)

i * * -
Now suppose (A,u) 1is a solution of (2) , (3) , and let x = Z Aici "
The Kuhn-Tucker conditions for this problem assert the existence of a number

u such that

- 2 2
u _<_.2xc1 +ey- ¢y for all i and

2

& -
us= 2xci + L ci if

Multiplying (5) by %, and summing gives

i
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4 3
4
ERERUE w
u 2x" + Z Ai Py =)

-

or
3 <2 =2 gy L *

(6) u=-XxX =x + Z Ai(p1 - ci) p from (3) .

Subtracting ;2 from (5) gives

u-;zipi-(;(-ci)z
so from (6)
& 2 Fahotc- nix

‘ (x=c)" =0, +ug0
3 so (x,u) 1s a solution of (3) and from (4) it is optimal, completing the

proof. B

Remarks:

* *

1. The fact that problems (2), (3) and (2) , (3) are nonlinear duals

can be derived by appealing to general nonlinear duality theorems, e.g.,
L [2] and making some further simplifications. For this special case, how-
‘ ever, we prefer the self-contained proof which uses only the standard
? optimality criterion (Kuhn-Tucker conditions) for quadratic programs.

2. One might hope to generalize the result of this note by replacing
the spherical inequalities of (1) by general positive definite inequalities
so that the spheres of (1) become ellipsoids. The following interesting
example due to G. Bergman shows that there is no hope of doing this. The
following inequalities describe ellipses in the plane.

s
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2!2+3xy+2y2-4x-4y+2:0
2 2

2x" + 2xy + y - 2x 0
xz Xy, % y2 -y 0.
These inequalities have the unique solution (22/3 - 21/3 ) 2 = 22/3) .

3. The above example involves three inequalities. It seems possible
that for the case of only two positive definite inequalities rational

solutions will always exist. The answer is not known at this time.
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