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ABSTRACT

It is shown that the problem of finding a point in theintersection of a finite number of balls in n—space isequivalent to solving a very simple (one constraint)quadratic program.
I



SOLUTION S OF SPHERICAL INEQUALITIES

by

David Gale

There are many examples of natural geometrical problems which can be

• solved by linear or quadratic programming . For example the problem of

fi nding the largest ball contained in a given convex polytope (the insc~~bed

ball) turns out to be a linear program , while the problem of finding the

smallest ball containing a convex polytope (the aircumacribed ball) is

equivalent to a quadratic program (1]. In this note we extend the result of

[1) by shoving that the following problem can be solved by a simple quad—

ratic program:

Problem:

Given a finite set of balls in R~ decide whether their intersection

is nonempty and if so find a point in it.

To formulate the problem algebraically let c~ be the center , p~ the

radius of the ~th 
ball , i 1, ... , n

Problem:

Solve the system of inequalities

2(1) (x — c~) < , i — 1, ... , m

or show that no solution exists.
I

An obvious modification of this problem is to find a vector x and

number z such that

this paper the scalar product of vectors x and y is written xy

the scalar product of x with itself is

I
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(2) z is a maximum

subj ect to

• (3)

Letting (x,z) be the solution of (2), (3), it is clear that (1) has

a solution if and only if z 0 . For the special case — 0 for all

i it is also clear that z is negative (unless all c1 are equal) in

which case, by definition, x is the center and —z is the radius of the

circumscribed ball.

The point of this note is to show that the problem (2), (3) has a dual

• which is a very simple quadratic program and hence can be solved by well

known techniques. It then follows that if the c~ and p~ are rational

then (2), (3) have a rational solution which is perhaps not immediately

obvious.

Our result is the following. Consider the quadratic program of finding

a nonnegative rn—vector A (A 1, ... , A )  and a number u such that

*(2) p is a minimum

subject to

(3)* u — (z x~~)2 + 
~ 

—

and

i 
— 1 (z is short for 

~ 
)i—i
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* *We assert that (2), (3) and (2) , (3) are dual problems. More

precisely:

Theorem:

* *Let (A ,p) solve (2) , (3) . Then (x ,p) solves (2 ) ,  (3) where

— z ~~
UWe f i rs t  prove the usual inequality (so called “weak duality”) .  Let

(x ,z) be any solution of (3) and (A ,p) any solution of (3) * Multiplying

(3) by A~ and summing gives

O > 
~~ 

A~ (x - ci
) 2 

- Z A iP~ 
+ z - x

2 
— 2(Z ~jcj)x + Z A~ (c~ — + z

- (~ — 
~~ 

x 1cj2 - (~ 
A~ c1)~ - 

~~ A~(~ 
- c~~) + z

— (~ — 

~ 
x 1cj 2 + z — p > z — p , (from

so

(4) z < p .

Nov suppose ~~~ is a solution of (2) *, (3) * and let ~~ — 
~ 

A~ c~

The Kuhn—Tucker conditions for this problem assert the existence of a number

u such that

u < 2~ c~ + p~ 
— c~ for all i and

(5) 
•

if

Multiplying (5) by A~ and summing gives

_ _ _ _ _ _  
I — 
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—2 / 2  2 \u 2 x

or

—2 —2 / 2  2~ — *
(6) u — x — x + 

~~ 
A 1~

p~ — c1) — p from (3)

Subtracting x2 from (5) gives

—2 2 — 2u — x < ø ~~ — ( x — c1)

so from (6)

2 2
— c~ ) — + < 0

0 

— —so (x,u) is a solution of (3) and from (4) it is optimal , completing the

proof.U

Remarks:

1. The fac t that problems (2) ,  (3) and (2) *, (3) * are nonlinear duals

can be derived by appealing to general nonlinear duality theorems, e.g.,

[2] and making some further simplifications. For this special case, how—

ever, we prefer the self—contained proof which uses only the standard

optiaality criterion (Kuhn—Tucker conditions) for quadratic programs.

2. One might hope to generalize the result of this note by replacing

the spherical inequalities of (1) by general positive definite inequalities

so that the spheres of (1) become ellipsoids. The following interesting

example due to C. Bergman shows that there is no hope of doing this. The

following inequalities describe ellipses in the plane.

• ~~~~ -
. r — 
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2x 2 + 3 x y + 2 y 2 - 4 x _ 4 y + 2 < o

2x 2 + 2xy + y 2 - 2 x  < 0

x + x y +  y - y < 0 .

These inequalities have the unique solution (22/3 — 2L’3 , 2 — 2 2
~’3)

3. The above example involves three inequalities. It seems possible

that for the case of only two positive definite inequalities rational

solutions will always exist. The answer is not known at this time.
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