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ABSTRACT

Studies In Image Segmentation Algorithms Based
on Histogram Clustering and Relaxation

September , ~979

Paul Alex and er Nag in

u.S., Antioch University

M .S. , University of Massachusetts

Ph.D.. Univer sity of Massachusetts

Directed by: Professor Edward ti. Riseman

The research in this thesis has focussed upon the algorithms and

structures that are sufficient to generate an accurate description of

the information contained in a relaUvely complt’x class of digitized

images. This aspect of machine vision is often referred to as

“low—level” v is ion or segmentat ion , and usually includes those

processes which function close to the sensory data. The bulk of this

thes is devotes I tsel f  to the ex ploration of some of’ the problem s

typimally encountered in segmentation . In addition , ~ new and robust

algorithm is presented that avoids most of’ these problems.

The analysis is carried out through the use of’ a series of

computer—generated test Images wi th known characteristics.

Segmentat ion algori thms of’ varying degrees of complexity are app lied to

F each image and their performance is carefully evaluated . It will he
1.

shown that even the most sophisticated algorithms that are currently in

use often perform poorly when confronted with certain apparently simi le

images . In particular , it Is shown that techniques which rely on

I _~~~
_ _ I_ 
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histogram clustering often generate gross segmentation errors due to

overlap in the distributions of the individual objects in a scene .

Moreover , the relaxation processes used to correct these errors are

themselves prone to errors , but of’ a different kind . ~~Here , we show

that the globally computed compatibility fun tio r-e inadequate to

preserve image structure , even in some surprisingly sim :)le ima”~es./
~‘-> Both techniques , c luster ing and relaxat ion , fail b ’cause t hey are

based on information which is too global to be effective in compl ex P

scenes. Clustering fails because most algorithms do not take into

account/ \he spatial feature information contained in the image.

Relaxat ion_\~pe algor i thms take the spat ial content into account by

utilizing gl~bal information applied to local neighborhoods. However ,

global compatibility functions very often fail to resolve local ima~le

structure. This impl ies that improvements in performance might be

obtained by localizing the algorithm to sub—images of the original

image. In fact , a dramatic improvement In per formance is obtained when

this is done. Each sub—image is defined to be small enough so that the

d istributions of distinct visual elements are reveal ed as distinct

histogram clusters. Moreover , the compat ibility coe ff ic ients are

measured over a sufficiently small area so that their characterization

of the local Image structure is not diluted by global effects. After

segmenting each sub—image , a merging algorithm is applied so that

t • regions that have been artificially split at sub—image boundaries can

be sewn together to form the final segmentation .

I. vii
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C H A P 1 F H I

INTRODUCTION

The researe h in th Is thesIs ha S feoussed upon t Pie a 1 gor it hm s iii

str U(’ Lures that  .ire su f’f’ I lent I o general e an :t.’.~ t irat e .1 C 5Ot ’  I pt I ot ~ - ‘ I

the In format .I on cont at ned in a rd at I y r lv  t ompl ox o I a:~s o f ’ .1 ig It  I :ei

— images. ‘th is aspet’ t of mac h Ira’ V I si ou I a ol’t en t ’~ ’ Ion ’.’ d I 0 :15

“ low—le ve l v is ion ” and usual 1 y I nc l udes those pi’ot’esses wit lob f t inct  ton

cio~p to the sensor y dat a. The general go:,l of’ our l o w — l e v e l  ys t  em is

the t ransformat ton of’ a I arge spat 1:i I arm y of ’ p1 xci  s I .e . r i” t t i re

e1ements~ tnt  o a more .‘ompa.’t .ie~ cn l pt b i t  of ’ t ho image I n  t e rms ~~f ’

v Istial ly ~I 1st 1 not sy ntst ’t to tin II s anti thel r .‘hara4’te r Is t  los.  Sti oli a

transformation i referred t o  ~5 a se~~menI ,at ton . By a v a r i ct  ~

means , t he v i sua l  information must he :tggrt’gat .‘d • 1 shel led w i t h

sym bo ii.’ names and at t ml bu t  es • a nd I hen tnt ci . tao . ’d t o  hi glict ’ level

knowl edge strtIot lIres .

The c o m p l ex i t y  of the data which must I’.’ e ’am iti.’.I by t h e

segment-st. I on ~~~~~~~~~~~~ s has had si gnt (‘I o ant c t’fe~’ I upon the des Ign of

tho se pr oc esses .  WI th no tat I vet v t’~1flpl cx • tin.’onat i-a I net Images •

as fu l  I color out doot’ s.’ono s , an y  :;t ’pt’ .’.t.’ P t t o  : 1 ’ g r n ’ I i I at t t ’ti wt 1 I he

prone to error. High 1 y I ext tired o b j et ’ I a s t i . ’ Pt :ts I t ’ ee ,  • shadows and

hi ghl I ght s on both regu 1 am and I rregu I Ot ’  slit’ (‘a.’, - a , v or I ed ~itid

unc’ontrot 1 st~le lighting .‘ot~d it ions , at  I oont r Ihut .’ t o  I he .11 f t ’ i c t i l  y ~‘I
’

anal ys is . Few ohlei’t s or slit’ f~oes ,‘an he cx pet ’ ted 1 o ex it lb it t rut v

tin I form vis ual feat tires . There fore • met h,~d:t (‘or deal I ng wI t  Ii I hIs

I. 
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- 
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vari abi lity must be incorporated not only Into the processes

themselves, but also into the manner by which the results of the

processes are Interpreted and used . The system discussed in flits

thesis incorporates the flexibil ity of representation and the

generality of processes which are necessary to accomplish this task.

Li Evaluation of Segmentation

In spite of the very active and diverse research on image

segmentat ion systems , performance evaluation of these systems remains

an open question . In order to evaluate the quality of segmentation ,

one must specify the goals of the processing . However , these goals

vary widely in their form and In their complexity. In one case the

goal might be to determ ine the presen ce of’ a dark area on a textured

gray background (as in b iomedical image appl ications), wh ile in another

it could be to provide information to a system which Is to construct a

three— dimensional model of the physical surfaces that are present In

the Imaged env ironmer t (as in some image understandi ng sys tems

[HAN ’8J ).

Let us assume for the moment that the goal is to partition an

arbitrarily complex image , say an outdoor Image , into objects and

surfaces. Al though this goal is simply stated , the problem of

evaluating a segmentation which is purported to fulfill these

conditions is stiLl ex tremely difficult. Subjective evaluation Is

clearly not sufficient to provide the quantitative measures necessary

_ _ _ _ _ _ _  _ _ _ _ _  
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to compare either a given segmentation to a goal or to rank two

segmentations relative to the goal . Some fo rm of “gt’ound—truth” data

would be required in order to define global measures: the question

remains as to where this data is to be obtained . In the natural scenes

to be analyzed here , information from the physical scene ha~ undergone

several stages of degradation , including the photographic process , the

digitization process, and a spatial averaging process to red uce the

amount of data to managable levels (in this case , ‘~.l.” xc I.’ t, ~~~~~~~

pixels) . The effect of these processes Is to introduce noise , blur

edges, and to create hybrid feature values —— mixed pixel s —— which are
not easily classifiable. Moreover , the image contains inherent visual

complexities such as irregular texturing , h i g h l ights , shadows , object

occlusion , and irregular changes in gradients due to changes Ir surface

reflectance .

The presence of these anomalies implies that accurate grou id—tmu t h

segmentations are difficult or Impossible to obtain. Hand—drawn

segmentations are Inevitably prone to errors and tend to reflect-

impl icit biases end expl icit goals of the human pereelver . In many

instances the boundaries would be conjectured , based on prior

expectations in the form of knowledge of object shape , shadow effects ,

perspective cues, and occlusion cues. In short , it is genera lly

accept ed that a truly accurate segmentation of an image requires the

application —— at some point —— ‘of “ high—level ” knowl ed ge . i .e . ,

knowl edge beyond directly measurable features of the data.

The problem of when and what high—level knowl edge should he used

Ii
- - - 

_ _ _  _ _ _ _ _ _ _
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will not be addressed here. Because the sensory data is sometimes

i n h e r e n t l y  ambiguou s, and because the pr ocedures necessary to

disambiguate the image may not be definable in a low—level system, it

Is difficult to decide whether an algorithm has done a good job of’

characterizing difficult data or whether the algorithm has

misinterpreted that data.

We have adopted the goal of image segmentation to be the

decomposition of an image into visually distinct regions, that is, -
‘

regions which have relatively uniform visual properties of intensity, 
—

color , texture , etc . One of the algorithms whose results will be

presented demands, for each region produced , unimodality in the

features used in the segmentatton. However, we wil.l show that this

does not ensure the proper partitioning of an image , due to problems

such as overlap of the feature distributions of adjacent target

regions.

In order to avoid many of the problems cited , we have chosen to

bypass the objective evaluation of’ the segmentation of natural

scenes —— although we will apply the algorithms and subjectively

evaluate the results. On the other hand , the application of the

algorithms to machine—generated test data is more likely to lead to

Insights into the capabilities and limitations of the algorithm. Here,

“ground truth” is available, and consequently, the results are amenable

to evaluation as well. The algorithms developed in this thesis will be

applied to both machine—generated test images and natural scenes.

-5 - ~~~~~~~~~~~~ -‘-
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1.2 The Processing Cone

There Is a serious problem of data overload Lncurred by the

necess ity of repeatedly processing images on the order of’ 256x256

pixel s to 10211x10211 pixels. Consequently, a commitment was made t.o the

development of parallel algorithm s within the VISIONS processing cone

structure (HAN7II ,UHR72,TAN75]. wherever possible.

The function of the processing cone Is the transformation and

reduction of the massive amount of image data via local parallel

processing, while at the same time providing a hierarchical structure

in which information at coarser levels of data resolution can direct

more detailed processing of data at finer levels of resolution . ThIs

use of “planning ” tKEL71, NAG77 , PR177) can significantly reduce the

actual amount of computation which must be performed during the

analysis of an image .

1.3 Segmentations Based on Regions and on Edges/Boundaries

The segmentation processes uaed in the VISIONS image understanding

sys t em are based on compl ementary techniques. The primary technique

discussed here groups individual pixel s on the basis of their relative

similarity with their neighbors. The resulting collections of labelled

- 

- 

pixel s exhibit uniformity over the characteristics wi th which the y are

‘VISIONS st and s for: Visual Integration by Semantic Interpretation of’
— Natural Scenes.
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aggregated ; such collections are referred to as regions. Boundaries

may be produced by differentiating with respect to region labels.

The second process makes use of the local differences which exist

between pixel s in order to form local edges; these edges are then

grouped into boundary segments EHAN78] . Regions may be formed by

labelling those pixels which are entirely enclosed by a collection of

boundary segments.

There is no a—priori reason to assume that the boundaries (or

regions) produced by these disparate processes will coincide , either in

terms of their physical placement within the image or in terms of’ the

characteristics of the pixels grouped by them. The merging of the

region and boundary outputs is currently under investigation [K0H79].

1.4 Some Basic Terminology and Paradigms

Let us briefly define a few of the more frequently used terms and

transformations that are used in image processing . First, the data

itself must be defined . For our purposes , an image consists of a

discrete sempling of sensory data into a two—dimensional spatial array

of cells called picture elements or pixels. In addition , each pixel is

quantized to a discrete range of gray levels. The transformation from

the real world scene to its digital representation is referred to as L
~~~~~~~~~~ and is accomplished via a scanning device and an

analog—to—digital converter. Typically, a digitized image contains on

the order of 512x5l2 pixels or 256x256 pixels, with each pixel

~
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quantized to 6 or 8 bits (128 or 256 gray levels) .

The digitization of’ a scene may be restricted to the black and

white intensity Information in the scene. However , c lor information

can be obtained through the use of’ l ight filtration during -~canning .

In the latter case , the scene is usually scanned three times , one each

through red , green , and blue (RGB) filters. Notice that ~i typi cal

image contains a staggering amount of Information :

5l2x512 pixel s x 3 colors x 8 bits per pixel :
6 million bits per image

• A feature Is a property that is useful In discr~m1natIng

“elements” of in image, such as objects , sur faces, an-I regions. Any

transformat ion of’ the raw data may be thought of as -neasuring some

- 
- feature , although some transformations are more useful thar others.

For instance , in the domain of outdoor scenes , color ( hue ) is F use ful

feature for discriminating sky from grass , while black and white

intensity might not distinguish those two objects.

A feature need not be computed solely at the level of in5iividual

pixels . For instance , edge operators typically involve convolution of

• an edge mask with the image: thus , a neighborhood around each pixel is

employed . Moreover , it is sometimes useful to compute features across

pred efined regions in the image , or indeed across the entire image

itself (e.g. the average brightness level of the scene).

Notice that preprocessing may be thought of’ as a special kind -~f

feature extraction that “prepares” the image for further feature

analysis. For example , when an image is digitized, the scanner

S - ‘ r:~~~~ - ——-‘ -~~~~~~~~~~~~~~ - -—‘-‘- —
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Sometimes measures the intensity val ue across a boundary between

objects . In such a case , the gray level that is record ed is a hybrid

value , since it represents the average intensity of two distinct

“areas”. Algorithm s have been designed which detect and correct these

“mixed” pixels. The appl ication of such an algorithm is a form of

preprocessing , since it is applied to the raw data and logically

precedes any other image transformation . It is also feature extraction

since its application tend s to enhance boundaries.

Once the image has been digitized and a set of features has been

computed , the next step in image analysis is to aggregate the data Into

units that have similar features . For instance , the analysis may use

edge contrast as a feature to be measured at each pixel , but the

aggr~gation of edges into lines may be the ultimate goal . Furthermore ,

l ine formation could be controlled by local geometric factors such as

continuity and linearity. The latter are meta—features, properties of

the array of feature values of edges, and only indirectly the

properties of the array of pixels. Similarly, a region analysis

system , using hue as a feature , might have a region of similar hues as

the ultimate goal. When the aggregation process is completed and all

pixel s have been assigned to a labelled unit —— a region or a line ——
the resulting partition is referred to as a segmentation.

Let us look a little more closely into the process of forming

regions. Region analysis may be controlled by local factors such as

pixel adjacency and local feature similarity, but these are often

insufficient in the formation of regions that are meaning ful in a

L _ _ _ _ _ _ _ _ _
-‘-~-
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larger context.  Thus , region analysis often incorporates global

measures of feature similarity to group pixels .

One technique of measuring global feature similar ity involves the

use of histograms, or frequency distributions of t ray levels . For

ins tance, the hue—histogram (i.e. the feature space of hue values ) of

an Image that contains green trees and blue sky may be bi—moda l , s i n c e

it is the union  of two distributions wi th strongly separated means.

Now, if’ one assumes in general that an image will have some feature

histogram that has as many distinct modes as distinct objects , then one

may attempt to extract  those objects indirect ly by isolating the nodes

in the  d i s t ri b u t i o n, wh ich then identifies the corresponding resion s in

the Image. Thus, region analysis can be transformed into a statistical

c lassification problem and make use of’ discriminant function s or

cluster analys is. Isolating histogram modes is analogous to the

problem of finding an optimal decision surface ( hyperspace) in feature

space.

Let us br iefl y ment ion that , in practice , region analysis via such

mechanisms of pattern classification is highly prone to error . The

reason for this is that the feature distributions of the objects to be

classified tend to overlap to varying degrees. Indeed , some clusters

may be complete ly  obscured by others, so that  there may be fe we r

clusters than objects. Thus, the class ificat ion processes will

necessarily be incomplete , wi th the e ffect tha . some pixel s will be

erroneousl y grouped.

Recovery from classification errors has been a major focus Df this

- 
- i_ .
1- c _________I 
_ _ _  
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thesis. It will be shown that a class of transformations known as

relaxation labelling processes (RLPs) can be helpfu l in error recovery.

Briefly stated , RLPs use neighborhood information around each pixel and

image—specific statistics to correct pixel classifications. Thus local

information can be used to correct errors introduced by global

classification.

1.5 Summary of Remaining Chapters

F
The remainder of this thesis is organized as follows . Chapter 2

reviews the major work done by other researchers in the f ield of region

analysis. The discussion covers three kinds of approaches:

locally—based algorithms using pixel—by—pixel merging , globally—based

algorithms using cluster discrimination in feature space , and our type

of hybrid system where correction of globally—induced errors via local

spatial analysis can be performed .

Chapter 3 is a detailed ex ploration of histogram—based region

analysis. Three problems induced by cluster overlap in histograms will

be demonstrated via a series of simple test images. Possible solutions

to the problems are presented .

Chapter 4 presents a more complex segmentation algorithm that is

shown to improve the histogram—based technique by adding a re1a~cation

labelling process (RLP). The RLP uses three kind s of information to

obtain an improved pixel classification or labelling :

(1) probabilistic cluster affiliation is introduced ,

.5--.-.-— ——--5— -- — —
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(2) neighborhood information is used to conditi3n the

probability of a pixel belonging to a class , and

( 3 )  image—wide statist ics, called compability 2oefficients ,

are used to preserve fine detail whilo al1ow1 n~ “noise—

classification s” to be suppressed .

The augmented algorithm is demonstrated using artificial jnd na tura l

data. In the latter case , attention is given to the use of

opponent—color feature spaces to improve the segmentations.

Chapter 5 presents a series of test images that refute some of the

positive resu l ts of the previous chapter . It is shown that the

relaxation technique cannot be relied upon for recovery from errors

that are due to cluster overlap. Moreover , th~ compatibil ity

statistics are shown to be inadequate to preserve certain image

structures.

Chapter 6 proposes a solution to the above problems via

“intermediate localization” whereby the imag e is artificially broken

into small sub—images which are independently analyzed and then later

merged . The use of sub—images reveal s clusters that may be hidden in

the global image—wide histograms. It also allows the compatibility

coe fficients to better repre sent local image structure without being

diluted by global effects . This formulation of the segmentation

algorithm yields dramatically improved results when applied to the test

images and the natural scene.

Finally, Chapter 7 summari zes the research , outlines the

contributions , and proposes improvements to the current work.

ii
—
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C H A P T E R  II

BACKGROUND

The computer analysis of two—dimensional images , known as

segmentation , image processing , low—level image analysis , and region

format ion , has been under investigation for over 10 years. During this

t ime , nLznerous general—purpose and applications—oriented systems have

evolved . The goal of this chapter is to define some of the basic

techniques and review some of the more general—purpo se systems that

have been developed .

For the following discussion , let us divide the region

segmentation techniques into three broad categories as in [R1S77,

KAN78 ]:

(1) Locally—based ( bottom—up) : systems that use

local spatial criteria to build regions directly from pixels

- 

- 

or other primitive elements.

(2) Globally—based ( top—down ) : systems that use global

spectral criteria to split regions into primitive elements.

(3) Hybrid (top—down with local refinement): system s that

use global criteria to obtain an approx imate segmentation ,

and then apply local criteria to obtain a refined result.

11.1 Local Region Analysis

Local region analysis involves any or all of the following steps:

12
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formation of atom i~’ regions (pr imit ive elements~~, syn tac t i c  mergtn~ of

regions, and semantic merg ing of regions. The simplest de fini t ton of

an atomic region is that it consists of p ixe ls  that are ( 1) sNit t.ilIv

contiguous , and ( .~~ the d if ference in featur e value bet ween any

adjacent pair of pixels is less than some theshold. A group ‘f rt~~e I s

that satisfy these condition s is given a unt~~ue region l abel.

The threshold for pixel merg ing may he l~ a fixed const ;int t hat

is Ind ependent of’ any informat ion in t he image , U’ -~ fixed const ant

that Is dependent on some global , image—spec it’ic me~ stir~’ment • e . g .  the

standard deviation from the mean gray levcl , or (
~~ ~ var ia ble whose

value depends on information in a lcca~ area around a pixe l .

Brice and Fennema 1RR170 1 developed a strategy which f irst formed

atomic region s accord ing t o  the most ‘onse rvat ive criterion possib le ,

namely, that adjacent pixe ls may be merged in t o  the same regions ~1’

their gray leve ls are Ident ical . Next - , region merg i ng .‘ r t t e r t a  i re

appl ied based on the “weakness” of’ reg ion boundaries . ~- T h e c i f 1 e a l l V .

reg ion pairs are merged if a suf f ic ient ly large port ion of their  common

boundary has a sufficiently low gray l,vel difference .

Barrow and Popplestone IRA R71 1 used a sl ight v .iriant of ’ the

techn ique of’ Rrice and Fenema t o  segment regions th a t -  we re la te r

analyzed via pr imi t ive  templat e matching . At omic  regions are f’orm ed 1’

merging adjacent pairs of p ixel s t hat are wi th in  a smal l range of ’

brightness values (unlike flrice and Fe nenia who required a ~ero range” .

Bo txidary and region differences are then used to met’ge large regions.

A feature vector is constructed for each reg ion and these are matched

-~~~~~ 
_  _ _ _ _ _
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against models of the known objects. Success of this system is

strongly dependent on the small number and simplicity of the objects

that are used .

Kelly (KEL 7O] developed a specialist system for distinguishing

pictures of people . The program use s “pl anning” to recognize faces in

a hierarchical , goal—oriented fashion . Thus, obvious features such as

the head are searched for first , then the eye s, mouth , etc . In

a d d i ti o n , the image is reduced by averaging 8x8 non—overlapping windows

across the image. The coarsened image allows the program to do

searching and backup wi thout a significant time penalty. The smoothed

picture also eliminates digitization noise that might otherwise

interfere wi th the recognition process .

Feldman and Yakimov sky (FEL73] utilized semantic Information in a

decision—theoretic appr oach to scene segmentation . The information

includes properties of’ the boundaries between regions (e.g., how like~ y

is the adjacency of two regions) and properties of the regions

themselves (color , shape , etc .) .  After initial clustering of picture

points to form regions , a decis ion—tree analysis is used to f’urth’~r

join and then identify regions according to a maximum likelihood

analysis based on these properties. For more complex environments , we

feel that the a—prior i conditional probability of a feature given a

region cannot be reliably estimated (usually the number of samples is

very small) and changes drastically with respect to a different context

and over time . Thus, it is becoming apparent that the inclusion of

more complex semantic information is necessary; furthermore , the

J

- 
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nature of this information must be such that it can be utilized in a

highly flex ible manner .

TenenbaLin and Barrow (TEN76 ] demonstrated that the interactive

human semantic labelling of regions can be used to block most erroneous

merges made by nonsemantic rules. They interactively supply label s of

Identities to initial conservatively formed atomic regions whose size

is greater than some threshold t. Then, an attempted merger of two

regions with differing labels can be blocked , while the merger of an

unlabelled region wi th a labeled region will interit the ava ilab le

label , and finally the merger of two unlabelled regions will remain

unlabelled . For those unlabelled regions that grow larger than t , the

human again supplies the proper label. For a simple office scene and

outdoor scene, the final results are quite reasonable when is set so

that about 20 regions are labeled during this process.

This approach led Tenebaum and Barrow to employ a generalization

of Waltz’s [WAL75 ) constraint—satisfaction approach on the region

labels. Constraint satisfaction can be viewed as a special type of

relaxation procedure where relationships between labels in a local

context can be used to eliminate some of the alternative labels. They

extend the semantic region merging process by alternating this merging

process with the propagation of semantic constraints on the identity

lthels. For this approach to be automated it requires the initial

labelling of all elementary regions (even individual picture elements!)

and the specification of computationally effective procedures to

extract the semantic relationships between regions.

15.
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However , the degree to which one can satisfactorily label the

possible interpretations of a small section of an object on the basis

of purely local information is still uncertain; with a large num ber of’

possible objects this problem may be serious. The authors demonstrate

ex ampl es wi th this labelling supplied manually or directed via

predefined geometric models. The results are quite interesting , but

the extensibility of this approach to automatic segmentation of general

scenes seems to be quite difficult. Discussion of these problems is

presented in a bit more detail in Ri seman and Arbib (R1S77] .

Freuder (FRE76 ] provided an interesting variation to the region

merg ing process by grouping those regions which are relatively more

similar to each other than to other regions. This is continued and a

tree of regions Is constructed up to a single region over the scene.

This whole structure would be passed to a global semantic processor

which must extract the relevant information for different parts of’ the

picture from nodes of the tree at varying levels of’ grouping .

Potentially this can be a powerful and flex ible way to present

information to semantic processes. However, it seems that the tree

should be greatly pruned prior to semantic processing if it is to be

useful. This leads to difficult questions concerning texture that

remain to be solved If this is to be a viable approach.

Chen and Pavl idis (CHE78I used a split—and—merge algorithm and a

co—occurrence matrix to segment based on textural differences of

regions. Their system uses a layered , parallel cone structure

(UHR73,HAN7It) to store and manipulate images. The bottom level of’ the

A -
~
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cone (or quadratic picture tree as they refer to it) correspond s to

individual pixel s, while the highest level (root node) represents the

entire picture . Each node has four children correspond i flg to its four

subsets. Regions identified at any level of the tree carl be split into

subregions or merged into super—regions depending on som-’ criteria.

In the system designed by Chen and Pavlidi s , the criteria for

split/merge is a gray level co—occurrence matrix [HAR78 , HAN75, RIS7T].

The (i ,j) entry In the matrix represents the probability that pixe ls

with gray levels i and j  co—occur at some distance d apart and some

orientation theta with respect to each other. Thus, off—diagonal

elements may represent local microtexture. The system merges the f’our

Subsets of a node if their matrices are not too different. Otherwise ,

the subsets are left alone and the node is split.

11.2 Global Regions Anal ysis

This class of approaches is based on the premise that the global

distribution of feature activity in a scene contains sufficient

information for segmentation of major areas. If two regions have a

distinct difference in intensity (or any other measurable featue), one

would expect the intensity histogram to form major peaks (or clusters)

about their respective means.

One of the earliest uses of histogram thresholding was by Prewi t.t

and Mendel son (PRE66]. Their technique consists of’ finding valleys

(antimodes) in histograms of white blood cells. Once the valleys are

L~

1
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found , each pixel in the image can be labelled according to which one

of the peaks that its intensity val ue belongs to. Then, simpl e region

growi ng can be applied so that adjacent pixel s with the same mode—label

can be given the same region label . Tsuji and Tomita fT5U73] extended

the mode selection idea to multiple features which are computed locally

for the purpose of analyzing textures drawn on block surfaces.

Ohlander (0HL75) developed a technique of recursively partitioning

an image by setting thresholds at valleys of lD histograms of various

features. The first partition forms around the clearest peak in any

histogram; then , the associated points in the image are flagged and

adjacent points wi th the same label are merged into a region by growing

on the syinboli-’ labels. These regions are smoothed by blurring , and

each of’ these distinct regions forms the basis for further analysis by

histograms. A reg ion is kept intact only when it is unimodal in all

histograms employed . In order for this process to work , Oblander

subtracts out “busy areas ” of texture and smaller detail by using a

measure of the amount of edge in each local area. These areas are

processed by different techniques including the blurring operation

previously mentioned .

Despite the obvious effectiveness of this procedure in some cases,

there are several deficiencies wi th this type of histogram analysis.

Often the peaks and cluster widths of typical histograms are not so

clear. A more serious problem , though , is that different objects can

partially overlap distributions of other objects in one or all of the

features. This can cause peaks and valleys to appear and 

-~~ A - - ~~~~~~~~~~ 
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disappear—...and shift——if the particular combination of objects is

varied , despite the possibility that all of the objects appear visually

distinct to the human observer.

In general , one can hope that the sequential determination of the

largest regions can be used to continually subtract away the data which

obscures the presence of less noticeable peaks in the global feature

histogram. Howver , the q u a l i t y  of this a l g o r i t h m  seems to be subject

to an arbitrary condition, namely the particular mix of regions being

examined . (See Figure 11.1 and 11.2 on recursive analysis.) This

problem would probably be reduced if the image were broken in to  smal ler

aeas; this can be thought of as a foveal window ;~here the system

initially focuses in a directed manner upon a subarea of’ the entire

scene in far more detail. Similarly, the peaks would have less chance

of being obscured if multidimensional histograms we re employed

• - (although then the detection of peaks and clusters is less

straightforward).

But there Is still a more significant drawback that must be

overcome; that is the lack of information on the spatial relationships

of the features being examined . On the basis of a global histogram

analysis, one cannot determine the difference between a red area

bordering a yellow area and red polka dots within a yellow area——they

can produce identical histograms and the difference in structure is not

seen.

Price 1PR177 ) improved upon the segmentation syste n of Oblander

and added new work on change detection . His techniqu~ s dram at i c a l l y

-z
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Fjgure 11.1 Recursive Segmentation — Successful: A Recursive analysis may
be necessary when the distributions of objects overlap and
Individual peaks are observed.
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reduced segmenta ion t ime mainly through the use of a “reduced ” image.

Thus, the input  d~ta which may have been scanned ~~ a resolution c’f

‘— ‘ .‘x’-’l ,~ pixels is transformed Into a coarsened “plan ” (KEL71 , NAG77)

that consists of perhaps L~8x128 pixe ls . For instance , a plan n a y  he —

obtained by computing the “average” pixel value In ~~~~~~~ or L4 x ~

non—t~verlapping windows computed across the image . Although this

technique of~
’ers an obvious speedup for further segmentation processes .

it has the disadvantage of’ blurring boundaries and creating hybrid

values in te~tured areas.

Coleman [C0L77 J defined the problem of’ region segmentation as

unsuperv ised clustering and feature selection in n—dimensional feature

space . The est num ber of’ clusters in the feature space (i.e.. the

number of region type s in the image to be partitioned ) is defined as

one that giv ‘s the maxim um of the ratio of between—cluster scatter and

withjn_clustar scatter . The usefulness of’ a feature is defined by the

average of Piatacharyy a distances between pairs of clusters. The

features wh tch have the least power In di scr iminat ing clusters are

d iscarded an- ) the segnentation which yields the “best number of

reg ions ” Is lought .

Several techn iques developed in relation to the use of histograms

should be b~ ief1y mentioned . When the size s of the target regions are

very differe-it and their features are somewhat- similar , the peak

corrsponding to a bigger region tends to hide the peak correspond ing t~

a smaller on!. The resiltant histogram may not demonstrate a clear

bimodality. One useful technique to overcome this difficulty i~ t~
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compute the hist ogram only for those pixel s near the boundary of the

regions (WE~7~4]. First the spatial deriva tive (say, Laplacian ) of’ the

image intensity is computed . Then only tho:~e pixels which have a high

derivative value are histogrammed . The differential histagram by

Watanabe (WA174] Is another useful method to calculate an appropriate

threshold level . A survey of threshold selection techniques can he

found in EW~~78 ,KOH79].

11.3 Hybrid Sys tems

Local approaches to region analysis have the drawb ac k that they

tend to generate regions that are either “under— grown” or

“over—merged .” Textured areas tend to be broken into many fragments ,

while areas that are for the most part separable , but have a few weak

( low contrast) boundary points , can leak together to form large

regions.

The global approaches often obtain good initial segmentations but

lack spatial sensitivity to generate highly accurate results. Thus, it

seems natural to try to combine the two approaches so that local

analysis can correct obv ious mistakes of the global analysis.

The simplest remedy is to add a post—processing phase to the

histogram—based segmentation. For example , if’ most of the neig hbors of

pixel P have been labeled as C, then P itself is reclassified as label

C. This type of post—processing , called plurality relax ation (see

Chapter ~4 ) ,  has been used in remote sensing applications. For ex a m p l e ,

— i.’- — .-—- --5 — -— —•~ ~.



the fact that a “wheat” pixel will not appear in the middle of’ the

“corn” field seems to justify this technique . A slightly modified

method Involves the use of’ a “conservative ” threshold [NAG77J. The

classification of the pixels having feature value s near the threshold

(or boundary of’ the discriminant surface) is delayed , and those pixel s

are classified according to the label s of the neighbors.

A generalization of this approach is the use of’ relaxation

labelling processes [R0S76 , Z11C78, Chapter ~4 ] .  First , Instead of’

assigning a single label to each pixel , the probability p that F

belongs to class C is estimated via the distribution of image fea ture

val ues. Then, these probabilities are adjusted using some relax ation

formula:

p 1(fl) 
— F (p~ (n—1) ,(q~(n_1) I ~ is a neighbor of P 1)

which means that p1 is revised Iteratively using the previous value s of’

its own and of’ the neighboring pixels. Eklundh [EKL78) and NaRin

ENAG 78) have applied the relaxation technique to natural scenes and

were able to show an improvement over the Initial classif ication of the

imag.~ pixels.
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C H A P T E R  I I I

SEGMENTATION USING HISTOGRAMS

Feature histograms of an image have been well—established in

pattern recognition and scene analysis [PRE6 Ô , 0HL75, ROS76 ] as a

fruitful representation to aid in region detection . A histogram of two

visually discriminable objects should reveal two peaks (or c lusters)

that represent the distribution of gray levels for the objects. To

generate  a segmentat ion , it is simpl y a matter of isolating the

clusters  and then dividing the image pixel s into classes according to

the cluster with which they are associated .

This technique —— feature clustering and pixel labelling —— will

be referred to as a global segmentation algorithm because the his to~. ram

is counted across the entire image wi thout regard to the location of

any particular pixel . This class of algorithms has been explored and

develope d by many researchers and , considering its simplicity, has  met

wi th reasonable success even when applied to complex natural images.

There is , however , a serious fault wi th the techniq~2e , namel y the

difficulty of completely isolating the distributions of objects via the

histogram representation . This will be referred to as the “cluster

overlap” problem . In the remainder of this ~êction we discuss three

kinds of’ segmentation errors caused by cluster -overlap : overmergij~~.

fr agmentation, and thin—object fragmentation. The discussions are

illust rated by a series of computer—generated test images (“ cases”)

which demonstrate particular problems.

25
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111. 1 No ta t ion

The use of histograms for scene labelling is a two—step process

that maps objects In scenes into histogram clusters and then maps the

cluster labels to segmented regions (Figure III.O). As will be shown ,

there may not be a 1— 1 correspondence between objects and region s —— a

region may contain or be contained within an object. Thus, for

exampl e , reg ion R2 may not refe r to object 02. In the tex t that

follows it would not be illuminating to refer to regions by number;

rather they will be referred to by the label of the cluster that the

pixel s within the region map into. Moreover , region s may be further

specified by a number that ind icates the object space from which they

have been generated . In Figure III.O, RB2 Is the label of the region

generated by cluster and which is conta ined within the space

occupied by object 02 . Unless otherwise stated , objects in the test

images are -assumed to have normal distributions wi th random spatial

placement of the features values in the distribution . Sometimes the

distribution of feature values will be correlated with the spatial

position wi thin the region representing the object.

111.2 Overmerglng

The fir st. kind of segmentation error that will be discussed

results whenever the histogram of an image does not reveal as many

peaks as there are distinguishable objects . In this event , pixels 

- 
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comprising objects with visually distinct appearance wi l l  be labelled

with the same sym bol. One way for this to occur is when two ~hjects

have fairly close means. In this case , the distribution of the objects

will sum and may not be detectable as separate peaks . Another

possibility Is when the distribution of a small object- does not

generate a detectable peak In the overall histogram .

The image in Case 1 (Figure 111.1) contains three objects labelled

O
i. 02. and O .~. To a human observer , this image presen~-s a rather

trivial image processing task , since each object- is cil early

characterized by a unique average brightness level (~i~~:2O , l’ 1~~1O ,

P

~~

5O , 
~~~~ 

= 
~~~~ ~). However , the histogram comput ed across the

sc~ ne shows only two distinct clusters , labelled CA and C1~, 
because th e

variance , prox imity of means , and size of’ 02 masks the c ’1u~ ter of O - .

Thus , the information in the global feature space consists of two

di’crjmjnable classes. A schematic view of the information in the

diagram Is shown in Figure III. lc. Here , It  is ev iden t  that  the

histogram i,s ac t ually composed of three distinct distribut .ions;

however only two distinct clusters are reveale due ~o the combined

effects mentioned above.

Notice that the left side of cluster tI has a slight shoulder ,

which is the only global ind ic ation that there is th irl di stribut i on .

Let us assume that the shoulder is not- detectable ~s ~ par ate

cluster. The region c lass i f i ca t io n  t h:d res~ilt 5s Crom only two

c lu s t e r s, CA and C~ , (Figure 111 . id) contains only two -li st - m et t ypes

of regions , RA and R,~. However , since objec t . ;‘ and ohj.’ct happen t o  
- I
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be spatially separated in the image by an object in a different. class , 
—

the segmentation may be considered to be successful. The two regions

label led R are spatially disjoint and , therefore , can be given unique

region labels. In this ca se , the region labels R B2 and RB3 r e f e r  to

the objects to which they correspond .

Now consider Case 2 (Figure 111.2) which is idenf’tcal to Case 1

except that objects 2 and 3 are now spatially adjacent. Here , not only

does the histogram confuse the distribution s of objects 2 and 3, but

the resulting segmentation leaves them merged , yielding a very poor

result. Thus region R8 is overmerged with respect to the underlying

objects. We conclude that a chatige in object location will affect the

quality of’ the global segmentation analysis.

111.3 Gross FragmentatIon

Let us consider a different type of error. It is Incorrect to

assume that the histogram of an image will either completely reveal a

cluster or completely hide it. In fact, clusters can overlap to any

degree. Fragmentation occurs whenever there is partial cluster overlap

of distinct peaks and mani fests itself as mislabelled pixels. The

impact of f’ragmentat.ion depends both on the degree of’ overlap of

feature clusters as well as the spatial organization of the pixel s

involved . There is an obvious correlation of the percentage of overlap

and the percentage of mislabelled pixel s in an optimal Ra ye sian

classifier (DUD73I. If the intensity val ues in an object are

L - - L --~~- --~~~~~~~~~ -~~~~~~~~ 
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(a)  Image w i t h  3 distinct objects,
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~0 ~ ~~—.intensity

(b) Global histogram reveals (c) Schematic histogram shows (he
onl y 2 clusters, location and relative height

of the object means.

(a) Segmentation into 2 cluster
t types and 2 regions. Object

2 and object 3 have been
segmented as 1 region .

Figure 111.2 Case 2, Overmetging — Second Example: In the example, objec ts
2 and 3 are erroneously merged into a single region.
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uncor rela ted , then the mislabelled pixel s will be randonly d istributed

across the region s Involved . However , if’ the pixels are spatial ly

correlated , as in the case of a non—zero feature gradient across a

region , then the mislabelled pixel s will themselves be correlated and ,

in fact, may form a viable region .

Case 3 (Figure 111.3) illustrates a situation in which the

distribution s of all of the objects overlap to a certain degree . The

result ing segmentat ion appears “no isy” with the mislabel led pixel s in

each region randomly located . Let us care f’ul]y examine the

segmentation of object 3. First , as in the previous two examples ,

there is no cluster in feature space that un i quely d iscriminates it

from the other objects. In this respect , the (‘luster labels that. map

onto the image location occupied by that object- are not unique —— 03 15

thus prone to overmerg ing with an adjacent region (although in t.his

exampl e it is not).

Second , since the distribution of Is hidden wi thin two

identified clusters, the classification of’ its pixels is guaranteed to

consist of some mixture of two label types , neither of which prov ides a

reasonable representation of’ the object. In this example , the mixture

is such that 20% of the pi x els are labelled by cluster A and 80% are

labelled by cluster B. One might say therefore , t ha t , at  best , there

is a 20% error rate in the labelling of ~~~ region . Fortunately, in

this case , the fragmentation of 03 into 2 cluster types his the

desirable property that the minority cluster type ( CA ) maps into random

locations across the image space occupi ed by the object. For this

. i
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_________ 
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(b) Global histogram reveals (c) Schematic histogram..~ overlapped clusters.

R~ 3

______________________R
A

R
82 

.

(51) Al l  regions disp lay e r roneous ly
labelled pixels. RgJ  is
particularly fragmented since
the mean of 03 is hidden between
two identified clusters.

t - ~,jg ~~ e 111.3 Ca~~~~3, F ragmentat ion  — Firs t Example: When clus ters over lap
Ihe resulting segmentations appear “noisy ” because the regions
con tain  m islabelled pixels, Since they are labelled by the
siame cluster . R82 and 

~B3 
would have heel) overmerged if they

siad happened to be spatially adlacent as in Figure 111.2.
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reason , it may be possible , in a post—processing step, to recover the

object by suppressing one and two pixel “regions” into the lom i nant

region surrounding them , or to use some other sort of smoothiig into

large regions..
, 1

Now let us consider a slightly different image in which obJect 3

contains a piecewise linear intensity change across it (Case 4 . Fi gure

111.4) . Object 3 has the followi ng characteristics. First , i t s  mean

and variance are the same as they were in all of the previous examples

—— thus , globally it has the same signature as before , wi th the same

contribution to the global histogram . However , locally, the object

consists of a series of bands: starting at the top , each row has  a

sl ightly lower mean intensity than the one above it , until the middle 
J

of the object is reached . At that point , the means gradually increase ,

row by row , in the same manner. The image was contrived so Uat most

of the pixel s in 03 coincide wi th the left tail of the distribution of

02 . However , the pixel s in the center band lie just inside the right

tat]. of the distribution of Oi.

Once the clusters have been determined and the image pixel s

labelled, it is apparent that in addition to the randomly located - 
-

errors , there is a connected set of err ors at the center of object 3.

This set of’ errors , in  f ac t , form s a region that is just as viable ,

i.e. Impervious to post—processing clean—up, as the two other major

regions. Thus , object  3 has been fragmented Into two regions even

though the imag e does not contain an edge between thos’~ regions.

i~I~ -~
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111 .4 Thin Object nta on

Next consider another instance of fragmentat ion , namely, w~en

there are thin objects present in the scene. For our treatment- here ,

structures wil l  be considered thin if they ire one or two p i xe ls  w i d e .

Ca~~ ~ (Figure 111.5)  ShUWS i cross—shaped object running througt - a

bac kground , and a h i s togram reveals  a small degree of overlap b e t w - e n

the object and the background. The effect of this overlap, as has h c n

shown previously in section 111.3, is to generate some mislabelled

pixel s that are randomly located across the regions. However , the

mislabelled pixels that occur within the cross have the effect- ~~

breaking it into small disconnected pieces. In this examp le , the

Single cross object is fragmented into 18 disjoint pieces ( 18 regions) ,

and recovery of the underlying object via post- — processing may be v r y

difficult. In fact , the one— or two—pixel suppression scheme mt-’nt-Iot ed

above in the discussion of Case 3 might suppress some of the fragment od

regions of the cross , thus making recovery even more d i f f i cu l t .

111.5 Conclusion

This chapter has explored three types of segmentation errors that

can result from cluster overlap in global feature histograms. These

errors —— overmerging , fragmentation , and thin line fragmentation — —

were shown to exist even in very simple , c learly  structured test-

Images. Their effect on noisy, mul t i—class natur~l images par t)y
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explains why segmentations often appear ragged and unac- ’epta ble.

Ov ermerg i ng and both kind s of fragmentation all have their crig in

in cluster overlap. Ov er-merg ing may or may not manifest its el f

depending on the spatial arrangement of objects in an image —— which

is , in general , arbitrary. Fragmentation , however , wil l alwa ys

manifest itself as mislabelled pixels. If the original data is

uncorrelated spatially, and if the deg ree of overlap of the clusters

involved is not too great , then recovery from fragmentat ion is possible

by means of’ simpl e post—processing clean—up. But , if the converse :s

true , that Is if the image pixels are spatially correlated (Case 4 1) , Ir

if the overlap is large enough , then the ef fect  of fragmentation is to

create large error regions. Moreover , if’ any of the ob,iects are t-h~n

(Case 5)  then fragmentation Is much more serious.

We conclud e by briefly exploring possible so ” utions to t } e

problem s discussed . Overmerging , when it involves entire regions

(i.e., when It does not also involve fragmentation) is relatively easy,

although costl y to cvercome. The solution proposed by flhlander [0HL75 1

is to recursively decompose each region —— starting wi th the entire

image — — until a stopping criterion Is reached (refe r to Figure II. 1

and 11.2). The criterion for region decom position (splitting ) is that

a histogram of some feature is multi—modal . Thus, when all region s are

unjmodal in all features , the segmentation is complete. Fortun ately,

in practice , very few decom position steps (usually only one or two

appear to be necessary for any given region .

The solution to the problem of fragmentation Is compl ementary to

— - -,-— - ‘- - ~__4j~~j~
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the solution proposed for overmerging . Instead of attempting to

- - decompose regions into sub—regions , it is desirable to merge regions

that were erroneousl y split . Recall that the ef fect  of fra gment at ion

is to break an object Into two or more regions even though no edge

exists locally between the regions. One recovery technique is to

examine the combined distribution for each pair of adjacent regions.

If the distribution of some region pair is detectably multimodal , the

boundary between them would remain intact. If , however , the combined

distribution appears to be unimodal , then one may assume that the two

regions are actually derived from one object and the boundary bet ween

them is remov ed . In a later chapter , a precise renlerging statistic

will be discussed .

Recovery from thin—line fragmentation is not oily costly but

extremely difficult. The remerging criterion above is inapplicable

since the region fragments are not adjacent in the imuge. It seems

unreasonably expensive and ill—defined to apply the rem”rging statistic

to the rather large class of region pairs that are “alrlost adjacent.”

What is required is a local algorithm that can recogrv’ ze what appears

to be a significant local structure , e.g., a line , and which can induce

pixel s that are in the range of this structure to gravitate towards

membership . It is in this spirit that the relaxation labelling process

discussed in the next chapter has been defined .

, ~~~~~~~~ ~~~~~~~~~~~~~~~~ —
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C H A P T E R  IV

SEGMENTATION USING GLOBAL HISTOGRAMS AND ITERATIVE UPDATE

The previous chapter explored three kinds of errors that can arise

from the global “feature—cluster/pixel—label” technique . These I
errors——overmerging , fragmentation , and thin line fragmentation—— can

all be traced to the problem of cluster overlap. Cluster overlap, in

turn , can be traced to an inadequancy of the histogram representation ,

that is , the lack of spatial information .

The focus of this chapter is on algorithms which can correct some

of the errors that are introduced by the global technique . In

particular , we will explore different fo rms of’ relaxation labelling

processes (RLP ’s) that incor porate , wi th v arying degrees of

sophistication, contextual (i.e.,  spatial) information associated with

F each pixel . It will be shown that in many cases, given a

first—approx imation to pixel classification , neighborhood information

can be man~pulated to successfully correct errors. Figure IV .1

summarizes the segmentation algorithm that will be explored in this

chapter.

P/. 1 Relaxation Labelling Processes

The general fo rmulation of a probabilistic RLP requires the

specification of a set of probabilities representing the degree of

“class ” member ship to be associated with each “object” ~n some network .

40
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Compute a feature
histogr am

Extract significan t
peaks in feature

space

Assign to each pixel
an n—tup le of proba-
bilities indicating
cluster membership

Update the probability
vectors using a relaxa-
tion labelling process

Suppress very small
regions to improve the
appearance of the final
segmentation and reduce
the total number of

regions

_ _ _ _

Figure IV . Summa ry of the Liobal s~~ menta l ion al j~~r iLh : f l  w I lii
i t er a t i v e  update tn a r elaxat , ion I 1inj~ pro t ’esil .
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IFor our pur poses , the classes correspond to clusters detected in

feature space and the objects correspond to the pixels in the image.

At each iteration , the probab il it ies of c luster mem bersh ip assoc iated

with each pixel are adjusted according to the degree of support

received from the probabilities at neighboring pixels. The adjustment

or updating process is iterated with the ex pectation that there will be

a marked reduction in the ambiguity of the initial classifications.

Let us examine two important characteristics of relaxation before

giving the formal definitions of the process . First , there is the use

of probabilities to ind icate cluster affiliation. Recall that the

histogram clustering technique exp lored in the previous chapter

generated a discrete label indicating the cluster affiliation for each

pixel . This label was the only ind ication of the location of the pixel

in feature space. In the probabilistic formulation a precise “location

vector ” can be specified so that , for example , pixel s in ambiguous

locations in feature space (i.e., between clusters) can be encoded to

reflect a lack of confidence of belonging to any particular cluster.

The use of probabilities thus allows such pixel s to defer their final

label l ing’ unt il contextual information can be obtained .

The second important characteristic of the RLP lies in the use of

compatibility coefficients which contain statistical information about

the image. These coefficients are meant to reflect any detectable

‘The term label refers to “class label” or , equivalently, “cluster
label .” The final labelling of a pixel is the distribution of’ the labels
after the RLP has term inated .
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4 spatial dependencies between labels. For exam ple , whet appropriately

specified , they can reflec t directional tendencies I objects in an

image. Thus , an image that contains horizontal black b~rs on a white

background m ight have compatibility coefficients such a~ :

CompatVERTIC
~
J (black given white) +1 (very l ikely)

This can be interpreted as “the label indicating black is very like l y

to be vertically adjacent to the label Indicating white.” Similarly:

compatVERTICAJ~(black given black) = — 1 (very unlikely )

Ideally, the compatibility coefficients should tend to anchor the

iterative update of probabilities so that the final pixel labelling is

not too far removed from the initial label ing . As will be shown In the

section on results (IV,~l.3), this property helps to inhibi t the RLP

from “eating away” thin structures. If’ onl y local information we’re

used in the RLP, a thin structure (e.g., a one—pixel wide line) might

be suppressed into the background as if it were uncorrelated “noisy .”

However , if there is a suffic ient sample of “line—like ” objects , the

compatibility coefficients will reflect this and bias the local update

towards maintaining such lines.

(
IV ,2 Formal Definitions

Let us fo rmally define the RLP as in [RO576). See also

[R0S77 ,zUc 78] for a general discuss ion of RLP ’s. Let A 1, A 2 ,... ,A N be

the pixels in the image and CA, C8,... ,CM be the labels associated wit- h

- -
~ the clusters detected in feature space. Next , we must Inlt .tally

I
_ _ _  ~~~~~~~~~~~ J~-
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associate with each pixel A 1 an rn—d imensional probability vector

whose component P~~ ind icates the probability that

A C .  Note that
M

O~~~P 
‘- l a r d  ~ P :1 .Ia

~~ I
The compatibilit y coefficients are specified as a mapping r from

the ~et of quadruples (I , a , j , ~) into [—1 , +1]. One shoul d in ter pret

r in the following manner:

(a) if and are com patible for objects A and A

respectively, then r (i ,~ j,~ ) “6;

(b) if and are incompatible for A and A ,

respectively, then r (i ,a ,j,i~) < 0;

Cc ) if neither labelling is constrained by the other , then

r (i ,ct,j,~ ) — 0;

(d) the magnitude of r represents the strength of the

compatibility.

It is apparent that one may interpret, the coefficients as statistical

correlation or mutua l information [PEL78] since these functions behave

in the manner of (a)— (d) above. Note that the compatibility

coefficients are defined only for pairs of labels which are “adjacent”

anywhere in the image , accor di ng to some local neighborhood adjacency

relat ion . In our case , a canon ical orientation dependent neighborhood

N0 will be defined ; will be quantized to 115 degree increments , e.g.,

N, NE, E, SE , S, SW , W , NW. Thus, relat ive to a given pixel , adjacent

neighbors are those which are found in N0 in the prescribed direction .

At each i terat ion t , we independently compute a new P10 in the

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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following heuristic manner:

t+l t t tP10 = P10(1 + qj0)/~ P1 
(1 + q

1
)

where

~~~~~~ 
r(i , a, j, ~) *

and where j is an index over pixels in N
0
. The denominator is a

normal izing factor computed across the new probabilities of the m

labels, so that the new values for P will sum to one.
in

In pract ice it is useful to keep the probabilities of all labels

non—zero because the updating of’ probab ilities of each pixel label

involves a multipl icative function . Once a label has probability zero,

it would remain there during the iterative relax ation process.

Therefore, the probability of each pixel label will not be allowed to

drop below some small non—zero value . Notice that this heuristic

equivalently impl ies that no label will ever reach probability 1. This

will allow the probabilities of unlikely labels to grow if the context

so demands, even for pixel s whose current labelling includes a label

with probability near one.

IV.3 Initial Label Probabilities

The process of assigning an Initial probability labelling to each

‘ 1-

—- — -5. -~~~~~~- - -_ 
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i ix e l  in the image wi l l  now be discussed . As previous ly mentioned , the

1.abel ~et and the label probabilities at each pixel are derived from

the feature space selected to represent the image. The algor i thm that

will be discussed below assigns cluster—membershi p probabilities to

each pi xel as a funct ion of the di st ance of a pi xel to each of the

cluster peaks. Thus, the al gorithm is broken into two steps:

detection of prominent cluster peaks and estimation of pixel—to—cluster

relatedness.

IV .3.1 Selection of Cluster Peaks

After looking at even a few histograms , It becomes obvious that

the set of useful cluster peaks is a subset of the set of local peaks .

Distributions of natural scenes tend to be extremely Jagged and do not

have clearly defined cluster locations. It is frequently a vt’ry

d ifficult task, even for a human , to parse a histogram into i ts c luster

components. Indeed the problem of automatic detection of clusters.

although trad itionally in the realm of statistical pattern recognition
C 

[DUD73 ) can also be approached as an image processing task. The

following discussion will be limited to one—dimensional histograms.

Later , in section IV .6.2, cluster detection will be explored for two—

dimensional histograms.

What. criteria are necessary for a cluster iso l ation mechanism?

Consider the problem of clustering the histogram shown in Figure IV. ‘ .

Fi rst , it seems important that cluster centers be strongly peaked,

i.e., eac h true peak should have a significantly greater
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(a) Histogram showing all peaks and valleys th a t  are i n i t i a l l y
id en tif i ed .

Peakedness c r i te r ion : Hei ght (P ) /A v gh t ( l e f t v a l l ey , rj g h t v a t t c v )
possibly eliminates : P8, P(.. 

~~~~
, P 1.

Distance cr i ter ion : location ( P )  — location 
~~~~~possibly el iminates : 

~D ’ ~~

PC

(b) Final peak and valley labelling misses the “plateau” ot
P
H 

+ P1.

Figure IV.2 An Example of Peak Select ion.
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the height of its surrounding valleys , and the valleys should probably

not be too far apart. Second , it is reasonable to require that peaks

should be somewhat separated from each other; otherwi se they probably

represent the same cluster, Both of these criteria will help to

el iminate “false” peaks and thereby lead to a more useful cluster

analys is.

A possible peakedness criterion is simply the ratio of the peak

height to its surrounding valleys . That measure is sufficient for the

first peak 
~~~ 

in the figure , but is ill—defined for P8 since the

valleys in the latter case are rather unequal in height. The

peakedness ratio can be modified so that a peak is compared to the

average height (avght) of its valleys , or perhaps a better comparison

is the larger of the two valleys (maxht). Formal ly , let us express two

funct ions of peakedness , F1 and F2, computed for the ctth peak and its

valleys as follows:

(1) F1 (Peak0, leftval ley0, r ightva l l ey~) =

or 

height(P )/avght (leftvalley , r ightva l ley0) I~j

(2) F
2 

(Peak , le f tva l l ey , rightvalley
0
)

height(P )/maxht(leftvalley0, r ightvalley0)

For any peak ci and some threshold 0, if F < 0, the peak will be

d iscarded and considered to be a false cluster center. In the f igure ,

P8 is probably d iscardable (by a reasonable setting of 0), wh i le 
~D 

~~

somewhat ambiguous , but probably can be extracted . However , P(~$ P~ ,

and P1 are problematic bec ause they are not individually peaked in any

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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reasonable sense , even though they do seem to form a meaning ful

cluster. The structure that these three pea’s form——called a

plateau——must be detected by other means . In particular , the algorithm

must detect a “run” of relatively flat peaks. A central location can

then be selected to represent the pl ateau. Plateau detection was not

Included in the current system because It was difficult to obtain a

satisfactory implementation . Fortunately, in practice , “pure” plat eaus

do not seem to arise very often .

Next let us consider the second criterion for peak selection which

is based on inter—cluster distances. It see~ns reason3ble that peaks

that are very clo se to each other are not truly ind icatiie of distinct

object c lasse s , and may be considered part of the same cluster . Thus,

for each pair of peaks , we define

D (Peak , Peak ) = loc(P ) — loc(P )~i ci ci+]. ci

When ( 0’ for some given 0’, then the smaller peak will be discarded

as a false peak. In the exampl e of Figure IV . 2, peaks P~ and ~F 
are

potent ially el iminated , s ince they a re relat ively close to the larger

peaks P
~ 
and 

~E’ 
respectively.

A reasonable peak and valley labelling is given in IV.2(b). The

result is somewhat unsatisfying , s ince

(1) the plateau is com pletely m issed , and

(2) 
~F 

probably should not have been eliminated .

The reason that one might argue that P
~ 

should be ke pt——even though it

is very close to that it is extremely peaked . Thus, we conclude

that the two criteria for peak selection cannot be applied

I . :
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independently. One solution is to apply the distance measure - -

conditional y, e.g. only if the peakedness measure is less than some

amount. Auother possibility is to compute the product of the two

measures so that when ei ther is high, the peak will be kept. These

questions uill be left for future empirical investigation ; in the

following it. is assumed that a reasonable and representative histogram

parsing has been obtained .

IV.3.2 Assignment of Probabilities of Peak/Label Membership

After ident ifying the prominent peaks , the nex t step is to link

this inforn ation with the spatial distribution of information in the

image. We i~ant to recode each pixel so that it reflects its location

in feature space relative to the peaks. In this manner , groups of

pixel s whici are near each other both in feature space and in image

space can b - merged and labelled as belonging to the same region .

Given ~i set of’ peaks , 
~A’ ~~ 

•
~~ ‘~ M 

and a set of pixel s, A
1
, A

2
,

AN, we compute for each pixel A~ the following probabilities:

d
P(A is labelled ci) = _____

d
a ici

.-~here d is the Euclidean distance in feature space from A to ci.
i

This measure is a monotonically—decreasing nonlinear function of the

Euclidean distance of a point in feature space to the cith cluster

center. For the special case at’ d10~ 0, the distance is reset to some

~~~~ 

—
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small number € > 0. This guarantees that no label will have either

probability 1 or probab ility 0.

IV.3,,3 The Neighborhood of a Pixel

Once the init ial labell ing has been computed , it is necessary to

define a standard neighborhood around each pixel . Some examples are

given in Figure IV 3. Note that for simpl icity the choices have bE-en

limited to the 3x 3 area surrounding a pixel , although this can easily

be enlarged with subsequent impact on the speed of label updates and

the results obtained .

Each of the neighborhood representations uniquely a ffects the

performance of the local algorithms; for example, a d iagonal l ine t h f t

cuts through a uniform background may be missed in a ~4~ adjacent

neighborhood or relatively under—represented in an 8—adjacent

neighborhood . Moreover , it will be shown that the weighting of the

central pixel strongly influences the rate at which it can be changed

from its current value .

IV.3. -t4 The Compatability Coefficients as Conditional Probabilities

Now that the parameters of the local env ironment have been def ined

formally; the d iscussion now concentrates on the global information

that is to be gathered for the RLP, namely, the compatabili ty

coefficients. The compatibility coefficient between each pair of

labels defines whether labels of neighboring pixel s support each other

or compete with each other.
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x x

x x x x x

x x

(a) “4—adj acency (b) “5—adjacency
neighborhood” neighborhood” is

composed of 4—
adjacency and
center pixel

x x x x x x

x x x x x

X X X X X X

(c) “8-adjacvncy (d) “9-adjacency
neighborhood” neighborhood” is

composed of 8-
adjacency and
center pixel

W1 W2 
________

w4 w5 _w6

W7 W
8 

______

(e) A “weighted
neighborhood” is
a generalization
of cases ( a ) — ( d )
where the are
weights selected
for some purpose.

Figure IV.) Neighborhood Definitions.
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The coefficients may be defined to be positive for identical

labels and negative for differing labels. This is reas3nable in images

composed of large blobby regions wi th relat ively few boundary points.

Here , the typical interaction is between labels of the same type

(positive correlation of label vs label , while interactions between

labels of different types are relatively infrequent. The .;implest

specification of compatibility coefficients is to restrict them to

signed unary values:

r (I,cz,j,8) +1 if ci = 8 (1)

r(i ,cz ,j,13) — 1 if ci 8

This arrangement works reasonably well in areas lacking fine

structure , but , in general , it is more desirable to have the

coefficients reflect the way pairs of label s spatially no—occur in the

image. In this way structured objects that display directicna lity ,

e.g. thin diagonal lines , can be given ii,creased we ghting in the

probability update on the basis of their statistical significance in

the image. Peleg and Rosenfeld £PEL78) have suggested -he use of the

mutual information of the two labels to capture the way label s co—vary.

Howev er , we suggest a simpl er variation using condition :il probabilities

[ZUC78 ) because they also reflect the desired label dt’pend encies (a—d

in section IV.2) . Note that Zucker rules out the use of statistical

correlat ion for compat ibilities since it is a symmetic measure of

dependence , whereas asymmetric configurations of’ label s often arise

(e.g., when one object is above another).

Let P1 (ci) denote the initial estimate of the probability that

1~.

~~Iliulllliiriiw . k.. . —-—---——~ —— — — — — .~~~~ 
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pixe l  i is labelled u . Then

N
l’(ci ) — )

i—I

is a global estimat e of the a priori probability of across the ent Ire

image. It is direct ly rel ated to the average distance in feature space

of pixel values to the ~ith cluster center 0 . Therefore , It is related

to the density of pixels around the ~th cluster In the histogram .

(However , the reader should note that the situation is somewhat more

compl ex because the values of P
~

(a) are a function of the position of

other clusters in feature space and the density of pixel value s around

them also).

The joint probabi lity of a pair of points having l abel s ~ and at

some orientation , say east(e), can be estimated by

N

~~ ~~~~~~~~~~~~ 

*

i— I

We c m  now estimate the conditional probabiUty that. I is labelled

a gi ,en that the east pixel e is labelled ~, by
N

1 I’ (~
) * 1’ (~

)
i (ci ,~3) -‘ I t ’

j~(~ ) N
~~- 

P~~(~- )
i—i

Two lab”l s are independent in direction ~ if th~ pair of labels

co—occur wi !h the same probabi lity as the product of’ their individua l

‘More precis”ly, it is the average distance toC~ divided by the sum of
the avera ge di stance to each c luster C 1 , a:1 , M . 

~~~~~~~~~~~~ --5’- - ~
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—-.-
~
-

~
--’- ~~~~~~~~~~~~~~~~~~~~ ~~~~



--  ~~~~~~~~~~~~~~~~~~ 

I
55

probabilities. Then in our exanple of pixels at the relative spat ial

orientation of east , their independence implies that

P
1

(ci , 8) P ( c i ) P ( t 3 ) .

and in terms of conditional probabilities ,

ci 8 ) P( ci )

Th is latter case Is the situation where 8 at a pixel oriented at east

gives no information about a , Thus, the point at which r(i ,t~,j,~- )  0

can be defined to be the prior of a . If r is to range between — 1 and

+1, then it can be defined in terms of a piecewi se linear interpo l~ tion

function:

: 

A(a) +1

Note that the coe fficients are no longer symmetr ic:

r(i ,ci,j, 8) r(i ,8,j, a) . It is also wor th mentioning that viewing

compatability coefficients direct ly as conditional probabilities leads

to an updating scheme which can be fo rmulated in Bayesian probability

theory [R 1S79). Here , we have used a heuristic formulation to derive

the coefficients from the joint probabilities.

Note that the above formulation is ill—defined if we wish to

include a pixel as its own neighbor . However it has been empirically

shown to be desirable to Inhibit the RLP from straying too far fr om the

initial labelling on any given Iterat ion . Consequently, in this case ,

____________________ - 
_ . . .  ~~~ ~~~~~~~~~~~~~~~~~~~~~~~ -
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we extend our definition of a local neighborhood and compatibility

coeff ic ients:

r (i ,ct,i ,B) +1 if c & = 8

r(i ,ci,i ,B) —1 if a~~8

This means that for neighborhoods in which the center pixel is

included , all label s at the central pixel are +1 compatible with

themselves and — 1 compatible wi th all other labels.

IV. 3.5 Problems wi th Compatability Coefficients

The definition of coinpatability coefficients , either as mutual

information or in terms of the scheme just presented , has two possible

weaknesses. First , since the measurements are computed across the

ent ire image , they ref lect  the “average ” image structure. Infrequently

occur ing spatial structures might not make any significant

contributions to the overall accumulation of compatibility statistics.

This can be dealt with by local izing the cosipatability coefficients to

smalLer sections of the image , where local structures will occur with a

higher relat ive frequency. Of course , this would increase the amount

of 3torage required to maintain the coefficients , as well as creating

problems with pixels lying along section boundaries.

A second problem with our definition of’ coinpatability coefficients

involves the geometry of regions and the different kind s of information

which combine into the joint probability of neighborhoods of labels.

If a region is large and compac t (i.e., its ratio of area to perimeter

is relatively large), then there are many more interior pairs of

L.A 
________________ - —
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adjacent pixels than boundary pairs of pixel s . Thus, the coefficients

-~~ can be dominated by large contributions in all the orientations from

pixel s which lie internal to the region . In this case , the smal ler

amounts of informat ion asso ciated with the region boundary , which may

in fact be highly or ientat ion sens it ive , may be lost. It may be

possible to remedy this situation by maintaining two sets of

compatability coefficients: one set for those pixel s that are

estimated to lie inside of objects and another set for those pixel s

that are estimated to lie along boundaries. Of course th is will onl y

work i f there is some means of determ ining which pixel s are likely to

be on boundaries. In the case where differences within a region are

not ex pected to be great , the determ inat ion of edge given inter ior can

be based upon differences in pairs of pixel values.

IV.-U Three Variants of Relaxation for Empirical Analysis

This section will show the results of applying the algorithm

ex plored in the previous sections to an artificially generated image.

The results will demonstrate the behavior of three variants of the

relaxation algorithm . The first is probabilistic relaxation with

“simple” compatibility coefficients , namely , for all ne ighbors j :

r(i ,c* ,j,B) +1 if’ ci

r(i ,a ,j,8) -1 if a~~8

The second variant uses probabilistic relaxation with conditional

probabilities for coefficients (as defined in IV.3.Lt). Finally a

L
I - - _  
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degenerate form of discrete relaxation will be presented , called

plural ity update. In this scheme, both the label probabilities and the

label compatibilities are discarded . The algorithm initially assigns

the most likely label to each pixel , e.g. v ia a minim i~n distance

classifier . Next , an update rule is applied which consists simpl y of

selecting the most frequently occur ring label in the neighborhood of

each pixel . This is equivalent to a mode filter [C0L78) except that it

is applied to labels instead of pixel intensities.

As will be shown later in this chapter , it is extremely difficult

to clearly evaluate the effects of different segmentation algorithms

when these algorithms are applied to natural scenes. This difficulty

is due to the high degree of’ noise , edge blurring , irregular textur ing,

etc . typically present in non—trivial natural scenes. The presence of’

these anomalies implies that accurate ground truth segmentations are

difficult or impossible to obtain. Hand—drawn segmentations are

inevitably prone to errors at the object boundaries and tend to reflect

implicit and expl icit biases of the human perceiver.

In resp )nse to this, we have designed a series of artificial

scenes in ‘ihich each region has well—de fined boundaries. The feature

data for each object i are distributed normally (N( p , a )) and then

placed at random locations across the object (e.g., the distribution is

spatially uncorrelated). The image in Figure IV.4a was des igned so

that the d istributions of the individual regions would have a -

reasonable degree of overlap. In addition , attention was given to the -

creation of thin , varying spatial structures that might test the

a— .— ~~~~~~~ __~~~~~
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behav ior of our iterat ive , spatially—sensitive , relaxation segmentation

process. It will be shown that although the various algorithms tested

basically agree in the large blobby areas , it is indeed the case that

there Is a large di spa rity in performance in the finely structured

areas in the image.

The figures that follow will demonstrate the major steps of the

segmentation algorithm , namely, peak selection , estimation of initial

pixel labelling , and iterat ive update of the pixel labels us ing the -

three variations of relaxation specified above.

IV.Z~.1 Initial Labelling

Figure IV .4 shows an artificially generated image with ~4 labelled

objects (p
1:25, p

2 110, p
3~~10, 

p
4:56, o:3 for all objects). Figure

IV.4b shows the ground truth segmentation which will be used for

comparison purposes wi th the results of the three variant update rules .

The histogram of the scene shows four clusters which are identified and

labelled by the peak detection algorithm explored in Section IV .3.1.

Figure IV.5 shows the result of assigning cluster probabilities to

each pixel . Each of the four probability—images is displayed with

probab ilities in terms of gray levels. Black is interpreted as a very

low probability of belonging to a cluster , while white implies a very

high probab ility of belonging to a cluster. In addition , there is an

image that ind icates the highest probability label at each pixel .

These labels may be compared pixel—by—pixel with the labels in the

ground truth segmentation to establish a base—line error rate of 233

- 
_ 
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pixels out of i4,096 pixels , or 5.7 percent. Note that this error rate

is a function of the part icul ar ~ and o chosen for the four ret~tons in

the image.

IV. 4 .2 Relaxation Using Simple Comj ,atibility Coefficients

Next we consider the results obtaine-i via the probabilistic

relaxation upd ate defined with “simple” compatibility coefficients.

Figure IV .6 shows the highest probability label at each pixel after 1 ,

3, and 15 iterations of relaxation . In addition , the results are

categorized according to the neighborhood used (see Figure IV .3):

il—adjacency, 5—adjacency, 8—adjacency, and 9—adjacency neighborhood .

In each case , the error rate is given.

The first observation that can be made about these results is that

most of the initial 233 errors are cleaned up in the first iteration of

tha? RU’. However , as the process continue s, the RLP clearly introduces

— new errors to those remaining , so that the segmentat ions afte r 15

iterations0 are much worse than the results after 1 i teration .

Moreover , all of the er rors that are introduc ed occur in the thinly

structured areas (e.g. 04 and the diagonal append ages of 02 ) of’ the

image : just those areas of the Image that are de~ irahle to preservet

The explanation is that the pixels that are interior to objects

are being strengthened at a rate much faster than those along the

0Na,te that In all cases, the RU’ converged by iteration 15; that Is ,
alt pixels had a single label with probability 1 .
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boundaries of objects. The boundary pixel s therefore are relatively

weakened and , in the case of the unstab le (thin) con figurat ions , the

once dom inant label is ultimately suppressed by the competing label .

This behavior can be traced to the action of the compatibility LI
coefficients.

Let us consider a pixel in the interior of an object and re fe r to

it as It often has one label that is dominant (highly probable);

the remaining label s all have low probabilities. More importantly,

however , is the fact that all of the neighbors of 
PINT 

are , more or

less , specified in the same manner. Thus, during the update process ,

the dominant label gets positive support (+1) from the 
~~~~ 

probabi lity

label at each pixel in its neighborhood and negative support (—1 ) from

the remaining low probability labels at each pixel in its neighborhood .

In general , the posit ive support for ~~~ greatly outweighs the negative

support.

Now consider a pixel , say P
80~~, lying along the border of an

object. The dom inant label associated with such a pixel receives

strong positive support (highly compatible and highly probable) from

roughly half of its neighbors and , more importantly, ‘t receives strong

~~~j~ve support (highly incompatible) from the rer~aining neighbors

(which are also highly probable). Thus, the dominant label of

~BORD tends to rece ive much less total support than the dominant label

of P
INT’ This situation is worse in the case of a thin object in which

- - there may be few if any interior pixel s to support its existence .

— Let us turn our attention to a relative comparison of the
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different results. How do we account for the widely differing error

rates associ ated with the var ious neighborhood format ions? Not ice that

upon convergence the two results using limited neighborhoods , ~4— and

5—adjicency, are better than those usIng larger neighborhoods of 9— and

9—adjacency. Again , when one cons iders that the errors are assoc iated

with thin objects that are embedded within large blobby objects, the

ex planation becomes clear. As shown in Figure IV.7, the 4—adjacent

neighborhood allows the dominant label which represents a thin area

(call it label A) to compete in equal numbers against an opposing label

(call it label B) in a surrounding area. On the other han d , the

8—adjacent neighborhood is biased in favor of the competing label in

the surround .

B B B B

A (A) A A (A) A

B B B B

a—adjacent neighborhood 8—adjacent neighborhood

can help preserve thin favors the surroundi ng

lines label

Figure IV.7: The Impact of Neighborhood Geometry

Next , consider the effect of the inclusion/exclusion of the center

pixel in its own neighborhood . Clearly, the results are tremendously

improved when it is included . The same argument applies since

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~~~~~~-~~~~~ --5- ’ 
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inclusion of the center pixel greatly improves the chances that a thin

object can survive the attack of the incompatible label associated with

the many pixel s of the surrounding object. It is a form of “iner~~a”

of resting probabilities and helps to some degree , but un fortunately it

is not a very sound general solution .

Al l of thes . results suffer fr om a similar deficiency. The

“simple ” compat ibility coeff ic ients are inadequate to represent label

dependencies that occur within the image. Therefore, the quality of a

segmentation is driven by the geometry (shape) of objects wi th respect

to the geometry of the pixel neighborhood that Is defined for the RU’.

ThIs is clearly unsatisfactory, since the geometry of an object is in

general arbitrary.

IV .4.3 Relaxation Using Compatibility Coefficients as Conditional

Probabilities

Next consider the behavior of the RLP when conditional

probabi lities are used to represent the compatibility coeff ic ients

(Figure IV . 8) . Here , the neighborhood formation does not seem to

matter very much compared to the inclusion/exclusion of the center

pixel in determining the overall error rate. When it is included , t he

RU’ behaves in a desirable manner. The uncorrelated , misl abelled

pixel s are su ppressed into the background and the finely structured

areas are generally preserved .

Let us carefully exam ine the compat ibi lity coeff ic ients for thi s

image (Table IV.1). There are five arrays corresponding to the 5

k
- _ --5. _ - --5_ - ----.  —~~~ -S~ ~~~~~~~~~ -5~~~~~~~~~~~ a - --a ___
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iteration #

_ _ _ _ _  

—

~ 1~’ 1 
—

-

~~~~~
-

~~~!!!: ~ 38 er rors 
77 errors

38 e r ro r s  
31 e r ro r s  
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(a) Results using 4—neighborhood (b) Results using 5—neighborhood
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Compat ibil f ly  c o t - I t  Ic icuts for the image shown in I- i gure I V. 4.
Coeff Ic tents - i re .i funet Ion of the c o n d i t i o n a l  prob ila l I I y *

~) kind art- tee i f  it’il between all N’ irs o t  p ixe ls  A~ -i ntl A
where A~ . Neighborhood of A ..

C o e f f i c i e n t s  for  Ne i g l ibo r  Re l a t  ion : “Above ” (North)

~~
_
~~iii

_i B L ( D
A 0.2440 — 0 . 2 57 — 0 .2 3 4 9  - 0 . 2 1 2 ~

)

B —0.2459 0. [0~)~) —0. 3793 0. 1030

C -0 .1553 -0. 1174 0 .20o) a () I i - a

D —0.2194  0. 047 1 -0 . 266 ) 0.0861)

Coef f i c i en t s  for  R e la t  ion : “ l o  the Rig ht ” (East )

1 0 
- -

A 0 .2367 —0. 2 2 7  —0. •~?2() ~0 . 22S ~
)

B — 0.246 6 0. 1 0’) a -0. Ia’a t t ’) 0. liii

C ~0.2i~ 7 _ 0 . I t  14 (1.2 4% — 0 . 7 1 4 1

I) ~O.2204 0.04/1 —0 .2281 0.07 ia

Coeff ic ients  for Ne i ghbor Relation : “Below” (South)

B 1)

A 0.2120 _0 ’-~5~ —-0. i a  11, — 0 . 2 2 9 3

B —0.2649 ~~. I 
q~~- - —0. 32~ 3 0. 1055

C —0.2332 -0. ib8.~ 0 . 268 2  —0. 241k

P —1). 2428 I). 1)4 16 —0, 7 1/54 11 .090 3 a

Coef f ic  lenis for Neighbor Relation : “To t he le t  t ” (W e s t )

~~~~~~~~O~~ 298 2~~~~~~~~
(
~~21 ~~~~~~~~~~~

I B —0. 2510 0.1 89’) -0 . 1~ 01 
I 

~~

C — 0 .2185 —0 . 1 4 1 7  ()~ 74 ’)’) _ 1) •~~74~

DI — 0 . 2 27 2 0 .1)44/  - —11 .7101 i) .0 7 18

Coc ff1 c I ents for Neighbor Re lat Ion : ‘ Cciii &- r ’ 

1.0000 — 1.00(1(1 — 1 . 11(101) — l .001)0 1

l1~ — 1.0000 1 - 000(1 — I . 00(1(1 — I - 0000

C —1 .001)0 —1.0000 1.0000 —1.0000

1 .1)0(11) —1 . 0000 —1 .0000 I . 0001) 
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neighbor relations : “above ,” “to the right ,” “below ,” “to the left ,”

and “center. ” Each is a ~lx4 array corresponding to the ~l labels (i.e.,

the ~ cluster centers). For exampl e, the compatibility between label B

at the center pixel and label C at the pixel below (e.g., south) is

— . 3263.

Notice first that the on—diagonal entries of’ the arrays

(ci given a) are all positive and the off—diagonal entries are generally

negative. This is expected since in large blobby objects such as 0
~
,

02, and 03 the dominant label of the cente r pixel is most likely the

same as the dom inant label of the neighboring pixels. It is for this

reason that the compatibility of label D given label D is the least

positive on—diagonal entry; that is to say, 04 . which is represented

by label D, has very few interior points and therefore label I) given

label D is a relatively infrequent event .

Because objects are oftentime s blobby, one might be tempted to use

the “simpl e” compat ibility coe ff icients —— they are an extre me ex amp le

of the on—d iagonal , off— diagonal (positive , negative) dichotomy.

However , upon carefu l inspection of the tables one find:; some important

exceptions to this observation . Consider the compatibilities between

label B (0
2
) and label D (04). In all ori3ntations the tables show a

( positive compatibility between these two label s which is the largest

a - off—d iagonal entry.

The compatibility between label D and label B Is also positively

com patible. It is because of these stat ist ical relations that thi s

version of the RLP does not suppress the thin object , 0
4~ 

into the

1~•

hi 
- 
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backgroun d object 02~ This also explains the persistence of the

1—pixel “reg ions” —— labelled 0 —— inside of R2 ; the compatibi lities

tend to support label D given label B wherever they co—occur . In

contrast to this behavior , notice that the 1—pi xel regions in i t ia l ly

associated with the labelling of 0
1 are ( correct ly)  suppressed after 1

or 2 iterations. This is because no labej other than A itself is

positively compatible with label A , and therefore the mislabelled

pixel s are un supported .

Let us now consider d i rect ional i ty  Information contained In the

coe ff icients. Generally, the objects in this image do not display any

strong directional dependency. However , the compat ib i l i t ies do refl ec t

a slight directional relationship between label A and label C. Notice

that 0 1 (label A ) . the upper bac kg round , is above 0 3 (label C) , the

lower background . Titus , when C is associated with the neighbor

“below ,” the compatibflity between A and C (— .1536) Is much less

negative than for any other neighbor relation between A and C (— . /‘3h1 9,

— .2220, — .2122). Similarly, when A is associated with the neighbor

“above ,” the compatibility between C and A (— . 1553)is much less

negative than for any other neighbor relation between C and A C— . 2157,

— .2332 , — .21 85) .

Finally , notice the relationship between label s B and C (or C and

B). In all directions , this re lationship is the most negative. This

Is the result of two effects. First , the objects that correspond to B

and C , namely 02 and 03~ have no common boundary and thus there is no

significant spatial dependency between these labels.0 Moreover , the

--5- &.S______ __S_ ~
S -~ -~~ — ~~~- .~~~~ - £_ - — - -~ —
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means of the clusters associated with B and C are far apart (~40 and

10). Therefore whenever B has a high probability (i.e., inside 02), C

has a low probability, and vice—versa . Thus, their joint probability

(approx imately .02) is low relative to either of their priors

(approx imately .2). This yields low conditionals and very low

ccmpat ib ilities due to the “kinked curve” used in the translat ion fr om

cond itionals to compat ibilities .

IV.4.14 Plurality Relaxation

Finally, cons ider the third update scheme —— the plural ity rule ——
in which the label probabilities and label compatibilities are not

employed at all. Instead , a minimum distance classifier is used to

assign an initial label to each pixel . The label is then updated by

replacing it with the most frequently occurring label in its

neighborhood . Therefore, this scheme favors geometrically stable

configurations of labels, e.g., con figurations that are rounded and

contain interior points.

After 15 iterat ions , the results (Figure IV.9) using a ‘I—a djacent

neighborhood are not much worse than the results obtained via the

probabil ist ic relaxat ion update using simple compat ibility

coefficients. This is not surprising since neither technique

1Although , one should recall that all pixel s have some Oinite non—zero
probability of both B and C. However , since the corre:;ponding objects
0 and 0 do not touch, it is very unlikely that the joint probability
of B and C will be high in any neighborhood .

II. 
~~~~~~~~~~~~~~~~ 
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- 15 _______________________
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(a) Results using 4—neighborhood (b) Results using 5—neighborhood

Figure IV .9 i’lurality update across indicated net~ hborhoods . (cont inued)
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incorporates Information that is based on structural dependencies

between labels. Both schemes are impl icitly biased toward str uctures

ti-at have interior points and thus neither is able to preserve thin

regions. The plurality results using an 8—adjacent neighborhood are

considerably worse than those wi th the ‘4—a djacent neighborhood . This

is also to be expected since Increasing the num ber of neighbors works

against maintaining the fragile structures that we have been examining.

In defense of the plurality rel ax ation scheme , not ice  tha t  t h i s

comput ationally inexpensive technique per forms very well in areas

lacking spatial structure. Here , it yields the desired effect of

suppressing sparse , randomly located “noise” labels. Moreover , as will

be shown in the next section , its application to natural scenes that

mostly contain “blobby” regions yields results that are remarkably

similar to the results using probabilistic re laxa t ion —— even when the

latter uses compatibility coefficients that are based on spatial

dependencies of label s in the image.

IV.4.5 Summary of Test Results

Before leaving this set of images, it Is worth commenting on the

error rates ( see Tables IV. 2 and IV .3) .  According to Table IV .2 the

“s imple” r e l a x a t i o n  scheme g i v e s  the best resu ’ts in the short run .

However , the converged results (Table IV.3) show a significant

degradation of performance . On the other hand , relax ation wi th

cond itional probabilities has only slightly worse peak results than the

simpl e scheme and importantly, it does not degrade at all over time .

-
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TABLE IV .2 SUMMARY OF TEST-IMAGE RESULTS

Minimum number of errors tabulated for each Relaxation Method
and ueighborhood size . Entries indicate total number o
mislabelled pixels at the given iteration.

_ _ _  _ _ _  

5 8 :-~
28 21 26 32

Simple (+1,—i) (Iter 3) (Iter 3) (Iter 1) ( Eter 1)

Conditional 38 31 42 32
Probabilities (Iter 1) (Iter 3) ( It e r  1) (Iter 3)

83 55 131 96
Plurality (Iter 1) (Iter 1) (Iter 1) (I ter  1)

(233 errors initially)

I - i

I- 1
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~~RLE IV.3 SUMMARY OF TEST—IMAGE RESULTS

Numb .r of errors at convergence tabulated for  each relaxation
method and ~ieighborhood size. In each case , the relaxation
proct ss was run until all pixels had a single label with probability 1
1 (a~proximate1y 15 iterations). Entries indicate the total
number of mislabelled pixels. The rumber of errors in parentheses
was obtained after 1 and 2 pixel “regions” were suppressed. No
other cases produced reductions in error rates by such processing.

4 8 9 H
Simple (+l,—l) 94 59 130 95

Conditional 139 32 161 35
Probabilities (149) (18) (21)

Plurality 119 84 172 156

(233 errors initially)

L .~~~~l._ -~~~ -- ~~~~~~~~~~~~~~~~~~ —- -~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Moreover , by referring to the segment ations one notices that the

5—neighborhood and 9—neighborhood results (Figure P.1.8) can be improved

by a v ery simple clean—up scheme . The images show a large num ber of

and 2 pixe]. “reg ions” that are counted as errors. Clearly, these

regions are too small to carry any “meaning”, and it is therefore

justifiable to suppress them into the background . When this is done

the error rates reduce to 1 8 and 21 pixels respectively , or

a pproximately .~4 %. We conclud e that the conditional probabilities are

necessary to prevent the relaxation process from destroying fragile

structures. In addition , it is imperative that the center pixel be

included as its own neighbor , again to preserve fragile structures.

IV .5 Segmentation Algorithm Applied to a Natural Imag e

We now turn to a more difficult image domain , that of naturally

occurring outdoor scenes. The scene depicted in Figure IV. 1(’ presents

a difficult image processing problem for a number of reasons. First ,

the physical scene has undergone a num ber of stages of information

degradation including the photographic and digitization processs , and a

spatial averaging (blurring) process to red uce the amoun t of data to

managab le levels . The effect of these processes (refer to Section 1. 1)

is to introduce noise , blur edges , and to create hybrid pixel value s ——

m ixed pixel s —— which are not easily classifiable. Moreover , the Ir~age

disp lays inherent visual complexities such as irregular t .exturin g,

object occlus ion , and irregular changes in gradients. Finally, the

- -5—-
—-~~~
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!~~~~~~ j V . lO  Bl ue, green , and red components of our outdoor scene.
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image is complex because in 3—color space there is a large , unknown

num ber of object c lasses to be di scr im inated , most of which overlap to

varyi ng degrees.

In the next section we will show the results of applying the

algorithm using probabilistic relaxation and conditional probabilities

to our exampl e outdoor scene. Later , the algorithm will be expanded to

include feature transformations of an opponent—color system that

improves color contrast. In addition , multidimensional clustering. to

increase the sensitivity of the segmcntation will be explored .

IV .5, 1 The Data

The natural outdoor image used in these experiments consists of a

512x512 array of pixel s in which each pixel is represented as a triple

of six—bit numbers. The components of a pixel correspond to its light

intensity when scanned through red , gree , and blue (RGB ) filters. The

original data has been transformed by independently blurring each

com ponent via a 2x2 spatial averaging process , yielding a resolution of

256x256 pixels. The data reduction steps were performed so that the

resulting image would contain a manageable amount of information that

could be processed in a reasonable time period on a

minicomputer.

IV .5.2 In i t i a l  Labe l l i ng

The peaks for the RGB distributions we re detected by the - -oces ~’

d iscussed in Section IV. 3. 1 and are marked on h~ h1s~ ‘i~ 
• ‘

P’- - S~~L W ”
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Figure IV. 10. The following segmentation experiments were performed

using the blue component of the image , since its histogram had the

highest n ianber (5) of detectable peaks. Figure IV.11(a—e) shows the

initial labelling of each pixel with respect to the 5 peaks in the blue

component histogram . As before, for each cluster , the probability of a

pixel is displayed as a gray level with black representing low

probability and white representing high probability. In addition ,

Figure IV.11(f) shows the highest probability label at each pixel , in

effect a minimtsi~ distance classification , with each of 5 distinct gray

levels representing a cluster label. Note that the 5 clusters

correspond to distinct gray level ranges in the blue intensity image in

ascend ing brightness. Thus, cluster A represents the darkest areas of

the image (e.g. shadowed bushes) and cluster E represents the

brightest areas (e.g. sky and sunlit house walls).

How can the initial segmentation be evaluated? Since there is no

ground truth d;ita available with which to generate an error rate, the

evaluation must lie subjective. First, notice that the roof of the

house and the tri’e crown on the right are overmerged . Cluster D, which

is relattve)y wide , apparently contains the distribution of both of

these objects. Since they happen to lie adjacent to each other in the

image, they reoeive the same region label and appear as a single region

in the segmentation.

This situation is curious since there seems to be an edge (or part

of an edge) between the two objects in the original image. The

explanation is that the roof is actually a slowly varying piecewise

~ -~~~L~~- -~~



-~ — -~ --~ —-~ —~~~—-~ .—~~~~
--

~~~~~~~~~~~~~~
-

~~~~~~~~~~~

I
1

—a’
( i )  ‘ l t t a ~t t ’i  A I ~ ( I , i~ i ~‘r It

( n t  Cl Lu4 t t~r C (ni ) I ’ I iI~~t i’i l~

~~~~ t Liist t’r I ( t ~ ‘Ittilmirni nttstiinn ,’ ~‘l,; ~~~I t t n t -
I t&’it t nt n’ n i  t i i ~ ( n ’ t  I vp t’,~.- i$U! I’ Iii I .t p i I I 1 [In g b~t R.’d n nn t itt’ n ii In I lit ’ In I nit ’

t n *ntnipniiit’iit hi nt ( n n~~t Am. i lti’ Iii ~~~~~~ I j i l t  v I t int ’ i

it t .in In p 1 .~nt ’ I I $ sliniwit Ifl ( I I

— - —-, ~---~ ~~~~~~~~~~~ -iNn~n_~~~~~~~

- L~~ - ~~~~~~ ~~L -~ 
Ln...~-— . -~ ~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _ _ _

84

linear gradient. That is , the upper left portion is dark (from the

ahadow created by the nearby tree) and the middle portion Is slightly

brighter (unshadowed). The intensity profile then drops u n t i l  ~h’

lower right corner is reached . The darkness there is again due to

shadowing . Now , the right hand tree which is dark , happens to touch

the roof’ In an area where the latter j~ ~t i ]l bright , t hus creat f ng an

edge . The difficulty of segmenting these two objects is a problem of’

undetectable clusters in feature space. The dark roof’ areas an d the

dark tree form part of’ a cluster in feature space that is Ind is tinct

from the distribution of the brighter areas of the roof. The latter

have enough of’ a variance so that no significant val]ey forms between

the dark and light suhclusters . 
t

This is certainly a dilemma . On the one hand , It Is desirahle

that the dark and light areas of the roof bi’ extracted via a sint~1e

cluster so that it is not partitioned , because there s no signlfic.Int

edge between these areas. On the other hand it is de :iirable to segment

the roof from the tree since these two ojbe-ts d’ form an ed ge.

Resolving this dilemma may not be possible even by recursive anflly’315

of the overmerged roof/tree region , since a histogram local i zed to t:iis

region may still appear unimodal . It would re~ un r P a model of I.he

spatial changes in feature values. Recent work by Haralick fHA R7 8 1 may

prove useful here .

Consider some other problem areas in the initi al segmentat-lon .

Notice for instance , the appearance of fragmen ’ at ion In the roof. Tht’

left side of the roo f contains many mislabelled pixel s which are

- - ~~
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scattered and result from the overlap of clusters C and D Further ,

there is a connected set of m islabelled pixel s that extend from the

house roof into the garage roof’. Again , the edge that exists l oca l l y

betwe en the two roofs is globally obscured in the form of overlapping

clusters.

Other areas of concern are (1) fra gmentat ion of the l e f t  tree due

to c luster overla p bet ween B and C , (2) th in l ine f ragnenta t lon of the

roof’ gutter (clusters A and B), and (3) fragmentation of the shutters

(clusters A and B).

IV.5 .3 Iterat ive Update

Let us next consider the behavior of the iterative update schemes

whon they are applied to the initial labelling of pixels. Again we

apply the three techniques: (1) probabilistic relaxation wi th simpl e

com patt bi l ities , (2) probabilistic relaxation with conditional

probabilities for compatibilities , and (3 )  plurality relaxation. Al l

of these are appl ied across the 5—adjacent neighborhood configuration ,

ii wi th the center pixel included as its own neighbor .

Figure IV.12 shows the results after 1 , 3, and 8 i terat ions of

each scheme. In addition , Figure IV.13 shows the resu l ts displayed as

edges between regions. One is struck by the similarity of all of these

results. The only significant differences are in the roof guti;er , the

left tree , and around the front windows . The probabilistic relaxation

techn ique using simpl e compatibilltles gives th ’ cleanest looking

result in both areas. The other two schemes ge-ierate many smal l
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regions in these areas and it is not clear what to do with them : they

are too small (i.e., (5 pixels ) to be “meaning ful” and they are too

densely packe d to just i fy s imply su ppress ing them into the sur rou ndi ng

regions.

Appa ren t ly , the use of’ conditional probabilities is preserving too

much detail. This leaves another dilemma , because the preservation of

detail is clearly desirable in some areas. However , th is shoul d not be

considered to be a fault of’ the (conditional probability ) compatibility

coe ff ic ien ts, for they are simply doing their job. Rather , in the ease

of the tree and gutter areas, the fault lies partially with the global

clustering process, wh ich fragmented the objects In the first place and

partially with the data itself , which is particularly noisy in those

areas.

It is interesting to speculate on how to recover the left tree as

a single region . The segmentation has left a group of small regions

that are densely packed and mostly of’ cluster types B and C. One might

consider the use of a spatial adjacency matrix (HAR76] which woul d

measure the f;-e quency of pairs of label s over the set of region pairs

(NAG77 ). This NxN matrix (where N is the number of label s or clusters)

• woul d show , for instance , a high off—diagonal entry that would indicate

the frequency of label B adjacent to label C. If large enough , th is

entry  coul d be inter preted as a “cluster ” and the correspond ing region

pairs could be relabelled as belonging to that cluster. Thus, all of

• the small regions wi th label B or C would be super—labelled into a new

- • category. Notice that this is a kind of texture analysis in which a

H I
- ~— - •, - --  -- ‘—- - - 
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micro—tex ture pattern 1R1S76 ] consisting of two elements is detected

and labelled .

— —- ~ —?n ~~~~~~~~~~~~~~~~~ — - • •_ _  — ! _ —— —— — - 
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IV .6 Multidimensional Feature Analysi’~

Let us now turn to two methods of ’ augmenting the segmentation

process developed to this point. First , we will dicuss the use of

color spaces ot her than RGB , in which color information is enhanced .

The enhancement often leads to better discrimination of objects in the

scene. Second , we will consider the use of higher d imensional feature

spaces in which it is possible to obtain finer cluster discrimination .

IV .6.1 Opponent Color Features

The segmentation technique s depend on the measurement of some

feature(s) of the image pixels , possibly including the raw sensory data

originally used to represent the scene . For color images, the usual

measurements  are the red , green , and blue components (RGB ) of the

intensity level at each pixel in the scene. From t his informa tion , a

var iety of other re presentat ions , such as n ormal ized RGB , or hue ,

saturat ion , an d Intens it y (HSI ), may be derived [TEN7~4,RIS77).

However , because m a ny of these t ransformat ions are non linear , th -y give

rise to distributions wi th unavoidable singularities [KEN76]. The

presence of these singularities may severely compl icate analysis of the

resulting histogram . In order to avoid these difficulties , it has been

suggested that analysis be restricted to linear transformations of RGB ,

such as the YIQ (B1N57 J representation used in the television industry.

More recently , Sloan and Bajcsy [SL075 ] have argued for the use of

• an opponent—color representation which has been proposed as underlying

_ _ _ _  - •-• —‘-- —~~~I
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t h e  .‘m ’lor mechanisms in human vision [COR7O). Simply stated , the

effect of th is transformation is t L n parameteri:~ the RGR color ~1ata

~nto an equivalent set of features which have pairs of’ complementary

“olors at the extrem es of their scales ; for example , a feature whose - I

n pponents are blue and yellow would provide information on the relative

m ounts of blue anl yellow present . The “zero” point in the scale . S

where equal amounts if eac h hue are present , is white.

For a precIse ’ formulation of opponent colo r spaces one can turn to

the work of several researchers in colorimetry. See Pratt [ P RA7 S J for

-i i .  excellent rev iew of systems such as (U ,V ,W ) , (U’ ,V ’ ,W ’) , and

L,a ,b) . Unfortunately , as Pratt points out , there is no clear

triechanism for selecting one system over another. We have selected the ’

• opponent syst~m (U’,V’,W’). an extension of (1P ,V ,W) for the current

work . The opp.-’nent ax ‘s may be Interpreted as follows :

U’ red vs. green

-

• 
V ’ yellow vs.  blue

W’ white vs. black

The (U’,V’,W’) system ha~ the important property that chromaticity

mnd brightness changes are more or less un i formly noticeable [PRA78).

Thus, In this space , our perception of color differences in an image

that is displayed on a color monitor will be roughly uniformly

proportional to the digital representation of those differences. This

property which should aid In the subjective evaluation of’ image

segmentat ion results , is absent In (R ,G,B) space.

The computation of (U’,V’,W’) from (R ,G,BI is defined by:

~~~~~~~~~ -—~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ~~
--

~~ 

-
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U ’ (217. 358’R — 130 . 319’G — 2~4 .558’B + k1 )’M1

(—3 5 . 461’R — 79.703’G + 90.508’B + k2 )’M 2

= ( 60 .594’R + 80.160’G + 49 .265’B)’M3
where and k2 are selected to insure that their respective

components are str ict ly In a positive range and

M 1,M ). and H are se lected so as to scale the components

to n b i ts ; n = 6 in our experiments.

We should mention that we have multiplied each term of V’ by — 1 before

scaling . This changes V ’ so that It effect ively measures blue—yel low .

This allows a blue object to appear closer to a natural color when

displayed on an RGB color monitor.

Figure IV .114 shows the results of transforming the R ,G,B

components into UI,V*,W~. Notice that many ~~f’ the objects appear to be

m uch more strongly contrasted in U’,V’,W’ than they were in RGB , (e.g.

the left—hand tree and the bushes). Notice also that the U’ histogram

has much clearer peaks than any of the RGB components.

It is worth mentioning that a “simplified” opponent system has

also been exp lored . The comp utat4 on is as follows :

RC 2’R — G — B (red—cyan )

GM 2’G — B — R (green—magenta )

BY 2’B — G — R (blue—yellow ’)

The computation is simpler for the obvious r€ason that the

S coefficients are all integer and thus no scaling is necessary (except- a

linear shift to insure posit ive values) . The result of subjective

evaluation Is that this system yields images that are contrast

1 ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ - n  .~
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(a) U* : Red— ( reefl (b) Histogram of U*

(c) V*: Blue—Yellow 
(d) Histogram of V*

(e) W*: W h i t e — B - L i c k  (f) Histogram of W*

!jj ~ire t V . l4  P*, V,~~ W~ opponen t color c~~ Q2ne~ t.~~ The color
names associated with each component correspond to the

gray scale range ‘white—black.” The indicated peaks 
‘

were automatically detected. 
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enhanced . Moreover , the histogram s appear to have greater cluster

separation than in RGB , thus allow i ng improved cluster det ec t t ~ n.

IV .6.2 Two—D imensional Peak Detection

Looking again at Fi gure IV .14 , one notices that there are objects

th i t are clearly distinguishable in one feature that are no)

distinguishable in another . For Instance , there Is clearly an edge in

U’ between the right tree and the roof , while these same cIi ec (s  are

much less distinguishable in V . On the other hand , In V ’ t he lef t

bushes (shadowed) are clearly d ist inct  from the r1gh~ hushes

(un shadowed) , but they have about the same apparent. intensity ~evel In

U’. Of course this is not necessari ly a po s i t i ve  cha racte r ist ic of V’

he’au se one would like the bushes to be labelled the same.

These observations lead one to conclud e that c lass if i c : t  ion of

pixel s into clusters would be improved if more features wr re used .

This technique was used by Ohiander [0HL76]. In his algorithm , regions

were liable to be recursively segmented if they  were multimodal. in any

feature from among a Set of nine feature histograms. Another approac h

to multi—feat ure analysis Is to compute higher dimensional feature

spaces. In this manner , not only can the segmentat ion algorithm

exp loit distinctions in many features simu) taneously, but in addit ion

• subtle feature dependencie s often appear which may yield c l u s ter

cente rs that are better re presentat iv es of the underlying dab .

Moreover , all of this can be accomp) ished In one st ep instead if many

recursive steps.

-j
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One problem with multi—dimensional feature spaces is that

clustering becomes a very non—intuitive , abstract process. This means

that it is difficult to evaluate whether the clustering process is

behaving in a desirable manner . For this reason , we have l im i ted the

application of the segmentation algorithm to 1-0 and 2—0 histograms

since they can readily be displayed and understood .

Consider the set of’ 2-1) histograms shown in Figure IV.15. In each - •

ease the axes are labelled with some pair of color feature components

from (R ,G,B) and (IJ ,V,W). The frequency of values of a feature pair is - -

displayed as a gray level (white = very high frequency). Notice that

the RG , GB , and RG histograms all have the appearance of being very

highly correlated . This is con firmed by looking back at the .1
correspond ing images (Figure IV.1O), which all have a similar visual

appearance. The J’V ’, V’W’, and U~W~ histograms have different •

characteristics. Here we see a wide spread of off—diagonal clusters.

rhe detection of’ these additional clusters leads to a clear

computational savings by reducing the num ber of’ recursive region

decomposition steps necessary to accurately locate the underlying

regions.

The peak selection algorithm explored in Section IV.3.1 can easily

be modified to handle 2—0 feature clusters. Recall that the 1-1) peak

selection algorithm used the minima between each max imum to determine

peakedness and that this was an important crIteric~n For peak 
-~~~

acceptability. Detection of’ local max ima in two dimensions is

straightforward , but detection of’ the corresponding valleys between

Ii
~~lL - .
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peaks Is more complex .

Minima selection in two dimensions Involves a search in 2—space -

for the highest ridge between two clusters, that Is the max over all

paths of the minimum value of’ the path. This could be implemented as a 
-

parallel tree search , but we suggest a simpler alternative solution .

For each local maximum, the peakedness will be tst im ated via a

“center— surround” operation by computing the ratio of the “height” of a

local to the average height of the surrounding points in some

neighborhood around the maximum . This operation , combined wi th a

peak—t o— peak distance criterion , seems to be a low computational cost

approximation to the 1D peakedness criterion . However, it could allow

two peaks to be sel ected when there was a high connecting ridge between

the peaks , making them one syntactic entity. This r-s k is worth the

simplicity and reduced computational cost of the center—surround

ope rator. The results of this peak selection algorithm are indicated

by the labelled peaks assigned to each histogram in Figure IV . 15.

Notice that using a large set of features implies the need for a

feature selection process. This might take the form of simpl y picking

the histogram with the greatest number of peaks. Another possibility

is to compute the entropy of the histogram . A h[gh entropy val ue

Impl ies that the data in the histogram is widely spread . This could be

• interpreted as ind icating greater numbers of clusters.

However , both of these measures could be improved by considering

the “quali t y ” of’ the peaks as we l l , where quality is a function of

peakedness and separability. Thus, each peak could be rated by the

-- -- 
- - -
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product of its peakedness and its average distance to other clusters.

The histogram could then be given an overall rating as the sum of the

individual peak ratings. This heur istic has worked reasonably wel l in

our experiments although further evaluation is required .

IV .6.3 Results wi th Two—Dimensional Opponent Features

Next we consider the results using the opponent color features in

a 2—0 histogram . The pair (V * ,W*) was selected because its histogram

had the highest num ber of peaks . The peak selection algorithm selected

seven clusters (indic ated in Figure IV. 15) and the initial pixel

labelling is shown in Figure IV. 16. Notice that there is a finer ——

although not perfect —— discrimination of’ the roo f from the right tree .

In addition , the left bushes (which are in shadow) are labelled in •i

different cluster from the right- bushes (which are more sunlit).

The results using relaxation are shown in Figure IV . 17. The

algorithm used probabilistic relaxation wi th conditional probabilities

and was applied to a 4—adjacent neighborhood with the center pixel

included . Compatibility coefficients were comput ed from a 20 (V’,W’)

histogram . These results can be compared with those in Figure IV. 12.

There seems to be a general improvement in the quality of this

segmentation over the results using the 1—d imensional histogram

clusters obtained from the raw blue feature. Major components of t,hc

right tree appear as separate regions , the left tree Is more or less in

one piece, th e roo f gutter is not qu i te as fra gm ented , and in general

all regions are much less noisy.

L 
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IV .? Conclusions

This chapter has covered a wide range of’ topics in image

processing. Relaxation labelling processes were defined and their

behav ior was explored with applications to artificial and natural

images. Compatibility coefficients for RLPs were explored and were

shown to critically effect the performance of the algorithms. Finally,

multidimensional color spaces were introduced and shown to improve the

sensitivity and quality of the results.

Let us now make some recommendations and evaluations based on the

work presented .

1. Post—processing via RLP of histogram—based pixel labelling

clearly improves the overall quality of a segmentation .

However , one must pay attention to the specifi~ behavior of’

the RLP in certain areas of images. This can best be done

with the help of test images that have been designed to

highl ight expected problems in image analysis , such as no ise

and unstable spatial structures. Other features such as

gradients , blurring , and complex texturing should also be

tested .

2. When appropriately specified , compatibility coefficients can

help prevent the RLP from destroying fine detail in an image.

This was clearly shown by comparative studies wi th

image—dependent coeff ic ients , image—independent coefficients ,

— • and no coefficients. The latter two experiments yielded much
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worse results than the experiments wi th coefficients based on

conditional frequencies of l abels in an image.

3. IXiring relax ation , the center pixel in a neighborhood should

be allowed to contribute to the label update function as if it

were a member of its own neighborhood . This allows spatially

fr~gile structures to obtain more sel f—support and thus helps

preserve fine image detail.

4. Plirality relaxation is use ful for noise suppression but is

dan aging to image details. However , it is com putat iona l ly

much less expensive than other relaxation schemes, and

therefore it may be of use in certain domains. In fact , its

behavior in a complex natural scene domain did not appear to

be much wo rse than the more complex probabilistic relaxation

sc hemes.

5. Clusters that are hidden in one—dimensional histograms ( due to

over lapping distributions) may be revealed in

multi—dimensional feature spaces. The extra clusters that are

revealed may (a) lead to finer discrimination of’ image

regions, and (b) reduce the number of’ overmerged regions ,

thereby reduc ing the need for recursive segmentation .

6. Opponent color spaces seem to enhance object boundaries and

give clearer cluster separation in histograms.
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C H A R T E R  V

FURTHER CASE STUDIES IN GLOBAL SEQIENTATION PROBLEMS

In the prev ious chapter , we discussed the details of the design

and behav ior of’ a segmentation algorithm based upon global statistics

and a local update process . The algorithm was shown to yield

reasonably accurate segmentation s In noisy Images with thin structures. 
-
,

The bulk of this chapter will be devoted to exploring two weaknesses of

the algorithm whose effects were somewhat hidden in the previous
0

discussion . These weaknesses stem from the global nature of the

algorithm and can be demonstrated to yield disastrous results in images

with certain characteristics. We will again make use of test images to

explore problem situations. However , the analysis here will be much

m ore comprehensive than that of Chapter III  since , in addition to

cluster overlap, the effects of relaxation w Ill be accounted for.

The first weakness was explored in Chap1~er III and lies wi th the

use of feature histograms computed globally across the entire image.

In our algor i thm , the peaks in the feature histogram are used to

compute the initial probabilities associated with the label set of each

pixel . It will be shown below that the global distribution is often a I
;

very poor reflection of the actual distributions of local objects. For

example , clusters with relatively close means may not have

distinguishable peaks and therefore the label set will not be

representative of all the informatiion in the image.

The second weakness of the global algorithm can be seen in the

105

- —



computat ion of the structure—preserving compatibi l i ty coeff ic ients used

In the probability updating process . Here , there is a two—fol d use of

global lnformatjoi. First , the coefficients are computed as a function

of the prior probabilities of each label , which are themselves

reflective of possibly inaccurate global clust er information . More

sign ificantly, however , Is the problem that the coefficients are

computed across the entire image structure. This may prove to be a

very poor reflection of the actual local info rmation that will be

encountered in any particular area. Thus the global compatibility

coefficients may drive the local updating of’ probabilities towa rd the

“average” Stt’ucture which may be quite inaccurate.

The cas’s that will be presented in this chapter form .in ana lys i s

of why the global algorithm converges to an incorrect segmentation in

simpl e images in which the objects a-c locally discriminable . A figure

is includ ed with each case showing : ~~ the test image containing

ntrbered objects , (.‘ )  the global histogram indicating cluster label s,

( f l  the initial pixel classification into region labels , and f inal ly

(4) the converged results after applic ation of two variant forms of the

relaxation update rule. The two variations are pl urality relax3tlon

and probabilistic relaxation using conditional probabilities for the

coinpatib ilit ’ coefficients. Roth of these algorithms were discussed in

the previous chapter . Note that unless otherwise specified , the update

rules are ~pplied using a 5—ad jacency neighborhood with the center

pixel included as its own neighbor).

Figure V.0 is a compilation of the images that will he tested . In
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most of the ex amples the reader ’s attention ahould be directed to the

segment ation of object 4 (but 01 In case ). Notice that in each

image , 0 , is subject ive ly discriminable from the object surrounding it

Therefore , a successful segmentat ion of 04 . In which all of the pixel s

in the space occupted by 04 are given the same label , should be

achievable. In cases where the  segmentat ion Is less  than L b b ~

successfu l, there generally are two labels competing for dom inance . We

wi l l  count a p ixel  as an error if its most l ikely label is not the

label that occur s moSt frequently across the region.

V. I Case I , F~~~m~nt~ t Ion with Rec ove ry Via Iterative ~~date

Figure V . t I n i depi cts an image wit.h 4 clearly discrim lnable

objects ur 1 10, ~ ~~~~~~ 40, u~ t4 )~~. The histogram of this

Image, however, shows only distinct clusters (Figure V .1(b” . i~y

re(errtng to the schematic histogram TV .le** , it can be seen that

clust.r A (CA~ 
Is actually the sum of the d istribution s of objects

and 
~ 
(O~ and 0,,~ . The existence of a single cluster to represent the

two distribut ion s Impl te~ that and 04 w I l l be indistinct via the

global cluster labels . As we have seen before (see Case .‘, Chapter ~~~

thi s situation pt ent iali y l eads to overmerging : if O i and 0 , happen

to he s p a t ia l l y  adjacent , :is wel l  as having identical global labels ,

Note that 0 in a l l objects In thi s chapter .

‘1The sc hematic hist ograms are obtained from an “I deal” hnoIse— free 5
image .
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then only one region label will ultimately represent these two objects.

The situation is further complicated because the distribution of

04, while mostly subsumed by that of 01, is also partially overlapped

with the distribution of 02. Therefore fragmentation will result;

that is , regardless of the spatial arrangement of 01, 02, and 04.

0
4 

must Initially be represented by two cluster label s (CA and CB) in

some mixture.

Figure V.ld shows the initial labelling obtained by minimum

distance classification of the pixels into three clusters which are

displayed as three distinct gray levels. Overmerg ing does not result

because 03 by chance spat ially separates 04 from 01 and 02 .

Fragmentation in the Initial classification occurs in each region with

relatively low frequency. Significantly, the mislabelled pixels In

each region are rand omly d istr ibuted , because the distribution of gray

level s across each object was Gaussian ; in particular there is a

spatially invariant mean and the no1~e was spatially uncorrelated . The

net effect is that the mislabelled pixels are spread randomly about the 
- 

-

target regions and tend not to be spatially contiguous.

Figures V . le and V . lf  show the effect of two relaxation schemes

applied to the initial probabilistic labelling. The figures show the

highest probability label at each pixel . However , the probabilities

themselves are not shown . Clearly, both update rules yield the desired

effect of suppressing almost all of the 1 and ‘ pixel region fragments

into the dominant surrounding regions. In this example , neither the

; use of label probabilities nor the use of label compatibilities were

U 

~

U - -~~ --- i~~----~~- 
-
~~~~~
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necessary to correct the mislabelled pixels. Rather , the plurality

ru’e simply takes advantage of’ the sparseness of the errors and the —

lac k of any spatial correlation in the errors in order to succeed .

However , the probab ilistic relaxation scheme also operates effectively.

V.2 Case 
~~ 

Unrecoverable Fragmentation

Figure V.2 shows the same image as in Case 1 except that the mean

of has been shifted sl ightly, from 14 to 17. Locally, the contrast

of the average edge between 03 and 04 has been only slightly weakened

and is perceptually still clear to the human viewer. Globally,

however , the distribution of is now completely ambiguous —— its mean

is halfway between the means of 01 and 02 (10 and 25 respectively).

The initial labelling of this image (Figure V.2d) reveals the

ambiguity in a striking manner. 04 has been grossly fragmented into

two label types, A and B. Consider what has occurred . A slight ,

l inear shift in the global statistics of’ 04 has created a tremendous

change in the initial segmentation of the object. The problem is that

the mean of 04 is on the hyperplane boundary between CA and C8 of a

minimum distance classifier; small amounts of’ noise can vary the

initial classification .

Next consider the behavior of the relaxation processes, In

contrast to Case 1 , the mislabelled pixels in this image are very

densely popul ated. Consequently, a likely side effect is that some of’

the mislabelled pixels will be spatially adjacent. Note that the

_ _
- - U
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effect Is equivalent to spatial correla tion of’ the misl ibelled pixels ,

although the locations where this occurs within thlb area c’ 04 are

random . The plurality update simply “fills in” area- wherever one

label happens to be sl ightly dominant over another. This process

continue 5 until stable (but randomly configured ) reg i on sha pes are

attained . On the other hand , since the compatibility - -oeffici”.nts are H
representat ive of the initial classification , the probabilistic

relax ation process is biased toward preserving the spatial structure of

the misc lassified pixels. Therefore , less “noise” c leaning take s plac e

than with the plurality update.

The segmentations of this ex ample leave 04 fragmented inl o many 
U

U small pieces. It should be noted , however , that since the p ixe ls  in

each of’ the region fragments derived from the same population , their

gray values will not differ significantly in neighboring fragments. It.

i~ conceivable , therefore , that a post—processing algorithm could be

applied to the segmentation which would look for and att empt to recover

from such a situation. That is , for any pair of’ adjacent regions that

can be detected to have nearly the same distr ibution , the algor i thm

could relabel all of the pixel s involved with the same region label .

This would (hope fully) merge all of the pieces of into a single

unit. This techn ique will be explored in detail in Chapter VI.

V.3 Case ~~ Fragmentat ion and 0v rm~~~j n~

This case Is an extension of the previous example and Is designed

~~~~~~~~~~~~_tU _

~
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~
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to show the effects of both fragmentation and overmerg ing. It wi l l

also prov ide an ex ample in which the recovery process of region merg ing

just mentioned is not applicable. U

The image (Figure V.3) contains 3 locally distinguishable objects , 1
but the histogram shows only 2 distinguishable clusters. This example

is similar to the previous one in that the distribution of 03 is U

completely ambiguous —— its mean Is halfway between the means of 01 and

02. The initial labelling of 03 is equally d istributed between labels

A and B. Unfortunately, the adjacent objects happen to be labelled in

the same manner. Therefore, not only is there no cluster to represent

03, but worse , there is no spatial separation that might otherwise

isolate the labels assoc iated w ith 03 from those same labels in the

adjacent regions wi th which it is globally con fused .

The relaxation processes behave as described in the previous

example , except that there is a greater clean—up effect in 03. The

large surrounding regions provide additional support for their

respective labels; whereas in the previous example , 04 was surrounded —

by a “neutral” label type .

Recovery of 03 as a single region presents a very difficult

problem. First , the major regions shown in Figure V. 3f woul d have to

be re—histogrammed with the hope that they would reveal significant

bimodality . The bimodality, if detectable , would Ind icate the presence

of a new cluster type , say C~~ , correspond ing t-o 03. The regions wi th

b imodal distributions would then be split , and by recursively applying

U the whole algorithms to each piece, all of the newl y formed region

I ~
- ~ ~~~~~~~~~~~~~~~~ L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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pieces would have to been checked as potential cand idates fo” “reg i~ n

merging ”. If the correct pieces were recursively - ‘ound und then

correctly re—merged , 03 could be recovered . However , It Is unlikely U

that this process would succeed here , since neither of the two m3jor

r’gions formed is significantly bimodal . There si-uply i - not ~nough of

a sample ~
-
~
t’ pixels f’rom t~ generate the require I sect nd peak.

V .Ia Case 4, Fragmentation When Pixel Feature Values
are § ! 1~ 

Correlated

Recall that in case 1 the fragmentation of 04 was not considered

to be severe because the mislabelled pixel s were sparsely distributed

in the image and spatially uncorrelated . Let us now consider a similar

Image (Figure V.4) except that 04 
has been changed so that the

gray—level va lue of’ its pixels are not randomly distributed . 04 has

been given a piecewise linear intensity profile (called a “roof”) with

the center hav ing brighter values. More specifically, the mean of the

top band Is ii . c and its pixels are well inside the center of the

distribution of 01 (with mean 10). The gradient has been constructed

so that the mean of each row is slightly higher than the mean of’ the

previous row . This is continued until the center row of 04 
(~ = 18) is

reached , at which point the row m eans are gradually decreased until , in

the bottom row, the mean is again 11.5. Significantly, the mean of the

center band is 18 which Is just inside the tail of the distribution of

02 (CB). Keep In mind however that 04 is perceivable as a single

object and should be Ideally segmented as such. While it could be

- -~~~~~ ‘~~“ —~~- .— - -~~~~~ —--- - ‘
~~~
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argued that there Is a central light band that Is extractable , we do

not believe that there is any clear boundary along which the

partitioning would be justifiable.

The in itial labelling in the region s representing 01, 02, and

03 (i.e., the output of’ the minimtjt~ distance classifier) shows a small

percentage of mislabelled pixels that are randomly distributed across

the regions. 04, however , sho ws a set of mislabelled pixels that are 
-

spatially correlated about the center band . Note that at this stage ,

04 contains 418 pixel s labelled A and 94 pixel s labelled B. If we call

B the erroneous (or non—dominant) label , then the segmentat ion of

0
4 has an initial error rate of approx imatel y 18%. U

Now consider the behavior of the plurality relaxation process.

The plural ity scheme starts wi th the initial labelling and simply fills

in “holes” until stable structures are reached . Since the mislabelled

pixel s in 04 (labelled B) are more or less contiguous, the y are

sufficiently cohesive to maintain their own label identity and suppress

any pixels labelled A that are wi thin the center band . Of course , the

pixels labelled A are competing for dom inance at the center band from

above and below and are clearly the dominant force across the region .

- : Accordingly, the error rate is reduced from 18% to 10% in 8 iterations.

Next , consider the probabilistic relaxation update. This is the

first example in which the probabilities of label types can be shown to

be useful. Although the m inimisn distance classifier generally labels

the pixels in the center band of 04 as B , the actual probabilities of

these pixels are very close to .5 for both label s A and B. This area
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is , therefore , highly ambiguous , although slightly biased towards label 
U

B. Since the pixels there are ambiguously labelled , it will take many

iterations for them to converge to a more consistent label. Indeed , U

the power of probabi listic relaxation lies wi th the ability to defer

labelling until more contextual information propagates inward from

greater distances. The prediction of deferred labelling is borne out

by two observations: (1) it requires many iterations (i.e., 15) for

the ~~xel s In the center band to reach a high probability in some

label , and (2 )  the error rate ultimately is reduced from 181 to less

t han 6% , which is a significant improvement over the plurality scheme .

Before leaving this example , let u carefully exam ine the

compatibility coefficients to gain an understanding of how they

represent the Informat ion in the image. Table V. 1 shows the

compatibility coefficients for the initial probability labelling of the

U Im age. Four tables are presented , each correspondi ng to a di fferent -

neighbor relation , namely “above ,” “to the right ,” “below ,” and “to the

left” as measured from the central pi xe l in a square i~x3 window . Each

table has 3 rows and columns which correspond to the three labels CA .

C8, and C~.

Let us briefly discuss some of the important on—diag onal label

relat ions (other relat ions where c~ ~ will be discussed in later

csses). First , in all orientation s, labels A g iven A and C given C are

highl y c~ npat ible , while B given B is less compatible. These relation s

can be explained by noting that the size of a cluster directly affects

the image—w ide prior probability of that cluster label , and that the

- - ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ U ’;~~~~ 
.‘.-~~~~
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TABLE V. 1

Compatibil ity coe f f i c i en t s  for case 4. .ot- t ficien ts . i rc i t uih I ~~ 
U

— of the condit ional probabill tv , P(  t 
~~

) and are spec it  it~d hctween
all pa i r s  ot pixels A

1 
and A~ , where A . c Ni~ighborIiood of

coinpats f o r  Neighbor Re lat ion : “Above ’’ (N . ’! I I I

H~I I
A 0 . 4 2 t 6  — 0 . 1  ~ I -0 . b~ 32

B — 0 . 1 38~ 0.18 16 — 0 . 2  It)

1. —0 .  ~+t~ 3 I — 0 . _ i  5_
~ u . - - .3  

~- 

Compats fo r  Nei ghbor Relation : “ lo t i~e Rt gnt ” (E.tst~

~~~~~~~~ O.4494 ~~~~~ -0.hUO -

B -0.1812 0. 1~~ 4 I  -0 . 20$~
)

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

Compats for  Neighbor Relation : “Be low ” (South)

~iiIi ~_ _~E~~”II ~I~IiA 0.384 3 —0.15 16 —0 .5462

B —0. 1716 0. 1845 —0.1 ’~88

C —0. 6132 —0 .2 2 03  0.4687
_ _ _  

____ ---—i -—-~~~-~~~~~-- 
--_____

Compats for Neighbor Relation : “To the Left ” (West)

_ _ _ _ _  _ _ _ _  J - 
-~~ 

-i
A 0.4467 

- 
—0.1790 -0.6330

B — 0 . 18 33 0.1953 —0 . . ’08 9

C —0 .6319 —0. 206 1 0. -.75 2 
j

Compats for Neighbor Relation : “Cente r ”
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relat ive sizes of the cl usters are size(C
A
) > size(C~) > size(CB). A

small cluster impl ies that there will be few pixels in the image tha t

have a high probability label for that cluster .

The compat ibility coeff ic ients , therefore , ind icate that the RLP

is biase d toward promoting the probability of label A (or C) over label

B. This partially explains why the plurality scheme has a higher error

rate. All labels are equally likely in the plurality scheme, whereas

the inclusion of conditional probabilities biases some labels over

others. In this case , the biased coefficients help destroy the B—band

in the center of 04.

It is important to realize , however , that the b ias is not U

necessarily desirable, In fact it is simply fortuitous in this case :

if cluster A were smaller, then the error rate in 04 would be larger . r
In general on€- should ask why a non—local effect —— such as the size of

a distant object —— should have any impact on the local decision as to

what label should be promoted over another. This question will arise

again in later cases.

V . 5 Case ‘5 , A Second Example of Spatially Correlated Intensities;
Iterative Update is Not as Effective

This case (Figure V.5) is similar to the previous one except that

the intensity across object 4 is linearly increasing from mean 11 to F
mean 18 (top to bottom). Thus, the initial classification (Figure

V.5d) reveals a band at the bottom of’ the region corresponding to that

portion of the distribution of object 4 that is just inside the j

_  . _
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distribution of object 2.

This example , however , shows that the iterative schemes dii not

recover nearly as well as wi th the roof grad ient. Tn the previous

exa mp le , the center band (labelled B) was being attacked from above and

below by the A label . In this case , however , the bottom band is being

attacked only from above. While it is not obvious at this point , there

is less competition for the pixels in the mislabelled band——a nd

relatively more cooperation——than there was in the previous exdmple.

Let us explain this point in detail.

First , we examine the difference between probebilistic and

plurality relaxation . The probabilistic version has twc features that

plurali ty does not , namely, label probabilities and l ibel

com patibilities . As it turns out , in this example , the effects of

these two parameters tend to cancel each other out. In the plurality

scheme , the pixels in the bottom bands are unambiguously (mis)labeiled

as B (Figure V.5e). Since there are enough of the erroneous B’s in the

bottom bands , they are the local dom inant for ce and can ma inta in the i r

own label w ith th is updat ing rule , as well as consume any conta ined A

labels.

In the probabilistic relaxation scheme (Figure V.cf), howeve r , the

pixels in the bottom band are highly ambiguous , although they are

slightly biased toward label B. One might assume , theref ore , that.

these pixels will simply go wi th the flow , which in 04 means label A.

However , the effect of the compatibility eoe fficients must also he

considered (Table V.2). The compatibility bet ween label s A and C Is

-~~~ -~~~~ _~~~~ --~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~
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TABLE V.2 l ” t 
U

Compatibility coefficients for Case 5. The coefficients art’
a function of the conditional probability, P(~l Ip - ) and are s peci t  led
between all pairs of pixels A1 and ~~ 

where A~ Nelghboi hood of A
1
.

Coefficients for Neighbor Relation : “Above” (North)
U A 

- L~.
A 0.432V —0.1729 - 0 .6143
B —0 .1322 0.1819 —0.2404

U 
C —0.5615 —0.1944 0.4253

Coefficients for Neighbor Relation : “To the Right ” IS Eas t )

_ _
~~~~~~~~~~~~~~~~~ 

_ _ _

A i~ 447l —0 .1834 —0 .6316

B —0.1786 0.1940 —0.2119

C —0.6330 —0.2140 0.4779

Coefficients for Neighbor Relation : “Below” (South)

~
_ ____ _ i—_

~--- _ _

A 0.3901 - —0.1451 —0 .5615

B —0.1858 0.1827 —0 .1781

C —0.6143 —0.2241 0.~ 697

Coefficients for Neighbor Relation : “To tht- Left” (West)

A 0.4443 —0.1764 —0.6320

B —0 .1812 0.1953 —0.2113

C —0.6306 
—
_
—0.2091 0.~.743

Coefficients for Neighbor Relat ion : “Center”

_ _ _ _  _ _ _ _  _ _ _ _ _  

-I--
A 1.0000 —1.0000 ~~ —1 .0000

-1.0000 1.0000 -1.0000

C -1.0000 -1.0000 1.0000

L ~~~~
— . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~
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much more negative than the compatibility between B and C. This is

because of’ the global relationship betwe n A , B. and C, i.e. the mean

of ~~ is closer to the mean of C8 than  i t  is to the mean of CA.

Now , a pixel inside object 3 is going to have (on the average) a

1(1W probability of being label A . a higher probabtl1t~, of being label B -

and a much higher probability of being label C. Since object 3 is

rather large, its pixels will make a rather large contribution to the

global compatibility coefficients, and the latter will be strongly

influenced by these relationships.

Now cor sider a pixel located in the bottom band of’ object 4 with

ambiguity t etween labels A and B. The coefficients will favor label B

over label a~ because label B has a less negative compatibility with

label C in the orientation “below” (— .1781) than label A has wi th label

C (— .5615). Moreover, since the pixel s in object 3 are very strongly

b iased toward label C, the support that is given to pixels In object

4 is not only less incompatible with label B, but is also highly

probable. To summarize , label s B and C cooperate to preserve label B

more strongly than labels A and B compete to destroy label B.

One might argue that the relaxation labelling process is behav ing

in a desirable manner , i.e. that it is preserv ing a thin structure

(the “B—band”). However, this is not the case. First, it should be

remembered that the updating process mostly destroyed the thin band

(with the same characteristics) associated with the roof gradient.

Second, the action of the compatibility coefficients to boost label B

at the bottom of object 4 Ia purely an artifact of the global - ‘

- 
- - - - - I- 



distribution of all the regions, namely , it is an ar t i fact  that the

mean of object 3 is closer to the mean of’ object 1 than it is to the

m ean of’ object I.

V.6 Case 6, Glo bal Side-Effects: Increasin~ the Si ze of 0, ~~~~ctsthe S~~menta t  Ion of 0
4

This example (Figure V.6) is similar to the previous one ex~ept

that the area of object 2 has been expanded at the expe nse of object 1 .

As in case 5 , notice that there are no changes to the image that.

local ly  e ffect  object If , and therefore one would not- like the gUhal

changes to effect its segmentation .

The initial classification is approx imately the same as in case 5

because the positions of’ the global clusters are basically unchanged .

In fac t, the plurality result is exactly the same (Figure V.6e). The

relaxation result (Figure V.6f), however , has worsened . This is due to

the decreased global influence of object 1 and is refl ected In the

prior probability of label A as well as the compatibility relations

between A—A , B—B , and A—B (Table V.3). In particular , since object 1

is less prominent and object 2 is more prominent , a pixel pair wit-h

label A given label A receives less support than the same pair in the

image in case 5. The pair B—B receives more support in case 6 for the

same reason . Thus in comparing on—diagonal relationships between the

two cases, we conclud e that B’s have gained In sel f—support. Although

we will not explore them here , the reader can check that the ov erall

effects of the ott— diagonal relations (e.g., B
~
Cbeiow f C_B

ah(,)V~.,
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TABLE V.3 12Q

- 

1 
Compat ibility coefficients for case 6. The coefficients are a

• function of the conditional probability, P (ci~ B) and are spec i f ied
between all pairs of pixels A

i 
and ~~ where A~ c Neighborhood of Ai.

Coefficients for Neighbor Relation : “Above” (North)

A 0.4066 —0.2176 —0.5734

B —0.1780 0.2527 —0.3217

C —0.5089 —0.2875 0.4014

Coefficients for Neighbor Relation: “To the Right” (East)

A 0.4235 —0.2305 
- 

—0.5930 
—

B —0.2287 0.2669 —0.3021

—0. 5934 —0.3054 0.4~40

Coefficients for Neighbor Relation : “Below” (South)

K .~~. 
_ _ _ _ _F A 0.3593 —0.1897 —0.5086

B —0.2293 0.2536 —0.2751

—0.5730 —0.3093 0.4453

Coefficients for Neighbor Relation: “To the Left” (West)

A 0.4214 —0.2272 —0.5923

B —0.2291 0.2677 —0.3034

C —0.5919 —0.3001 0.4505

Coefficients for Neighbor Relation: “Center”

A 1.0000 -1.0000 -1.0000

—1.0000 1.0000 —1.0000

C -1.0000 -1.0000 1.0000

- 
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A—B , B—A ) are more or less neutral between the two cases.below above

V.7 Case ~~ More Global Side—Effects: Swapping the Means
of’ Objects 1 and 2

The lower half’ of’ the image in case 7 (Figure V.7a) is the same as

in case 5; however , the intensity values of the objects in the upper

half have been reversed . Here, LI~ and p2 have been swapped , so that

now p
1 
is between LA 2 and 11

3 
(Lii 25, P2 10, P3 40, 1*4 16). This

example was constructed to show another global side—effect on the

compatibility coefficients and , therefore , on the local performance of ! ‘
.

the relaxation process.

The initial classification (Figure V.7d) is approx imately the same

as in case 5 and therefore the plurality result (Figure V.7e) is

approx imately the same also. However, the result of probabilistic

relaxation (Figure V.7f) is somewhat worse due to the weakened

cosipability of’ label A with itself and the relatively strengthened

compatibility of B with itself (com pare the on—diagonal relations in

Tables V.2 and V.4). This can be understood by considering the new

- 

I 
location of cluster A in feature space. Since it now lies between two

clusters, any deviation from its mean value not only lowers the

probability of A , but at the same time strengthens the probability of B

or C. As in the previous cases, a globally distant change alters the

performance of the RLP in a local area.

_ _ _ _ _ _ _ _ _ _  _ _
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TABLE V.4 132

Compatibility coefficients for case 7. The coefficient s are a
function of the conditional probability, P(aI~

) and art specified
between all pairs of pixels A

1 
and A~1 where A~ c ~Jeighborhood of A 1.

Coefficients fo: Neighbor Relation : “Above” (North)

J
_ _ 

— 

A

A 0.2964 —0.1353 —0.3886

B —0.1029 0.2835 —0.4923

~~~~~~~~ 
-0.4458 0.3771

Coefficients for Neighbor Relation : “To the R.ighL” (East)

fj~~~~~~~~~1 

--

~~~

-— 

A 
_ _ _ _ _ _ _

A 0.3047 —0.1433 —0.3977 
—

B —0.1396 0.2966 —0.4783

C —0.3980 —0.4807 0.4250 J
Coefficients for Neighbor Relation: “Below” (South)

I
0.2595 —0.1l47 —0 .3429 

—

B —0.1472 0.2924 —0.4394

C —0.3872 —0.4859 0.4195

Coefficients for Neighbor Relation : “To the Left” (West)

_ _ _
_ A 

_

A 0.3015 —0.1371 —0.3971

8 —0.1408 0.2975 —0.4789

C —0.3957 —0.4765 0.4217

Coefficients for Neighbor Relation : “Center”

1.0000 -1.0000 -1.0000

A —1 .0000 1.0000 --1.0000

C —1 .0000 -1.0000 1.0000
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V.8 Case ~~ Add ing Thin Lines

Case 8 (Figure V.8) has been includ ed to show that the

compatibility coefficients are not necessarily sufficient to preserve

thin stucture in an image when that structure is not typical .

The image was man ipulated to ensure that each pi xel in the

diagonal lines was correctly labelled initially (Figure V.8d). The

plural ity update (not shown) destroys these lines in one or two

iterat ions , because there is only one supporting pixel (the central

pixel itself), while there are four competing pixels. Notice that this

• - situation would not be significantly improved even If an 8—adjacent

neighborhood were used. In that case , there would be three supporting

- 

pixels against five competing pixels.

The probabilistic update (Figure V.8e) maintains the correct label

- - of the pixel s In - the diagonal lines for a few iterations. However ,

— 
- after convergence, they are replaced by the dominant label it t h e i r

• respective surrounds. Clearly, this Image contains very little

statistical information to support the existence of the diagonals. The

relationship in the background , I.e., between label A and label A (or

- 
label B and label B), is much stronger than the relationship across the

diagonals , i.e., between label A and label B. Thus the pixels along

the diagonal lines get modest positive support from all neighbors while

the pixels in the backgrounds receive very strong positive support from

• fl their neighbors.

1..
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V. 9  Conclusion

The examples in this chapter were constructed to show the powerful

impact of the global image characteristics upon the local Iterative

update processes. In each case , an Image was depicted in which all

regions locally were quite discriminable , yet the globally—based

segmentation algorithm was unable to yield satisfactory results.

Global influences such as partially and totally obscured peaks , reg ion

sizes, non—zero gradients across regions , and thin structure frequercy

were all shown to af fect  the performance of the segmentation algoritt’m.

In the next chapter we will show that localization of the algorithm to

subimages can alleviate many of the problems explored In this chapter .

~
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C H A P T E R  VI

LOCAL IZ ED SEGM ENTATION VIA PARTITIONING AND MERGING

The previous chapter explored some obvious pitfall s of t.he global

segmentation algorithm . In each of the cases deptc’ted the data was

locally discriminable , yet somo Information was globally obscured . The

results showed that regions could be broken or torn into fragments that

might not bo reatti ly reassembled . The existence of these cases has

motivated us to reformulate the segmentation algorithm as outlined In

Figure V I. 1. Th e- basic idea is to focus on local areas of the image

hat are .~mall enough to reveal local clusters and local act iv i ty yet.

l arge enough to he statistically meaning ful .

In the new formulation the image is initially partitioned Into

regularly :;paced , square sub—Images , called sectors. The segmentation

- 
algor ithm i:% then applied to each local domain just as before. Thus,

each sector receives the full focus of’ the cluster detection and

Iterative labelling process, thereby relieving t.he problems of

non—local compat ibility -coefficients and (somewhat) cluster overlap.

Now, many 0 ” the region s that are obtained by this process are 
S

arbitrarily split - along the boundaries of adjacent sectors. Therefore,

after the set of sectors has been segmented , a post—processing stage is

applied to merge selected reg ions that were art ifici ally spl it along

sector boundarie:;. The merg ing process is based on the ability to

decide statist ically whether the union of’ two adjacent regions produces

unim odal or bimodal distributions of’ feature values. This chapter wifl

136
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L _ _ _ _ _ _ _ _

partition the image
into NxN sub—images
(usually N—l6 or 32)

Apply the segmentation
algorithm independently
to each sub—image :

(a) select features ;
(b) determine peaks in

feature space;
(c) assign initial

pixel labelling;
(d) apply RLP

If necessary , recursively
apply the algorithm to

[
any of the resultant regions

Merge all pairs of
regions lying along
the artificial
boundaries of the
sub—image if the
boundary segment is
of low confidence

_ _ _ _ _ _ _

Figure VI.l Localized Segmentation Algorithm. 
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focus on the design issues of the localized segmentation algorithm , and

w il l  st~ow some results based on artificial and natural scenes.

VI. 1 Desitn and Implementation Issues

1, 1 Size of’ Sectors

The first step of the new localized algorithm requires

partitioning the image into a Set of smaller sectors. There are two

basic concerns in selecting a sector size . The first is the

elimination of the hidden cluster problem , so that all locally

prominent regions can be associated with a unique cluster. Second , it

is desirable for the sectors to be small enough so that any image

S structures that are present are “prominent” within the sector. This

will allow the comp tibility statistics to properly represent local

activity. In the limit this could require sectors consisting of’ a very

small nianber of pixels, but , of course , the sector size can not be

reduced to an arbitrarily small size , since this would lose the ability

to estimate the feature distribution by means of a histogram . In such

a case peak selection and feature evaluation could be meaningless.

Our choice of partition size will be restricted to powers of two .

Although this is not a rigid requirement , it  facilitates the

implementation of the algorithm in a parallel fashion in our processing

cone (HAN76 ], where each sector is accessed and processes

simultaneously. Sectors of size 16x16 and 32x32 were chosen because

they were often suffic ient to yield smooth histograms of’ reasonable

U’
.
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appearance in both artificial and natural images.

The partitioning issue has an obvious weakness. Consider a sector

with a visually distinct region that is easily detectable. f this

reg ion happens to extend slightly into one of the adjacent sectors, it

is quite possible that those associated pixels will not generate a

detectable peak in the histog ram of the adjacent sector. This woul d

mean that a portion of a clear region would be lost in the local

segmentation due only to the artificial placement of sector boundaries.

To remedy this situation , each sector will be expanded so that it

overlaps with each neighboring sector by 25% on each side. rn the case

of a 16x16 “inner ” sector , it will be expanded to a 24x2~4 “outer ”

sector so that it overlaps each adjacent sector by ~4 rows or columns.

The assumption here is that any small protrusion into the inner sector

will be sufficiently represented in the outer sector to be globally

detectable in the outer sector histogram .

VI. 1.2 
~~1~~~~

atio!~

The segmentation of the partitioned image proceeds by

independently applying the global algorithm to each sector. It was

found that even wi th sectors as large as 32x32, the feature histograms

sometimes were very jagged and the peak/cluster detection was somewhat

d ifficult to analyze subjectively. Therefore, it was decided that the

automatic peak selection criteria , when applied to such a small number

of points, should be modified to allow more clusters. The

justification for this decision , whioh potentially leads to re.Uon

- 
- - -  _ ____
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fragmentation , depends upon the effectiveness of the merging step to

recover fran a peak detection error. Hopefully, if an addit ional

cluster label leads to the fragmentation of a region , then the local

statistics of’ the region fragments should be very similar , and they

will thus be reunited. Conversely, if the region fragments are

significantly different, then they will remain separate as one would —

expect. The merg ing process thus prov ides the means of recovering from

certain types of errors in the peak detection process, allowi ng the use

of a less conservative cluster detection mechanism .

Notice that the system now has the ability to employ the feature —

histogram that is most appropriate for the sector under scrutiny. This

will allow much finer discrimination of objects than the global

approach permits. However) this flexibility makes the merging process

slightly more cumbersome as will be shown in the next section .

‘11.1.3 Mer1i~~ — Sewing Regions at the Seans

The final stage of the local segmentation algorithm requires the

reuniting of’ the independently segmented sectors to form a continuous

S segmentation wi th boundaries only where they are actually indicated by

the data. Prior to merging , the image consists of’ a set of uniquely

labelled regions, some of which have been artifically broken into

pieces by the partitioning. Thus, there will be vertical and

horizontal lines wh ich we will call “seams” that cut across certain

regions. The seams are , of course, the artificial sector boundaries.

The obvious approach to merging these regions is to base the process on

U’
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exactly the information that would have produced single or multiple

regions in the segmentation process —— the modality of the distribution
across the regions under consideration . Consequently, the merging

process requires the ability to detect whether a pair of adjacent

regions form a unimodal or bimodal distribution .

One method for carrying out the merg ing process is to examine the

histogram formed by the union of the data in the two distributions ,

using a slight variation of the peak selection algorithm . The goal

here is to determine the presence (rather than the location) of either

one, or more than one, clusters. If only one peak is detected , the

d istribution will be assumed to be unimodal and the boundary between

the regions will be eliminated ; otherwise , it will be left intact.

This technique , although prov iding a lot of information , has the

obvious drawback of requiring large amounts of storage for histograms

—— one per region . Worse , due to the artifact of partitioning , the

number of regions to be histogrammed is much greater than the num ber of

regions one expects to find in the final segmentation .

A simpler technique , although possibly less reliable , uses a

statistical measure of the two distributions in question. In a paper

on bottom—up region analysis , Yakimovsky [YAK76) suggested using the

: following criterion for merging atomic regions: -

Cl2 — VO/Vi * V2
- S 

where

V0 the standard deviation across both regions 1 and 2

Li
1.- —--- - 

- - S
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V the standard deviation measured across region 1

V.~ the standard devi.~t i~~n measured across region 7.

can be Interpreted as the ~-cnifidence that region s R1 and R-, are 
1

separate regions. For our purpo ses, when C1.~ 0 we will consider that

and R2 can be merged .

Not ice t mt i t  t’.~~ion 1 and regIon 2 have ht~ same 1 • ~~~~ I ‘n

UI~ II ) ~~~~~~ the output of t.his measure I~

- which is the minimum value that this function can take on. As the

means of the regions beeome f’u r ther a part , C~~ can get- arbitrarily

large since the standard deviation of the joint distribution will be

larger than that of the individual distributions.

There are two problem s with using this function . The first is

that L12 depend s on 110, which means there is not a unique baseline for

comparison . To remed y this , we have squared the numerator yielding:

= v0
2iv1 *

rhis effectivel y normalizes the function , so that C 12 is 1 when

= V~ = V2.

The second problem with the original measure arises whenever there

is a large diffe rence in the size of’ the two regions. In this event ,

C12 will be approx imately equal to the standard deviation of the larger

reg ion , say reg ion 1. Then

C12 V1/V1 * V2 - 1/V
a

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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which is generally much less than 1. Thus, a size difference biases

the function toward merging . To remedy this , the computation of’ V0 can

be changed as follows:

V0 — (E(xi 
— p

1)
2,~m + E(x~ — u2)

2/n)

where m and n are the sample sizes of the two regions. This treats the

two distributions as if they were of equal size. The final measure is

therefore:

= *

wh~re V0 is computed as above.

111.2 Examples of Local Segmentation

We will now demonstrate the effectiveness of the local

partitioning algorithm over the global algorithm . First, let us

examine some of’ the examples in the previous chapters and then apply

the algorithm to new, more difficult cases. In each case, probabilitic

relaxation with conditional probabilities as compatibility coefficients

and a 5—adjacency neighborhood are employed .

VI.2.1 Case 2, thapter V: Recovery from Fragmentation

This example is the same as Case 2 fran Chapter V; Figure

~~~L I - - -~~_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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~~~~~~~ and c recapitulate the glob di segment it ton . Recall that t ric

distribution of object ~l was hidden by those ~t ~ t~j e ct  ~ 1 and 2. The’

t;lobal segmentation fragment ed obj.-ct ~ I r it  ~‘ ~hir y small p~ - ‘ ~ -s . l e t  us

now look at the pe r formance of the l~ c,~l seg m e nt  ~t ion . When he mage

is spl it into ~2x .L’ sectors (Fi~ tire VI. 2d) , the local histograms

clearly revea all lie re lev~ nt peaks . The histogrei s of the top -
~ S

sec tors are s imilar in appearance since the noise stat is t i cs  are

basically the same in eich sector ; this is also true for the bottom 2

sectors. The pixels in each sub—i mage are initially classified , and

relaxation labelling yields the result shown in Figure VI.2g. Finally,

Figure VI .2h shows the result of ’ applying the merging process across

all of the adjacent regions. Table VI. 1 shows the merg i ng statistics

for all pairs of adjacent. region s that touch the artifici a l sector

boundaries . A zero entry indicates non—adjacency. Notice that

a l tho ugh there is a wid e range In the merg i ng statistics , the values

tend to cluster around values less than 7 and greater than 70. The

threshold for merg i ng Is set to 2 and applied across the Image. This

last step yields the result shown in Figure VI.2h. The error rate In

04 has been reduced frm 30% in the global analysis to 0%. Notice that

the merg ing threshold would have to be Increased ten fold before any

adverse remergng would take place.

V1.2.2 Case 5, Chapter V

This ~xa mple is the same as Case 5 from Chapter V. Figure VI. 3

demon strates again , that wi th the disappearance of the mislabelled

L. - - - - -~~~~~~~
__

- 

S 
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- r •. ii’ Image l~~*se 2 , (h) h i s t o g r a m  computed ( )  laxat  ‘u res ul t  ( 5 —

Chapter V) * - t - ’ss t he ent i re  us - ~~hh’ r . i , i. - ‘ u i i t  ional
- image proi iI.~ i t t  i.-s ‘i

s i t  t hu  it  y s  .‘e t  I is i ent s )

(d ) Image as 12x 12 ( e )  lu st u1-rurn of ses ’ t s srs (f )  lu st gr~un ‘1 s c c t s ’ r s  3 sst
Sc ~ ,rs I or 2 (upper sec tors)  ~ (lower sec t o rs t

R .

a5 It 7

R
h

L 

(a) Composite showing the ‘s s e c t o r s  (h) Final result a l t  S r  merging
segmented independently , each is - russ u r t i t i c l a l  sector
gray  le ve l  in a s e c t o r  represents boundaries
a unique label .

~~ re V l. 2 Localized Segmentation of Case 2~~j’~haj~~~~~ V:  An image is f i rs t  broken into 32x32
- sectora . Each sector Is then independently segmented. Finally , regions that

I were a rt i f i c ia l ly  broken at the sector  hou~ daries are merged if their distribu tions
j - are similar.
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TABLE Vl.1

Merging statistics for all adjacent region pairs from Case 2, Chaptt’r
V. Values are proportional to the degree of ditference between a pair
of regions.

1

2 19.9

3 1

4 1 22.3

5 >99

6 >99

7 ~-99 1

8 1 >99

1 2 3 4 5 6 7 S
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(g) Composite showing the (h) Final r,’sul t it  t s r  remerging
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independently houndnris-s
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bottom band of the grad ient there is significant improvement in the

output of the local segmentation . The Improvement is of course due to

the visibility of the cluster assoc iated with the gradient , which was

hidden in the global histogram .

VI.2.,3 Case 9, Demonstrate the Effectiveness of Overlapped Sector

Boundaries

The image depicted in Figure VI. -Lta was designed to show the

importance in the local ized segmentation algorithm of overlapping the

boundaries of the sectors. First , the Image is segmented via the

global algorithm . This image contains two partially hidden clusters

and therefore the segmentat ion is pa:ticularly bad , as shown in Figure

~~~~~

In the local algorithm (Figure VI.-~4e—g), many of the sector s

contain only a very few pixel s from a large reg ion in an adjacent

sector. The histograms of some of the 32x32 sectors do not show

significant peaks for the contribution of those region fragments.

Figure VI.5 shows the histogram of the lower left—hand sector , wi th

and without the “extra ” points . The peak in Figure VI.5a correspond s

to pixel s from 03, while the additional peak in Figure VI.Sb

correspond s to the band of pixel s from Oi. To remed y this , all sectors

are extended by 25% in each direction , yielding ~t8x’l8 domains. In

general , the augmented histog rams reveal the presence of the

d istributions of the poorly represented regions. Wi thout these

augmented histograms , some of the sectors woul d be incorrectly
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- 

- 5; 

‘ 

- 
, , ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



: 

( mall)

l - - , i , ~~ w i t s  -. sts l e- t s .  , ‘~~ t~~s a (b) Global histogram reveals univ
1 l t s s i t  i t It s ’ t t s it v  ramp. 2 c lusters

~s )  hilt i s i t ’ s ’ l lj s t  (d l  l’ t ’ ts . i h t i i — t i c  re laxat ion  result
(g lo ba l)  -

L T
-L

k s ’)  lnt 1~s’ l i v i  t o t  into 1 tsxl n ( f )  Result ut segment ing s’ i;  ~ s ’ c ‘ i
independent lv

~~~~ire V 1 . s  Case 9, L o c a l i z a t  ion

~~ plied to an image
with two hidden

t clusters in the j~loi- stl
d is trihu t ion.

( 1 t u t u  1 o c t 1 1  resu l t  a f te r
~a’rging

.1.

A 
~~~~~~~

_
~~~~~~~~~~~~

-—



- - -~~~~~~ -------- -- -- - --
~~~--~~~~~~~~~~~~~ 

-

i - u t t t ( s s i i s~ i liii u s l  Iu’wt-t  t i s t 111 1 ‘g lass  ‘I
u I ~ht t iCs  t t s r  ‘ ‘ 5  I 5 5 5

l-’lguut ~ - V i .  ‘t ItIj ISSI I i l t i s t’ S I li ves 11,1 lii~ t e s t i i , t u . t h e  b lat  uigrans

* e hisw s’ i t iglut luau ,1 , , l  ut- ut a s a s ’ V (a sh,* ’wu .
I a) Iii, ’ ps i lis t ‘ a t e  I .tk, -t t  a t t  t~~t Iv l i s s i t i  w i t  b in Its’

.uit ,l - i l i s i , - t u l s  • , t t , ” -  s i t  I v  o t to  ~iCs,k s i l t  u’ st~isti tu lliig

tojth.- p ’ I i t t  a iii ui~ II wt ’vt l , I v  ins - teas ing l iii ’ si ~o
the i.-~

- 5 , ’; ‘v . ‘ s i  .11t • t lis li lt; I usgtc t rn (Is ) I s ’ t ’. t is
the p iO u’ i is s ’ s ’l a - - ‘ u I  - i  t iNter s- s s r s i ’spssnshin i% 5~ s the
1551111 - - hut  ~~ - li i,. • I Is,- .utgmi—nted Ii t a t  s igi alut onS tu l s ’s - ’

t hat I lie ’.s - i i~ ’u w i l l  t’• - , ’ i~~,’t i t  ~- ,l , , ‘ t t  i ,l  l v ~

U
- - ‘ - _~~~~~ - — — — -

~~~~~~ - - ~~~~~~~~~ - -  -- -~~ - .- _



- -~~~ 

Is’

segmented . The final result of the local segmentation is shown in

Figure VI.11g.

ea se a , ch~~ter V: T h in  §~~t 1a1 Struc tures

This exar. iple (Figure VI. 6) is similar to Case 9 except that the

image has been made more complex by the introduction of thin lines.

Let us f irst rev iew the result of applying the global segment-at ion

process (Figure V.8 or Figure VI .6a—d). Notice that initially most of

the pixels comprising the thin lines are correctly classified .

However , as previousl y d iscussed , the globally—based re l axation process

ultimate ly destroys them due to the inability of the compatibility

coefficients to preserve thin structures whose feature values do not

occur frequently across the entire image. This segment ation of this

case should be compared to the result shown In Figurs’ IV.8b. In the

latter case , the thin lines are preserved throughout the relaxat ion

process , This is because their global frequency make s a slgnifiaant

contribution to the compatibility coefficients.

By cont rast consider the local segmentation results (Figure

VI .6e—g ). Notice that this algorithm not only localize s the histo~ ram

to small ar eas, but it also localize s the range of t-he compat ibi’ ity

“o’ffjeients. Thus the new algorithm Is capable of focusing on )o~’5tl ,

ortentation—dependent co—occurence s cu f label pairs as well as seeing

loral peaks . The final results are again a tremendous Improvement -- in

both of these respects——over the global segment-at ion ,

_
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V I.2.5 Localized J~~~~~~j~on ~pp1ied to ~~r Exanpie iXitdoor Scene

Finally, in Figure VI.7, we return to the natural , outdoor image

that was presented at the end of Chapter IV. The global segmentation - “

(Figure VI.7c) yielded poor results in the following areas:

(1) the roof and right—hand tree were inseparable;

(2) the left—hand tree was severely fragmented ;

(3 ) the house roof and garage roof were partially merged .

( 14 )  the house gutter and window shutters were poorly

delineated ;

For simplicity, the local algorithm has been app’ied using only

one feature (the raw blue data) which was the best choice globally

since it had the greatest n~ittber of distinct peaks .

The local segmentation (Figure V I .7d— f )  is a clear improvement

over the global result al though this still must remain a subject ive

judgment since there is no ground truth data for this image and any

hand segmentation would require making arbitrary boundary decisions in

ambiguous areas of the image. In any case , most of the segmentation

errors mentioned above have been alleviated .

VI.3 Conclusion

This chapter has shown tha t  a dramatic improvement in the quality

of a region analyse r can be obtained by localizing the focus of the

system . The new paradigm consists of artific ally partition i ng the

image , segmenting each partition , and finally, merging regions that-

— __________ 
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(dl Out door Image (b) Global tu is tog iam t i  I Rel ax d t ion result

- 1 -

I (d) image as 32 2 sectors

(e) Final (merged) result I t )  F in al result: edges only
disp layed as edges
over the da te

~~~~~~ V t . 7 :  Localized segmentation apj~j ied to our examp le natural outdoor
SC•~~e.
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were artificially broken at the sub—image boundaries. A simple,

apparently robust , merging statistic was developed for detecting

whether two regions are unimodal or bimodal . Results for both

artificial and natural scenes showed dramatic improvements.

It should be emphasized that the merging process involves a

threshold operation that may not always produce results that are

globally desirable. There is less risk of making an error in merg ing

when the merging operation is restricted to regions that are broken at

known sector boundaries. In those cases, one may assume that the

target region must have been broken somewhere along the sector boundary

(since they are arbitrary) and it might be sufficient to simply find

the region on one side that is most like it on the other. However , one

may want to apply the merge test in general , to all pa irs of adjacent

regions, as a post—processing check for fragmentation . In this case , —

the risk of’ merg ing regions that are better left alone increases.

It is interesting to note that the local algorithm , al thou gh

requiring apparently much more overhead than the global algorithm , does

not actually take much longer to compute . The reason is that each

local segmentation step is shorter not only because there are fe we r

pixel s , but a lso because fewer iterations are required to reach

convergence . In the global algorithm , the label probab il it ies of al l

pixel s are updated until the last pixel converges. In the local

algorithm , relativel y unambiguous sub—images can converge at a rate

independent of other more ambiguous sub—images.

_ _ _ _ _ _ _ _



C H A P T E H VII

CONC LUSIONS

This thesis has evaluated the results of various segmentation

algorithms applied to both a natural scene and computer—generated test

ima~es. It appears that carefully constructed test images provide more

insight into the capabilities and limitations of these algorithms than

the natural scene. The structure of the information in the test images

was chosen to be part icularly di ff icult for these algor i thms in an

e ffort to demonstrate both their capabilities and limitations. Such

results , coupl ed with natural sce ne segmentations , allow insights that

otherwise would not have been available. Let us now rev iew some of the .1

major findings of this research .

VII.1 Hi s tograms

It wa~ shown that segmentation by histogram clustering/pixel

labelling is a technique that is q u i t e  prone to error. Distributions

of objects in an image tend to overlap by varying degrees , wi th the

result that , some pixels cannot be accurately classified . A set of test

images was examined that showed how certain arbitrary image properties

can greatly affect the quality of the segmentation . These properties

include the spat ial arrangement of objects , the spatial distribution of

pixel values in an object, and the shape of an object.
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VII ,2 Relaxation and Feature Space

Next, a more complex segmentation algorithm that greatly improved

j the region analysis was presented. Instead of simply assigning a

discrete label to each pixel , a probabilistic labelling scheme was

introduced in which the label of a pixel is encoded by its relative

1~’ 
location in feature space. Then, a probabilistic relaxation labelling

process was applied to attain locally consistent labellings. Again ,

the use of test images proved fruitful to explore parameters such as

the choice of neighborhood configuration , probabilistic relaxation vs.

plurality relaxation, and the computation of the compatibility

coefficients.

In areas of an image that lack fragile spatial structures, it was

shown that any of the relaxation techniques improved the pixel

classifications. However, widely varying results were found in areas

that display fine structures. In the latter case, all of’ the

- techniques were shown to destroy f i n e  structure when the center pixel

was excluded from its own neighborhood. Including the center pixel as

its own neighbor has the effect of adding “self—belief” to the RLP by

- 
increasing support from like labels in the neighborhood.

I The definition of the compatibility coefficients also had a

t - pronounced effect on the classification error rates. Three variant

formulations were explored:

L 1. no compatibilities, as In the plurality relaxation scheme ;

2. “simple” compatibilities (r(i,ct,j , B) 1 , r (i , a ,8 , j )  — 1 ;
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and

3. compatibilities as conditional probabilities of label pairs at

particular orientations.

The first scheme does not use any information about the particular

image being explored and , consequently, does a poor job of’ preserving

fine details. The second scheme does not use image—specific

information , but it does use meta—information about images; namely

that one may expect to find —— and should promote the likelihood of — —
adjacent labels of the same t ype. This assumption is valid in coarsely

structured objects , but it is not adequate in finely structured

objects. In the latter , there is a large percentage of boundary area

and thus dissimilar label adjacencies are expected . Accordingly, the

second scheme does not yield very good results in areas of fine detail.

Both schemes I and 2 quickly reach a ninimun error rate , only  to

diverge drastically at later iterations.

The third scheme is the most complex and the only one that uses

image—specific information . Here , we are attempting to capture label

dependencies using the framework of conditional probabilities. Upon

careful examination , we were able to show how specific structures in

the image were translated into strong and weak compatibility

coefficients in the compatibility tables. This scheme yielded the best

results when appl ied to the test image. Moreover , it displayed the

least divergent behavior , reaching a minimum error rate in a few

Iterations and stayi ng there over time.
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In addition to exploring relaxation schemes, some effort was put

into exploring clustering techniques in one— and two—dimensional color

feature spaces. We found that opponent colors tended to heighten color

differences, yielding improved cluster detection . Multi—dimensional

spaces were found to yield more clusters than one—dimensional spaces,

and thus give better sensitivity to image characteristics without

requiring costly recursive steps in the segmentation process.

VII.3 Problems with Global Se_gmentation

Another set of test images was explored which showed that recovery

from classification errors via relaxation is not always successful.

Errors persisted when the initial classification of pixels in a region

contained : (1) a dense population of errors (cases 2 and 3), or (2)

errors that were spatially correlated (cases ~~~~~ In these cases, the

RLP tended to maintain the errors since there was significant local

support for them.

In addition , it was shown that the compatibility coefficients ,

because of their global nature , often biased the RLP in an undesirable

manner . Thus, for instance, changing the size (case 6) or the mean i)

(case 7) of certain objects affected the segmentation of other objects

that were spatially distant.

Finally, it was shown that thin spatial structures (case 8) could

be suppressed during relaxation even if they were initially segmented

correctly. Again , this was due to the lack of sufficient global

_ _ __ _  _ _  
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information to support the existence of these structures. Therefore,

in lieu of sufficient compatibility information , the geometry of the

neighborhood configuration dictated their segmentation . - 
1

VII.-Z1 Partitioning Prior to Segmentation

Analysis of segmentat ion results on test images led to a new

formulat ion of the segmentat ion algor i thm based on the use of

sub—images (sectors). The idea here is to partition the image into

sectors that are small enough to reveal local clusters and local

structures yet large enough to be statistically meaningful . By

art i fic ially break ing the image into small units , the prob lems of

cluster overlap and insensitive compatibility coefficients were

overcome to a great extent. The new paradigm thus minimize s non—local

side effec~s. After segmentation of each of the sectors, a simple

merg ing t~chnique is applied so that regions that were artifici~ lly

broken at ~he sector boundaries can be remerged to form whole regions.

This technique was shown to be robust and did not leave any obvious

reg ion fragments.

VII.5 Future Work

Let u~ consider a few areas that should be further explored .

First, the technique used to Initially label pixel s could be easIly

improved . The use of the Euclidean distance of a point to a cluster

Ui
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center is inadequate since it does not take into account the shape of

the clusters. It is very l ikely that there are points ~r a istogram

that are close to one cluster yet which lie ir~ the distr it ution of

another. In such cases , the initial labelling of a pixel wil ] be in

error . To remed y this , one could assume that regions have normal

distributions and then estimate the mean and variance of each cluster.

Then , the likelihood of any point belonging to any of the clusters

could be computed statistically.

Second , it seems clear that more work needs to be done on the

formulation of the relaxation process . Peleg l:PEL79) and Zucker

[ZUC79} have made some headway into characterizing RLPs and are

supplying non—heuristic methods for their derivation . The tendency in

the current research is toward the use of hierarchical relax ation

schemes and those that use compatibility coefficients which are better

approximations to the spatial dependencies that appear in t~e image

[RIS78J . Here , joint conditional probabilities of the set of l abel s in

a neighborhood can prov ide more effective updating criteria suggested

by a Bayesian probability framework . The limitation of this approach

is that m labels of n neighborhood pixel s requ~res estimation and

application of nxm compatibility coefficients.

Finally, we feel that a larger set of test images should be

developed . In particular , effects such as blurring (mixed pixels ) and

complex texturing should be incorporated into the images. Moreover , it

would appear that these kinds of’ images should be constructed as a

collaborative effort of the Image understanding community and made
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available to those involved in applying their t.?chn i ques to natural

scenes . We may then further understand the areas of  di f f i cu l ty  for
current algorithms and to address these problem s in a st ructured ~ay .
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some of the problems typically encountered in segmentation. In addition, a
new and robust algorithm Is presented that avoids most of these problems. - L -

The analysis is carried out through the use of a series of computer—
generated test images with known characteristics, Segmentation algorithms of
varying degrees of complexity are applied to each image and their performance
is carefully evaluated. It will be shown that even the most sophisticated
algorithms that are currently in use often perform poorly when confronted
with certain apparently simple images. In particular, it is shown that
techniques which rely on histogram clustering often generate gross segmentatior
errors due to overlap in the distributions of the individual objects in a
scene. Moreover, the relaxation processes used to correct these errors are
themselves prone to errors, but of a different kind. Here, we show that the
globally computed compatibility functions are inadequate to preserve image
structure, even in some surprisingly simple Images. J

Both techniques, clustering and relaxation, fail because they are based
on information which is too global to be effective in complex scenes.
Clustering fails because most algorithms do not take into account the spatial
feature information contained in the image. Relaxation—type algorithms take
the spatial content into account by utilizing global information applied to
local neighborhoods. However, global compatibility functions very often fail
to resolve local image structure. This implies that improvements in
performance might be obtained by localizing the algorithm to sub—images of
the original image. In fact, a dramatic improvement in performance is obtainei
when this is done. Each sub—image is defined to be small enough so that the
distributions of distinct visual elements are revealed as distinct histogram
clusters. Moreover, the compatibility coefficients are measured over a
sufficiently small area so that their characterization of the local image I
structure is not diluted by global effects. After segmenting each sub—image,
a merging algorithm is applied so that regions that have been artificially
split at sub—image boundaries can be sewn together to form the final segmenta-
tion.
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