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ABSTRACT

Studies in Image Segmentation Algorithms Based
on Histogram Clustering and Relaxation

September, 1979
Paul Alexander Nagin
B.S., Antioch University
M.S., University of Massachusetts
Ph.D., University of Massachusetts
\\Sk Directed by: Professor Edward M. Riseman
2 The research in this thesis has focussed upon the algorithms and
Structures that are sufficient to generate an accurate description of
the information contained in a relatively complex class of digitized
images. This aspect of machine vision is often referred to as
"low-level" vision or segmentation, and usually includes those
processes which funétion close to the sensory data. The bulk of this
thesis devotes itself to the exploration of some of the problems
typirally encountered in segmentation. In addition, a new and robust
algorithm is presented that avoids most of these problems.

The analysis is carried out through the use of a series of
computer-generated test images with known characteristics.
Segmentation algorithms of varying degrees of complexity are applied to
each image and their performance is carefully evaluated. It will be
shown that even the most sophisticated algorithms that are currently in
use often perform poorly when confronted with certain apparently simple

images. In particular, it is shown that techniques which rely on

vi




histogram clustering often generate gross segmentation errors due to
overlap in the distributions of the individual objects in a scene.
Moreover, the relasxation processes used to correct these errors are
themselves prone to errors, but of a different kind. Here, we show
that the globally computed compatibility func;ions;;ze inadequate to
preserve tmage structure, even in some surprisingly simple imasges.
k';>Both techniques, clustering and relaxation, fail bcecause they are
based on information which 1is too global to be effective in complex
Scenes. Clustering fails because most algorithms do not take into
N—
account he spatial feature information contained in the image.
Relaxation-Yype algorithms take the spatial content into account by
utilizing gldbal information applied to local neighborhoods. However,
global compatibility functions very often fail to resolve local image
structure, This implies that improvements in performance might be
obtained by localizing the algorithm to sub-images of the original
image. In fact, a dramatic improvement in performance is obtained when
this is done. Each sub-image is defined to be small enough so that the
distributions of distinct visual elements are revealed as distinct
histogram clusters. Moreover, the compatibility coefficients are
measured over a sufficiently small area so that their characterization
of the local image structure is not diluted by global effects. After
segmenting each sub-image, a merging algorithm is applied so that
regions that have been artificially split at sub-image boundaries can

be sewn together to form the final segmentation.
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CRAPTER I

INTRODUCTION

The research in this thesis has focussed upon the algorithms ond
structures that are sufficient to generate an accurate descoription of
the information contained in a relatively complex class of digitized
images. This aspect of machine vision is often referred to as
"low=level vision" and usually includes those processes which function
close to the sensory data. The general goal of our low=level rystem is
the transformation of a large spatial array of pixels (i.e, ploture
elements) i{nto a more compact description of the image in terms of
visually distinct syntactic units and their characteristics. Such  a
transformation is referred to as a segmentation. By a variety of
means, the visual {information must be aggregated, labelled with
symbolic names and attributes, and then interfaced to higher level
knowledge structures,

The complexity of the data which must be examined by the
segmentation processes has had significant effect upon the design of
those processes. With relatively complex, unconstrained {images, such
as  full color outdoor scenes, any approach to segmentation will be
prone to error. Highly textured objects such as  trees, shadows and
highlights on both regular and irregular surfaces, varied and
uncontrollable lighting conditions, all contribute to the difficulty of
analysis, Few objects or surfaces can be expected to exhibit truly

uniform visual features. Therefore, methods for dealing with this




variability must be incorporated not only into the processes

themselves, but also into the manner by which the results of the

processes are interpreted and used. The system discussed in this
thesis incorporates the flexibility of representation and the

generality of processes which are necessary to accomplish this task.
I.1 Evaluation of Segmentation

In spite of the very active and diverse research on image
segmentation systems, performance evaluation of these systems remains
an open question. In order to evaluate the quality of segmentation,
one must specify the goals of the processing. However, these goals
vary widely in their form and in their complexity. In one case the
goal might be to determine the presence of a dark area on a textured
gray background (as in biomedical image applications), while in another
it could be to provide information to a system which is to construct a
three-dimensional model of the physical surfaces that are present in
the imaged environmert (as in some 1image understanding systems
[(HAN'81).

Let us assume for the moment that the goal 1is to partition an
arbitrarily complex image, say an outdoor image, into objects and
surfaces. Although this goal is simply stated, the problem of
evaluating a segmentation which 1is purported to fulfill these

; conditions is still extremely difficult. Subjective evaluation is

| clearly not sufficient to provide the quantitative measures necessary




to compare either a given segmentation to a goal or to rank two
segmentations relative to the goal. Some form of "ground-truth" data
would be required in order to define global measures: the question
F remains as to where this data is to be obtained. In the natural scenes
to be analyzed here, information from the physical scene has undergone
several stages of degradation, including the photographic process, the
%- digitization process, and a spatial averaging process to reduce the
amount of data to managable levels (in this case, 512x512 to 256x250
pixels). The effect of these processes is to introduce noise, blur

edges, and to create hybrid feature values -- mixed pixels -- which are

not easily classifiable. Moreover, the image contains inherent visual

complexities such as irregular texturing, highlights, shadows, object
occlusion, and irregular changes in gradients due to changes in surface
reflectance.

The presence of these anomalies implies that accurate ground-truth
segmentations are difficult or impossible to obtain. Hand-drawn
segmentations are inevitably prone to errors and tend to reflect
implicit biases and explicit goals of the human perceiver. In many
instances the boundaries would be oonjectured, based on prior
expectations in the form of knowledge of object shape, shadow cffects,
perspective cues, and occlusion cues, In short, it is generally
accepted that a truly accurate segmentation of an image requires the
application -- at some point -~ ‘of "high-level" knowledge, 1{.e.,
knowledge beyond directly measurable features of the data.

The problem of when and what high-level knowledge should be used
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will not be addressed here. Because the sensory data is sometimes
inherently ambiguous, and because the procedures necessary to
disambiguate the image may not be definable in a low-level system, it
is difficult to decide whether an algorithm has done a good job of
characterizing difficult data or whether the algorithm has
misinterpreted that data.

We have adopted the goal of image segmentation to be the
decomposition of an image into visually distinct regions, that is,
regions which have relatively uniform visual properties of 1intensity,
color, texture, etc. One of the algorithms whose results will be
presented demands, for each region produced, unimodality in the
features used in the segmentation. However, we will show that this
does not ensure the proper partitioning of an image, due to problems
such as overlap of the feature distributions of adjacent target
regions.

In order to avoid many of the problems cited, we have chosen to
bypass the objective evaluation of the segmentation of natural
Scenes -- although we will apply the algorithms and subjectively
evaluate the results. On the other hand, the application of the
algorithms to machine-generated test data is more 1likely to 1lead to
insights into the capabjlities and limitations of the algorithm. Here,
"ground truth" is available, and consequently, the results are amenable
to evaluation as well. The algorithms developed in this thesis will be

applied to both machine-generated test images and natural scenes.
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I.2 The Processing Cone

There is a serious problem of data overload incurred by the
necessity of repeatedly processing images on the order of 256x256
pixels to 1024x1024 pixels. Consequently, a commitment was made to the
development of parallel algorithms within the VISIONS* processing cone
structure [HAN7Y4,UHR72,TAN75], wherever possible.

The function of the processing cone is the transformation and
reduction of the massive amount of image data via local parallel
processing, while at the same time providing a hierarchical structure
in which information at coarser levels of data resolution can direct
more detailed processing of data at finer levels of resolution. This
use of "planning" [(KEL71, NAG77, PRI77]) can significantly reduce the
actual amount of computation which must be performed during the

analysis of an image.

I.3 Segmentations Based on Regions and on Edges/Boundaries

The segmentation processes used in the VISIONS image understanding
System are based on complementary techniques. The primary technique
discussed here groups individual pixels on the basis of their relative
similarity with their neighbors. The resulting collections of labelled

pixels exhibit uniformity over the characteristics with which they are

*VISIONS stands for: Visual Integration by Semantic Interpretation of
Natural Scenes.
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aggregated: such collections are referred to as regions. Boundaries

may be produced by differentiating with respect to region labels.

The second process makes use of the local differences which exist
between pixels in order to form local edges; these edges are then
grouped into boundary segments [HAN78]. Regions may be formed by
labelling those pixels which are entirely enclosed by a collection of
boundary segments.

There is no a-priori reason to assume that the boundaries (or
regions) produced by these disparate processes will coincide, either in
terms of their physical placement within the image or in terms of the
characteristics of the pixels grouped by them. The merging of the

region and boundary outputs is currently under investigation [KOH79].

I.4 Some Basic Terminology and Paradigms

Let us briefly define a few of the more frequently used terms and
transformations that are used in image processing. First, the data
itself must be defined. For our purposes, an image consists of a
discrete sempling of sensory data into a two-dimensional spatial array
of cells called picture elements or pixels. 1In addition, each pixel is
quantized to a discrete range of gray levels. The transformation from
the real world scene to its digital representation is referred to as
digitization and is accomplished via a scanning device and an
analog-to~-digital converter. Typically, a digitized image contains on

the order of 512x512 pixels or 256x256 pixels, with each pixel
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quantized to 6 or 8 bits (128 or 256 gray levels).

The digitization of a scene may be restricted to the black and
white intensity information in the scene. However, color information
can be obtained through the use of light filtration during scanning.
In the latter case, the scene is usually scanned three times, one each
through red, green, and blue (RGB) filters. Notice that a typical
image contains a staggering amount of information:

512x512 pixels x 3 colors x 8 bits per pixel ~

6 million bits per image

A feature 1is a property that is wuseful in discriminating
"elements" of an 1image, such as objects, surfaces, ani regions. Any
transformation of the raw data may be thought of as measuring some
feature, although some transformations are more useful tharn others.
For instance, in the domain of outdoor scenes, color (hue) is ¢ useful
feature for discriminating sky from grass, while black and white
intensity might not distinguish those two objects.

A feature need not be computed solely at the level of individual
pixels. For instance, edge operators typically involve convolution of
an edge mask with the image; thus, a neighborhood around each pixel is
employed. Moreover, it is sometimes useful to compute features across
predefined regions in the image, or indeed across the entire image
itself (e.g. the average brightness level of the scene).

Notice that preprocessing may be thought of as a special kind of
feature extraction that ‘"prepares" the image for further feature

analysis. For example, when an image 1is digitized, the scanner
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Sometimes measures the intensity value across a boundary between
objects, In such a case, the gray level that is recorded is a hybrid
value, since it represents the average intensity of two distinct
"areas", Algorithms have been designed which detect and correct these
"mixed" pixels. The application of such an algorithm is a form of
preprocessing, since it is applied to the raw data and logically
precedes any other image transformation. It is also feature extraction
since its application tends to enhance boundaries.

Once the image has been digitized and a set of features has been
computed, the next step in image analysis is to aggregate the data into
units that have similar features., For instance, the analysis may use
edge contrast as a feature to be measured at each pixel, but the
aggregation of edges into lines may be the ultimate goal. Furthermore,
line formation could be controlled by local geometric factors such as
continuity and linearity. The latter are meta-features, properties of
the array of feature values of edges, and only indirectly the
properties of the array of pixels. Similarly, a region analysis
system, using hue as a feature, might have a region of similar hues as
the ultimate goal. When the aggregation process is completed and all
pixels have been assigned to a labelled unit -- a region or a line --
the resulting partition is referred to as a segmentation.

Let us look a little more closely into the process of forming
regions, Region analysis may be controlled by local factors such as
pixel adjacency and local feature similarity, but these are often

insufficient in the formation of regions that are meaningful in a




larger context, Thus, region analysis often incorporates global
measures of feature similarity to group pixels.

One technique of measuring global feature similarity involves the
use of histograms, or frequency distributions of gray levels, For
instance, the hue-histogram (i.e. the feature space of hue values) of
an 1image that contains green trees and blue sky may be bi-modal, since
it is the union of two distributions with strongly separated means.
Now, if one assumes in general that an image will have some feature
histogram that has as many distinct modes as distinct objects, then one
may attempt to extract those objects indirectly by isolating the modes
in the distribution, which then identifies the corresponding regions in
the image. Thus, region analysis can be transformed into a statistical

classification problem and make use of discriminant functions or

cluster analysis. Isolating histogram modes 1is analogous to the
problem of finding an optimal decision surface (hyperspace) in feature
space.

Let us briefly mention that, in practice, region analysis via such
mechanisms of pattern classification is highly prone to error. The
reason for this is that the feature distributions of the objects to be
classified tend to overlap to varying degrees. Indeed, some clusters
may be completely obscured by others, so that there may be fewer
clusters than objects. Thus, the classification processes will
necessarily be incomplete, with the effect tha. some pixels will be
erroneously grouped.

Recovery from classification errors has been a major focus >f this
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thesis, It will be shown that a class of transformations known as

relaxation labelling processes (RLPs) can be helpful in error recovery.

Briefly stated, RLPs use neighborhood information around each pixel and
image-specific statistics to correct pixel classifications. Thus local
information can be used to correct errors introduced by global

classification.

I.5 Summary of Remaining Chapters

The remainder of this thesis is organized as follows. Chapter 2
reviews the major work done by other researchers in the field of region
analysis. The discussion covers three kinds of approaches:
locally-based algorithms using pixel-by-pixel merging, globally-based
algorithms using cluster discrimination in feature space, and our type
of hybrid system where correction of globally-induced errors via local
spatial analysis can be performed.

Chapter 3 is a detailed exploration of histogram~based region
analysis. Three problems induced by cluster overlap in histograms will
be demonstrated via a series of simple test images. Possible solutions
to the problems are presented.

Chapter 4 presents a more complex segmentation algorithm that is
shown to improve the histogram-based technique by adding a relaxation
labelling process (RLP). The RLP uses three kinds of information to
obtain an improved pixel classification or labelling:

(1) probabilistic cluster affiliation is introduced,
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(2) neighborhood information is used to condition the
probability of a pixel belonging to a class, and
(3) image-wide statistics, called compability coefficients,
are used to preserve fine detail while allowing "noise-
classifications" to be suppressed.
The augmented algorithm is demonstrated using artificial and natural
data. In the 1latter case, attention 1is given to the wuse of
opponent-color feature spaces to improve the segmentations.

Chapter 5 presents a series of test images that refute some of the
positive results of the previous chapter. It is shown that the
relaxation technique cannot be relied upon for recovery from errors
that are due to cluster overlap. Moreover, the compatibility
statistics are shown to be 1inadequate to preserve certain image
structures.

Chapter 6 proposes a solution to the above problems via
"intermediate localization" whereby the image is artificially broken
into small sub-images which are independently analyzed and then 1later
merged. The use of sub-images reveals clusters that may be hidden in
the global image-wide histograms. It also allows the compatibility
coefficients to better represent local image structure without being
diluted by global effects. This formulation of the segmentation
algorithm yields dramatically improved results when applied to the test
images and the natural scene.

Finally, Chapter 7 summarizes the research, outlines the

contributions, and proposes improvements to the current work.




CHAPTER 1T

BACKGROUND

The computer analysis of two-dimensional images, known as

segmentation, image processing, low-level image analysis, and region

formation, has been under investigation for over 10 years. During this

time, numerous general-purpose and applications-oriented systems have

evolved. The goal of this chapter is
techniques and review some of the
have been developed.

For the following discussion,
segmentation techniques into three

KAN781]:

(1) Locally-based (bottom-up):

or other primitive elements.

(2) Globally-based (top-down):

use global criteria to obtai

and then apply local criteri

12

to define some of the basic

more general-purpose systems that

let us divide the region

broad categories as in [RIS77,

systems that use

local spatial criteria to build regions directly from pixels

systems that use global

spectral criteria to split regions into primitive elements.

(3) Hybrid (top-down with local refinement): systems that

n an approximate segmentation,

a to obtain a refined result.

II.1 Local Region Analysis

Local region analysis involves any or all of the following steps:




formation of atomic regions (primitive elements), ayntactic merging of
regions, and semantic merging of regions. The simplest definition of
an atomic region is that it consists of pixels that are (1) spatially
contiguous, and (2) the difference in feature value between any
ad jacent pair of pixels is less than some theshold. A group of pixel=n
that satisfy these conditions is given a unique region label.

The threshold for pixel merging may be (1) a fixed conatant that
is {ndependent of any information in the image, (2) a fixed conztant
that is dependent on some global, image-specific measurement, e.g. the
standard deviation from the mean gray level, or (3) a variable whose
value depends on information i{n a local area around a pixel.

Brice and Fennema [BRI70] developed a strategy which first formed
atomic regions according to the most conservative coriterion possible,
namely, that adjacent pixels may be merged into the aame regionz if
their gray levels are identical. Next, region merging criteria are
applied based on the "weakneszs" of region boundaries, Specifically,
region pairs are merged {f a sufficiently large portion of their common
boundary has a sufficiently low gray level difference,

Barrow and Popplestone [BAR71] used a =salight varfant of the
technique of Brice and Fenema to segment regions that were later
analyzed via primitive template matehing. Atomic regions are formed by
merging adjacent pairs of pixels that are within a small range of
brightness values (unlike Brice and Fenema who required a zero range).
Boundary and region differences are then used to merge large regions.

A feature vector {s constructed for each region and these are matched

. e A LAV I
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against models of the known objects. Success of this system is
strongly dependent on the small number and simplicity of the objects
that are used.

Kelly [KEL70] developed a specialist system for distinguishing
pictures of people. The program uses "planning" to recognize faces in
a hierarchical, goal-oriented fashion. Thus, obvious features such as
the head are searched for first, then the eyes, mouth, etec. In
addition, the image is reduced by averaging 8x8 non-overlapping windows
across the image. The coarsened image allows the program to do
searching and backup without a significant time penalty. The smoothed
picture also eliminates digitization noise that might otherwise
interfere with the recognition process.

Feldman and Yakimovsky [FEL73] utilized semantic information in a
decision-theoretic approach to scene segmentation. The information
includes properties of the boundaries between regions (e.g., how likely
is the adjacency of two regions) and properties of the regions
themselves (color, shape, etc.). After initial clustering of picture
points to form regions, a decision-tree analysis is used to further
Join and then identify regions according to a maximum 1likelihood
analysis based on these properties. For more complex environments, we
feel that the a-priori conditional probability of a feature given a
region cannot be reliably estimated (usually the number of samples is
very small) and changes drastically with respect to a different context
and over time. Thus, 1t is becoming apparent that the inclusion of

more complex semantic information 1is necessary; furthermore, the
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nature of this information must be such that it can be utilized in a
highly flexible manner.

Tenenbaum and Barrow [TEN76] demonstrated that the interactive
human semantic labelling of regions can be used to block most erroneous
merges made by nonsemantic rules. They interactively supply labels of
identities to 1initial conservatively formed atomic regions whose size
is greater than some threshold t. Then, an attempted merger of two
regions with differing 1labels can be blocked, while the merger of an
unlabelled region with a labeled region will inherit the available
label, and finally the merger of two unlabelled regions will remain
unlabelled. For those unlabelled regions that grow larger than t, the
human again supplies the proper label. For a simple office scene and
outdoor scene, the final results are quite reasonable when is set so
that about 20 regions are labeled during this process.

This approach led Tenebaum and Barrow to employ a generalization
of Waltz's [WAL75] constraint-satisfaction approach on the region
labels. Constraint satisfaction can be viewed as a special type of
relaxation procedure where relationships between 1labels in a local
context can be used to eliminate some of the alternative labels. They
extend the semantic region merging process by alternating this merging
process with the propagation of semantic constraints on the identity
labels. For this approach to be automated it requires the initial
labelling of all elementary regions (even individual picture elements!)
and the specification of computationally effective procedures to

extract the semantic relationships between regions.
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However, the degree to which one can satisfactorily 1label the
possible interpretations of a small section of an object on the basis
of purely local information is still uncertain; with a large number of
possible objects this problem may be serious. The authors demonstrate
examples with this labelling supplied manually or directed via
predefined geometric models. The results are quite interesting, but
the extensibility of this approach to automatic segmentation of general
scenes seems to be quite difficult. Discussion of these problems is
presented in a bit more detail in Riseman and Arbib (RIS77].

Freuder [FRE76] provided an interesting variation to the region
merging process by grouping those regions which are relatively more
similar to each other than to othgr regions. This is continued and a
tree of regions is constructed up to a single region over the scene.
This whole structure would be passed to a global semantic processor
which must extract the relevant information for different parts of the
picture from nodes of the tree at varying levels of grouping.
Potentially this can be a powerful and flexible way to present
information to semantic processes. However, it seems that the tree
should be greatly pruned prior to semantic processing if it is to be
useful. This leads to difficult questions concerning texture that
remain to be solved if this is to be a viable approach.

Chen and Pavlidis [CHE78] used a split-and-merge algorithm and a
co-occurrence matrix to segment based on textural differences of
regions, Their system uses a layered, parallel cone structure

[UHR73,HAN74] to store and manipulate images. The bottom level of the




cone (or quadratic picture tree as they refer to it) corresponds to

individual pixels, while the highest level (root node) represents the
entire picture. Each node has four children corresponding to its four
subsets. Regions identified at any level of the tree can be split into
subregions or merged into super-regions depending on some criteria.

In the system designed by Chen and Pavlidis, the criteria for
split/merge is a gray level co-occurrence matrix [HAR78, HAN7S, RIS77].
The (i,j) entry in the matrix represents the probability that pixels
with gray 1levels i and j co-occur at some distance d apart and some
orientation theta with respect to each other. Thus, off-diagonal
elements may represent local microtexture. The system merges the four
subsets of a node if their matrices are not too different. Otherwise,

the subsets are left alone and the node is split.

II.2 Global Regions Analysis

This class of approaches is based on the premise that the global
distribution of feature activity in a scene contains sufficient
information for segmentation of major areas. If two regions have a
distinct difference in intensity (or any other measurable featue), one
would expect the intensity histogram to form major peaks (or clusters)
about their respective means.

One of the earliest uses of histogram thresholding was by Prewitt
and Mendelson [PRE66]. Their technique consists of finding valleys

(antimodes) in histograms of white blood cells., Once the valleys are
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found, each pixel in the image can be labelled according to which one
of the peaks that its intensity value belongs to. Then, simple region
growing can be applied so that adjacent pixels with the same mode-label
can be given the same region label. Tsuji and Tomita [TSU73) extended
the mode selection idea to multiple features which are computed locally
for the purpose of analyzing textures drawn on block surfaces.

Ohlander [OHL75) developed a technique of recursively partitioning
an image by setting thresholds at valleys of 1D histograms of various
features. The first partition forms around the clearest peak in any
histogram; then, the associated points in the image are flagged and
ad jacent points with the same label are merged into a region by growing
on the symbolic 1labels. These regions are smoothed by blurring, and
each of these distinct regions forms the basis for further analysis by
histograms. A region 1is kept intact only when it is unimodal in all
histograms employed. In order for this process to work, Ohlander
Subtracts out "busy areas" of texture and smaller detail by using a
measure of the amount of edge in each local area. These areas are
processed by different techniques including the blurring operation
previously mentioned.

Despite the obvious effectiveness of this procedure in some cases,
there are several deficiencies with this type of histogram analysis.
Often the peaks and cluster widths of typical histograms are not so
clear. A more serious problem, though, is that different objects can
partially overlap distributions of other objects in one or all of the

features. This can cause peaks and valleys to appear and
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disappear--and shift--if the particular combination of objects is
varied, despite the possibility that all of the objects appear visually
distinct to the human observer.

In general, one can hope that the sequential determination of the
largest regions can be used to continually subtract away the data which
obscures the presence of less noticeable peaks in the global feature
histogram. Howver, the quality of this algorithm seems to be subject
to an arbitrary condition, namely the particular mix of regions being
examined. (See Figure II.1 and II.2 on recursive analysis.) This
problem would probably be reduced if the image were broken into smaller
aeas; this can be thought of as a foveal window where the system
initially focuses in a directed manner upon a subarea of the entire
scene in far more detail. Similarly, the peaks would have less chance
of being obscured if multidimensional histograms were employed
(although then the detection of peaks and clusters is less
straightforward) .

But there is still a more significant drawback that must be
overcome; that is the lack of information on the spatial relationships
of the features being examined. On the basis of a global histogram
analysis, one cannot determine the difference between a red area
bordering a yellow area and red polka dots within a yellow area--they
can produce identical histograms and the difference in structure is not
seen.

Price [PRI77) improved upon the segmentation system of Ohlander

and added new work on change detection. His techniqu:s dramatically
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reduced segmentaion time mainly through the use of a "reduced" image.
Thus, the input data which may have been scanned to a resolution of
512x512 pixels is transformed into a coarsened "plan" [KEL71, NAGT7]
that consists of perhaps 128x128 pixels. For instance, a plan may be
obtained by computing the "“average" pixel value in 2x2 or 4x4
non-overlapping windows computed across the image. Although this
technique offers an obvious speedup for further segmentation processes,
it has the disadvantage of blurring boundaries and creating hybrid
values in textured areas.

Coleman [COLT77] defined the problem of region segmentation as
unsupervised clustering and feature selection in n-dimensional feature
space. The hest number of clusters in the feature space (i.e., the
number of region types in the image to be partitioned) is defined as
one that giv:s the maximum of the ratio of between-cluster scatter and
within-clustar scatter. The usefulness of a feature is defined by the
average of Biatacharyya distances between pairs of clusters. The
features which have the least power in discriminating clusters are
discarded ani! the segmentation which yields the "best number of
regions" is iought,.

Several techniques developed in relation to the use of histograms
should be b-iefly mentioned. When the sizes of the target regions are
very differeat and their features are somewhat similar, the peak
corrsponding to a bigger region tends to hide the peak corresponding to
a smaller on:., The resiltant histogram may not demonstrate a clear

bimodality. One wuseful technique to overcome this difficulty is to




compute the histogram only for those pixels near the boundary of the
regions (WES74]., First the spatial derivative (say, Laplacian) of the
image intensity is computed. Then only those pixels which have a high
derivative value are histogrammed. The differential histogram by
Watanabe [WAT74) is another useful method to calculate an appropriate
threshold 1level, A survey of threshold selection techniques can be

found in [WES78,KOH79].

I1.3 Hybrid Systems

Local approaches to region analysis have the drawback that they
tend to generate regions that are either "“under-grown" or
"over-merged." Textured areas tend to be broken into many fragments,
while areas that are for the most part separable, but have a few weak
(low contrast) boundary points, can leak together to form large
regions.

The global approaches often obtain good initial segmentations but
lack spatial sensitivity to generate highly accurate results. Thus, it
seems natural to try to combine the two approaches so that local
analysis can correct obvious mistakes of the global analysis.

The simplest remedy is to add a post-processing phase to the
histogram-based segmentation. For example, if most of the neighbors of
pixel P have been labeled as C, then P itself is reclassified as label

C. This type of post-processing, called plurality relaxation (see

Chapter 4), has been used in remote sensing applications. For example,




the fact that a "wheat" pixel will not appear in the middle of the
"corn" field seems to justify this technique. A slightly modified
method involves the use of a "conservative" threshold [NAG77]. The
classification of the pixels having feature values near the threshold
(or boundary of the discriminant surface) is delayed, and those pixels
are classified according to the labels of the neighbors.

A generalization of this approach is the use of relaxation

labelling processes [ROS76, 2ZUC78, Chapter 4]. First, instead of

assigning a single label to each pixel, the probability p that P
belongs to <class C is estimated via the distribution of image feature
values. Then, these probabilities are adjusted using some relaxation
formula:
py(n) «~ F (py (n=1),{q4(n=1) | Q is a neighbor of P})

which means that piis revised iteratively using the previous values of
its own and of the neighboring pixels. Eklundh [EKL78] and Nagin
[NAG78) have applied the relaxation technique to natural scenes and

were able to show an improvement over the initial classification of the

image pixels.




CHAPTER LT

SEGMENTATION USING HISTOGRAMS

Feature histograms of an image have been well-established in
pattern recognition and scene analysis [PRE66, OHL75, ROS76] as a
fruitful representation to aid in region detection. A histogram of two
visually discriminable objects should reveal two peaks (or clusters)
that represent the distribution of gray levels for the objects. To
generate a segmentation, it is simply a matter of isolating the
clusters and then dividing the image pixels into classes according to
the cluster with which they are associated.

This technique -- feature clustering and pixel labelling -- will
be referred to as a global segmentation algorithm because the histogram
is counted across the entire image without regard to the location of
any particular pixel. This class of algorithms has been explored and
developed by many researchers and, considering its simplicity, has met
with reasonable success even when applied to compléx natural images.
There is, however, a serious fault with the techﬁique. namely the
difficulty of completely isolating the distributions of objects via the
histogram representation. This will be referredf to as the "cluster
overlap" problem. In the remainder of this séction we discuss three
kinds of segmentation errors caused by cluster 5over1ap: overmerging,

fragmentation, and thin-object fragmentation. The discussions are

illustrated by a series of computer-generated test images ("cases")

which demonstrate particular problems.
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III.1 Notation

The use of histograms for scene labelling is a two-step process
that maps objects in scenes into histogram clusters and then maps the
cluster labels to segmented regions (Figure III.O). As will be shown,
there may not be a 1-1 correspondence between objects and regions -- a
region may contain or be contained within an object. Thus, for
example, region R, may not refer to object 02. In the text that
follows it would not be illuminating to refer to regions by number;
rather they will be referred to by the label of the cluster that the
pixels within the region map into. Moreover, regions may be further
specified by a number that indicates the object space from which they
have been generated. In Figure III.O, RBZ is the label of the region
generated by cluster CB and which is contained within the space
occupied by object 02. Unless otherwise stated, objects in the test
images are assumed to have normal distributions with random spatial
placement of the features values in the distribution. Sometimes the
distribution of feature values will be correlated with the spatial

position within the region representing the object.

ITI.2 Overmerging

The first kind of segmentation error that will be discussed
results whenever the histogram of an image does not reveal as many

peaks as there are distinguishable objects. In this event, pixels
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comprising objects with visually distinct appearance will be labelled

with the same symbol. One way for this to occur is when two objects
have fairly close means. In this case, the distribution of the objects
will sum and may not be detectable as separate peaks. Another
possibility is when the distribution of a small object does not
generate a detectable peak in the overall histogram.

The image in Case 1 (Figure III.1) contains three objects labelled

0 and 0. To a human observer, this image presen:s a rather

1% 02' 3
trivial image processing task, since each object is clearly
characterized by a wunique average brightness level (u1=20. u2=UO.
u3=50. 0 20y =204 = 3). However, the histogram computed across the
scene shows only two distinct clusters, labelled QA and C“, because the
variance, proximity of means, and size of Ob masks the cluster of 01.
Thus, the information in the global feature space consists of two
discriminable classes. A schematic view of the information in the
diagram is shown in Figure III. lc. Here, it is evident that the
histogram is actually composed of three distinet distributions;
however only two distinct clusters are revealed due to the combined
effects mentioned above.

Notice that the left side of cluster B has a slight shoulder,
which is the only global indication that there is ¢ third distribution.
Let us assume that the shoulder is not detectable as a separate

cluster. The region classification that results from only two

clusters, C

A and C“. (Figure III.1d) contains only two Jdistinct types

of regions, RA and RB' However, since object 2 and object 3 happen to
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be spatially separated in the image by an object in a different. class,
the segmentation may be considered to be successful. The two regions
labelled R are spatially disjoint and, therefore, can be given unique
region labels. In this case, the region labels RB2 and RB3 refer to
the objects to which they correspond.

Now consider Case 2 (Figure III.2) which is identical to Case 1
except that objects 2 and 3 are now spatially adjacent. Here, not only
does the histogram confuse the distributions of objects 2 and 3, but
the resulting segmentation 1leaves them merged, yielding a very poor
result. Thus region Ry is overmerged with respect to the underlying
objects. We conclude that a change in object location will affect the

quality of the global segmentation analysis.

III.3 Gross Fragmentation

Let us consider a different type of error. It is incorrect to
assume that the histogram of an image will either completely reveal a
cluster or completely hide it. In fact, clusters can overlap to any
degree. Fragmentation occurs whenever there is partial cluster overlap
of distinet peaks and manifests itself as mislabelled pixels. The
impact of fragmentation depends both on the degree of overlap of
feature clusters as well as the spatial organization of the pixels
invclved. There is an obvious correlation of the percentage of overlap
and the percentage of mislabelled pixels in an optimal Bayesian

classifier [DUD731]. If the intensity values in an object are
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uncorrelated, then the mislabelled pixels will be randonly distributed
across the regions involved. However, 1if the pixels are spatially
correlated, as in the case of a non-zero feature gradient across a
region, then the mislabelled pixels will themselves be correlated and,
in fact, may form a viable region.

Case 3 (Figure 1III.3) 1illustrates a situation in which the
distributions of all of the objects overlap to a certain degreec. The
resulting segmentation appears "noisy" with the mislabelled pixels in
each region randomly located. Let us carefully examine the
segmentation of object 3. First, as in the previous two examples,
there is no cluster in feature space that uniquely discriminates it
from the other objects., In this respect, the cluster labels that map
onto the image location occupied by that object are not unique -- 03 is
thus prone to overmerging with an adjacent region (although in this
example it is not).

Second, since the distribution of Cb is hidden within two
identified clusters, the classification of its pixels is guaranteed to
consist of some mixture of two label types, neither of which provides a
reasonable representation of the object. In this example, the mixture
is such that 20% of the pixels are labelled by cluster A and 80% are
labelled by cluster B. One might say therefore, that, at best, there
is a 20% error rate in the labelling of this region. Fortunately, in
this case, the fragmentation of 03 into 2 cluster types has the
desirable property that the minority cluster type (CA) maps into random

locations across the image space occupied hy the object. For this
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reason, it may be possible, in a post-processing step, to recover the
object by suppressing one and two pixel "regions" into the dominant
region surrounding them, or to use some other sort of smoothing into
large regions..

Now let us consider a slightly different image in which object 3
contains a piecewise linear intensity change across it (Case 4, Figure
IITI.4). Object 3 has the following characteristics. First, its mean
and variance are the same as they were in all of the previous examples
-- thus, globally it has the same signature as before, with the same
contribution to the global histogram. However, locally, the object
consists of a series of bands: starting at the top, each row has a
slightly lower mean intensity than the one above it, until the middle
of the object is reached. At that point, the means gradually increase,
row by row, in the same manner. The image was contrived so that most
of the pixels in 03 coincide with the left tail of the distribution of
02. However, the pixels in the center band lie just inside the right
tail of the distribution of 0,.

Once the clusters have been determined and the image pixels
labelled, it is apparent that in addition to the randomly located
errors, there is a connected set of errors at the center of object 3.
This set of errors, in fact, forms a region that is just as viable,
i.e. impervious to post-processing clean-up, as the two other major
regions. Thus, object 3 has been fragmented into two regions even

though the image does not contain an edge between thos: regions.
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III.4 Thin Object Fragmentation

Next consider another instance of fragmentation, namely, when
there are thin objects present in the scene. For our treatment here,
structures will be considered thin if they are one or two pixels wide,
Case 5 (Figure III.5) shows a cross-shaped object running through a
background, and a histogram reveals a small degree of overlap between
the object and the background. The effect of this overlap, as has been
shown previously in section III.3, is to generate some mislabelled
pixels that are randomly located across the regions. However, the
mislabelled pixels that occur within the cross have the effect of
breaking it 1into small disconnected pieces. In this example, the
single cross object is fragmented into 18 disjoint pieces (18 regions),
and recovery of the underlying object via post-processing may be very
difficult. In fact, the one- or two-pixel suppression scheme mentioned
above in the discussion of Case 3 might suppress some of the fragmented

regions of the cross, thus making recovery even more difficult.

III.5 Conclusion

This chapter has explored three types of segmentation errors that
can result from cluster overlap in global feature histograms. These
errors -- overmerging, fragmentation, and thin 1line fragmentation --
were shown to exist even in very simple, clearly structured test

images. Their effect on noisy, multi-class natural images partly
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explains why segmentations often appear ragged and unacceptable.

Overmerging and both kinds of fragmentation all have their origin
in cluster overlap. Overmerging may or may not manifest itself
depending on the spatial arrangement of objects in an image -- which
is, in general, arbitrary. Fragmentation, however, will always
manifest itself as mislabelled pixels. If the original data is
uncorrelated spatially, and if the degree of overlap of the clusters
involved is not too great, then recovery from fragmentation is possible
by means of simple post-processing clean-up. But, if the converse is
true, that is if the image pixels are spatially correlated (Case 4), ar
if the overlap is large enough, then the effect of fragmentation is to
create large error regions. Moreover, if any of the objiects are thin
(Case 5) then fragmentation is much more serious.

We conclude by briefly exploring possible solutions to the
problems discussed. Overmerging, when it 1involves entire regions
(i.e., when it does not also involve fragmentation) is relatively easy,
although costly to overcome. The solution proposed by Ohlander [OHLT7S]
is to recursively decompose each region -- starting with the entire
image -~ until a stopping criterion is reached (refer to Figure II.1
and II.2). The criterion for region decomposition (splitting) is that
a histogram of some feature is multi-modal., Thus, when all regions are
unimodal in all features, the segmentation is complete. Fortunately,
in practice, very few decomposition steps (usually only one or two)
appear to be necessary for any given region.

The solution to the problem of fragmentation is complementary to
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the solution proposed for overmerging. Instead of attempting to
decompose regions into sub-regions, it is desirable to merge regions
that were erroneously split. Recall that the effect of fragmentation
is to break an object into two or more regions even though no edge
exists locally between the regions. One recovery technique is to
examine the combined distribution for each pair of adjacent regions.
If the distribution of some region pair is detectably multimodal, the
boundary between them would remain intact. If, however, the combined
distribution appears to be unimodal, then one may assume that the two
regions are actually derived from one object and the boundary between
them is removed. In a later chapter, a precise remerging statistic
will be discussed.

Recovery from thin-line fragmentation is not only costly but
extremely difficult. The remerging criterion above is inapplicable
since the region fragments are not adjacent in the image. It seems
unreasonably expensive and ill-defined to apply the remcrging statistic
to the rather large class of region pairs that are "almost adjacent."
What is required is a local algorithm that can recognize what appears
to be a significant local structure, e.g., a line, and which can induce
pixels that are in the range of this structure to gravitate towards
membership. It is in this spirit that the relaxation labelling process

discussed in the next chapter has been defined.




CHAPTER IV

SEGMENTATION USING GLOBAL HISTOGRAMS AND ITERATIVE UPDATE

The previous chapter explored three kinds of errors that can arise
from the global "feature-cluster/pixel-label” technique. These
errors--overmerging, fragmentation, and thin line fragmentation-- can
all be traced to the problem of cluster overlap. Cluster overlap, in
turn, can be traced to an inadequancy of the histogram representation,
that is, the lack of spatial information.

The focus of this chapter is on algorithms which can correct some
of the errors that are introduced by the global technique. In
particular, we will explore different forms of relaxation 1labelling
processes (RLP's) that incorporate, with varying degrees of
sophistication, contextual (i.e., spatial) information associated with
each pixel. It will be shown that in many cases, given a
first-approximation to pixel classification, neighborhood information
can be manipulated to successfully correct errors. Figure 1IV.1
summarizes the segmentation algorithm that will be explored in this

chapter.

IV.1 Relaxation Labelling Processes

The general formulation of a probabilistic RLP requires the
specification of a set of probabilities representing the degree of

"class" membership to be associated with each "object" in some network.
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Figure IV.1 Summary of the global segmentation algorithm with
iterative update in a relaxation labelling process.
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For our purposes, the classes correspond to clusters detected in

feature space and the objects correspond to the pixels in the image.

At each iteration, the probabilities of cluster membership associated
with each pixel are adjusted according to the degree of support
received from the probabilities at neighboring pixels. The adjustment
or updating process is iterated with the expectation that there will be
a marked reduction in the ambiguity of the initial classifications,

Let us examine two important characteristics of relaxation before
giving the formal definitions of the process. First, there is the use
of probabijlities to indicate cluster affiliation. Recall that the
histogram clustering technique explored in the previous chapter
generated a discrete label indicating the cluster affiliation for each
pixel. This label was the only indication of the location of the pixel
in feature space. In the probabilistic formulation a precise "location
vector" can be specified so that, for example, pixels in ambiguous
locations in feature space (i.e., between clusters) can be encoded to
reflect a 1lack of confidence of belonging to any particular cluster.
The use of probabilities thus allows such pixels to defer their final
labelling® until contextual information can be obtained.

The second important characteristic of the RLP lies in the use of
compatibility coefficients which contain statistical information about

the image. These coefficients are meant to reflect any detectable

¥The term label refers to "class label" or, equivalently, "cluster
label." The final labelling of a pixel is the distribution of the labels
after the RLP has terminated.
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spatial dependencies between labels. For example, wher appropriately
Specified, they can reflect directional tendencies (f objects in an
image. Thus, an image that contains horizontal black birs on a white
background might have compatibility coefficients such a:s:
CompatVERTICAL(black given white) = +1 (very likely)

This can be interpreted as "the label indicating black is very 1likely

to be vertically adjacent to the label indicating white." Similarly:
CompatVERTICAL(black given black) = -1 (very unlikely)
Ideally, the compatibility coefficients should tend to anchor the

iterative update of probabilities so that the final pixel labelling is

not too far removed from the initial labeling. As will be shown in the

Section on results (IV.4.3), this property helps to inhibit the RLP

from "eating away" thin structures. If only 1local information were
used in the RLP, a thin structure (e.g., a one-pixel wide line) might
be suppressed into the background as if it were uncorrelated "noise."
However, 1if there 1is a sufficient sample of "line-like" objects, the
compatibility coefficients will reflect this and bias the local wupdate

towards maintaining such lines.

IV.2 Formal Definitions

Let us formally define the RLP as 1in [ROST76]. See also

li [ROS77,2UC78] for a general discussion of RLP's. Let Ay Apyeve Ay be
1 the pixels in the image and CA, CB.....CM be the labels issociated with

E the clusters detected i{n feature space,. Next, we must initially

L‘“‘" i seitbaid i i it | ad VPRI mmm_——-h
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associate with each pixel A; an m-dimensional probability vector (PiA'

PiB""’PiM) whose component Pia indicates the probability that
A, ¢« C . Note that
i [\ M
0SPy,Stand ] P =1,
a=1

The compatibility coefficients are specified as a mapping r from
the set of quadruples (i, a, j, B) into [-1, +1]. One should interpret
r in the following manner:

(a) if and are compatible for objects A and A ,
respectively, then r(i,aj,8) >0;
(b) if and are incompatible for A and A ,
respectively, then r(i,a,j,B) < 0;
(¢) 1if neither labelling is constrained by the other, then
r(i,a,j,R) = 0;
(d) the magnitude of r represents the strength of the
compatibility.
It is apparent that one may interpret the coefficients as statistical
correlation or mutual information [PEL78] since these functions behave
in the manner of (a)-(d) above. Note that the compatibility
coefficients are defined only for pairs of labels which are "adjacent"
anywhere in the image, according to some local neighborhood adjacency
relation, In our case, a canonical orientation dependent neighborhood
Ne will be defined; will be quantized to 45 degree increments, e.g.,
N, NE, E, SE, S, SW, W, NW. Thus, relative to a given pixel, adjacent

neighbors are those which are found in NO in the prescribed direction.

At each iteration t, we independently compute a new Pio In the




following heuristic manner:

t+l t t t
Pia =Pl + a4 0/ P, (1 +q,)
a

where

Eh T, t
qia 'g‘g r(io Q, jv B) * PjB

and where j is an index over pixels in N The denominator is a

0
normalizing factor computed across the new probabilities of the m

labels, so that the new values for q

In practice it is useful to keep the probabilities of all 1labels

a"ill sum to one.

non-zero because the updating of probabilities of each pixel label
involves a multiplicative function. Once a label has probability zero,
it would remain there during the iterative relaxation process.
Therefore, the probability of each pixel label will not be allowed to
drop below some small non-zero value. Notice that this heuristic
equivalently implies that no label will ever reach probability 1. This
will allow the probabilities of unlikely labels to grow if the context
so demands, even for pixels whose current labelling includes a label

with probability near one.

IV.3 1Initial Label Probabilities

The process of assigning an initial probability labelling to each
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pixel in the image will now be discussed. As previously mentioned, the
label set and the label probabilities at each pixel are derived from
the feature space selected to represent the image. The algorithm that
will be discussed below assigns cluster-membership probabilities to
each pixel as a function of the distance of a pixel to each of the
cluster peaks. Thus, the algorithm 1is broken into two steps:
detection of prominent cluster peaks and estimation of pixel-to-cluster

relatedness.

IV.3.1 Selection of Cluster Peaks

After looking at even a few histograms, it becomes obvious that
the set of useful cluster peaks is a subset of the set of local peaks.
Distributions of natural scenes tend to be extremely jagged and do not
have clearly defined cluster locations, It is frequently a very
difficult task, even for a human, to parse a histogram into its cluster
components. Indeed the problem of automatic detection of clusters,
although traditionally in the realm of statistical pattern recognition
[DUD73) can also be approached as an image processing task. The
following discussion will be 1limited to one-dimensional histograms.
Later, in section IV.6.2, cluster detection will be explored for two-
dimensional histograms.

What criteria are necessary for a cluster isolation mechanism?
Consider the problem of clustering the histogram shown in Figure IV.2.
First, it seems important that cluster centers be strongly peaked,

f.e., each true peak should have a significantly greater "height" than

m———pm———~
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PA PB PC l’D PF lb PG PH PI
# of
points
v
O ST T S V2. %

(a) Histogram showing all peaks and valleys that are initially
identified.

Peakedness criterion: Height (P“)/Avght(1eftvalley“.rightvnlleyd)

possibly eliminates: PB‘ PG' P“, PI'
Distance criterion: | location (Pl) - location (P1+l) I
possibly eliminates: P _, P . ; ‘

D* F

o

(b) Final peak and valley labelling misses the "plateau" of
PC + P“ + PI.

Figure IV.2 An Example of Peak Selection.
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the height of its surrounding valleys, and the valleys should probably

not be too far apart. Second, it is reasonable to require that peaks

should be somewhat separated from each other; otherwise they probably

represent the same cluster. Both of these criteria will help to
eliminate "false" peaks and thereby lead to a more useful cluster
analysis.

A possible peakedness criterion is simply the ratio of the peak
height to its surrounding valleys. That measure is sufficient for the
first peak (PA) in the figure, but is ill-defined for PB since the
valleys in the latter case are rather unequal 1in height. The
peakedness ratio can be modified so that a peak 1is compared to the
average height (avght) of its valleys, or perhaps a better comparison
is the larger of the two valleys (maxht). Formally, let us express two
functions of peakedness, Fi and Fé. computed for the ath peak and its
valleys as follows:

1) F1 (Peaka. leftvalleya, rightvalleyﬁ) =

height(Pa)/avght(leftvalleya. rightvalleya)

or
(2) Fz (Peaku. leftvalleya. rightvalleya) s
height(Pa)/maxht(leftvalleya, rightvalleyu)
‘ For any peak a and some threshold 6, if F < 6, the peak will be

discarded and considered to be a false cluster center. In the figure,
lh is probably discardable (by a reasonable setting of 6), while PD is
somewhat ambiguous, but probably can be extracted. However, PG, P“.

and PIare problematic because they are not individually peaked in any

B ———
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reasonable sense, even though they do seem to form a meaningful
cluster. The structure that these three peaks form--called a
plateau--must be detected by other means. In particular, the algorithm
must detect a "run" of relatively flat peaks. A central location can
then be selected to represent the plateau. Plateau detection was not
included in the current system because it was difficult to obtain a
satisfactory implementation. Fortunately, in practice, "pure" plateaus
do not seem to arise very often.

Next let us consider the second criterion for peak selection which
is based on inter-cluster distances. It seems reasonable that peaks
that are very close to each other are not truly indicative of distinct
object classes, and may be considered part of the same cluster. Thus,
for each pair of peaks, we define

D, (Peak , Peak . ) = | Toc(P ) - loc(P )|

a+l
When Di < 8' for some given 6', then the smaller peak will be discarded
as a false peak. In the example of Figure IV.Z2, peaksPDandPF are
potentially eliminated, since they are relatively close to the larger
peaksPc and PE' respectively.

A reasonable peak and valley labelling is given in IV.2(b). The
result is somewhat unsatisfying, since

(1) the plateau is completely missed, and

(2) !% probably should not have been eliminated.
The reason that one might argue t,hatPF should be kept--even though it

is very close to ﬁz-is that it is extremely peaked. Thus, we conclude

that the two criteria for peak selection cannot Dbe applied
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independent Ly, One solution 1is to apply the distance measure
conditional 'y, e.g. only if the peakedness measure is less than some
amount . Another possibility is to compute the product of the two
measures so that when either is high, the peak will be kept. These
questions will be 1left for future empirical investigation; in the
following it is assumed that a reasonable and representative histogram

parsing has been obtained.

IV.3.2 Assignment of Probabilities of Peak/Label Membership

After identifying the prominent peaks, the next step is to 1link
this infornation with the spatial distribution of information in the
image. We want to recode each pixel so that it reflects its location
in feature space relative to the peaks. In this manner, groups of
pixels whicl are near each other both in feature space and in image
Space can be merged and labelled as belonging to the same region.

Given a set of peaks, PA' PB' ....PM and a set of pixels, Al. A2'
iwEy AN' we compute for each pixel A1 the following probabilities:

ot
d

P(A, is labelled a) = ia
i 7 ol
o dia

where dia is the Euclidean distance in feature space from Ai to a.
This measure is a monotonically-decreasing nonlinear function of the
Euclidean distance of a point in feature space to the ath cluster

center. For the special case of dia‘ 0, the distance is reset to some
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small number € > 0. This guarantees that no label will have either

probability 1 or probability O.

IV.3.3 The Neighborhood of a Pixel

Once the initial labelling has been computed, it is necessary to
define a standard neighborhood around each pixel. Some examples are
given in Figure IV.3. Note that for simplicity the choices have been
limited to the 3x3 area surrounding a pixel, although this can easily
be enlarged with subsequent impact on the speed of 1label updates and
the results obtained.

Each of the neighborhood representations uniquely affects the
performance of the local algorithms; for example, a diagonal line that
cuts through a uniform background may be missed in a 4-adjacent
neighborhood or relatively under-represented in an 8-adjacent
neighborhood. Moreover, it will be shown that the weighting of the
central pixel strongly influences the rate at which it can be changed

from its current value.

IV.3.4 The Compatability Coefficients as Conditional Probabilities

Now that the parameters of the local environment have been defined
formally; the discussion now concentrates on the global information
that is to be gathered for the RLP, namely, the compatability
coefficients. The compatibility coefficient between each pair of

labels defines whether labels of neighboring pixels support each other

or compete with each other.

e
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(a) "4-adjacency
neighborhood"
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(b) "5-adjacency

neighborhood" is
composed of 4-
adjacency and
center pixel

X X X X X X
X X X X X
X X X X X X
(c) '"8-adjacency (d) "9-adjacency
neighborhood" neighborhood" is
composed of 8-
adjacency and
center pixel
wl W2 W3
Wa WS W6
W, WB w9
(e) A "weighted
neighborhood" is
a generalization
of cases (a)-(d)
where the W, are
weights selected
for some purpose.
Figure IV.3 Neighborhood Definitions.
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The coefficients may be defined to be positive for identical

labels and negative for differing labels. This is reasonable in images
composed of large blobby regions with relatively few boundary points.
Here, the typical interaction is between 1labels of the same type
(positive correlation of label vs label , while interactions between
labels of different types are relatively infrequent. The simplest
Specification of compatibility coefficients is to restrict them to
signed unary values:

r(i,a,j,B) +1 135 e = (1)

=9 if a =8

r(i,»,j,B)

This arrangement works reasonably well in areas lacking fine
structure, but, in general, it 1is more desirable to have the
coefficients reflect the way pairs of labels spatially co-occur in the
image. In this way structured objects that display directicnality,
e.g. thin diagonal lines, can be given increased weighting in the
probability update on the basis of their statistical significance in
the image. Peleg and Rosenfeld [PEL78] have suggested the use of the
mutual information of the two labels to capture the way labels co-vary.
However, we suggest a simpler variation using conditional probabilities
[ZUC78] because they also reflect the desired label dependencies (a-d
in section IV.2). Note that Zucker rules out the use of statistical
correlation for compatibilities since it 1is a symmetic measure of
dependence, whereas asymmetric configurations of 1labels often arise

(e.g., when one object is above another).

Let Pi(a) denote the initial estimate of the probability that
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pixel i is labelled a, Then

P(a) = 1 ? P, (a)

Wimy 2

is a global estimate of the a priori probability of a across the entire
image. It is directly related to the average distance in feature space
of pixel values to the ath cluster center®, Therefore, it 1is related
to the density of pixels around the ath cluster in the histogram.
(However, the reader should note that the situation 1is somewhat more
complex because the values of Pi(“) are a function of the position of
other clusters in feature space and the density of pixel values around
them also).

The joint probability of a pair of points having labels a and { at

some orientation, say east(e), can be estimated by
s 1 N
T % p
Py (9B) = & 121 P (@) * P_(B)

We cian now estimate the conditional probability that i is labelled

a gisen that the east pixel e is labelled B8, by

N
P, (a,B) ) pi(“) g l‘c(")
P, (alg) = 25— Ry
59 P(B) N
) PB)
{=1

Two labnrls are independent in direction ¢ if the pair of labels

co-occur with the same probability as the product of their individual

*More precisely, it {s the average distance toCy divided by the sum of
the average distance to each cluster C“, a=1, M,




probabilities. Then in our example of pixels at the relative spatial
orientation of east, their independence implies that

Pie(a « B) = Pla )P(B ).
and in terms of conditional probabilities,

RelaiB) =Pla)
This latter case is the situation where B at a pixel oriented at east
gives no information about « , Thus, the point at which r(i,«,j,B) = 0

can be defined to be the prior of a ., If r is to range between -1 and

+1, then it can be defined in terms of a piecewise linear interpolation

(1,1)
+1 /
» Pie(ulﬁ)

-4 /g(u) +1

function:

Note that the coefficients are no longer symmetric:
r(i,0,3,8) r(i,B,j,®). It 1is also worth mentioning that viewing
compatability coefficients directly as conditional probabilities leads
to an updating scheme which can be formulated in Bayesian probability
theory [RIS79]. Here, we have used a heuristic formulation to derive
the coefficients from the joint probabilities.

Note that the above formulation 1is ill-defined if we wish to
include a pixel as its own neighbor. However it has been empirically

shown to be desirable to inhibit the RLP from straying too far from the

initial 1labelling on any given iteration. Consequently, in this case,
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we extend our definition of a 1local neighborhood and compatibility

coefficients:

r(i,a,i,B)

+1 if a=8

r(i,a,i,B)

-1 if azB
This means that for neighborhoods in which the center pixel is
included, all 1labels at the central pixel are +1 compatible with

themselves and -1 compatible with all other labels.

IV.3.5 Problems with Compatability Coefficients

The definition of compatability coefficients, either as mutual
information or in terms of the scheme just presented, has two possible
weaknesses. First, since the measurements are computed across the
entire image, they reflect the "average" image structure. Infrequently
occuring spatial structures might not make any significant
contributions to the overall accumulation of compatibility statistics.
This can be dealt with by localizing the compatability coefficients to
smaller sections of the image, where local structures will occur with a
higher relative frequency. Of course, this would increase the amount
of 3torage required to maintain the coefficients, as well as creating
problems with pixels lying along section boundaries.

A second problem with our definition of compatabilit& coefficients
involves the geometry of regions and the different kinds of information
which combine into the joint probability of neighborhoods of 1labels.
If a region is large and compact (i.e., its ratio of area to perimeter

is relatively large), then there are many more interior pairs of

&
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ad jacent pixels than boundary pairs of pixels. Thus, the coefficients

can be dominated by large contributions in all the orientations from

pixels which 1lie internal to the region. In this case, the smaller
amounts of information associated with the region boundary, which may
in fact be highly orientation sensitive, may be lost. It may be
possible to remedy this situation by maintaining two sets of
compatability coefficients: one set for those pixels that are
estimated to lie inside of objects and another set for those pixels
that are estimated to lie along boundaries. Of course this will only
work if there is some means of determining which pixels are 1likely to
be on boundaries. In the case where differences within a region are
not expected to be great, the determination of edge given interior can

be based upon differences in pairs of pixel values.

IV.4 Three Variants of Relaxation for Empirical Analysis

This section will show the results of applying the algorithm
explored in the previous sections to an artificially generated image.
The results will demonstrate the behavior of three variants of the
relaxation algorithm. The first is probabilistic relaxation with
"simple" compatibility coefficients, namely, for all neighbors j:

r(i,a,j,B) +1 if a=8

azB

"
)
—
-
e ]

r(i,a,j,B)

The second variant uses probabilistic relaxation with conditional

probabilities for coefficients (as defined in 1IV.3.4). Finally a
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degenerate form of discrete relaxation will be presented, called
plurality update. In this scheme, both the label probabilities and the
label compatibilities are discarded. The algorithm initially assigns
the most 1likely 1label to each pixel, e.g. via a minimum distance
classifier. Next, an update rule is applied which consists simply of

selecting the most frequently occurring label in the neighborhood of
each pixel. This is equivalent to a mode filter [COL78] except that it
is applied to labels instead of pixel intensities.

As will be shown later in this chapter, it is extremely difficult
to clearly evaluate the effects of different segmentation algorithms
when these algorithms are applied to natural scenes. This difficulty
is due to the high degree of noise, edge blurring, irregular texturing,
etc. typically present in non-trivial natural scenes. The presence of
these anomalies implies that accurate ground truth segmentations are
difficult or impossible to obtain. Hand-drawn segmentations are
inevitably prone to errors at the object boundaries and tend to reflect
implicit and explicit biases of the human perceiver.

In response to this, we have designed a series of artificial
scenes in which each region has well-defined boundaries. The feature
data for each object i are distributed normally (N(wu,x )) and then
placed at rardom locations across the object (e.g., the distribution is
spatially uncorrelated). The image in Figure 1IV.4a was designed so
that the distributions of the individual regions would have a
reasonable degree of overlap. In addition, attention was given to the

creation of thin, varying spatial structures that might test the
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behavior of our iterative, spatially-sensitive, relaxation segmentation
process. It will be shown that although the various algorithms tested
basically agree in the large blobby areas, it is indeed the case that
there is a 1large disparity in performance in the finely structured
areas in the image.

The figures that follow will demonstrate the major steps of the
segmentation algorithm, namely, peak selection, estimation of initial
pixel labelling, and iterative update of the pixel 1labels using the

three variations of relaxation specified above.

IV.4.1 1Initial Labelling

sttt i i il e, b sl b o e . &

Figure IV.4 shows an artificially generated image with 4 1labelled
objects (u1=25, Hy =40, uqy=10, u4=56, 0=3 for all objects). Figure
IV.Ub shows the ground truth segmentation which will be used for
comparison purposes with the results of the three variant update rules.
The histogram of the scene shows four clusters which are identified and
labelled by the peak detection algorithm explored in Section IV.3.1.

Figure IV.5 shows the result of assigning cluster probabilities to
each pixel. Each of the four probability-images is displayed with
probabilities in terms of gray levels. Black is interpreted as a very
low probability of belonging to a cluster, while white implies a very
high probability of belonging to a cluster. In addition, there 1is an
image that indicates the highest probability 1label at each pixel.
These labels may be compared pixel-by-pixel with the 1labels in the

ground truth segmentation to establish a base-line error rate of 233




Figure 1V.5

(a)

Cluster A

(¢) Cluster C

(e) Minimum distance classification
of pixels into cluster tvpes.
There are 233 mislabelled
pixels. (5.77%)

in the {ntensity histogram of the image.

(b) Cluster B

(d) Cluster D
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pixels out of 4,096 pixels, or 5.7 percent. Note that this error rate
is a function of the particular y and o chosen for the four regions in

the image.

IV.4.2 Relaxation Using Simple Compatibility Coefficients

Next we consider the results obtained via the probabilistic
relaxation update defined with "simple" compatibility coefficients.
Figure IV.6 shows the highest probability label at each pixel after 1,
3, and 15 iterations of relaxation, In addition, the results are
categorized according to the neighborhood used (see Figure 1IV.3):
4-ad jacency, S-adjacency, 8-adjacency, and 9-adjacency neighborhood.
In each case, the error rate is given,

The first observation that can be made about these results is that
most of the initial 233 errors are cleaned up in the first iteration of
the RLP. However, as the process continues, the RLP clearly introduces
new errors to those remaining, so that the segmentations after 15
iterations* are much worse than the results after 1 iteration.
Moreover, all of the errors that are introduced occur in the thinly
structured areas (e.g. 04 and the diagonal appendages of 02) of the
image: just those areas of the image that are desirable to preserve!

The explanation is that the pixels that are interior to objects

are being strengthened at a rate much faster than those along the

*Note that in all cases, the RLP converged by iteration 153 that is,
all pixels had a single label with probability 1.
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iteration ¢

30 errors

28 errors

9 errors

(a)  Results using 4-neighborhood

94 errors

21 errors

(b)

59 errors

Results using S-neighborhood

Figure IV.6  Probabilistic relaxation using simple compatibility coefficients

across_indicated neighborhoods.

(Cont inued)
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(c) Results using 8-neighborhood (d) Results using 9-neighborhood

Figure IV.6 Relaxation using simple compatibility coefficients across
indicated neighborhoods.
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boundaries of objects. The boundary pixels therefore are relatively
weakened and, in the case of the unstable (thin) configurations, the
once dominant label is ultimately suppressed by the competing 1label.
This behavior can be traced to the action of the compatibility
coefficients.

Let us consider a pixel in the interior of an object and refer to
it as &NT' It often has one label that is dominant (highly probable);
the remaining labels all have low probabilities. More importantly,
however, 1is the fact that all of the neighbors of %NTare. more or
less, specified in the same manner. Thus, during the update process,
the dominant label gets positive support (+1) from the high probability
label at each pixel in its neighborhood and negative support (-1) from
the remaining low probability labels at each pixel in its neighborhood.
In general, the positive support for %NT greatly outweighs the negative
support.

Now consider a pixel, say P lying along the border of an

BORD’
object. The dominant 1label associated with such a pixel receives
strong positive support (highly compatible and highly probable) from
roughly half of its neighbors and, more importantly, it receives strong

negative support (highly incompatible) from the remaining neighbors

(which are also highly probable). Thus, the dominant 1label of

PBORD tends to receive much less total support than the dominant 1label
of PINT' This situation is worse in the case of a thin object in which

there may be few if any interior pixels to support its existence.

Let us turn our attention to a relative comparison of the




different results. How do we account for the widely differing error
rates associated with the various neighborhood formations? Notice that
upon convergence the two results using limited neighborhoods, 4- and
5-adjacency, are better than those using larger neighborhoods of 8- and
9-ad jacency. Again, when one considers that the errors are associated
with thin objects that are embedded within large blobby objects, the
explanation becomes clear. As shown in Figure IV.7, the U4-adjacent
neighborhood allows the dominant label which represents a thin area
(call it label A) to compete in equal numbers against an opposing label
(call it label B) in a surrounding area. On the other hand, the
8-ad jacent neighborhood is biased in favor of the competing label in

the surround.

B B B B
A a) A A (A) A
B B B B
4-ad jacent neighborhood 8-ad jacent neighborhood
can help preserve thin favors the surrounding
lines label

Figure IV.7: The Impact of Neighborhood Geometry

Next, consider the effect of the inclusion/exclusion of the center
pixel in its own neighborhood. Clearly, the results are tremendously

improved when it is included. The same argument applies since
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inclusion of the center pixel greatly improves the chances that a thin

object can survive the attack of the incompatible label associated with

the many pixels of the surrounding object. It is a form of "inertia"
of resting probabilities and helps to some degree, but unfortunately it
is not a very sound general solution.

All of thes: results suffer from a similar deficiency. The
é "simple" compatibility coefficients are inadequate to represent label
; dependencies that occur within the image. Therefore, the quality of a
| segmentation 1is driven by the geometry (shape) of objects with respect
to the geometry of the pixel neighborhood that is defined for the RLP.

This 1is clearly unsatisfactory, since the geometry of an object is in

general arbitrary.

IV.4,3 Relaxation Using Compatibility Coefficients as Conditional

Probabilities

Next consider the behavior of the RLP when conditional
probabilities are used to represent the compatibility coefficients
(Figure IV.8). Here, the neighborhood formation does not seem to
matter very much compared to the inclusion/exclusion of the center

pixel in determining the overall error rate. When it is included, the

RLP behaves in a desirable manner. The uncorrelated, mislabelled
pixels are suppressed into the background and the finely structured

areas are generally preserved.
Let us carefully examine the compatibility coefficients for this

image (Table 1IV.1). There are five arrays corresponding to the S
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Figure IV.8 Relaxation using conditional probabilities for c

coefficients: Neighborhood sizes as shown.
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where A

J

TABLE V.1

i

Coefficients for Neighbor Relation:

-

e

Compatibility coefficients for the image shown in Figure 1V.4.
Coefficients are a function of the conditional probabilicy,

P(d[ﬁ) and are specified between all pairs of pixels A
€ Neighborhood of A

"Above'" (North)

"Below" (South)

| e T
A 0.2440 -0.2557 -0.2349 ~0.2329
B | -0.2459 0.1999 -0.3793 0.1038
€ =0 1568 -0.3374 0.2095 ~0.2334
D | -0.2194 0.0423 -0.2665 0.0860
Coefficients for Relation: "To the Right" (East)
AU R
A 0.2367 -0.2522 -0.2220 -0.2289
B! -0.2466 0.1895 -0. 3469 0.1111
Col =0 2157 ~-0.3534 0.2496 ~0.2143
D) -o.zz%J 0.0471 | -0.2287 | 0.0735
Coefficients for Neighbor Relation:
N A T G D
A 0.2120 -0.2552 -0.1536 -0.2293
B| -0.2649 0.1938% -0.3263 0.1055
C| -0.2332 -0.3682 0.2682 -0.2476
: S 2 ] il R vl
Coefficients for Neighbor Relation: "To the Left" (West)
| i IR S Vi S T
Y ey T e By
-0.2510 0.1899 =0.3503 0.1180
-0.2185 -0, 3437 0.2499 -0.2245
o mvi] Bkl Al s 1 Wlnin

Coefficients for Neighbor

B

1 A
Al 1.0000
B[ -1.0000
¢| -1.0000
D ~1.0000

1.0000
=1.0000

=1.0000

~1.0000]

Relation:
__,-,§.~,
S =1.0000
-1.0000
1.0000

~1.0000

e o

"Center™

)
L0000
-1.0000
~1.0000

1.0000
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neighbor relations: ™"above," "to the right," "below," "to the left,"
and "center." Each is a 4x# array corresponding to the 4 labels (i.e.,
the 4 cluster centers). For example, the compatibility between label B
at the center pixel and label C at the pixel below (e.g., south) is

-. 3263.

Notice first that the on-diagonal entries of the arrays
(e given a) are all positive and the off-diagonal entries are generally
negative. This is expected since in large blobby objects such as 01,
02. and 05 the dominant label of the center pixel is most likely the
same as the dominant label of the neighboring pixels. 1t is for this
reason that the compatibility of label D given label D is the least
positive on-diagonal entry; that is to say, 04, which is represented
by 1label D, has very few interior points and therefore label D given
label D is a relatively infrequent event.

Because objects are oftentimes blobby, one might be tempted to use
the "simple" compatibility coefficients -- they are an extreme example
of the on-diagonal, off-diagonal <{positive, negative) dichotomy.
However, upon careful inspection of the tables one finds some important
exceptions to this observation, Consider the compatibilities between
label B (02) and label D (OA)' In all oria2ntations the tables show a
positive compatibility between these two labels which is the largest
off-diagonal entry.

The compatibility between label D and label B is also positively
i compatible. It 1is because of these statistical relations that this

into the

version of the RLP does not suppress the thin object, 04.




background object 0,. This also explains the persistence of the

l-pixel "regions" -- labelled D -- inside of R the compatibilities

24
tend to support label D given label B wherever they co-occur. In
contrast to this behavior, notice that the 1-pixel regions initially
associated with the labelling of O1 are (correctly) suppressed after 1
or 2 iterations. This is because no label other than A itself is
positively compatible with label A, and therefore the mislabelled
pixels are unsupported.

Let us now consider directionality information contained in the
coefficients. Generally, the objects in this image do not display any
strong directional dependency. However, the compatibilities do reflect
a slight directional relationship between label A and label C. Notice
that O1 (label A), the upper background, is above 04 (label C), the
lower background. Thus, when C 1is associated with the neighbor
"below," the compatibility between A and C (-.1536) is much 1less
negative than for any other neighbor relation between A and C (-.2349,
-.2220, -,2122). Similarly, when A is associated with the neighbor
"above," the compatibility between C and A (-.1553)is much less
negative than for any other neighbor relation between C and A (-,2157,
-.2332, -.2185).

Finally, notice the relationship between labels B and C (or C and
B, In all directions, this relationship is the most negative. This
Is the result of two effects. First, the objects that correspond to B

and C, namely O2 and 03, have no common boundary and thus there is no

significant spatial dependency between these 1labels.* Moreover, the




means of the clusters associated with B and C are far apart (40 and

10). Therefore whenever B has a high probability (i.e., inside 0,), C
has a 1low probability, and vice-versa. Thus, their joint probability
(approximately .02) is low relative to either of their priors
(approximately ) This yields 1low conditionals and very low

compatibilities due to the "kinked curve" used in the translation from

conditionals to compatibilities.

IV.4,4 Plurality Relaxation

Finally, consider the third update scheme -- the plurality rule --
in which the 1label probabilities and label compatibilities are not
employed at all. Instead, a minimum distance classifier is wused to
assign an 1initial 1label to each pixel. The label is then updated by
replacing it with the most frequently occurring 1label in its
neighborhood. Therefore, this scheme favors geometrically stable
configurations of labels, e.g., configurations that are rounded and
contain interior points.

After 15 iterations, the results (Figure IV.9) using a U4-adjacent
neighborhood are not much worse than the results obtained via the
probabilistic relaxation update using simple compatibility

coefficients. This is not surprising since neither technique

%®Although, one should recall that all pixels have some finite non-zero

probability of both B and C. However, since the corre:sponding objects
0 and O do not touch, it is very unlikely that the joint probability
of B and C will be high in any neighborhood.

o o
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iteration #

1
83 errors 55 errors
%
i
3
105 errors 75 errors
15
119 errors 84 errors
(a) Results using 4-neighborhood (b) Results using 5-neighborhood

Figure IV.9 Plurality update across indicated neighborhoods. (Continued)
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iteration #

131 errors 96 errors

170 errors 136 errors

172 errors 156 errors

(¢) Results using 8-neighborhood (d) Results using Y-neighborhood

Figure IV.9 Plurality update across indicated neighvorhoods.
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incorporates information that is based on structural dependencies
between labels. Both schemes are implicitly biased toward structures
that have interior points and thus neither is able to preserve thin
regions. The plurality results using an 8-adjacent neighborhood are
considerably worse than those with the 4-adjacent neighborhood. This
is also to be expected since increasing the number of neighbors works
against maintaining the fragile structures that we have been examining.

In defense of the plurality relaxation scheme, notice that this
computationally inexpensive technique performs very well in areas
lacking spatial structure. Here, it yields the desired effect of
suppressing sparse, randomly located "noise" labels. Moreover, as will
be shown in the next section, its application to natural scenes that
mostly contain "blobby" regions yields results that are remarkably
similar to the results using probabilistic relaxation -- even when the
latter uses compatibility coefficients that are based on spatial

dependencies of labels in the image.

IV.4.5 Summary of Test Results

Before leaving this set of images, it is worth commenting on the
error rates (see Tables IV.2 and IV,3). According to Table IV.2 the
"simple" relaxation scheme gives the best results in the short run.
However, the converged results (Table IV.3) show a significant
degradation of performance. On the other hand, relaxation with

conditional probabilities has only slightly worse peak results than the

simple scheme and importantliy, it does not degrade at all over time.




TABLE IV.2 SUMMARY OF TEST-IMAGE RESULTS

Minimum number of errors tabulated for each Relaxation Method
and neighborhood size. Entries indicate total number of
mislabelled pixels at the given iteration.

eighborhood
Method 4 A 4 :

28 21 26 32

Simple (+1,-1) (Iter 3) | (Iter 3) | (Iter 1) | (Ilter 1)

Conditional

38 31 42 32
Probabilities (Iter 1) | (Iter 3) | (Iter 1) | (Iter 3)
Plurality < 2 i e

(Iter 1) (Iter 1) (Iter 1) (Iter 1)

(233 errors initially)
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TARLE IV.3 SUMMARY OF TEST-IMAGE RESULTS

Numbcr of errors at convergence tabulated for each relaxation

method and neighborhood size. In each case, the relaxation

proctss was run until all pixels had a single label with probability 1l
1 (ayproximately 15 iterations). FEntries indicate the total

number of mislabelled pixels. The number of errors in parentheses
was obtained after 1 and 2 pixel "regions' were suppressed. No
other cases produced reductions in error rates by such processing.

eighborhood
Method 8 . 8 2
Simple (+1,-1) 94 59 130 95
Conditional 139 32 161 35
Probabilities (149) (18) (21)
Plurality 119 84 172 156

(233 errors initially)
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Moreover, by referring to the segmentations one notices that the
5-neighborhood and 9-neighborhood results (Figure IV.8) can be improved
by a very simple clean-up scheme. The images show a large number of 1
and 2 pixel "regions" that are counted as errors. Clearly, these
regions are too small to carry any "meaning", and it is there‘ore
Justifiable to suppress them into the background. When this is done
the error rates reduce to 18 and 21 pixels respectively, or
approximately .4%. We conclude that the conditional probabilities are
necessary to prevent the relaxation process from destroying fragile
structures. In addition, it is imperative that the center pixel be

included as its own neighbor, again to preserve fragile structures.

IV.5 Segmentation Algorithm Applied to a Natural Image

We now turn to a more difficult image domain, that of naturally
occurring outdoor scenes. The scene depicted in Figure IV, 10 presents
a difficult image processing problem for a number of reasons. First,
the physical scene has undergone a number of stages of information
degradation including the photographic and digitization processs, and a
spatial averaging (blurring) process to reduce the amount of data to
managable levels, The effect of these processes (refer to Section T.1)
is to introduce noise, blur edges, and to create hybrid pixel values --
mixed pixels -~ which are not easily classifiable. Moreover, the image
displays 1inherent visual complexities such as irregular texturing,

object occlusion, and irregular changes in gradients. Finally, the
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(a) Blue (b) Blue Histogram

(c) Green (d) Green Histogram

(e) Red (f) Red Histogram

Figure IV.10 Blue, green, and red components of our outdoor scene.
The indicated peaks were automatically detected.
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image is complex because in 3-color space there is a large, unknown
number of object classes to be discriminated, most of which overlap to
varying degrees.

In the next section we will show the results of applying the
algorithm using probabilistic relaxation and conditional probabilities
to our example outdoor scene. Later, the algorithm will be expanded to
include feature transformations of an opponent-color system that
improves color contrast. In addition, multidimensional clustering to

increase the sensitivity of the segmcontation will be explored.

IV.5.1 The Data

The natural outdoor image used in these experiments consists of a
512x512 array of pixels in which each pixel is represented as a triple
of six-bit numbers. The components of a pixel correspond to its light
intensity when scanned through red, gree, and blue (RGB) filters. The
original data has been transformed by independently blurring each
component via a 2x2 spatial averaging process, yielding a resolution of
256x256 pixels. The data reduction steps were performed so that the
resulting 1image would contain a manageable amount of information that
could be processed in a reasonable time period on a PDP-15

minicomputer.

IV.5.2 Initial Labelling

The peaks for the RGB distributions were detected by the process

discussed 1in Section IV.3.1 and are marked on the histograms shown
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Figure IV.10. The following segmentation experiments were performed
using the blue component of the image, since its histogram had the
highest number (5) of detectable peaks. Figure IV,11(a-e) shows the
initial labelling of each pixel with respect to the 5 peaks in the blue
component histogram. As before, for each cluster, the probability of a
pixel is displayed as a gray level with black representing low
probability and white representing high probability. In addition,
Figure 1IV.11(f) shows the highest probability label at each pixel, in
effect a minimum distance classification, with each of 5 distinet gray
levels representing a cluster 1label. Note that the 5 clusters
correspond to distinct gray level ranges in the blue intensity image in
ascending brightness. Thus, cluster A represents the darkest areas of
the image (e.g. shadowed bushes) and cluster E represents the
brightest areas (e.g. sky and sunlit house walls).

How can the initial segmentation be evaluated? Since there is no
ground truth data available with which to generate an error rate, the
evaluation must be subjective. First, notice that the roof of the
house and the tree crown on the right are overmerged. Cluster D, which
is relatively wide, apparently contains the distribution of both of
these objects. Since they happen to lie adjacent to each other in the
image, they receive the same region label and appear as a single region
in the segmentation,

This situation is curious since there seems to be an edge (or part
of an edge) between the two objects in the original image. The

explanation is that the roof is actually a slowly varying piecewise
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(a) Cluster A (b)) Cluster B
\
(¢) Cluster C (d) Cluster D
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Figure IV.11 Initial pixel labelling based on the 5 peaks {n the blue
component histogram. The highest probability label |
i at each pixel {s shown in (f). |
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linear gradient, That is, the upper left portion is dark (from the
shadow created by the nearby tree) and the middle portion is slightly
brighter (unshadowed). The intensity profile then drops until the
lower right corner is reached. The darkness there 1is again due to
shadowing. Now, the right hand tree which is dark, happens to touch
the roof in an area where the latter is still bright, thus creating an
edge. The difficulty of segmenting these two objects is a problem of
undetectable clusters in feature space. The dark roof areas and the
dark tree form part of a cluster in feature space that is indistinct
from the distribution of the brighter areas of the roof. The latter
have enough of a variance so that no significant valley forms between
the dark and light subclusters.

This is certainly a dilemma. On the one hand, it 1s desirable
that the dark and 1light areas of the roof be extracted via a single
cluster so that it is not partitioned, because there is no significant
edge between these areas. On the other hand it is desirable to segment
the roof from the tree since these two ojbects do form an edge.
Resolving this dilemma may not be possible even by recursive analysis
of the overmerged roof/tree region, since a histogram localized to this
region may still appear unimodal. It would require a model of the
spatial changes in feature values. Recent work by Haralick [HAR78] may
prove useful here,

Consider some other problem areas in the initial segmentation.
Notice for instance, the appearance of fragmen'ation in the roof. The

left side of the roof contains many mislabelled pixels which are
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scattered and result from the overlap of clusters C and D. Further,
there is a connected set of mislabelled pixels that extend from the
house roof into the garage roof. Again, the edge that exists locally
between the two roofs is globally obscured in the form of overlapping
clusters,

Other areas of concern are (1) fragmentation of the left tree due
to cluster overlap between B and C, (2) thin line fragmentation of the
roof gutter (clusters A and B), and (3) fragmentation of the shutters

(clusters A and B).

Iv.5.3 Iterative Update

Let us next consider the behavior of the iterative update schemes
when they are applied to the initial labelling of pixels. Again we
apply the three techniques: (1) probabilistic relaxation with simple
compatibilities, (2) probabilistic relaxation with conditional
probabilities for compatibilities, and (3) plurality relaxation. All
of these are applied across the 5-ad jacent neighborhood configuration,
with the center pixel included as its own neighbor.

Figure IV.12 shows the results after 1, 3, and 8 iterations of
each scheme. In addition, Figure IV.13 shows the results displayed as
edges between regions. One is struck by the similarity of all of these
results. The only significant differences are in the roof gutter, the
left tree, and around the front windows. The probabilistic relaxation
technique using simple compatibilities gives th: cleanest looking

result in both areas. The other two schemes geierate many small
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regions in these areas and it is not clear what to do with them: they
are too small (i.e., <5 pixels) to be "meaningful" and they are too
densely packed to justify simply suppressing them into the surrounding
regions,

Apparently, the use of conditional probabilities is preserving too
much detail. This leaves another dilemma, because the preservation of
detail is clearly desirable in some areas. However, this should not be
considered to be a fault of the (conditional probab!lity5 compatibility
coefficients, for they are simply doing their job. Rather, in the case
of the tree and gutter areas, the fault lies partially with the global
clustering process, which fragmented the objects in the first place and
partially with the data itself, which is particularly noisy in those
areas.

It is interesting to speculate on how to recover the left tree as
a single region. The segmentation has left a group of small regions
that are densely packed and mostly of cluster types B and C. One might
consider the use of a spatial adjacency matrix [HAR76] which would
measure the fiequency of pairs of labels over the set of region pairs
(NAG77]. This NxN matrix (where N is the number of labels or clusters)
would show, for instance, a high off-diagonal entry that would indicate
the frequency of 1label B adjacent to label C. If large enough, this
entry could be interpreted as a "cluster" and the corresponding region
pairs could be relabelled as belonging to that cluster. Thus, all of

the small regions with label B or C would be super-labelled into a new

category. Notice that this is a kind of texture analysis in which a

T



micro-texture pattern [RIS76] consisting of two elements is detected

and labelled.
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IV.6 Multidimensional Feature Analysis

T T T

Let us now turn to two methods of augmenting the segmentation

process developed to this point. First, we will dicuss the use of
I color spaces other than RGB, in which color information is enhanced.
The enhancement often leads to better discrimination of objects in the
scene. Second, we will consider the use of higher dimensional feature

Spaces in which it is possible to obtain finer cluster discrimination.

IV.6.1 Opponent Color Features

The segmentation techniques depend on the measurement of some
feature(s) of the image pixels, possibly including the raw sensory data
originally used to represent the scene. For color images, the wusual

measurements are the red, green, and blue components (RGB) of the

intensity level at each pixel in the scene. From this information, a

variety of other representations, such as normalized RGB, or hue,
saturation, and intensity (HSI), may be derived [TEN7Y4,RISTT7].
However, because many of these transformations are nonlinear, they give
rise to distributions with unavoidable singularities [KENT76]. The
presence of these singularities may severely complicate analysis of the
resulting histogram. In order to avoid these difficulties, it has been
suggested that analysis be restricted to linear transformations of RGB,
such as the YIQ (BIN57] representation used in the television industry.

More recently, Sloan and Bajcsy [SLO75] have argued for the use of

an opponent-color representation which has been proposed as underlying
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the color mechanisms in human vision [COR70]. Simply stated, the
effect of this transformation 1is to parameterize the RGB color data
into an equivalent set of features which have pairs of complementary
colors at the extremes of their scales; for example, a feature whose
opponents are blue and yellow would provide information on the relative
amounts of blue and yellow present., The “zero" point in the scale,
where equal amounts of each hue are present, is white.

For a precise formulation of opponent color spaces one can turn to
the work of several researchers in colorimetry. See Pratt (PRA78] for
an excellent review of systems such as (U,V,W), (U® V® w*)  and
L,a,b). Unfortunately, as Pratt points out, there is no clear
ﬁ mechanism for selecting one system over another. We have selected the

opponent system (U% V* W®) an extension of (U,V,W) for the current

work. The opponent axes may be interpreted as follows:

U® =  red vs. green
V®# °  yellow vs. blue
W® = white vs. black

The (U®,V* W#*) system has the important property that chromaticity
and brightness changes are more or less uniformly noticeable [PRA78].
Thus, in this space, our perception of color differences in an image
that is displayed on a color monitor will be roughly uniformly
proportional to the digital representation of those differences. This
property which should aid in the subjective evaluation of image
segmentation results, is absent in (R,G,B) space.

The computation of (U® V¥ W*) from (R,G,B) is defined by:
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U® = (217.358%R - 130.319% - 24.558%B + k) ) #M,
Ve = (-35.461%R - 79.703% + 90.508%B + k,)*M,
We =

( 60.594%R + 80,160% + 39.265'8)'H3
where kl and k2 are selected to insure that their respective
components are strictly in a positive range and

Ml,Mj. and M, are selected so as to scale the components

3
to n bits; n = 6 in our experiments.

We should mention that we have multiplied each term of V¥ by -1 before

scaling. This changes V* so that it effectively measures blue-yellow.

This allows a blue object to appear closer to a natural color when

displayed on an RGB color monitor,.

Figure 1IV.14 shows the results of transforming the R,G,B
components into U® V® W®_ Notice that many of the objects appear to be
much more strongly contrasted in U* V* W* than they were in RGB, (e.g.
the left-hand tree and the bushes). Notice also that the U¥* histogram
has much clearer peaks than any of the RGB components.

It is worth mentioning that a "simplified"™ opponent system has

also been explored. The computation is as follows:

RC = 2" -G -8B (red-cyan)
GM = 2% -B -R (green-magenta)
BY = 2B -G -R (blue-yellow)

The computation is simpler for the obvious reason that the

coefficients are all integer and thus no scaling is necessary (except a

linear shift to insure positive values). The result of subjective

evaluation is that this system yields images that are contrast
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enhanced, Moreover, the histograms appear to have greater cluster

separation than in RGB, thus allowing improved cluster detectiyn.

IV.6.2 Two-Dimensional Peak Detection

Looking again at Figure IV. 14, one notices that there are objects
that are clearly distinguishable {n one feature that are not
distinguishable in another. For instance, there is clearly an edge in
U* between the right tree and the roof, while these same obiects are
much less distinguishable in V%, On the other hand, in V® the left
bushes (shadowed) are clearly distinect from the right bushes
(unshadowed), but they have about the same apparent intensity level in
ue, Of course this is not necessarily a positive characteristic of V%
because one would like the bushes to be labelled the same.

These observations lead one to conclude that classification of
pixels 1into clusters would be improved if more features were used.
This technique was used by Ohlander [OHL76]. In his algorithm, regions
were liable to be recursively segmented if they were multimodal in any
feature from among a set of nine feature histograms. Another approach
to multi-feature analysis is to compute higher dimensional feature
spaces. In this manner, not only can the segmentation algorithm
exploit distinctions in many features simultaneously, but in addition
subtle feature dependencies often appear which may yield cluster
centers that are better representatives of the underlying data.
Moreover, all of this can be accomplished in one step instead of many

recursive steps.
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One problem with multi-dimensional feature spaces is that
clustering becomes a very non-intuitive, abstract process. This means
that it is difficult to evaluate whether the clustering process is
behaving in a desirable mamnner. For this reason, we have limited the
application of the segmentation algorithm to 1-D and 2-D histograms
since they can readily be displayed and understood.

Consider the set of 2-D histograms shown in Figure IV.15. 1In each
case the axes are labelled with some pair of color feature components
from (R,G,B) and (U,V,W). The frequency of values of a feature pair is
displayed as a gray level (white = very high frequency). Notice that
the RG, GB, and RG histograms all have the appearance of being very
highly correlated. This is confirmed by 1looking back at the
corresponding images (Figure IV.10), which all have a similar visual
appearance., The UW®  y#y®  and U®W® histograms have different
characteristics. Here we see a wide spread of off-diagonal clusters.
The detection of these additional clusters leads to a clear
computational savings by reducing the number of recursive region
decomposition steps necessary to accurately locate the underlying
regions.

The peak selection algorithm explored in Section IV.3.1 can easily
be modified to handle 2-D feature clusters. Recall that the 1-D peak
Selection algorithm used the minima between each maximum to determine
peakedness and that this was an important criterien for peak

acceptability. Detection of 1local maxima in two dimensions is

straightforward, but detection of the corresponding valleys between

| ’ y L
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(a) (Blue, CGreen) (b) (Blue, Red)

(¢)  (Green, Red) (d) (Ux, V)

(e) (Ur, V¥) (F) (V*, WY)

Figure IV.15  Two-dimensional histograms obtained from (blue,green,

red) and (U*,V*,W*). The indicated peaks were
automat {cally detected.
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peaks is more complex.

Minima selection in two dimensions involves a search {n 2-space
for the highest ridge between two clusters, that is the max over all
paths of the minimum value of the path. This could be implemented as a
parallel tree search, but we suggest a simpler alternative solution.
For each 1local maximum, the peakedness will be estimated via a
"center-surround" operation by computing the ratio of the "height" of a
local to the average height of the surrounding points in some
neighborhood around the maximum. This operation, combined with a
peak-to-peak distance criterion, seems to be a low computational cost
approximation to the 1D peakedness criterion. However, it could allow
two peaks to be selected when there was a high connecting ridge between
the peaks, making them one syntactic entity. This r'sk is worth the
simplicity and reduced computational cost of the center-surround
operator, The results of this peak selection algorithm are indicated
by the labelled peaks assigned to each histogram in Figure IV.15,

Notice that using a large set of features implies the need for a
feature selection process. This might take the form of simply picking
the histogram with the greatest number of peaks, Another possibility
is to compute the entropy of the histogram. A high entropy value
implies that the data in the histogram is widely spread. This could be
interpreted as indicating greater numbers of clusters.

However, both of these measures could be improved by considering
the '"quality" of the peaks as well, where quality is a function of

peakedness and separability. Thus, each peak could be rated by the

- r——
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product of its peakedness and its average distance to other clusters.
The histogram could then be given an overall rating as the sum of the

individual peak ratings. This heuristic has worked reasonably well in

our experiments although further evaluation is required.

IV.6.3 Results with Two-Dimensional Opponent Features

Next we consider the results using the opponent color features in
a 2-D histogram. The pair (V* W*) was selected because its histogram
had the highest number of peaks. The peak selection algorithm selected
seven clusters (indicated in Figure 1IV.15) and the initial pixel
labelling is shown in Figure IV.16. Notice that there is a finer --
although not perfect -- discrimination of the roof from the right tree.
In addition, the left bushes (which are in shadow) are 1labelled in a
different cluster from the right bushes (which are more sunlit).

The results using relaxation are shown in Figure IV.17. The
algorithm used probabilistic relaxation with conditional probabilities
and was applied to a 4-adjacent neighborhood with the center pixel
included. Compatibility coefficients were computed from a 2D (V¥ ,W%)
histogram. These results can be compared with those in Figure IV.12.
There seems to be a general improvement in the quality of this
segmentation over the results using the 1-dimensional histogram
clusters obtained from the raw blue feature. Major components of the
right tree appear as separate regions, the left tree is more or less in
one piece, the roof gutter is not quite as fragmented, and in general

all regions are much less noisy.




e

_-..__....._.

(a) Cluster A (b) Cluster B

(d)  Cluster b

-

|
Figure 1IV.l6 Inftial pixel labell ing based on the 7 peaks in the )3
8 PRlxe. S22NR dase pea 4
(V*,W*) histogram. (Continued) 3




(e) Cluster k (f) Cluster F

T

(g) Cluster G

(h)  Maximum distance classitication
into 7 cluster tvpes.

Figure 1V.i( Initfal Pixel labelling.

v M -

e b i it B i, S St cnirnbimn R iy




ltevation #

ton_appliet to the initiat
labelling with lusters from (VA WX),




103

IV.7 Conclusions

This chapter has covered a wide range of topics in image
processing. Relaxation 1labelling processes were defined and their
behavior was explored with applications to artificial and natural
images. Compatibility coefficients for RLPs were explored and were
shown to critically effect the performance of the algorithms. Finally,
multidimensional color spaces were introduced and shown to improve the
Sensitivity and quality of the results.

Let us now make some recommendations and evaluations based on the
work presented.

1. Post-processing via RLP of histogram-based pixel labelling

clearly improves the overall quality of a segmentation.
However, one must pay attention to the specific behavior of
the RLP in certain areas of images. This can best be done
with the help of test images that have been designed to
highlight expected problems in image analysis, such as noise
and unstable spatial structures. Other features such as
gradients, blurring, and complex texturing should also be
tested.

2. When appropriately specified, compatibility coefficients can

help prevent the RLP from destroying fine detail in an image.
This was clearly shown by comparative studies with
image-dependent coefficients, image-independent coefficients,

and no coefficients. The latter two experiments yielded much

- -
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worse results than the experiments with coefficients based on
conditional frequencies of labels in an image.

During relaxation, the center pixel in a neighborhood should
be allowed to contribute to the label update function as if it
were a member of its own neighborhood. This allows spatially
fregile structures to obtain more sel f-support and thus helps
preserve fine image detail.

Plirality relaxation is useful for noise suppression but is
danaging to image details. However, it is computationally
much less expensive than other relaxation schemes, and
therefore it may be of use in certain domains. In fact, its
behavior in a complex natural scene domain did not appear to
be much worse than the more complex probabilistic relaxation
schemes.

Clusters that are hidden in one-dimensional histograms (due to
overlapping distributions) may be revealed in
multi-dimensional feature spaces. The extra clusters that are
revealed may (a) lead to finer discrimination of image
regions, and (b) reduce the number of overmerged regions,
thereby reducing the need for recursive segmentation.

Opponent color spaces seem to enhance object boundaries and

give clearer cluster separation in histograms.




CHAPTER V¥

FURTHER CASE STUDIES IN GLOBAL SEGMENTATION PROBLEMS

In the previous chapter, we discussed the details of the design
and behavior of a segmentation algorithm based upon global statistics
and a local update process. The algorithm was shown to vyield
reasonably accurate segmentations in noisy images with thin structures.
The bulk of this chapter will be devoted to exploring two weaknesses of
the algorithm whose effects were somewhat hidden in the previous
discussion. These weaknesses stem from the global nature of the
algorithm and can be demonstrated to yield disastrous results in images
with certain characteristics. We will again make use of test images to
explore problem situations. However, the analysis here will be much
more comprehensive than that of Chapter III since, in addition to
cluster overlap, the effects of relaxation will be accounted for.

The first weakness was explored in Chapter III and lies with the
use of feature histograms computed globally across the entire image.
In our algorithm, the peaks in the feature histogram are used to
compute the initial probabilities associated with the label set of each
pixel. It will be shown below that the global distribution is often a
very poor reflection of the actual distributions of local objects. For
example, clusters with relatively close means  may not have
distinguishable peaks and therefore the 1label set will not be
representative of all the informatiion in the image.

The second weakness of the global algorithm can be seen in the
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computation of the structure-preserving compatibility coefficients used
in the probability updating process. Here, there is a two-fold use of
global information. First, the coefficients are computed as a function
of the prior probabilities of each 1label, which are themselves
reflective of possibly inaccurate global cluster information. More
significantly, however, 1is the problem that the coefficients are
computed across the entire image structure. This may prove to be a
very poor reflection of the actual local information that will be
encountered 1in any particular area. Thus the global compatibility
coefficients may drive the local updating of probabilities toward the
"average" structure which may be quite inaccurate.

The cas»s that will be presented in this chapter form an analysis
of why the global algorithm converges to an incorrect segmentation in
simple images in which the objects ar& locally discriminable. A figure
is included with each case showing: (1) the test image containing
numbered objects, (2) the global histogram indicating cluster labels,
(3) the 1initial pixel classification into region labels, and finally
(4) the converged results after application of two variant forms of the
relaxation update rule. The two variations are plurality relaxation
and probabilistic relaxation using conditional probabilities for the
compatibility coefficients. Both of these algorithms were discussed in
the previous chapter. Note that unless otherwise specified, the update
rules are pplied using a 5-adjacency neighborhood (with the center
pixel included as its own neighbor).

Figure V.0 is a compilation of the images that will be tested. In
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most  of the examples the reader's attention should be directed to the

segmentation of object 4 (but O, in case 3). Notice that {n each

3

image, O, is subjectively discriminable from the object surrounding it.

4
Therefore, a successful segmentation of Oa. in which all of the pixels
in the space occupled by 06 are given the same label, should be
achievable. In cases where the segmentation {s less than 100%
successful, there generally are two labels competing for dominance. We

will count a pixel as an error {f its most likely label {s not the

label that occurs most frequently across the region.

V.1 Case 1, Fragmentation with Recovery Via Iterative Update

Figure V.1(a) depiots an {mage with 4 c¢learly discriminable
objects (u1 = 10, My = 25, My = 4o, w, = 14)%,  The histogram of this
{mage, however, shows only 3 distinot clusters (Figure V.1(b). By
referring to the schematic histogram IV, 1c®*® {t can be seen that
cluster A (CA) {s actually the sum of the distributions of objects 1
and 4 (0l and 0,). The existence of a single cluster to represent the
two distributions implies that 0 and O, will be indistinet via the
global cluster labels. As we have seen before (see Case 2, Chapter 3),
this situation potentially leads to overmerging: {f 0l and 0& happen

to be spatially adjacent, as well as having identical global labels,
*Note that o = 3 in all objects {n this chapter.

"¥he schematic histograms are obtained from an "ideal" (noise-free)
image.
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then only one region label will ultimately represent these two objects.

The situation is further complicated because the distribution of
04. while mostly subsumed by that of 01. is also partially overlapped
with the distribution of 02. Therefore fragmentation will result;
0

that 1is, regardless of the spatial arrangement of O , and O

1Y "2 4
Oh must initially be represented by two cluster labels (CA and CB) in
some mixture.

Figure V.1d shows the initial 1labelling obtained by minimum
distance classification of the pixels into three clusters which are
displayed as three distinct gray levels. Overmerging does not result
because O3 by chance spatially separates 0, from O) and O,.
Fragmentation in the initial classification occurs in each region with
relatively 1low frequency. Significantly, the mislabelled pixels in
each region are randomly distributed, because the distribution of gray
levels across each object was Gaussian; 1in particular there is a
spatially invariant mean and the noise was spatially uncorrelated. The
net effect is that the mislabelled pixels are spread randomly about the
target regions and tend not to be spatially contiguous.

Figures V.1le and V. 1f show the effect of two relaxation schemes
applied to the initial probabilistic labelling. The figures show the
highest probability label at each pixel. However, the probabilities
themselves are not shown. Clearly, both update rules yield the desired
effect of suppressing almost all of the 1 and 2 pixel region fragments

into the dominant surrounding regions. In this example, neither the

use of label probabilities nor the use of label compatibilities were
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necessary to correct the mislabelled pixels. Rather, the plurality
ruke simply takes advantage of the sparseness of the errors and the
lack of any spatial correlation in the errors in order to succeed.

However, the probabilistic relaxation scheme also operates effectively.

V.2 Case 2, Unrecoverable Fragmentation

Figure V.2 shows the same image as in Case 1 except that the mean
of C% has been shifted slightly, from 14 to 17. Locally, the contrast
of the average edge between 043 and O4 has been only slightly weakened
and 1is perceptually still clear to the human viewer. Globally,
however, the distribution of(% is now completely ambiguous -- its mean
is halfway between the means of Ol and 02 (10 and 25 respectively).

The initial labelling of this image (Figure V.2d) reveals the
ambiguity in a striking manner. CZ has been grossly fragmented into
two label types, A and B. Consider what has occurred. A slight,
linear shift 1in the global statistics of 04 has created a tremendous
change in the initial segmentation of the object. The problem is that
the mean of 04 is on the hyperplane boundary between Cy and G of a
minimum distance classifier; small amounts of noise can vary the
initial classification.

Next consider the behavior of the relaxation processes, In
contrast to Case 1, the mislabelled pixels in this image are very
densely populated. Consequently, a likely side effect is that some of

the mislabelled pixels will be spatially adjacent. Note that the
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(b) Histogram reveals only (c) Schematic Histogram. Uy has
3 clusters been shuifted from 14 (Figure

V.1) to 17 in this case.

(d) Initial labellings (e) Plurality Update (f) Relaxation Update

Figure V.2 Case 2, Fragmentation - Second Example: The hidden cluster corresponding
to 04 is halfway between two detectable clusters. The update schemes
organize the dense collection of mislabelled pixels in 04 into viable
regions. The presence of these fragments clearly makes the segmentations
unacceptable. However, since all of these region fragments have nearly
the same feature value, 04 may yet be “recoverable" via a region
merging process.
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effect {s equivalent to spatial correlation of the mislabelled pixels,
although the 1locations where this occurs within the area of 0, are
random, The plurality update simply "“fills 1in“ areas wherever one
label happens to be slightly dominant over another. This process
continues until stable (but randomly configured) region shapes are
attained,. On the other hand, since the compatibility coefficients are
representative of the initial classification, the probabilistic
relaxation process is biased toward preserving the spatial structure of
the misclassified pixels. Therefore, less "noise" cleaning takes place
than with the plurality update.

The segmentations of this example leave 04 fragmented into many
small pieces. It should be noted, however, that since the pixels in
each of the region fragments derived from the same population, their
gray values will not differ significantly in neighboring fragments. It
is conceivable, therefore, that a post-processing algorithm could be
applied to the segmentation which would look for and attempt to recover
from such a situation. That is, for any pair of adjacent regions that
can be detected to have nearly the same distriibution, the algorithm
could relabel all of the pixels involved with the same region label.
This would (hopefully) merge all of the pieces of 0, into a single

unit. This technique will be explored in detail in Chapter VI.

V.3 Case 3, Fragmentation and Overmerging

—

This case is an extension of the previous example and is designed

;-
3
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to show the effects of both fragmentation and overmerging., It will
also provide an example in which the recovery process of region merging
Just mentioned is not applicable.

The image (Figure V.3) contains 3 locally distinguishable objects,
but the histogram shows only 2 distinguishable clusters. This example
is similar to the previous one in that the distribution of O] is
completely ambiguous -- its mean is halfway between the means of 0l and
02. The initial labelling of 03 is equally distributed between labels
A and B. Unfortunately, the adjacent objects happen to be labelled in
the same manner. Therefore, not only is there no cluster to represent
03. but worse, there 1is no spatial separation that might otherwise
isolate the labels associated with 03 from those same labels in the
ad jacent regions with which it is globally confused.

The relaxation processes behave as described in the previous
example, except that there 1is a greater clean-up effect in 03. The
large surrounding regions provide additional support for their
respective 1labels; whereas in the previous example, 0; was surrounded
by a "neutral" label type.

Recovery of 03 as a single region presents a very difficult
problem. First, the major regions shown in Figure V. 3f would have to
be re-histogrammed with the hope that they would reveal significant
bimodality. The bimodality, if detectable, would indicate the presence
of a new cluster type, say Ceo corresponding to 03. The regions with
bimodal distributions would then be split, and by recursively applying

the whole algorithms to each piece, all of the newly formed region
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pieces would have to been checked as potential candidates for "region
merging". If the correct pieces were recursively ‘ound and then
correctly re-merged, O3 could be recovered. However, it is unlikely
that this process would succeed here, since neither of the two major
reogions formed is significantly bimodal. There simply is not enough of

a sample of pixels from 0‘ to generate the requirei second peak.

V.4 Case U4, Fragmentation When Pixel Feature Values
are Spatially Correlated

Recall that in case 1 the fragmentation of O4 was not considered
to be severe because the mislabelled pixels were sparsely distributed
in the image and spatially uncorrelated. Let us now consider a similar
image (Figure V.4) except that (% has been changed so that the
gray-level value of its pixels are not randomly distributed. CZ has
been given a piecewise linear intensity profile (called a "roof") with
the center having brighter values. More specifically, the mean of the
top band {s 11.5 and 1its pixels are well inside the center of the
distribution of Ol (with mean 10). The gradient has been constructed
S0 that the mean of each row is slightly higher than the mean of the
previous row. This is continued until the center row of 04 (n = 18) is
reached, at which point the row means are gradually decreased until, in
the bottom row, the mean is again 11.5., Significantly, the mean of the
center band is 18 which is just inside the tail of the distribution of
0 (Cy). Keep in mind however that 0, is perceivable as a single

object and should be ideally segmented as such. While it could be
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argued that there is a central light band that is extractable, we do
not believe that there is any clear boundary along which the
partitioning would be justifiable.

The initial labelling in the regions representing 0+ 0y, and
04 (i.e., the output of the minimum distance classifier) shows a small
percentage of mislabelled pixels that are randomly distributed across
the regions. 04+ however, shows a set of mislsbelled pixels that are
spatially correlated about the center band. Note that at this stage,
04 contains 418 pixels labelled A and 94 pixels labelled B. If we call
B the erroneous (or non-dominant) 1label, then the segmentation of
OA has an initial error rate of approximately 18%.

Now consider the behavior of the plurality relaxation process.
The plurality scheme starts with the initial labelling and simply fills
in "holes" until stable structures are reached. Since the mislabelled
pixels in 04 (labelled B) are more or 1less contiguous, they are
sufficiently cohesive to maintain their own label identity and suppress
any pixels labelled A that are within the center band. Of course, the
pixels labelled A are competing for dominance at the center band from
above and below and are clearly the dominant force across the region.
Accordingly, the error rate is reduced from 18% to 10% in 8 iterations.

Next, consider the probabilistic relaxation update. This is the
first example in which the probabilities of label types can be shown to
be useful. Although the minimum distance classifier generally labels

the pixels in the center band of 0, as B, the actual probabilities of

these pixels are very close to .5 for both labels A and B. This area
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is, therefore, highly ambiguous, although slightly biased towards label
B. Since the pixels there are ambiguously labelled, it will take many
iterations for them to converge to a more consistent label. Indeed,
the power of probabilistic relaxation lies with the ability to defer
labelling until more contextual information propagates inward from
greater distances. The prediction of deferred labelling is borne out
by two observations: (1) it requires many iterations (i.e., 15) for
the pixels in the center band to reach a high probability in some
label, and (2) the error rate ultimately is reduced from 18% to less
than 6%, which is a significant improvement over the plurality scheme.
Before 1leaving this example, 1let us carefully examine the
compatibility coefficients to gain an understanding of how they
represent the information in the image. Table V.1 shows the
compatibility coefficients for the initial probability labelling of the
image. Four tables are presented, each corresponding to a different
neighbor relation, namely "above," "to the right," "below," and "to the
left" as measured from the central pixel in a square 3x3 window. Each
table has 3 rows and columns which correspond to the three labels QA'
CB' and CC.
Let us briefly discuss some of the important on-diagonal 1label
relations (other relations where a = § will be discussed in later
cases). First, in all orientations, labels A given A and C given C are
highly compatible, while B given B is less compatible. These relations

can be explained by noting that the size of a cluster directly affects

the image-wide prior probability of that cluster label, and that the
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TABLE V.1

i

Compatibility coefficients for case 4.
of the conditional probability, P(a|R) and are specified between

all pairs of pixels A, and A,, where A

i i

Coefficients are a funct ion

¢ Neighborhood of A

Compats for Neighbor Relation: '"Above'" (North)
: 3 D Fee
A 0.4266 -0.1587 -0.6132 |
B -0.1387 0.1836 -0.2367 :
C -0.5463 -0.2152 0.4243 ;
ST
Compats for Neighbor Relation: "To the Right" (East)
A A B <
A 0.4494 -0.1855 -0.6330
i -0.1812 0.1940 -0.2089
C -0.6341 -0.2117 0.4788 }
Compats for Neighbor Relation: "Below" (South)
5 A . SR ¢
A 0.3843 -0.1516 -0.5462
B -0.1716 0.1845 -0.1988
C -0.6132 -0.2203 0.4687
Compats for Neighbor Relation: "To the Left'" (West)
A B C
A 0.4467 -0.1790 -0.6330
B -0.1833 0.1953 -0.2089
C -0.6319 -0.2061 0.4752
Compats for Neighbor Relation: "Center"
» A | [
A 1.0000 =1.0000 -1.0000
B -1.0000 1.0000 =1.0000
C -1.0000 =1.0000 _J 1.0000
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relative sizes of the clusters are size(qA) > size(CC) > size(CB). A
small cluster implies that there will be few pixels in the image that
have a high probability label for that cluster.

The compatibility coefficients, therefore, indicate that the RLP
is biased toward promoting the probability of label A (or C) over label
B. This partially explains why the plurality scheme has a higher error
rate. All 1labels are equally likely in the plurality scheme, whereas
the inclusion of conditional probabilities biases some 1labels over
others. In this case, the biased coefficients help destroy the B-band
in the center of 0,.

It is important to realize, however, that the bias 1is not
necessarily desirable. In fact it is simply fortuitous in this case:
if cluster A were smaller, then the error rate in 04 would be larger.
In general one should ask why a non-local effect -- such as the size of
a distant object -- should have any impact on the local decision as to
what 1label should be promoted over another. This question will arise

again in later cases.

V.5 Case 5, A Second Example of Spatially Correlated Intensities;
Iterative Update is Not as Effective

This case (Figure V.5) is similar to the previous one except that
the intensity across object 4 is linearly increasing from mean 11 to
mean 18 (top to bottom). Thus, the initial classification (Figure
V.5d) reveals a band at the bottom of the region corresponding to that

portion of the distribution of object U4 that is just inside the
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distribution of object 2,

This example, however, shows that the iterative schemes did not
recover nearly as well as with the roof gradient. In the previous
example, the center band (labelled B) was being attacked from above and
below by the A label. 1In this case, however, the bottom band is being
attacked only from above. While it is not obvious at this point, there
is 1less competition for the pixels in the mislabelled band--and
relatively more cooperation--than there was in the previous example.
Let us explain this point in detail.

First, we examine the difference between probabilistic and
plurality relaxation. The probabilistic version has twc features that
plurality does not, namely, label probabilities and label
compatibilities. As it turns out, 1in this example, the effects of
these two parameters tend to cancel each other out. In the plurality
scheme, the pixels in the bottom bands are unambiguously (mis)labelled
as B (Figure V.5e). Since there are enough of the erroneous B's in the
bottom bands, they are the local dominant force and can maintain their
own label with this updating rule, as well as consume any contained A
labels.

In the probabilistic relaxation scheme (Figure V.5f), however, the
pixels in the bottom band are highly ambiguous, although they are
slightly biased toward label B. One might assume, therefore, that
these pixels will simply go with the flow, which in OZ means label A,

However, the effect of the compatibility coefficients must also be

considered (Table V.2). The compatibility between labels A and C is
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Compatibility coefficients for Case 5. The coefficients are
a function of the conditional probability, P(uIH) and are specified

between all pairs of pixels A

i i

and A,, where A, ¢

Neighborhood of A, .

i i

Coefficients for Neighbor Relation: "Above" (North)

N A B | SR B

A 0.432% -0.1729 -0.6143 |

B -0.1322 0.1819 =-0.2404

C -0.5615 -0.1944 0.4253

Coefficients for Neighbor Relation: "To the Right'" (East)

; ) B ¢

A 0.4471 -0.1834 Z0.6316

B -0.1786 0.1940 -0.2119

C -0.6330 -0.2140 0.4779

Coefficients for Neighbor Relation:

“Below" (South)

X B 3
A 0.3901 - -0.1451 -0.5615
B -0.1858 0.1827 -0.1781
C -0.6143 -0.2241 0.4697

Coefficients for Neighbor Relation:

"To the Left" (West)

» A B 5

A 0.4443 -0.1764 -0.6320

B -0.1812 0.1953 -0.2113

C -0.6306 -0.2091 0.4743
Coefficients for Neighbor Relation: "Center"

5 A B -

A 1.0000 -1.0000 =1.0000

B -1.0000 1.0000 =1.0000

¢ -1.0000 -1.0000 1.0000
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much more negative than the compatibility between B and C. This is

because of the global relationship betwen A, B, and C, i.e. the mean

of Cc is closer to the mean of Cg than it is to the mean of C,.

Now, a pixel inside object 3 1is going to have (on the average) a
low probability of being label A, a higher probability of being label B
and a much higher probability of being label C. Since object 3 is
rather large, 1its pixels will make a rather large contribution to the
global compatibility coefficients, and the 1latter will be strongly
influenced by these relationships.

Now cornsider a pixel located in the bottom band of object 4 with
ambiguity tetween labels A and B. The coefficients will favor label B
over label A because label B has a less negative compatibility with

label C in the orientation "below" (-.1781) than label A has with label

C (-.5615). Moreover, since the pixels in object 3 are very strongly
biased toward 1label C, the support that is given to pixels in object
4 s not only less incompatible with 1label B, but is also highly
probable. To summarize, labels B and C cooperate to preserve label B
more strongly than labels A and B compete to destroy label B.

One might argue that the relaxation labelling process is behaving
in a desirable manner, 1i.e. that it is preserving a thin structure
(the "B-band"). However, this is not the case. First, it should be
remembered that the wupdating process mostly destroyed the thin band
(with the same characteristics) associated with the roof gradient.
Second, the action of the compatibility coefficients to boost label B

at the bottom of object 4 is purely an artifact of the global

i el i
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distribution of all the regions, namely, it is an artifact that the

| mean of object 3 is closer to the mean of object 2 than it is to the

h mean of object 1.

V.6 Case 6, Global Side-Effects: Increasing the Size of 0, Affects
the Segmentation of 0, ;

This example (Figure V.6) is similar to the previous one ex:ept
that the area of object 2 has been expanded at the expense of object 1.
As in case 5, notice that there are no changes to the image that
locally effect object U4, and therefore one would not like the global
changes to effect its segmentation.

The initial classification is approximately the same as in case &

E because the positions of the global clusters are basically unchanged.

In fact, the plurality result is exactly the same (Figure V.6e). The
relaxation result (Figure V.6f), however, has worsened. This is due to
the decreased global influence of object 1 and is reflected in the
prior probability of 1label A as well as the compatibility relations
between A-A, B-B, and A-B (Table V.3). In particular, since object 1
is less prominent and object 2 is more prominent, a pixel pair with
label A given label A receives less support than the same pair in the
image 1in case 5. The pair B-B receives more support in case 6 for the
same reason. Thus in comparing on-diagonal relationships between the
two cases, we conclude that B's have gained in self-support. Although

we will not explore them here, the reader can check that the overall

effects of the off-diagonal relations (e.g., B'Cbelnw'

'Bu bove '




128

0, (enlarged)
.

06 (small)

)

(b) Histogram (d) Initial labelling: 79 pixels in
04 are labelled as B

C C C
A B LC

B it d

Q R 0

1 4 2 4
=10 =18 =25 =40
(¢) Schematic Histogram (e) Plurality: 87 pixels in 0, are

labelled as B

Figure V.6 Case 6, Effect of Object Size On
Segmentation: When the size of
0, is enlarged, the error rate for
probabilistic relaxation increases
(relative to previous example) even
though the local environment around
04 is unchanged. The reason is that
the Cg~Cg compatibility coefficient
has increased. Thus, pixels with
dominant label B support each other
more strongly than in the previous
example, and the bottom band in 04 -
increases in size. (f) Probabilistic relaxation: 67
pixels in 04 ave labelled as B

|




TABLE V.3

Compatibility coefficients for case 6. The coefficients are a
function of the conditional probability, P(uIS) and are specified

between all pairs of pixels Ai and Aj’ where A1 € Neighborhood of Ai'

Coefficients for Neighbor Relation:

"Above" (North)

1 A B c

A 0.4066 -0.2176 -0.5734 |
B -0.1780 0.2527 -0.3217

€ -0.5089 -0.2875 0.4014

Coefficients for

Neighbor Relation:

"To the Right" (East)

T A B <

A 0.4235 -0.2305 -0.5930
B -0.2287 0.2669 -0.3021
c -0.5934 -0.3054 0.4540

Coefficients for

Neighbor Relation:

"Below" (South)

[ B 3
A 0.3593 -0.1897 ~0.5086
B -0.2293 0.2536 -0.2751
c ~0.5730 -0.3093 0.4453

Coefficients for

Neighbor Relatiomn:

"To the Left" (West)

A B g
A 0.4214 -0.2272 -0.5923
B -0.2291 0.2677 -0.3034
C -0.5919 -0.3001 0.4505
Coefficients for Neighbor Relation: '"Center"
: A B 4
A 1.0000 -1.0000 ~1.0000
B ~1.0000 1.0000 -1.0000
C -1.0000 -1.0000 1.0000
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., B-A ) are more or less neutral between the two cases.
below above

V.7 Case 7, More Global Side-Effects: Swapping the Means
of Objects 1 and 2

The lower half of the image in case 7 (Figure V.7a) is the same as
in case 5; however, the intensity values of the objects in the upper
half have been reversed. Here, Wy and Hy have been swapped, so that
now u, is between My and Uq (u1 = 25, ¥y = 10, M4 = 40, ¥, = 16). This
example was constructed to show another global side-effect on the
compatibility coefficients and, therefore, on the local performance of
the relaxation process.

The initial classification (Figure V.7d) is approximately the same
as in case 5 and therefore the plurality result (Figure V.7e) is
approximately the same also. However, the result of probabilistic
relaxation (Figure V.7f) is somewhat worse due to the weakened
compability of label A with itself and the relatively strengthened
compatibility of B with itself (compare the on-diagonal relations in
Tables V.2 and V.4). This can be understood by considering the new
location of cluster A in feature space. Since it now lies between two
clusters, any deviation from its mean value not only lowers the
probability of A, but at the same time strengthens the probability of B
or C. As in the previous cases, a globally distant change alters the

performance of the RLP in a local area.
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TABLE V.4 132

Compatibility coefficients for case 7. The coefficients are a
function of the conditional probability, P(GIB) and are¢ specified

between all pairs of pixels Ai and Aj' where AJ € !leighborhood of Ai'

Coefficients for Neighbor Relation: "Above'' (North)

——

N, A B c
A 0.2964 Z0.1353 0. 3886
B -0.1029 0.2835 -0.4923
& -0.3443 -0.4458 0.3771
e .

Coefficients for Neighbor Relation:

N A B -
A 0.3047 -0.1433 -0.3977
B -0.1396 0.2966 -0.4783
C ~0.3980 -0.4807 0.4250 _J

Coefficients for Neighbor Relation:

"Below'" (South)

3 A Y c
A 0.2595 -0.1147 ~0.3429
B -0.1472 0.2924 -0.4394
c -0.3872 -0.4859 0.4195

Coefficients for Neighbor Relation:

; A B <
A 0.3015 -0.1371 -0.3971
B -0.1408 0.2975 -0.4789
C -0.3957 -0.4765 0.4217
Coefficients for Neighbor Relation: "Center"

N A B [
A 1.0000 ~1.0000 -1.0000
B -1.0000 1.0000 ~1.0000
c -1.0000 ~1.0000 5 1.0000

- ot . i

g g

"To the Right" (East)

"To the Left" (West)
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V.8 Case 8, Adding Thin Lines

Case 8 (Figure V.8) has been 1included to show that the
compatibility coefficients are not necessarily sufficient to preserve
thin stucture in an image when that structure is not typical.

The image was manipulated to ensure that each pixel in the
diagonal 1lines was correctly 1labelled initially (Figure V.8d). The
plurality update (not shown) destroys these lines in one or two
iterations, because there 1is only one supporting pixel (the central
pixel itself), while there are four competing pixels. Notice that this
situation would not be significantly improved even if an 8-adjacent
neighborhood were used. In that case, there would be three supporting
pixels against five competing pixels.

The probabilistic update (Figure V.8e) maintains the correct label
of the pixels in the diagonal lines for a few iterations. However,
after convergence, they are replaced by the dominant 1label in their
respective surrounds. Clearly, this image contains very 1little
statistical information to support the existence of the diagonals. The
relationship in the background, i.e., between label A and label A (or
label B and label B), is much stronger than the relationship across the
diagonals, i.e., between 1label A and label B. Thus the pixels along
the diagonal lines get modest positive support from all neighbors while
the pixels in the backgrounds receive very strong positive support from

their neighbors.
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\4) Images with thin lines in 0 Q and O
! » O, 1
O, has a linear intensity profile as in
{ W
previous cases.
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ety

0 O 0, 0
) - | 4 3

(b) Histogram shows only

(¢) Scliematic histogram
2 clusters

(d) Initial labelling (e) Probabilistic relaxation result.

Note that the gray scale for this
figure does not match that of (e).
Figure V.8 Case 8, Thin-Line Fragmentation: All thin lines are destroyed by
relaxation because their frequency across the image is too low to
be significant in the compatibility coefficients. The plurality
result i{s not shown here.
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V.9 Conclusion

The examples in this chapter were constructed to show the powerful
impact of the global image characteristics upon the local iterative
update processes. In each case, an image was depicted in which all
regions 1locally were quite discriminable, yet the globally-based
segmentation algorithm was unable to yield satisfactory results.
Global 1influences such as partially and totally obscured peaks, region
sizes, non-zero gradients across regions, and thin structure frequercy
were all shown to affect the performance of the segmentation algorithm.
In the next chapter we will show that localization of the algorithm to

subimages can alleviate many of the problems explored in this chapter.




CHAPTER VI

LOCALIZED SEGMENTATION VIA PARTITIONING AND MERGING

The previous chapter explored some obvious pitfalls of the global
segmentation algorithm, In each of the cases depicted the data was
locally discriminable, yet some information was globally obscured. The
results showed that regions could be broken or torn into fragments that
might not be readily reassembled. The existence of these cases has
motivated us to reformulate the segmentation algorithm as outlined in
Figure VI.1. The basic idea is to focus on local areas of the image
that are umall enough to reveal local clusters and local activity yet
large enough to bhe statistically meaningful.

In the new formulation the image 1is initially partitioned into
regularly spaced, square sub-images, called sectors. The segmentation
algorithm i3 then applied to each local domain just as before. Thus,
each sector receives the full focus of the cluster detection and
iterative labelling process, thereby relieving the problems of
non-local compat.ibility coefficients and (somewhat) cluster overlap.
Now, many o the regions that are obtained by this process are
arbitrarily split. along the boundaries of adjacent sectors. Therefore,
after the set of sectors has been segmented, a post-processing stage is
applied to merge selected regions that were artificially split along
sector boundaries., The merging process is based on the ability to
decide statistically whether the union of two adjacent regions produces

unimodal or bimodal distributions of feature values. This chapter will
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partition the image
into NxN sub-images
(usually N=16 or 32)

Apply the segmentation
algorithm independently
to each sub-image:

(a) select features;
(b) determine peaks in
feature space;

(c) assign initial
pixel labelling;
(d) apply RLP

Merge all pairs of
regions lying along
the artificial
boundaries of the
sub-image if the
boundary segment is
of low confidence
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If necessary, recursively
apply the algorithm to

any of the resultant regions

1

Figure VI.1 Localized Segmentation Algorithm.
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focus on the design issues of the localized segmentation algorithm, and

will show some results based on artificial and natural scenes.

VI.1 Design and Implementation Issues

VI.1.1 Size of Sectors

The first step of the new 1localized algorithm requires
partitioning the 1image into a set of smaller sectors. There are two
basic concerns in selecting a sector size. The first is the
elimination of the hidden cluster problem, so that all locally
prominent regions can be associated with a unique cluster. Second, it
is desirable for the sectors to be small enough so that any image
Structures that are present are "prominent" within the sector. This
will allow the compatibility statistics to properly represent local
activity. In the limit this could require sectors consisting of a very
small number of pixels, but, of course, the sector size can not be
reduced to an arbitrarily small size, since this would lose the ability
to estimate the feature distribution by means of a histogram. In such
a case peak selection and feature evaluation could be meaningless.

Our choice of partition size will be restricted to powers of two.
Although this s not a rigid requirement, it facilitates the
implementation of the algorithm in a parallel fashion in our processing
cone [HAN76], where each sector 1is accessed and processes
simultaneously. Sectors of size 16x16 and 32x32 were chosen because

they were often sufficient to yield smooth histograms of reasonable

"y i ke, b i B i s ks i o
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appearance in both artificial and natural images.

The partitioning issue has an obvious weakness. Consider a sector
with a visually distinct region that is easily detectable. 1If this
region happens to extend slightly into one of the adjacent sectors, it
is quite possible that those associated pixels will not generate a
detectable peak in the histogram of the adjacent sector, This would
mean that a portion of a clear region would be lost in the local
Segmentation due only to the artificial placement of sector boundaries.

To remedy this situation, each sector will be expanded so that it
overlaps with each neighboring sector by 25% on each side. In the case
of a 16x16 "inner" sector, it will be expanded to a 24x24 "outer"
sector so that it overlaps each ad jacent sector by 4 rows or columns.
The assumption here is that any small protrusion into the inner sector
will be sufficiently represeﬁted in the outer sector to be globally

detectable in the outer sector histogram.

VI.1.2 Segmentation
The segmentation of the partitioned image proceeds by

independently applying the global algorithm to each sector. It was
found that even with sectors as large as 32x32, the feature histograms
sometimes were very jagged and the peak/cluster detection was somewhat
difficult to analyze subjectively. Therefore, it was decided that the
automatic peak selection criteria, when applied to such a small number
of points, should be modified to allow more clusters. The

Justification for this decision, which potentially leads to region
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fragmentation, depends upon the effectiveness of the merging step to

recover from a peak detection error. Hopefully, if an additional {
5

cluster label leads to the fragmentation of a region, then the local
statistics of the region fragments should be very similar, and they
will thus be reunited. Conversely, if the region fragments are
significantly different, then they will remain separate as one would
expect. The merging process thus provides the means of recovering from
certain types of errors in the peak detection process, allowing the use
of a less conservative cluster detection mechanism.

Notice that the system now has the ability to employ the feature

histogram that is most appropriate for the sector under scrutiny. This
will allow much finer discrimination of objects than the global
approach permits. However, this flexibility makes the merging process

slightly more cumbersome as will be shown in the next section.

Vi.1.3 Merging - Sewing Regions at the Seams
The final stage of the local segmentation algorithm requires the

reuniting of the independently segmented sectors to form a continuous
segmentation with boundaries only where they are actually indicated by
the data. Prior to merging, the image consists of a set of uniquely
labelled regions, some of which have been artifically broken into
pieces by the partitioning. Thus, there will be vertical and
horizontal lines which we will call "seams" that cut across certain
regions. The seams are, of course, the artificial sector boundaries.

The obvious approach to merging these regions is to base the process on
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exactly the information that would have produced single or multiple
regions in the segmentation process -- the modality of the distribution
across the regions under consideration. Consequently, the merging
process requires the ability to detect whether a pair of adjacent
regions form a unimodal or bimodal distribution.

One method for carrying out the merging process is to examine the
histogram formed by the union of the data in the two distributions,
using a slight variation of the peak selection algorithm. The goal
here 1is to determine the presence (rather than the location) of either
one, or more than one, clusters, If only one peak 1is detected, the
distribution will be assumed to be unimodal and the boundary between
the regions will be eliminated; otherwise, it will be 1left intact.
This technique, although providing a lot of information, has the
obvious drawback of requiring large amounts of storage for histograms
-- one per region. Worse, due to the artifact of partitioning, the
number of regions to be histogrammed is much greater than the number of
regions one expects to find in the final segmentation.

A simpler technique, although possibly less reliable, uses a
statistical measure of the two distributions in question. In a paper
on bottom-up region analysis, Yakimovsky [YAK76] suggested wusing the

following criterion for merging atomic regions:

C12 = VO/V1 * V2

where

VO = the standard deviation across both regions 1 and 2
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"

the standard deviation measured across region 1

v,

“

the standard deviation measured across region 2.
CI” can be interpreted as the confidence that regions Rl and R, are
separate regions. For our purposes, when C12 < 0 we will consider that

Rl and R2 can be merged.

Notice that if region 1 and region 2 have the same distribution

iy = My = uy and 0 = 0y = 0,), the output of this measure is T/Vo,
which is the minimum value that this function can take on. As the
means of the regions become further apart, Cyp can get arbitrarily
large since the standard deviation of the joint distribution will be
larger than that of the individual distributions.

There are two problems with using this function. The first is

that 012 depends on VO' which means there is not a unique baseline for

comparison. To remedy this, we have squared the numerator yielding:
v
= *
C N /vl '

12 <

This effectively normalizes the function, so that C12 is 1 when
Vo = Vl, = V.

The second problem with the original measure arises whenever there
is a 1large difference in the size of the two regions. In this event,
C12 will be approximately equal to the standard deviation of the larger
region, say region 1. Then

Clg = /v >V

g = 1V,
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which is generally much less than 1. Thus, a size difference biases

the function toward merging. To remedy this, the computation of Vb can

be changed as follows:
V., = (E(x, - u )2/m + I(x, - ¥ )z/n)
0 i 1 i 2

where m and n are the sample sizes of the two regions. This treats the
two distributions as if they were of equal size. The final measure is
therefore:
C,, =V 2/V * v
01

12 2

where Vg is computed as above.

VI.2 Examples of Local Segmentation

We will now demonstrate the effectiveness of the local
partitioning algorithm over the global algorithm. First, 1let us
examine some of the examples in the previous chapters and then apply
the algorithm to new, more difficult cases. In each case, probabilitic
relaxation with conditional probabilities as compatibility coefficients

and a 5-adjacency neighborhood are employed.

VI.2.1 Case 2, Chapter V: Recovery from Fragmentation

This example is the same as Case 2 from Chapter V;




VI.2a,b, and c¢ recapitulate the global segmentation. Recall that the
distribution of object 4 was hidden by those of objects 1 and 2. The
slobal segmentation fragmented object 4 into many small pieces. Let us
now look at the performance of the local segmentation. When the image
is split into 32x32 sectors (Figure VI.2d), the local histograms
clearly reveal all the relevant peaks. The histograms of the top 2
sectors are similar in appearance since the noise statistics are
basically the same in each sector; this is also true for the bottom 2
sectors. The pixels in each sub-image are initially classified, and
relaxation labelling yields the result shown in Figure VI.2g. Finally,
Figure VI.2h shows the result of applying the merging process across
all of the adjacent regions. Table VI.1 shows the merging statistics
for all pairs of adjacent regions that touch the artificial sector
boundaries. A zero entry indicates non-adjacency. Notice that
although there 1is a wide range in the merging statistics, the values
tend to cluster around values less than 2 and greater than 20. The
threshold for merging is set to 2 and applied across the image. This

last step yields the result shown in Figure VI.2h. The error rate in

OA has been reduced from 30% in the global analysis to 0%. Notice that

the merging threshold would have to be increased tenfold before any

adverse remergng would take place,

VI.2.2 Case 5, Chapter V

This example is the same as Case 5 from Chapter V. Figure VI.3

demonstrates again, that with the disappearance of the mislabelled
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(a) Image (Case 2,

(b) Histogram computed (¢) Relaxation result (5-
Chapter V)

across the entire neighborhood, conditional
image probabilities ftor com-

patibility coefficients)

(d) Image as 32x32 (e) Histogram of sectors (f) Histogram of sectors 3 o1
§ §

secLors 1 or 2 (upper sectors) 4 (lower sectors)

i\l R3
R
5 R7
Ro Rs
(g) Composite showing the 4 sectors (h) Final result after merging

segmented independently, each
gray level in a sector represents
a unique label.

across artificial sector
boundaries

Figure VI.2 Localized Segmentation of Case 2, Chapter V: An image is first broken into 32x32
sectors. ch sector is then independently segmented. Finally, regions that

were artificially broken at the sector boundaries are merged if their distributions
are similar.
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TABLE VI.1

Merging statistics for all adjacent region pairs from Case 2, Chapter
Values are proportional to the degree of difference between a pair
of regions.
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(a) Image with linear (b) Global intensity (c) Relaxation result
gradient (Case 5, histogram
Chapter V)
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bottom band of the gradient there is significant improvement in the

output of the local segmentation. The improvement is of course due to
the visibility of the cluster associated with the gradient, which was

hidden in the global histogram.

VI.2.3 Case 9, Demonstrate the Effectiveness of Overlapped Sector

Boundaries

The image depicted in Figure VI.4a was designed to show the
importance in the localized segmentation algorithm of overlapping the
boundaries of the sectors. First, the image is segmented via the
global algorithm. This image contains two partially hidden clusters
and therefore the segmentation is pa:ticularly bad, as shown in Figure
VI. ud.

In the local algorithm (Figure VI.lde-g), many of the sectors
contain only a very few pixels from a large region in an adjacent
sector. The histograms of some of the 32x32 sectors do not show
significant peaks for the contribution of those region fragments.
Figure VI.5 shows the histogram of the lower left-hand sector, with
and without the "extra" points. The peak in Figure VI.5a corresponds
to pixels from 03. while the additional peak in Figure VI.5b
corresponds to the band of pixels from 01. To remedy this, all sectors
are extended by 25% in each direction, yielding Uu48x48 domains. In
general, the augmented histograms reveal the presence of the

distributions of the poorly represented regions. Without these

augmented histograms, some of the sectors would be incorrectly
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(small)

(a) Image with 4 objects. U, has a (b) Global histogram reveals only
linear intensity ramp. 2 clusters

(d) Probabilistic relaxation result
(global).

(c) 1 labelling

(e) Image divided into léxlé (f) Result of segmenting each sector
sectors independently

Figure V1.4 Case 9, Localization
applied to an image
with two hidden

clusters in the glotal

() Final (local) result after
merging
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(a) Histogram of lower (b)) Histogram of expanded

right sector sect ol

V-g\lu-n.vuwv of Overlapping Sectors: The histogram
e lower right hand sector of Case 9 (& shown,

k a) the pofnts arve taken strictly trom within the
gector and, theretore, show only one peak corresponding
to fthe points in 030 However, by {ncreasing the size
off the sector by 25 percent, the histogram (b) reveals

the presence of a second cluster corresponding to the

points in Oy
that the sector

Figure V1.5

Thus, the augmented histogram ensures
will be segmented corrvectly.
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Segmented. The final result of the local segmentation is shown in

Figure VI, 4g.

VI.2.4 Case 8, Chapter V: Thin Spatial Structures

This exauple (Figure VI,6) is similar to Case 9 except that the
image has been made more complex by the introduction of thin lines,
Let us first review the result of applying the global segmentation
process (Figure V.8 or Figure VI.6a-d). Notice that initially most of
the pixels comprising the thin 1lines are correctly classified.
However, as previously discussed, the globally-based relaxation process
ultimately destroys them due to the 1inability of the compatibility
coefficients to preserve thin structures whose feature values do not
occur frequently across the entire image. This segmentation of this
case should be compared to the result shown in Figure IV,8b. In the
latter case, the thin lines are preserved throughout the relaxation
process. This 1is because their global frequency makes a significant
contribution to the compatibility coefficients.

By contrast consider the local segmentation results (Figure
VI. 6e-g). Notice that this algorithm not only localizes the histo.ram
to small areas, but it also localizes the range of the compatibility
coefficients. Thus the new algorithm is capable of focusing on local,
orientation-dependent co-occurences of label pairs as well as seeing
local peaks. The final results are again a tremendous improvement--in

both of these respects--over the global segmentation.
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VI.2.5 Localized Segmentation Applied to Our Example Outdoor Scene

Finally, in Figure VI.7, we return to the natural, outdoor image
that was presented at the end of Chapter IV. The global segmentation
(Figure VI.7¢) yielded poor results in the following areas:

(1) the roof and right-hand tree were inseparable;

(2) the left-hand tree was severely fragmented;

(3) the house roof and garage roof were partially merged.

(4) the house gutter and window shutters were poorly

del ineated;

For simplicity, the local algorithm has been applied using only
one feature (the raw blue data) which was the best choice globally
Since it had the greatest number of distinct peaks.

The local segmentation (Figure VI.7d-f) 1is a clear improvement
over the global result although this still must remain a subjective
Judgment since there is no ground truth data for this image and any
hand segmentation would require making arbitrary boundary decisions in
ambiguous areas of the image. In any case, most of the segmentation

errors mentioned above have been alleviated.

VI.3 Conclusion

This chapter has shown that a dramatic improvement in the quality
of a region analyser can be obtained by localizing the focus of the
system. The new paradigm consists of artifically partitioning the

image, segmenting each partition, and finally, merging regions that
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(a) Outdoor Image (b) Global histogram (¢) Relaxation result

(d) Image as 32< sectors

(e) Final (merged) result
displayed as edges
over the date

Figure VI.7: Localized segmentation applied to our example natural outdoor

scene.
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were artificially broken at the sub-image boundaries. A simple,
apparently robust, merging statistic was developed for detecting
whether two regions are unimodal or bimodal. Results for both
artificial and natural scenes showed dramatic improvements.

It should be emphasized that the merging process involves a
threshold operation that may not always produce results that are
globally desirable. There is less risk of making an error in merging
when the merging operation is restricted to regions that are broken at
known sector boundaries. In those cases, one may assume that the
target region must have been broken somewhere along the sector boundary
(since they are arbitrary) and it might be sufficient to simply find
the region on one side that is most like it on the other. However, one
may want to apply the merge test in general, to all pairs of adjacent
regions, as a post-processing check for fragmentation. In this case,
the risk of merging regions that are better left alone increases.

It is interesting to note that the 1local algorithm, although
requiring apparently much more overhead than the global algorithm, does
not actually take much longer to compute . The reason is that each
local segmentation step is shorter not only because there are fewer
pixels, but also because fewer {iterations are required to reach
convergence. In the global algorithm, the label probabilities of all
pixels are updated until the 1last pixel converges. In the local
algorithm, relatively unambiguous sub-images can converge at a rate

independent of other more ambiguous sub-images.
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CONCLUSTONS

This thesis has evaluated the results of various segmentation
algorithms applied to both a natural scene and computer-generated test
imates. It appears that carefully constructed test images provide more
insight 1into the capabilities and limitations of these algorithms than
the natural scene. The structure of the information in the test images
was chosen to be particularly difficult for these algorithms in an
effort to demonstrate both their capabilities and 1limitations. Such
results, coupled with natural scene segmentations, allow insights that
otherwise would not have been available. Let us now review some of the

major findings of this research.

VII.1 Histograms

It was shown that segmentation by histogram clustering/pixel
labelling 1is a technique that is quite prone to error. Distributions
of objects in an image tend to overlap by varying degrees, with the
result that some pixels cannot be accurately classified. A set of test
images was examined that showed how certain arbitrary image properties
can greatly affect the quality of the segmentation. These properties
include the spatial arrangement of objects, the spatial distribution of

pixel values in an object, and the shape of an object.
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VII.2 Relaxation and Feature Space

Next, a more complex segmentation algorithm that greatly improved

the region analysis was presented. Instead of simply assigning a

T —

discrete label to each pixel, a probabilistic labelling scheme was

introduced in which the 1label of a pixel is encoded by its relative
location in feature space. Then, a probabilistic relaxation 1labelling
process was applied to attain locally consistent labellings. Again,
the use of test images proved fruitful to explore parameters such as
the choice of neighborhood configuration, probabilistic relaxation vs.
plurality relaxation, and the computation of the compatibility
coefficients.

In areas of an image that lack fragile spatial structures, it was

shown that any of the relaxation techniques improved the pixel

r— Jr— e T T ———

classifications. However, widely varying results were found in areas
) that display fine structures, In the 1latter case, all of the

techniques were shown to destroy fine structure when the center pixel

was excluded from its own neighborhood. Including the center pixel as

} its own neighbor has the effect of adding "self-belief” to the RLP by
increasing support from like labels in the neighborhood.

! The definition of the compatibility coefficients also had a

pronounced effect on the classification error rates., Three variant

formulations were explored:

[j 1. no compatibilities, as in the plurality relaxation scheme;

2. "simple" compatibilities (r(i,0,3,8) = 1, r{i,a,8,3) = =13




vemonstrates again, that with the

disappearance of the mislabelled
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and

3. compatibilities as conditional probabilities of label pairs at

particular orientations.

The first scheme does not use any information about the particular
image being explored and, consequently, does a poor job of preserving

fine details. The second scheme does not use image-specific

information, but it does use meta-information about images; namely
that one may expect to find -~ and should promote the likelihood of --

adjacent labels of the same type. This assumption is valid in coarsely

structured objects, but it is not adequate in finely structured

objects. In the latter, there is a large percentage of boundary area

and thus dissimilar label adjacencies are expected. Accordingly, the
second scheme does not yield very good results in areas of fine detail.
Both schemes 1 and 2 quickly reach a minimum error rate, only to
diverge drastically at later iterations.

The third scheme is the most complex and the only one that uses
image-specific information. Here, we are attempting to capture label
dependencies using the framework of conditional probabilities. Upon
careful examination, we were able to show how specific structures in
the 1image were translated into strong and weak compatibility
coefficients in the compatibility tables. This scheme yielded the best
results when applied to the test image. Moreover, it displayed the

least divergent behavior, reaching a minimum error rate in a few

iterations and staying there over time.
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In addition to exploring relaxation schemes, some effort was put
into exploring clustering techniques in one- and two-dimensional color
feature spaces. We found that opponent colors tended to heighten color
differences, yielding improved cluster detection. Multi-dimensional
Spaces were found to yield more clusters than one-dimensional spaces,
and thus give better sensitivity to image characteristics without

requiring costly recursive steps in the segmentation process.

VII.3 Problems with Global Segmentation

Another set of test images was explored which showed that recovery
from classification errors via relaxation is not always successful.
Errors persisted when the initial classification of pixels in a region
contained: (1) a dense population of errors (cases 2 and 3), or (2)
errors that were spatially correlated (cases 4-7). In these cases, the
RLP tended to maintain the errors since there was significant local

support for them.
In addition, it was shown that the compatibility coefficients,

because of their global nature, often biased the RLP in an undesirable
manner. Thus, for instance, changing the size (case 6) or the mean
(case 7) of certain objects affected the segmentation of other objects
that were spatially distant.

Finally, it was shown that thin spatial structures (case 8) could

be suppressed during relaxation even if they were initially segmented

correctly. Again, this was due to the lack of sufficient global

RO
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information to support the existence of these structures. Therefore,

in lieu of sufficient compatibility information, the geometry of the

neighborhood configuration dictated their segmentation.

VII.4 Partitioning Prior to Segmentation

Analysis of segmentation results on test images led to a new
formulation of the segmentation algorithm based on the use of
sub-images (sectors). The idea here is to partition the 1image into
sectors that are small enough to reveal 1local clusters and local
structures yet 1large enough to be statistically meaningful. By
artificially breaking the image into small units, the problems of
cluster overlap and insensitive compatibility coefficients were
overcome to a great extent. The new paradigm thus minimizes non-local
side effects. After segmentation of each of the sectors, a simple
merging technique is applied so that regions that were artificieslly
broken at fhe sector boundaries can be remerged to form whole regions.
This technique was shown to be robust and did not leave any obvious

region fra;ments.

VII.5 Future Work

Let us consider a few areas that should be further explored.
First, the technique wused to initially label pixels could be easily

improved. The use of the Euclidean distance of a point to a cluster




i
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center 1is inadequate since it does not take into account the shape of
the clusters. It is very likely that there are points in a !istogram
that are close to one cluster yet which lie in the distritution of
another. In such cases, the initial labelling of a pixel will be in
error, To remedy this, one could assume that regions have normal
distributions and then estimate the mean and variance of each cluster.
Then, the 1likelihood of any point belonging to any of the clusters
could be computed statistically.

Second, it seems clear that more work needs to be done on the
formulation of the relaxation process. Peleg ([PEL79] and Zucker
[ZUCT79] have made some headway into characterizing RLPs and are
supplying non-heuristic methods for their derivation. The tendency in
the current research is toward the use of hierarchical relaxation
schemes and those that use compatibility coefficients which are better
approximations to the spatial dependencies that appear in tte image
[RIS78]. Here, joint conditional probabilities of the set of labels in
a neighborhood can provide more effective updating criteria suggested
by a Bayesian probability framework. The limitation of this approach
is that m labels of n neighborhood pixels requires estimation and
application of nxm compatibility coefficients.

Finally, we feel that a larger set of test images should be
developed. In particular, effects such as blurring (mixed pixels) and
complex texturing should be incorporated into the images. Moreover, it

would appear that these kinds of images should be constructed as a

collaborative effort of the image understanding community and made
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available to those involved in applying their techniques to natural

Scenes. We may then further understand the areas of difficulty for

current algorithms and to address these problems in a structured way.
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