
AD AO7b 511 COL.ORADO UNIV BOULDER DEPT OF COMPUTER SCIENCE F/B 9/2
A STUDY OF ERRORS CAUSED BY TRANSCRIPTION MISTAKES IN FORTRAN P— €TC (U)
AUG 79 L D FOSDICK DAAG2Q—76—6— O01 6

UNCLASSIFIED CU—CS—1’46—79 A RO—150 74.1O—M NLJ:Fjfl !lfl !__p

AP.~~~
/ 6O*/ O~f1’\

I

UNIVERSITY OF COLORAD O

H
_ _ _ _ _ _ _ _ _ _ _

DEPARTMENT OF COMPUTER SCIENCE

)ruuuP

Technical Report

uJ

79 11 07 06
______________________-

i~ (~ \ A STUDY OF ERRORS ~~USED BY TRANSCRIPTIONMISTAK~S IN ~PRTRAN PR~~RAMS V
by 0

L. D./Fosdjck
Depar tment of Computer Sc ience ~‘

Un iversity of Colorado
~~~ ~

O’J JBoul der , Colorado 80309 
~J

CU—CS-146—7g I /1 August, 1979

-- 
~~~ I F

I~1TERIM TECHNICAL REPORT . ~
U.S. ARMY RESEARCH OFFICE / ~

. / /
CONTR~c~~~ ./OAAG2g_78_G_,Øg45

(/ (~~~~~~~~~~~~ i J .

Approved for pub lic release
Distribution Unlimited

_ _ _ _ _ _ _ _ _ _ _ _ _ _ ~~~~~~~ L
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

______________ -
_____ — - ..--

~

THE FINDINGS IN THIS REPORT ARE NOT TO
BE CONSTRUED AS AN OFFICIAL DEPARTMENT
OF THE ARMY POSITION , UNLESS SO DESIG-
MATED BY OTHER AUTHORIZED DOCUMENTS .

We acknowledge U.S. Army Research support
under contract no. DAAG29- 78-G-OO46 and
National Science Foundation support under
grant no. MCS77-02194

p S C C U* IY Y C L A S S l r l ~~ A T lON OF 7 . .15 •A O E ‘W ~.... D.c. l~nl.~s4)

REPORT DOCUMENTATION PAGE
R A P OA T p,ua.~~ L~~ ~~~. ~ ov~ ~~~~~~~~~~~~~~~~~~ H~~C P C . , V S L A r A L O G N U M B t R

CtJ-CS-146-79
—________

—
T I T L I (w.a S..buU.) ~ T v P L OF ~~(POMT a •(.Ion . -

~~~ o

~A Study of Errors Cause d by Transcr ipti on
M is takes in For tran Programs ~ __________________ ________

a ~~ m ro ~~ usc o~~o. pO Rr~~~uMs(~~

7 A u ’tsOm(.) I C O N T m A C T O ~~~G~~A NT NUkl BLR(.I

DAAG29-78-G-0046Lloyd 0. Fosdick MCS77-02194 (NFs)

S PLRFOAU , NG O R G A N I Z A T I O N  NA M E A N D  * OORISS 10 PR O G R A M  ~ L~~M( PROJ E C r ~~~~A5l(
A R IA  ê .o~~~ UNIT NUMB ERS

Dept. of Compter Science
University of Colorado at Boulder
Boul der , Colorado 80309 _________________________

I I  C O N T RO L L I N G  O F F I C E  I4A ME ENO AOORCS S f 12 REPORT D A T E

U. ~ : . v  :- ~~:~~~~~~t ~~ ‘~~i~~e August 1979
~~~ . I3 .  I IUMBE R o r PAG ES

i : t : . , - ‘~~~ N
Ta UONITORI A G(NC’v N AI4E S AOORESS(t1 ditt .,., 1 t,o Ce.i I~oHU.g t U i l .~ IS S(CUR uI~~ C L A S S . (.1 hAl . ~.po~h)

d

-
s i : i - ~- :

IS. o F C L A S S I r I CA r I O p 4 / o O* ,~~~RA D I N G
5CR C OUL C

NA
5 C I S T R I B U T O N S T A T E M E N T (~,i lilt. Rapo~()

A~~ - :~~- vt . : ~u .. ~~~~t a . e ; ~ St i -~~

I3 . DISTRIBUTI ON S T A T E M E NT (.1 A. .b.ft.cS ,t. ,.d Is 9I.ch ~O, g IJsIf.~~w,1 l, o . R.pe.l)

NA

5 SUPPL E M E N T A R Y NOTES -

i ,~~ i ~ t r~ i s t~p~~rt ~tr ~ r.~”. t - . ‘~~
- a:’. r~~ ~~f fj ci a~

~~~ ~~~~~ ~~~
‘ * :~e ~ r~ y p~~s1t ~~ , u~. • ~~ 

. . . ite~’.i by ~the r  a~ t~;~ -r~ zei

I, ~~Ev  w~~R~~s (ConlS n.~. 0., s~~Ir~~• .Vd . if n.(...~~v i4 Id.nt!iy S.. bh’~
-k ,.os’ .,)

software reliability, keypunch errors, error detection

10. A B S T R A C T  (CsntM. ~. ~~. i...,.. aid. II n.e....13. .id Id n f l ? ) ~~~. ‘.‘~ ~ n..rnb.,)

- -—f  Transcription mista kes which are not caught in proof-reading must
be caL-Jht by observation of phenomena , suc h as syntax errors or wrong H
resul ts , caused by them. Here we explore the nature and frequency of
simpl e phenomena caused by typing mistakes such as stri king the wrong
key on a keyboard. This is done mainly with a simulation of the mis-
takes but some analytic work on this problem is also described . Final-
ly, the efficacy of compilers in detecting the phenomena caused by typing
m t ~~k~~c ic rTh~~L

DD ~~~~ ~473 E DIT IO N  OF I NOV 51 IS O B S O L E T E  -

S F t . i j R i T v ( k  A~~~I F h A T I ON 01 11415 P A ( .( ( IVN ..n 0.1. EnI. ,.d)

-- ~~-- -~~~~~—~~~~--.~~~~, - -~~~~~~~—- ----~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


- - — , ~~~~~~~~ ---.- .-~~~~ —--— —.-
— - .- - - - —,-

~

---- - -
~~~~~ 

- — - - .- -—  —-- — - - - - --•--- - - ----.-

~~~

----- -

TABLE OF CONTENTS
Page

Prediction of Syntax Errors by Analysis 3
Monte Carlo Experiments to Simulate Transcription

Mistakes 5

Conclus ion 11

Ref erenc es 15
Figure Captions 16
Figure l 17
Figure 2 18

r

For
I I ~
I 3

J if t i o n ___________

_ _ _ _ _ _ _ _ ~~~~
_______ ~~~~~~~~~~~~~~~~ ~::~

A STUD Y OF ERRORS CAUSED BY TRANSCRIPTION M ISTAKES IN FORTRAN
PROGRAMSt

-. 1.

LLOYD 0. FOSD I C K

Introduction

Transcription mista kes are a common kind of mistake made in ~ne

construction of programs. Often they occur when a program is tran-

scribed from a handwritten form into a machine readable form, but they

al so occur when a program is transcribed from the mind of the author

onto paper , or from a flow diagram into a sequence of statements, and

indeed whenever transcription is performed. It is clear that these mis-
F

takes are inev i table: no matter how much care is taken in the prepara-

tion of a program , no matter how rigorously good principles of design
r

are followed , and no matter how much effort is invested in proving a

program , the chance of program errors caused by transcription mistakes

cannot be reduced to zero because human systems are not perfect. In-

deed there is a kind of uncertainty princ i pl e operating in this do-

main because the act of verifying a program itsel f involves transcrip-

tion and is therefore vulnerabl e to these mistakes.

Depending on the care taken, some transcription mistakes will be

discovered by proof-reading and those which remain will be discovered ,

if at all , by the phenomena they cause. When a transcription mistake

causes a syntax error it will be discovered easily; or, when a tran-

scr ipti on mi stake causes an unusua l cons truc tion to appear , as when

tSupported in part by U.S. Army Grant DAAG29-78-G-0046 and NSF Grant
MCS 77-02194
ttDept of Computer Sc ience , Un iv. of Col orado , Boulder , Cob . 80309

L.. . — - .~~~~
— ..—

~~
.- -a


~~~~~~~~~~~~~~~ -

-2-

the FORTRAN statement

X = X + L O

Is erroneously transcribed as

V X 
~ 1.0

and V is not a program variable . it too can he found easily. But when

‘~ is written to fifteen significant figures as

3.1415 93653 58979,

the fact that the seventh digit should be 2 instead of 3 will not be

discovered wi th comparabl e ease. Thu s we arrive at the question which

occupies us here : Wha t is the nature of the errors caused ‘
~ tran-

scription mistakes and what portion of them can be detected easily,

that is at a cost comparable to the cost of compilation.

The simplest and perhaps the most common kind of transcription

mistake, is made wi th individual characters. The substitution of one

character for another is an exam~1e. Another kind is the confusion

of identifiers , where one is substituted for another . In a sense this

kind of mistake is more complex since it takes place at the word

level rather than the character level and , probably more importantly,

it involves memory. Still another kind is the omission of expressions,

statements, or even sequences of statements. Such mistakes are easily

caused by a lapse in attention and it is not unconinon that the omitted

text is preceded by a segment similar or identical to the end of the

omi tted text. From the point of view of the menta l processes involv-

ed this kind of mistake seems almost as simple as the single character

mistake . However, our interests here do not require that we know why

a mistake was made or wt’~ether one is more complex than another. Our

Interest is in the effects of a mistake. 

- -—--~~~~~



— — --- —-— 

~

—- —-- —

-3-

In this paper the focus is on sing le character mistakes in

FORTRAN programs. The effects of severa l kinds of single character

mistakes on programs with different characteristics are considered and

we look briefly at the ability of some widely used compilers to detec t

the errors caused by these mistakes. A Monte Carlo scheme is useo to

generate an ensemble of programs conta ining errors from simulated tran-

scription mista kes. These errors are then analyzed and classified

according to the ease with which they may be detected . The difficulty

of the problem addressed here almost prec ludes deriving useful results

by formal analysis. However , in the next section a simple analysis of

this problem to predict the frequency of syntax errors is described and ,

as we shall see, it yields results which are in good agreement with

those obta i ned from Monte Carlo sampling.

The idea of inserting simulated mistakes in programs has been

discussed by others. Weinberg and Gresset [1] used it to study the

error detecting capability of a FORTRAN compiler. It has been ad-

vocated by Gi lb [2] as a technique for measuring the number of undetect-

ed errors in a program - adopting the ideas used by biologists for

measuring fish populations , etc . Recently Lipton and

Sayward [3] have suggested it as a mechanism for guiding the selection

of test data . The work reported here , while bearing some relation to

this other work , is different in its objectives from the work of Gilb

and that of Lipton et.al ., and is wider in scope than the work of

Weinberg and Gresset.

Pred ic t i o n  of Synta x Errors by Analysis.

Since short assignment statements , appear to be the most common

kind of statement appearing in FORTRAN programs [4] we direct our

1”

-- - - - .- - - — --—~~- - . -~~ - — - .—-  . - --- -!



-4-

attention at them. Let ci stand for any letter of the alpha bet , ~~~
-
~ G

~ for any letter or any of the of the ten dec ima l digits. All legal

three-character assignment statements will have the form

ci = ~.i .

Now count the number of ways in which exactly one of these charact1~r~
can be replaced by another FORTRAN character in such a way that a

syntactically correct statement results. For all such

statements but one this number is 60: for the one exception , namel y the

statement E = 0, this number is 61 because of the possibility

E = 0 ~~END. There are altogether 47 characters in the FORTRAN char- • ‘

r
acter set [5] hence, ignoring the exception , the probability that sub-

stitution of exactly one of the three characters by another will yiel d

a syntactically correct statement is 60/138 = 0.43.

We can extend this straightforward analysis to longer statements

but the number of cases that need to be considered grows rapidly and

the computation becomes very tedious. A brief look at four-character

assignment statements is sufficient to illustrate this. Let a stand

for + or - , ~ for any decima l digit , and ci and u as before. There

are nine forms ~o be considered : ci = c~ ’t , a ctc5 , ci 55 , ci = oci , a =

a = .~~~~, ci = I S .,  act = u , czi5 = 
~~~. With each form we assign a weight , w ,

which is the number of instances of that form ; for example , H

w(ci = cscs) = 26~, W(ct = cis) = 262 10, and so forth. We distinnuish

between the forms a = act and ci = citS and do not l ump them together as

ci = a~ because the third character can be changed to a digit or a

decimal point in the second form yielding a syntactically correct

sta tement (v i z. A = A9~~ A = 99, or A = A9 = A 4 .9) but this is not

true for the form a act. Similar considerations force distinction

- - - --- ----.
_ _ _

-_ _ _ _ _ _

——- - - — - - .~~~.~~—•-—-‘— - - - — - - — -——- . .~ . . . ~~~~~~~~~ ~~~~~~~~

-5-

of the nine forms l is ted above . For each of these cases we compute tne

probab llit~, p . tha t a single character substitution will vieTh a

tactically correc t statement just as for the three-chara’ter case .

for example , p(ci = c~) 0.48, p(ct =~’~c) = 0.54. Finally, we compute

the average probability ~ that a single character substitution wi

yield a syntactically correct statement: this is given by the usual
F

formula
- — ~ w(i) p(i)

=

~ w(i)

where the sums extend over the nine cases. The result is p 0.51.

When this analysis is extended to five-character assignment statements

51 forms ~ire distinguished and similarl y analyzed : for this class of

statements the average probability that a single character substitution

will yield a syntacticall y correc t statement is p = 0.56. This analysis

has not been extended to longer assignmen t statements L’ecause the nunber

of forms which need to he distin guished makes the problem almost intract-

able.

On the basis of this approach we can estimate that a single char-

acter substitution in a FORTRAN program has a slightl y better than 5O’~-

c hance of yielding a program that is syntactically correct. This esti-

mate Is crude for a number of reasons which are evident from the approach

we have taken . However, we shall see that it agrees rather wel l with

the random sampling or Monte Carl o approach described below.

Monte Carlo ~ periIi~ t~!~ o Simulate Trari scri pt i on Mi stakes.

Four common transcription mistakes made in typing are simulated in

these experiments: substituti on - the substitution of one character

for another ; deletion - the omission of a character , insertion - the
insertion of a character; transposition - the interchange of adjacent

-0-

characters. All of these , except transposition , are single character

mistakes. Two of them , substitution and insertion , require the intro-

duction of a new character into the text and so the question of how

this new character is to be selected arises. n simulating substitution

mistakes we randomly selected a character from among the correct char- -

-

acter s nearest-nei ghbors on the keyboard of an Ih ~ 026 keypunch. H~~is

rule was used to govern the selection because evidence from experiments

with typists shows that a nearest -neighbo r is the most likely character

to be erroneousl y substituted [6]. However , in order to explore the

effect of another selection rule , a series of experiments were made
r.

in which every character in the FORTRAN character set was made an

equally likely candidate for substitution . As will be seen , use of

this alterna te rule had a noticeable effect on the results. Another

obviou s choice , but not one considered here, is the character on the

same key but in the alternate shift mode - simulating failure to shift

from alphabetic to numeric or vice versa . For insertion mistakes the

alternate selection rule , all characters equally likely, was the only

rule used.

he character position in the program text where the mistake is

simulated was selected at random , giving each position equal probability

of selection , ignoring COMMENT statements and blank positions. When

the position was selected one instance of each kind of mistake was

simulated . This selection process was repeated fifty times , so for

each program text fifty samples of it were created wi th one instance

of a particular kind of mista ke - thus two hundred and fifty samples

of a particular tex t altogether: fifty of substitution with nearest-

neighbor character substituted , fi fty of substitution wi th any

. .
~ - -- -, ~~~ - --~

--

~~

_ _ _ _

-7-

character substituted , f i f t y of deletion , fifty of insertion with an’,

character substituted , a~id fifty of transposition. There is a corre’a-

tion among sampl es arising from the fact tha t, for a given position

selection , each of the five kinds of mistake appeared at the same place.

This correlatio !- permits a better comparison of the ~-ffects of toe

different kinds of mistake.

The particu lar mistakes chosen for consideration here are no doubt

fdmi li ar to the reader who may draw on personal experience to decide

their relative likel i hood . However , it is worth noting that substitu-

tion and deletion errors together appear to be far more common than

insertion and transposition errors. In a study [7] of mistakes made in

keyi ng cash amounts in a bank central office the following frequencies

were observed : substitution , 62.4 .; deletion , 20.7~; insertion , 6.O~;

transposition , 1.5%; other , 9.4%. With specific reference to these

mista kes in FORTRAN text , Jam es ~nd Partridge [8] made the follow i ng

observations: suostitution , 24%; deletion , 58%; insertion , 18~; tra,is-

position , 0%. These observations are consistent with the observation

tha t substitution and deletion are simpler actions than insertion and

transposition.

Four program texts, taken from ACM Transactions on Mathematical

Software , were used as subjects:

1. Algorithm 495 - Solution of an Overdetermined System of

Linear Equations in the Chebyshev Norm [9];

2. Algorithm 498 - Airy Functions Using Chebyshev Series

Approximations j 10];

3. Algorithm 505 — A List Insertion Sort for Keys wi th Arbitrary

Key Distribution [11];

~~~~~~~~~~~~~~~~~~~~~~~



_ -- --—-~~~~~~~~~~~~

-8-

4. Algorithm 513 - Analysis of In-Siti.~ Transposition [12].

There are significant differences between them. In Al gorithm 495 a

two-dimensional array and two one dimensional arrays are prominent and

there are no constants except a few small i ntegers. In Algorithm 496

there is no two-dimensional array but there are some small one-dir .3n-

sional arrays used as tables for real constants: the large number of

real cons tants , nearly 200, it contains is a distinguishing character-

istic of this algorithm , and it is the only one to contain WRITE and

FORMAT statements. Algorithm 505 has variables and constants of type

i nteger only and it has a one dimensional array of 57 integer constants

initialized in a DATA statement. Algorithm 513 has a one-dimensional

array of type real , all other variables are of type integer and it

has just a few constants all of type integer . There are some differences r
in size: the number of lines , exc l ud ing COMMENT l ines , in these al-

gorithms is 208, 249, 71, and 81, res pect ivel y; the number of statements ,

exclud i ng COMMENT statements , is 207, 168, 58, and 81, respectively; the

number of characters , excluding blanks and COP+IENT statements, is 2917,

6820, 1364, and 979, respectively.

After the samples were generated each was examined by eye to de-

termine the kind of error caused by the simulated mistake. Four kinds

of error were di s ti ngu i shed .
1. ~yn tax error : A v iola tion of the lan guage rules determ inabl e

by scanning the altered statement out of context.

2. Semantic error: A violation of the language rules determin-

able at compi l~ or load time and not included in 1.

3. Anoma l ous use of a variable: Exactly one appearance of a

variabl e name in a program unit , or use of a l ocal variable

onl y in a referenc ing con tex t, or use of a l ocal var iable onl y
in a defining context. $

L ~~~~~~~~ — ______________ —— —~ —~~~ — 
—



__________________- -. —------— -~—-,~------‘-,-,- ——- -- -----.- - - . -~~ — — 
~~~~~~~~~~ 1~~~~~ ~ ——----------- ------—---—-----—------—--————— -~

— —

4. Other: Anything not covered by 1 , I, or 3.

The language rules referred to here are those for ANS FORTRAN ~o [5~.

For a language lik e ALGOL or PASCAL the errors in the first cat ooorv

coulo it d e f i n e d with respec t to the forma l grammar used to d~fi no

but since FdRT }~4N bb s defined onl y i nforna liv ~ - t ’ art ’ fo rced to -

informal defi n i t ~on of synt .as and semantic errors ~~re. owever . t h ~~
‘

should not cause any serious misunderstand i ng . The nature of the mi ‘,- -

takes we are considerin g is such that they are likely to cause an

anomolous use of a vari abl e to appear and most of these are rocoo rii t’d

in category 3 , however , they are included in this category only if

they are determinable without pa th t rac ing - i.e ., without recogni :~nq

the order in which statements are executed . It will he noted tha t no

path tracing is required to recognize the fact tha t a variabl e name

appears only once in a program unit,and provided it is not used in a

procedure call it is possible to determine whether a local variable is

used only in a referencing context or onl y i n a defining context. These

ternis , refer~’nce and (1011 ne , ref.w to fetching a va 1 no from memory and

ass iqn inq i value , respectivel y : x is in a referencing context i n

y = ~ + I and v is in ~i definin g context. Any anomali es w h i c h would

require pat h t . rac I nq to detect them fall in category 4. A FORTRAN e\pert

wi l l recogn ze th a t ca teqorv 3 includes certain errors that might have

been placed in cat oqorv I because it is a violation of the I anquaqe to

use a var i ab le in a ref erenc i og con text bofore it has appeared in a do—

fining contex t ~fld a variable used only in a referenc ing con t es t is

surely such a v io la t ion . Neverthel ess it se~m~d more sensible to In-

clude these in category 3. One point about this c l a s s i f i c a t i o n needs

to hi’ emphasized . The anoma l ies or errors included in the f i rs t t hree

- - -
~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~

- -
~~~~ - ~~~— -~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



F 
- -

~~

--  --- -

-10-

categories are easy to detec t and we should expec t tr~at a ~~od c o r - - i - -

will detec t all of them. Those in c~tegory 4 on the other hanc are -

stantially more diff icult to detect and while some might be detectabl e

by techniques of static analysis , others would not. In any case ~.-e

would expect to use data fl ow analysis , testing , or some other s-

to recognize them.

The results of this classification of the 1000 samp les are dis-

played in Fig. 1, where the abbreviations used are defined as follows :

SN , substitution mistake - nearest-neighbor substituted ; SR . substitution

mistake — any character substituted ; DL , deletion mistake ; IN , insertion

mista ke - any character inserted ; TR , transposition mistake. The large

number of real constants in Algorithm 498 explains why the SN , DE , and

TR mistakes yield a high proportion of samples in category 4: real

constants tend to be converted into real constants . The SN mistakes

cause a l ower percentage of syntax errors than SR mistakes because SN

mistakes are more likely to substitute another character of the same

type. The actual probabilities are : pr( < letter > ~ ‘letter > I =

85% (56%), pr{ ~dig it > ~~< digit ~ } = 74% (20%), prt <sp. character > ~
< sp. character > I 57~ (18%) where the number inside parentheses is

the value for an arbitrary character substitution. When the results

in Fig. 1 for all four alqorithms are combined the distribution of errors

over the four categories is: syntax error, 52%~ semantic error, l82~;

anomaly, 16%: other 14~. It is interesting to note that the result ob-

tained here for the frequency of syntax errors agrees wel l with the

result we obtained earl i er by analysis.

Out of the one thousand samples , one hundred and forty fell in

the fourth category representing errors relatively difficult to de-

tect, and of these fifteen were one of the following types : 

~~~~~~~~~~~ L_  -


~- - ---- - •

— 11—

referencing an undefined variabl e, two definitions of a variable with-

out an intervening reference, a null statement (e.g. x = x). It is rea son-

able to assume that these fifteen couU be detected by data flow ana~~sis

or simple matching (for the null statements). Thus it appears tha t

more than 1O~ of the errors caused by mistakes would remain until ‘~~
-

ecution time for their detection , making generous assumptions about de-

tection by static analysis.

It is natural in considering these results to wonder abou t the

effectiveness of compilers in detecting these errors. Accord ingly the

samples produced by the SN mistakes were submitted for compi latiofl to

four different compilers: MNF , the University of Minnesota FORTRAN corn-

piler ; FTN, the CDC FORTRAN compiler ; FORTH , the IBM FORTRAN H-level

compiler ; and WATFIV , the University of Waterloo compiler. In Fig. 2

the errors detected by these compilers are illustra ted , with the number

of errors in the first three categories shown for reference (marked EDE).

It is evident that most of these compilers do little more than catch

the syntax errors and some of the semantic errors. No results were ob-

tam ed for WATF IV on algorithm 498 because of difficulties caused by

the long DATA statements it conta i ned .

Conclusion

These results have three applications. They contribute towards

providing quantitative measures of the reliabilit y of proqrarns. they

provide a base for the comparison of similar phenomena in other lan-

guages, and they provide a target at which the builders of FORTRAN

compi lers can a im.

Our ability to provide some quantitative measure for the

reliability of a program is notably weak. In practice ad hoc techniques

-
- - _ _ _ ~~~~- -

-12-

based upon what appears to be reasonable are all that we have for juc~g-

ing a program to be reliabl e or, to put it another way, for estimating

the number of errors it might contain. The results presented here pro-

vide us with some assistance with this problem . It is reasonable to

assume that the density of transcription mistakes which remain in a

program after proof-reading is sufficiently low to treat them as in-

dependent, non-interfering phenonema : if there is any doubt as to the

validity of this assumption one would have little difficulty in test-

ing it. Therefore by simply multiplying the frequency of mistakes in

the text after proof-reading by the numbers obtained here we have an

estima te of the number of mistakes which escaped detection after corn-

pilation and static analysis. The first factor can be measured in-

dependently and will certainly depend on the quality of the typists

and proof-readers, but to show what might be expected from such a cal-

culation we use some data that are available. James and Partridge [8]

in a study of two hundred FORTRAN programs , composed of 20,121 state-

ments altogether , found approximately three mista kes per thousand

statements of which 90% were of the sing le character type: since we

can assume James and Partridge did not find them all and since it is

unclear precisely when , after proof-reading , they made their observa-

tions , we conclude that the number of mistakes in the programs after

proof-read i ng was at least three per thousand statements. Other data

on keying errors support this . In a study of mistakes made in keying

statistica l data by Deming , Tepping , and Geoffrey [13] they found that

the “max imum error rate is one wrong card in one hundred cards punched .”

In a study concerned with the design of keyboard s Klemmer [14] observed

that “Experienced operators average 56,000 to 83,000 keystrokes per


~~~~~~~~~~~~~~~~~~~~~~
--- 

-13-

day wi th 1 ,600 to 4,300 strokes per residual error” (a ‘ residual error

is one remaining after detection and correction of the text by t nt’ ty , i~~t):

this translates to 0.25 to 0.6 residual mistakes per 1 ,000 characters.

Klenrier ’s data is consistent wi th that obtained from the Oxford Un .‘e rs i tv

Press for operators of typesetting keyboards: superior operators e~.- an

average error rate of about 0.5 residual mistakes per 1,000 characters.

If we assume an average of about 14 (non-blank) characters per statement,

as is the case for Algorithm 495, then we might expec t between 3.5 and - 
-

8.4 mistakes per one thousand statements. It is a matter of conjecture

as to how many of these might be caught In proof-reading . If we assume

the worst, that is none caught in proof-reading, and we take the results

obtained from the work reported here which show that about 85~ of the

errors cause d by typingmist akes could be caught durinq compil ation and static

analysis, we obtain the resul’t that after compilation and static analysis

we could expect between 0.5 and 1.3 mistakes per one thousand statements.

This result would be reduced in proportion with the number 0f mistakes

caught by proof-reading ; but on the other hand we have seen that exist-

ing compilers have a much poorer error detection rate than 85% tending

to increase this result in actual practice. The density of mistakes

remaining in a program when it is put into use, that is to say after

testing , can then be estimated once we have a quantitative measure of

test effectiveness.

There is an intuitive feeling people have to the effect that mis-

takes in programs written in Al gol-like languages are less likel y than

in programs written in FORTRAN . Now so far as the kind of mistakes that

we are treating here Is concerned this difference , if it exists , will

_ _  ~~~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~



-~~~~~
_---~~~~- - ---

7

-14-

be primarily due to the fact that an Algol -like language will make the

mistake easier to detect: it is not so likely that the language differ-

ence would reduce the frequency of typing mistakes - indeed the larger

alphabet of Algol-like languages could serve to increase the frequency

of typing mistakes. An investigation carried out on programs writ -n

in other languages like the one carried out here on programs written

in FORTRAN could resolve this issue and might provide some clues to

language features which enhance , or inhibit , error detection .

Finally, we have seen from the results presented here that there

appears to be considerable room for improvement in existing compilers.

The main area needing improvement is anomaly detection , though it must

be admitted that this is a difficult area to dea l with because increa s-

ing the reporting of anomalies tends to increase the false alarm rate.

Investigating the error detecting capability of existing FORTRAN com-

pilers has not been an important theme of this work , however , the few

results we have obtained in this direction suggest that further work

in this area could serve as a stimulus to compiler writers and as a

warning to the careless progran~ner who likes to leave it to the corn-

piler to find the mistakes.

Part of this work was done while I was a visitor wi th the

Numerica l Algorithms Group in Oxford . I thank them for their hospi-

tality and I also thank C. W. Gear who kindly ran my samples on a WATFIV

compiler , and J. M. Boyle who did the same on an IBM FORTRAN compiler.

Finally, I thank Dan Ruegg , Mar io Esco bar , and Carol Orey of the

University of Colorado who assisted in gathering the data reported here.



r - -
~~~

-15-

References

1. Weinberg , G. NI. and Gresset , G. L. An experiment in automa ti
verification of programs . Con~~. ACM 6,j0 (Oct. 1963), 610-613.

2. Glib , T. Software ’ietrics , Winthrop (1977).

3. Lipton , R. ~J. and Sayward , F. G. Hints on Test Data Selection:
Help for the practicing programer. Computer (April 1978), ~~~~

4. Knuth , D. E. An empirical study of FORTRAN programs. Sofbvare
P. & E. ~~ (1971), 105-133.

5. ANS FORTRAN (1966). American National Standards Institute , Inc..
1430 Broadway, New York , N.Y . 10018.

6. Shaffer, L. H. and Hardwick , J. Errors and error detection i n
typing . Quart. J. Exp. Psych. 21 (1969), 209-213.

7. Carison , G. Predicting clerical error. Datamation (Feb. 1963),
34-36.

8. James, E. B. and Partridge , 0. P. Tolerance to inaccuracy in
computer programs. Computer J. 19, 3 (Aug. 1976), 207-212.

9. Barro da le, I. and Phillips , C. Algorithm 495 - Solution of an
overdetermined system of linear equations in the Chebyshev norm .
ACM Trans. on Math . Software 1, 3 (Sept. 1975), 264-270.

10. Prince , P. J. Algorithm 498 - Airy functions using Chehyshev
series approx imations. ACM Trans. on Math. Software 1 , 4 (Dec.
1975), 372-379.

11. Janko , W. Alqorittin 505 - A list insertion sort for keys with
arbitrary key distribution . ACM Trans. on Math. Software 2,2
(June 1976), 204-206.

12. Cate, E. G. and Twigo , 0. W. Algorithm 513 — Analysis of in-situ
transposition . ACM Trans. on Math. Software 3, 1 (Mar. 1977).
104-110.

13. Deming . W. E., Tepping , B. J.; and Geoffrey, L.: Errors in card
punchin g . J. American Statistical Association 37,220 (Dec. 1942),
525-536.

14. Klen,uer, E. T. Keyboard entry . Appl . Ergonomics 2, 1 (1971),
2-6.

---- - - - - - - - — - - -- --~~~~~~ — =- - —- ---- --- - - ________ ____

- -
~ - -

-16- H
Fi gure captions.

Figure 1: The effect of five classes of typing mistakes (SN, sta b-

stitution - nearest nei ghbor; SR substitution - any character; DE ,

deletion ; IN , insertion ; TR , transposition) on four algorithms. For

each case the first interval on the bar graph denotes ‘ s t ax

errors, the second interval denotes “semantic ” errors , the third —

interval denotes “anomalous use of a variable ,’ and the fourth in-

terval (shaded) denotes “other” errors. The fourth interval is

shaded to clearly distinguish the errors in this class which are

difficult to detect from those in the other three classes which are

relatively ea sy to detect.

Figure 2: The effectiveness of four FORTRAN compilers in detecting

errors caused by substitution (nearest neighbor) typing blunders .

The percent of errors detected is shown . Al so shown (EDE) is the

percent of errors which are easy to detect, namely those in the three

classes : 1 , syntax; 2, semantic; 3, anomalous use of a variable ,

0 25 50 75 100%
I- I

SF” I I
A 495~~~~ f

i
l

l
~IN

_ _ _ _ _ _ _ _ _ _ __ _

TR
_ _ _ _ _ _ _ _ _ _ _ _ _ ___

SN I H _ _

A 498~~~~
_ _ _ _ _ _ __ _

II\I 1~ 11:
TR I t t

L ~~~ __ _

I
IN

I I
I I Figure l

- Ut F

A 513
g;

H

IN I
. TR I

—- - - —‘ -
_ _ _ _ _ _ _ _ _ _ _ _ _- ----—t_ ________ _____~~~~~~ _ __ __ - — —--------- — -C——— - ____

-~~~ - - - - — - - -~~ ----—- -— - — --- --- - - - - -— - - — -

1

-18-

0 25 50 75 103%
F I

EDE 1 1 2 1 3 1
MNF

_ _ _ _ _ _ _ _ _ _ _

A 495 FTN I
FORTH I

WATFIV
_ _ _ _ _ _ _ _

EDE 1 12 1 3 1
A 498 11

FORTH
1

EDE 1 12 1 3 1
MNF

_ _ _ _ _ _ _ _ _ _

A 505 FTN I
FORTH

_ _ _ _ _ _ _

WATFIV
_ _ _ _

EDE 1 12 1 3 1
IVI NF

Figure 2

A 513 FTN
_ _ _ _ _ _ _

FORTH I
WATFIV

_ _ _ _ _ _ _ _

_______ —--~~~~- —-—~~~~~~--—~~~~~~~

