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11 Introduction

In a recent Binary Systems report [l], the difficulty of
measuring the turbulent bounary layer (TBL) wall-pressure wavenumber
spectrum has been detailed. It was shown that to achieve desired
measurement accuracy, the gain and phase of the acoustic elements
must be very carefully controlled if conventional measurement
techniques are to be used. In fact, the requirements are so
stringent as to cast doubt on the feasibility of the measurement
program. For subsequent comparison with the technicue to be
proposed in this report, we repeat some of the earlier designed
figures here. It was shown that the required array has 40 1l.2-inch
elements butting against each other. The tolerance is 0.058 dB in
gain, 0.3° in phase, and 1.73 mil in phase-center location. Even
with such tight tolerances, the array can measure the wavenumber
spectrum only for values of (k/2m) between ~4.0 and +4.0 cycle/ft
with 3-dB accuracy at 100 Hz. These results are based on the
assumption tK;t the TBL wavenumber spectrum is given by the Chase
model [2]. Such a spectrum is shown in Figure 1 where the frequency
is 100 Hz and the free-stream velocity is 25 ft/sec. This spectrum
does not include the effect of finite element width. For thin
elements, the effect will be small ahyway. Notice the power levels
at the convection peak and at 0 cycle/ft. The difference exceeds
55 dB. It is extremely difficult to control the sidelobes of the
array factor using conventional spectral measurement technique so
that the leakage everywhere is below the actual signal level.
Although the Chase model does not necessarily represent the true
TBL spectrum, the measurement technique to be used must be able
to handle the eventuality that it is the correct one. Since it is
the more difficult of the two models being suggested, the other
being the Gardner model [3], the Chase model is being used as the
design target. Any technigue which can handle the Chase model
will handle the Gardner model also.

For convenience, the functional forms of the two models
are repeated here. They are taken from Appendix A of Reference [l].
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Throughout this report, k is wavenumber; w is angular frequency;

U is free-stream velocity; Uc is convection velocity; 'a' is
cylinder radius; o is fluid density (2 slug/ft3 in our discussion) ;
va is shear velocity. The spectral density Po(k.w) is defined so
that its integral over both positive and negative K and w is the
expected square of the circumferentially averaged pressure.
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NS is called the Strouhal number. Each model presents the
spectral density Po(k, w) 1in terms of p, U, and a; a set of

fixed numerical parameters; and a function of Ns and ka.

In the discussion to follow the emphasis is on the
Chase model. As seen, the Chase model is much more sharply peaked
and hence, more difficult to measure for the reason given previously.

The spectral estimation technique being proposed is called
the maximum likelihood estimation (MLE) technique. A detailed
derivation of this technique will not be given in this report. The
relevant equations are given in Section 2. An intuitive explanation
of the merits of this procedure will be attempted. In Section 3,
the inherent potential of MLE to measure the TBL spectrum will be
investigated. Tradeoffs of the number of elements, element spacing,
and element size will be discussed. In Section 4, the measurement
error induced by imperfect gain and phase control will be considered.
It will be shown that the MLE technique alone is still inadequate for
measuring the Chase spectrum but a combination of MLE and a more
conventional Barlett window spectral estimation technique seems
quite promising. In Section 5, a practical implementation
problem of the MLE will be considered. The MLE is based on the
correlation function of the random process being measured. 1In

practice this function is obtained from time or space averaging

which will not be perfect but the effect of the imperfection on
the estimation will be shown to be small.
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In the concluding section, we summarize the results
which have been obtained so far. We also speculate on the

possibility of making the element spacing nonuniform to achieve
the same measurement accuracy with fewer elements.




y 35 Maximum-Likelihood Wavenumber Estimation

The MLE is first proposed by Capon (4] in 1969. A
more concise discussion of this technique is given by Lacoss (5]
in 1971. Our discussion is more akin to the latter.

Suppose there is a receiving array of N equally spaced
elements whose outputs are to be combined linearly into one
single sum such that certain objectives are fulfilled. Let Xy

denote the outputs of the elements. The combined sum z is

given by
N
y 3
z = a.
Z: o ] R
i=1
In vector notation,
2 = 3 X (4)

where both a and X are row vectors of dimension N. The symbol
'*' denotes complex conjucgate and '*+' denotes complex conjugate
transpose. In conventional array design, the vector a introduces
a sequence of delays or phase rotations such that the element
outputs due to a signal from a desired direction will add
coherently. The undesired 'noise' from all other directions is
controlled by an amplitude taper across the aperture at the
expense of reduced array gain and increased beamwidth.
Specifically, the desian does not take advantage of any informa-
tion concerning the environment even if it is available. On the
other hand, the MLE technique measures the envircnment and takes
advantage of it. It obtains the environmental information by
forming a correlation matrix based on the element outputs. This

matrix R is defined by
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where E(x] 1s the expected value of x. It then derives a w2ight

vector a which holds the gain in the desired direction to unity

and minimizes the power from all other directions. Mathematically,
jka ej(N-l)kA

if § = {l; @& AR ), where )\ 1s the element spacing,

represents the steering vector of a desired wavenumber k, this

3

procedure of finding a is equivalent to minimizing 0~ given by

- + +
0" = E(z 2z ] = aRa (o)

subjected to the constraint

+
as = 1

The optimization can be achieved using Lagrange multipliers.

Without going into detail, the solution of a is

LIS SRS e

a=S5 R SR "8 (8)
and the estimated power at wavenumber K is given by
— B -
P. = (SR . S') - (9)

Intuitively, the MLE would be superior because the
environment is usually inhomogeneous. As in the case of TBL noise,
the disturbance coming from certain wavenumber region(s) is often
stronger than others. A better receiving array should cbviously be
configured in such a manner so that the nulls of the array should
be placed in those wavenumbers where the interference is the

strongest. In fact, if an interference 1is close to one side of

V7

:

the desired direction, the peak of the beam should be pointed to
the other side with a null on the interference. In such an event,
the signal gain will decrease but the overall siagnal-to-interference

ratio will actually improve.




In the formulation above, the assumption that the
receiving elements be equally spaced is not important. Any
spacing can be used as long as their exact locations are known.
As shown later, it is rather important to know these locations
precisely for the MLE to be effective. Any random error in
location, gain, or phase control could degrade the performance
seriously in certain wavenumber regions. In order to overcome
these drawbacks, there will be a need to use the more conven-
tional technique also. As explained earlier, the weight vector
a is chosen on the basis of the steering vector alone. In this
case, the estimated power is given by

P, = 35 (sRs") (10)

N
where S is again the steering vector. There is no amplitude
taper across the aperture. This uniform weighting scheme is
sometimes called the Barlett window. In (10), N is the number

of sensor elements.
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3. Inherent Measurement Capability of the MLE

In this section, the applicability of the MLE to this

measurement program is explored. Imperfections in the elements
, are ignored. In fact, it will be assumed that the exact spatial
correlation matrix R is known. Although it is not a necessary
condition, it will be assumed that the elements are uniformly
spaced. In particular, we shall investigate the performance as
functions of element spacing, element width, and the total

number of elements.

In all cases considered, the TBL random process is

assumed to follow the Chase model as given by Eq. (l). If elements

of finite width are used, the spectrum will be modified by a sin(x)/(x)

multiplicative factor where x is given by

% = wk/2 (11)

and w is the width of the element.

34 Infinitely Thin Elements

The first case considered deal with sensor elements
without width, i.e., w=0. The ideal Chase TBL spectrum normalized
to its peak level Fo' is shown in Figure 1. In order to study the

inherent capability of the ML method, the correlation matrix R is

obtained by inverse Fourier transformina the Chase spectrum as given
by Eq. (1) directly. Numerical techniques are used. The span for

*
(k/27) is taken from -24 to +24 cycle/ft which should be wide

enough to avoid any spectral foldover problem. A 512-point trans-

form has been used in all the Fourier computations. |

Since the random process is assumed to be spatially
stationary, the correlation function is a function only of the

spacing between the elements, i.e., R(m,n) = R(m-n). |

Actually the upper limit of the wavenumber span is 27 times the
inverse element spacing selected. In most cases considered in
this report, the spacing is 0.5 inch. Therefore the upper limit
on (k/27) is 24 cycle/foot.




Thus, the correlation matrix needed in Eg. (9) is given by (m,n
are indices of the elements)

r(0) r(l) sl () IR
r(-1) r(0) rf{l) . . -
R(m,n) (12)
r(=2) r(=1) E(0) -
| r(-N+1) FONE2) v a = & = w _J
where r(i,j) = r(i-j) = E[xi xj*] and where N is the number of

elements in the measurement array. The steering vector is given by

jka ej(N—l)kA

S = (1, e Py ) (13)

where j is /1 and A is the element spacing. Egs. (9) and (10) are

used to compute the ML and the conventional estimates respectively.

The first example is an array of 25 elements with 0.5-
inch spacing. The estimates are shown in Figure 2. The dash line
is the original ideal spectrum, the solid line is the ML estimate
and the dot-dash line is the conventional estimate with a Barlett
window. Near the convection peak both estimates are reasonably
close to the true value. Near zero wavenumber, the conventional
estimate of log Po(k,w) is 30 dB off while the ML estimate is 12 dB
off. If we impose a 3-dB criterion of performance, the ML estimate
is acceptable only for (k/2m) above 1 cycle/ft.

32 Elements of Finite Width

In practice, sensor elements must have finite width. Its M
effect will be considered here. Besides, the width of the element
will introduce some spatial smoothing capability which effectively U
suppresses the power of the higher wavenumbers and improves the
estimates. Most of the cases considered below use 0.5-inch elements.

10
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For them, the first cutoff frequency of these elements is at

+24 Hz. As stated previously, the Chase spectrum at the element
output will be modified by a sin x/x function. Figure 3 shows
such a modified Chase spectrum.

In order to provide a comprehensive picture of the ML
estimates, the number of array elements is varied from 5 to 25.
Figure 4 shows the estimated spectra of five different arrays.
Notice that the improvement from 5 to 10 elements is considerably
larger than that from 20 to 25. 1In fact, even at the zero wave-
number, the improvement is only 2 dB in the last case. By the
3-dB cirterion, the 25-element array is good for values of k/2n
to about 0.5 cycle/ft. It appears that to obtain an estimate no
more than 3 dB from the actual spectrum everywhere the array size

may have to be doubled.

As compared with the array with infinitely thin elements,
the finite element array is actually better. This is due to the
averaging effect provided by the elements. Perhaps one can
improve performance by further increasing the element width.

This is investigated next.

In Figure 5, MLE spectra for an array of 25 elements
are shown. The width is changed from 0.5 inch to 0.62 and 0.74
inches. The dotted line shown is the ideal spectrum with 0.5-inch
elements. We have not included the ideal spectra for the wider
elements. It is observed that there is some minor improvement
in the zero-wavenumber region with wider elements, but the
improvement is progressively smaller. In fact, the difference
between 0.62 in. and 0.74 in. elements is too small to be
distinguishable in this figure. Thus, it is concluded that
element width is not a very critical factor. There will be
about 1 dB difference between 0.5 and 0.74 in. Subsequent analysis

actually assumes 0.5-inch elements and the number of elements is set

at 25. A somewhat shorter array would have been acceptable also.
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4. ML and Conventional Estimates in the Presence of
Sensor Imperfections
The result in Section 3 indicates that the ML estimation
technique is acceptable with ideal elements. Although the spectral-
estimate error at the zero-wavenumber region is greater than the desired
limit, the shape of the spectrum is reasonably well preserved. If
it is only a matter of choosing the Chase or the Gardner model, the

ML estimate will be sufficiently accurate to effect a logical
selection. In this section, the behavior of the ML estimator will

be analyzed in the presence of element imperfections. Both analytical
and empirical techniques will be used. It will be shown that the

ML estimate is quite sensitive to errors near the convection peak

but is quite stable near the null region. On the other hand, the
conventional Barlett estimate is shown to be more stable near the
convection peak. Together, the two estimates will provide adequate
estimates everywhere.

Sensor errors are usually unavoidable but in many
situations they are not difficult to handle. The common procedure
to overcome these errors is to calibrate the sensors by means of
known signals. In the case being investigated, it is impossible
to generate a pressure field of known frequency-wavenumber spectrum
to test the experimental array. Therefore, the measurement
technique to be adopted must be reasonably insensitive to element
imperfections. There are three kinds of errors associated with a
sensor element: gain, phase, and element-center placement. The
centroid of an element's sensitivity may not coincide with the
physical center of the element. Any deviation from the ideal
location will affect the estimator performance. If each deviation
is known, compensation can of course be made and there will be
negligible degradations. If the individual deviations are unknown,
an estimate of the degree of degradation in terms of a statistical

measure of the deviations is appropriate.




Observe that in a narrowband analysis, delay or dis-~
placement is equivalent to phase rotation. An element-center
placement error is thus equivalent to a phase rotation. A
signal component of the form exp [j(kz-wt)] will yield an output
of the form exp [j(kd~wt)] from an element at d and exp [j(kd+kd-wt)]
from an element at d+8. The ratio of the second output to the
first is exp [(jk&§]. Thus, the phase error equivalent to an
element-center placement error § is k§. This relationship will
be useful in specifying the array design. For the moment this
relationship allows us to treat element-center placement error
as if it were just phase error.

Define an error matrix T such that

- X
a, e 201 0 Bl
= ‘362 Q .
B 0 aze
0 A L T8 a e~38N

where L. is the gain of the element and en is the phase error
of the element. Ideally, ay should all be unity and en should
all be zero. Let x be the input in the absence of error. The
actual received output will be y;

Y = X7 (14)

The correlation matrix Ry is given by

T *
R, = Biy ¥ 1 (15)

17




We are assuming that all random processes have zero mean. Sub-
stituting (14) into (15),

Substituting (16) into (9),

spectral estimate is

where

2 7

S
N

2l - - ‘\*—
- gy T oty

we have

=E[(xT)T (x T)"]

-1t E[§T_§*] Pt (16)
=ttt g 1"

the maximum likelihood wavenumber

i =1 +,-1
- T
(Sx(r Rx i) Sx )

i (Sy R "1 S +)-l

X Y

ih g =

X

X

Since T is a diagonal matrix, TTaT and the inverse of 7 is

readily obtainable.

In fact,

18




ul-le+jel 0 O o s
-1 +3j8 Qs » s
’I‘-l i 0 a, e I%2 (19)
-1 j8
L 0 0 aN e NJ

Eq. (17) is important because it permits us to consider
element errors as errors in the steering vector S. In other
words, it may be assumed that the array is perfect but the

steering is wrong.

In the case of conventional estimates, from Eg. (10),

we have
2 L T * T
(N )Pc = Sx(. Rx T) Sx
4% * o
= Sx ‘B Rx il SX (20)
Again, we can treat errors in the elements as errors in the steering

vector although there is a difference between Sy and Sz, namely,
the error matrices are T-l and T respectively.

On the basis of the above discussion, we have transformed

an imperfect-element problem into an imperfect-steering problem.
If the errors are small, deviations in the estimates can be obtained

analytically. To do so, we employ a well known theorem in
functional analysis which states that if a function is analytic

near xo, then

19




£ fe ) Eioe )
= e S (21)

O

f(xo+d) = f(xo) +
5 i 2!

Higher order terms can be ignored if § is small. In the present
context, X is either gain or phase error. f(x) is either PL

or Pc. Since it is assumed that the errors have mean zero,

f"(X)
E(£(xy+0) = £(xy)] = ——— EL&) (22)

25

E[52] is the variance of the errors. 1In the case being considered

the quantities represented by f(x), namely P_ or Pc’ are functions

L
of many variables. If the errors are basically small, there will
be no interaction between the various error terms. The total
degradation is a linearly weighted sum of all the errors. In other

words. the deviations in P_ or Pc are given by

L

AP, = % 082 [Z:SZPL/aan]
n Bn=l
(23)
+2q, % [2:32P /3 2]
) L n
- B0
I )
APc g % 082’2:32Pc/38n2!
L n -J Sn=l

ol

2 2 2
o) | L% 0
X 8

where it has been assumed the variances of the sensor errors are

=9
n o h

the same for all elements.




In practice, it is more convenient to consider the

ratio APL/PL or APc/PC. In subsequent discussions, it is these
quantities that are being computed.

The differentiation of PL and Pc is carried out in
Appendix A. Defining Q by

0
]
)]
s
1]

= Z b . Sh Sm (25)
n,m 3
3
2 2 2 %
2 : * % :
9°p, /38, © and 3 P,/ 38, © are given by ;
,
|
3°p 16 0 2 ‘
i =3 L . 37n f
> = 20 [2 Z: Im(b, e e )] :
wz n# 2 §
39, - ~e (26) :
+ZQZZ Re(bZne o =
n#
2
32 ’
P J6 o lc 2
L 2Q 3[22 Re(blne b e n)]
2 n
|
_2 }
| -2Q bzz t2)
| ;
i ** The notation Re(x) and Im(x) denote the real and imaginary
part of x respectively.

21




J
(3]
2D

2 /
and 9P _ / d, € and 23°P_ [/ 38( “ are given by

2 .
2 d pc 19, -]On 3
(NF) = =2 Z, Re(r, e e ) (28)
56, 2 ‘
N n# L
2
2 ; pc
(N ) 3 = 2 r:{ (29)

where r . are the elements of R rather than R—l as in (25).

Substituting the appropriate derivatives into (23) and (24),

we obtain the desired analytical expression relating gain or
phase (placement) errors to the spectral measurement error.
Note that the derivatives are to be evaluated at the desired Sn
and 9n. We shall term these derivatives appearing in (23) and
(24), the error-sensitivity coefficients. If they are large,
small errors in the elements will fause large degradations. IQ

- ) - -
Eg. (26) we observed that 3‘PL/36{“ is dependent on Q 3 and Q 7,

3 and PL2. Therefore, it is obvious that

the error-sensitivity coefficients will be large in the region

which are equal to PL

where PL is large. Table la,b is a summary of these coefficients
for various wavenumbers assuming the Chase spectrum is being
measured with a 25-element array with 0.5-inch elements and 0.5-
inch spacing between elements. As seen PL is the least sensitive
near zero wavenumber and 10,000 times as sensitive near the con-
vection peak. The sense of error is such that the peak level
will be reduced by large amounts. Pc, on the other hand, is
fairly insensitive to element errors in all regions of interest
but, relatively, it is least sensitive near the convection peak.
Figure 6 is the result of a sample simulation. The phase error
is assumed to be Gaussian. When we compare this to Figure 6,

it confirms the conclusions obtained by the analytical means.

to
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E Note that the errors in (23) and (24) are additive.

From this error analysis, it is clear that relying on
maximum likelihood estimate alone will impose unrealistic require-

e

ments on the sensors. But there is no reason why one cannot
combine the two estimates, ML and conventional, to obtain a
very respectable estimate with a much more practical désign.
In particular, the combined estimate around the convection peak

and around zero wavenumber will be almost unaffected by sensor
errors. In the intermediate regions, some interpolation scems

desirable.
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5. The Effect of Imperfect Correlation Function

In the discussion up to this point, it has been assumed
that an exact copy of the correlation matrix R is available. 1In
practice, this matrix must be obtained from measurements. The
elements r.om are given by

M (i)x (1)

X X b &

r = : I L (30)

nm M
i=1

where the index 1 denotes the ith

time sample.

How large must M be to obtain good estimates? An
analytical answer is believed to b€ obtainable but rather difficult.
However, it can be shown relatively simply that M must be greater
than N which is the number of elements in the array. If this
constraint is not satisfied, the inversion process required in
computing PL is unstable because the rank of R would be less than
N. In the simulations done to date, M is usually set at N+5. Results
obtained are quite consistent and satisfactory. An example is
shown in Figure 7 for a 25-element array. For comparison, the

ideal MI estimate is also shown in dotted line.
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6. Summary

In conclusion, we have shown that maximum likelihood
wavenumber estimate can be used effectively in the measurement
of flow noise. In the presence of sensor error, it is necessary
to use a combined technique to estimate the power in different
wavenumber regions. With this technigue, the acceptable phase
error is on the order of 3° (including phase-center placement
error, see Eq. (15))and the acceptable amplitude range is
between 1 + 0.06. In computing the correlation matrix for a
25-element array, an average of thirty time samples may be used.

Briefly, we summarize the design parameters in Table 2.

Table 2. Measurement Array Design

Number of Elements 25 }
Element Width 0.5 inch!
Element Spacing 0.5 inch!
Normalized Amplitude Range l 4+ 0.06
Phase Error 15"
Element-Center Error 3 mils
These parameters are probably more stringent than necessary. The

analysis on which these figures are based tends to be pessimistic.
As compared with the figures given in Reference (1], the

tolerances are larger by a factor of 10.

With this design, the measurements should be within
3 dB of the true spectral level everywhere where k/2m is above
0.5 cycle/ft. Below this value, the error is larger and, at
zero wavenumber, the expected error is about 6 dB.
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In designing an array, it is observed that a long
array has better resolution and better sidelobe suppression.

It is also observed that large gaps between sensor element
could cause aliasing error. So, if we are confined to a
uniform array, we must increase the number of elements to
obtain better performance beyond a certain limit. In Eq. (9),
it is clear that the MLE can be applied to arrays with any

type of element spacing. As long as the proper steering vector
is employed, the best estimate for any configuration can be
obtained just as easily as that for a uniform array. Perhaps,
with nonuniform spacing, the MLE estimate can be improved
without increasing the number of elements. This will be
investigated in the future.
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Appendix A The Derivatives of the Spectral Estimates, P_ and P

L

From Egqs. (9) and (10), both PL and Pc are seen to

have similar forms. To evaluate the degradation due to sensor

errors, the first and second derivatives are derived in this appendix.

; From Eg. (9), PL is in the form

PL = Q (A-1)

*
Z brxmsnsm (A-2)
n,m

and from Egqg. (10), Pc has the form

2 o A
N PC—Q
= S R S*
*
= z: Eom %n sm (A=-3)
n,m

The summations are from 1 to N. bhm are certainly different from

Lo but both are independent of the variables controlling the

steering vectors {sn} which is in the form of

., - Bn exp (jen) (A-4)

Sn is nominally unity and en depends on the pointing direction.
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It will be assumed that the errors are small.

Py,

and

At the same time,

with respect to 62, we obtain from (A~-1)

s,

9"

36

3p
NZ o]
361
and
3P
NZ c
362

Differentiating

(A-5)

(A-6)

(A-7)

(A-8)

Since Q and Q' are essentially the same function, we need only to

find 320/3822. We shall hold Bn constant and set them equal

to unity. Substituting (A-4) into (A~2) we have




and

3Q i jec -jem
e Z: T,
Y mge
o b m X
+ 2: (=3) e e e
m#
Since
je =8 < e R (A-11)
LT A e, G R S
<m me
we obtain
3Q ig, =je
- =3 z: I (B 8-t e Ty (A-12)
36Q
ms#Q

where Im(x) is the imaginary part of x. Differentiation of Q a second

q
time with respect to 9, to obtain 3%0/38,? vields

329 j8, -je

i8 =
m m L
8 Z: Th s & E: by © e
2 m# ¢ m# ¢

R

jt‘, -je -
= <2 E: Re (qu e o m) (A=13)
k#Q




where Re(x) is the real part of x. Combining (A-6), (A-12)
(A-13), we obtain the desired result for 3% / 3o, 2
if we replace bim in (A-13) by r 2

and

. Naturally,
: 2
m ¢ we obtain ) Pc/ae2 .

The derivative of P_ and Pc with respect to Bzcan be
found in a similar way. Eq. (A-6) and (A-8) will hold if EIY)

39
; L
is replaced by BQ/SBQ. In this case en are held constant. For
convenience, in (A-14) to (A-16) they are treated as part of
bnm el rnm. Hence,
Gl R (A-14)
n,m
The first derivative of Q is
3Q
PR oy Bg* 3, By, Bu + B, fm)
- m#
= ZZRe(me 8, (A-15)
m
and the second derivative is simply
)2Q
I8

Combining (A-6), (A-15) and (A-16), the desired 31>L2/3sQ is
obtained, i.e.

9 -0 2
B -3 % I m -2
=2Q [ZZRe b,ne e )J =2Q by, (a-17)
k
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