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• 1. Introduction

In a recent Binary Systems report (1), the difficulty of

measuring the turbulent bounary layer (TBL) wall-pressure wavenumber

spectrum has been detailed. It was shown that to achieve desired

measurement accuracy , the gain and phase of the acoustic elements

must be very carefully controlled if conventional measurement

techniques are to be used . In fact , the requirements are so

stringent as to cast doubt on the feasibility of the measurement

program. For subsequent comparison with the technicue to be

proposed in this report , we repeat some of the earlier designed
figures here. It was shown that the required array has 40 1.2—inch

• elements butting against each other. The tolerance is 0.058 dB in

gain, 0.3° in phase , and 1.73 mil in phase—center location. Even

with such tight tolerances , the array can measure the wavenumber

spectrum only for values of (k/2it ) between -4.0 and +4.0 cycle/ft

with 3-dB accuracy at ],Q0 Hz. These results are based on the ‘ L
assumption that the TBL wavenuntber spectrum is given by the Chase
model (2]. Such a spectrum is shown in Figure 1 where the frequency

• is 100 Hz and the free—stream velocity is 25 ft/sec. This spectrum

does not include the effect of finite element width. For thin

elements , the effect will be small anyway . Notice the power levels

at the convection peak and at 0 cycle/ft. The difference exceeds

55 dB. It is extremely difficult to control the sidelobes of the

array factor using conventional spectral measurement technique so
• that the leakage everywhere is below the actual signal level.

Although the Chase model does not necessarily represent the true

TBL spectrum , the measurement technique to be used must be able

to handle the eventuality that it is the correct one. Since it is

the more difficult of the two models being suggested , the other

being the Gardner model [31 , the Chase mQdel is being used as the
design target. Any technique which can handle the Chase model

will handle the Gardner model also.

For convenience , the functional forms of the two models

are repeated here. They are taken from Appendix A of Reference 
[1].1
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Chase Model
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Throughout this report , k is wavenumber; ~A is angular frequency ;
U is free—stream velocity ; rJ

~ 
is convection velocity ; ‘a ’ is

cylinder radius ; ~ is fluid density (2 slug/ft
3 in our discussion)

v~ is shear velocity . The spectral density P0(k,w) is defined so
that its integral over both positive and negative K and w is the

expected square of the circumferenti311y averaged pressure .

Gardner Model
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N5 = ( wa/U )

N is called the Strouhal number. Each model presents the

spectral density P0(k, ~~) in terms of o,  U , and a; a set of

fixed numerical parameters ; and a function of N~ and ka.

In the discussion to follow the emphasis is on the
Chase model. As seen, the Chase model is much more sharply peaked

and hence, more difficult to measure for the reason given previously .

The spectral estimation technique being proposed is called

the maximum likelihood estimation (MLE) technique. A detailed

derivation of this technique will not be given in this report. The
relevant equations are given in Section 2. An intuitive explanation

of the merits of this procedure will be attempted . In Section 3,

the inherent potential of MLE to measure the TBL spectrum will be

investigated . Tradeoffs of the number of elements, element spacing ,

and element size will be discussed . In Section 4, the measurement

error induced by imperfect gain and phase control will be considered .

It will be shown that the ~1LE technique alone is still inadequate for

measuring the Chase spectrum but a combination of MLE and a more

conventional Barlett window spectral estimation technique seems
quite promising . In Section 5, a practical implementation

problem of the MLE will be considered . The MLE is based on the

correlation function of the random process being measured . In j .
practice this function is obtained from time or space averaging

which will not be perfect but the effect of the imperfection on
the estimation will be shown to be small.

3
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In the concluding section , we summarize the results
which have been obtained so far. We also speculate on the
possibility of making the element spacing nonuniform to achieve
the same measurem ent accuracy with fewer elements.

L ~. ~~ • .  •~~~~ •~~~~ •~~~•. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



Maximum- Like1i~hood Wavenumber Fstimat ion

The ‘ILE is first rrc~ csed 
by Capon (41 in 196g . A

more concise discussion of this technique is ~i iv en  by Lacoss L 5 1

~n l’~’l. C~ur discussion is more akin to the latter.

Suppose there i s a receivirto array of N equally spaced

elements whose outputs are to be combined linearly into one

s i n ~~le sum such that ccrtain ob~ectives are ~ulfilled . Let x.

denote the outputs of the elements. The combined sum is

~n~ven by

= 

1

In vector notation ,

where both a and x are row vectors  of dimension N. The symbol
‘~~~~~ ‘ denotes complex c o n iu ca t e  and ‘~~~~~

‘ denotes complex con~ uaatc’
transpose. In conventional ~irray des .i~in , the vector ~ in t roduces
a sequence of delays  or phase rotations such that the element

outputs due to a si~ina1 from a desired direction will add
coherently . The undesired ‘ n o i se ’ from all other directions is

controlled by an ampfitude taper across the aperture at the

~ x~~ense of reduced ar r ay  ~iain  and increased b e a mw idt h .
ical  lv , the  des ion ~1oes not take a dv a nt a oe  o~ my i n f o r m a —

~ ion  concernin~i the environment even i t it is avai le . ~n the

o ther  hand , he ~~L E  t e c h n iqu e  measures  the environment and takes
a dv a nt a o e’ of i t .  I t  o b t ain s  the env i ronmen ta l  information by

fon iun o  .i correlat ion m at  r ix  based on t he  element  out t ~u t s .  Thi~
m a t r i x  R is d e f in e d  by

R E N  x l  ( • ; )

____________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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where  E [ x l  is the  expected va lue  of x. It then derives a w~~ioht

vector a which holds the ~:ain in the desi red d ir e c t ion  to u n i ty
and minimizes the power from all other directions. Mathematically ,

if s = ~~~~, ~~~~~~ ., ~~~~~~~~~~~ , where ~ is the element spacin~i,

represents  the s t e e r i no  vector of a desired wavenumber k , this

procedure of findin~i a is equivalent to m inimi. inq • ‘~~~ oiven by

= E L ~ ~~1 = a R a

subiected to the constraint

= 1

The o r ’t i m iz at i on  can be ac h iev e d  usino Laoran~ie multipliers.
;;~ thout coinLi in t o  detail , the s o l u t i o n  of a is

* — 1  — l  • L
a~~~~~ R SR S

and the estimated power at wavenumb e r k is ~i i ve n  b

= ~~~~ ~~~~

I n t u i t  i velv , the  ~ Lr would be sui~et- j o r because the
environment is  usually inhomooeneous. As i n  t he case of TBL no i se ,

t h e  d i s turbance  c~ m i n ~ from c e r t a i n  wavenuniber re~ ion ~. s is o ~t en
st  ron~ier  t h an  o t h e r s .  .\ better rece iv m o  ar r ay  should  obv t o u s l v  be
c on t  icured  in such a manner  so that t he  n u l l s  ot the a r r ay  should
be p laced in  these  wavenumber s  where  the  1 n t e r f e ~~ence is t h e
:~ t ronoest  . In f ac t , i an in t e r f e r e n c e  ~s c l o se to on e s i de of

t h e  desi red Li~ rect ion • t he pe ak of t h e  beam s h o ul d  be p o i n t e d  t o
t h e  o t her  s ide  w i t h  a n u l l  on the  i n te r f erence . I n  such an event
th e  siona l  oa in  w i l l  decrease but  the ov e ra l l  s x ~ma 1 — t o —  i n t e r  t e r e n c e
rat:o will actually improve .

_ _ _ _ _ _ _- 
~~~~~~~~~~~~~~~~



~~1

In the formulation above , the assumption that the

receiving elements be equally spaced is not important . Any

spacing can be used as long as their exact locations are known .

As shown later , it is rather important to know these locations

precisely for the MLE to be effective . Any random error in

location , gain , or phase control could degrade the performance

ser iously  in certain wavenumber regions . In order to overcome
these drawbacks , there w i l l  be a need to use the more conven-
t ional  technique also. As explained earlier , the weight vector

a is chosen on the basis of the steering vector alone . In th is
case , the estimated power is given by

= ~~ (SRS~~) (10)

where S is again the steering vector. There is no amplitude

taper across the aperture. This uniform weighting scheme is

sometimes called the Barlett window . In (10) , N is the number
of sensor elements. r.

.7
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I3 Inherent ~‘1easurernent Lauabi1it’~ o~ the ‘4LE

Th this section , the applicability of the MLE to this

measurement pro~ rain is explored . Imperfections in the elements

are ignored . In fact , it will be assum ed that the exact spatial

correlation matrix R is known . Although it is not a necessary

condition , it will be assumed that the elements are uniformly

s: aced. In pa r t i cu l a r, we shal l  inves t iga te  the performance  as
func t ions  of element spacing , element wid th , and the to ta l
flumber of elements.

In a l l  cases cons ide red , the TBL random process is
assumed to fo l low the  Chase model as oiven by Eci . (1) . If elements

of finite width are used , the spectrum will be modified by a sin(x)/(x)

multiplicative factor where x is given by

x = wk/ 2  (11)

and w is the width  of the  element .

3.1 Infinitely Thin Elements

The first case considered deal with sensor elements
without width , i.e., w=0. The ideal Chase TBL spectrum normalized

to its peak level 
~~~

, is shown in Figure 1. In order to study the

inherent capability of the ML method , the correlation matrix R is fl
obtained by inverse Fourier transform inc the Chase spectrum as aiven

by Eq. (1) directly. Numerical techniques are used. The span for

(k 2 — )  is taken from -24 to +24 cycle/ft which should be wide

enough to avoid any spectral foldover problem . A 512-point trans-

form has been used in all the Fourier computations.

Since the random process is assumed to be spatially

stationary , the correlation function is a function only of the

spacing between the elements , i . e . ,  R(m,n) = R (xn—n ) .

* A c t u a l l y  the upper l imi t  of the wavenumber span is 2~ times the
inve r se  element  sr a cj n ~ selected.  In most cases considered in

• t h i s  report , the spacing is 0 . 5  inch . Therefore the upper l imit
on ( k / 2 - )  is 24 cvc1e~~foo t .

9
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Thus , the correlation matrix needed in Eq. (9) is given by (m,n

are indices of the elements)

r(0) r(l) r(2) .

r(—l) r(0) r(l)

R (12)(m ,n)
r (—2) r(—l) r(0)

r(—N+l) r(—N+2) 

where r (i ,j) = r(i-j) = EN . x~~ ) and where N is the number of

elements in the measurement array. The steering vector is given by

s = ( 1 , ~~~~~~~~~ ~~~~~~~~~~ ( 13)

where ~ is iT  and ~ is the element spacing . Eqs. (9) and (10) are

used to compute the ML and the conventional estimates respectively .

r
The first example is an array of 25 elements with 0.5—

inch spacing. The estimates are shown in Figure 2. The dash line

is the original ideal spectrum , the solid line is the ML estimate

and the dot-dash line is the conventional estimate with a Barlett

window . Near the convection peak both estimates are reasonably

close to the true value. Near zero wavenumber , the conventional
estimate of log ?0(k ,c~) is 30 dB off while the ML estimate is 12 dB

off. If we impose a 3—dB criterion of performance , the ML estimate

is acceptable only for (k/2~t) above 1 cycle/ft.

3.2 Elements of Finite Width

In practice , sensor elements must have finite width . Its

effect will be considered here. Besides , the width of the element

will introduce some spatial smoothing capability which effectively

suppresses the power of the higher wavenumbers and improves the

estimates. Most of the cases considered below use 0.5—inch elements .

10
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I
For them , the first cutoff frequency of these elements is at
+24 Hz. As stated previously, the Chase spectrum at the element

output will be modified by a sin x,’x function. Figure 3 shows
such a modified Chase soectrum .

In order to provide a comprehensive picture of the ML

estimates , the number of array elements is varied from 5 to 25.

Figure 4 shows the estimated spectra of f i v e  d i f f e r e n t  a r r a y s .
Notice that the improvement from 5 to 10 elements is considerably

larger than that from 20 to 25. In fact , even at the zero wave-

number , the improvement is only 2 dB in the last case. By the

3—dB cirterion , the 25—element array is good for values of k/2~
to about 0.5 cycle/ft. it appears that to obtain an estimate no

more than 3 dB from the actual spectrum everywhere the array size

may have to be doubled .

As compared with the array with infinitely thin elements ,

the fin ite element array is actually better. This is due to the

averaging effect provided by the elements. Perhaps one can

improve performance by further increasing the element width .

This is investigated next .

In Figure 5, MLE spectra for an array of 25 elements

are shown. The width is chanqed from 0.5 inch to 0.62 and 0.74

inches. The dotted line shown is the ideal spectrum with 0.5-inch

elements. We have not included the ideal spectra for the wider
elements. It is observed that there is some minor improvement

in the zero-wavenunther region with wider elements , but the

improvement is progressively smaller. In fact , the difference

between 0.62 in. and 0. 74 in. elements is too small to be

distinguishable in this f i gure . Thus , it is concluded that

element width is not a very critical factor. There will be

about 1 dB difference between 0.5 and 0.74 in. Subsequent analysis

actually assumes 0.5—inch elements and the number of elements is set

at 25. A somewhat shorter array would have been acceptable also.

12
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4. ML and Conventional Estimates in the Presence of
Sensor Imperfect ions

The result in Section 3 indicates that the ML estimation

technique is acceptable with ideal elements. Although the spectral—
estimate error at the zero-wavenumber region is greater than the desired

limit , the shape of the spectrum is reasonably well preserved . If

it is only a mat ter  of choosing the Chase or the Gardner mode l , the

~L estimate will be sufficiently accurate to effect a logical

• selection. In this section , the behavior of the ML estimator w i l l
be analyzed in the presence of element imperfections . Both analytical

and empirical techniques will be used. It will be shown that  the
ML estimate is quite sensitive to errors near the convection peak
but is quite stable near the null region. On the other hand , the
conventional Barlett estimate is shown to be more stable near the

convection peak. Together , the two estimates will provide adequate

est imates everywhere.

Sensor errors are usually unavoidable but in many
situations they are not difficult to handle. The common procedure

to overcome these errors is to calibrate the sensors by means of

known s ignals .  In the case being inves tigated, it is impossible

to generate a pressure field of known frequency-wavenumber spectrum

to test the experimental array . Therefore , the measurement

technique to be adopted must be reasonably insensitive to element
imperfections . There are three kinds of errors associated with a

sensor element: gain , phase , and element-center placement. The

centroid of an element ’s sensitivity may not coincide with the

physica l  center of the element . Any deviation from the ideal
location w i l l  a f f e c t  the est imator  performance . I f  each deviation
is known , compensation can of course be made and there wi l l  be
negligible de~ radations. If the individual deviations are unknown ,

an e s t ima te  of the degree of degradation in terms of a sta tistical
measure of the deviations is appropriate.

16
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Observe that in a narrowband analysis , delay or dis-

placement is equivalent to phase rotation. An element-center

placement error is thus equivalent to a phase rotation . A
signal component of the form exp (j ( k z - o t ) ] wil l  yield an output
of the fo rm exp (j (k d - t ~t ) 1  from an element at d and exp [j ( k d + k 6 — w t ) ]
from an element at d+tS . The ratio of the second output to the
f i rst is exp ( j k S ] .  Thus , the phase error equivalent to an
element-center placement error 5 is k6. This relationship will

be usef u l in specifying the array design. For the moment this

relationship allows us to treat element—center placement error
as if it were Just phase error.

Define an error matrix T such that

0 0 .

T = 0 ct2e
’J°2 0 .

0

where is the gain of the element and is the phase error

of the element. Ideally , 
~~X1 

should all be unity and e n should
all be zero. Let x be the input in the absence of error. The
actual received output will be 

~~~~;

= ( 14)

The correlation matrix is given by

= E (~ T ~~~~ ( 15)

17
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We are assuming that all random processes have zero mean. Sub-
stituting ( 14 )  into (15) , we have

*R E [(x~~ ) (
~~~~)y

“ 1’ E N ’
~
’ ~ ( 16)

T *= .  R r
X 

H

Substituting (16) into (9), the maximum likelihood wavenunther
spectral estimate is

P = (S cr
T 

R ~~~-l SL X X X

= (5(~.T)-l -1 ~.*_ l S~~~)~~ 
(l~~)

= (S R — l 
~ 

—~~—ly x y

where

S = S (“T)-l ~ ~-l ( 18)y x x

Sin ce r is a diagonal mat r ix , :sT =r and the inverse of r is
readily obtainable.  In f ac t ,

F
is

.-.. - - - -

~

. -

~ 

- -• _--~~~ - -~.• -~~~~~~~~~~~~~~~~~~~~~~ -~~
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T — 1 +j~
~~ 

: 

~ 

a2~~ e~~
02 :~ I (19)

L 0

Eq. (17) is important because it permits us to consider

element errors as errors in the steering vector S. In other
wo rds , it may be assumed that the array is perfect but the
steering is wrong .

In the case of conventional estimates , from Eq. (10),
we have

2 T * 4-
(N )P0 = S

~~
(T Rx P ) S~

= s T T R T * s
T 

( 2 0 )

= S  R
z x z

Agai n , we can treat errors in the elements as errors in the steering
vector al though there is a d i f f e r ence  between S~, and 

~~~ 
namely ,

the error matrices are and T respectively .

On the basis of the above discussion , we have transformed

an imperfect—element oroblem into an imnerfect—steerjnci oroblem .
If the errors are small , deviations in the estimates can be obtained

analytically. To do so , we employ a well known theorem in

functional analysis which states that if a function j3 analytic

near x0, then

19



f’ (x ) f”(x
f(x0+~ ) = f(x0) + 

o . 
+ o ~2 

~~
, . (21)

U 2:

Higher order terms can be ignored if S is small.  In the present
context , x is either gain or phase error . f(x) is either

or 
~c 

Since it is assumed that the errors have mean zero ,

f”(x) 2E ( f (x
0+ 

5 )  — f(x0) I = E( •~ J ( 2 2 )

2!

E [ 3 2] is the variance of the errors. In the case being considered

the quant i ties represented by f (x ) ,  namely 
~L 

or 
~c’ 

are func tions
of many variables.  If the error s are basically small , there will
be no interaction between the various error terms. The total

degradation is a linearly weighted sum of all the errors. In other

words - the deviations in or 
~c 

are given by

= 
I ~~2 

[
~~~~2 P~~/3 ~~21 

=1n (23)

~~~~~ 
[
~~~~

2P / 3e 2l 

~fl~~ n

= 
1 ~~2r~~)2~~/~~~21

L~~ —I 
~~~~ (24)

1 2LE
~

2
~~~~

21 
~n~~ n

where it has been assumed the variances of the sensor errors are

the same for  all  el emen ts.
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In practice , it is more convenient to consider the
ratio 

~~~~~~ 
or L

~
PC/P. In subsequent discussions , it is these

quantities that are being computed .

The differentiation of and is carried out in
Appendix A. Defining 0 by

Q = S

= ~~~ S~~ 5m (25)

n ,m

p

/ 

~
0 Q 

2 and 
~~~~ 

/ ~~ 
2 are given by **

_ _ _ _ _ _ _  = 2Q~~ [_2 ~~ 
Im(b~~e~~~ 

ie~~
j  

2

n~ 95

—2 j O  J O  ( 2 6 )
+ 2Q ~~ R e (b~~ e ~ e

n� 2,

_ _ _ _ _  = 2Q 3
[2E Re(b~~e~~~ e

n
)]

—2Q 2 b 9~ (27)

** The notation Re(x) and Ixn (x) denote the real and imaginary
part of x respectively .
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and -~~P / ~~ 
2 and 

~

2P
~ 

/ ~~ 2 
are ~i iven by

j
~~l -j9

( N )  = -2  Re(r, e n) ~28)
-) E.9 —

f l �4

)2p
( N )  

2 
= 2 r L  ( 2 9 )

p

where r ar e the e lemen ts of R ra ther than as in (25) .

Substituting the appropriate derivatives into (23) and (24), r
we obtain the desired analytical expression relatinq qain or

phase (placement) errors to the spectral measurement error.

Note that the derivatives are to be evaluated at the desired S

and 9 .  ~e shall term these derivatives aopearincj in (23) and

(24) , the error—sensitivity coefficients . If they are large ,

small errors in the elements will cause lar~ e degradations . In
-, —3Eq. (26) we observed that is dependent on Q and Q , S

wh ich are equal to and Therefore , it is obvious that

the error-sensitivity coefficients will be large in the region

where is larc~e. Table la.b is a summary of these coefficients

for various wavenurnbers assuminI~ the Chase spectrum is being

measured  w i t h  a 25— element  a r ray  w i t h  0.5-inch elements and 0.3-
inch spacing between elements. As seen is the least sensiti\-t~
near ze ro wavenumber and 10,000 times as sensitive near the con-
vection peak . The sense of error is such that the peak level
wi’l be reduced b~’ large amounts. P~~, on the other ha nd , is

fain ’: insensitive to element errors in all relions of interest

but , relat ive ly , it is least sensitive near the convection peak .

Z’i~ ure 6 is the result of a sample simulation. The phase errcr

is assumed to be Gaussian. When we compare th~s to Figure h ,

it confirms the conclusions obtained by the analytical means .
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Note that the errors in (23) and (24) are additive .

From thi s error analysi s, it is clear that rely ing on
maximum likelihood estima te alone wi l l  impose unr ealistic requ ire-
ments on the sensors. But there is no reason why one cannot
combine the two estimates , ML and conven tional , to obtain a
very respectable estimate wi th  a much more practical desi gn.
In particular , the combined estimate around the convection peak
and around zero wavenumber wi l l  be almost u n a f f e ct e d  by sensor

j  ‘.‘rrors. I:’) the  Lflterfl’)ediate re.Uons, some interpolac.ion seems

desirable.

I
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5. The E f f e c t  of Imperfect  Correlat ion Funct ion

In the discussion up to this point , it has been assumed
that an exact copy of the correlation matrix R is available. In

practice , this matrix must be obtained from measurements. The
elements r~~ are given by

M . *x (i)x (i)
r = :  n m (.30)

nfl ’) M
i=l

where tfle index i denotes the ~th time sample .

How large must M be to obtain good estimates? An

ana ly t i ca l  answer is believed to be obtainable but rather difficult.
However , it can be shown relatively simply that M must be greater

than N which is the number of elements in the array . If this

constraint is not satisfied , the inve rsion process requi red i n
compu ting is uns table because the rank of R would be less tha n
N. In the simulations done to date , M is usually set at N+5. Results

ob tained are qu ite consistent and sa ti s fac tory . An example is
shown in Fig ure 7 for  a 25—elemen t  a r ray . For comparison , the
ideal ML est ima te is also shown in do tted l ine .
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6. Summary

In conclusion , we have show n that  maximum likelihood
wavenumber estimate can be used e f f ec t ive ly  in the measurement
of flow noise. In the presence of sensor error , it is necessary

to use a combined technique to estimate the power in different

wavenumber regions. With this technique , the acceptable phase

error is on the order of 3
0 ( inc luding phase-center placement

error , see Eq. (l5))and the acceptable amplitude range is L
between 1 ~

- 0.06. In computing the correlation matrix for a
25-element array , an average of thirty time samples may be used.
Briefly , we summarize the design parameters in Table 2.

Table 2. Measurement Array Design

~1

N umber of Elements 25
Element Width 0 . 5  inch L

Element Spacing 0.5 inch

Normalized Amplitude Range 1 
± 

0 . 0 6  -

Phase Error 1.50

Element-Center Error 3 mils

These parameters are probably more stringent than necessary . The

analysis  on which these f igures are based tends to be pessimist ic .
As compared with the figures given in Reference ~l] , the

tolerances are larger by a factor of 10.

With this  design , the measurements should be w i t h i n
3 dB of the true spectral level everywhere where k , 2ir is above
0 . 5  cyc l e/ f t .  Below this  value , the error  is larger and , at

zero wavenumber , the expected error is about 6 dB.

29
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In designing an array, it is observed that a long
array has better resolution and better sidelobe suppression .
It is also observed that large gaps between sensor element
could cause aliasing error. So, if we are confined to a
uniform array , we must increase the number of elements to
obtain better performance beyond a certain limit. In Eq. (9),

it is clear that the MLE can be applied to arrays with any

type of element spacing . As long as the proper steering vector
is employed , the best estimate for any configuration can be
obtained ju st as easily as that for a uniform array . Perhaps ,

with nonuniform spacing , the MLE estimate can be improved
without increasing the number of elements. This will be
investigated in the future .

30
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Appendix A The Derivatives of the Spectral Estimates , and P

From Eqs. (9) and (10), both and 
~c 

are seen to
have similar forms. To evaluate the degradation due to sensor
errors, the first and second derivatives are derived in this appendix.
From Eq. ~~~ PI~ 

is in the form

= (A—l)

where Q is the quadratic form

—l~-Q = S R S-

E b 5 5 * 
(A—2)

n,m

and from Eq. (10), has the form

N2 P =
~~~~~

‘

PS .

= S R S

= 
~~ 

m m Sn S
~~ (A—3)

n,m

The summations are from 1 to N. bnm are certainly different from
r but both are independent of the variables controlling the
steering vectors {s} which is in the form of

= 

~n 
exp (jO n) (A—4 )

is nominally unity and E~ n depends on the pointing direction.

- 
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It will be assumed that the errors are small. Differentiating

with respect to we obtain from (A-i)

______ 
—2 

_______(Q ) (A 5)
3e~

and

= 2 Q  + (—Q ) (A—6)
\ e~ J

At the same time ,

2 
_____ _____N = (A-7)

r

and

2 ~~
2

Q’

N = 

~e 
2 (A 8)

2. 9,

Since Q ~nd Q’ are essentially the same function , we 
need only to

f ind 3 2Q/3~~
2. We shall hold constan t and set them equal

to unity . Substituting (A-4) into (A-2) we have

+j2~e —j2TT O
Q ~~~~~ ~~e 

m 
(A—9)

n , m
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and

_____ 
j
~~, — j

~= ‘
~~~~
‘ j b 5 e ~~e 

m

‘5-

j~~ 
-j ~~~ • (A-b )

(-j) b e m

Since

b ~~~~ * ~~ ~~m 
(A-li)

Hm
e e = b

m~~ e C

we obtain

________ 

S — j t ~— = —2 Im (b e ~ 
Ri
) (A—12)

where Im(x) is the imaginary part of x. Differentiati4..-~n 0t Q a second
time with respect to 

~~ . to obtain .
~~~~~~ 2S ~~~~~~~~~~ yields

= E b e~~~ e
m 

- E ~~~ e~~~~

= -2 Re (b , ~~~ e
3 Ri) (A- 13)
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where Re(x) is the real part of x. Combining (A—6), (A-12) and
(A—l3), we obtain the desired result for 

~~~~~ 
~~ 

2 N a t u r a l l y ,
2~ 2if we replace bQm in (A—13) by r9.~ , we obtain ) P

C / 3 €
~Q

The deriva tive of P~ and P with respect to 3 Q can becfound in a similar way. Eq. (A—6) and (A—8) will hold if 3Q
339.is replaced by 3Q/ 3~ 9.. In this case are held constant. For

conven ience , in (A-l4) to (A-16) they are treated as part of
b o r rrim nm. Hence ,

= E b B~ 
~m (A-l4)

The f irst der ivative of Q is

____ = 2 b ,. ~3 , -i- (b . + b~~ 3
m~

= 2V~ Re (b 5 ~ ) (A—15)
~m m

m

and the second derivative is simply

= 2 b ,, (A-l6)

Combining (A—6), (A-is) and (A-16) , the desired 
~~~~~~~~ 

is
obtained , i.e.

_:L
: / =  

2 Q 3 
[2rRe ~~~~~~~ e~~~m)l2 -2Q 2

b (A-1 )
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