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& CHAPTER 1. INTRODUCTION, SUMMARY AND RELATED WORK

1.1 Introduction
Regression analysis is concerned with the study of the relationship
between a response variable Y and a set of predictor variables

X=(X ..,Xp). An important aspect of regression analysis is the

1’X2"
estimation of the regression function, i.e. of the conditional expecta-
tion of Y, given X. In classical regression analysis, the functional

form of the regression function is assumed to be known up to a finite set
of unknown parameters, which may be estimated from data.

If no such prior knowledge of the regression function exists, then
classical methods do not apply. However, in this case, it may still be
desirable to obtain an estimate of the regression function, either for
direct analysis or to establish a plausible model for use in the classical
regression analysis mentioned above.

Thus there is a need for regression analysis methods which do not
assume a specific mathematical form for the regression function, i.e.
nonparametric methods.

In this study, a type of nonparametric estimator of the regression
function m(x) = E[Y|X=x] will be investigated, where (X,Y) is a bivariate
random vector.

Let X and Y be random variables defined on a probability space
(2,F,P) with E|Y| < «. Denote the marginal distribution function of X

by F. Then the regression function m(x) is defined by

ST EIN WOTRENTIITTTOTT SR SN ) Y ST YOO (AT U I ) Pt T 2 v
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m(x) = E[Y|X=x], i.e. the (unique a.e. (dF)) Borel measurable function
m satisfying
{1:1.1) [ YdP = [ m(x)dF(x)
ity i 8
for all Borel sets B. If X and Y have a joint density function f, then

it tollows that

| yE(x,y)dy
- if f(x) >0
(Ll 2) n(x) = f(x)
0 if f(x) =0

1s a version of the regression function, where f denotes the marginal
density of X. Motivated by (1.1.2) and previous work on estimation of
density functions by §-function sequences, Watson (1964) suggested an
estimator of m(x) of the fom

n
(l/n).zlYiﬁn(x-Xi)
i=

{2.1.%) mn(x) = =

(1/‘\‘ z Gn(x"xj)
j=1

where (xl'Yl)' (X,,Yz),...,(xn,Yn) are independent observations on (X,Y)
and {6n(x)} is a sequence of weighting functions called a §-function
sequence. The estimator mn(x) defined in (1.1.3) will be investigated

here. By rewriting (1.1.3) as

n 8§ (x-X.)
m(x) =) LI W
n i’ll n .
I.Z ‘n““"j‘J

we have the intuitively appealing interpretation of mh(x) as a weighted

average of the Y-observations, with the weights depending on x through
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Gn(x). Also, if one desires a smooth estimate of m(x), this can be
achieved through the choice of Gn(x).
In certain situations, the marginal density f of X is known. For

example, suppose in an experiment, we are able to fix the level of the

5
¢
i
#

predictor variable X, but we wish to randomize X to reduce sampling bias.
Then we would choose X randomly according to a known density f. This
situation also arises in certain optimization problems, where the value
of the function to be optimized can only be detemined up to a random
error tem (see Devrove (1978)). Since the denominator of (1.1.3) is
intended to estimate f, a reasonable way to use the knowledge of f might
be to use the modified estimator

n
(1/n)i§1Yian(x-xi)

m_(x) =
. £(x)
We provide some preliminary comparisons of the estimators F\\ and m, in

the known density case.

1.2 Summary

Since we will assume a specific mathematical fomm for neither the
regression function m nor the underlying probability distribution of
(X,Y), we could not reasonably expect to obtain small sample results for
the estimators in question. Thus we shall concern ourselves here almost
exclusively with asymptotic results, as the sample size grows larger.

In Chapter 2, we rigorously establish (weak) pointwide consistency

of mn(x). which was proved heuristically by Watson (1964). Asymptotic

joint nomality of "\1(“)' taken at a finite number of points, is demon-

strated. In this last result, we significantly weaken a condition of
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Schuster (1972) on the §-function sequence used, at the expense of
some mild additional regularity conditions. In the known density case,
we establish consistency and asymptotic nommality for n—ln, S0 as to provide
a camparison with the asymptotic nomality and consistency results for W -
We consider the mean integrated square error (MISE) of the mumerator of
the estimator m.- An explicit expression for the Fourier transtorm of the
§-function which minimizes this MISE for each sample size n is derived,
much as Watson and Leadbetter (1963) did for density function estimators.
In Chapter 3, we consider the numerator of ms and show that the
supremun, taken over a finite interval, if properly centered and nomalized,
converges in distribution to a random variable having an extreme value tvpe
distribution. This result is then applied to establish uniform (weak)
consistency of Mo with an associated rate of convergence.
In Chapter 4, we give some examples of calculations of the estimators

m and ﬁ“ from simulated data.

1.3 Related Work

Estimators of the form (1.1.3) of the regression function and several
other types of nonparametric estimators of the regression function have
recently received attention in the literature. Here we survey the

recent literature on this subject.

1.3.1 kernel Type Estimators

Several authors have considered estimators of the form (1.1.3) when
the §-function sequence is of kernel type. Kernel type S-function seq-
uences (defined rigorously in Lemma 2.1.2) are of the form

Sn(x) e r;‘lK(x/rn),

where K is, e.g. a probability density function and €n is a positive real




sequence with Ry 0 as n + w,

Schuster (1972) considers the asymptotic normality of this type of
estimator. Because of the close relation between Schuster's work and
work presented in this dissertation, we defer discussion until Section
2.4.

Schuster and Yokowitz (1978) consider a global error criterion for
this type of estimator, and for its derivatives as estimators of the
derivatives of the regression function. Let g(r) denote the r-th
derivative of the function g. Schuster and Yokowitz give conditions under
which, for any ¢ > 0 and n sufficiently large,

(1.3.1) P[_sup | nt ) - nM™M ot 0

2
< C/(nczﬁ*zc“)

where N is a positive integer, [a,b] is a closed, bounded interval and

5
cIN*2
n

w0

C is a constant not depending on n. If {en} is such that n
as n + ~, then (1.3.1) implies that
sup lméN)(x) - m(N)(x)‘ R .
asxsb
as n + «, so that this result is a type of uniform consistency result.
It would be of interest to determine a rate of convergence to be assoc-
iated with the result, i.e., a positive, real sequence (hn} with

bn + » such that
by, suplméN)(x) - m(N)(x)I Ro.

This question is addressed in Chapter 3 of this dissertation for the case

N = 0. Schuster and Yakowitz also consider the case where the X
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variable is non-stochastic, i.e., we have {F(*;x), Xxc[0,1]} as a family

of probability density functions and the object is to estimate

w(x) = [yF(y;x)dy

on the basis of an independent sample Yi' i=1,...,n where 6 has
density f(‘;xi). They give conditions under which a result similar to
(1.3.1) holds for the so-called Priestly-Chao estimator

-1 R A
(1.3.2) wn(x) o igl\'i(xi—xi_l)}{((x-xi)/rn)
of w(x) (see Priestly and Chao (1972)).

In the non-stochastic X variable case as described above, Benedetti
(1974) shows that both the Watson estimator and the Priestlv-Chao
estimator are (weakly) consistent and asymptotically normal for appro-
priate values of x, but he points out same computational advantages of
the Watson estimator over the Priestly-Chao,

Konakov (1975) considers a quadratic deviation error criterion tor
the Watson estimator with Kernel type S-sequences. Define the quadratic

deviation to be

Tn - fc, f [n\l(x)-m(x\]‘?fﬁ(x)p(x)&x

where fn is a kernel type estimator of the marginal density f of X and
p is a bounded integrable weight function. Konakov gives conditions
under which Tn. if properly normalized and centered, is asymptotically

nomal. We do not consider quadratic deviation in this dissertation.

1.3.2 Nearest Neighbor Type Estimators.

Watson (1964) proposed estimating m(x) with the averape of the Y

values corresponding to the k X values nearest to x, where Kk is some

{
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integer. This type of estimator is called the k nearest neighbor
estimator of the regression function. Earlier work had been done on
the classification problem and on estimation of a probability density
function using nearest neighbor techniques. (See Fix and Hodges (1951),
Cover and Hart (1967), Cover (1968), and Loftgaarden and Quesenberry
(1965) for work in these areas.)

Let k(n) be an integer depending on the sample size n and denote
by Ik(n)(x) the smallest open interval centered at x containing no less
than k of the X-observations. Then the k-nearest neighbor estimator

;h’ can be written as

~ -1
e i {i:xiglk(n)(x)}yi
Stone (1977) points out that ;h(x) may be a discontinuous function, and
that in some cases, smoothness is a desirable property in a regression
function estimator. Lai (1977) proposes a modification of the k nearest
neighbor estimator which can have the desired smoothness property. This
estimator is very similar to the Watson estimator (1.1.3) with kernel

type §-function sequence. Let W be a probability density with W(x) = 0

for [x| > 1. Then Lai's estimator is defined by

1= YN (X Ry ) ()

(1.3.4) m (x) =
s WX /Ry 3 ()

where Rk(n) is the radius of the interval Ik( n)* This estimator reduces

to the form (1.3.3) when W(x) = 1/2 for Ix| < 1. Lai proves the following.
1.3.1 Theorem. Assume W is continuous a.e., bounded and W(x) = 0 for
|x] >1. 1If there exists an open set Uy in Ron which

i) f(x) is continuous, bounded, and f(x) > 0 ,

ii) E((|Y]|X=x) and E(max(Y,0)|X=x) are continuous functions of x,
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iii) limsup E(]Y].I (Y)|X=x| = 0 and if EY® < = and
Mo xcU, {lyl2M) :

iv) k(n)/n » 0 and k(n)//n » =,

then

suplﬁn(:) -m(z)| ~ 0

Ze
in probability for any compact set AcUy. a
A similar result is proved for the estimator (1.1. ), with A an
interval, in Chapter 3 of this dissertation. There, more regularity
conditions are applied to obtain an associated rate of convergence.
Stone (1977) considers the following type of nonparametric regres-

sion function estimator:

(1.3.5) ﬁh(x) =7 WY
b 4

where wni(x) = wni(x; xl,....xn) is a weight function. This estimator
reduces to the nearest neighbor, modified nearest neighbor and §-function
type estimators discussed above for appropriate choices of the function
wni. Stone gives general conditions on the weight functions wni for ﬁh

to be consistent in Lr, i.e., for

Elah(x) -m(x)|T+0
whenever E|Y|T < «, Stone's work applies to give minimal conditions for
this type of consistency for some types of estimators, e.g., if k(n) » «
and k(n)/n + 0, then the k nearest neighbor estimator is consistent in
% Stone, however, points out that it is not clear from his results

when an estimator of the Watson type is consistent in Lt
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1.3.3 Potential Function Methods.

In this method, introduced by Aizeman, Braverman, and Rozonoer
(1970), the regression function m is assumed to belong to a Hilbert
space H and have the representation m(x) = ZCi¢i(x) , where {¢i} is

i

a complete system of functions of H. The estimator m, is calculated

recursively by the formula
m (x) =m () + KX,

where
n® YV, - m 131,

and K is a "potential function'" of the form
2
K(x,y) = JAje; 006, (1) ,
1

and {Yn} is a sequence of real numbers, and m, is chosen arbitrarily.

We have the following type of consistency for this set-up. Suppose

L (Ci/Ap < @, Ty vp == I v] <. Then
/ [m (x) - m(x)]zf(x)dx + 0

in probability as n + «,

Fisher and Yokowitz (1976) obtain more general results for this

type of estimation, but for a more complicated error criterion,

1.3.4 Estimates Based on Ranks.

Let ans an S e xnn denote the ordered X values and define

the concomitant of xni = X. to be Yni =Y.. The set Y

5 j i 1 *® lycesslty

are sometimes called the induced order statistics. Yang (1977) proposes
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the following estimator of m(x) based on concomitants:
1% i
M,(x) = (nep) ile((r—l = B (x))/e )Y

where E;IK(x/cn) is a kernel type 6-function sequence and F_ is the
empirical distribution function of the X values. Yang gives conditions
under which Mn is (weakly) consistent and asymptotically normal at appro-
priate points x.

Bhattacharya (1976) discusses estimation of a function related to the
regression function based on concomitants. Let F denote the marginal
distribution function of X and define

h(t) = mF L(e); H() = éth(s)ds , Gsesk,

Natural estimators of H are

.1[nt]
al ) :
=1 ™

H ()

and

n-l

n

H*(t) ) Y.
= (i:F(X {)st} ™
if F is known. Bhattacharya obtains weak convergence in D[0,1] results

for these estimators and applies them to estimation and hypothesis

testing problems.




<. CONSISTENCY, NORMALITY

2.1 d-function Sequences

A cortain class of §-tunction sequences was sugpested originally by
Rosenblatt (1950) and, under slightly weaker conditions, by Parzen (190.)
tor use n probability density  function estimation. Leadbetter (1903)
and Watson and Leadbetter (1204) introduced a more general notion of
dotunction sequences, and our approach  throughout this study will be
to obtain results tor the more general type of §-functions whenever
possible.

The following (2.1.1 - 2.1.4) is due to Leadbetter (1963),

2

2,101 Definition. A sequence of integrable functions {§ (X} is called
a S-function sequence it it satisties the following set of conditions
finteprals with no limits of integration arve meant to extend over the en

tive real line):
i, fl&n(.\)ld.\ < A tor all noand some fixed A,
e B f\\‘"(\hl.\ = 1 tor all n,
CS. S“(x) » 0 wnttormly on x| = A tor any tixed \ 0,

4. [ 8, ()dx » 0 for anv fixed \ » 0
[x]=\ 1
The next lemma describes the type of S-function sequence used by
Rosenblatt (1956) and Parzen (1902), although the conditions on the tung

tion N are slightly difterent. This tvpe of §-function sequence will be
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retferred to as "kernel type'" and K as a "kernel tunction,"

2.1.2 lemma. Let (vn} be a sequence of non-zero constants with ¢ -+ 0

as n >~ and let K be an integrable function such that [ K(x)dx = 1

and K(X) = o(x l) as |[x| *» =, Then hl'lll\'(.\/r“)} is a S-function sequence.

0

The following lemma demonstrates the similarity of & function

sequences as detined above and the Dirac ¢-tunction.

2.1.3 Lemma. If g(x) is integrable and continuous at x = 0 and Nn‘
is a §-function sequence, then g(.\')\\"“(.\] is integrable tor each n and

jg(.\)\\n(x)\h +» 2(0) as n + w, 0

2.1.4 Lemma. let Mn(.\')} be a §-function sequence such that, tov p = 1,

a,(p) = / Nn(u)[pdu <o for each n. Then an(p) + © and

; = X p
{\\n.p(.\)} {l‘\“(.\)l /o, (D)}

is a §-function sequence for p > 1. 1

Rosenblatt (1971) states the following lemma, which gives a rate
of convergence for Lemma 2.1.3, when the §-function sequence is ot

kernel type. We include a proot for completeness.

2.1.5 Lemma. Suppose g is an integrable function with bounded, contin-

uous lst and 2nd derivatives. Let
{§. (x)} = (c'lx(\/r ))
n n *n

be a §-function sequence of kernel type with
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J uK(uwdu = 0 and fluZK(u)ldu <™,

Then

o 2
e / I\((x-u)/rn)g(u)du = g(x) + O(r“) i
where the sequence represented by 0 does not depend on x.
Proof. Write
-] " .
€ / K((x-u)/e Jp(u)du = fl\(y)g(x-cny)dy

and

g(x-€,y)

o B
= g(x) - g'(Xepy + g (v)ey/2

where 1 = -rn(x,y) is between x and X-€ V. Thus

lil;l J K((x-u)/e )g(u)du
= R KWy - g' (e, [ yK(y)dy
2 - oF
* e /D [ Rt YTKdy

and hence

15;1 [ K(x-w)/eg()du - g(x)]

: |
< b swpl @ (0721 [ 1y (dy
t

since [ K(u)du = 1 and [ uK(u)du = 0 . The conclusion follows from
the last inequality. N

The following lemmas will be useful in the sequel.




14
2.1.6 Lemma. Let {6n} be a §-function sequence and g an integrable
function. If g is continuous at x and y and x # y, then

Gn(x - -)Gn(y - +)g(*) is integrable and
/ 8, (x-u) 8 (y-u)g(u)du » 0
as n »> o,

Proof. For convenience, assume x < y. By Lemma 2.1.3, Gn(y-u)g(u)
is an integrable function for each n, as is dn(x-u)g(u). Choose \ so

that x < A\ < y. Then
| 8, (x-w)8 (y-u)g(u)dul

A
% 1 |6n(x—u)6n(y—u)g(u)|du

. { |8, (x-w§ (y-u)g(w) |du
< sup|6n(y-u)| § ldn(x~u)g(u)|du
usi

+ sup[én(x-u)| / |5n(y-u)g(u)|du X
u\

Now suplén(y-u)l and sup\én(x-u)\ converge to zero by C3 of Definition
usa u\

2.1.1. Purther, | Idn(x-u)g(u)ldu <o for each n by the preceding

remark, and, in fact, by Lemmas 2.1.3 and 2.1.4,

(1)1 18, (x-u)g(w) [du + g0
and

a,(1) = / |8, (u)[du < A

¢
!
f
B
i
1
i
i




for some constant A. Thus | lén(x—u)g(u)ldu is a bounded sequence,

£
H
s
'
t
g
1

and we have

sup[8 (y-u)| [ |8 (x-u)g(u)|du + 0
usai

as n » « . The same argument applies when x and y are interchanged, and

the conclusion follows. )

2.1.7 Lemma. Let {Gn} be a §-function sequence such that § is an
even function for each n and g an integrable function such that g has
both left and right hand limits at 0. Then Gn(x)g(x) is an integrable

function for each n and

[ 8,(x)g(x)dx + (g(0+) + g(0-))/2
as n + o,
Proof. Define

gx) , x>0

g () ={ g(0%), x=0

glx)}, x<0

[ g(-x), x>0

g (x) ={ g(0-), x=0

g(x) , x<0

+ - s
Clearly, ¢ and g are even functions, continuous at 0. Further, they are

both integrable functions, since, e.g.

[ et @) |du = 2 é lg" (W |du

-2£anm<~.
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Thus, by Lemma 2.1.3,

/ dn(X)g*(x)dx + g7 (0) = g(0+)
as n » « ., But

[ 18, () (x) |dx

®© 0
[ 18,008 () [dx + [ |8 (x)g(x) |dx
0 -

(1/2) [ 18708, () ]dx + (1/2) [ |7 (x)6_(x) [dx <

by Lemma 2.1.3, so that 6n(x)g(x) is integrable, and

[, (0g(x)dx

@ 0
=] §,(0g(¥)dx + [ 8 (x)g(x)dx
0 -0

]

(1/2) [ 6, ()" (dx + (1/2) [ 6 (g (x)dx

v

(g(0+) + g(0-))/2

by the preceding remark. (0

2.2 Nonparametric Density Function Estimation.

Nonparametric methods of density function estimation have been studied
in great detail (see, e.g., Wegman (1972a) and Wegman (1972b) for a survey

and comparison of work in this area). Estimators of a density f(x) of the
form

n
(2.2.1) fn(x) = (l/n)izlén(x-xi)

5
i
i
|
#
i
£
%
$
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are of particular interest here because of the reliance of our proposed
regression function estimators on the same type of weighting functions
6“, and because fn’ defined in (2.2.1) appears in the denominator of m,

as defined in equation (1.1.3).

Since Xi, i=1,...,n are i.i.d. with common density f, we have
BE, = [ Gn(x-u)t(u)du *

which has f(x) as its limiting value as n + «, provided f is continuous

at x, by Lemma 2.1.3. That is, f

. is an asymptotically unbiased estima-

tor of f at continuity points of f. Further,
" I N Pk aradlé
Ef (x) = (1/n) E{ } 8 (x-X;) + ) 8 (x-X;) n(x-xj)}
i=1 1¥)
= (1/n) | Gi(x-u)f(u)du

¢ (eD/m f 8 x-w fda]®

so that

Var(f ()] = (1/n) / éi(x-u)f(u)du
- /M [ 8 x-w E(du)®
and we thus have, if L f Gé(u)du < o for each n, by Lemma 2.1.4,
(n/an)Var[fn(x)] -+ f(x)

as n + o at continuity points x of f. The above calculations (which
appear in Watson and Leadbetter (1964)) may be combined to give condi-
tions under which the mean square error of fn converges to zero, as the

following lemma shows.

p ey
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2.2.1 Lemma. Let {Gn} be a §-function sequence for which
2
P / 5;(u)du < « for each n and an/n +0asn-+® Let x bea

continuity point of f. Then

E[f,(0 - f00)°+0 asnso . 0

2.2.2 Remark. By Chebychev's inequality,
: A 2
P{|tn(x)-f(x)| >el) se ‘E[tn(x)-f(x)]

for any € > 0. We thus have fn(x) + f(x) in probability, provided the
conditions of Lemma 2.2.1 are satisfied. That is, fn(x) is a weakly
consistent estimator of {(x) for appropriate §-function sequences and
points X.

The preceding discussion on density estimation will suffice for our
discussion of pointwise consistency of our proposed regression estimators.
We will include other pertinent results on density estimation as they are

needed.

2.3 Pointwise Consistency Properties of m and ﬁh.

We begin our discussion by considering the numerator of the estima-
tors m and ﬁh defined in (1.1.3) and (1.1.4), respectively. Denote, for
convenience, the numerator by m;, i.e.,

4 n
m (x) = (1/n)iglyian(x-xi) :

Then we have the following.

At Sl T




19

2.3.1 Lemma. Let (dn} be a §-function sequence for which
a, = / 6§(u)du <« for each n. Suppose EYZ <~ and x is a point of con-
tinuity of the functions f£(u), m(u) = E[Y|X~u] and s(u) = E[Y®|X=u].

Then
®
(1) Em“(x) + m(x) f(x)

(i) (n/an)Var[m;(x)l + s(x)f(x)

i

\ as n + «,

i

i Proof. We will use the following two well known properties of the
é regression function:

(2.3.1) Eh(Y) = [ E[h(Y)|X=x]f(x)dx
for any function h and random variable Y such that E|h(Y)]| < ,
(2.3.2) E[g(X)h(Y) [X=x] = g(x)E[h(Y)|X=x]

for any functions g and h such that E|g(X)h(Y)]| < =,

Since (Xi,Yi), i=1,...,nare i.i.d., we have

Em;(x) = BYS_(x-X)

= fﬁ[YGn(x-X)|X=u]f(u)du

by (2.3.1),
= [ 8, (x-WE[Y|X-u] f (u)du
by (2.3.2),

= f §, (x-u)m(u) f (u)du .

v
A e e e et e o wh
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Now, by assumption, m(u)f(u) is continuous at u = x. Thus (i) will
follow from Lemma (2.1.3) if we demonstrate that m(u)f(u) is an inte-

grable function. To verify this, note that, by Jensen's inequality

[m(x)| = |E[Y|X=x]] s E[|Y]|X=x] .
Thus
[ Im(u)f(u)|du < [E[|Y||X=u]f(u)du = E|Y| < =

by assumption, and (i) follows.

For (ii), note

n
Elm, ()] am e ] 16, 6ex1°
1=

+ Lg Yién(x-xi)YJ.Sn(x-Xj)}

(1/m) [ s(u)f(u)s] (x-u)du
+ ((-D/m [ mw £, (x-wdu)

the last step following from (2.3.1) and (2.3.2), as used in the proof
of (i). Thus

Var[m (0] = (1/n) [ s(w) £(w)62(x-u)du
- /[ MW £ (x-u)du)’

and, since o and {Gn/an} is a §-function sequence, we have

(n/ag)Var[n) ()] > s £(x)

as desired. a) !
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We now use the preceding result to demonstrate the consistency of

the estimators m  and ﬁn.

2.3.2 Theorem. Let {én} be a §-function sequence such that
a =] 6i(u)du <« for each n and a = o(n). Suppose EY? < » and x

is a continuity point of f(u), m(u) and s(u), and that f(x) > 0. Then

(1) mn(x) B m(x)

vy

(i) ﬁh(x) m(x) .

®
Proof. Since an/n + 0 by assumption, we have Var[mh(x)] + 0 by

Lemma 2.3.1. Thus
E(?(x) - m)£()]% + 0

and by applying Chebychev's inequality as in Remark 2.2.2, we see that

m;(x)EL m(x)f(x). Since, by definition
- ®
m,(x) =m (x)/£(x) ,

and f(x) > 0, (ii) follows immediately.

For (i), write

| | mo- mf m(f-fn)l
Ml = o
™ T 0
*®
m_ - mf f - f
< —I%F———— + |m| —Tr——ll
n | n :

x P
where we have suppressed the argument x for convenience. Now e mf

by (ii), and since £ (x) % £(x) > 0, we have

A W S e

PRI RN, D, S

e

o e
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mn-mfgo
In
Similarly,
f=f n
n 1o :
. 3 3
and (i) follows. 0

We have, then, that both the estimators m and ﬁh are weakly con-

TR AN R

sistent estimators of m at continuity points of s, m and f. The follow-
ing corollary specializes the preceding theorem to kernel type §-function

sequences.

R R . ) :
2.3.3 Corollary. Suppose that {dn(x)} = {en h(x/en)} 1s a §-function
2
sequence of kernel type with e, * « as n + » and [ K®(u)du < @, Assume
the other conditions of Theorem 2.3.2 are satisfied. Then the conclusions

of Theorem 2.3.2 hold.
Proof. We need only verify that an/n > 0. By definition
& 2 - =T P P 2
o f §, (Wdu € [ K (x/e,)dx € [ K*(wdu .

Then

a/n = (nen)-l f Kz(u)du > 0
by assumption. 0

We have so far been assuming that the density f of X is continuous
and positive at points where we wish to estimate the regression function.
An important case where these assumptions may not hold is when X is a

bounded random variable, i.e. when f has bounded support, and we desire an
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estimate at a boundary point of the support of f. We have the following
result, which demonstrates that if m(x+) = m(x), mn(x) is consistent

but ﬁg{x) is not.

2.3.4 Theorem. Let {6n} be a §-function sequence such that Q. <
2

for each n and o /n » 0. Suppose EY® < » and x is a point such that

f, m and s have left and right hand limits at x and f(x+) = f(x) > 0,

f(x-) = 0. Then
(1) m () + m(xe)/2
(11) m () » m{x+) .
Proof. By Lemma 2.1.7 it follows that
B (x) ~ £(x)/2 ,
B (x) > m(x+)£(x)/2 .

By an argument similar to the one used in the proof of Lemma 2.3.1, it

follows that
p
£ > fx)/2,

* p
mn(x) > m(x+)f(x)/2 .
Since

M0 = (0/£00)
(1) follows. Since
m, (x) = m;(X)/fn(x) ,

(i1) follows by an argument similar to the one used in Theorem 2.3.2.
0
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This theorem demonstrates that the estimator ﬁh displays an
“end effect" at the boundaries of the range of X which m, does not
g display. As we shall see in Chapter 4, this end effect represents a

possible disadvantage for Eh, depending on how m is defined at the

boundaries of its support. We now turn our attention to asymptotic

distributional properties of m_ and ﬁh.

2.4 Asymptotic Distribution of;&r

Nadaraya (1964) and Schuster (1972) have considered the asymptotic

nommality of the estimator m, in temms of kernel type §-function sequences.

Nadaroya states that, if Y is a bounded random variable and nci +

then (nen)%(mn(x) - Emn(x)) has an asymptotically normal distribution

with zero mean and variance s(x)f Kz(u)du/f(x), where
L
s(x) = E[Y"|X=x] .

Schuster (1972) points out that this expression for the variance is in-
correct and presents a result with the correct variance which at the same
time removes the restriction that Y be bounded and centers at m(x) instead
of Emn(x). We state Schuster's result here for comparison with a new

result which represents, in some respects, an improvement over Schuster's.

2.4.1 Theorem. Let {c;lK(x/cn)} be a §-function sequence sa.isfying the

condition:
(i) K(u) and uK(u) are bounded,

(i) [ uK@du =0, [ u’Ku)du<w

W - panpoT—_




o e

i) ¢ n'(“O*a n =«
$» ™ .s o
(11 Iun 5 |n

Suppose NpeXgeees .\\

are distinct points with t"(xi\ > 0, 1 & 1. .51¢sPs

Let w(u) = mu)t(u) and assume ', w', s', "W exist and are bounded,

and that li\"‘\ < »,  Then
(e \\‘(n (x,)-m(x,) () mxy !
n' MaiXy Xpdoe s og (X, At

converges in distribution to a multivariate nomal random vector with
zero mean vector and diagonal covariance matrix with i-th diagonal

clement given by

u“(xi)j I\'“(uhlu/i“(xi)

where

o“u) = s(u) m“\m g

Schuster proves this theorem by using the Berrv-lisseen theorem to
show the joint asvmptotic nomality of the numerator and denominator of
m, . An application of the Mann-Wold theorem (Billingsley (1968)) then
vields the desirved rvesult. As we shall see, it is not necessary to con
sider the joint distribution of the numerator and denominator ot ", in
order to establish asyvmptotic nomality,  Schuster's proot can thus be
simplitied. Also, by using the Lindeberg-Feller central limit theorem,
instead of the Berry-Esseen theorem, we will be able to require the
S-function sequence to satisf{y a less restrictive condition, namely that

. . 3
ne o instead of nel > o,
n n

We now present the new asymptotic nomality result tor . The most

important difference between this theorem (when stated in tems of kernel

type § sequences) and Theorem 24,1 is that it only requires ke
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instead of nr;: *w. Also, it applies to general §-function sequences.
There are minor differences in the other conditions which will be evi
dent in the statement of the theorem. We first state the main theorem,
and then prove a preliminary lemma before returning to the proof of the

theorem. We then specialize to kernel type §-function sequences.

2.4.2 Theorem. Let {Sn) be a sequence of §-functions such that

)

24n
b f lﬁn(u)l du < ©  for each n ,

for some n > 0 ,

/ Sl“l(u)du = 0(n) as n » »

=
[

n

and

Yn ©

y @S NI * ®

n/2 /2
O(H v 0“1 v

Suppose F.]YI“‘\n <« and the distinct points xl“‘:""'ﬁu are continuity
points of each of bhe functions f(x), m(x), s(x) = E[Y“|X=x] and

g X :
E[]Y] 'l.\-x]. and that l(xi) >0, 1 =1,...,P. Then
(“n(xl)‘ “n(“l)"""‘n(‘\\n
converges in distribution to a multivariate nomal random vector with
2ero mean vector and identity covariance matrix, where

m“(x) - gn(x)

x) = —R— .

| l(\“/ll) (02(-\)/{(’() ) ]lﬁ

o



L3
B (x)
L‘n(x) ke _‘n )
El“(x)
and
uz(x) = 5(x) - mz(x) . (]

L3
Since m, = mn/fn is a ratio of sums of random variables, a direct

central limit argument is not possible. However, note that

n\\ f ‘“n B [m;/f i (fn/ngn“f/fn)

.
and f/fn g 1, so that m.C R, will have the same asymptotic distribution
as the term within square brackets above. The term within square brackets
is a sum of random variables, and thus standard arguments may be used to
establish its asymptotic nommality. This is the outline which the
proof of Theorem 2.4.2 will follow, although the notation will be more
complicated since the proof will be in a multivariate setting.

The following lemma establishes the asymptotic variance and covariance

-~ * -~ -

of m/f - (/018
2.4.3 lemma. let {6n} be a §-function sequence such that

"
o, * / G;(U)du < = for each n. Suppose x # y are continuity points of

f, m, and s, and that f(x) > 0, f(v) > 0, and EY* < », Define

Rn(:) = f(z)/fn(:)
and

®
W, (2) = mp (2)/€C2) - g (2)/R, ()

Then

(1) (Vo )Var(l ()] + o* (x)/£(x)

and
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(ii) n Cov[Hn(x), Hn(y)] +0 asn-+w
Proof. By definition,

n
Hy (0 = (£00) ™ Y0y g, (0)6, (x-x,)

and

B, (x) = Em (0)/£0x) - g (OEE, () /£(x)
= ()

since
g (x) = Err;,(X)/Efn(x) ,

and we thus have

Var[if, ()] = B (x)

n
- (nf(x))‘zﬁ{.zl[(vi—gn(xncn(x-xin2
1‘

+ %'hZ[(Yi-gn(X))Gn(x-Xi)][(Yj-gn(X))Gn(x-Xj)]} :

Now

BL(Y-, ()6, (x-X)] = 0
since

By (x) = EYS, (x-X) ,

Bf,(x) = ES_(x-X) .
Hence

(n/an)Var[Hn(x)]

- a,;l(f(x))‘ZE[(Y-gn(x))én(x-X)]2
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= o (€0 A [s ) f el (x-u)du
- Zgn(x)f m(u)f(u)érzl(x-u)du
2 2
B gn(x) J f(u)Gn(x-u)du}

> (£ HsOFX) - mP0E0))

= o*(/E(X)

-
since {6;(u)/n“} is a §-function sequence by Lemma 2.1.4 and gn(x) + m(x).

For (ii), note
n Cov[H (x), H (¥)] = nEH (X)H (y)

n
< (EOFE) BT Y 108 (018, (X)) -

i,j=1
[(Y;-8n, ()8, (y-X;))

1 nh
= (nf(x)£(y)) I_ZIF.[(Yi-gn(x))dn(x-)(i)] >
l:

(Y-8, 068, (v-X) ]
= (FOE)) T [ 8, (x-ws (y-wa (W)du

where
q () = £(u) [s(u) -m(u) (g, (x)*+g, (¥)) + &, (x)g, (¥) ]

is continuous at u = x and y = y by assumption. Thus

n Cov[il (x), H ()] + 0

by Lenma 2.1.6, and (i) is true. 0
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We now return to the proof of Theorem 2.4.2. By the Cramér-Wold

device (e.g., Billingsley (1968)), it suffices to show
L 2
th(X) N(O,Et),
K1 k'n- ki > k=1 k

or, equivalently,

E tk[mn(xk) 5 gn(xk)]
Eneo,1

{(a /n) E tk(c (xk)/f (xk)}

for any real numbers tl,tz,...,tp. Write

m, (x) - g,(x) = H ()R (x)

where H, and Rn are as defined in Lemma 2.4.3. Since fn(xk) E f(xk),
k=1,...,p, it follows that Rn(xk) R 1, k= 1....,p, and it thus suffices

to show that

E tkH (x

{(an/n)kgltk(o ()% () 1

£ neo,1).

Now

= [ 16,@]*du < =

for each n implies

s
oy = [ & (u)du < w
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for each n, since [ Gi(u)du < « for any finite A > 0 by Holder's

ful<
inequality, and by Cl and C3 of Definition 2.1.1. Thus we have, by

Lenma 2.4.3,
Var| E t, H (x,)]
k=1 KNk
= E ti Var[H (x)]
k=1

+ {f% tktj Cov[H (X)), H“(xj)]

2.2
s /n)Et.o (x )/ £(xy)
“n e K VK K
as n » . Hence it suffices to prove
EtH(X)
ka1 Kk

V. = + N(0,1) .

{Var[igltkﬂn(xk)]}k

Since, by definition,
-1 n
H (x) = (nf(x)) _Zl(Yi-gn(x))Gn(x-Xi) '
1-

we may write

n
V.=tV

nooGL i

where the i.i.d. random variables Vn i i=1,...,n, are defined by
v oo % T e /ey 0 og )6 (k)
n,1i noep KUK &n X)) 0n XYy

where




—————
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» )
; = Var{ 5 (tk/f(xk))(Y 5n(xk))6 (x-X)} .

[t then follows from the Lindeberg-Feller central limit theorem that

if, for some n > 0,

. 24n
nLjVn.lj 0

then

Vn { N(0,1) as n » w
Now by applying the <, inequality of Lodve (1963) repeatedly we have

lﬂﬂ\n'll

P i _x 2+n
i E tk(\l }\n(.\k)) “(xk .\l)
g % Y .
k‘l n Unf(a\k)

¥ )“"In“‘k“”lzm
s ¢ (n
Y it B /’(j (£(x k))**“

241

Flﬂn(‘k)ﬁ (\ 1)|~ 1

/Z‘Z*n

kElckm)[lk.n 3 Jk,nl ¥

where ck(n) depends only on k and n and the constants t].....tk. [t

is easily seen that

02 = n Var( E t Hn(xk)] udl. & tko (xk\/f(\k) ’

the last step following by earlier calculations. Further,




R
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nlyan(x-X)lz‘“

i f 5:*(x-u)E[1Y|2‘"|x=u]f(u)du

}

"

1,2,...,p, we have

Y LY Xy )

~

[ 18, Ge-w) [ Y20 Xeu) £ ()

a2, 1 n/2
+*0asn-+>w

v, = 012

by assumption. Similar calculations yield

) lgn(xk) l i

~

f(xk)[ § tio (x )/£(x; e

n/2 1 n/2

* 0 as n >~ , and the proof is complete.

sequences, which may be compared with Schuster's Theorem

of kernel type satisfying

(i) ]lK(u)lz'"du < « for some n > 0

(£(x )" f b Sondrete ) E

{|6nI2+n/yn} is a §-function sequence by Lemma 2.1.4.

(

We now give a version of Theorem 2.4.2 for kernel-type §-function

2.4.1.

2.4.4 Theorem. Suppose {8,(x)} = {e k(x/e )} is a §-function sequence
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(ii) [ uk(wdu =0, J u’Kdu <

iy 5
(iii) ne, * » 5 I 0 as n~>®,

Suppose m(x) and f(x) have bounded, continuous 1lst and 2nd derivatives,
lilYIZ*n < » , the distinct points xl,xz,...,xp are continuity points of
s(x) and E[[¥[2*"|X=x] and £(x) > 0, k = 1,...,p. Then
(Zh(xl),...,ZA(xp)) converges in distribution to a multivariate normal

random vector with zero mean vector and identity covariance matrix, where

(ne,) *(m (x) - m(x)

{—oZ(X) / k% (w) du/f (x) ye

Zﬁ(x) =
Proof. We first verify that this s-function sequence satisfies the
conditions of Theorem 2.4.2. Now
% -1 2

a, * / dn(u)du e | ¥(u)du < =

for each n since € #0, | Kz(u)du < », Further,
)

a,/n = (ne,) [ K°(u)du » 0

since ne, + by assumption. Similarly,

& 2+ % 1+ 2+
y, = [ 18| "au = (1/ey) MKW | <

n
for each n, and
Yn/nn/zurllm/2 « (ns:n)-n/2 +>0as n-»>e

by assumption. Thus this type of 6-function sequence satisfies the
requirements of Theorem 2.4.2, and since the remaining regularity condi-

tions of Theorem 2.4.2 are clearly satisfied under the present assumptions,




Er;l / x((x-u)/en)m(u)f(u)du )Z
en‘l / K((x-u)/en)f(u)du m(kj
-1 >
: (nen)"/cn I I\((x-u)/en)n(u)f(u)du T M(X) £ (x)
( ety Mew/e ) ra
: m(x) ,;1 i K((x-u)/en)f(u)du ’
er;j J K((x-u)/en)f(u)du




2.5 Asymptotic Distribution of my.

It is evident that, since ﬁn = m:/f is a sum of independent random
variables, we may apply the Lindeberg-Feller central limit theorem in
much the same way as we did in Theorem 2.4.2 to establish the asymptotic
nomality of (ﬁn(x) - Eﬁn(x))/Var[ﬁn]. We established in (ii) of Lemma

2.3.1 that
Var[m;(x)] ~ (an/n)s(x)f(x)
for appropriate points X. Hence we have
\':n'[rﬁn] ~ (an/n)s(x)/f(x) 5

We therefore have the following theorems, which we state without proof,
since the proofs follow those of Theorems 2.4.2 and 2.4.4 very closely.
The first theorem concerns the asymptotic normality of ﬁh for general

§-function sequences; the second for kernel type §-sequences.

2.5.1 Theorem. Under the conditions of Theorem 2.4.2,
(wn(xl),...,wn(xp)) converges in distribution to a multivariate normal

random vector with zero mean vector and identify covariance matrix, where

ﬁh(x) - lﬁﬁn(x)

(/M (x)/£(x)} 2

W, (x) =

2.5.2 Theorem. Under the conditions of Theorem 2.4.4, (wﬁ(xl)...,wﬁ(xp))
con erges in distribution to a multivariate normmal random vector with zero

mean and identity covariance matrix, where

(ne ) %(m (X) - m(x))
(s(x) [ KPudu/£(0 1

w;(x) =




(2]
~3

2.6 Mean Integrated Square Error.

The mean integrated square error (MISE) Jn of an estimator

-ln
f.(X) =n 12 8, (x-X;)

1

of a density f is defined as
- E - 2
Jn =E [ (fn(x) f(x)) “dx

where dn and f are assumed to be square integrable. Watson and Leadbetter
(1963) show that Jn is minimized for each n if Gn is chosen to have a

Fourier transform ®s expressible as
n

l6¢(t)]?
(1/n) + ((n-1)/n) [¢¢(0) |

o5 () =
n

where ¢f is the Fourier transform of f. (Fourier transforms of square
integrable functions have the usual interpretation here.) For the

regression estimation problem, Watson (1964) considers the error criterion
Jﬁ defined by
n n >
JR*Bjil 6, (x-Xm(x) - ¥ Y,8, (x-X;)]“dx
i=1 i=1
where appropriate assumptions are made on Gn and m to insure the finite-
ness of the integral. Watson states that Jﬁ is minimized for each n if

Gn is chosen so as to have Fourier transform

I¢fm(t)|2
Y + ((-1)/m) o, (817

®
®6 (t) = 1
n

n

where ¢fm is the Fourier transform of fm.

=y

-

R R

- ey =

BUW v ST
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We assume here that dn and fm are square integrable functions and

that EY2 < o, We define the error criterion In by

] * 2
I~k / (mn(x) - f)m(x)) “dx

where m: is the numerator of m.- We will show here that In is also
minimized for each n by choosing 6,, to have Fourier transform given by
¢; , defined above. Note that In may be interpreted as the MISE of the
nu;erator of m, or ﬁh, disregarding the denominator.

By the definition of In and Parseval's formula, we have

* 2
(2.6.1) I Ef (m (x) - f(x)m(x)) “dx

@) E [ ] 6 alt) - o (0] at
My

*
where ¢ » is the Fourier transform of m., SO that I, may be minimized

m
n

by minimizing the extreme right hand side of expression (2.6.1) above.

Now, by Fubini's theorem for positive functions,

E [ |6 #(t) - og (t)| %t

m
n

= [ Elo #(t) - o ()%t ,

G

so that In may be minimized by minimizing

(2.6.2) E[o #(t) - 0 (0)]°
m
n

= B[ a(0)]% + 0, (t) |2
M

8L (0)0g (1) + 0 ()P (1)])
mn m

ST T (A

{
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ST

for each t, where g denotes the conjugate of the complex function g.

Note that since fm is an integrable function,

(2.6.3)

Further,

(2.6.4)

so that

(2.6.5)

Now

and thus

Oen(t) = [ ity £ (u)m(u)du .

- n 1
¢ a(t) = [ (1] Y6, (u-X;)le' “au
L
m j
4, n itX. :
“nlive I s ueltiw
L n
i=1
n - A
=¢s ()In" ) Yo I,
n j=1"7
Elo a(t)]?
mn
A h itX.
“ 105 ®1%InT e |
n i=1
2 _2‘ n itxj _itxk
= |¢, (£)|°n “E ] ] Y.Y.e e
6n j,k=1 Ik

R P
[0 (B)|“n"“(E } Y¢
6n jzl J
itX, -itX
+ I Z EY.Yke Je k} z
itk !

EveltX o / m(u)f(u)eitudu

= Oen(t)

FERR————
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(2.6.5)" E[¢ a(t)]?
™

- l¢5n(t)|2[(1/n)ﬁvz + ((=1)/m) [0 (D]7] .

Finally, from @.6.3)and 2.6.4),we have

(2.6.6) u[¢fm(t)6%;(t) + $ﬁ“(t)¢m;(t)l
- P . -ith
" Ogn(t); ()E[ jleje J
e an it.\'j
¢fm(t)o6n(t)5[n jleje J

e
= |op (O “[d5 (1) + ¢, ()]
| fm Gn én
2
= 2 Refog (D)]]og (D[ .
n

Combining (2.6.3), (2.6.5) and (2.6.6) yields

(2.6.7) El¢ «(t) - ¢fm(t)12

m
n

= 1og(01% - 2 Re[%n(t)lldsfm(t)l2

* 1og (O PP IA/MEYE + ((n-1)/m) [og, (0]
n

= [A/ME? + (/) o, (0% -

05, ()17

¢6n(t) =

A/MEYY + ((-1)/m) o, (62

l 2
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|96 12(EY: - [o0g (0)]%]
EYY ¢ (n-1) |05, ()|

the last equality following by completing the square and rearranging

terms. Now
[6gn (O] = | [ m(u) £(u)e Vaul

s [ |m(u)|f(u)du

< [ E[|Y|]X=u]f(u)du = E|Y| ,

so that

0en(®1% s €YD s Y,

for all t, and hence (2.6.7) is minimized for each t by choosing

O = b
61'1 6“




3. ASYMPTOTIC PROPERTIES OF MAXIMUM ABSOLUTE DEVIATION

3.1 Preliminaries

Since our goal in many cases is the estimation of the regression
function over the entire real line, or some subset of the real line, it
is natural to investigate the behavior of our estimators under some
global error criterion. An attempt at this direction was made in
Section 2.6, where we considered mean integrated square error. This was
not entirely satisfactory, however, since we were only able to determine
the §-function sequence which minimized the MISE of the numerator of the
estimators in question, disregarding the denominator. In this chapter,
we consider a different global error criterion, the maximum absolute
deviation, defined as suplmn(x) - m(x)| where I is a closed, bounded
interval of the real li§Zf which we will take without loss of generality
to be [0,1]. We shall mainly be concerned here with conditions under
which the maximum absolute deviation converges to zero in probability
(in this case we say that the estimator in question is uniformly consis-
tent over I). We will also be able to find a large sample confidence
bound for the regression function, based on the estimator ﬁh.

Our method of analysis will follow the one briefly outlined below

used by Bickel and Rosenblatt (1973) and Rosenblatt (1976) for probability

density estimators. For a density function estimator
.10
f( = (nep) ™ 1 K(WXp) /ey

the deviation about the mean fn(u) . Efn(u), normalized so as to have
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non-zero asymptotic standard deviation, may be written as

(3.1.1) (neg) *(£, () - Ef (w)
[£(w)*

= [£we,) ™ [ K((u-s)/e)dz, (s)
=Y (), say,
where i, is the empirical process defined by

Z,(s) = nE[Fn(S) = Bis}]

where Fn is the empirical distribution function (EDF) of Xi,
i=1,...,n, and F is the cumulative distribution function of Xl'
Komlas,Major and Tusnddy (1975) have shown that a sequence of Brownian
bridges {Bn} on [0,1] may be constructed such that
(3.1.2) sup |Z_(u) - B (F(w)| = 0(n *1og n)

-00< 1< 00

a.s. This fact is exploited, using integration by parts in (3.1.1), to

show that
(log m™ sup |Y_(u)|
O<u<1
Y
= (log n)* sup |Y, (u)] + o (1)
Osusl L P
where Y1 n is the stochastic process obtained by replacing Zn(s) with

Bn(F(s)) in the defining expression for Yn. Further stages of approx-

imation finally yield
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(3.1.3) (log n)* sup Y (u)]
Osusl

b
= (log n)* sup |Y, (u)| + o (1)
' Osusl 2,n P

where Y2 = is the Gaussian process on [0,1] defined by

e g

Y, a0 = en? [ K((u-5)/e,)dH(s)

where W is a Wiener process on R. The asymptotic distribution of

(log n);ﬁ sup IYZ n(u)l with proper centering constants, is determined,
O<usl 4

and, in light of (3.1.3), (log n);s sup lYn(u)l has the same asymptotic
distribution. i

We will employ this method to determine the asymptotic distribution
of the maximum absolute deviation of the numerator m: of the estimators
m, and ﬁh, properly normalized and centered. Algebraic manipulation and
elementary analysis will then yield uniform consistency of the estimators,
with an associated rate of convergence. Since the denominator of ﬁh
is non-stochastic, an asymptotic confidence band for m, based on ﬁh :
may also be specified.

In the forthcoming development, we will need to use integrals of

the form

(.1.4) Y (0) = [f ykEDMTXY)
n

2

where T: R" » [0,1]2 is the transformation defined by

T(X,)’) 5 (FX|Y(X’Y)’ Fy()')) ’

and W(*,*) is the Wiener process on [0,1]2. In this section, we will

give conditions for the existence of (3.1.4) and prove some useful

properties.
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If H(s,t) is a real, measurable function on [0,1]2, then it is

well-known that the L2 integral

[f H(s,t)dW(s,t)

exists if

[/ He (s, t)dsdt < o

(see Masani (1968), Chap. 5).
Suppose that f(x,y) > 0 for all real x and y so that T is one-to-
one and hence T™! is a well-defined function on [0,1]2 to nzz. Denote,

for fixed n and t
Gp (x,y) = yK((t-x)/¢e ) .
Then, by Theorem 5.19 of Masani (1968), we have

(3.1.5) HZyK((t-x)/q,)dW(T(x,y))
R

= I 6,17 (s,w)dN(s,u)
(0,112

in the sense that if either integral exists, then so does the other
and they are equal. By the previous remark, the integral on the right

hand side of (3.1.5) exists if

[ Gl l(s,u))dsdu < = .
[0,1]

Now

(3.1.6) [ 5 Ge(T M (s,u))dsdu
(0,1]

=[] LY I (x,y) | dxdy
R2
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where J(x,y) is the Jacobian of T (see, e.g. Buck (1965), Sec, 6,1,

Thm. 4), if |{J(x,y)| > 0 for all real x and y and Gt(x,y), f(x,y) and

it Ly YR RTES, SR DG BTTIR NS S Y

f(y) are continuous. By definition,

~

| 3% Fx|y&IY) 57 Fyy(xly)

J(ny) = 3 3 5
| R A RO |

= f(x,y) >0

by assumption, using the obvious notation for conditional and marginal

densities. Thus

Jf G (s,u))dsdu
[0,1]

I YR /e EGxy)axdy
R

EYZKZ((t-X)/en) <w

if, e.g., EY2 <« and K is bounded. We note that the above development

holds if, instead of having f(x,y) > 0 for all real x and y, we have

5
f(x,y) > 0 for x and y in some rectangle of R“, and the range of
integration is appropriately adjusted. We will henceforth assume this

to be true without comment.

We will now give properties of the integral (3.1.4) which will be

useful in the future development. We will show

(3.1.7) EY,(t) = 0, i
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(3.1.8) EYn(tl)Yn(tz)

=[] ¥PK((ty %) /e DK((t,x) /e ) £x,y)dxdy

for 4 # t,. In view of (3.1.5) and the definition of the stochastic
integral, (3.1.7) follows. For (3.1.8), we note, by (3.1.5) and (5.2)
of Masani (1968)

EY, (t))Y, (t,)
= I 6, (0N s,w)6, (17 (s,w))dsdu
1 2

=[] YPK((t) %) /e DK((t,x) /e ) £x,y) dxdy

as in (3.1.8).
We finally note to close this section that, since W is a Gaussian

process on (0,1]2 and since Yn(t) is an L2 limit of linear combinati ons

of W(+,*), we have that Yn(t) is itself a (one-parameter) Gaussian
stochastic process for each n, with mean given by (3.1.7) and covariance

function given by (3.1.8).

3.2 Maximum Absolute Deviation of @;

[t is convenient to introduce certain assumptions at this point which
will be in force in our main theorem. Let f(x,y) denote the joint density
of (X,Y), fY(y) the marginal density of Y, and let {an} be a real sequence

with a >®asn->« We make the following assumptions:

(A1) (log n)er;3 / )'ZfY(y)dy $
lylzan

for all n and some constant c,
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(A2) aneggn-l/6(log n)2 +0 asn-=+o

2
(A3) (log n) sup [ yf(x,y)dy + 0 asn - .
0sxs1 Iy|>an

(A4) There exists a constant n > 0 such that
a

g
g, () = [ ¥y f(x,y)dy
-a

satisfies
g, (x) >n V¥xe[0,1) and some n ,
and g: has a continuous 1st derivative on some interval [-A,A].

Further, the functions
sQEE = [y Exydy ,
E[IY][X=x]£(x) = [ |y|£(x,y)dy

are uniformly bounded.
If Y is a bounded random variable, then clearly any sequence {an}
with W, * - satisfies assumptions Al and A3. If the marginal distribu-

tion of Y is normal and ¢ = n"® as in Theorem 3.2.1, then it is readily

checked that (an} = {log n} satisfies Al and A2.

\/ S * *' o~ -5, ' S M ] <

We nomalize mn(t) - Emn(t) by (nan) [s(t) £(t)]*, which is pro-
portional to its asymptotic standard deviation, thus defining the
following stochastic process on [0,1]:

(ne,) *m (8) - En ()]
(3.21) Y- _° " "

[s(t)f(t)]s




|
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Then we have the following theorem.

3.2.1 Theorem. Suppose the kernel function K vanishes outside a finite

interval [-A,A] and is absolutely continuous and has a bounded derivative

on [-A,A] and that the marginal density of X is positive on an interval con-

taining (0,1]. Suppose AL-A4 hold. Then, for ¢ =n%, 0< 5 <3
osw @1 .
P{(Zd log n)? Qfﬁilj:____ -d | <x } g
AK1* |
as n + o, where
s 2
AK) = [ K°(wdu ,
ks g, G100
d = (28 log n)* + (26 log n) {log(-;ﬁg—a

+ %[log § + log log n]}
if
2 2

(K)=K A +K —A

< >0,

and otherwise

> o1 o0 3
d, = (26 log n)* + (26 log n) [log(——ii—dl

where 2
JIK' (u)]“du

©2® = —m

The proof of Theorem 3.2.1 is based on Theorems 3.2.2 and 3.3.3,
which follow. Theorem 3.2.2 is due to Bickel and Rosenblatt (1973),
who used it in proving a result similar to Theorem 3.2.1 for probability

density estimators. We will here denote by [ K(t)dW(t) the L2 integral

¥

S 09 T IR A . 28
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of k with respect to the Wiener process W (see e.g. Doob (1953),

Chap. IX, Sec. 2).

3.2.2 Theorem. Suppose K(¢) is a kernel function which vanishes outside

[-A,A] and is absolutely continuous on [-A,A]. Define on [0,1] the

stochastic process
z (t) = e [ kEDINE)
n n €n

where

with 0 < § < % and W(x) is a Wiener process oi. {-»,»), Then

A 0supllzn(t)| :
P{ (26 log n) L -d !l <xt+>e“®
{ G . }

as n +» «, where dn and A(K) are as in Theorem 1.
Theorem 3.2.3 is a special case of Theorem E of Révész (1976).

3.2.3 Theorem. Let x1 and X2 be independent random variables, each
uniformly distributed over [0,1]. Define the empirical process of

Zn(xl,xz) = n%[Fn(xl,xz) - x1x2]

on [0,1]2, where Fn denotes the empirical distribution function of

(Xl,XZ). Then one can define a sequence {Bn} of independent Brownian

bridges on [0,1]2 such that

T TS SRR A
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(3.2.2) sup IZn(xl,xz) - Bn(xl,xz)[
Ole,xzsl

-1/6

= 0tn ¥ %0g 115 a.s.

Proof of Theorem 3.2.1: For convenience, denote sup |g(t)| by
Osts<1

Ilgll and note that, for any sequence of processes {Zn(t)} defined on

(0,1],

(log m)2[|[Y || - d]
L
= (Qog n)*[]|Z,[] - 4]
1
+ (og M *[[IY,[] - 1z,01] .
Thus, if we show that

(log n)%HZn = Yah Ro
and

h :
(log n) []|2n|| dn]
converges in law, then
Y .
(log n) [ |Y [ - d]

also converges in law, and has the same limiting distribution.

We will apply the preceding remark to eventually "approximate'
the process L with the process Zn of Theorem 3.2.2, thus obtaining
the desired result. We will proceed through several stages of such

approximation, and the details will be given in the sequence of lemmas

which immediately follows the proof of this theorem.

YRR e e ———
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We first note that Yn may be written as
(3.2.3)  Y.(t) = [s(ER)) % [f yr(EX )z, (x,7)
where Zn is the empirical process defined by
Z,(6y) = nE (y) - Fxy)]
n | DA n ’ L
Now define the following processes on [0,1]:

(3.2.) Yy (0 = [sE®]) %t [f ykEDdz, (x,y)
: ly ylsa, “n

(3.2.8 ¥ (8 = [s,(OE)] iR {1 KD, my)
’ ys% n

where )
s, (t) = E[Y l”ylmn}(Y)l X=t] ,

(3200 ¥y (0 = (5,001 [ KEDan, o)

V| sap

where {Bn} 1s a sequence of Brownian bridges as in Theorem 3.2.3 and

5 /)
T: R™ » [0,1]7 is the transformation defined by
‘ T » = . » 0
(3.2.7) F(x,y) (lle(xl,\). IY(y)) y

(3.2.8) Yo (1) = [sn(t)r(t)l“’r'" {] vK( )dw L(Tx,¥))

n
Sa
n

where {Wn} is a sequence of independent Wiener processes used in con-

structing {Bn} as
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Bn(u.s) = Wn(u,s) - us wn(l,l)

(Révész (1976)), 0 < u, s < 1 x

(29 Yy 0 (®) = (5,801 ¥ [ (5,00 8001 %D W)

(3.210)  Yg (t) = ¢ KEZ e

where W is a Wiener process on (-o,),

We have, by Lemma 3.2.4,

oo L o

where op(an) refers to a sequence of random variables An

An/an * 0 in probability. Lemma 3.2.8 gives
,IYO,I] o Yl’n'l = (Yp((log n) ‘5) r

By Lemma 3.2.§
- e b
IIYI,n - Yz,nll = O(ancnl/“n l/h(log n)3/“)

and by A2,

- - & Y
tnl/“n l/o(log n" =0,

%

s0 that

"Yl,n 1 Yz,nll ¥ OP((log ﬂ)~¥) !

By Lemma 3.2.06,

n

L]

such that

a.

S.
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3 . k!
| |Y2'n Ys’nl I OP(Cn)
= 0, ((log n) %)
since € = n"% and hence €, log n+ 0.

Now Y is zero mean Gaussian process on [0,1] with covariance

3,n
function

(3.2.11) r(tl,tz) = EYS,n(tl)YS,n(tl)

= [s,(t))E(t)] o s (£ £C2)] 78 »

CamX Ue=X
-1 | 2
€n y{f Y K= K%

<a
n n n

) £(x,y)dxdy

(cf. Section 3.1). The integral on the right hand side of (3.2.11) may

be written as

ol g e
By KERE)
{Iylsan} n n
A tX  t.x
= e b [ s (0 FROKC K

Thus the process Y4 is a Gaussian process with the same covariance

N

function as Yq 0’ i.e., they have the same finite dimensional distribu-
Jy

tions. Hence the asymptotic distribution of

G115l
(28 log n) [———LT -

A(K)

is the same as that of




T IIT Y —
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@ A Ot

l
Y
(28 log n) -———-L—1; sl g
[ (K] ”J
Further, by Lemma 3.2.7
- b
“Y4’5 2 Ys,n” op(cn)

e -4
= op((log n) 9 .

By Theorem 3.2.2
it 1 )x,P'st” d]
og n -————J——1; -
K] "
has the desired limit distribution, and the theorem is proved. a

3.2.4 Lemma. If Al is satisfied and
2800 = s = [ y2E(x,y)dy
is bounded away from zero on [0,1], then
1Yy = Yo ull =0 (Clog m™)
Proof. Note

, s [pft)] ek t-x
Yalt) - Yo o(80) = [a(0)] %, Iy{{a:K( Cn)dZn(x,y)

1
SO0 that

>a

I = Tostl € E-%ulg'5lf-fﬂy{f nyx(lgfadzn(x,y)fl :
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By assumption,

||g-&|| Sy
and thus it suffices to prove that

(log n)l5 sup

e,‘,”ly{f vz, ) | Ro .

>
an n

Now

(3.2.12)  (log n)"e,‘lls /I yK(EgEJdZn(x.y)

ly|>a
= (log n)*(ne )" Z Y VK
8 i{]y[>a i e
t- X1
" By )oa YK )}
n
. Xlxn,i(t) = U (1) ,
say, where xn,i(t)' i=1,...,nare i.i.d. with
IXn’i(t) =0
for each te[0,1]. Thus
5 Rive = % el
(3.2.13) BUS (0) = ‘zlnxn (0
1= °
and
-
(3.2.149) th i(t)
2 t-X.
< (log n)(nc )IY (Yi)k s 2
: {|YI>an} n
Ly el .
s k(log n) (ne, ")EY] I{|y|>an}(\i)
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where

k= su Kz(u) :
-AsusA

and A is as defined in Theorem 3.2.1.

Combining (3.2.13) and (3.2.14) yields
n :
E{.zlxn (0]
i= 4

< K (log n)eAIEYf [{ylsa ) 00

= ¥ (log n)e];1 [ viE(dy + 0
lyl>a,

as n + « by Al. This implies that
(3.2.15) u () Lo

for 0 < t s 1.

In order to show that

D
(3.2.16) Ul = sup U (t) Bo
ey Ost<l M

we note that Un(t) is an element of the space D[0,1] of right continuous
functions with left hand limits for each n, and that, if we show that
Un converges weakly to the zero element of D[0,1], then (3.2.16) will
follow, since |[|+|| is a continuous functional on D{0,1]. Since (3.2.15)

implies
D
U, (), Un(tz"'“'”n(tk)) =0

in Rk for distinct points Lty ty of [0,1], it suffices to verify the
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following moment condition to show weak convergence of U, (Billingsley,

(1968), Th. 15.6):
ECIU, () - U (e ]]U,(8,) - U (0)])
< B(tz-tl)2

where B is a constant.

By the Schwarz inequality,
ECUL(8) - U (e ]+ {u(8,) - U (0]}

s (E[UL(0) - U (t)]% « BU (1) - U (0]

Defining

" ! - kX » rS=X
(\n(ll.S,X) l\("'é-) i ‘\(T—) ’
n n

we have

(E[U,(0) - U (t)]°)

]

-1 n
Q (B [ )G o, 3
(log m) (ne) lllizll\l {Iyl\aJ“x"n“"l X;)

-
- l\ il( Iyl ‘an}(Yi)“ntt ,tl ’ki) ]] }

_ 5 O S i :
(log n) (ne) (izlh[‘il{|yl>an}“i)6n‘t'tl'xi‘

2
R U SRTUALNCUR

A

i U L
(log n) (ncnl { ¥ EY1

R Rl {ly'\an’(\i)un(t,tl.xi))

Since K has a bounded derivative on [-A,A], it satisfies a Lipschit:

condition:
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IK(u) - K(s)! = B1 u-s|

where B1 is a constant. Thus

{E[Un(t) - Un(tl)lz}15

IA

Applying the same argument to

E[U_(t,) - U_(0)]°
yields

E{lUn(t) U (tl)[[U (t

2
< c(tl-tz)

by Al and using the fact that t s

; 11
(3.2.17 { f f(x,y)dg(x,y) =
00
[
0

+

t-ho&-\

1
o
£(1,y)dg(1,y) - g

B3(log n)%, >/ ?|t-t | {EYT

t2.

Let f and g be two functions defined on [0,1]2.

below exist and are finite, then we have

Y -3/2,, 2 "
By (log )% " 7|t tll{b,{>a y £y (Y)dy}* .

n

- U () [}

2 -3 2
< B) logne |t-t1|-|t2-t|I [ Yy (dy

yi>a,

therefore satisfied, and the result follows.

parts formula for Riemann-Stieltjes integrals on rectangles of HRZ.

g(x,y)df(x,y)

(0,y)dg(0,y)

5
1'{|y|>a ) (1))

The moment condition is

0

Before going on to Lemma 3.2.5, we state the useful integration by

If all of the integrals

e
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1 1
+ [ g(x,1)df(x,1) - [ g(x,0)df(x,0) .
0 0

We note that if g(x,y) is a Wiener process on [0,1]2 and f(x,y) is a meas-
urable function on [0,1]2 such that [l glf(x,y)dg(x,y) exists, then
0

(3.2.17) remains valid provided the integrals on the right hand side of
(3.2.17) also exist,

3.2.5 Lemma. If K is absolutely continuous on [-A,A] and zero outside
['A)A] ’ then
-1/2_-1/6

b Yz,nll =0(ae ""n (log n)

1Y s

)

Proof. First we note that the random pair

(3.2.18) (X*,X') = T(X,Y) ,

where T: R% + [0,1] is defined by (3.2.7), is jointly uniformly dis-

tributed on [0,1]2, X' and Y' are independent, and Zn(T~1(x',y')),
0 s x', yys 1, is the empirical process of (X',Y') (Rosenblatt (1952)).
Theorem 3.2.3 thus applies to (X',Y'), and we may conclude that

swp 1B (x',y") - 2 (TN (x',y")I
0sx',y'sl

= O(n'l/ﬁ(log n)3/2) a.s

b8!

or, equivalently,

(3.2.19) sup_|B (T(x,y)) - 2, (x,y)I
X,Ye

= 0(n'1/6(log n)3/2) 8.8,
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Applying the integration by parts formula (3.2.17), we have

3.2.20) yk(EDdz_ (x,y)
( y{sin g

a

A n
§: «f / yK(u)dZn(t-enu,y)
u=-A ) ot

I f

A
+a u={A Z“(t-enu,an)dK(u)

A
+a n={A Zn(t-enu,-an)dK(u)

a
n

* k() [ ydz (t-e Ay)
y=-a,

4
- k(-A) [ den(t+enA,y) :
y=-a,
The second to last integral above may be written, using'ordinary one-

dimensional) integration by parts,

a
n

_£ den(t-enA,y)
n

a

n
= _a/ 2, (t-e A,y)dy + al (t-eAa)+ al (t-eA,-a),
n

and similarly for the last integral on the right hand side of (3.2.20).
By using a similar argument, we obtain (where the integrals are

defined in the L2 sense)

ke o " o~ PP T R e e e R R
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(3.2.2) | ykEDB (T(x,y))
|

< n
ly a,

a

K Tn
= [ [ B (T(t-e u,y))d[yK(u)]
u=-A y=-a

A
v u={A B (T(t-€ u,a ))dK(u)

A
+a u={A B (T(t-epu,-a ))dK(u)

a
n

+ k(a){ [ B (T(t-e Ay))dy
y=-a_

+

aan(T(t-enA,an))

+

aan(T(t—enA,-an))}
a

n
K- [ B, (T(tre Ay))dy
e,

+

aan(T(t+enA,an))

+

a B (T(t+e A,-a))}

Subtracting (3.2.21) from (3.2.20) and using (3.2.19) and the assumption

that K is absolutely continuous on [-A,A], we obtain

(3.2.22) eXlg (7Y, () - ¥, ()

-1/6 32 .

= 0(n (log n)
A

{4a [ [K'(u)|du + 4a_[K(A) + K(-A)|} a.s.
-A

= O(ann'1/6(1og n)S/Z)




since
A
[ |K'(u)|du < = .
-A

=1
Thus, since IIgn’|| is a bounded sequence by assumption,

-% -1/6 3/2
1% 5 - Yol = 0 (a0 0108 ;™3
and the proof is complete. 0

We may write the sequence of Brownian bridges {Bn} of Theorem

3:2.3 as

(3.2.23) B (x,y) = W (x,y) - xyW (1,1) ,

0 s x,y < 1, where {Wn} is a sequence of independent Wiener processes
on [0,1]2 (Révész (1976)). The next lemma shows that, for our purposes,

the only significant part of (3.2.23) is Wh(x,y).

3.2.6 Lemma. If A4 holds, then
- Y = ;2
IIY2,n \3,nl| op(cn)’

Proof. By definition of Y 7 and Y3 o we have

2,

¥2,n(®) = Y5, 401

= gy (17 %% [ yKED £6y)dxdy|« (W, (1,1
lyl<a n
n
since the Jacobian of the transformation T is f(x,y). Thus

-'li .
€n 11Y2,n = Y3,nll

< W (LD 1] g0 -
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=1 t-x
-« sup e [ YK [£(x,y)dxdy
ustsl lylsa, n
s WD gy ‘
=1 t-x 4
« sup e U [ |yl £0Gy)ay] KED) fax .
usts<l n ;
By A4, ¢
heo) = f Iyl£Cey)dy %
§
is a bounded function and ||g;%|| is a bounded sequence, so that for f
some constant M we have
-y £
n IIYZ,n Y3,n||
=) t-x
< |wn(1,1)lM€n f |K(—€;‘)|dx
= W (1,1M [ [Ku)|du
=0 ) .
b(1) :
i
Thus E
5 - % i
IIYZ’n Y3’n|| e op(en) ‘
and the proof is complete. 0

|
E
§
L]
L
:
{

3.2.7 Lemma. Under the assumptions of Theorem 3.2.1,
& - %
llY4,n YS,nlI Op(En) *

Proof. By definition,




(3.2.20) |y, (0 - Yg ()]

"

el 11 —(7 a AREZ AN

A g (t-ue)
- E;% /Al “EEEIETE” ]li -l}k(U)dW(t-uen)‘
-A

1
By using integration by parts and the assumptions that g; and K are
absolutely continuous, we may bound the integral on the extreme right
hand side of (3.2.24) with

A N 5 &, (t-e )
(3.2.25) en’ _£ W(t-uen) ¥ { 1( —E;T?T_-) l]K(u)}dul

5n(t-Ae )

. }e;5 K@W(t-Ae ) {[ Bo—riy™ e

1% -1}

+

en KC-AW(teae )| w0 A

]

Jl,n(t) * Jz,n(t) o J3’n(t) ,

say. We will show that the supremum over [0,1] of each of these three

tems in 0 (e’), thus completing the proof.

First of all, note

4
€ 119, |
< K(A) sup [W(t-Ac)) | 3 v B g
sup £ sup €_ -
Ost<1 O<ts<1 n gyt

sup |W(t-Ae Wi = 0 1 .
O<sts<1
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Now
. 1 gn(t~Aen) iy
feier B [ NQ) gl
Y
. 108, (t-Ae )] - [g ()17
= sup enl & n - n
0sts<1 18, (t) |

. T 5 4
s ey lle, Ozgglllgn(t-Aen)] - [gy(O17 .

By assumption, Ilg;5|| is a bounded sequence, and by the mean value

theorem,
et gy (t-Ae 1% - [g,(01%
her g (tAe) - g (0] [x, (6,0
n B0 T By X (1A |

where xn(t.A) is between gn(t-Acn) and gn(t). Applying the mean value

theorem to s yields
gn(t-Asn) - gn(t)
= Aeggl (1, (1,0)
where tn(t,A) is between t - Aen and t. Thus

=%
“n ||J2’nl|

‘(t (t,A))
-%sup lﬂn L |

0sts1|x, (t,A) | *

s K(A) sup |W(t)
-Astsl

= Op(l)

since ga is uniformly bounded and &, is bounded away from zero, by

s R S e Y WA

e Ypt—

j
i
4
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assumption, and thus

R
H‘lz,n” o Op“n) '

A similar argunent shows that

195 Il = ol,uk) ,

S0 we how consider "l 7
.

Carrying out the differentiation in the integrand of .11 ne we have
’

5
'na"l,n(t)
A r (t-ue )
_ -1 ] Y Sn n’ b
. ‘.“ { W(t-ue n){l\ W) [ ( *E;‘_m.‘_)a 11} du
A r (t-ue ) <% op'(teuc)
i e \X i n n
5 ,{ W(t-ue, JK() ( NG NG )du
5 |Cl,n(t) ' Cl,n(t)l’

Now the non-stochastic tems in the integrand of C, g Are uniformly
“y

say.
We theretore have

bounded in their arguments and in n, by assumption.
A
”"z.n“ < Gy /f\ [W(t-ue, ) |du = 0, (1)

where C, is a constant. For (Tl 5 apply the same argument used in con-
- ’

sidering J, n to conclude that
“y

Al S Gy
n ("“‘g:\’(ﬂ*“] 1] = Cylul

sup €
Ost=1

where (Il is a constant. Then
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A
11€; _|1sC; sup [ |W(t-ue )K'(uwu|du
kB 1 Osts<l -A B

= op(l) ’

and the proof is complete. 0
We now use the results proved thus far in showing that Yo . and
’
Y1 n are sufficiently close to one another.
’

3.2.8 Lemma. Under the assumptions of Theorem 3.2.1,

Yo.n - Yy.nll = 0p((log m™% .

Proof. We must show that

sup {|[g(t))7™* - [g, (0172

le® [ ykEDaz, x,y)
Osts<l : y{f | m =0

i | sa
o -3
0p((log n) 9 .
By the preceding four lemmas and Theorem 3.2.2,
(tog m*[11Y, LIIAGO]* - a)

converges in distribution to some random variable, and is therefore a

Op(l) sequence. Since, by definition,
d, = 0((log m™) ,

we have

1Y) pll = 05((10g WY

and since lm;%ll is a bounded sequence, we have

S ———— S S T e
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sup | [ ykEXdz, (x,)
Ostsl |g|san n

f = Op((log n)%) %
Thus it suffices to prove

. =
(log m){[g* - g7%|| + 0

as n +» », By the mean value theorem,

-!2 - -li = -y . -3/2
In," =8 1= g ale i ™
where hn is between &, and g. Since & and g are bounded away from zero,
llh;s/zll is a bounded sequence, and since, by A3,
(log n)| g -gl] ~ 0,
:
y the result is proved. 0

Since m;(t) is an asymptotically unbiased estimator of m*(t) =
m(t)f(t), it is natural to seek conditions under which Em;(t) may be

replaced by m*(t) in Theorem 3.2.1. Define the process
(ne)?[(mA(t) - m" ()]
[s(t)E(t)]?

Then we have the following corollary to Theorem 3.2.1.

Yi(t) =

3.2.9 Corollary. Suppose all the conditions of Theorem 3.2.1 hold

and in addition

€, = nS,15<8<1/2,

K satisfies




[ uK(u)du = 0 ,

/ uzK(u)du <
and the function

m*(t) = m(t)£(t) = [ yf(t,y)dy

has bounded, continuous ist and 2nd derivatives. Then the conclusion

of Theorem 3.2.1 holds, with Y, replacing Y-

Proof. According to the remark at the beginning of the proof

of Theorem 3.2.1, it suffices to show

(e - -5
IlYn Ynll Op((log ) S
But

W L * * -k
Y = Yol = ey in-en® 174 .

|lg

By assumption,
NIRRT

and we know that, under the assumptions on m* and K,

[In" - Bl | = 0(e?)

Since
e =nS, &5 15
n ’ ’
then
1
ei(ncn)ﬁ(log n)ls = (nez log n)g +0,
and the proof is complete. 0
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Based on this corollary, we may construct a confidence band for m(t),

0s<tslas follows. Using the asymptotic distribution, we have

y sup|Yp(8)]

P{(Z‘S log n) [W s dn] < C(a)}

where
C(a) = log 2 - log|log (1-a)| .

Inverting the above expression in the usual way, we obtain as a (1-a)x100%

confidence bond for m(t):

(3.2.26) m (t) (nc ) [ r%'g‘ ;ﬁ I;G—C—I(Al——)—— + d“][)\(l()]15 ’
og N

gt sl

3.3 Uniform Consistency of m  and ﬁﬁ.

We saw in Corollary 3.2.9 that the sequence of random variables

" m;(t) - m(t)£(1)
(10g m)*((e,) — | -4
05t51 [s(t)f(t)]

converges in distribution, and is thus a Op(l) sequence. We employ this
fact to show the uniform consistency of m;, and specify a rate of con-

vergence.
3.3.1 Lemma. Under the conditions of Corollary 3.2.9,

(3.3.1) sup lm (t) - m(e)f(t)| = 0 [(log n)g(nc ) Lﬁ]
Ost<l

Proof. By definition,

d = 0((log m* ,
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and thus s
ey | a8 MO
ne.)? sup

: " osts1l [s(e)E(E)]®

= Op((log n)'*) + 0((1log n)%)
7 Y
op((log n)* .

Now, using the assumption that g(t) = s(t)f(t) is bounded away from.

zero, the conclusion follows. 0

We now use the preceding lemma to show uniform consistency of m,

and m.

3.3.2 Theorem. Under the conditions of Corollary 3.2.9, we have

= L 3
(3.3.2) [lm - mf| = Op((log n)*(ne)) %) ,

(3:3.3)  [Im - m| = 0 [(log n) *(ne) ) .

Proof. Note that

IA

Hmy - mll o< [1E0 e m - m®) |

where

mlt) = f(t)m(t) .

By assumption, f is bounded away from zero on [0,1], and thus

llf’lll <« . An application of Lemma 3.3.1 thus proves (3.3.2).
For (3.3.3), note
n n

ot - £
[imy < mi] = || |

n
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® ®
llm f m f | mnfn -m fnll

n

=A+B,
say. Now

= IIm, - ml| = 0,[(log n)*(ne,) ™)

by (3.3.2). Further,

ae I7 H =

5
g

(Bickel and Rosenblatt (1973)). Since
*
m
"'( < [Im*]] - [ inf 1£.(t)]]"]
'l?;i - Ost<s1 !
and it is easily verified that ||mn|| 3 |Im*] |, 1nf If | »
0<t

inf [f(t)| > 0, (3.3.3) follows.
Ost<1




4. AN EXAMPLE, FURTHER RESEARCH

As we noted in the introductory chapter, if the density of X is
known, then either the estimator m, or ﬁh may be used to estimate the
regression function. Here we will summarize some results given in
Chapter 2 which relate to the relative performance of m and ﬁh in this
case. We then present an example in which m, and ﬁh are computed from

a set of simulated data.

4.1 The Estimators m_ and ﬁh.

We first note that, according to Theorem 2.3.4, if the density
function of X has, say, an interval for its support and is non-zero at
the endpoints of the interval, then mn is a consistent estimator at the
endpoints, whereas ﬁh is not. The implication of this for finite sample
sizes is that ﬁh is likely to display a bias near the endpoints of the
X variable which m will not have.

According to Theorems 2.4.4 and 2.5.2, under appropriate conditions,
both mn(x) and ﬁh(x) have asymptotic normal distributions with mean
m(x) (for kernel type estimators). However, the sequence of scaling

constants required for unit asymptotic variance differs for the two est-

imators; for mh(x) it is {cz(x) ]l(z(u)du/(m»:n)fl(x)}}5 and for ﬁh(x) it
is {s(x) [ K*(wdu/(ne )£;()}% .  Since

oz(x) = s(x) - mz(x) < s(x) ,

this indicates that ﬁh may display more dispersion about m for finite

sample sizes than m,

A e SR RIS MO O IR . A N SRS TSN A £ S R
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4.2 An Example.

In order to illustrate the behavior of the stimators in one specific
case, we have computed m and ﬁh for a set of artificial data. We have
also computed the approximate confidence intervals given by (3.2.26) for
m, based on ﬁh. The results of the computations are depicted in Figures
1-6, and we have also shown a scatterplot of the data and the true regres-
sion function on each figure. The data consists of n = 200 points

(Xi’Yi) chosen independently with Xi ~ U(-3,2) and

MDAET: PR, e
Y oSS e X0 5 3,

where Zi is a standard normal variable independent of Xi' Thus, for this

data
m(x) = x3/3 + x2 $

All calculations are for kernel type estimators with kernel function given
by a standard normal density function, truncated at + 3 and normalized
SO as to be a probability density.

Figures 1 and 2 show the estimators m, and ﬁh, respectively, with

€, " n %! ang Figures 3 and 4 show m  and ﬁh with slightly less smoothing,

Egs n4. The previously discussed bias of ﬁh is evident at the upper
endpoint on Figures 2 and 4, although m, and ﬁh do not differ by very
much at the lower endpoint. The difference in the asymptotic variances
of m and ﬁh does not manifest itself in this example, although ﬁﬁ in
Figure 4 has a slightly more variable appearance than n in Figure 3.
Figures 5 and 6 show the approximate confidence bands given by

21 4nd c, * n"4, respectively. The

(3.2.26) for a = .1, and 5, n*
confidence bands (3.2.26) are asymptotically valid for any subinterval

of [-3,2]. In practice, however, one should consider these confidence
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bands to be approximately valid only for intervals well within the
support of X, since the earlier remarks on the endpoint bias of ﬁh
apply to the confidence bands also. These confidence bands were

calculated using the true conditional second moment
s(t) =1 + [t3/3 + tZ]Z >

In practice, one would use an estimator of s(t), e.g. the consistent
estimator

s (1) = e ! ¥ YAKR((X,) /e )
>n( ) = (nen 4 i ((t i) e -

4.3 Further Research.

Theorem 3.2.1 was proved for the process

(ne) ¥y (t) - Eaf (1))
Yn(t) S %
[s(EM)]*

It should be possible to carry out a similar program for the process

3 En_(t)
(nep) *[m, (t) - (0 ]
vn(t) N 2 % =
[o"(t)/£f(1)]
A first step in such a proof might be to show the equivalence of V, to

the process

VA(D) = [£(t)/£ () ]V, (¢)

(in the sense of liVn - Vﬁ]l = op((log n)'k)) . Successive approximations,
as in Theorem 3.2.1 would lead eventually to the equivalence of Vﬁ to
the Wiener process of Theorem 3.2.2, and thus to the asymptotic distri-

bution of the maximum absolute deviation of Vn'
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We have not been able to carry out the technical details of the

T TR TR e TR R [ 7L

proof of such a theorem. However, if it were to be proved, one applica-
tion would be a confidence band such as (3.2.26), but based on m

instead of En’ and therefore narrower since m is asymptotically less

variable than ﬁn 2
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Figure 3, The Estimator m With v n~4
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