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CHAPTER 1. INTRO DUCTION , SUMMARY AND RELATED WORK

1.1 Introduction

Regression analysis is concerned with the study of the relationship

between a response variable Y and a set of predictor variables

X = (X 1, X2,. .. ,X~). An important aspect of regression analysis is the

estimation of the regression function, i.e. of the conditional expecta-

tion of Y, given X. In classical regression analysis, the functional

form ~f the regression function is assumed to be known up to a finite set

of unknown parameters, which may be estimated from data.

If no such prior knowledge of the regression function exists, then

classical methods do not apply. h owever, in this case, it may still be

desirable to obtain an estimate of the regression function, either for

direct analysis or to establish a plausible model for use in the classical

regression analysis mentioned above.

Thus there is a need for regression analysis methods which do not

assume a specific mathematical form for the regression function, i.e.

nonparametric methods .

In this stuiy, a type of nonparametric estimator of the regression

function m(x) E[Y Xaxl will be investigated, where (X,Y) is a bivariate

random vector.

Let X and Y be random v~riahles defined on a probability space

(cl,F,P) with 1i~YI < ~~~ . Denote the marginal distribution function of X

by F. Then the regression function m(x) is defined by

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ T~T~~~~~L_
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m ( x )  I~l \ I X~xj , i . e .  the (unique a.e. (dli ) Borel measurable function
in sat isfv ing

(1.1.1) f YdP f m(x)dF (x)
B

for all Borel sets R. If X and I have a loint density function f, then

it follows that

f v f ( x , v) dv
if t(x) 0

( 1. 1.2 ) r~x) = 1(x)

() if f(x ) 0

i’~ a version of the regression function, where f denotes the margina l

dens i tv of x. Motivated by (1.1. 2~ arid previous work on estimation of

dens itv functions by ~S-funct ion sequences, Watson (l%4) suggested an

estimator of m (x) of the foni~

(l/n)~~ Y16~(x-X.)
(l.1.~) m~ (x) = — 

i~ l

(1/ni ~ 6~(x~X 1)i —i  -

where (X1 ~‘i ~~ ~~2 , ’i 2~ ’ (Xn~
’t n) are independent observations on (\ , ‘t )

and {
~n

(x)} is a sequence of weighting functions called a CS - funct ion

sequence. The estimator m~(x) defined in (1.1.3) will be investigated

here . By rewriting (1.1.3) as

n - 6 (x -X . in 1m~(x) =~~~~ ‘i .

t*L 
~H~ l

we have the intu i t ivel y  appealing interpretation of %(x i as a weighted

average of the V-observat ions , with the weight s depend ing on x throug h



~~~~~~~~ -.~~~~ --~_—-—_- -~~~~~~~ — w— _ 
~~~~~~~~~~~~~~~~~~~~~- ~~

-

I

3

Also , if  one desires a smooth estimate of m(x ) , this can be

ach ieved through the choice of

In certain situations , the ma rginal density F of X is known. For

example, suppose in an experiment , we are able to fix the level of the

predictor variable X , hut we wish to randomize X to reduce sampling bias .

Then we would choose X randomly according to a known density f .  This

situation also arises in certain optimization problems, where the value

of the function to be opt imized can only he determined up to a random

error term (see Devroye (1978)). Since the denominator of (1.1.3) is

intended to estimate F , a reasonable way to use the knowledge of I might

he to use the modified estimator
n

(1/n) 
~ 

Y 16
~

(x -X
~

)
i— i

f( x)

We provide some preliminary conq)arisons of the estimators i~ and m~ in

the known dens ity case.

1.2 Sunsnary

Since we will assume a specific mathematical form for neither the

regression function m nor the underlying probability distribution of

(X ,Y) ,  we could not reasonably expect to obtain small sample results for

the estimators in question . Thus we shall concern ourselves here almost

exclusively with asymptotic results, as the sample size grows larger.

In Chapter 2 , we rigorously establish (weak) pointwide consistency

of %(x) which was proved heuristically by Watson (19M). Asymptotic

joint normality of %(x), taken at a finite number of points , is den~ n-

strated. In this last result, we significantly weaken a condition of

~~~~~~~~ ~~~~

-

~~~~~~
~-
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Schuster (19 ’2 )  on the cS -function sequence used , at the expense ot

some mi ld  additional regularity conditions . In the knohri dens i tv case ,

we es tabl ish consistency and asymptotic no ni~i I i  ty f~~
. 

~~~~~, so as to prov ide

.i comparison w i t h  the asymptotic normali ty and consistency results for

We consider the mean integrated square error ~MlSE) of the numerator ot

the est imator m~ . An expl ic i t  exp ression for the Fourier t ransfonu el the

- function wh ich m m m i  :es th i s  M1SI~ for each sample si  :e n is derived ,

much as Watson and Leadhet ter I. l%3) did for dens I tv func t ion est imat or s .

in Chapter 3 , we consider the numerator of ~~~ and show that the

supremum , taken ovei. a f i n i t e  interva l , if p roperly centered and norma I i  ~ed .

converges in d i s t r i b u t i o n  to a random variable having an extreme va l ue t vpe

d i s t r ib u t i on . This result is then applied to es tab l i sh  uniform (weak)

t ‘~tencv of 
~~~~~~

, w i t h  an associated rate of convergence .

In Ch~~tt ’r 4 , we give some examples of ca lculat  ions of the est imators

and from simulated data.

1.3 Related Work

Est imators of the form (1.1.31 of the regression function and several

other types of nonparametric estimators of the regression function have

recently received attention in the literature. Here we survey the

recent literature on this subject.

1.3. 1 kcrnel Type Estimators

Several authors have considered estimators of the form (1.1.3) when

the 6-function sequence is of kernel type. Kernel type cS-funct iou seq-

uences (defined rigorously in Lømna 2.1.2 ) are of the’ form

-

where K i .., e.g. a p robab i l i t y  density function and is a p o s i t ive  rea l
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sequence with + 0 as n ~ ~~.

Schuster (1972) considers the asymptotic normality of this type of

estimator . Because of the close relat ion between Schuster’s work and

work presented in this dissertation, we defer discussion until Section

2 .4.

Schuster and Yokowit: (1978) consider a global error criterion for

this type of estimator, and for its derivatives as estimators of the

derivatives of the regression function. Let g(r) denote the r-th

derivative of the function g. Schuster and Yokowit: give conditions under
which, for any 0 and n sufficiently large,

(1.3.1) P[ ~~ i ,~
N)(x) - m~~~(x) I ~a~ x~h

2N+2 ~~ C/(nc c )

where N is a positive integer, [a,bl is a closed, bounded interval and
2N+~C is a constant not depending on n. If (cs) is such that nc~

as n ‘~~, then (1.3 .1) implies that

sup ~,~ N)(x) - m(N)cxil ~ 0 ,a’-X’-b

as n -
~~ ~~~, so that this result is a type of uniform consistency result.

It would be of interest to determine a rate of convergence to be assoc-

iated with the result, i.e., a positive, real sequence {b~1 with

+ such that

(N) (N) Pii~ s q ~ tn,~ (x) - in (x) 1 -
~~ 0

This question is addressed in chapter 3 of this dissertation for the case

N = 0. Schuster and Yakowitz also consider the case where the X

-- - --S. 
~ ~~~~~ ~~~~~~~ —.-~ ‘------ - - — - —
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v ar iab le  is non—stochastic , i.e ., ~t’ have ~F ( •  ;x) , ~ 10 , 111 as a f ami l y

of p rob ab i l i t y  density function s and the object is to estimate

w(x )  — fv r ( v ;x ) d v

on the txisis of an independent sample \~ , I — I ,... ,n where V 1 h’is

density f(•;x 1). They give conditions under which a resul t similar to

1.3.1) holds for the so-called Priestlv-thao est imator

(1. 3.2)  w~(x) r~~~Y Y ( x x ) K ( (x x u/r 1

of w~x) ( see Priestly and Chao (l~~ 2 ) )  .

In the non—stochast ic X variable case as described above , Psenedet t i

(PY~4) shows that both the Wat son estimator and the Priestlv-Chao

e’~t uuator are (weakly ) consistent and asymptot ically normal for appro—

pr iate values of x , hut he points  out scii~’ computational advantages of

the Watson estimator over the Priest lv-Chao.

Konakov (I9~S1 considers a quadrat ic deviation error criterion for

the Watson estimator with kernel type 6-sequences. Ilefine the quadrat i~-

deviat ion to be

— m-~ f [u\~( x ) - m ( x ) 1 f~
(x)p( x )dx

where f~ is a kernel t ype estimator of the marginal Jensit  f of \ and

p is a bounded integrahle weight ftmc t ion. KonakoY gives conditions

under which Tn’ if properly normali :ed and centered, is asympto t ica l ly

norma l • We do not consider qt~idrat ic dcv iat  ion in th i s  di ssertat ion .

1.3.2 Nearest Neighbor Type Estimators.

Wa t son (l9~4) proposed est imating m(xl with the average ~f the \~

values corresponding to the k X values nearest to x , where k is some

____  .. - .. - zr~- -_. - ~~~~~~~~b.. ~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~~~~~~~ — - - — — - - - - - ~ ~~~~~~~~~~~~~~~ 
-
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integer. This type of estimator is called the k nearest neighbor

estimator of the regression function. Earlier work had been done on

the classification problem and on estimation of a probability density

function usir~g nearest neighbor techniques. (See Fix and Hodges (1951),

Cover and Hart (1967), Cover (1968) , and Loftgaarden and Quesenberry

(1965) for work in these areas.)

Let k(n) be an integer depending on the sample size n and denote

by Ik(n)(X) the smallest open interval centered at x containing no less

than k of the X-observations. Then the k-nearest neighbor estimator

can be written as

(1.3. 3) i~~(x) = k1
{i :X ~e I k (fl) (x)} 1

Stone (197’) points out that ii~(x) may be a discontinuous function, and

tha t in some cases, smoothness is a desirable property in a regression

function estimator. Lai (1977) proposes a modification of the k nearest

neighbor estimator which can have the desired smoothness property. This

estimator is very similar to the Watson estimator (1.1.3) with kernel

type 8-function sequence. Let W be a probability density with W(x) 0

for xi ~
‘ 1. Then LaPs estimator is defined by

~~,l
YjW((X_Xi)/Rk(n) Cx))

(1.3.4) ~i~(x) — _______________________

~~_ lW (( x_ X i)/R k(n) (x) )

where Rk(fl) is the radius of the interval Tk(n)• This estimator reduces

to the form (1.3.3) when W(x) - 1/2 for ix I ~ 1. Lai proves the following.

1.3.1 Theorem. Assune W is continuous a.e., bounded and W(x) = 0 for

lx i 1. If there exists an open set U0 in Ron which

1) f(x) is continuous, bounded, and f(x) ~ 0 ,

ii) E((IYIIX x) and E(max (Y,0)IX-x) are continuous functions of x,
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iii) u r n  514) E ( j Y l s I { 1y 1? ~l) (Y) J X*x I = 0 , and if EY2 < ~~ and
xt

iv) k(n)/n 0 and k(n)/~~ -,

then

SUp~ifl (:) - m(:)l -. 0n

in probability for any c~~ act set AcU0. [1

A similar result is proved for the estimator (1.1. ) , with A an

interval , in Chapter 3 of this dissertation. There, more regularity

condition s are applied to obtain an associated rate of convergence.

Stone (l~r~) considers the following type of nonparametric regres-

sion function estimator:

(1.3.5) i~~(x) = V W .(x)Y.

where W~~(x) = W
~~

(x; X1 ,...,X~) is a weight function. This estimator

reduces to the nearest neighbor, modified nearest neighbor and 6-function

type estimators discussed above for appropriate choices of the function

Wni~ Stone gives general conditions on the weight functions Wnj for

• to be consistent in Lr, i.e., for

EI%(x) - rn (x) I
r 0

whenever ~~~~ =~• Stone’s work applies to give minimal conditions for

this type of consistency for some types of estimat ors , e .g . ,  if k(n )

and k(n) /n 0, then the k nearest neighbor estimator is consistent in

L r . Stone , hohever , points out tha t it is not clear from his results

when an estimator of the Watson type is consistent in Lr.

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1.3.3 Potential Function Methods.

In this met hod , introduced by Aizeman, Braverman, and Rozonoer

(19~O) , the regression function in is asstvned to belong to a Hu bert

space H and have the representation m(x) = 
~
C
~~~

(x) , where {~~} is

a complete systom of function s of H. The estimator in~ is calculated

recursively by the fornifla

m~(x) = mn_ i (x) + rmK(x ,X
~
)

where
r~ = - m 1 (X~)]

and K is a “potential func t ion” of the form

K(x,y) =

and (~~ I is a sequence of real nunbers, and m0 is chosen arbitrarily.

We have the following type of consistency for this set-up. Suppose

~~~ 
= 

~~
, 
~ 

. Then

~ 1
~n~~ 

- m ( x ) ] f(x)dx ~ 0

in probability as n -
~

Fisher and Yokowit: (1976) obtain more general results for this

type of estimation, but for a more complicated error criterion.

1.3.4 Estimates Based on Ranks.

Let X~~s X ,~ - . .  .~~~X denote the orderedXvalues and define
I L L  fl~ flfl

the ~.~n~ ori f tant of X~~ X) to be Y1~ 
= Y1. The set ~ni’ ~ 

= 1,..

are sometimes called the induced order statistics. Yang (1977) proposes

1.~_~~ •—_ — ~~- ------ -~ 
•—•.-- — Air___ .~ ~~~~~~~~~ —--.—-—-. ______ _________ ~~~~~
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the following estimator of m (x) based on concomitants:

M~(x) 
~n

’)
1
’~
(
~ 

- F~(x))/c~)Y~~

where c
~
’K(x/cn) is a kernel type 8-function sequence and F~ is the

empirical distribution function of the X values. Yang gives conditions

unde r which is (weakly) consistent and asymptotically normal at appro-

priate points x.

Bhattacharya (1976) discusses estimation of a function related to the

regression function based on concomitants. Let F denote the marginal

distribution function of X and define

t
h(t) m0F~~~ (t) ; 11(t) f h(s)ds , 0 ~ t � 1

0

Natural estimators of I-I are

1[nt ]
F~ (t) = n  ~~~~~

and

Y.
{i:F(X ~~)st} 

‘~‘

if F is known. Bhattacharya obtains weak converg ence in D[0 , l] results

for these estimators and applies them to estimation and hypothesis

testing problems.



.~~. CONSLST t NCY I NORMAL IT Y

.‘.l 6-funct ion \~~iences

-\ c t9’t ‘t ~n I is’. of 6 t unct ion s qucuces i~as suggested ~~~~
. ig m a  I Iv hr

osenb tat t ( I’) ~~ ‘ 1 ~~~ under sl ight Iv wenker condi t i on s  , hr Pa r~en (

ot use ~n t~ bah ii tv dens tv funct ion est Irnat ton . l eadhet t er ( °(‘

and f%a t son and l eadhet t ~~ I ‘k~4 1 m t  reduced a more genera I not ion of

— t unc t ion ~~~tiences ~Utd OU~ t\’~%L~h throughout t h i s  stud y w i 1 1 he

o oh t a n rC~ nit s to r t he tito re gene i-a I t vpe o C ~ (tuw t ions whenever

h it ’

the fo l low I ng (.~~. I . I . .~~. I . 4) is due to I .eadhet ter (1 9c~3)

.~ . 1 . 1 De fth i t t on  . A sequence of integrab te t unc t ion s ( 6
11
tx ) t’. ~a ted

a 6 — %un~t ton sequence i t i t  sa t i ct es the fo l lowing  set of condi t ion s

~ tr~:ra Is ~ i t h  no 1 1111 1 s ot integr ation are meant to extend ov ’i  the Oil

t it’ rL’~II tine )

116 x) 1 dx A for all it and some tix ~d A ,

.‘. f~~ix ~..Lx — I tot at I

(
• 

- x 1 ~ t ) un i form Iv on ~ -‘ \ for any t i xt’J \ 0,

1 4 . / s”
~~ 

( ‘ I dx 0 t o  r anr t t xed \ ‘ 0
H

flit’ tiex t I enina decL i i hes t hi’ t ~pt’ of 6— t UflCt t Oil 5eqUCItcc~ u sed hr

R~senbIat t 19S~ ) and i’ar~c’n (19’ .’), aLthough the conditions on the ( unc

t ton K are slight Lv dt  f t’erent . flits t vpe ~t 6 function uence u~ I t  he

- -~~ — ~~~~~~~~~~~~~ L ~~~~~~~~~~ - -
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i-e t er  red to .t s ‘‘ ki.’ rut.’ 1 t vpe’’ and K a s a  ‘‘kerne l t utic t ion .’’

I . ~ Lenina . Let { I he a sequence of non :ero constants w i t h  0

u’- n ‘ and let K he an integrab Ic funct ion such that / K x l  dx

and k~. xl  (~(x l ) as Ix “. Then (t 1
1 Kt ~x/ ~ ~ 

I is a ~ 
• l tuwt ~~~

the tol low tug leimia deinonst rates the simi laritv of 6—function

sequences as Jet uted above and the Oirac 6 — t’unct ion.

~
‘ . 1 . 3  Lensiia . II g (x) s integrable and cont inuous at x 0 and

I ~ a ~ f unct i on sequcn~e , t hen g ( x )  6~ ( x l  is int egrah te (or each ii and

J g ( x ) 6 1~(xh1x • g(0) as ii -
~~ “. H

1 .4 Lenina . let I x) 3 he a 6- function sequence such that tor p

~~ 
(P) = I I (u) ~du ‘- to r each ii. Then a~ (p1 “ and

{6 fl 1) 1x) 3 — C t 6 1~t x 1  l~ /a~ t~~) I

is a 6- function sequence for p 1.

Rosenblatt l9~ l) states the follow ing l erna , wh i ch g ives a

• of convergence for l enina ~ . 1 . 3, when the 8— ftinct ion sequence i s of

ke rne l typ e . We include a proo f for completeness.

• 
- 2. 1 . 5 Len~na. Suppose g is an integrable function wit Ii bounded, cortt in —

uous 1st and .!n~I der ivat  t\’es . let

(6,~
(x1 3 (u~

1K(x/~~) 1

he .i 6 - 1tinc t ion sequence of kerne l t ype with

- - - - -- ~
—• -~~~~~ -—- ~~~

- • -
~~~~~~~~~~~~~~~~~

• -

~~
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f$u 2K(u) ~du

l’hen

— ~-I~ K((x-u)/u~ )g(u)du = g(x) + O(i~ )

where the sequence represented 1w 0 does not depend on x .

Proo f. Wri te

t I f K ( ( x - u ) / u ~~)g(u )d u J K ( y ) g ( x - t
11

y) dv

and

g(x-

g(x) - g’(x)~11y ~

where i = i
11

(x ,v ) is between x and x-c~ y. Thus

- 1 
~ 
K((x_u)k~)g(u)du

g(x)f K(y)dy - g ’ (x) c 1~ f yK(y)dy

• (U~ /2)  f g”(~)y~K (y ) dy

and hence

I C ~~~~
’ f K((x~u)/c~)g(u)du -

‘. c~ sup~ (g ”( t ) ) / 2~ f I Y ~~K ( Y ) I d y

since f K (u ) du 1 and f uK (u )du 0 . The conclusion fol tows fn~in

the last i nequa l it s ’ .

The fol lowing leninas will he useful in the sequel.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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2 . 1 . 6  Lema. Let 
~

6n 3 be a 8-function sequence and g an integrahic

function . I f  g is continuous at x and y and x ~ y, then

6~ (x - •)6~ (y - .)g( ) is in tegrable and

f 6~ (x-u)6~(y-u)g(u)du - -  0

as n

Proo f. For convenience , asstin e x c y . By Leimia 2 . 1 . 3 , 6~ (y~u ) g (u )

is an integrahic function for each n, as is 6~(x-u)g(u). Choose \ so

that x \ -. v. Then

• I f 6~ (x-u) 61~(v -u) g(u)du (

A
/ I 8 0 (x_ u ) 8~ (y_ u) g(u) I du

+ 1 16 (x -u) 6~ (y-u) g (ufl du
A

supI6~(y-ufl I I 6~ (x-u)g(u) I du
u�X

+ s upI6~~(x -ufl I I8~(y_u)g(u)I du
u�A

Now supI8~ (y-u) I and supt6~(x-u) I converge to zero by C3 of Defin it ion
u�A u�A

2 . 1 . 1 .  Further , f I6~ (x-u)g(u)I du < ~ for each n by the preced ing

remark , and , in fact , by Leiwnas 2. 1. 3 and 2 . 1.4 ,

(a (l)) 1 J I 6~ (x -u ) g (u ) I du Ig(x) I

and

ct
11

(l)  1 
~~~ 

IdU

- • ______ ___ - - ~~ - _______ a
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for some constant A. Thus f I 6 ~ (x u) g (u) I du is a bounded sequence ,

and we have

supI6~(Y-u) I I l6~(x-u)g(u)Idu -
~ 0

u�A

as n -
~~ - The same argument applies when x and y are interchanged , and

the conclusion follows . [1

2.1.7 Lenina. Let {6~ } be a 6-function sequence such that 6~ is an

even function for each n and g an integrab le function such that g has

both left and right hand limi ts at 0. Then 6~ (x)g(x) is an integrab le

function for each n and

f 6~ (x)g(x) dx (g(0+) + g (0 - ) ) / 2
5-

asn- ’~~.

Proof. Define

g(x) , x > 0

g~(x) = g(0+), x 0

g(-x), x < 0

g(-x), x > 0

g (x) — g(0-), x = 0

g(x) , x < 0

Clearly , g4’ and g are even functions , continuous at 0. Further , they are

both integrable functions , since , e .g .

J g (u)~du - 2 f g’(u)f du
0

2 1 Jg(u)I du <

_ • -~~~~~ 4 — - • •  - ~~~~~~~~ - • .~~~~- 
•
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Thus , by Lenina 2.1.3,

f 6~ (x)g ’ (x)dx - g~(0) = g(O+) 
- 

-

a s n - ~~~. But

/ l6~(x)g(x)Idx

0
= I l 6 ~~( x) g ( x) I d x  + I i6~(x)g(x)I~~0 -~~~

= (1/2) f l~
4
(x)6~(x)Idx + (1/ 2) f lg (x)6~(x)Idx <~~~

by Lema 2.1.3, so that ó~(x)g(x) is integrable, and

f tS~(x)g(x)dx

0
= f 6~(x)g(x)dx + J cS~ (x) g (x)dx
0 -

~~~

= (1/2) / 6~~(x)g~~(x)dx + ( 1/2) f 6~ (x)g (x)dx

-
~~ (g(0-’-) +

by the preceding remark. [1

2.2 Nonparametrfc Density Function Estimation.

Nonparametric methods of density function estimation have been studied

in great detail (see , e.g., Wegman (l972a) and Wegnuan (1972h) for a survey
and comparison of work in this area) . Estimators of a density f(x) of the
fo nn

(2.2.1) f~ (x) = (1/n) 1 6n(x~
Xj)

i=1



_______  —•- — -~~~~~~~~~- -• — —•—•- • - - —~~~•--~~~~~ -~~~~~ --—--•--~-—~
—

---

1

are of particular interest here because of the reliance of our proposed

regression funct ion est imators on the same type of weigh t ing funct ions

and because 
~n’ 

defined in (2 .2 .1) appears in the denominator of in~
as defined in equat ion (1.1 .3) .

Since X~, i = 1,... ,n are i .i .d. with cornon density f , we have

Ef
11 

= f (S
n(x

_ u) f (u)du

which has f (x) as its limiting value as n ~~ ~ , provided f is cont inuous

at x , by Lema 2.1.3. That is , 
~n 

is an asymp totically unbiased estima-

tor of f at continuity points of f. Further ,

I 1

l~ç(x)  = (l/nYE{~~ 6 (x-X~) + ~ 6~(x -X 1) 1~(x~X~)}
i—l

- (1/n) I ç (x-u)f(u)du

+ ((n-1)/n) L f 6~(x-u)f(u)du1

so that

Var [ f ~ (xfl = (1/n) f 6~ (x -u)f (u)du

- (1/n) [ f 6~(x-u)f(u)du)
2

and we thus have , if - f ç(u)du < “ for each n , by Lenina 2.1.4,

(n/
~~

)Var [f n(x)i -
~ f(x)

as n — at continuity points x of f. The above calculat ions (which

appear in Wa tson and Leadhetter (19(14)) may he combined to give condi-

tions under which the mean squa re error of f~ converges to zero, as the —

following 1c~ma shows . 

~~~~ -— - .-~~~ - ~ -~________________ —- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~-~~~~ -~~ - - - 
-~~ ~~~~
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2 .2 .1 Lema. Let {6
n
} he a 6-function sequence for which

= f 8~ (u)du for each n and as/n — 0 as n — ~~~. Let x be ~
continuity point of 1. Then

- f(x)) -+ 0 as n — . 1]

2 .2.2 Remark. By Chebychev ’s inequali ty ,

P{If~(x)-f(x)I ‘ c }

foi- any c 0. We thus have f
n

(X)  f(x) in probabili ty, provided the

conditions of Lem ma 2.2.1 are satisfied. That is, fn(X) is a weakly

consistent estimator of f(x) for appropriate 6-function sequences and

points X

The preceding discussion on density estimation will suffice for our

discussion of pointwise consistency of our proposed regression estimators.

We will include other pertinent results on density estimation as they are

needed.

2.3 Pointwise Consistency Properties of rn~ and rn.~

We begin our discussion by considering the numerator of the estima-

tors nu~ and 
~ 

defined in (1.1.3) and (1.1.4), respectively. Denote, for

conven ience, the numerator by m~, i.e.,

m (x) (1/n) 1 Y~6~ (x -X~) -

i—I

Then we have the following.

_______ __________________________________ • 
—
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2.3.1 Lenina. Let he a 6-function sequence for which

- f d~(u)du for each n . Suppose EY2 < and x is a poin t of con-

tinuitv of the functions f(u), m(u) — E[YIXa.u) and s(u) = E[Y2IX= uJ .

Then

(i) Em~(x) m(x)f(x)

(ii) (n/ci~)Var[m~(x)J - s(x)f(x)

as n ~~~ .

Proof. We will use the following two well loiown properties of the

regression function:

(2.3.1) Eh(Y) = f li[h(Y)IX X]f(x)dX

for any function it and random variable Y such that EIh(Y)I ~

(2.3.2) E[g(X)h(Y)(X=xl = g(x)E(h(Y)~Xzx1

for any functions g and h such that E(g(X)h(Y)~ -
~ ~~~.

Since (Xt,Y~
) ,  i = l,...,n are i.i.d., we have

l*~(x) 
= LY6 (x-X)

= J E[Y6~(x -X ) I X*uif(u) du

by (2.3.1),

J 6~(x-u)E [Y1X-u]f(u)du

~~~~
. (2.3.2),

- f 6~(x-u)m(u)f(u)du

________________________ —- — 

- 
-
~~

— •

~~

‘ - L • • - ~~—— -~~~~~~~~~~~~~
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Now , by ass~m~ tion , m(u) f (u) is continuous at u = x. Thus (i) will

follow from Lenina (2.1.3) if we demonstrate that m(u)f(u) is an inte-

grable function. To verify this, note that , by Jensen ’s inequality

Im(x) I = IE[Y Ix—x]l ~ E [IYIIX ’x ]

Thus

I Im (u)f(u)I du /EHYIIx=u]f (u)du = E I Y I

by assumption , and (i)  follows .

For ( i i ) , note

E[m~(x)} = (1/n) 21i{~~~[Y.6 (x-X.)]2

+ 
~~~~~ 

Yi6n(X~
Xi)Y

j6n(X~
Xj)}

= (1/n) f s(u)f(u) 6~(x-u)du

+ I m(u ) f(u) 6~(x-u)du]
2 
~

the last step following from (2.3.1) and (2.3.2), as used in the proof

of ( i ) .  Thus

Var[m~(xfl = (1/n) f s(u) f(u) 6~ (x-u) du

- (l/n)[f m(u)f(u)6~(x-u)du]
2

and , since an — and {o~/ci~} is a 6-function sequence, we have

(n/a~)Var[in~(x)] — s(x)f(x) ,

as desired .

_______ ____________
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We now use the preceding result to demonstrate the consistency of

the est imators in~ and

2.3.2 Theorem. Let { o }  he a 6-function sequence such that
= f ç(u)du for each n and - o (n). Suppose E1 ~ and x

is a cont inuity point of f(u), m(u) and s (u) , and that f(x) > 0 Then

p t:1i
(i) mn(x) 

-, m(x)

(ii) ~~~~ 
m (x) .

Proof. Since an/n 0 by assumption ; we have Var [ni~ (x) ] — 0 by

Lema 2.3.1. Thus

E[m *(x) - m(x)f(x) ] — 0

and by applying Chebychev ’ s inequality as in Remark 2 . 2 . 2 , we see that

m (x) m(x) f (x). Since , by defini tion

= m~(x) /f(x)

and f(x ) > 0, (ii) follow~ imediately.

For ( i ) , wri te

m*~~~mf m (f-f )
- ____ + 

n - :
mo m -  

~

.

n n i

*m -mf f - f
�
~~~~f 

+ Im I •~~ f 1-i ,

*p
where we have suppressed the argument x for convenience. Now inn mf

by ( i i) ,  and since f~(x) ~ f(x ) > 0, we have

- • - , •  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~~~~~



--

) - ,

*m - m f  p 
-- 0

n

Sim i la r ly ,

— 
~ Pn

—

~~

------—- + 0
n

and (i) follows. 
U

We have , then , that both the estimators m~ and ~ are weakly con-
sistent estimators of m at continuity points of s , m and f. The follow-
ing corollary speciali:es the preceding theorem to kernel type 6-functjon
sequences .

2.3.3 c~~ jia~~. Suppose that f6~ (x) ) = t c~~ K(x/c ) J  is a 6-functj0~
sequence of kernel type wi th nc~ -

~ as n — and f K (u)du < 
~~~
. Assiniie

the other conditions of Theorem 2.3.2 are satisfied. Then the conclusions
of Theorem 2.3.2 hold.

Proof. We need only verify that an/n — 0. By defin ition

f 6~ (u)du = c 2 f X2(x/c )dx = ~~~ I K2(u)du .

Then

= (n~~) 
-l

j K (u) du 0

by assumption. 
o

• We have so far been assuming that the density f of X is Continuous
and positive at points where we wish to estimate the regression function.
An important case where these assumptions may not hold is when X is a
bounded random variable, i.e. when f has bounded support, and we desire an

_ _ _ _ _ _ _ _  
_ _  _ _ _  

• ---.-
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estimate at a boundary point of the support of f. We have the fol lowing

result, which demonstrates that if m(x+) = m(x), m~(x) is consistent

hut ~~(x) is not .

2 .3 .4  Theorem. Let be a 6-function sequence such that a~ -
~

for each n and un/n — 0. Suppose EY < ~ and x is a point such that

f , in and s have left and right hand limits at x and f(x+) f(x) > 0,

f(x-) = 0. Then

(i) i~~(x) -
~ m ( x + ) / 2

( ii) m~(x) -
~~

Proof. By Lenina 2. 1. 7 it follows that

Ef (x) -
~~ f (x ) / 2  ,

Em (x) -
~~ m (x+)f(x)/2 -

By an arg~znent similar to the one used in the proof of Lenina 2.3.1, it

follows that

f~(x) ~~
. f(x)/2

* p
%(x) m(x+)f(x)/2

Since

i~~(x) = m~(x)/f(x)

(i) follows. Since

m~ (x) = m~~(x)/ f ~~(x)

(ii) follows by an argument similar to the one used in Theorem 2.3.2.

1~]

________________________ 
~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~,
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This theorem demonstrates that the estimator iiI~~ displays an

“end eff ect” at the boundaries of the range of X which inn does not

d isplay . As we shall see in Chapter 4 , this end effect represents a

possible disadvantage for ii~~~~~, depending on how m is defined at the

boundaries of its support. We now turn our attention to asymptotic

distributiona l properties of m~ and ~~~~~~~

2.4 Asymptotic Distribution of.~~~

Nadaraya (1964) and Schuster (1972) have considered the asymptotic

normality of the estimator m~ in terms of kernel type 6-function sequences.

Nadaroya states that , if Y is a hounded random variable and nc~ —

then (nc~)~ (m~(x) - r~n~(x) ) has an asymptotically normal distribution

with zero mean and variance s(x)f K2(u) du/f(x) , where

s(x) = E[Y2IX=x J -

Schuster (1972) points out that this expression for the variance is in-

correc t and presents a resul t with the correct variance whi ch at the same

time removes the restric tion that Y be bounded and centers at m(x ) instead

of Em~ (x) . We state Schuster ’s result here for compar ison wi th a new

resul t which represents, in some respects, an improvement over Schuster’s.

2.4.1 Theorem. Let (c~~K(x/ c~)} be a 6-function sequence sa.isiving the

condi tion :

(i) K(u) and uK (u) are hounded,

( ii )  f uK(u) du = 0 , I u2K(u)du <

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~ 
- 

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
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~~~~
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( i i i  1 n~ ~ •‘- , iii ‘ 0 as ii ~

S ppose ~ , x .. - - . are distin c t po%nts ~ th (\ ) 0 , i — I , . . - ,I’.

t 
1 ct w~u) 

— m ( u 1  I i . u) and ass~une I’ , w ‘ , s ‘ , 1’’ ,w ’’ cx i t and a ic’ bounded

i t and tha t 1 ‘i ~‘ . Then

t (ni m(x~1 , - . . ~fl\1 ( 1  -m(x~) 1’

~ oitvergcc i t t  d i  ‘- t rihut iOn t O  :1 multi variat e notma I random rect or with

‘ io  mean VOc or and d i agon;l 1 cova r i ance mat r x wi t h i — th d i agona I

ci oment given h~

~~~ 
1/ K (ti ~dti I (x 1 1

whet-c

o ’ (u ’~ — .. tu~ m’ ~u) -

Schust or pi~ vec t h i  ‘. theorem 1w using the )terrv—l cseen theorem o

sh~~ the lol i t t  as\inptot ic norma l t I v  ot the ntmteratoi- and den omin at or  ot

- An app Ii cat ion of the Mann — W o ld theorem (j~ l i i i  n~s 1ev (1 9(~S) ) t hen

v c’I ds the ,Ic ’~ i red rc ’c% i It . A’~ we shall see, it i ‘~ not necessary to  con

-
~ t dot- the o i t t  i i i  -4 r thu t ion o t the numerat or and denomin ator 01 m~ in

order 1 o est ;ih Ii c h as\lnptot i ~~
- norma 111 ~- . Schuster ’ -, proof can t bus to

s i m p l i f i e d . Al ’~o, hv us ing the l lndeberg — Eel icr cent rat I m i t  t heorem,

in ste ad o the l~et-t -~- —I -seen theorem , we w i l l  be abl e to i-equi ye the

— t ttn~ t ion sequence to ‘~at i s  iv a less restrict i vt’ cond it ion • namo Iv I hat

nc ‘ tn”t c’ad ol nc~

~~~‘ ~~ present the new ;isvtnptot Ic norma li t v result tor tt~~ . I’he imtst

Import ant di erencc between th i s theorem (when stat ed in t et-ins o t ket-ne I

type ~S sequ ences 1 and Theorem .‘ - .1 . 1 is that it on Iv requ i y es  $

* 



.0

instea d of nt- “. Also , it applies to general 6- function sequences

There arc min o r di ~~~~~~~~ in the other cond it ions which wi l l be cv i -

den t in  the statement of the theorem. We first state the ma in theorem ,

and then prove a pret iminarv lenina before returning to the proof of the

theorem. Ice then special i :e to kernel type 6-function sequences -

2 .4 .2  Theorem. Let ($~ } be a sequence of 6-functions such that

R f 6~~(u) I 
2+n

~~1 .“ for each n

t o i  some t) “ U

f 6~ (u) dui 0(n) as n -‘

0(f l
1t/

~~~~~~~~

I’

~~
f l / 2)  as n -

~~ ~“

Suppose 1 Y I2~~ c and the d i s t inct  points  x 1 , x 2 , . . . , ~ arc c on t i n u i t y

poin ts of each of the functions 1(x), rn ( x) , s(x) LlY’~l X=xJ and

E l ~~ 
2+T1 

X-x J ,  and that f(x  ~) 0 , i - 1 . . . .  ,P. Then

, 21,~(x2) , . . . ~ fl
(X1))l

convet-ges in distribution to a mutt ivariate normal random vectot- w i t h

zero mean vector and id en t i ty  covariance mat r ix , where

111 (x) —

- - - - - - - - - —  

•11• ’

I~~
- • • - • • -- • 

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~• - ~~~~~~~ - - -  
L —  — - - ~~~~~~~ i~~~i
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l~n1 (x )
- 

-El 
~ 

(x )

and

= 5 ( X )  - m2(x) - H

Since nt~ — nt*/ f ~ i s a ra t io of su ns of random variables , a di i-oct

centra l limit argument is not possible. However, note that

- g~ = [nt~/ f - (f
11
/ f )g~ ] (f/ f ~)

and f/ f  I , so that in
1 

- g w i l l  have the same asymptotic di sti-ibut ion

as the term w i t h i n  squat-c brackets above . ‘I’he term w i t h i n  square hi-ackets

is a sum of t-andont variables , and thus standard argtunents may be used to

establish its asymptotic normality. This is the outline which the

proo f of Theorem 2. 4. 2 will follow , although the not at ion will be more

complicated since the proof will he in a multivai-iatc setting .

— 
. The following len~na establishes the asymptotic variance and covariance

of m~/ f - (f~/f)~~.

2 . 4 .3  Lenina. l e t  (IS~ I he a 6-function sequence such that

f 6’(u)du •“ for each n . Suppose x v arc continui t  p oints  of

f , m , and s , and that 1(x) 0 , 1(v) -
~ 0, and El ‘~ ~~~. Dc 1 i ne

— f ( z ) / f ~ (z)

and

— n\~(:)/f(zI 
- 

~t~~~)/R,~(:) -

Then

( i)  (n/ci,1) Va r [Iç~(x) I — o ’ (x ) f f (x )

and

- - ~~~~~~~~~ ‘ —,-.--.-—-—-—- - “ 

- ~~~~~—~~~~~--J ~~~~~~~~~•— --— •— •
~~

-

A ~~~~~~~~~ A. . — - ~~~~- —
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(ii) n Cov[ftn(x) , H~(y)} — 0 as n -,

Proof. By defini tion ,

~~ (x) (n f(x))~~ ~(Y . -~~ (X))~~ (~ -X . )

and

EFt~(x) = Ein,~(x)/ f(x ) - g~ (x)Ef~(x)/ f (x)

= 0

since

*g~(x) = Em~(x)/Ef (x)

and we thus have

Var[ft~(x) ] = EIj~(x)

= (nf (x) Y2E { I  [(Y~~g~(x)]6 (x~x.)]
2

1—1

+ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

Now

E [(Y~g~(x )) 6 (x~x)J = 0

since

Em~(x) = EY6~(x-X)

Ef~(x) = EtS~(x-X)

Hence

(n/cz
~
)Var[1-ç

~
(x)J

— ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --~~~~~
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= z~~if (x)Y
2{ fs(u)f(u)6~(x~u)du

• 
- 2g~ (x)f m(u)f(u)6~(x-u)du

• + g~(x) J f(u)6~(x-u)du}

-
~~ (f(x)) {s(x)f(x) - m~(x)f(x)}

a (x)/f(x)

since {ó (u) /a~} is a 6-function sequence by Leitina 2.1.4 and g~(x) ~ m(x) .

For ( i i ) ,  note

n Cov [Il1~(x) , lt~(y)J = nEl1~(x)U1~(y)

= (nf(x)F(y)Y 1E~~~ [ (Y~ -g~(x) J6~ (x-X~) ]

•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= (f(x)f(y)) ~ f 6~(x-u)6~(y-u)q~(u)du

where

= f(u)[s(u)-m(u)(g~(x)+g~(y)) + g~(x)g 1~(y) I

is continuous at u = x and y - ‘
~
‘ by assumption. Thus

n Cov[ 1111
( x ) ,  H?~(y) I 0

by Leiuina 2.1.6, and U) is true . n

— — ~~~— —-~~~~~ —~ — -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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We now return to the proof of Theorem 2.4.2. By the Cramér-Wold

device (e.g., Billingsley (1968)), it suffices to show

N(0 , 
k~l k

or, equivalently,

tk[m
fl (Xk) 

- g
fl

(x~)] 
Lk—l 
+ N(0 ,l)

{ n”~ ~~t~ (a2(xk)/ f l(xk) 
½

for any real numbers t1,t2,. - - ~~~ Write

%(x) - g~~(x) = H~(x)R~(x)

where l-l~ and are as defined in Lenuna 2.4.3. Since f
fl

(xk) ~ f(xk) ,
k = 1,... ,p, it follows that R

fl
(xk) ~ 1, k = 1,... ,p, and it thus suffices

to show that

t H ( x )

c 
~~n

h1’h1) ~~~~ (
2 (xk ) /f 1 (xk)

L
+ N(0 ,l).

Now

= I I~~(u)I
2
~~du < ~

for each n implies

cz~~= f (u)du < co

______ --- - - A  - ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~
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for each n , since f 6 (u)du — for any fini te X > 0 by Holder’s
l ul<A

inequali ty, and by Cl and C3 of Definition 2.1.1. Thus we have, by

Leniita 2.4 3,

Var[ tkll
fl (Xk)J

k-i

= 

~~~~ 
Var[H

fl
(xk) ]

+ 
~~ 

t~t1 Cov[lç~(x~) ,  H~(x
3
)J

_ (s/n) ~ ~~~~~ )/ f (x k)

as n -~~ ~~~. Hence it suffices to prove

L
V — + N(O,l)

{Var[~~~tk
H ( x k)]J

½

Since, by definition,

I~~(x) = (nf(x)~~~~ (Y~-~~ (x ) )6~ (x- X .)
i—i

we may write
n

V1~ — ~~~i— i

where the i.i.d . random variables Vn 1  i - 1 ... ,n, are defined 1w

• V~~1 
-

• where 

~~~~~~~ — — ——~~~~~ — ._
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• 
~~
(k/(\k))(Y~~fl (x ))6 (x x)} -

f t then 1o1 lows from the Lindeberg—l:ei icr cent i-a l I m i t  theorem that
i f , for some ~t 0,

~ 0

thea

-
~~ N ( 0 , 1) as n

Now 1w app lv ing the c1. inequalit of Lo?’ve (I 9h3) repea t ed Iv t~c have

‘+1nEJV
11 , I

- 
tk(~1 -

~~
(x k

) )  
Il (xk-X l) 

2~~rt

~~~~f )

~‘+11i l1l~6 ( x ~ - X 1) 1
-, c

k
(r) )

l ~~~~~~~~~~~~~~~~~~~~

+ 

fl”~~o~~~(fjx ))~~
’
~ •1 j

k~l k( k,n + ‘7 k ,n ’ ‘

where ck (fl) depends only on k and r~ and the Constants t 1 ,. - .  ~t),. It
i s easily seen that

n 
~
ar [

~~~
tkU (x k)I 

~ k~I k
~~~~~~~~

’
~~

the last step follow i ng k- earlier Calculat ions . Further,
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= I I 6 n (~~~1)I 2
I I h I 2

~~ l X u 1f ( u ) d u  • 
-

= y n f 6 *(x~u)E[tyI
2
~~I X=u~f(u)du

**where 
~
6n { 16 n 1 

~~~~ 
is a 6-function sequence by Lenuna 2.1.4.

Thus, for k = 1,2 , . .  - ,p, we have

Y E [ I Y I
4
~~I X=X k J

tk,n

-‘0 a s n - ~~

since

= O(n~~
2
~~~~

’
~)

by assumption. Similar calculations yield

2+r~
I 

‘mn n ~~kfl
k,n 

n~~
2
~ 

/2
( f ( X ) )

2+n
[ 

~ 
t
~
a(x k)/f(xk)1

’2
k—i

0 as n -
~~ , and the proof is complete. [1

We now give a version of Theorem 2.4.2 for kernel-type 6-function

sequences, which may he compared with Schuster’s Theorem 2.4.1.

2.4.4 Theorem. Suppose to~(x)) = (c~~X(x/ e~)} is a 6-function sequence
of kernel type satisfying

- 2+rtU) JIK (u)I du < oo for some~~~> f l

-II i
~~ _ -. _________
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( i i )  f uK(u) du = 0 , f u2 K(u)du <

( iii) n~~~~ ’ nc~~~~0 asn~-

Suppose m(x) and f(x) have bounded, continuouS 1st 
and 2nd derivatives,

the distinct points x1,x2,.. - ,x1~ 
are continuity points of

s (x) and E[IYl 2~~tX x] and f(xk) > 0, k = 1,.. .,p. Then

~~~~~~~~~~~~~~~ 
converges in distribution to a multivariate normal

random vector with zero mean vector and identity covariance 
matrix, where

Z1~(x) = 
n (inn~~ 

- m(x) )

{a Cx) J K (u)du/f(X))
‘¼

Proof. We first verify that this 6-function sequence satisfies 
the

conditions of Theorem 2.4.2. Now

an 
= f 6~ (u) du = 

-l 
~ 
1(2(u) du <

for each n since C
n ~ 0, f K2(u)du < ~~~. Further,

un/n = (ne~)’f K
2(u) du — 0

since nc~ — by assumption . Similarly,

= f (6~(u)I
2
~~du = (lIcn)1+fl 

J iK( ~~ I
2
~~ 1~1 <

for each n , and

/ fl/ 2 1+fl12 (nc~ )~~~
2 

— 0 as n +

by assumption. Thus this type of 6-function sequence satisfies the

requiren~nts of Theorem 2.4.2, 
and since the remaining regularity condi-

tions of Theorem 2.4.2 are clearly satisfied under 
the present assumptions,
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we have that t Us ~
~~(x) 

~~:(X)/Ef~~~) I~ the 

hold5 When m~x) is repjac~~ bytha t express10 for
Hence, jf we Shoh

- 

~~(x) ) + ,
thee the cone Sb will 

~~~~~~ Now

(nc ) ½(~~() - m(x))

= 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

/ K((x U)/ )n(u)f

+ 
m(x) f(X ) - 

in -1

By Lejj~~ 2. ls  ~
) f(u)du J 

-

‘ the a rator fand the denomjn~ converges 
1th11~ the brackets above is I

½ 

. Thus(flc ) (g
~ (x) - m(x))

(nc,~f~o~-ç’~

Since flc 5 
—

Li

p.

1

~~~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~~~~ --— - - ____________________________________
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2 .5  Asymptotic Distribution of I1i,.~

It  is eviden t that , since = m~/f is a sum of independent random

variables , we may apply the Lindeberg-Feller central limit theorem in

much the same w;i~’ as we did in Theorem 2 4 .2 to establish the asymptotic

nonnali tv of (i~~(x) - Ei~i (x))/Var[m]. We establi shed in ( i i )  of l.enina

2 .3 . 1  that

\‘a r [m ~~(x) J (ci~/ n ) s ( x ) f ( x )

b r  app ropriate  Points X.  h ence we have

V ai - [rn ] — (ci~/n) s(x ) / f ( x )  -

l~e therefore have the following theorems, which we state without proof ,

since the proofs follow those of Theorems 2.4,2 and 2.4.4 very closely.

The f i r s t  theorem concerns the asymptotic normality of for genera l

6-function sequences; the second for kernel type 6-sequences.

2.5.1 Theorem. Under the conditions of Theorem 2.4 2,

(~~ (x 1),.. - ~Wn
(Xj))) converges in dis tribution to a mul tivar iate norma l

random vector wi th  zero mean vector and identify covariance matrix , where

rn (x) - E (x) H
fl n 

Ln {(cz~/n)s(x)/f(x)}~

2 .5 2  Theorem. Under the conditions of Theorem 2.4.4, (w~ (x 1) . . . , w ~ (x1) ))

cop- urges in distribution to a multivariate normal random vector with zero

mean and identity covariance matrix , where

(nc n)
½(~~(x) - m(x))

~~(x) = -

{s(x) f K (u)du/f(x)}2

- - _ _ _ _ _ _ _ _ _ _ _ _ _  
L.
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2.6 Mean Integrated Square Error.

The mean integrated square error (N ISE) J~ of an estimator

f~ (x) = n ~i=l

of a density tT is defined as

= E f 
~~~~~ 

- f( x )) 2dx

where and f are assumed to he square integrahie . Watson and Leadbetter

(19b 3) show tha t .J~ is minimized for each n if 6~ is chosen to have a

Fourier transform 
~6 

expressible .is
“ I r.

k
f

t f l
2

~6 
(t) = 

2n (1/n) + ((n-l)/n)I~ f(t) j  r
where C~ f is the Four ier t rans form of f . (Fou r ier transforms of square
integrable functions have the usual interpretation here.) For the

regression estimation problem, Watson (1964) considers the error criterion

def ined by

J~ = E 
f ~~~~~~~~~~~~~~ -

where appropriate assumptions are made on 6~ and m to insure the finite-

ness of the integral. Watson states that J~ is minimized for each n if
is chosen so as to have Fourier transform

* — ~f~ttU

n n EY + ((n-l)/n)Iq ~~ (t)I

where is the Fourier transform of fm.

~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~



—- .—‘~~‘ ‘  ~ ‘~~~ ‘ - — - ~~~~~ ‘‘~~~~~~“‘~~ ‘ ~~~~~~~~~~~~~~~~~~ — — —  — — — — — — — — — — -  — —

38

We assume here tha t 6n and fin are square integrable functions and

that EY 2 < ~ We define the error criterion ‘n by

1n = F f (m* (x) - f ( x ) m ( x ) ) 2dx

where is the numerator of We will show here that I~ is also

minimized for each n by choosing 6~ to have Fourier transform given by

defined above. Note that I~ may be interpreted as the MISE of the

numerator of m~ or m~, disregarding the denominator .

By the definition of Tn and Parseval ’s formula , we have

(2.6.1) In 
= F f (m~(x) - f(x)m(x))2dx

= (2iiY~E f I ~~ ~(t) - 

~fm (tfl dt
inn

where ~~ is the Fourier transform of m~, so that I~ may be minimized

by minimizing the extreme right hand side of expression (2.6 .1) above.

Now, by Fuhini’s theorem for positive functions,

E f 
~~ ~(t) - 4~~~~

( t ) I
2dt

mn

= f E~~ ~(t) 
- 

~fm (t~~~~t
mn

so that T n may be minimized by minimizi ng

(2.6.2) E14 ~(t) 
- 
~fm (t~mn

= E{ I~ ~(t)I
2 + I~~~(t)I

2
m~

- 
~~~ *(t~~fm (t) + 4~ *(tY~fm (t) ] }

m mn fl 

~~~~~-_ _~~~~~~~~~~~~ -
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for each t, where i denotes the conjugate of the comp lex function g.

Note that since fin is an integrable function,

(2.6.3) ~~~(t) f ~~~ f (u)m(u) du

Further,

(2 . 6.4) 
~ ~(t) = f fn ~~ ~ Y .6 (u~X . ) J e 1tU du
inn j =l 3

n itX .
= n 1 

~ ‘i.e ~ f 6 (u) eltUdu
1=1

-l n itX .
= 
~6 

(t) [n  ~ ‘i.e ~~~
]

n j ” l 3

so that

(2 .6 . 5 )  E l~
inn

t 
- n itX . ,

= 
N~6 

(t)~
2E(n~ ~ Y.e 

.1I~
.

n j =l 3

n i tX. -i tX
I4 6 (t)I

2•n ’E ~ ~ 
Y .Y

ke 
1e k

- n j , k=l ~

-, i_i 
-,

= I~ ( t)~ n~~{E ~n
itX . -itX

+ F 
~~

YiY
ke 

3e k) -

Now

1We~
tX 

- I m(u)f(u)e
1tt
~du

and thus

~ 
j_ ,_ _

_

~
_ ._~

_ __ _
~ ~~~~~~ — ~=~ - ~~~~~~~: ~~~~~ 

- - - -
- ~~~~

- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(2.6.5)’ Et~ ~(t) I 2
fl\~

= I4 ~,5 ( t ) I [(1/ fl)EY + ((n-l)/n)I~ 1 (t)I
2]

Finally , from ~.6.3~and ~~6.4),we have

(2.6 t) E[~f (t)~~*(t) +

n n
n - i t X .

= fm(t)~6 (t)li[n~~~ Y1
e ~~~

J

n j =l-

+

= 
I ( t ) I [~ 6 (t )  +

= 2 Re[~6 (t)]I~ f ( t ) 1 2

Combining (2.6.3), (2.6.5) and (2.6.6) yields

( 2 .6 .7)  EI
~~

(t) - 

~ fin (t) I

- 2

+ 
~ 6 (t)f [(l/n)LY + ((n-l)/n) j

~ c~
( t ) J ]

= [(1 /n) EY 2 
+ ((n~l)/n)I~ fm(t)I2]

~q (t)12 12
- 

(l/n)EY2 + ((n-1)/n) I~~~(t) I 2

______________ _________ L_~~_~~~~ _ _ _ _
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+ 
I4l fm(t) I [E’i - I4~~ (t) I

2]

EY2 + (n-l) j~ f (t) I
2 ‘

the last equality following by completing the square and rearrang ing

terms . Now

= I f m(u)f(u)e1tL~duI

~ I lm(u)If(u)du

� f E [~Y ( ] X = u ] f ( u) d u  = E I Y I

so that

I~ fm ( t )I  � (EIYJ) 2 5 EY 2

for all t, and hence (2.6.7) is minimized for each t by choosing
*

~6 
‘
~6 

-

n n
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3. ASYMPTOTIC PROPERTIES OF MAXIMUM ABSOLUTE DEVIATION

3.1 Preliminari es

Since our goal in many cases is the estimation of the regression

function over the entire real line, or some subset of the real line , it

is natural to investigate the behavior of our estimators under some

global error criterion. An attempt at this direction was made in

Section 2.6 , where we considered mean integrated square error. This was

not entirely satisfactory, however, since we were only able to determine

t the 6-function sequence which minimized the MISE of the numerator of the

estimators in question, disregarding the denominator. In this chapter,

we consider a different global error criterion, the maximum absolute

deviation, defined as supIm~ (x) - m(x) I where I is a closed , bounded
x€It interval of the real line, which we will take without loss of generality

to be [0,11. We shall mainly be concerned here with conditions under

which the maximum absolute deviation converges to zero in probability

(in this case we say that the estimator in question is uniform ly consis-

tent over I). We will also be able to find a large sample confidence

bound for the regression function, based on the estimator inn.

Our method of analysis will follow the one briefly outlined below

used by Bickel and Rosenblatt (1973) and Rosenblatt (1976) for probability

• density estimators. For a density function estimator

n
fn (t1) = (nc~)~~ ~ l(((u-X1)/c~) ,i—i

the deviation about the mean f~(u) - Ef~(u) , normalized so as to have

- — - —- ---— —----- -- - -.- - - - -—-- - -~~~~
-- - - - .~~~~~~ —‘-- __

~_ _ _ _ _ _~~~~__ —_--_ -______
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non-zero asymptotic standard deviation , may be written as

(3.1.1) (nc~)~ (f~(u) - Ef (u) )

[f (u) f~

= [f(u)e 1~~ f K((u-s)/e )dZ (s)

= Yn (u) , say ,

where is the empirical. proceaa defined by

Zn(s) 
= n~ [F~ (s) - F(s)]

where Fn is the empirical distribution function (EDF) of X1,

= 1, .. .  ,n , and F is the cumulative distribution function of X1.
Kom1~~, Major and Tusnády (1975) have shown that a sequence of Brownian

bridges {B~} on [0,1] may be constructed such that

(3.1.2) sup I Z 1~(u) - B~(F(u))I 
= O(n ~~1og n)

a.s. This fact is exploited, using integration by parts in (3.1.1), to

show that

(log n)~ sup IY~(u)I
0�u� 1

= (log n) ½ sup IY 1 ~ (u) I + o (1)
Osu� l ‘ 

p

where is the stochastic process obtained by replacing Zn (s) wi th

B~~~F(S)) in the defining expression for ‘in• Further stages of approx-

imation finally yield

_ _  ~~~~~---~~~~~~~ ~~~~- -

-
- - 

-•

- ~~~~~~~
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(3.1.3) (log n)½ sup I Y (u) I
Osusi

= (log ~~~
)

½ sup 1Y 2 ~(u)~ + o (1)
Osus i ‘ 

p

where 
~2 n  is the Gaussian process on [0 , 1] defined by

Y 2~~ (u) = c~~ I K((u ~s)/c n)dW (s)

where W is a Wiener process on R. The asymptotic distribution of

(log sup (Y2 ~(u)I with proper centering constants, is determined,
Osusi ‘

and, in light of (3.1.3) , (log n) ½ sup I Y n (UH has the same asymptotic
Osusi

distribution.

We will employ this method to determine the asymptotic distribution

of the maximum absolute deviation of the numerator m~ of the estimators ; ‘- - -

m~ and ~~ properly normalized and centered. Algebraic manipulat ion and

elementary analysis will then yield uniform consistency of the estimators,

with an associated rate of convergence. Since the denominator of

is non-stochastic, an asymptotic confidence hand for in, based on iii~~

may also be specified.

In the forthcoming development, we will need to use integrals of

the form

(3.1.4) Y~(t) ff yk(~~~)dW(T(x,y))

where 1: 1R 2 .. io ,11 2 is the transformation defined by

T(x ,y) = (F~1y (x~Y)~ F~ (y) ) ,

and W( .,’) is the Wiener process on [0,11
2. In this section, we will

give conditions for the existence of (3.1.4) and prove some useful

properties .
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If H(s ,t) is a real , measurable function on [0,1)2, then it is

well-known that the L, integral

If U(s , t) dW(s , t)

exists if

if I-12(s t) dsdt

(see Masoni (1968), Chap. S)

Suppose that f(x ,y) > 0 for all real x and y so that I is one-to-

one and hence T 1 is a well-defined function on [0,l] to ]R ’ . Denote ,

for fixed n and t

t
~
(x ,y) = yK((t-x)/c~)

Then, by Theorem 5.19 of Masani (1968), we have

(3.1.5) ff yK((t~x)/c~)dW(T(x,y))
JR

= ff G
~
(T ’(s,u))dW(s,u)

[0,11
2

in the sense that if either integral exists, then so does the other

and they are equal . By the previous remark, the integral on the right

hand side of (3.1.5) exists if

If  ,G~(T 1 (s ,u) ) dsdu
[0,1]

Now

(3.1.6) if , (‘~(T~
1(s,u))dsdu

[0,l]

= ff G~ (x ,y)~J(x ,y)~dxdy
J R 2



-i

where J(x ,y) is the Jacobian ofT (see, e.g. Buck (1965), Sec, 6,1,
Thin, 4), if (J(x,y)I > 0 for all real x and y and G~(x,y), f(x,y) and
f(y) are continuous, By definition,

-. a
~~ ~1y X Y  yj ~ 1y x y

J(x,y)

~~ F~1,(y) -J F~ (y)

=

= f(x,y) > 0

by assumption , using the obvious notation for conditional and marg inal

densities. Thus

if G~(I~~(s,u))dsdu

[0 , 11
2

= ff y2 K(( t - x ) / c ) f (x ,y)d~dy
• JR 2

= EY2K2((t X)/c~) < ~~

if, e.g., FY2 ~- and K is bounded. We note that the above development

holds if , ins tead of having f(x ,y) ‘ 0 for all real x and v, we have

f(x,y) > 0 for x and y in some rectangle of 1 R ,  and the range of

integration is appropriately adjusted. We will henceforth assume this

to be true without coninent.

We will now give properties of the integral (3.1.4) which will he

• useful in the future development. We will show

(3 .L7) LYn(t) — 0

_ _ _  

~~~~~~~~~~~~~~~~~~~~~ 

. - 
-
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(3. 1.8) EY~~(t 1

)Y ~~(t ,)

= II Y
2K(( t1-X)/C~)K((t,-x)/ c~ ) f ( x ,y)dxdy

for t1 ~ t,. In view of (3.1.5) and the definition of the stochastic

integral , (3.1.’7) follows. For (3.1.8), we note, by (3.1.5) and (5..~)

of Masani (1968)

~~ 
( t 1) Y~ ( t—,)

= If  
~ 

(T ’(s ,u )) G
~ 

(T~~(s,u))dsdu

= If  Y ( (t i~X)/ cn) K ( (t ,~X)/ cn) f(x ,y)dxdy

as in (3. 1 .8) .

We finally note to close this section that, since W is a Gaussian

process on [0 , l]~ and since Y~ (t) is an L, limit of l inear combinat i ons

of W(.,.), we have that Y~ (t) is itself a (one-parameter) Gaussian ]
stochastic process for each n , with mean given by (3.1.7) and covariance

function given by (3.1.8) .

3.2 Maximum Absolute Deviation of

It is convenient to introduce certain assumptions at this point which

will be in force in our main theorem. Let f(x,y) denote the joint densi ty

of (X,Y), f~(y) the marginal density of Y, and let {a~} be a real sequence

with a -* m as n -~ ~~~. We make the following assumptions:

(Al) (log n)c 3 f y2f~(y)dy s c
1yI�a~

for all n and some constan t c ,

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~:::__
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(A2) a~c~½n~~I’ö (log n) 2 0 as n ,

(A3) (log n) sup f y2f(x,y)dy 0 as n
Osxsl Iv~ ’a~

(A4) There exists a constant n > 0 such that
an -,

g~(x) = / ~‘ f(x,v)dy
-a~

satisfies

g~(x) ~ n Vxe [0,l] and some n

and g~ has a continuous 1st derivative on some inter~ral [-A ,A] .

Further , the functions

s(x)f(x) = f y f(x ,y) dy ,

• E[(uI~X=x]f(x) 
= f ) v~ f (x ,y)dy

are uniformly bounded.

I f  V is a hounded random variable, then clearly an’~
. q~~n~~ {a~ }

wi th a~ -
~~ satisfies assumptions Al and A3. If the marg ina l dis tribu-

t ion of V is normal and = n 6 as in Theorem 3.2.1 , then it is readily

checked tha t (a8} = (log n} satisfies Al and A2.

Wc nonnali:c m*(t) - 

~ l (t) by (nc Y½ [s( t )  f ( t ) J ~~, wh ich is pro-

portional to its asymptotic standard deviation, thus defining the

following stochastic process on [0 ,1]:

(nc ) ‘
~(n1~(t)  - Em~ ( t ) 1

(3.2.1) V (t) =
n -

~~~~~~~~~

[s(t)f(t)]

~~~~~~~~~~~~~~~~~
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Then we have the following theorem.

3.2.1 Theorem. Suppose the kernel function K vanishes outside a finite
interval [-A ,A} and is absolutely continuous and has a bounded derivative
on [—A ,A] and that the marginal density of X is positive on an interval con-
tam ing [0 ,11. Suppose Al-A4 hold. Then, for = n 6 , 0 < o < ½ ,

- 
sup IY (t) I -x

P {(26 log ~) ½ 0�t�1 
- d~ < x } ~

-Ze
[A(K)}2

as n -
~ ~~~, where

A(K) = f K2 (u) du ,

c1
(K)

dn = (26 log n ) 2  + (26 log n)~~2{1og (

+ ½[log 6 + log log n] }

if 

c1(K) = 
K2(A~~+K

2(-A) 
> o

and otherwise

½ -½ c3(K)
dn 

= (26 log n) + (26 log n) [log ( 2ir

where 
2f[K’(u)] du

c2(K) = 2A(I()

The proof of Theorem 3.2.1 is based on Theorems 3.2.2 and 3.3.3,
which follow. Theorem 3.2.2 is due to Bickel and Rosenblatt (1973),

who used it in proving a result similar to Theorem 3.2.1 for probability

density estimators . We will here denote by f K(t )dW( t ) the L2 integral

- - ____________
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of k with respect to the Wiener process W (see e.g. Doob (1953) ,

Chap . IX , Sec. 2).

3.2.2 Theorem. Suppose K ( )  is a kernel function which vanishes outside

[-A ,A] and is absolutely continuous on [-A ,A J .  Define on [0 ,1] the

stochastic process

Z~ (t) = c~~ J K(~j~-)dW(x)n

where
-6cn = n

with 0 < 6 < ½ and W(x) is a Wiener process Oli ~~~~~~~~~~ Then

- 

sup l Z (t) I -

log n) ½ 0�tsl 
-~~~ - d < x} -.- e

2e X

- 
[A (K)]2 n

as n -
~~ ~~~~, where d~ and A(K) are as in Theorem 1.

Theorem 3.2.3 is a special case of Theorem B of Révész (1976) .

3.2 .3 Theorem. Let X1 and X-, be independent random variables, each

uniformly distributed over [0,1]. Define the empirical process of

(X 1, X 2) by

Z~(x1~x2) = n½ [Fn(x i,x2) - x1x2]

on ~o,ij
2, where F~ denotes the empirical distribution function of

(X1,X2). Then one can define a sequence {B~ } of independent Brownian

bridges on [0 ,1] 2 such that



-

Si

(3.2.2) sup IZ (X1,X2) 
- B~(x1~x2)IO�x1,x2�l

-1/6 - 3/2
= O(n (log n) ) a.s.

Proof of Theorem 3.2.1:  For convenience , denote sup lg ( t ) I by
0�tsl

I g i l  and note that , for any sequence of processes {Z~ (t) } defined on

[0 , 1],

( log n ) 2 [ l  I V
~~~~ I 

- d~]

= (log n)2[I J :~I - d~~]

+ (log n)~2 [HYn H — I [Z ~~~ ]

Thus , if we show that

(log n) ½ 1 I Z ~ 
- Y

~I !~ 0

and

(log n) ½ [l  IZn I I - d~ ]

converges in law , then

(log n) ½ [ I I Y n i I  - d~]

also converges in law, and has the same l imiting distribution .

We will apply the preceding remark to eventually “approximate”

the process ‘1n with the process Zn of Theorem 3.2.2, thus obtaining

the desired result. We will proceed through several stages of such

approximation, and the details will be given in the sequence of lermas

which imediately follows the proof of this theorem.

~~~ 
____  

~~~~~~~~~ - 
- _________________
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We f i r s t  note that I may he written as

(3 .2 .3)  1 ( t )  = [ s ( t ) f ( t ) J ~ 
If  Y~~~~

h1Zn(X~
y)

where is the empirical process defined by

n½ [F (x ,y) - F(x ,y ) J

Now define the fo l lowing  processes on [0 , 1] :

(3. 2 . -I ) V 0 1 ~( t )  - [ s ( t ) f ( t ) ] ~~Y
’
~ ff yK(!~~)dZ 1~(x ,v)

n

(3. 2 . 5) \
1 1 ~(t) - (s~ ( t ) f ( t ) J ~~~~~ ~f yK(~~~)dZ~(x,y)

I y l s a ~ n

where
— 

~~~~~~~~~~~~ 
{I ~~~~~ 

} ~~~~~~~~

(3.2. () V 2 1~~t) 
= ts~(t) 1(t )  1 ½c~ 2 f f vK(~~~) l l31~(T(x ,v))

where {~~ } is a sequence of Brown ian bridges as in Theorem 3 .2 .3  and

1: ~~ 
2 [0 , 1 is the t rzuis format ion defined by

(3 .2 .~~) T(x ,v) (F~ 11
(xfv) , F1(v))

( 3 . 2 . 8 )  \
3 ,11

( t )  I s ,~( t ) f ( t )  ½~ ~~~~~f y K( ~~~-) dW1~(T (x ,y ) )

where {W ~ } is ~i sequence of independent Wiener processes used i n con-

stru ctin g (R~} ;is

-~~~~ _~~
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— W~(u,s) - us W,1(l,1)

(Révt~sz ( 1 9T h ) ) ,  0 - U, s ~
. 1

( 3 .2 . 9 )  1
11

( t)  = [s~(t)f(t)I~~c~~ I [sfl x)fx) 1
½K(L~1 hIw(x) .

(3.2.10) Y
5~~(t) = 

~~ I K~~
’)dW(x)

where W is a W iener process on

We have , by Lenina 3 2. 4,

I 1V 11 
- 

~0T1 Il 01)((log n) ½
)

where (.i~~) r e fe rs  to ~ Sequence of random van ;ih ics A~ such th at
-
~ 0 in p rohab i i i  t v .  I ,~iina 3. 2 . 8 gives

11 1 011 ~l ,n 1 = o~ (( l og  ‘~~ )

By Lema 3. 2. 5

I l1
~ , n - I O(a~~~~~

2i~~’/~ ( log 11) 3/2 ) ~i . s .

and by A 2 ,

-1/2 -1/(~ 2
fl (log 11) 0

so that

11 1 1 ,11 
- 1 ,n ’ I O~ ( ( log  n) -½

)

By Len~a 3.2.6,

- - —. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~—~~i L .~~ _.A ----~~~~~~~~~ ---- —-a .--~~~~~~~~ ~~~~~~~~~~~~ —
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I l Y ~ - I I  - 0  (~½)
~,n .~,n p n

- o~ ((log ~)½)

since c~ n~ and hence c~ log n ~~ 0.

Now ‘
~3,n is zero mean Gaussian process on [0 , 11 with covari ance

func t ion

(3.2 .11) r(t 1 , t -, ) = El3 11
(t 1)13 ~tt 2)

= [5 n (t i ) f( t 1) ]  -½ [5 (t ) f ( t ,) ]  -½

.11 y 2K(~ii
X

) K( ~~1) f ( x ,y)thdy
I yI~a11 

n

(cf• Section 3.1) .  The integral on the right hand side of (3.2.11) ~~
he written as

-1 ( tl -x t_ , -x
i F{1 l (Y)K( -11 

~ { I - H an ) 
~n

- 
1 1 s11

(x)f(x)K(—~—--)K(—~~~)dx

Thus the process 
~4ii 

is a Gaussian process with the same covaniance

(unc tion as Y3~~ i.e., they have the same finite dimensional d istribu-

tions . h ence the asymptot ic distribution of

½ r 1 I V ~ ~ I I
(23 log n) I - -

L[A K) I

i- c the same as that of

- - --  -- - -- -~~~~~-~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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½ 
I I I Y 4 I I  1(26 log n) ~~~~~~~~~~~~~~~ - d
- [A(K)] n

Further, by Lemma 3.2.7

11 Y 4,5 
- Y5~~l l

= o~ ((log n)~~) -

By Theorem 3.2. 2

(26 log ~)½ [~~~S,n~ - d J

L f~(K)J

has the desired limit distribution , and the theorem is proved. [I

3.2.4 Lemma. If  Al is satisfied and

2g(x) - s(x)f(x) = f y f(x,y)dy

is bounded away from zero on [0 , 1], then

- 

~~~~~ 
o~ ((log n)~~ ) -

Proof. Note

Y~(t) - Y~ 11
(t) = [g(t)]~~c~~ ff yK(!~~)dz (X ,~)

IYI an

so that

i i~ - 

~~~0 ,~~~~ i i  ~ 
C ~~~~~~~~~~~~~~~~~~~~~~~ -

I
—
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By assumption,

~~~~~ <~~~

and thus it suffices to prove that

(log n)½ sup ~~~
½ jj  yK(~~~)dZ~ (x ,y) ~ 00�t�i ‘~ Iy~>a~ n

Now

(3.2.12) (log fl)½~~½ J f yK(~j .~-) dZ~ (x ,y)
I y j > a ~ 

n

= (log n)½(ncn)~~~~{YjI{IyI>an}
(Yi

)K(__ _!)

- BYjI{~y~>~ }K(

n
= ~~X .(t) = U n (t)

i=1 n , i

say , where X~ ,~~( t ) ,  i = 1, . . .  ,n are i . i .d.  with

EX
~~~

(t) = 0

for each tc [0 , 11. Thus

2 2(3.2.13) EU~(t) = ~ EX~ ~(t)i—i

and

(3.2.14) flX~~~ (t) 

~~~~~~~~

s (log n) (nc ‘)BY~ I (Y~)K 2 (___!.~n 1 {I~I>a~
} C~

s k(log n)(nc~’)E Y~ 1{ I y t > ~~
}0’~

- _ - _,_

~

_ _ J_

~ 

-,~~.-- -
~~

-
~~- - ~~~~~~~~~~~~~~ 

- - - - - - - 
~~~

- 

- -—
-

~~~



where

sup IC~(u)
-Mu�A

and A is as defined in Theorem 3 .2. 1.

Combining (3.2 .13) and (3.2. 14) yields

n -~

~ X~ ~(t ) }
i— i

~ (l og n) c~~ EY~ I ( 1~~( > ~~ } (Y~)

T (log n)c~~ f y f ~.(y)dy 0
I Y l > a ~

as n - -  by A l. This implies that

(3.2.15) U~(t) ~ 0

for 0 ‘~ t s 1.

In order to show that

(3.2.16) I I U~I I — sup U~(t) ~ 00st~l

we note tha t Un(t) is an element of the space P[ 0 , l J  of r igh t  cont i nuous

functions with lef t  hand limits for each n, and that , if we show that

tIn converges weakly to the zero element of P [0 , i ) ,  then ( 3 . 2 . l ~ ) ~.i I l

follow, since I ’ l l  is a continuous functional on P[0 , 1]. Since ( 3 . 2 .1 5 )

implies

(U~(t1), Ufl
(t ,),...,Ufl(tk)) Q

in for distinct points ( l , t 1~ . . . , t k of [0 , l J ,  it suffices to v e r i ly  the

—____ ~ ~~~~ ~~~~, ~~~~ 
—

~~~~- -a----
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following moment condition to show weak convergence of IJ
~ 

(Billingslev ,

(1968) ,  Th. 15.6):

E { I U (t) - U~(t1)II tI ~(t2) 
- U~ (t ) I }

B(t ,-t 1Y

where B is a constant.

By the Schwarz inequauitv ,

E ( I t i ~(t) - Un (t i ) I * I l Jn (t~
) - U~ ( t ) I

~ {E[U
11

(t) — tI~ (t 1) 1
2 

• E[U~ ( t 2 )  — tI~ (t )  1

Defining

G~ (u ,s .X) = ~~~~~ - K X)

we have

(E[tJn(t) 
- Un(ti)l~

)

(log n) (n c~)~~{F[ Y ~~~~~~~~~~~~~~~~~~~~~i 1  -

- E1~ 1{ 1 1 ~~~ } (Yi ) G
fl

(t~ t 1~ X . ) f l 2 )

= (log n) (nc~)~~(~~ 
~~ i’{lvha ~~~~~~~~~~~~i~ l - Ti

- Eu iI
{ I I ~a }(Y i)Gfl (t~

tl,X i
)I2)

( log ~ ~~~n
’
~ 

{
i~ l~~ {I v h a~ ~) t , t 1. X . 1 }

Since K has a bounded derivative on (-A ,A1, it satisfies a Lipschit:

condition: 

-
~~~
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IK (u) - K(s) i � B1 u-si

where is a constant. Thus

{E[U~(t) 
- U~(t1)] 2}½

s B~(1og n)½Ei;
3/2 It_t

l I {EY~I{IyI>a }(Yi)}
½

= B1(log ~~~~~~~~~~~~~~~~ yZf~ (y)dy}½ 
.

Applying the same argument to

E[U~(t2) - U~ (t) ] 2

yields

E {IU (t) - 1J~(t1)(tU (t2) 
- U~(t)t }

� B~ log n En
3
It~t1l • I t2~tI

1y{>
~~Y

2fY (Y)dY

c(t1-t 2) 2

by Al and using the fact that t1 � t � t2. The moment condition is

therefore satisfied, and the result follows. 0

Before going on to Lema 3.2.5 , we state the useful integration by

parts formula for Rienann-Stieltj es integrals on rectangles of

Let f and g be two functions defined on [0,11 2. If all of the integrals

below exist and are finite, then we have

11 1 1
(3.2.17) f f  f(x,y)dg(x,y) = J f g(x,y)df(x ,y)

00 00
1 1

+ f f(1,y)dg (1,y) - f f ( 0 ,y)dg(0,y)
0 0
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1 1

+ I g(x,l)df(x,1) - f g(x,0)df(x,0) .
0 0

We note that if g(x,y) is a Wiener process on [0,112 and f(x y) is a meas-

k urable ftuiction on [0,112 sl.Eh that jl ~
1f(x,y)dg(x,y) exists, then

(3.2.17) remains valid provided the integrals on the right hand side of

(3.2.17) also exist,

3.2.5 Lenina. If K is absolutely continuous on [-A ,A] and zero outside

[-A ,A), then

a.s 
~l ,fl 

- 
I 0(a~c /2n~~~6(1og n) 312)

- 

- Proof. First we note that the random pair

(3.2.18) (X’,Y’) = T(X,Y)

where T: ~~
. [ Q ,j] is defined by (3.2.7) , is jointly uniformly dis-

tributed on [0, 1) 2 , X ’ and Y’ are independent , and

0 s x ’, y’� 1, is the empirical process of (X’,Y’) (Rosenblatt (1952)).

Theorem 3.2.3 thus applies to (X ’ ,Y ’ ) ,  and we may conclude tha t

sup B~(x ’,y ’) - Z~ (T~ ’(x ’ ,y ’ ) ) I
0~x ’ ,y ’�l

0(n4~
’6(1og n)3”2) a.s.,

or , equivalently,

(3.2.19) sup lB (T(x,y)) - : (x,y)i
x,ydR “

= 0(n 1”6(log n)3’~) a.s.

- • - - - - -. -• --- — - - - -—----- - - -A------ - —~ 
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Applying the integration by parts formula (3.2.17), we have

(3.2.20) f f YK (
~~~
)(1Zn(X~

y)
I y I �a

A a~

~ f f yX(u)dZ~(t~c~u,y)
u--A

aA n
= I I Z (t-c u ,y)d[y K(u) ]

-A- a n fl
n

A
+ a~ f Zn (t

~
Cnu ,an)dK(u)

u--A

A
+ a~ I Zn (t

~ Cnu ,~ an)dK(u)
n--A

a
+ k(A) 1

n 
yd2~(t-c~A ,y)

a~
- k(-A) I YdZ~(t+C~A~Y) .

y= - an

The second to last integral above may be written, using ordinary one-

dimensional) integration by parts,

a~f ydZ~(t-c~A ,y)

a
= 

-a” 
Z~(t-c~A,y)dy + 

~~
Zn(t~

CnA ,an) + a
nZn(t~

cnA ,~
an) ‘

n

and similarly for the last integral on the right hand side of (3.2.20).
By using a similar argument, we obtain (where the integrals are

defined in the L-, sense)
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(3.2.21) J f yK(~~~)dB~(T(x,y))
iylsa~

aA n • 1
= f f Bn (T(t _ c nu ,y))d[yK(u) }
u-A

+ a~ u~~A 
B~ (T(t-c~u ,a~))dK(u)

A
+ a~ f B~(T(t-€~u,-a~))dK(u)

u=-A
a -

•n
+ k(a){ f B~(T(t-e~A,y))dy

+ anBn(T(t~
cnA ,an))

+ a~B~(T(t-c~A,-a~))}

a~
- K(l -A) ( ~f B (T(t+c A ,y))dy

+ a~B~(T(t+c~A ,a~))

+ a~B~(T(t+E~A~ -a~))}

Subtracting (3.2.21) from (3.2.20) and using (3.2.19) and the assumption

that K is absolutely continuous on [-A,A}, we obtain

(3.2.22) ~~~~~~~~~~~~~~ - Y2~~(t)l

= 0(n ’/’6(log ~)3/’Z) •

A
I 4an I K ’ (u) du + 4a~[K(A) + K( -A) I ~ a • s.

-A

= O(a~n~~
”6 (1og n)3”2) 

- 
~~~~~~ ~~~~~~~~~
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since
A

I IK’(u)Idu < -

-A

Thus , sinc e I I~~~I is a bounded sequence by assumption ,

I ~~~ 
- 

~2 ,n ’ I = Op
(a~c~~n /6 (log n) 312) ,

and the proof is complete . [1

We may write the sequence of Brownian bridges (Bn} of Theorem

3 .2 .3  as

(3 2 .2 3) B~ (x~y) = W~(x ,y) - xyW~(l , l)

0 � x,y � 1, where {W~} is a sequence of independent Wiener processes

on [0 ,ly (Révész (1976)). The next lemma shows that , for our purposes ,

the only significant part of (3.2.23) is W~ (x ,y) .

3.2.6 Lemma. If A4 holds , then

I I ~ 2 ,~ 
- 

~3,n U = O1,(c~).

Proof. By definition of 
~
‘
2,n and 

‘T’3,n~ 
we have

= Y3~~(t)I

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

since the Jacobian of the transformation I is f(x,y). Thus

- Y 3~~ I i

~ 
V ( l ,]•) I I ~g~1

½~ I
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sup ~~~
;

‘ 
.11 IyK(~j~) I f(x ,y)dxdy

u�t~l I Y I �a~ n

~ 
IW~(l4)I Ii g 1~ I l

sup ~-lf [ J  IyIf(x ,y)dy1IK(~~ )Idx
u�t�1

By A4,

h(x) = f ~y~f(x,y)dy

is a bounded function and ~~~ 
is a bounded sequence, so that for

some constant M we have

c~~~~I I Y  - Y  IIn 2 ,n 3,n

� I W (l , l) IMc ’ I IK (~~~)~dx

= I1~n
(l
~lflM I I K ( u ) I du

= 
~
)
~

(l) -

Thus 

I I Y 2 ,~~ 
- Y3~~I I = O~ (~~)

and the proof is complete. 0

3 .2.7 Lemma . Under the assumptions of Theorem 3.2.1,

I 
~4 ,n 

- 

~~~~~~~~~~ I 
= o~(c~) ½.

Proof. By definition ,

1 - — ---~~~~~ ------- —- ~à.-~_-—- --_ —j——— — ~~~~~~~~ - -- — —  — . _~~~~ - L .  — - __A~••~•A~~ ~~~~~
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(3.2.24) I’T’4 ,~(t) - Ysn (tfl

g~ (x)
= C

½
~ f { [  i

½ -1}K(
~
.
~
.)dW(x)

t

~~~~~~~~ ~~~~~~~ 

g~~~~~~
-

~~ 

]
½ -l)k(u) dW( t-uc )~

By using integration by parts and the assumptions that and K are
absolutely continuous, we may bound the integral on the extreme right
hand side of (3.2.24) with

~ A g ( t -E )~~(3 .2 .25)  
k~~~

2 f W(t-ue ) 
~~ { ~ 

n n  
~~ -l ]K(u) }dH

g~(t-Ac ~ ½+ C
2 K (A)W( t -Ac~){[ g~(t) 

I 1}~

+ ~~~
2K( A)W (t+Ac )~ [ 

t
~~~n) 

~

= J1,n (t) + J
2~~(t) 

+ J3,n (t) 
~

say . We will show that the supremum over [0,1] of each of these three
terms in O~ (c~ )~ thus completing the proof.

First of all , note

C 2II J~ I In ~~~~~~

- 
g~ (t-Ac )

~ K(A) sup I W(t- Ac )I sup c l I E  T~
Ost �l n 

~~~~ 
n g~(tJ

and
sup I W(t-A E~ )l  = 0 (1)

0�t�l p

_ _ _  _ _ _ _ _ _



- -  - - — _ _  
- -

Now

-l g~(t-Ac~) ½sup~~ [ r~~ 1 -l

1 I [~~(t~~~ )] - [g~~(tU ½~
= sup c { }
0�t~1 I g~ (t) I

‘~ ~~~~~~~~~~~~~~~~~~~~~~~~ - [g~ ( t ) ]
l)~ -

By assumption , I I  g~~I I is a hounded sequence , and by the mean va lue

theorem,

- [g~(t)]¼ I

‘2~n I~~
(t
~~ n) 

- g~(t)I.lx ~(t,A)f~~

where x~(t,A) is between g~(t-Ac~) and g~(t). Applying the mean value

theorem to 
~ 

yields

~~(t~ A~n) - g~ (t)

= AE nkL~(t n (t ø A))  ,

where tn(t~
A) is between t - Ac~ and t .  Thus

C~
½ I Ij 2 11~l I

A I~~~~(t (t ,A))I
s K(A) sup I W ( t )  I ~- sup n

-Astsl 0�tslIx~(t .A)I

z OI,(l)

s ince g~ Is uniformly bounded and g~ is bounded away from zero , 1w

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ A~~~ - . -~~~~~~‘~~~~~~~~ -~~~~~~~~~~ ~~ ~~



assumption, and thus

I I.i~~ I I .

c imi tar arg~uuent shows that

- ~~ (~~
½
)

~,fl ~ 
Ti

-
~ o we now cons i der

Carr’- ing out the different iat ion in the integrand ot .11 ~~
, we have

* ~.T (t )n l ,n
-\ g~(t—ui )

,~
‘ I ~~t -ut ,1) { K ’  (U) I ( 

~~~~~~~~ 
) a -lu du

A (t—ui ) -~~~ g’ (t Ui 1f W (t ~)k(u) ( ) ( duj

I~ 1~( t )  ~ .~~ (t )  I ’

‘;ay . Now the non —stochast ic teflfls in the I ntcgrand el C . are un i t  onnl~-

l-~nznded in the t a t-gumcnts and in n , hr assLiupt ion . We the re tore have

A
IC , 

~I I (~~ I IW (t—uc 1~) Idt ~ O~(i)

where is  ~4 constant - l:ot- ~l ,n ’ ai~p1y the same aT-gtunent USOL I il l  ct~lT

cidering 
~~~~~ 

to conclude that

S (t-u 1
SlIP * ~ 

_ __ _ _•~n _ 
~ 

— I -. C I I

where C a con ’-. t ant  I1~en 

~~~~~~~~~~~ - ~~~~~~~~~~~~ ~~~~- 
- 

- 
- —

~~~
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A

11c 1 n H ~Ci sup f IW(t-uc~)K’(u)uIdu
‘ 0~t�l -A

= O ~ (l) ,

and the proof is complete. 0

We now use the results proved thus far in showing that Y0,~ and

Y1 are sufficiently close to one another.,n

3.2.8 Lemma. Under the assumptions of Theorem 3.2.1,

- Y1~~I ) = 0~((log n)~~)

Proof. We must show that

sup {)[g(t))~~ - [g~(t)]~~))c~~ II yK(~~ )dZ~(x,y))}0�t�l IyI �an

= 0~((log ~)
½) •

By the preceding four lemmas and Theorem 3.2.2 ,

(log n) ½ E I I Y i ,n I I E A ( K ) )~~ - d~)

converges in distribution to some random variable, and is therefore a

O~(l) sequence. Since, by definition,

= 0((log n)½)

we have

I I Y 1,~ II 0~((log ~)
½)

and since h g 1 I I is a bounded sequence , we have

=1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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sup c ;½1 If  yK(
~j~

)dZn (x ,y) I0~t�l I g I �a~ n

= 0~ ((log ~~)
½
)

Thus it suffices to prove

(log n) I Ig~ 
- g ½~ I 0

as n ~ ~~~ . By the mean value theorem,

-
~~ -½ -3/2

- g = Ig~~~I I h ~ I

where h~ is between g~ and g. Since g
~ and g are bounded away f rom zero ,

I !h 312
1 I is a bounded sequence, and since, by A3 ,

(log n) IJg~-g II ~~0 -

the result is proved. C]

Since m (t) is an asymptotically unbiased estimator of m*(t)
m(t)f(t), it is natural to seek conditions under which Em~(t) may be

replaced by xn*(t) in Theorem 3.2.1. Define the process

(n€ )½ [m~(t) - m*(t)]
Y ’( t ) = ~ 

½n [s(t)f(t)J

Then we have the following corollary to Theorem 3.2.1.

3.2.9 Corollary . Suppose all the conditions of Theorem 3.2.1 hold

and in addition

= n~~ , 1/S < 6 < 1/2

K satisfies

- —  — - -~~~~~~~~ - - ~~~~~~~~~ ~~—-~~~~~~~~ - - -  --~~~ - —-A --~~~~~ - ~~~~~ — —_ ~~ - - -~~~~ ~~f~~ _



IuK u du = o ,

f u2K(u)du <

and the function

m*(t) = m(t)f(t) I yf( t ,y) dy

has bounded, continuous 1st and 2nd derivatives. Then the conclusion
of Theorem 3.2.1 holds, with Y~ replacing Y~.

Proof. Accordi ng to the remark at the beginning of the proof
of Theor em 3 .2 . 1 , it suffices to show

I I Y ’ - Y I I  = 0 ((log ~)½)n n p

But

- Y
~~I I  s ~~~~~~~~~~~~~~~~~~~~

By assimption,

I I~~~II <
~~~

and we know that, under the assumptions on m* and K ,

IIm * - Em~I I = O(c 2 )

Since

n 6 
, 6 > 1/5

then

c~ (nc~)~ (1og ~ )
½ (nc~ log ~)

½ , 0

and the proof is complete. 
0

_ _ _ _ _ _  _ _ _- _ _ _ _
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Based on this corollary, we may construc t a confidence band for m ( t ) ,

0 s t ~ 1 as follows. Using the asymptotic distribution, we have

~ supIY’(t)I
P1(26 log n)~ [ ½ 

- dnl < C(cz)} 1 -~~
[X(K)]

where

C( x )  = log 2 - log~1og (l-ct)I

I nverting the above expression in the usual way , we obtain as a (1-~)xl00%

confidence bond for m( t) :

(3.2.26) ~ (t) ± (ne ) ½ [ ~~~ ]½[ c(A) 
½ 

+
n (2 ô log n)

0 S t s 1.

3.3 Uniform Consistency of m~ and

We saw in Corollary 3.2.9 that the sequence of random’ variables

½ 
m*(t) - m(t)f(t)

(log n)~[(e~) sup 
n 

½ 
- d~]

Ost�1 [s(t)f(t)1

converges in distribution, and is thus a O~(l) 
sequence. We employ this

fact to show the uniform consistency of m~, and specify a rate of con-

vergence.

3.3.1 Lemma. Under the conditions of Corollary 3.2.9,

(3.3.1) sup (m~(t) 
- m(t)f(tfl = 0 [(log n)½ (nc~)~~1

Ostsl p

• Proof. By definition,

~~ = 0((log n)½
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and thus 
*

% (t) - m(t ) f ( t )
(nE )~~sup ½o�t�i [s(t)f(t)1

- 0~((log ~)
½) + O((log n)½)

= 0~((log ~)
½)

Now, using the assumption that g(t) = s(t)f(t) is bounded away from-
zero, the conclusion follows. 0

We now use the preceding lemma to show uniform consistency of
and~~~.

3.3.2 Theorem. Under the conditions of Corollary 3.2.9, we have

(3.3.2) ((inn 
- m ( (  = O

~[(1og fl)
½ (flE )½]

(3.3.3) 11% - m ( (  = O~[(log n)
¼(ne~)~~]

• Proof. Note that

I Iii1~ 
- m J ( � Hf~

’II II m ~ 
- m* I I

where

mtt) = f(t)m(t)

— By assumption, f is bounded away from zero on (0,1], and thus

• An application of Lemma 3.3.1 thus proves (3.3.2).

For (3.3.3), note
* *m f - f m

I - t - n nI n I - _ _ _ _ _ _  

---- - - -- - ---
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* * * *m f - m f  m f  - m fn n i~ + 1  n n  n
~~ 

I

say. Now

B = II ~n 
- m il = 0~[(log fl)

½ (fl~~y
½J

by (3.3.2). Further,
*

A s  j
~~~

- j f  t i ”~ ; 
f

jj

= ~f~~~~ 0p [(log n) ½ (ncn)~~ I

(Bickel and Rosenblatt (1973)). Since
*

I ~~~ ~ II m ~I I  • [inf If (t)IY ’

n O�t�l

and it is easily verified that I I m * I I  ~ II m *II , inf ( f  (t) (n
inf If(t)l > 0 , (3.3.3) follows.

Os t�l

_
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4. AN EXAMPLE , FURTHER RESEARCH

As we noted in the introductory chapter, if the density of X is

known, then either the estimator nt~ or i~ may be used to estimate the

regression function. Here we will s~minarize some results given in

Chapter 2 which relate to the relative performance of m~ and ii~ in this

case. We then present an example in which zn~ and are computed from —

a set of simulated data. 4

4.1 The Estimators m~ and i.~~~~~ -

\

We first note that , according to Theorem 2.3.4, if the density -

• function of X has , say , an interval for its support and is non-zero at

the endpoints of the interval, then m~ is a consistent estimator at the

endpoints, whereas ii~1.~ is not. The implication of this for finite sample

sizes is that iii~ is likely to ui splay a bias near the endpoints of the

X variable which m~ will not have.

According to Theorems 2.4.4 and 2.5.2, under appropriate conditions,

both %(x) and ñi~(x) have asymptotic normal distributions with mean

m(x) (for kernel type estimators) . However, the sequence of scaling

constants required for unit asymptotic variance differs for the two est-

imators; for %(x) it is (a2(x) fK
2(u)du/ (nc~)f 1(x) }½ and for i~~(x) it

• is {s(x) f K2(u) du/(nc~)f1(x) }½ . Since

• a2(x) = s(x) - m2(x) � s(x)

this indicates that iii~ may display more dispersion about in for finite

sample sizes than m~.

_ _  

A ,
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4.2 An Example.

In order to illustrate the behavior of the stimators in one specific

case, we have computed m~ and i~ for a set of artificial data. We have

also computed the approximate confidence intervals given by (3.2.26) for

in , based on ~~ The results of the computations are depicted in Figures

1-6, and we have also shown a scatterplot of the data and the true regres-

sion function on each figure. The data consists of n = 200 points

(X
~
,Y1) chosen independently with U(-3,2) and

Y. = X 3/ 3 + X 2 + .
1 1 1 1

where :~ is a standard normal variable independent of X1. Thus , for this

data 
- 

-

m(x) = x3/3 + x2 -

All calculations are for kernel type estimators with kernel function given

by a standard normal density function, truncated at + 3 and normalized

so as to be a probability density.

Figures 1 and 2 show the estimators m~ and iii~, respectively, with
.21 and Figures 3 and 4 show m~ and iii~ with slightly less smoothing,

n The previously discussed bias of is evident at the upper

endpoint on Figures 2 and 4, although m~ and do not differ by very

much at the lower endpoint. The difference in the asymptotic variances

of in~ and does not manifest itself in this example , although iii~ in

Figure 4 has a slightly more variable appearance than m~ in Figure 3.

Figures 5 and 6 show the approximate confidence bands given by

(3.2.26) for ~ - .1 , and c
11 

n~~
21 and c~ n 4, respectively. The

confidence bands (3.2.26) are asymptotically valid for any subinterval

of [-3,2]. In practice, however, one should consider these confidence

- -- - 
_  

- . - - -~~__ _ _

~ —~~~~~~~~ k L ~~~~~~~~~~ - ~~~~~~~~~~
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bands to be approximately valid only for intervals well within t3 c

support of X, since the earlier remarks on the endpoint bias of ii~
apply to the confidence bands also. These confidence bands were

calculated using the true conditional second m~~ nt

s(t) = 1 + [t 3/3 + t 2 ] 2

In practice, one would use an estimator of s(t), e.g. the consistent

estimator
l~~ 2Sn (t) = (ne~ ) 

~ 
Y.K((t-X

~
)/E

~
) -

i=l

4.3 Further Research.

Theorem 3.2.1 was proved for the process

(ne ) [%(t) - Em~(t)]

• [s(t)f(t)]

- 

• 
It should be possible to carry out a similar program for the process

½ _____— (ne~) [% (t) - 

Ef (t)
V (t) = 2 ½n [o ( t)/ f ( t ) )

A first step in such a proof might be to show the equivalence of V~ to

the process

V~(t) = 1f(t)/f~(t)]V~(t)

(in the sense of HV~ 
- = o~((log n)~~)) . Successive approximations,

as in Theorem 3.2.1 would lead eventually to the equivalence of ~~ to

the Wiener process of Theorem 3.2.2, and thus to the asymptotic distri-

bution of the maximun absolute deviation of V~.

_  

_  
I

L —--
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We have not been able to carry out the technical details of the

proof of such a theorem. However, if it were to be proved, one applica-
tion would be a confidence band such as (3.2.26), but based on

instead of 1
~rL’ and therefore narrower since mn is asymptotically less

variable than i~in

~~~~~ ~~~~~ _ _

~~~~~~~~~~~~~~~
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