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ABSTRACT

The techniques of ray-optics, which have provided meaningful results

in the study of electromagnetic and acoustic problems, are applied to the

integrated dielectric cylinder-cone configuration.

The method of geometrical optics is presented. The eiconal and

transport equations are derived. Asymptotic boundary conditions are dis-
cussed and a generalized reflection coefficient introduced. Before in-
véstigating the cylinder-cone non-separable geometry, an understanding

of the ray structure in both an infinite dielectric cylinder and, sepa-
rately, in an infinite dielectric cone is needed. This is accomplished
in the report and, consequently, amplitude and phase information is at-
tained. In addition, caustics are discussed. Caustics are envelopes of
the ray systems and, thus, are surfaces which separate propagating and
non-propagating (or complex evanescent) regions and characterize the

modal ray systems in non-uniform regions. The report concludes with a

.

discussion of the transition region between the cylinder and the cone.

Accossion For

NTIS CGRA&I B

! D¢ TAB (]
Uncmnounced 5

f i

£ SN

[}

L‘I‘.‘i o ¥ /

! /.

iyl abill ty _Codes

I Avail and/or

Dist special




1.

TABLE OF CONTENTS

INTRODUCTION

FORMULATION AND RAY OPTICS

RAY OPTICAL SOLUTIONS FOR DIELECTRIC
CYLINDER AND CONE

A. DIELECTRIC CYLINDER
B. DIELECTRIC CONE

COMPARISON OF THE RAY OPTICAL SOLUTION WITH
EXACT MODAL FIELDS IN THE DIELECTRIC CYLINDER

TRANSITION REGION
A. CONTINUITY OF RAY PATHS
B. REFLECTION COEFFICIENT
C. CAUSTICS

D. FIELD CONTINUITY
SUMMARY AND SUGGESTIONS

ACKNOWLEDGEMENT

REFERENCES

14

32

36

36

37

38

39

41

42

43




A e s SRS e SO

Fig. 1.

Fig. 2.

‘Fig. 3.

Fig. 4.

LIST OF FIGURES

Geometry and coordinates of dielectric cylinder

feeding dielectric cone.
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Qlc’Q;c’Q;c are on the conical caustic. Dashed ray tra-

jectories are hidden from view.

Fig. 5. Reflection and transmission of rays at a curved inter-
face between two dielectrics where n,,, are refractive
indices. The unit vector v is normal to the plane of

incidence which is defined by the unit normal N and

¢ the incident ray direction VSi.

Fig. 6. Geometry for determining ray tracing in the dielectric

cone. Point Po is located at (ro,eco,¢o) and P, at

(r1,6c0,¢1). The shaded portion identifies the caustic

regions. Note £ = 6, - 90.

Fig. 7. Projection on to the base of the cone (i.e., on to the

s gt . At

termination of the cylinder) to determine the ¢ varia-
tion of a ray as it progresses toward the conical tip
(a) a single reflection from the conical surface (b)

subsequent reflections from the conical surface.
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1. INTRODUCTION

The ray-optical method has provided physically meaningful results and

a convenient approach for studying electromagnetic and acoustic problems

in both the time and frequency domains [1,2,3]. A major contribution of
the method is the insight it gives to problems inaccessible by other
means. In attempting to determine the wave phenomena associated with a
waveguide and antenna integrated structure consisting of a dielectric
cylinder and cone, difficulty in analysis is immediately encountered be-

cause of the non-uniform geometry involved.

In studying the two-dimensional analogue--a dielectric slab feeding
a dielectric wedge--it was found advantageous to determine ray solutions
[4]. They, subsequentiy, were helpful in postulating a general plane
wave integral representation for the field structure in the wedge region.
Consequently, in order to gain insight into propagation and diffraction
effects taking place for the cylinder-cone configuration, a ray-optical

analysis was undertaken.

In Section 2, the method of geometrical optics is presented. The
eiconal and transport equations'are derived. Asymptotic boundary condi-
tions are discussed and a generalized reflection coefficient introduced.
Before investigating the cylinder-cone non-separable geometry, an under-
standing of the ray structure in both an infinite dielectric cylinder and,
separately, in an infinite dielectric cone is needed. This 1is accomplished
in Sections 3 and 4, respectively. Therein, amplitude and phase in-

formation is attained and caustics discussed. Caustics are surfaces which

i i e i e




i separate propagating and non-propagating (or complex evanescent) regions
and, as has been shown [2], characterize the modal ray systems in non-
uniform regions. Finally, Section 5 provides some insight into the transi-

tion region between the cylinder and the cone.
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2. FORMULATION AND RAY OPTICS

An integrated structure of dielectric cylindrical waveguide (of cir-

cular cross-section) feeding a cone of the same material is assumed to be
excited by a source to the left (see Fig. 1). Field components in the
dielectric can be dedrced from a scalar wave function ¥ [5], which satis-

fies the reduced wave equation

(V2 + k2) ¥(x) = 0 (2.1) E

with k = w /uoeosr,the wavenumber of a homogeneous lossless dielectric
of relative dielectric constant er. A time dependence of exp (Hwt) is as-

summed and suppressed. To obtain a unique solution to Eq. (2.1), either

i the tangential electric and magnetic fields at the air-dielectric surfaces
must be continuous or the tangent electric field on the boundary must be
linearly related to the tangent magnetic field (the so-called '"impedance
boundary condition"). This latter boundary condition can be expressed in
terms of the scalar wave functioﬁ Y by the relation 1 3

¥ (x)

-ik ¥(r) + £(z) =0 onB (2.2) ;

oV
where v is the outward normal to the boundary surface B, f(r) is related
to a surface impedance, and ¥(r) represents the solution to (2.1). For

an infinite dielectric cylindrical waveguide, impedance boundary conditions®

(1) (2) 3
Ez = -ch H¢ and E¢ = ch H, can be shown to reduce to (2.2) with f(r)
equal to a constant. For a conical dielectric structure, the conditions

(1) (2)

E, = -Zco H¢ and E¢ ® 2o & also can be shown to reduce to (2.2) but in

this case f = f(r) where r is the radial distance from the apex of the
*The quantities (E ,E¢,HZ,H¢)and (E_,E,,H_,H,) are field components in cylindrical

and spherical coordinates, respectively, whereas Zé;? Zég, i=1,2, are surface ,:
g

«F

impedance functions.




cone. In obtaining (2.2) the assumption is made that ¥ varies as exp(-i%z)a
exp(iad) where kz and 'a' are separation constants, i.e., wave solutions to
(2.1) are assumed to propagate forward the tip (in the -z direction) and to

rotate in the +¢ direction.

Following the development by Maurer and Felsen [2], a ray optics solu-
tion for .large k of the form
N

Y(x)rvI A (r) e
p=1 P

s (2.3)

is assumed. Each species (denoted by p) has an amplitude, Ap(g), assumed
to be slowly varying, and a normalized phase Sp(g). Inserting (2.3) into
(2.1) and equating to zero the coefficients of the k? and of the k terms

give, respectively,
2
(vsp(g)) =1 (2.4)
and
2 =
2V Sp(;_)- \ Ap(g) St Ap(g) v Sp(_:;) 0 . (2.5)

for any species p. Eqs. (2.4) and (2.5) are, respectively, the eiconal

and transport equations of geometrical optics. Their solutions provide

the amplitude and phase variations of the ray fields. It should be emphasized
that ray solr:tions are only asymptotic expressions and are not full wave
solutions. One way of examining the accuracy of a ray solution is to com-
pare it with the asymptotic form of a full wave solution. This will be

done for the cylindrical guide in Section 4.




Substituting the ray solution (2.3) into the boundary condition (2.2)

yields
3, (D)

ik 8 _(v) !
s A, (©) (—1 + £(x) ) =0 (2.6)

p=1 v

Eq. (2.6) can be satisfied by postulating the pairwise vanishing of terms

so that

s, as, ik §_ as,
]_A] £ R -1 +e [Aq‘[ £(z) == - 1] =0
or B (2.7)

Equating phases of the exponential terms in (2.7) yields
k sp =k Sq + 2[Im on B, (2.8)

where m is an integer such that initially ZEE is of order 1. From the

eiconal equation (2.4) and boundary condition (2.8), it can be shown that

(2.9)

The minus sign enters into.the above equation because reflection takes
place at the boundary. Using eqs. (2.8) and (2.9) in (2.7) gives

A = A B
q ¥ o on

'asp
r -1
A (2.10b)

f(x)

9s
i
f(x) 3 ol

I' is recognized as a reflection coefficient.

S




If the reflection coefficient is constant on the boundary B, it is
possible to construct an alternative formulation without destroying the
specular reflection condition (2.9). 1In this formulation, the phase of
T is incorporated into the phase function S rather than totally associated
with amplitude terms as was done in (2.10). Rewriting (2.7) in the form

ik S ik S i argl' + ik Sp

A e 14 Ap I'e P Ap]PI e

q i (2.11)

with T defined by (2.10b), leads naturally to the relations
A =A T kS =kS +arg T - 2mll. 212
q pl s q P . s )

If, furthermore,}rl =1, then arg I' = -1 &n I and (2.12) reduces to

A =A 2.13a
5 = ( )

k SP =k Sq +1if&n T + 2ml (2.13b)
where m is an integer. 5

‘The solutions of eqs. (2.4) and (2.5), subject to appropriate boundary
conditions [(2.10), (2.12) or (2.13)] in a given structure, is the subject
of the next section. Before préceeding, it ought to be pointed out that
the scalar wave function ¥ will be shown to be proportional to the longi-
tudinal component E, in the cylinder and to the radial component Er in the

cone.




3. RAY OPTICAL SOLUTIONS FOR DIELECTRIC CYLINDER AND CONE

The ray equations developed in Section 2 are now applied first to the
infinite dielectric cylinder and then to the infinite dielectric cone. The
asymptotic solution to the wave equation for the cylinder is found by solv-
ing the eiconal and transport equations in cylindrical coordinates subject
to appropriate boundary conditions. A similar result is achieved for the

cone using spherical coordinates.

When solutions to the eiconal equation are real, directions VSp describe
the modal-ray trajectories which satisfy the specular reflection law at
boundaries. However, when phase functions Sp(;) and VSp become complex,
real space trajectories cannot be defined. Surfaces which separate regions
of space wherein the phase function Sp is either real or complex evanescent
are called caustics. It will shortly become evident that caustics play a
dominant role in the description of the ray structure in both the dielectric
cylinder and cone. From knowledge of these phase functions in both geo-

metries, reflection coefficients will be determined.

A. DIELECTRIC CYLINDER

a. Eiconal Equation

Since the geometry of an infinite dielectric guide is cylindrical,
cylindrical coordinates are used (see Fig. 1). Following the procedure
developed for two-dimensional configurations [2], the phase function of
an arbitrary ray guided by the cylinder is assumed to have the separable

form

$(0,9,2) = R(p) + ®(¢) + 2z(z) (3.1)

e




where the prime denotes differentiation with respect to the argument. Re-

L —

Applying (2.4) yields

1

R'2 + o2 pré 4 2% e 1,

arranging terms gives
$'2 = —p2 (R'2 +2'2 - 1), (3.2)
Setting both sides of the above equation equal to a constant 'a' yields
32 - a2
(3.2a)

1= ZVZ - Rl2 + 32/02

Equating both sides of the latter equation to a second separation constant

(or eigenvalue) 'b' results in

Z' = - b2 (3.2b)

+

R' =

+

2 - a*/p? (3.2¢)

.

Integrating eqs. (3.2) is straightforward and gives, ignoring the addi-

tive integration constants for a moment,

o(¢p) =+ a¢

22) s £+ A «d2 2 @3 2(2) (3.3)

b

R(p) = +[(p%b? - a2)? - a cos™ (a/bp)] = ¢ R(p)

Combining (3.3) with (3.1) and introducing a composite integration con-

stant explicitly, gives phase functions




e

S(psd,2z) = + [(p?b? - 32)% -a cos-l(a/bp)] tapz/l-b%2z+c (3.4)

Phase fronts S = constant progress along ray trajectories defined by the
unit vector

2T (3.5)

- SR &
VS i-/ﬁ a?/p gpi-(a/p)%t a

A
where a

a i = p,¢,2, are unit vectors along the coordinate axes. From (2.4),

eight distinct phases are possible and are designated

sl,2 =+ R(p) + a¢p - Z(z) + cl’2
S3,4 =+ R(p) - ap - Z(2) + C3’4
(3.6)
SS,6 =+ R(p) + a¢p + Z(z) + CS,6
37,8 =+ R(p) - ap + 2(z2) + C7’8

where R(p) and Z(z) are taken as the positive signed quantities in (3.3).

b. Reflection Coefficient

Observing that the p-direction is normal to a cylindrical surface and
assuming again that species p reflects into species q at the boundary

p= pcyl’ (3.5) establishes that

as
—L2=-3 .vs-vé2-<§)2

It follows on using (2.10b) that

2 2
R i

at P = pc (3.7)

¥

eyl © 2 _ (82
fcyl(_l_') V‘ DI +1

yl

-




The boundary of a cylinder is characterized by a constant p-value.
Since the guide is rotationally symmetric and infinitely long, the para-
meter fcyl(g) and therefore the reflection coefficient Fcyl are assumed to
be independent of the ¢- and z-coordinates. A rigorous justification fol-
lows by referring to the exact modal solution presented in Section IV. If
it is also assumed that rays are totally reflected at the dielectric-air
interface, the absolute value of the reflection coefficient is unity and

boundary conditions (2.13) apply. Thus, cylindrical ray amplitudes are

not altered by reflection at the boundary (Ap = Aq from (2.13a)). Further-
more, since the rays obey the specular law of reflection and Snell's law
of refraction, it follows, for example, that rays progressing in the

(+p,+p , +z)-direction will reflect off the boundary in the (-p, +¢, +z)-
direction. In other words, ray specie S1 will reflect into ray specie 52’
83 into 54, S5 into 86’ and S7 into 88' This reflection property of ray

pairs at the cylinder walls is needed for solving the transport equation.

(- Transport Equation

The complex amplitude of a ray is given by the solution of the trans-
port equation, eq. (2.5). Restricting our consideration for the moment

to ray species S. and S, in (3.6) and referring to (3.4) and (3.5), the

1 2

transport equation in cylindrical coordinates can be shown to take the

form
PRV 3A 2A .
£2 A2 - azlpz'a—pl’z B2 St L b -0




where Al and A2 are the ray amplitudes associated with phases S1 and 82'

To solve (3.8), a product separable form
A = R(r)%(9)Z(2)

can be assumed. Since an incident ray specie S1 reflects off the dielectric-
air boundary into a ray specie SZ’ boundary conditions (2.13) stipulate

that A1 = A2 at p = pcy » wWhere pcy is the radius of the dielectric guide.
Imposing the additional constraints that the field must be rotationally
symmetric with regard to ¢ and must be bounded on the infinite z-domain
while recalling that amplitude (as well as phase) changes along a ray tra-

jectory are real, it can be shown that the amplitudes A, and A, are inde-

1
pendent of ¢ and z, Hence, (3.8) reduces to

PRI 2
3 A2 - a2fp2 dpi § e AR
/prZ = az
which has solutions
ALp) = Ry (2b%p? - 2a1)7%, 1=1,2, (3.9)

where Kcyl is a constant. Eq. (3.9) has the expected p.k variation which

is characteristic of cylindrical wave functions.

d. Caustics

Caustics are found by examining when real ray trajectories VS become
complex. From (3.5), trajectories are real when p > a/b and b < 1, i.e.,
p >a/b>a. If, however, either one of these conditions is violated,

phase functions become complex and evanescent behavior results. Thus, in

«]le




a cylindrical waveguide, caustics are cylindrical surfaces of radii (see

- i

Mg. 2).

D ™ a/b, bgl. (3.10)

Hence, for rays to propagate down a cylindrical guide of radius pcy 3

Pea < Pey (3.11)

4 e. Boundary conditions

It has already been noted that the direction rays travel down the

guide is altered by reflection from the cylindrical boundary p = pcy' In

particular (see Fig. 2), Sl—rays, which proceed in the (+p, +$, -z)-direc-

tion, reflect at the boundary into Sz-rays, which progress in the (-p, +¢, -z)-
direction. Appropriate boundary conditions are prescribed in Eqs. (2.10),
(2.12), or (2.13). This surface, however, is not the only boundary wﬁich
affects the rays. All rays are tangent to caustics and upon traversing

.

them experience a phase lag of ninety degrees. Thus,

ksl-ksz-nlz at p=op. (3.12)

Using the expressions for Sl and S2 given in (3.6) and applying (3.12)

gives

k (C2 - Cl) = 11/2 (3.13)




after noting that R(pca) is zero. Letting C, = =Cy as is done in [2], re-

sults in

k C1 = -k C, = - n/4 (3.14)

Combining (3.14) with S, and S, in (3.6) gives

1 2

S, = a(p) +ap - 2(2) - /4k
(3.15)

S, =-R(p) + ap - 2(z) + N/4k
where R and Z are defined in (3.3).

Since the field structure must be rotationally invariant, the

phase must satisfy the condition

S(p,$,2) = S(p,¢ + 2I,2)
The phase dependence exp (+ikag) then requires that

ka = n, n= inéeger (3.16)
related by (3.13),

Application of (2.13), with S defined in (3.15), C

1,2 1,2
and ka = n, yields the asymptotic modal equation for the eigenvalue b = bmn

2 k Rmn(ocy) = (2m + %) + i &nl , (3.17)

where

e T s

kxhn(pcy) //(kbmnpcy) n n cos (n/kbmnpcy)




£ The Mode Function

Modal fields in the cylindrical waveguide, which propagate in the
(-z, +p)-direction, can now be constructed by the superposition of the

S1 and 52 by
iks iks

v v A e + A

mn 1 (3.19)

The phase functions S1 o are prescribed in (3.15) with eigenvalues a and b
’

stipulated by (3.16) and (3.17). The amplitudes A have been shown to

1,2
be equal and to be functions only of p in (3.9). Thus, modal ray fields

are
K
cyl  cos [k /o?b%2 - a2 - ka cos‘l(ﬁlﬁ - /4]
(2b2°2 2 282) (o]
i [kap - k(1 - b2)% 2]
.e (3.20)
where K is a constant. K
cyl
B. CONE

a. Eiconal Equation

Fig. 2 shows the dielectric cone with the appropriate spherical geo-

metry. It is assumed that the phase is separable and has the form

$(r,8,0) =R.(D) + @ () + 0.(9 (3.21)

In spherical coordinates, the eiconal equation (2.4) becomes

RO TR A 72 T




A g

2 . 1,2 2 2 2
[r! +r—2®' -1][~c" sin” 6] = @!

Each side of the above equation is set equal to a separation parameter,

called ai, so that

0;2 - ai L 0.(4) = ta_ ¢ (3.22)
and
2 a’
p 12
)R -1 —— + @
sin” 6

A second separation constant, bi, is introduced such that

2
a
[-rzil[lt":2 -1] = bi and @2+ —— - bi ;
sin® 6

The first equation reduces to

/ b b
Ré("r)- tf 1- (r_c_)Z dr = i[?] tz - b(z: - bc cos-l [;9—]] (3.23)

while the second reduces to the more complicated integral




Y

2 " NS %
a (C” sin“ 8 - 1)
@azﬁbg-——g—)‘! de=acfc "
)

sin sin B8

5 [czf sin 6 df _f de ]
1 g ’
% & [Ci stn” § - 174 sin 8 [Cz ain 9~ 1];!

where C =b /a .
c c' “e

The latter two integrals were found in Gradshteyn and Ryzhik [6]

and subsequently evaluated with the result that

b cos 8

| (8) =% |a t:an-1 ges § —j- b sin-l(-c———— (3.24)
= / g 2 > {2 2
: (bc/ac)sinze - & L

Combining (3.22), (3.23) and (3.24) with (3.21) expresses the phases

of the conical rays as

3 S(r,0,¢) = ¢ ﬁc(r) * (8) = acgb-rc ’ (3.25)

where C represents a composite integration constant,

b
R (r) = A - bi - b, cos 2( <) (3.26a)

-16-




| - ¢ o -b cos 6
| @ (® = a_ tan 1 cos © - b, sin LR ) 9268

bzlaz)sin2 8 -1 2 a
¢ ¢ ¢
and modal-ray trajectories are described by

a
vs::A-m; 1:42 e zge:———°-—§¢ - £8.2m)

- sin (5] r sin 6

(3.27) can readily be shown to satisfy the eiconal equation (2.4).

As in the cylinder, there are eight ray species in the cone which are

defined by the phase functions

s * R (r) + @ (8) +a ¢ + Cg 19

9,10 -

811,12 ~ £ 8,00 - OXRO) *a$ +Cy 1y
(3.28)

833,14 = T R (X) + (®) ~ad+Cy 4,

,T
+

@ 815,16 = * R (D) - T e T T

) A

where ﬁ and are defined in (3.26).




b. Reflection Coefficient

Assuming a ray species p reflects into a species q, eq. (3.27)

shows that the normal derivative of the phase Sp at a conical surface,

39S a
- R ok EE c 2
v 24 e r c (sine) 2

depends on both r- and 6-coordinates. Thus, as defimed in (2.10b)

with fco(g), the reflection coefficient,

1 ChRNe
fco(r) r & (sin B) -1
rcone = 3 . = at 6 = eco, (3.29)
fco(s) T o (sin 6) e

.

unlike the cylinder reflection coefficient (3.7), is not constant on
the boundary of the dielectric cone (which is described by 6 = eco=
constant). Thus, asymptotic boundary conditions are not applicable.

Note, however, that symmetry implies that the surface impedance and

therefore the reflection coefficient are independent of the ¢-
coordinate. This implies that ray amplitudes might also not vary
with ¢, a conjecture which proves fruitful in the following analysis

of the transport equationm.
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c. Transport Equation

In the spherical coordinate system, the transport equation

(2.5) involves the gradient

+ L2947 1 oA ~
r 36 —6

V& = r sin 6 53 ,é¢

+

7l
Am>

and the scalar Laplacian

B
%s
Vsal L2383 (a1 48

B S 35 o  sin 8 B8 38 2> sin 8 345

For the cone configuration (Fig. 3), rays progressing toward the
boundary 6 = ecoin the (-r, +6, +¢) direction reflect into rays
progressing in the (-r, -6, +¢)-direction. These ray families are
represented in (3.28) by pha§e functions le and 812’ respectively.

The associated ray paths are described by

b ’ a
v -2 2l A2 ty?

c sin 9§ 8, (3.30

a
= SRS -
Eeli'z.'s:{.ne ]

The transport equation governing the amplitude behavior AlO and AlZ

corresponding to phases S10 and 512’ respectively, become on assuming

no variation with ¢ because of rotational symmetry




42 2 2 2 Z
/ b 2 sin"9 - a 2r - b b~ cos 6
2 es2 GAq 7 c ¢ oA - "¢

& WL~ (r ) or " sin 0 00 %

+
rz— b /%2 sin26 - a2
c c

where Ac = A10 and Ac = A12 correspond to the upper and lower signs,

respectively.

To solve (3.31), the amplitudes are assumed to have the product

separable form

A =R (@)

Substitution of (3.32) into (3.31) and introducing the separation

constant a, yield the differential equations

- 2 £2 2 2
é,@.,_ [bc cos 6 % a, 7o, sin" 0 - ac] sin 6
d 2 2 2
2 (b, sin”0 - a))
c c

=20~

A
c
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where again the upper and lower signs correspond to AlO and AlZ’

respectiyely. Integrating and combining yields

T B T L Y T ST NG TR S T VT g T . T TV iy e e gy

- K
Ac = R(z) E (8) = co (3.36)
2,2 2 2 Y
{r (= - bc) [(bcsinalac) -I]}

|
with %
1
o, = 0 !
5

and constant Kco : The condition o, = 0 results on requiring the

modal field solutions, and therefore the amplitudes, to be unique; a
direct integration of (3.34) yields a multiplicative factor

exp [- (ac/2 bc) sec-l(r/bc)] which is multivalued due to the presence
of the secant function and thus requires Q, - 0 for uniqueness.
Observe that cone ray amplitudes have the familiar r-l variation which

N

appears in spherical wave functions.

d. Caustics-

Caustic surfaces are determined from (3.27). It is clear that
a
solutions are real for sin © z_;g O Z'bc and imaginary when either
c

of these conditions 1s violated. There are therefore two caustics,

a sphere

r=b (3.37a)

el




e. Boundary Conditioms

It has been observed that rays incident on the conical boundary
(6 = eco) in the (-r, +6, +¢)-direction are characterized by the phase
S10 and reflect into the (-r, -8, +¢)-direction associated with the phase
S12 (see Fig. 3). Boundary condition (2.8) is therefore satisfied and

specifies that

kS,,=k S, + 2ml at 6 = eco (3.39)

10 12

Boundary condition (2.13), which is used to study the reflection of rays
from the cylindrical boundary, cannot be used for conical rays because

the reflection coefficient (3.29) is not constant at 0 = eco'

Fig. 3 also depicts an Slz-ray progressing toward the conical caustic
(6 = eca) with an Slo—ray leaving from a common tangent point. As was
noted in (3.12), £for rays tangent to a cylindrical caustic, S10 and S12
at the conical caustic experience a ninety-degree phase change stipulated

N

by

kS

L}
-
12

L}

N|=

at 6 = eca (3.40)

10 12

While this formulation was complete in the cylinder, it is not in
the cone. The spherical caustic r = bC serves as a reflecting boundary.
We then are forced to consider rays travelling toward the tip, in one
polarization, which bounce off the spherical caustie. A look at Fig.

4 indicates that rays incident in the (-r, -8, +¢)-direction will be re-
flected from the spherical caustic in the (+r, -6, +¢)-direction. Thus,

at the spherical caustic, we have the following conditions (see (3.27)):

23~

SERRTE




kS,=%k S, -

Nj=

at r = bc (3.41)

kS .=ksS

I
11 2

12

(see Fig. 4) so that

=1 -
k Sg k s11 5 at 6 = 0_, : (3.42)

ksn =k89+2mII at § = eco (3.43)

f. Tangent Electric Field on Conical Surface

Determining the asymptotic expression for the modal field in the cone
is more difficult than for the cylinder. This is largely due to the fact
that the boundary condition required is (2.8) rather than (2.13b). If we
consider rays propagating in the (-z, +¢)-direction only, then the ray

solution to the scalar wave equation in the cone takes the form

¥(x) «,Aloeiksw + Alzeikslz, (3.44)
where AIO and A12 are specified by (3.36) with different constants and the
phase functions S10 and 812 are given in (3.28). Instead of determining
the modal field at arbitrary points in the dielectric cone, we will derive
expressions for the tangent electric field at various points on its sur-
face. This field is important because tangent fields are needed to formu-
late an integral expression for the far field. The tangential magnetic

field follows in a similar fashion, but will not be discussed.

It is necessary at this point to relate the scalar wave function VY

b=

i s L Lol

Furthermore, Sg-and Sll-rays couple at both the boundary and conical caustic

1
]




given by (3.44) to the electromagnetic field. In a spherical coordinate
system, the solution to Maxwell's source-free equations can be expressed
in terms of two potential functions, A = rA and F = rF. The associated

wave functions¥? = A/r and Wf = F/r satisfy the reduced wave equation and

field components are given by [5].

E = -UxF - (1/4we)VxVxA (3.45a)

H= UxA - (1/4wy)VxVxF (3.45b)

Noting that ¥2 and Wf

satisfy the same wave equation, i, o. (2.1), we
may write Wf = COWa, where Co is an arbitrary constant. For convenience,
let incident and reflected wavé functions be defined in terms of ray species

S10 and 512, respectively

1
gl L 58"

L4 (3.46a)

10 ©

) o
T kS ¢ = (3.46b)

r
b A 12

It follows that in spherical coordinates, the electric field components

associated with these wave functions can be expressed, to order k, by

bl Pie e p_iksP
Egoeiks inkr [(3S"/3r)* - 1] A'e (3.47a)

sP

)
P - Epoeiks p ik (3.47b)

o asP. asP
9 5 —ink(r) (W) A'e

accasp/ar)

2P e1ksp
sin@

P
p 1kS
60 Afe (3.47¢)

=-ink

where k and N are the wavenumber and intrinsic wave impedance of the dielec-.
tric cone and superscript p = i or r for incident or reflected field com-

ponents, respectively.




The tangent electric field on the conical surface is expressed in terms
of the asymptotic vector amplitudes g:’r by

i

kS kst

o GRS RENpe: M | S s |
B Nx (E x_§)~(§x§o)e +(§x§°)e s (3.48)

~

where the outward directed surface normal N = 8. Following the develop-

ment of Lewis and Keller [7], the amplitudes §i’r are related to components
*

both parallel and normal to the plane of incidence, defined by the unit

A~

vectors VSi and N via the relations

R e (3.49)
—o - n -
with
~ A ~ A A
vs® x N = vst x N=(asinw) V, !}’r =V x VSi’r/nl (3.50)

and their associated unit

The scalar amplitude components Ei’r and E;’r

Qectors‘zi’r and V are parallel and perpendicular to the plane of incidence,
respectively. The index of refraction n, describes the dielectric material
of the cone and w is the angle of incidence defined in Fig. 5.

Using the expressions [7]

N x Ei = Ei cosw V + Ei NxV (3.51a)
and

G x EX =-gF cos w G + 8 § X G (3.51b)

- o ) - a=" - *

the tangent electric field (3.48) becomes

i » 4
R

*[t can be shown that E™’°.7S

** < 0 provided r -> b_
-
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i r ~
i ikS r ikS$S i iks
Etan (Epe - Epe ) Vcosw- (Ene

1. A single reflection from the conical air-dielectric interface

As the rays progress in the conical radiator toward the tip, their am-
plitudes are altered by Fresnel polarization dependent reflection coeffi-

cients [7]

r
)
p p/p’

which for ul = uz = uo are given by

/e-l— - sin?w-cos w
o 9

P /El— - sin®w+cos w
r

_//er - fr? sin? w - cos w 5 350)

/e: -e 2 gin? w+ cos w (3.54b)
r r

r

I‘ :
n
In addition, the incident and reflected phase terms satisfy the relation

ks = ksT + 2mm 8 =0, (3.55)

Applying boundary conditions (3.53) and (3.55) to (3.52), while consider-
ing surface points at which only one reflection takes place, yields

i
s (3.56)

i ~ i A )
Eian [Ep 1 - Pp) Veosw-E 1+ Fn) VxN] e

For (3.56) to be useful, relationships between the scalar ampiitudes E;,

i A\ o

> an’ E¢o

- in (3.47) must be established

E: and spherical components E

from (3.51a)

A A i

xBr e gl 948 raplcoswv+El NxV (3.57)
-o ro do = P - T

Using the definition of V in (3.50), and noting that vsi = 78,0 is given

=7

4
i
g
¥
é.




in (3.30), the vector V in spherical components becomes

i = [= (a./r sin 9)‘2 + (1 - bzclrz)12 éj/nl sinw = [v_ £.+ v éj/sin w

¢
(3.58)

Recalling that N = §, it then follows from (3.58) that (3.57) yields the

expressions
i i i
En (V¢E¢° + erro) / sin w (3.59a)
and
i i i
Ep (er¢o - V¢Ero) / sin w cos w (3.59b)

Thus, the tangential electric field on the conical surface 8 = eco, allow-
ing for one reflection, is prescribed by (3.56) with unit vector V, Fresnel
reflection coefficients and amplitude terms specified by (3.58), (3.53)

and (3.59), respectively.

. Multiple reflections from the conical air-dielectric boundary

As rays travel in the conicél structure, they experience multiple re-
flections from the conical boundary. Each reflection introduces two angu-
larly dependent Fresnel reflection coefficients (see (3.53)). The
tangent electric field can be obtained at successive reflection points along
the conical air-dielectric boundary by tracking a ray as it travels toward
the apex of the cone (see Fig. 3) and introducing these two reflection

coefficients each time the ray strikes the boundary.

Consider an observation point P, (rl, 8.0° ¢1) on the boundary 6 = 6_,

as depicted in Fig. 3 and Fig. 6. For incidence angle Wi it follows from

(3.53) that
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r i r i
Epl r'plEl:ul 2 Enl ot I'nIEul (3.60)

At a second reflection point P2 (rz, eco’ ¢2) and for an angle of incidence
r r i T :
Wy, Epl and Enl become Epz and Ep2’ respectively. Therefore, (3.53) and ;

(3.60) specify that

r i i T i i
EpZ 2 1.'p?EpZ 3 l-‘pll‘pZEpl > En2 5 I‘t12En2 I‘nlI‘nZE:nl (3.61)

By continuing the process of tracking reflections, we get at Pz(rz,6c0,¢£) i
for wi = wy a series representation of the form

2-1

i i i

E = B, w .61

p.2 = Tp1lp2 I‘p.JL-l b rp,mEp el
o=1
2-1

P 3 i

B,g ™ Tarfaz +o* Tp o1 =0T, B0 (3.61b)
m=1

where
I'p,m- I'p(wm) and I'n’m= I‘n(wm) (3.61c)

The incidence angles Vo are determined by tracking a ray as it travels
in the conical radiator. Consider the construction in Fig. 6. Observe
-that the ray directions from P° to Poc is given by V812 and from Poc to

P1 by Vle’ which for convenience is repeated as follows
V1 = =(1= (/D)) + (1/r) (b2 - (3 /s1n8)®)? § + (a/r sind) ¢
A (3.62)
The angle eo in Fig. 6 is found by taking the dot product of V512 and r,

and evaluating it at the point P_(r .8 .4 );

cos g = Vs, . (-f_) = (1- (bc/ro)z)’i (3.63)




From geometrical construction in Fig. 6,
61 = eo + Zeco (3.64)

r, = bc/sine (3.65)

1

Since the angle of incidence w, is defined as the angle between the ray

1
direction VS,, and the unit normal N = 8 at (r;, 8 %),
= A: 2 _ 21%
cos w; VSIO'Q- (I/rl) (bc (ac/sin 8)%) (3.66)

Using s -9 bc sin eca, (3.64) and (3.65), the above equation reduces to
= ;i = 2 ;i
cos w, sin(eo + Zecog (1 (sin eca/sineco) ) (3.67)

which specifies w, in terms of the known parameters eco, G} and 90. Fol-

1
lowing the above procedure, it becomes evident that the incident angle w

ca

2
associated with a ray reaching the conical wall at the point PE after under-
going £ reflections is given by the similar expression

- s ‘ 24
cos w, sinez (1 - (sin eca/sin Sco) ) . (3.68)
with
92 = ao + 2zeco (3.68a)

and 90 specified by (3.63). In Section 4, continuity of the field at the
transition region will be applied and relationships for the conical eigen-

values (ac,bc) will be found in terms of physical parameters.

Thus, after % reflections from the conical air-dielectric interface,

the surface tangential electric field at the point Pl (tl, S Ly ¢£) can be

co
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inferred from (3.56) and by using (3.61) to be

i X i
Etan,!. =[(cos w’?’)l!'.p (1 - I'p’z) 1 Pp,m lﬂ. - En (1 + I‘n,z)

(3.69)

~ ~ i
where V, = l(rz, eco’ wz) is specified by (3.58), vy by (3.68) and Sz by

2

S.. in (3.28) evaluated at Ty eco, ¢£‘ The ¢-variation experienced by a

10
ray as it proceeds toward the tip is illustrated in Fig. 7a and 7b.

3l




§

4. COMPARISON OF RAY OPTICAL SOLUTION WITH EXACT MODAL SOLUTION

IN THE CYLINDER

The expression for the guided modes of an infinite dielectric cylinder
are well known [8]. The longitudinal electric field component, assuming
propagation in the z-direction and suppressing the exp(-iwt) time depend-

ence, is given within the cylinder (p.i o ) by

cyl

ing - 1 v/ k2 - k2t z
By &l Gy p)e 4.1)

Allowable eigenvalues kt are prescribed by a rather complicated eigenvalue

equation, which can be found in [8].

The Bessel function in (4.1) can be expressed in terms of the Hankel
functions of the first and second kind of order n by
(1) (2)
H (kt P) + Hn (kt P)

n
d e, 0] 3 (4.2)

.

When kt p + o , the Hankel functions can be approximated by the (Debye)

asymptotic forms

' 2 _ ik -1 24 n
aﬁlz aids {Hg_ 02 - az)-lg é 1kt [}D = al) - a, cos (7§i] i3
t1 t k 1
t

(4.3)
3 o B ! I
Hkta1 (kt o) '/[HE: (p° - al) e

where we have set 0 = ktal' It should be pointed out that (4.3) are reason-

ably strong asymptotic expressions for Hankel functions in the sense that

«32e




they are not restricted to exceptionally large values of kt p but also apply

to moderate values. Using (4.2) and (4.3) in (4.1), the asymptotic of the

full wave solution becomes

S o el s
ikt al¢ i/k kt z eikt RFw(p) 14

Ez(E) ~ AF.W. . { %

where
2 A

AW V/Hkt (pz i ai);‘

and
a

By * =) <, °°s-1(’E}>

Since we are interested in the HE11 mode, n = 1 or kta = 1. Hence,

1

a, = =
S @

We now return to the ray-optic results. The scalar wave function

given asymptotically by (3.20) is related to the electric field Ez via [5]

E, = [&3/(-iwe)] ¥

b
Hence,
i tkap -1k /1-b2 2| 1 R + D
zzgp < ¥ k e
(2 b2p2 - 2 a?]
-1 (k R(p) + D)
+ e
where

' = 2 -
Kcyl Kcyl kt / (=3we)

1
e-ikt Rpy (@) + 17()’

(4.4)

~

(4.4a)

(4.4b)

(4.5)

(4.6)

(4.7)

(4.7a)




fl(p) =/ p%b%2 - a2 -a cos (bip) (4.7b)

A comparison can be first made between the phase factors in (4.4) and

(4.7). From the ¢ dependence, kta = ka = 1; hence,

1
a=gp (4.8)
From the z dependence,
kt
Bl =yl K2 = k/1- (5?2
and‘therefore
k
Gy
b = X (4.9)

If this ray solution is correct, the r- dependence must also agree. Thus, -

from (4.4) and (4.7)

k, R (0) = k Rp). (4.10)

From (4.4b) and (4.5)
B, R )™ /572 = 1 = cos™t| - (4.11)
t RFW P t pkt
From (4.7b), (4.8) and (4.9), it follows that (4.10) is satisfied. Thus,

the phase of the asymptotic of the full wave solution and the ray-optic

solution are identical.

In matching the amplitudes, we note, using (4.5), that the asymptotic

form of the amplitude of the full wave solution in (4.4a) takes the form

Ay = A/3 o7 2 - 7% (4.12)

=3l
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Using (4.8) and (4.9), (4.12) reduces to

A, = A Af; (2 p?b® - 2 az)-;‘ 2% (4.13)

Comparison of (4.13) with amplitude terms of the ray solution (4.7) com-

; pletes the identification. Since all fields in the guide can be expressed
! in terms of Ez, all asymptotic forms of field components of the exact modal
solution in the cylindrical guide agree with their ray-optical counter-

parts.

Because of the above comparison, physical parameters are now associated
with the separation constants a and b first introduced in (3.2). From
(4.8) and (4.9) it evolved that a = 1/k and b = kt/k’ where
K=k2+k2=wy ¢ € - For propagation in all directions, k > kt;

t z o o
hence, b = kt/k < 1, which agrees with (3.10). In addition, real ray solu-

tions have been shown to be confined to the region (see (3.10) and (3.11))

.

1
e e e (4. 14)

ca

oo

The asymptotic expression (4.4) also predicts propagation in this region. ?
g
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5. TRANSITION REGION

As shown in Fig. 1, the transition region is defined as the region
where the cylinder ends and the cone begins. It shall be assumed that the

apex angle eco is small so that diffraction effects caused by this disconti-

nuity in surface geometry can be ignored. The field across the transition
must nonetheless be continuous. This means that the asymptotic field
i.e., the rays must also be continuous; cylindrical rays must convert to
conical rays on crossing the interface r = T eca‘§ 8 < eco. To satisfy
these conditions and to understand the wave phenomena involved, the ray
direction in the cylinder, VS will be equated to the ray direction in the
cone in the limit of small eco. This will yield solutions for the conical
eigenvalues (ac, bc) in terms of cylindrical eigenvalues (a, b). Further
checks on the continuity of rays across the transition region follow by
investigating the continuity of reflection coefficients, caustics and the

fields.

A. CONTINUITY OF RAY PATHS

We first notice from (3.4) and (3.25), that the ¢ dependence of the phase

function in both the cylinder and cone are identical. Thus, we anticipate

that 3

a=a (5.1)

We now turn to VS in the cylinder (3.5) and in the cone (3.27). We

propose to express the conical result in cylindrical coordinates by noting

-36-




the simple geometric identities

_gzagrcose—gesine ‘
(5.2) ’
ép"ér- s:i.ne+_ae cos 6 i
Since © is very small, cos & >> sin 8, and we approximate (5.2) by _
.8 _ép:_ae (5.3)
Hence, (3.27) becomes
'/‘ bC 2 A 1 2 azc ~ ac 2
VsVl - (=) a +— - a +—.a (5.4)
Ip ) € . genip -P rTsin =

Equation (5.4) is now compared with (3.5); equating coefficients

of _§¢ and noting that Pp = Ty sin 9 gives a = a, which confirms (5.1).

Matching a, terms yields

bc = br,r (5.5)

Using (5.1) and (5.5) in the 5p term of (5.4) agrees with the corresponding

o .
_a_p term of (3.5), insuring continuity of ray paths.

B. REFLECTION COEFFICIENT

At surface transition points (rp, 6, 0 < ¢ < 2l), reflection coef-

ficients in the cylinder and cone must be approximately equal so that con-
tinuity of the ray fields is maintained. From (5.1) and (5.5), the reflec-

tion coefficient for the cone rays (3.29) becomes

-37=




2 2
PoE (&) A - @le )P 1

= i (5.6)
co 2 2
£, & /b (a/pcy 1% 1
which agrees with (3.7) provided
£, = fcyl at r =r,, 8 = eco, 0< ¢ <2I (5.7)

C. CAUSTICS

We begin with an examination of the spherical caustic in the cone
r= bc E T.at The radius of this caustic is related to Tr according to

(5.5); hence,

Rai ™ brT (5.8)

The parameter b is related to wavenumbers k and kt by (4.9).
We must now verify that the radius of the conical caustic at (rt,eco) equals

the constant radius of the cylindrical caustic given by (4.14). e note

from (3.37b) that the conical caustic is ‘given- by

[})

a-l
brT tTkt

sin 6
. c

C

B e—— oy
a b
c

where use was made of (4.8) and (4.9), (5.1) and (5.5). Thus,
1
Tr sin eca = r; (5.9)
From (4.14),
at the transition region (5.10)

Pea ©

"srl,_.

Thus, the caustics connect continuously across the transition region
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D. FIELD CONTINUITY

Since the tangent field on the conical surface was formulated in (3.69),

a convenient way of insuring field continuity across the transition region

is to match field components at the surface point (rT, eco). The tangent

electric field at this point is given by (3.56) which has two field com-

- oCO see
ponents Er = Er and E¢ E¢ . Hence, we can insist that at (rT, eco)
cy _ pCo ey _ oco
Er Er , E¢ E¢ (5.11a)
and, similarly, that
CY . y©° cy _ €O
Hr Hr 3 H¢ H¢ (5.11b)

The superscripts clearly designate the field component as being associated
L with the cylinder or the cone. From gedmetrical considerations, we note

that at (rT, eco)

Y

- 27 cy Y o 4y cy
. Ez cos eco + Ep sin eco S Hr Hz cos Bco + Hp sin eco

(5.12)
In Section 4 we have compared the asymptotic form of the exact solu-
tion for the electric field Ez £ E:y in the infinite dielectric cylinder with
the ray optical solution (see eqs. (4.4) and (4.7)). The remaining field

components follow from the expressions [8]

-

b £ ‘
" T G s W T | P B B e’ S t

P2 Lz P, L2 (P o3 ,

. & « (5.13a)
- ~ k_OH 3E_; ;
i\, OH E_ | cy «f | g % z!
- | - — —_— e - Y ——
ncy - —i— ‘kz ..—z + Ee—_—z- P9 n¢ kz o) a¢ ap )
P a2 L. W P W

E ¢ : (5.13b)
where the phase factor exp (-ikzz), k, = (k? - kt)k, has been suppressed

=39




and Hz is proportional to Ez’ i.e., Hz = AoEz where Ao is known from con-
tinuity of the tangent fields across the cylinder air-dielectric inter-
face [8]. Hence, since the field associated with the cylindrical waveguide
is known to within a single constant, then by setting the constant A in

(4.1) to unity and applying continuity of the tangent electric field (5.1la)

at (rT’eco)’ the unknown constant AP and phase constant cP in (3.46) or

(3.47) can be found numerically. Continuityof the tangential magnetic

field given by (5.11b) would then have to be checked.
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6. SUMMARY AND SUGGESTIONS

The modal ray structure in a dielectric cylinder has been presented.
Its validity was substantiated by a comparison of the longitudinal electric
field component derived ray-optically with the asymptotic form of the exact
modal solution. Ray species, trajectories, caustics as well as phase and
amplitude variation of rays were all adequately explained. We next exam-
ined a dielectric conical structure and ascertained the ray description.
The cylindrical caustic in the cylinder was seen to evolve continuously
into a conical caustic in the cone. A spherical caustic was found centered
at the cone's tip. Skew rays were carefully tracked in the cone and the
surface tangential electric field was found asymptotically in terms of
Fresnel polarization dependent reflection coefficients. Finally, a proce-
dure was outlined for establishing field continuity across the transition

region between the cylinder and the cone.

The above ray-optical treatment of the wave guidance of the integrated
cylinder-cone structure is to be considered a first step in understanding
the wave processes taking place. The next step, in analogy with our treat-
ment of the dielectric slab waveguide-wedge antenna [4], is to formulate an
integral representation for the surface field which asymptotically reduces
to the above ray optical result in the transition region. A surface inte-
gration of this field will then enable us to find the radiation pattern of

the cone.
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