< AD=AO76 317 SYRACUSE UNIV N Y F/6 9/5

NONLINEAR CIRCUIT ANALYSIS PROGRAM (NCAP) DOCUMENTATION. VOLUME==ETCI(U) ~N
SEP 79 J B VALENTE » S STRATAKOS F30602-79—C-0011
UNCLASSIFIED RADC=TR=79=245=VOL~3

g - =

i
|

RADC-TR-79-2483, Vol Il (of three)
In-House Report
September 1979

Lo gy

b NONLINEAR CIRCUIT ANALYSIS ‘

¢ PROGRAM (NCAP) DOCUMENTAT'ON 4

‘le Programmer’s Manual

Q Mr. Jon B. Valente, RADC

¢ Ms. Sharon Stratakos, Syracuse University (

& 4 ‘

S 5 ,

. ¥

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

Air Force Systems Command

A
S
=
| § ROME AIR DEVELOPMENT CENTER
| Griffiss Air Force Base, New York 13441
9

%9 11 07 uia

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY

PRACTICABLE. THE COPY FURNISHED
TO DDC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

R s

e g PODEHTE L TR VI N YN e s e

_/(’:'/ /1 .4/;"\;..... / (LT /71; - /9 =~2 ‘/:, b VC YJ’

———— — RETPRRPEIT—————— L

§
O ™

<l S

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)
REPORT DOCUMENTATION PAGE oL L s, R
[T, REFORT NUMBER 3. GOVT ACCESSION NO.| 3. RECIPIENT &CA A]js NUMBER
RADC-TR-79-245,~Vol III (of three)—(a/:
Ao TiTir b parre 2 e S. TYPE OF
ONLINEAR é,mcurr ANALYSTS PROGRAM (NCAP) | =
UMENTA =

i |_In=House-and,
ONe VZ“/U me. Zf.Z P o g [May W78 —J4
Programmer "’ S‘Manual. =~ X B

e e N/A

- A)’_I!‘_Q.yﬂ——-—-um.... 8. CONTRACT OR GRANT NUMBER(s)
Jon B./Valente In-House and Contract

5. PERFORMING ORGANIZATION NAME AND ADDRESS 10" PROCRAM ELEMENT, PROJECT, TASK
Rome Air Development Center (RBCT)

Griffiss AFB NY 13441

Syracuse University, Syracuse NY 13210

Sharon /étratakos \ g/—ﬂ F}Z"]lﬁ”—f‘“ﬁﬁ'—%c— T : W
B . \- e ——— __}
(L)

[23380314/23380317

1T NUMB e

62702F b // (f_:::j

11. CONTROLLING OFFICE NAME AND ADDRESS

Rome Air Development Center (RBCT)
Griffiss AFB NY 13441

4. MONITORING AGENCY NAME & ADDRESS(if different trom Controlling Office) 1S. SECURITY CLASS. (of this repor?)
Same
UNCLASSIFIED

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

N/A

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. D O

17.. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY NOTES
RADC Project Engineer: Jon B. Valente (RBCT)

19. KEY WORDS (Coantinue on reverse side if necessary and identily by block number)

Electromagnetic Cowpatibility Computer Program
Nonlinear Analysis Volterra Analysis
Nonlinear Circuit Analysis Computer-aided Circuit Analysis

¥20. ApsT] ACT (Continue on reverse side if necesaary and ldentily by block number)
qe Nonlinear Circuit Analysis Program (NCAP) is a circuit analysis code
which uses the Volterra approach to solve for the transfer functions and node
voltages of nonlinear circuits. To increase the transportability, the code was
written in ANST FORTRAN. The code was revised and documented in a joint effort
using both in-house and contracted manpower. This documentation is a result of
hat effort. The documentation is made up of three volumes: the Engineering
.~ual, the User's Manual, and the Programmer's Manual.

l K (Cont'd)

g T UNCLASSIFIED

3 iy o) < R B

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

-

ey e AT W e - - —

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

The Engineering Manual, Volume I, contains the introduction to the

documentation, a description of the theory upon which NCAP is based, and the
procedure for obtaining the input parameter data.

The User's Manual, Volume II, contains a detailed description of the

NCAP input language. The description includes the input commands and data
requirements. Examples are used throughout the manual to aid the user in

understanding the input language.

The Programmer's Manual, Volume III, contains a subroutine by subroutine
description of the code. Each subroutine has a trace map, functional flow
diagram and narrative which will help the programmer to understnad the
structure of NCAP.

UNCLASSIFTED ;

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

P e

- T T e e s " T ————————

U

INTRODUCTION
MAIN

ALPHA
DATOUT
DECIF
DECIM
DRVOUT
ECIN
ENDIN
GENIN
GENOUT
INTEG
JFETIN
LCIN
LDSIN
MODGIN
MODIN
NCIN
NDSIN
NOLEIN
PACKL
PACKR
PLOTIN
PRCSS
PSIN
PTIN
SCAN
SCIN
SDIN
SEIFT
TRNIN
VDIN
VTIN

PHASE1
CPMTJF
CPMTSD
CPMTVD
CPPT
CPT
CPVT
DERIDS
FIDS
IMLOC
MTPT
MTT
MTVT

£

Table of Contents

ccession For

DDC TAB ;
Unannounces

s3Picut 100
Justiil

e

SO
B-.\',,_,w"‘""’ﬂ G
piateinvs Lo b
g1t ARt lALL o
W et
pist | 03]
; B A

iii

WOJO N WA

= e
B W N T

= b e
W~ o

o
el

AU WNDEFER

PHASE?2
MTLDS
MTNDS

ZIADD
PHASE3
BEETA
CONTRL
CROSS
CURGEN
CURJF
CURNC
CURNDS
CURPT
CURSD
CURT
CURVD
CURVT
FNCTN
FRPRM
LCCTF
OFN
SSCODE
TRIANG
UPFRQ
UPSEQ

PHASE4
BHMMSS
PRNTIM
PRSET
TFTONV

PHASES
CHNGE

PHASEG
PHASE?

UTILITY
CXADD
CXDIV
CXMPY
CXPOL
CXsue
DATARD

DATAWR

DRIVRD
DRIVWR
EPROR
FUN
LSEIFT
RSEIFT

iv

80
81
82

84
85

87
88
89
99

92

Lk at

—

Voo

SS8COD2
TFRD
TFWR
TIMOUT

.

93

95
96

e e

i gk e e e SN . el

INTRODUCTION

RADC NCAP is a Fortran program which computes the transfer
functions of electronic circuits. Although the program is large
and its analytical technique complex, the modular structure,
adherence to naming conventions for subprograms and variables,
and numerous in-line comments allow NCAP to be readily adapted to
any computer with an appropriate Fortran compiler.

The program consists of eight phases, numbered @ through 7.
Each phase performs a distinct portion of the circuit analysis
and operates independently of the other phases. The only
interphase communication is by shared disk files: the driver
file, which is a translation of the NCAP asterisk input cards to
a machine readable de;cription of the circuit analyses to be
performed, and the data file, which contains all circuit element

input data, calculated device parameters, admittance matrices,

and transfer function vectors. Although several other disk files

are used by NCAP, their function is to conserve core storage and:

to ease the transmission 6f internally generated data between the
subprograms which comprise individual phases. Detailed
descriptions of the NCAP disk files are contained in the
narrative description of Phase 1.

Phase @ 1is the input processor for NCAP. It reads and
‘interprets the input deck., mapping the input cards to appropriate
driver and data file records. Phase 1 calculates the device
parameters for each circuit element, collects and tabulates the

circuit's frequencies, and determines the size of the admittance

vi

~%
-r»

e N

matrices. Phase 2 constructs the admittance matrices, one for
each possible combination of the circuit's freguencies. Phase 3
constructs the current vectors and calculates the transfer
functions for each freguency combination. Phase 4 prints the
results from the circuit analysis performed in Phases 1-3 and
controls frequency sweeping. Phase 5 controls linear component
sweeping, Phase 6 controls device modification, and Phase 7
controls generator modification.

Since numerous circuit analyses may be specified by a single
NCAP input deck, the path of execution through the program phases
is not necessarily sequential. Execution always begins at Phase
2 and proceeds segquentially through Phases 1-4 to perform the
first circuit analysis. From Phase 4, program execution either
reverts back to Phase 1 to initiate a new analysis if frequency
sweeping is specified, or proceeds to Phase 5 if frequency
sweeping 1is not specified or after all such sweeps have been
satisfied. 1In a similar fashion, Phases 5, 6, and 7 may either
cycle back to Phase 1 or proceed on the next phase depending on
the linear component sweeping, device modification, and generator
modifications specified in the input deck. Program execution
ends with Phase 7 after the last (if any) generator modification
has been effected.

Each phase is composed of a principle subprogram which
controls its general operation, a group of secondary subprograms
which perform specific operations for individual circuit elements
or NCAP functions, and 1in some cases, additional support

subprograms which perform operations unicue to that phase. The

vii

el

L

e

program is organized sequentially by phases. Within each phase,
the principle subprogram appears first, followed by the
secondary and support subprograms in alphabetical order. A group
of shdared support subprograms, such as those which perform disk
input/output or complex arithmetic, follow Phase 7 and appear in
alphabetical order.

The principle subprograms of each phase are subroutines,
with the exception of Phase @ whose principle, in order to
satisfy the reguirements of Fortran, 1is NCAP's main program.
These principle subroutines are named PHASE@, PHASEl,...,PHASE7.
With the exception of but two function subprograms, the remainder
of the NCAP subprograms are subroutines.

Wherever possible, the subprograms are named according to
specific conventions. Subprograms which perform specific
functions related to circuit elements are prefixed or suffixied

with a device identifier:

GEN Generator

JFET (or JF) = Junction Field Effect Transistor

LC = Linear Components

LDS = Nonlinear Dependent Source
NC = Nonlinear Components

NDS = Nonlinear Dependent Source
PT = Vacuum Pentode

SD = Semiconductor Diode

T (or TRN) = Bipolar Junction Transistor
VD = Vacuum Diode

vT = Vacuum Triode

viii

Furthermore, within each phase the secondary subprogram names
contain functional identifiers:

IN = Read and interpret input cards

Cp = Calculate parameters

MT Create matrix elements

CUR Calculate current elements
Together the device and functional 1identifier. describe the
purpose of the subprogram- GENIN = 1input genexator card
sequence, CPPT = calculate pentode parameters, MTT = create
transistor matrix elements, CPMTVD = calculate parameters and
create matrix elements for vacuum diode, CURNDS = calculate
current elements for nonlinear dependent source.

At the support 1level, subprograms which perform complex
arithmetic are prefixed by CX (CXADD, CXDIV, etc), while disk
I/C routines are suffixed by RD and WR (DATARD, DRIVWR, etc.).
Support subprograms whose functions are too specific to be
categorized are named as descriptively as possible: LOCTF =
locate transfer function, FRPRM = create freguency permutation.

The program code for subroutines PBASEl through PHASE7 are
all organized alike. Execution 'through these routines is
controlled by reading and processing the driver file records
sequentially. Each driver record contains a functional
identifier or mode, which serves as the index of a computed GO
TO, selecting the proper code segment to process that record.
The coding for each driver function is arranged numerically by

mode within the subroutine and begins with the statement number

mﬁi’i"vﬁj"-/—' e

2‘ equal to the value of the mode. Additional statement numbers

N

§
|
B
13
¥
i
4

within a code segment are assigned in increments of 10@8. For
example, a section of transistor code would begin with statement
9 (the transistor driver mode), and proceed through 109, 209,
309, and so on.

In a similar fashion, the IN family of subroutines (input
card processors) share a common organization. Execution through
these subroutines is based on a computed GO TO using the caxd
type identifier as an index. The coding for each card type is
arranged numerically within the subroutines and statement numbers
are allocated in increments of 100 within code segments.

The narrative descriptions of the NCAP subprograms which
follow are arranged in the order in which they appear in the
program: by phases, and within phases, by alphabetical order.
Each subprogram description contains a brief statement of
purpose, followed by a variable list, subroutines called, calling
programs, and a detailed narrative of the program code. Wherever
possible mathematical algorithms are summarized and tables of all
possible computed results are presented.

To avoid repetition, variables which are used globally are
listed only in the Phase @ description or in the first principle
subprogram in which they are used. 1In the secondary and support
subprogram descriptions, only local variables (or in some cases
less frequently used global variables) are listed.

Machine dependent code has been clearly identified in both
the program listing and narrative descriptions in order to ease
the adaptation of NCAP to various computer systems.

Functional flow diagrams for each subprogram have been

aak ohane s il

included to provide an insight into the general flow of 1logic
through the program. They are not intended to describe the
analytical techniques employed in the program or to depict the
program code in detail. 1Individual symbols of the flow diagrams
generally represent several lines of program code or complete
code segments. Wherever possible, diagram symbols have been

labelled with appropriate statement numbers from the program.

e e —— T U S UISUR P ————

MAIN

ALPHA
DATOUT
DECIF
DECIM
DRVOUT
ECIN
ENDIN
GENIN
GENOUT
INTEG
JFETIN
LCIN
LDSIN .
MODGIN
MODIN
NCIN
NDSIN
MODEIN
PACKL
PACKR
PLOTIN
PRCSS
PSIN
PTIN
SCAN
SCIN
SHIFT
TRNIN
VDIN
VTIN

T

e s i
TP RN R e e

ekl
e I)
€

. e ‘ & v e
S—
J ‘ ey
.y
m 182 mw -]
]
= & _ 7
M
4
i
t
-
o N O A T AR T TN A O TS) S e R AR - - ‘ m
i stles il

R T D e

!
!

@ ——

Y AT VA

o mmen——— L

——

—
H
] e v
S —

NAME: MAIN

TYPE: MAIN PROGRAM

TP

g GENERAL PURPOSE: | 4
' Disk file definition, system initialization, i

control of input phase

VARIARLES:
% BUFF = I/O buffer for disk records
| CARD = Input buffer for card image. One character
per word, alpha representation, left-justified
DATREC = Next available location on data file (20)
_ DRVREC = Driver file (21) address'pointer
} IMAGE = Print buffer for input card images
INP = Logical unit number of card reader
E I0UT = Logical unit number of line printer
§ JART = Input error switch: off = 0, on = 1

LNGTH = Length of data record in words

P —

MAXIT = Total number of frecuency sweep iterations

MDESV = Mode of previous *-card

MISC = Driver record parareters unicue to each mode iﬁ
: MODE = Identifies circuit element, device model, or NCAP
E function

1l = Crive file header
2 = Comment Or no-op

ip 3 = CGenerator

e e T R

11 = Not used
12 =

13

14 =
15 = Wot used

| 16 = End

| 17
' 18 = Modify

J 19

Not used

2e

[}

21 =

22 = Plot

RS T i

23

Not used

24 =
25 =
26

MODFY = Modify switch: @
1

‘NART = Error switch for

End Circuit

= Linear Components

4
5
6 =
2
8

= Nonlinear Components
Vacuum Diode

= Vacuum Triode

= Vacuum Pentode

Pipolar Junction Transistor

femiconductor Ciode

Freauency Sweep

Start Circuit

Print Select

Junction Field Effect Transistor

Generator Modification

Linear Component Sweep
Linear Dependent Source

Nonlinear Dependent Source

Modify not in effect

Modify in effect

node card-

@ = Node card present

3-1F

NBCHAR
NBWORD
NCHAR
NCOM
NCURV

NEW

NFR

NIT
NLIST
NPLCT
NVEC
NXT

CRLER

SCREC
STADD
TIME
TSTART
TSTOP

TTCTAL

"

e S SIS i 7 a_.-u.-_“__-Qi.._.M

1 = Node card missing
Number of bits per character
Number of bits per word
Number of characters per word
Number of successive comment cards
Number of curves defined by circuit analysis

Identifies input card being processed:

-1 Unidentified card, card out of ordex
@ = Parameter card

1 = Not used

2 = Comment card

>2

*-card

Number of freguency values for abcissa of
plot

Freauency sweep iteration counter

Print select on/off switch: @ = on, 1 = off
Number of plot specifications in input deck
Number of t.f. values for ordinate of plot
Counter for data values being input

Total number of nodes in circuit:

Order of admittance matrix

Location of *START CIRCUIT driver record
Data file (20) address pointer

Time elapsed in single program segment
Start time of single program segment

Stop time of single program segment

Total time elapsed all executions single
3-1G

 ——
$.

TYPE

program segment

= Identifies type of parameter card:-

l = *-card

2

O 0 N O u»m

10
11
12
13
14

Data values only

Impedance
Freguency
Order
Node
Amplitude
Resistor
Capacitor
Inductor
Constants
BP

CpP

AC

S

Vb A TSR

S ol YR) S

SUBROUTINES CALLED:
PECIF - PRCSS PTIME RANSIZE RSHIFT SHIFT

CALLING PROGRAMS*

NONE

DESCRIPTION -

* NCAP's main program is the primary routine of Phase 0. It

performs initialization of system parameters and reads the input

deck. System initialization begins with the definition of NCAP's
disk.files. Because different Fortran compilers 'employ various
methods for specifying random access files, this function is
considered machine dependent. Therefore the structure and method
of accessing NCAP's disk files are presented here to enable the
reader to translate the particular random access I/0 requirements
of NCAP into appropriate file definition statements.

The data file, logical unit 20, contains the NCAP input data
and all internally generated data and results such as device
parameters, admittance matrices, and transfer function vectors.
The data file is structured as an unlimited number of contiguohs
one - word physical records, each of which 1is addressable
according to 1its relative location in the file. A logical
record, such as a device data record or a transfer function
vector, consists of an arbitrary number of physical records and
is accessed by the first word of the record and the record
length. The integer variables STADD and DATREC are used as data
file record pointe:s; Subroutine DATAWR causes data to be

written from core storage to file 20, while subroutine DATARD

3-11

o e o R

RS

causes data to be read from file 20 to core storage.

The driver file, logical unit 21, is a mapping of the * -
input cards to disk storage. It contains the information
required to define the circuit and the circuit analyses to the
system, and is used to control the operation of the varioﬁs NCAP
phases. The driver file is initially created during Phase @ as
input cards are processed, and 1is modified or updated as
necessary during subsequent phases. Each * - card in the input
deck maps to one or more driver file records, which originate
from the first ten words of global common. The first three words
of each driver record, MCDE, STACD, and LNGTH, identify the
function and define the boundaries of its associated data record
on file 20. The additional words MISC(l) through MISC(7) cortain
parameters and pointers unigue to each NCAP function. The driver
file is accessed by subroutines DRIVWR and DRIVRD. Individual
driver records are addressed by the record number stored in
DRVREC. '

File 22 contains frequency data used as the abscissa for
plotting NCAP output. Each record contains ten frequency values,
one for each of the ten possible plot specifications in the NCAP
input deck. The number of records in the file is maintained in
the integer word NFR and depends upon the number of circuit
analyses performed in the NCAP run. File 22 is accessed directly
by random file read/write statements.

File 23 contains the transfer function values used as the
ordinate for plotting NCAP output. Each record contains twenty

words and stores one complex (two- word) transfer function wvalue

3-1J

B R TITITITON

for each of the ten possible plot specifications in the NCAP
input deck. The number of records in the file is maintained in
the integer word NVEC and depends upon the number of circuit
analysis performed in the NCAP run. File 23 is accessed directly
by random file read/write statements.

File 24 contains the transfer function table created in
Phase 3 by subroutine CONTRL. It is made up of the lower-order
transfer function vectors required by the current generator
subroutines, and consists of a large number of contiguous
one-word physical records, each of which 1is addressable. Each
logical record stores one complex trdns%er function vector whose
length depends upon the number of nodes in the circuit. Transferx
‘function vectors are accessed according to LOCT, the address of
the first word of the record, and LT, the length of the record.
Transfer function values at a particular node are accessed by the
first word of the vector plus a displacement factor derived from
the node number. Subroutine TFWR and TFRD perform input/output
for file 24.

File 25 is used to store the current vector calculated for
one freoguency combination in Phase 3. The file contains one
logical record, the length of which is determined by the numbex
of nodes in the circuit. Current vector values for each node of
the circuit are individually addressable. Subroutines TFWR and
TFRC perform input/output for file 25.

The system initialization portion of Phase @ begins with the

definition of NCAP'S machine dependent character manipulation

parameters which are transmitted to the subroutines which use
3~1K

them through the labelled common area WORDSZ. The integer
vériables NCHAR (number of characters per word), NBCHAR (number
of bits per character), and NBWORD (number of bits per word)
describe precisely the word length of the host computer and its
method of representing alphanumeric characters internally. The
alphanumeric left-justified blank, LBLANK, is defined in a DATA
statement. The right-justified blank charactex, RBLANK, 1is
calculated in the main program by a call to subroutine SHIFT.

Next the logical unit numbers of the primary input and
output devices, wusually the card reader and line printer, are
stored in INP and IOUT respectively. The frequency sweep
parameters NIT and MAXIT, the plot parameters NCURV, NFR, and
NVEC, and the print select and plot switches NLIST and NPLOT are
initialized in the main program and updated and tested during the
execution of subsequent phases.

The input phase begins with the initialization of Phase 0
pointers, switches, and data areas. The data buffer BUFF(I), I=1,
250 is cleared and the driver file record number DRVREC is set to
2, leaving an open record for the dfiver file header which is
generated internally at the conclusion of Phase 0. DATREC, the

next available storage location on data file 28, 1is initialized

to 1, as is the data file address pointer STADD. The input error

switch is turned off by JART = 0, while the node card error
switch is initially turned on by NABT = 1. The data value and
comment card counts NXT and NCOM are cleared and the Start
Circuit driver record number SCREC is set to zero.

Since the exact content of the NCAP input deck is not known
3-1L

in advance, 1input processing is not merely a matter of reading
and storing data in a prearranged fashion. Instead the
subroutines of Phase @ act 1in concert to interpret the input
cards, translating them into appropriate driver and data records
for use by subseguent NCAP phases.

The input deck consists of a series of *-control card
sequences which define circuit topology, circuit excitation,
linear and nonlinear elements and models, solution modification,
and output. Each such card sequence begins with an *-control
card defining its function, followed by parameter cards thét
supply additional information and/or precise values for that
function.

Phase @ is driven primarily by the *-control cards.
Whenever an *-control card is encountered in the input stream,
the previous function 1is closed by writing its driver and data
records to disk, and a new function is opened. Parameter
(nonasterisk) cards are passed along to a subroutine unique to
the function defined by the previous *-card. There the parameter
card is processed according to an anticipated format and its data
merged with any previous data for that function. Input continues
in this fashion until the *END card is processed, at which time
program control transfers tg PHASEL.

Input processing is vcontrolled by NCAP'S main program and
begins by initializing the function identifier MODE to 1,
indicating that no input card sequences have yet been processed.

A card 1is frfead 1in left-justified alphanumeric foxrmat, one

character per word, into the integer array CARD. If an
3-1M

e

unanticipated end-of-file is encountered, execution terminates

with a CALL EXIT. Otherwise the card image is transmitted to

‘subroutine DECIF where it is examined and assigned a functional

‘integer code which is returned to the main program in NEW. Upon

return from DECIF, NEW<P indicates an unidentified card which 1is

‘not processed further, and after printing an appropriate error
.message program control transfers to read the next card.

‘Otherwise the card is either a comment (**), an *-control card,

Or a parameter (non-asterisk) card. Comment cards, identified by

NEW=2, are printed on the line printer but otherwise ignored by

.Phase 0.

When an *-control card 1is encountered in the input deck,

subroutine DECIF returns a value of NEW>2 to the main program.

This causes the 01d function identified by MODE to be closed and

the new function identified by NEW to be opened. Control passes

from the main program, through subroutine PRCSS, to an

appropriate input processing subroutine which closes the previous.

*-function by writing its driver and data records to disk, and
printing any erxor messages associated with it. Upon return to
the main program the new *~-card is printed, the mode of- the
previous function is saved in MDESV, and the modify switch MODFY

is turned off. The new function is opened by setting MODE=NEW and

. the data value counter, driver record parameters, and data buffer

‘are reinitialized.

Parameter card images (NEW=0) are output on the line
printer, and then transmitted through subroutine PRCSS to an

appropriate input processing subroutine according to the value of
3-1N

-n

-« »r

~VSENE G S WE

™ MCDE. There the card is reformatted and inte:préted according to
the value of TYPE. Upon return to the main program, control
transfers to read the next card.
Input continues . until the *END (MODE=16) card is
encountered. At this point the input processor ENDIN causes
program control to transfer to PHASEl if no errors were detected
ﬁ

in the input. Otherwise NCAP execution terminates.

Sl b e e e ot

e BN T

SRR 50550 ibadbis ¢ AL Bt B2 A 2 AN s S T i o T R AT NdNA 5 e - i G PR T

B e s e ataciia e 5 X il ¥ i . b ” e

o 4

B e e
-
- }

ALPHA
1 OF1

NAME- ALPHA

TYPE: SUBROUTINE

GENERAL PURPOSE*
Decodes and formats an alphabetic input value by
converting the characters stored in CARD(IPOS)

through CARD(J-1) to an alphanumeric value returned

in STRING (1) 6 bt
VARIABLES:

CARD = Right-justified alphanumeric card imaée

IPOS = Position of first character to be formatted

ISW = End of data switch; Off =0, On =1 _

J = Position of last character to be formatted+l ‘:

STRING = Alphanumeric string representation of input ”;

value

SUBROUTINES CALLEL-

SCAN

DRl o b ik

CALLING PROGRAMS:*

GENIN JFETIN LCIN LDSIN MODGIN
NCIN NDSIN NODEIN PLOTIN PSIN

SCIN

o g 0% o R TR ATEON, RIS R

i
WE

i

3

W i\

DESCRIPTION-

Subroutine ALPHA decodes and formats a free-form alphabetic
input value. Input to the routine 1is the right-justified
alphanumeric card image stored in the integer array CARD and the
character position IPOS at which the datum begins.

The contiguous characters CARD(IPOS) through CARD(J-1) which

comprise the alphabetic input value are extracted from the card
image and converted to a left-justified alphanumeric string by
subroutine SCAN. The resulting alphabetic datum stored in the
integer STRING(1l) is returned to the «calling program without

further processing.

Additional arguments returned by subroutine ALPHA are the i;
updated character position 1IPOS, which indicates the first
character position of the next value on the card, and the

end-of-data switch ISw.

e S S ety

SRR

(DATOUT)

3

|DATAWR

ERROR

DRVOUT

DRIVWR

AN Y

DUCTRE S

et i

rpnes

®

st A v T

v

5 v, ST B Dbt

3-3B

ol i

T g 7

-~

‘l’

NAME: DATOUT
TYPE- SUBROUTINE

GFNERAL PURPOSE -
Writes input data to file 20 and driver records to file
21. Output is by-passed if input errors exist. Clears 3

I1/0 buffer.

VARIABLES: ‘
J = Number of parameters in the data record
N = Length of data record to be output (in

words)

SUBROUTINES CALLED-

DATAWR DRVOUT ERROR

CALLING PROGRAMS:

PTIN SCIN STIN TRNIN

VDIN VTIN JFETIN

}

PESCRIPTICN- /

Subroutine DATOUT handles the output of data and driver

records for many of the Phase @ input processing routines,

closing the function defined by an *-card sequence. Arguments

transmitted to the subroutine are J, the number of parameters

T renan:

;
|

anticipated and N, the length of the data record in words.

First the input data 1is tested for errors. Subroutine
DATOUT exits with an appropriate error message if any of the
following input errors are detected:

1) The parameter count NXT is less than the

anticipated number of data values

2) A node card was encountered in a modify card

sequence (NABT={' and MODFY=1)

3) The node card was missing from a circuit

element definition (NABT=1 and MODFY=0)

4) The input error switch is on (JABT=1)

If no input errors are detected, the data record is written
from the common data buffer BUFF to file 20 by subroutine DATAWR.
The data file record number DATREC is updated to point beyond the
new data record by DATREC = DATREC + N.

Subroutine DRVOUT 1is called to complete the driver record
definition and to write it to file 21, closing the function.

Subroutine DATOUT then returns to the calling program.

3-3D

a |
rr

e i i

NAME: DECIF

TYPE: SURROUTINE

GENERAL PURPOSE:

Assigns functional identifiers NEW and TYPE to input

card images

VARIABLES:
BLANK =
CODES =
IAST =
Il =
I2 =
NCODS =
NTPS =

NUMS =

TYPES =

SUBROUTINES

ERROR

CALLING PROGRAMS:

MAIN

Left-justified alphanumeric blénk

Valid *-card fdnctions

Left-justified alphanumeric asterisk

First character, first word of *-card
First character, second word of *-card
Number of valid *-card functions

Number of valid parameter card designators
Left-justified alphanumeric representation
of the chafactets

Y2 2 ene 9, B ¥ ian B b

Valid parameter card designators

CALLED:

3-4D

DESCRIPTION:

Subroutine DECIF examines the card image transmitted to it
in the integer array CARD and assigns NEW and TYPE codes
according to 1its contents. The card image is stored in
left-justified alphanumeric format, one character per word in the
integer array CARD.

Although the system cannot anticipate the exact make-up of
an input deck, it does recognize five basic card types:

1) An *-control card containing an * followed by one

or more keywords. Such cards are classified by
TYPE=1 and NEW=3,4,...26, depending on the keywords.
2) A parameter card containing an identifying keyword.
These cards are classified by NEW=0 and TYPE=
3,4,...23 depending on the keyword.
3) A parameter card containing only numeric values
and classified by NEW=0 and TYPE=2.

4) A comment card containing ** in the first two non-

blank character positions. Comments are classified
by NEW=2.

5) An unidentifiable card constituting an error and

classified by NEw=-1.

The function of subroutine DECIF is to determine which of
these card types applies to the given card image and to assign
corresponding NEW and TYPE codes which serve as the basis for
further processing by Phase . A complete tabulation of NEW and

TYPE codes is presented below:

3-4E

i

|
|
|
|

NEW
(MODE)

O @@ ~N &0 U & W N

- e
N = S

13
14
15
16
17
18
19

CODES

(Character Pair)

DESCRIPTION

None
None

None

None

LC

NC

VD

VT
VP

SD

XX

XX

sC
EC

XX

3-4F

Error Condition
Parameter Card
Driver File Header
(Internally Created)
Comment

Generator

Linear Components
Nonlinear Components
Vacuum Diode

Vacuum Triode
Vacuum Pentode
Transistor
Semiconductor Diode
Not Used

Frequency Sweep
(Internally Created)
Start Circuit

End Circuit

Not Used

End

Print Select

Modify

Not Used

T

TYP

20

2]

22

23

24

25
26

E

XX

XX

XX

LD

ND

TYPES

Junction Field Effect
Transistor

Generator Modification
(Internally Created)
Plot

Not Used

Linear Component Sweep
(Internally Created)
Linear Dependent Source

Nonlinear Dependent Source

DESCRIPTION

None

None

IM

FR

OR

NC

AM

3-4G

*-Control Card

Parameter Card With Only
Numeric Values

Impedance

Freoguency

Crxders for Print Select or
Plot

Nodes for Print Select or
Plot

Amplitude

Resistor

Capacitor

Inductor

S SRR

11 co

Constants for JFET

12 BP B-Parameters for JFET

13 CcP C-Parameters for JFET

14 'AC Analytic Parameters for JFET

15 LA Label for Plot

16 FB Forward Bias

17 RB Reverse Bias

18 vC Voltage Controlled Current
Source

19 cC Current Controlled Currxent
Source

20 vv Voltage Controlled Voltage
Source

21 Ccv Current Controlled Voltage
Source

22 OF Print Select Off

23 ON print Select On

Pecause the NCAP user exoresses his input in free-form,
there 1is no reguirement for card input to begin in column 1 or
that data values appear in particular card columns. A data value
is defined as a string of contiguous non-blank alphanumeric
characters, and although the order in which data are placed on
cards is critical, the spacing between data values is arbitrary.
Therefore subroutine DECIF must 1isolate the individual data
values on the card and then classify the card according to those
values.

3-4H

B h
woznd

MR e

G wpo~ LSl i ot S M& oh.c A S 2 "»w ; m s

T L P P T

Classificatibn begins by determining the presence or absence
of an * in the first non-blank character position. Starting at
CARD(1l) the image is scanned column-by-column to locate the first
non-blank character. If no non-blanks are found, the card
contains ﬁo data and subroutine_DECIF exits to the main program
treating the blank card as a comment. Otherwise the first
non-blank located in CARD(I) is tested for the presence of an *.
If an * is found, the card is either an *-control <card or a
comment card. If CARD(I+1l) 1is also an asterisk, a comment is
assumed and classified by NEW=2. After incrementing the comment
count NCOM, subroutine DECIF exits to the main program.
¢ If CARD(I+l) is not an asterisk, an *-control card is
assunied. The first character of each of the next two words Iis
extracted and compared against the table of valid character pairs

i3 stored in CODES(J), J=1, NCODS. If a match is found, the card is

classified by TYPE=1l and NEW=J+2. If no match is found, the

unidentifiable card is classified by NEW=-1 and exit occurs after

an appropriate error message is printed.
In the event that the first non-blank character CARD(I) is

not an asterisk, a parameter card is assumed and classified by

NEW=0. Such cards are further examined by comparing the first
two characters of the first word on the card against a table of

valid character pairs stored in TYPES(J), J=1, NTPS. If a match

is found, the card 1is classified by TYPE=J+2 and exit occurs.

Otherwise the first non-blank character is compared against ' the

table of valid numeric characters stored in NUMS(J), J=1, 14. No

match indicates an unidentifiable card which is assigned NEwW=-~1l.

If the character is a valid numeric, the card is assumed to
contain only numeric data values and is further classified by
TYPE=2. In either event return is made to the main program where

further processing of the card image takes place.

1

| -

|

&

L
=
o

NAME: DECIM

TYPE: SUBROUTINE

GENERAL PURPOSE:
Decodes and formats a decimal input value by converting th
characters stored in CARD(IPOS) through CARD(J-1) to

floating point number returned in X

VARIABLES
CARD = Right-justified alphanumeric card image
IPOS = Position of first character to be formatted
Isw = End of data switch: Off =6, On =1
J = Position of last character to be formatted+l
STRING = Alphanumeric string representation of dnput

value

¥ = Floating point value returned

SUPROUTINES CALLFD-

SCAN

CALIIVC PRCCPRAMS -

CFMIN JFETIN LCINV LCEIN MODCIN
ECIN NDSINM FTIW SPTIN TRNIN
veiw vTIN

3=5C

e L T e e B i

ST

e

P 7

DESCRIPTION

Subroutine DECIM decodes and forrmats a free-form decimal
input wvalue. Input to the routine is the right-justified
alphanumeric card image stored in the integer array CARD and the
character position IPOS at which the datum begins.

;The contiguous characters CARD(IPOS) through CARD(J-1) which
comprise the decimal input value are extracted from the - card
image and converted to a right-justified alphanumeric string by
subroutine SCAN. The character string returﬁed in the integer
array STRING 1is then converted from alphanumeric representation
to a floating point value X by: .

DECODE (STRING, 1) X
1 FORMAT (E12.0)

Arguments returned by subroutine DECIM are the decimal input
value X, the updated character position IPOS which indicates the
first character position of the next data value on the card, and

the end-of-data switch ISW.

3-5D

TR

(DRVOUT)
A DRIVWR
O

3-6A

R 2 T il e i o e e i e o el

—

-

START

5§)= ii-§ ;

e

SAVE

PRESENT
MODE

CALCULATE

LENGTH OF

DATA RECORD

[

SET

SAVE MODE

OF MODIFIED

n

WRITE

RECORD T0
AE21

8
RESET
MODE

(R ae B

3-6B

OFF

Y

et

e

NAME - -DRVOUT

TYPE: SUPROUTINE
GENERAL PURPCSF-
€Completes definition of driver parameters and writes

driver record to file 21

VARIAFLES-

JJ = Intermwrediate storage of MOLE

SURROUTINES CALIFLC-

DPRIVWPR

CALLING PPCCRAMS:

DATCUT ECIN FNCIN ECIN . LDSIN
NCIN PSINK SCIN
DESCRIPTICN -

Subroutine DPVCUT corpletes the definition of driver record
rarareters for some of the Phase O input processing subroutines
and writes the dériver record to file 21.

The MCCF of the present card secuence is saved in JJ and the

¢ata record length is calculated by LNGTH=DATRFC-STACC. If the

modify switch 1is off (MCCFY=P), the driver record is written to

file 21 from the first ten words of alobal cormon by subroutine
RIveR.

3=6C

]
:

A MODIFY card segquence carries the MODE of the device it
modifies during input processing, but is written to the driver
file as MODE=18. Therefore, if the card sequence being processed
is a modify function (MODFY=1), MODE is set to 18 and the mode of
the device being modified is taken from MDESV and saved in JJ
before the driver record is written by subroutine DRIVWR.

Upon return from subroutine DRIVWR the record number for the

next data record STADD is taken from DATREC, the mode of the

present card sedguence is reset from JJ, and subroutine DRVOUT

returns to the calling program.

- »

W

(ECIN)

ERROR

DRVOUT

DRIVWR

e A L T PR AP

e Bare

3-78

NAME- ECIN

TYPE: SUBROUTINE

GENERAL PURPOSE-

Processes *END CIRCUIT card

VARIABLES:
NONE

SUBROUTINES CALLED:

ERROR

CALLING PROGRAMS:

PRCSS

DESCRIPTION:

Subroutine ECIN is the input processor for the END CIRCUIT
card. Its function is to translate the end circuit definition
into an appropriate driver record for use by subsequent NCAP
phases.

Because there are no data cards associated with the end
circuit input, TYPE=1 is the only code recognized by subroutine
ECIN. Any other value of TYPE constitutes an input error which

is handled by subroutine ERROR before exit to the calling

(«; program.

. G R TN T gy
S o AR A S M T R R S O TSRO T T ARG v R d s 1

. — D—— 0
. S e e i o : e 33 :

If the start circuit driver record number is undefined §

(SCREC=0) or the input error switch is on (JABT=1), subroutine

ECIN exits with an(approptiate error condition. Otherwise the

END CIRCUIT driver record is written to file 21 from the first

ten words of global common by subroutine DRVOUT.

E
|
|

The end circuit driver record is identified by MODE=14.

Because there is no data associatd with an end circuit function,

the driver parameters STADD and LNGTH are not applicable. The

g start circuit driver record number is stored in MISC(l). The
other MISC driver parameters are not used.

After the driver record has been written to disk, subroutine

ECIN returns to the calling program.

VY e

3-70

Y

P s | cn AT B BT el B il R s U P DA

NAME: ENDIN

TYPE: SUBROUTINE

GENERAL PURPOSE:

Processes *END card, creates driver file header, closes

Phase @ processing

VARIABLES:

NONE

SUBROUTINES CALLED:

DRVOUT PHASE1l TIMOUT

CALLING PROGRAMS:

PRCSS

DESCRIPTION:

Subroutine ENDIN is the input processor for the END card.

Its function is to translate the end definition into A an

appropriate driver record for use by subsequent NCAP phases and

to close the Phase @ processing.

If errors were encountered in the input deck during Phase 0

processing (JABT = 1), NCAP execution terminates with a CALL

EXIT.

Otherwise the END driver record is written to file 21 by

e

subroutine DRVOUT. The END driver reéord is identified by
MODE=16. Because there is no data associated with the end
function (it simply serves as a delimiter), the driver parameters
STADD and LNGTH are not applicable. The MISC driver parameters
are not used.

The Phase @ processing is closed by creating the driver file
header and writing it to the first record of file 21. The header
record is identified by MODE=1 and contains the next available
file 20/ storage 1location in MISC(1) and MISC(4). The other
driver parameters are not used. The header record is written to.
the driver file by subroutine DRVOUT and program control

transfers to subroutine PHASE].

YMylvq
€

UAXOvVd MOvVd

14IHSY NvOS NvOS NVOS

14IHS @uao@ HOMY 3 931NI 1NON39 w1030 AIOXD VHd IV

SR—

I e S 0 i |19 DT

OXLLE

-

Y

R

S8E

e et T g b O

3-9E

fb
-y

AR

Rl ik

b 2 L A A PR ————

/
s

n

- — 1

S o s iR B, g e B

NAME: GENIN L)

TYPE: SUBROUTINE

GENERAL PURPOSE:

Processes *GENERATOR card sequence according to the value

of TYPE:
Type = 1 End of.card sequence
Type = 3 Impedance
Type = 4 Freauency
Type = 6 Node
Type = 7 Amplitude
VARIABLES:
AMP = Amplitude values a
CXONE = Floating point representation of complex
number (1.,0.) ?
FNO = User-assigned freaquency numbers
FREQ = Frequency values
IMPS = Impedance values
IMTBL = Imrpedance combination code :
INC = Number of steps in freguency sweep]
ISTART = Location of first character in impedance j
combination 7
ISTOP = Location of last character in impedance ?
combination + 1 i
3-9H :

ab - ,._.v,.m,;wn"rﬂ
0 B S A R VS s B RESE—— ven . . —— e . ¥

.~ "ISW ‘= End of data switch: Off = @, On =}

ITSV = Type code of last parameter card processed

ITYPE = Sweep type code: @ = No sweep

g : 1l = Linear

2 = L?gatithmic

i JRECO = Address of driver record '

: NFREC = Number of frequencies this generator

NIMP = Number of impedances this generator

RELANK

vz

Right-justified alphanumeric blank
STRING

Alphanumeric string representation of input
value
STOP = Stop value for sweep

TYPES = Valid frequency sweep types

SUBROUTINES CALLED:
ALPHA CXp1v DECIM ERROR

GENOUT INTEG NODEIN

CALLING PROGRAMS:
PRCSS

e e

DESCRIPTION:

Subroutine GENIN is the input processor for GENERATOR card
seguences. Its function is to decode the generator input data .
according to an anticipated format, translating the input into 5
appropriate data and driver records for use by subsequent NCAP
phases.

3-91

af

N TR ——r——

Ay e RS

frequency and impedance specifications for errors. Each

Each call to subroutine GENIN causes a single NCAP input
card to be processed. The card image and its type code are
transmitted through common storage to subroutine GENIN which

processes the card according to its type as follows:

TYPE=1 End of Card Seguence

The closing of a generator definition begins by testing the

generator definition must contain at least one fregquency card

(NFREQ.GT.0) and either a constant impedance (NIMP=1) or onhe

impedance card for each possible freguency combination
NFREQ K .

(NIMP=2 -1). If an improper number of frequencies and/or

impedances have been specified, subroutine GENIN exits with an

appropriate error condition.

Any undefined amplitude values are dssigﬁed the default

value:

1.0 |

[}

AMP (1,I)

AMP (2,I) = 0.0

[}

The amplitude data 1is then stored in the common data buffer ét
BUFF(11) - BUFF(3#). Subroutine GENOUT is called to complete the
definition of the generator driver and data records and to write
them to disk, after which subroutine GENIN returns to the calling

program.

3-9J

e Y

.

4

TYPE=3 Impedance Card

The card type card is saved in ITSV, the number of
impedances NIMP is incremented, and the IMP identifier is decoded
by subroutine ALPHA. The real part of the impedance value is
decoded and formatted by subroutine DECIM and stored in IMPS(1,
NIMP). If the end-of-data is encountered (ISW=1l), the imaginary
part of the impedance value is assigned the default value zero.
Otherwise the imaginary part of the impedance value 1is decoded
and formatted by subroutine DECIM and stored in IMPS(2, NIMP).
The impedance value 1is then converted to an admittance by
subroutine CXDIV.

At this point the end-of-data switch ISW 1is wused to
determine the presence of an impedance combination on the' card.
If the end-of-data switch is on (ISW=1), subroutine GENIN exits
after setting the impedance code BUFF(NIMP + 48) = @ to indicate
a constant impedance.

If the end-of-data is off (ISW=0), the impedance combination
is extracted from the cérd image, converted to an impedance code,
and appended to the impedance code table at BUFF(NIMP + 490).
Each digit of the impedance combination is represented in the
impedance code IMTBL by the bit position of like numbex. For
example, if the digit 3 is included in the combination, the 3rd
bit of IMTBL is turned on by IMTBL = 22. Beginning with the
first digit of the combination stored at CARD (IPOS), each digit
is mapped to the proper bit position and accumulated in IMTBL as

follows:
3-9K

e e TR SRR

IMTBL = IMTRL + (2** (CARC(J-1) -1))
This process continues under the control of the index J until
either CARD(J) 1is a blank or six digits have been used. The
resulting code is placed in the impedance code table at BUFF (NIMP

+ 40) and subroutine GENIN returns to the calling program.

Wi ditey coie

The card type code 1is saved in ITSV, the number of
frequencies NFREQ 1is incremented, and the FR identifier is
decoded by subroutine ALPEA. The frequency number is decoded and
formatted by subroutine INTEG and stored 1in FNC(NFREQ). The
freguency value is decoded and formatted by subroutine CECIM and
stored in FREQ(NFREQ). If the freguency number is zexo,
subroutine GENIN exits with an appropriate error condition.

At this bpoint the end-of-data switch ISW 1is used to
determine the presence of freouency sweep parameters on the card.
If the end-of-data switch is on (ISW=1l), the parameters ITYPE and

INC are set to indicate no sweep. Otherwise the STOP, INC, and

ITYPE parameters are decoded and formatted by subroutine DECIM,

INTEG, and ALPHA respectively.

The sweep type 1is tested agaeinst a table of valid
alphanumeric types. If no match is found, subroutine GENIN exits
with an appropriate error condition. If a match is found, the

sweep type is encoded in ITYPEF(NFREC), the freauency number and

value are placed in the common data buffer RUFF, and subroutine
3-9L

A

A

A\ 4

GENIN returns to the calling program.

TYPE=6 Node Card

The card type code is saved in ITSV and the amplitude data

area AMP is cleared. The nodes of connection are extracted from

the card image, formatted, and stored in MISC(3) and MISC(4) of
the driver record by subrbutine NODEIN. Subroutine GENIN returns

to the calling progranm.

TYPE=T Amplitude Card

To assure that amplitude data are properly associated with
freguency data, each amplitude card must physically follow a
freauency card in the input deck. Therefore if the last card
processed was not a freauency card (ITSV # 4), subroutine GENIN
exits with an appropriate error condition.

Otherwise the card type code is saved in ITSV and the AMP
identifier 1is decoded by subroutine ALPHA. The real and
imaginary parts of the complex amplitude are decoded and
formatted by subroutine DECIM and stored in AMP(l, NFREQ) and

AMP(2, NFREQ).

N A Y R AT TR TN T T N T R e R R T

SRR R]

Any other value of TYPE constitutes an input error which is

handled by subroutine ERROR before exit to the calling program.

e it

-~

w

(GENOUT)

3

3

DATAWR

DRIVWR

ERROR

3-10a

DRIVRD

BREG ai-tiandBAAs Bps doi 138 s

BRORNIGI, et e

4

SET MODE

CALCULATE
FOR NEXT
TERATION

v

/N

N

Vomn ¥

ST e i AN e el g DN 4

3-16C

E
5
5
i

-»
wr

k-

T
()
!
}
DRIVRD
READ
GENERATOR
VER RECORD
e
STORE
NUMBER OF
[TERATIONS
DRIVWR
RE-WRITE
GENERATOR
\ -
RESTORE
DRIVER
NUMBER
SET
MODE T0
GENERATOR
RESTORE
DATA RECORD
I
RETURN

\
l
_
\

s
s 1 N o
g
)
E
k
&
- 3 = 21 _ngim AR v
-

;
g
19
3
!

>

-’

NAME: GENOUT

TYPE: SUBROUTINE

GENERAL PURPOSE:

Tests for errors in generator and modify generator input,

writes input data to file 20 and driver record to file 21,

creates and writes frequency sweep data and driver

records

FNO
FREQ
INC

ITYPE

JRECO
NFREQ

NIT

STRING

STEP

STOP

VARIABLES:

User-assigned frequency numbers
Frequency values

Number of steps in frequency sweep
Sweep type code; @ = No sweep

1 Linear

2

 Logarithmic

Address of generator or modify driver recogd
Number of frequencies this generator

Maximum number of sweep iterations this
generétor

Alphanumeric string representation of input
value

Sweep increment value

Stop value for sweep

3-19E

i A i 12 -

S

B ds o)

pa o ol

By
r

SUBROUTINES CALLED*

DATAWR DRIVRD DRIVWR ERROR

CALLING PROGRAMS:

GENIN MODGIN

DESCRIPTION" y
Subroutine GENOUT handles the output of data and driver
records for the generator input processing subroutines GENIN and
MODGIN, closing the genetatqr and modify gene:atbr definitions.
First the input processed by GENIN or MODGIN is tested for
errors. If the node card is missing (ﬁABT#@) or the input errorx
switch is on (JABT=1), return is made to the calling program wiﬁh
an appropriate error condition. Otherwise the data record is
written to file 20 from the common data buffer BUFF by subroutine
4

DATAWR.

The generator data record contains 230 words allocated as

follows-
RUFF(1)-(10) Frequency Values
BUFF(11)-(30) Complex Amplitudes
BUFF(31)-(40) User-assigned Frequency Numbers

BUFF(41)-(103) Impedance Combination Codes

BUFF(104)~-(238) Complex Impedance Values

After the data record has been written to disk, its record
number is stored at STADD and the next available file 20 storage
location 1is updated to point beyond the generator data by

DATREC=DATREC+230¢. The frequency values, amplitudes, and
3-10F

g
i}
41
3
3
2
g
§
§

~ o oovenr

frequency numbers stored in BUFF(1l)-(4f) are then rewritten to
the data file at record number DATREC and the next available file
20 storage location is updated to point beyond the re-written
data by DATREC=DATREC+4fA. (This re-write file is later used by
Phase 4 to restore the original freauency cdata after execution of
a frequency sweep.)

The driver record parameters defined in the input processor,
GENIN or MODGIN, are transmitted through common storage to
subroutine GENOUT. Here the remaining driver parameters are
defined and the record is written by subroutine DRIVWR to file 21
from the first ten words of global common. The complete driver

record is comprised of:

MODE=3 or 21 Generator or Modify Generator
Identifier

STADD Data File Record Number

LNGTH=230 Lenath of Data Record in Words

MISC (1) =NFREQ Number of Frequencies

MISC(2)=NIMP Number of Impedances

MISC(3) Positive Node of Connection

MISC (4) Negative Node of Connection

MISC(6)=NIT Number of Sweep Iterations

Other MISC driver parameters are not used.

Unlike most NCAP input card seguences which map to a single
driver and data record, generator and modify generator card
seaguences result in one or more driver records, each with an
associated data record. The number of driver records is related

to the number of sweep iterations defined in the card sequence.
3-10G

T T T TR R T P AT R

If frecuency sweeping is not specified in the card seguence

(i.e., ITYPF(I)=0 for all I=1, NFREQ), the card seguence has only
a single MODE=3 or 21 driver record associated with it and
subroutine GENOUT returns to the calling program without further
processing.

Otherwise the sweep specifications must be translated into
appropriate driver and data records. First the number of sweep
iterations, NIT, is derived from the 1largest INC parameter
specified in the generator or modify generator card sequence.
(Each of the NIT sweep iferat;ons causes one driver and data
record to be created internally and appended to the cdisk files.)

Then a sweep increment STEP(I) 1is calculated for each
frequency value in the generator definition. The increment is a
function of the original freguency value FREQ(I) and the STOP,
INC, and ITYPE parameters associated with that frequency as
follows:

1) For ITYPE(I)=1, linear sweep is indicated and:

STEP(I)= STOP(I) - FREQ(I)
INC(I) - 1.

2) For ITYPE(I)=2, logarithmic sweep is indicated and:

[o = 1
STEP(I)= | STOP(I) INC(I)-1.

. FREQ(I) |

3-10H

e

T TR

T o

e,

R S TR T 0 VR - g e

After the increments have been calculated, the sweep driver

~and data records are created and appended to the disk files.

Like standard driver records, sweep driver records are developed

in the first ten words of global common. A frequency sweep

driver record consists of:

MODE=12 Frequency Sweep Identifier
STADD Data File Record@ Number
LNGTH=40 : Lenath of Data Record in Words
MISC (1) =NFREQ Number of Frecuencies

MISC (2)=NIMP . Number of Impedances

MISC (3) Positive Node of Connection
MISC (4) Negative Node of Connection
MISC(6)=NIT Number of Sweep Iterations

Other MISC driver parameters are not used.

Frequency sweep data records have the same structure as the
first 4@ words of the original génerator data record and are
developed in the common data buffer BUFF by an iterative process.
The first sweep data record is derived from the original
generator data by performing an incrementation operation on each
frequency value BUFF(J), J=1,NFREQ according to its corresponding

STEP(J), STOP(J), and ITYPE(J) parameters:

1) For ITYPE(J)=0, no sweep is indicated. No incremen-

tation is performed and the freocuency value remains

3-101

TR, W R W

constant at BUFF(J) .

2) For ITYPE(J)=1, linear sweep is indicated and the
incrementation is additive:
RUFF (J) =BUFF (J) + STEP(J)
unless STOP(J) is exceeded, in which case the fre-

gquency remains constant at its last value.

3) For ITYPE(J)=2, logarithmic sweep is indicated and
the incrementation is multiplicative:
BUFF (J) =BUFF (J) * STEP(J)
If STOP(J) is exceeded, the frequency value remains

constant at STOP(J).

After every freguency value in the buffer has been updated,
the new data record is written to file 20 at record number DAYREC
by subroutine DATAWR. The next available file 20 storage
location 1is updated to DATREC=DATREC + 40 and subroutine DRIVWR
is called to write the sweep driver record to file 21. The data
record number STADD is updated and program control transfers back
to process the next sweep iteration. The creation of sweep
records continues under the control of the index I until all NIT
sweep iterations have been translated into data and driver
records.

The original generator or modify generator driver record is
read from the driver file by subroutine DRIVRD according to the
record number JRECO transmitted to subroutine GENOUT as an

3-10J

e

argument. After storing the sweep iteration count NIT in
MISC(G),'the updated driver record is re-written by subroutine
DRIVWR.

After the MODE is restored to 3 and the data file record
number STADD is updated, subroutine GENOUT returns to the calling

program.

Ty
'

NAME: . INTEG

TYPE+- SUBROUTINE

GENERAL PURPOSE:

I
e restREEA AT,]

Decodes and formats an integer input value by converting the

characters stored in CARD(IPOS) through CARD(J-1) to a

fixed point number returned in K

VARIABLES:

CARD

IPOS

ISw =
J

K

STRING

SUBROUTINES

. SCAN

Right-justified alphanumeric card image
Position of first character to be formatted
End of data switch: off =6, on =1
Position of last character to be formatted+l
Integer value returned

Alphanumeric string representation of input

value

CALLED-

CALLING PROGRAMS:

GENIN LCIN LDSIN MODCIN NCIN

NDSIN NODEIN PLOTIN PSIN

H
1
:
n
f

DESCRIPTION:

Subroutine INTEG decodes and formats a free-forr integer
input value. Input to the routine 1is the right-justified
alphanumeric card image stored in the integer arrayACARD and the
character pdsition IPOS at which the datum begins.

The contiguous characters CARD(IPOS) through CARD(J-1) which
comprise the integer input value are extracted from the card
image and converted to a right-justified alphanumeric string by
subroutine SCAN. The character string returned in the integer
array STRING is then converted from alphanumeric representation
to an integer value K by:

DECODE (STRING,2) K
' FORMAT (I12)

Arguments returned by subroutine INTEG are the integer input
value K, the updated character position IPOS which indicates the
first character position of the next data value on the card, and

the end-of-data switch ISw.

SR

T RNTR TR

gl

TR

PRI TR eI

I P T R RN S IR

Y PR
i

s B S T

e e

_ .-xos; _ UMOvd — _ ..xoe.a_ _ UNOVd _

UMAIEG LISy [wwos] m.lzld@

3-12A

NI3GON tonsd] [(rams] [woma] [wwaea] [wio3a] [wwava] [weaw)

(Ni13ar v

B o e . —

ey A . e R T R A R A VI SR A

)
\\/ /
ALPHA
DECODE
00"
DECIM

Ol @

7
\\\“-./1
PRINT
ERROR
RETURN

el A a2 Anisiton S i

_“AD=A076 317 SYRACUSE UNIV N Y F/6 9/5

- NONLINEAR CIRCUIT ANALYSIS PROGRAM (NCAP) DOCUMENTATION. VOLUME==ETC(U)
SEP 79 J B VALENTE » S STRATAKOS F30602-79-c-oo11

UNCLASSIFIED RADC=TR=79=245=VOL~3

_ DDAEEE=NBE

—— e

o

e ——

g g e s AP LU

Y R T T N T e

AT B M TR B ORI

&

4R
L

-
-

D e

e

A

i ey A

3-12E

S———

3=-12F

LI Ty AR ATy T e 0~ OOk FEMERIE % fon RT N

NAME: JFETIN

TYPE: SUBROUTINE

GENERAL PURPOSE:
Processes *JFET card sequence according to the value of
TYPE:
Type End of card sequence
Type Parameter card
Type " Node
Type Constants
Type BP
fype CPp
Type AC

VARIABLES:
B B parameters
(& C parameters
Input constant
Parameter type code: 1 = BP
2 = CP
3 =AC

End of data switch: Off = 8, On =1
Word counter for parameter input
Word counter for AC input

Word counter for BP input

3-12G

NXTC = Word counter for cp input
RS = Input constant

STRING = Alphanumeric string representation of input

value

SUBROUTINES CALLED:
ALPHA DATOUT DECIM DRIVWR

ERROR NODEIN

CALLING PROGRAMS:

PRCSS

DESCRIPTION:

Subroutine JFETIN is the input processor for JFET (Junction
Field Effect Transistor) card sequences. Its function is to
decode the JFET input data according to an anticipated format,
translating thg input ' into appropriate data and driver records
for use by subsequent NCAP .phases.

Each call to subroutine JFETIN causes a single NCAP input
.card to be processed. The card image and its TYPE code are
transmitted through common storage to subroutine JFETIN which

processes the card according to its TYPE as follows:

TYPE=1

_ End of Card Sequence

The closing of a JFET definition begins by testing the input
3-12H

P —— - S— o g AP i 1 P 0 70 e e W T g P

for errors. Subroutine JFETIN exits with an appropriate error

condition if any of the following input errors are detected-

e
b

1) No BP or CP coefficients were processed (NXTB=0)
or (NXTC=0) when coefficient input was specified
(MISC(2)=1)
2) Fewer than 8 parameters were processed (NXTAC.LT.8)
when analytic generation of coefficients was specified
(MISC(2)=2)
3) CONSTANTS card missing (MISC(1)=0)
Otherwise subroutine DATOUT is called to complete the driver
record and to close the JFET definition by writing the driver and
data records to disk.
The driver record is written to file 21 from the first ten

words of global common and consists of:

MODE=2/ JFET Identifier
STADD Data File PRecord Number
LNGTH=64 Length of Data File in Words

MISC(2)=1 or 2 Method of Deriving Coefficients-
l=Input, 2=Analytic genération ;
MISC(3) Rase Node of Connection
Other MISC driver parameters are not used.

The JFET data record, written to file 20 from the common
data buffer RUFF is 64 words in length. This record allocates
sufficient disk storage for the JFET input values as well as all
other data generated internally by its model in subseguent NCAP
phases:

PUFF (1)~ (10) R-Parameters Input 1
3-121 ”

5 3
| é

BUFF(11)-(20) C-Parameters Input ;} :
E BUFF(21)-(22) Constants Input

RUFF(23)-(32) Nonlinear Coefficients

BUFF (33)-(64) Admitténce éubmattix

After returning from subroutine DATOUT, the parameter counts

NXTB, NXTC, and NXTAC and the parameter type code ICOEF are

R S PRt

cleared, and return is made to the calling program.

TYPE=2 Parameter Card

- If the parameter type code is undefined (ICOEF.LT.0),

subroutine JFETIN exits with an appropriate error condition.
Otherwise the parameters are decoded and formatted according to

the parameter code ICOEF which identifies the type of parameters

being processed (1=BP, 2=CP, 3=AC) and causes them to be input

accordingly.

TYPE=6 Node Card_

4 f The base node of connection 1is extracted from the card

: 3 image, formatted, and stored in MISC(3) by subroutine NODEIN.

g TYPE=11 Constants Card

The CONSTANTS identifier is decoded by subroutine ALPHA, and
the constant values CGD and RS are decoded and formatted by
subroutine DECIM. MISC(1l) 1is set to 1 to signal that the
constants have been read and subroutine JFETIN returns to the

calling program.

TYPE=12 RP Card

The B-parameter count is initialized (NXTBR=1), MISC(2) is

set to indicate that coefficients are to be read rather than
analytically generated, and the parameter code is set to indicate
B-parameters (ICOEF=1). The RP identifier 1is decocded by
subroutine ALPBA and if the end-of-data is encountered (ISw=1),

subroutine JFETIN returns to the calling program.

Otherwise from one to ten decimal values are extracted from
the card image, formatted, and stored in the common daté buffer.
B-coefficients appearing on the BP card as well as those input on
3 unlabelled parameter cards following the RP card (TYPE=2 and

ICOEF=1) are processed at this point. The number of values
: decoded and their placement in the buffer depend on the

R-parameter count, NXTB, and the end-of-data switch, 1ISW. NXTR

ot Y o LA e

contains the next buffer location available for parameter
storage, which begins at P (NXTB) and proceeds through successive
buffer locations as data values are decoded by subroutine DECIM.

‘s If an end-of-data is encountered (ISw=1) before P (1) is

filled, the parameter count is reset to the next available buffer

g 4 3-12K

Lo —

location (NXTP=MW) and control returns to the calling program in

anticipation of adéitional parameter cards.

TYPF=13 CP Caerd

The C-rerareter count is initialized (MXTC=1). MISC(2) is

set to incdicete thet coefficients are to be read rather than

B

analytically cenerated, and the parameter code is set to indicate
C-prarameters (ICOFF=2). The CP identifier is decoded by
g subroutine ALPHA and if the end-of-data is encountered (ISw=1),

F subroutine JFETIN returns to the calling progran.

1 Otherwise the decoding, formatting, 'and storage technigue
. for C-parameters is identical to that of B-parameters except that
NXTC is wused for the parameter count and storage is from C(1l)

through C(14).

TYPE=14 AC Card

MISC(2) is set to indicate that coefficients are to be
analytically generated rather than read, the AC-parameter count
is initialized (NXTAC=1),' and the parameter code 1is set to
indicate AC-parameters (ICOEF=3). The AC identifier is decoded

by subroutine ALPEFA and if the end-of-data 1is encountered

(ISw=1) , subroutine JFETIN returns to the calling program.
Otherwise the decoding, formatting, and storage technique

3-12L

J for AC-parameters is identical to that of B—parameteré except

that NXTAC is used for the parameter count.

Any other value of TYPE constitutes an input error which is

handled by subroutine ERROR before exit to the calling progranm.

B T e A R Sl g VS XAt LN - 5 i e Vi e s B 1

2

2

2

6

3

[Packr |

[PackL|

[acena] [oatawr] [omvwr] [oEcm | [€RroR] [INTEG] [oRvouT] [_?H_T‘FI|

[sc

AN | [orvwR] [RsHiFT]

|_PA§KR“| [PackL] [Packr]| [PackL]

.

w

s

STEP
SIZES

S e
SET MODE 10
COMPONENT

| SWEEP

| CALCUATE
‘ COMPONENT VALUES

FOR NEXT
ITERATION

WRITE
DATA RECORD

4

Mm

\‘I:«/

e A

g

A A, e 131 o

3-13F

R

SE————————S

&

T A

| 11

-»

“»r

R TN IS TN T s AT S R e oo

NAME: LCIN

TYPE: SUBROUTINE

GENERAL PURPOSE:

Processes *LINEAR COMPONENTS card sequence according

to the value of TYPE:

Type = 1 End of card sequence
Type = 8 Resistor
Type = 9 Capacitor
Type = 1@ Inductor
VARIABLES:
INC = Number of increments for sweep
ISW = End of data switch; Off = 6, On =1
ITYPE = Sweep code; @ = No sweep
1 = Linear
2 = Logarithmic
M = Intermediate storage of sweep type
NCOMP = Length of linear component data record in words
NIT = Maximum number of sweep iterations
NODEA = Positive node of connection
NODEB = Negative node of connection
NUM = Number of linear components this card
seguence v
STRING = Alphanumeric string representation of input

3-13G

AT O T S Y R A R SR TI CRE (T T IR et A,

e 1

A e

value
STEP = Sweep increment value
STOP = Sweep stop value

TYPES = Valid sweep types

SUBROUTINES CALLED:
" ALPHA DATAWR DECIM DRIVWR DRVOUT

ERROR INTEG

CALLING PROGRAMS:
PRCSS

DESCRIPTION:
Subroutine LCIN is the input processor for LINEAR COMPONENTS
card sequences. Its function is to. decode the linear components

input data according to an anticipated format, translating the

input into appropriate data and driver records for wuse by

subsequent NCAP phases.

Unlike most NCAP input card sequences which map to a single
driver record and a data record of fixed length, linear
components card seauences result in one or more driver records,
each with an associated data record of variable length. The
number of driver records generated is related to the number of
linear component sweep iterations defined in the card sequence,
while the length of each data record depends on the number of
components defined in the card sequence.

Each call to subroutine LCIN causes a single NCAP input card

3-13H

to be processed. The card image and its TYPE code are
transmitted through common storage to subroutine LCIN which

processes the card according to its TYPE as follows:

TYPE=1 End of Card Sequence

The closing‘ of a linear componeﬁts definition begins by
testing the input for errors. 1If no linear component cards were
processed (NCOMP.LE.f) or if the input error switch is on
(JART=1), return is made to the calling program with an
appropriate error condition. Otherwise the data record is
written to file 28 from the first NCOMP words of the common data
buffer BUFF by subroutine DATAWR. ;

The 1linear components data record is structured as a series
of NUM contiguous 4-word entries, one for each linear component
defined in the card sequence:

RUFF(1)-(4) First Component Definition
BUFF(5)-(8) Second Component Definition

BUFF (NCOMP-3) - (NCOMP) Last Component Definition
The first word of each entry contains an integer code
representing the component type: 1 = Resistor, 2 = Capacitor, 3
= Inductor. The second and third words represent the positive
and negative nodes'of connection. The fourth word contains the

3-131

T A AT R

TR A T T

LT —
' . —

vaqu of the component:

BUFF(1),(5),...(NCOMP-3) Component Codes
RUFF(2),(6),... (NCOMP~2) Positive Nodes of
Connection
BUFF(3),(7),...(NCOMP-1) Negative Nodes of
Connection
BUFF(4),(8),... (NCOMP) " Component Values

The linear components driver record is written by subroutine

DRVOUT to file 21 from the first ten words of global common,

where:
MODE=4 Linear Component Identifier
STADD Data File Record Number
LNGTH=NCOMP Length of Data Record in Words
MISC(1)=NCOMP Number of Linear Components x 4

Other MISC driver parameters are not used.

If component sweeping is not specified in the card seaguence
(i.e. INC(I)=@ for all I=1,NUM), subroutine LCIN rétutns to the
calling program without further processing. Otherwise the sweep
specifications are translated into appropriate driver and data
records. First the number of sweep iterations, NIT, 1is derived
from the largest INC parameter specified in the linear component
card sequence. (Each of the NIT sweep iterations causes one
driver and data record to be generated internally and appended to
the disk files.)

Then a sweep increment STEP(I) is calculated for each of the
NUM components in the card secuence. The increment is a function
of the original comPonent value stored at BUFF (I*4) and the

32133

STCP, INC, and ITYPE parameters associated with the component
follows:
1) ITYPE(I)=0, no sweep is assumed and STEP(I)=0.
2) ITYPE(I)=1,linear sweep is indicated and:

STEP(I) = STOP (I) -BUFF (J)
INC(I)-1.

ITYPE(I)=2, logarithmic sweep is indicated:

STEP(I) =

" After the increments have been calculated the sweep driver
and data records are created and appendéd to the disk files.
Like standard driver records, sweep driver records are developed
in the first ten words of global common. A component sweep data

record consists of:

MODE=24 Component Sweep Identifier

STADD Data File Record Number
LNGTH=NCOMP . Length of Data Record in Words
MISC(i)=NCOMP Number of Components x 4
Sweep data records have the save structure as original
linear component data records and are developed in the common
data buffer BUFF by an iterative process. The first sweep data
record is derived from the original linear component data record
in BUFF by performing an incrementation operation on each

component value according to its corresponding STEP, STOP, and

3-13k

TR T LR T T

ITYPE 'parameters. The NUM component values in the buffer are
incremented one-by-one under the control of the index J. Each
component has a corresponding STEP(J), STOP(J), and ITYPE(J)
which define the incrementation performed on its value stored at
BUFF (J*4) :

1) For ITYPE(J)=0, no sweep is indicated. No
incrementation is performed and BUFF(J*4) remains
constant at its ofiginal value.

2) For ITYPE(J)=1, linear sweep is indicated and the
incrementation is additive. For K=J*4:

BUFF (K) =BUFF (K) +STEP (J)
unless STOP(J) is exceeded, in which case BUFF (K)
| remains constant at its last value.

3) For ITYPE(J)=2, logarithmic sweep is indicated and
the incrementation is multiplicative. For K=J*4:

BUFF (K) =RUFF (K) *STEP (J)
If STOP(J) is exceeded, BRUFF(K) remains constént
at STOP(J).

After every component value in the buffer has been updated,
the new data record is written to file 2@ at record number DATREC
by subroutine DATAWR. Then subroutine DRIVWR is called to write
the sweep driver record to file 21. The data record number STADD
is updated and program control transfers back to process the next
sweep iteration. The creation of sweep records continues under
the control of the index I until all NIT sweep iterations have
been translated to data and driver records. Subroutine LCIN
returns to the calling program after restoring MODE to 4.

3-13L

chdn o i

TYPE=8, 9, or 18 Resistor, Capacitor, or Inductor Card

The data record length NCOMP is incremented to accommodate a
new four-word component definition and the component count NUM is
calculated. If more then 50 linear components have ben processed

in the card sequence (NUM.GT.50), subroutine LCIN exits with an

appropriate error condition. Otherwise the new component code is

set to TYPE-7 and stored in BUFF(NCOMP-3).

Subroutine LCIN anticipates the input of a component
identifier, two nodes of connection, and a component value for
each component in the card sequence. Furthermore, for elgment
sweeping, three sweep parameters are also expected. During
decoding of the input card, if an end-of-data is encountered
(ISw=1) before all the required parameters have been processed,
subroutine LCIN exits with an appropriate error condition.

The R, C, or L identifier is decoded by subroutine ALPHA.
The nodes of connection are decoded and formatted by subroutine

INTEG and stored in BUFF(NCOMP-2) and RUFF(NCOMP-1). The

component value is decoded and formatted by subroutine DECIM and

stored in PUFF (NCOMP) . If the component value 1is zero,
subroutine LCIN exits with an appropriate error condition.

At this point ISW is used to determine the presence of
component sweep parameters on the card. If the end-of-data
switch is on (ISW=1), the subroutine assumes no sweeping and

exits after disabling the sweep parameters ITYPE and INC.

3-13M

e AN e A

|
Otherwise the STOP, INC, and ITYPE parameters are decoded and ;}
-formatted by subroutine DECIM, INTEG, and ALPHA respectively.
" The sweep type is tested against a table of valid
alphanumeric types. If a match is found the sweep type is g
encoded in ITYPE(NUM) and subroutine LCIN returns to the calling
program. If no match is found, subroutine LCIN exits with an
appropriate error condition.
:
| g Any other value of TYPE constitutes an input error which is
; i handled by subroutine ERROR before-exit to the «calling program.
. i
g
k|
-
!
i
;
!
4 %
- =
$ 3
L 4 ?E

3-13N

dMANA 14IHSY NVOS NVOS NVOS
1NOAYA L1HS O3LNI d0yy43 WID3a UMv1va VHd v
v 9 4 €

(NI1Sa)

{\
Q"';

3-14a

L —

o G SR

Yes u
RETURN PRI " componeas
/ ERROR 1680
Moy o
o ;

DATAWR

WRITE
DATA RECORD
10 FULE 20

RETURN)
N o
3-14C

s S

3-14D

et S i R Sk

an
/-

3-14€

e el

|
!
|
4
)

3-14G

i e o

NAME: LDSIN

TYPE: SURROUTINE

' GENERAL PURPOSE:

Processes *LINFAR DEPENDENT SOURCE card seguence

according
Type
Type
Type
Type
Type
Type
Type
Type
Type
Type
VARIARLES:
A) =
R =
< =
CI =
CR =
ISW =
L =
NW =

to the value of TYPE:
=1 End of card sequence
=D Parameter card
= 6‘ Node card

=8 Resistor

=9 Capacitor

= 10 1Inductor

=18 VC

= 19 ¢€C

=20 VvV

= 21 ¢V

Positive node of connection

Negative node of connection

Value of parallel capacitor

Imaginary part of complex scale factor

Real part of complex scale factor

Ené of data switch: Off = 8, On =1

Value of parallel inductor

Word counter for parameter input e

3-14H

T R R 1

e S —

)

R = Value of parallel resistor

STRING = Alphanumeric string representation of input

value

SOURCE = Type of source: 1 = VC

' ' 2 = cC

3 =Vv

4 = CV
XX = Positive node of dependence
YY = Negative node of dependence

SUPROCUTINES CALLED:
ALPHA DATAWR DECIM CRIVWR

ERROR INTEC

CALLING PROCGRAMS -

PRCSS

DESCRIPTION:

Subroutine LDSIN is the input processor for LINEAR DEPENDENT
SOURCE card sequences. Its function 1is to decode the lineér
dependent source input data according to an anticipated format,
translating the input into appropriate data and driver records
for use by subseauent NCAP phases.

Each call to subroutine LDSIN causes a single NCAP input
card to be processed.: The card image and its TYPE code are
transmitted through common storage to subroutine LDSIN which
processes the card according to its TYPE as follows:-

3-141

b A VTR
¥

TYPE=1 End 6f Card Seqguence

The <closing of a linear dependent source definition begins
by testing the input for errors. Subroutine LDSIN exits with an
appropriate error message if any of the following input errors
are detected:

1) All four nodes (A, B, XX, and YY) are zero and the

card sequence is not a modify function (MODFY=0)

2) The complex scale factor (CR, CI) is zero

3) For current controlled sources, all three parallel

components (R, C, and L) are zero

4) The input error switch is on (JART=1)

Otherwise the linear dependent source data record is written to
file 22 from the common data buffer BRUFF and the file 20 record
number DATREC is updated. to point beyond the new data record.

Because the linear dependent sources do not transmit any
internally generated data between NCAP phases, their data records
contain only input values. The 1length of a linear dependent
source data record depends on the type of source specified:
voltage controlled sources require 2 words of data storage, while
current controlled sources require 5 words.

After the data record has been written to disk, subroutine
DRVOUT is called to complete the driver record definition and
write it to file 21. The linear dependent source driver record

is developed in the first ten words of global common and consists

3-140

“ »

-»ry

D —

S e L -

o

of-

MODE=25
STADD
LNGTH=2 or 5

MISC (1) =SOURCE

MISC (3) =XX

Linear Dependent Source Identifier

Data File Record Number

Length of Data Record in Words

Source Code:
4=CV.

Positive Node

1=vC,

of Dependence

MISC(4)=YY Negative Node of Dependence
MISC(5)=A Positive Node of Connection
MISC(6) =R Negative Node of Connection

2=CC, 3=VV,

After returning from subroutine DRVOUT, subroutine LDSIN returns

to the calling program.

TYPE=2 Parameter Card
One or two decimal input values are extracted from the card
image, formatted and stored in the data buffer. The number of

values decoded and their placement in the buffer depend on the

parameter count, NXT, and the end-of-data switch, ISW. Upon

entering the subroutine, NXT contains the number of values input

on previous data cards. Parameter storage begins at BUFF(NW)

where NW=NXT+1 and proceeds through successive locations as data

values are decoded by subroutine DECIM. If an end-of-data is
encountered (ISw=1l) before PUFF(2) is fiiled, the parameter count

is reset to the last buffer location uscd (NXT=NW) and control

returns to the calling program in anticipation of additional

3-14K

parameter cards.

TYPE=6 Node Card

The NODE identifier is decoded by subroutine ALPHA. Then
the nodes of dependence and nodes of connection are extracted
from the card image and formatted by subroutine INTEG and stored
in MISC(3) through MISC(6). I: an end-of-data is encountered
(ISW=1) before four node numbers have been decoded, subroutine

LDSIN exits with an appropriate error condition.

TYPE= 8, 9, or 19 ResisEg;, Capacito:{_gf_}nductpr Card

The R, C, or L identifier is decoded by subroutine ALPHA.

If an end-of-data is encountered (ISW=1)., subroutine LDSIN exits
with an appropriate error condition. Otherwise the component
value is extracted from the card image, formatted and stored at

BUFF(TYPE-5) by subroutine DECIM.

TYPEs 181 19, 2"!“9F 21 2! VC;_CQ,’YY, or CV Card

The SOURCE type is calculated according to TYPF=17 and the
data record length 1is set: LNGTH=2 for voltage controlled

sources, LNGTH=5 for current controlled souxces. The VC, CC, VV,
3-14L

T R

L ——

i~

| S

or CV identifier is decoded by subroutine ALPHA. if an
end-of-data is encountered (ISW=1l), subroutine LDSIN returns to
the calling program. Otherwise control transfers to TYPE=2

processing for the remaining data on the card.

Any other value of TYPE constitutes an input error which is

handled by subroutine ERROR before exit to the calling program.-

e MR A B

‘ 3 MODGIN,

7 4 : Ja 2
» acria | [ermor] [oEcw] [cemnout] [oammo] [orwmo] [inTes] [SHiFT]

| [ean] (o] Coom] (7]

[mom] [Pack] [Packr] [PACKL] ' IPAcF;I [PackL]

3 3 :
{coata] [orvwR| [ERRoR] [oRvR|

e o TP

535

=

-
-
-

T — T

3-15E

R
e Tk
REPLACE
ANPLITUDE DATA
W
1
!I
RETURN

s e it A A

S —— A . - el I ———————— A . e !

i

“P

NAME- MODGIN A 4
TYPE- SUBROUTINE

GENERAL PURPCSE*

Processes *MOPIFY card sequence for generator modification
; according to the value of TYPE:
: Type = 1 - End of card seaguence

Type = 3 Irpedance

Type = 4 Frequency
Type = 7 Arplitude
VARIABLES -
;ﬂ AMP = Amrplitude values

AMPO = Modified amplitude value
FNO = User-assigned freguency numbers
FNOO = Number of fregquency to be modified

FRECQ

Freouency values

FREQC Modified frequency value

ISW = End of data switch: Off =g, On =1
ITSV = Type code of last parameter card processed
ITYPE = Sweep code- @ = No sweep

1 = Linear

g 2 = Logarithmic
i ITYPEC = Modified sweep code
JRFCO = MAddress of driver record -

3-15F | 4

NFREQ = Number of frequencies this generator

NIT = Number of sweep iterations in generator
being modified

STRING = Alphanumeric string representation of input
value

STCP = Stop value for sweep

STOPC = Modified stop value

= Valid freauency sweep tyres

TYPES

SURRCUTINES CALLED-
ALPHA DATARD DECIM DRIVRD FRROPR

GENOCUT INTFG

CALLING PROCRAMS:

PRCES

DPESCRIPTION -

Subroutine MODGIN 1is. the input processor for MCOCIFY
GFNERATCP card seqguences. Its function 1is to decode the
generator modification input data according to an anticipated
format, translating the input into appropriate data and driver
records for use by subsequent NCAP phases.

Each call to subroutine MODGIN causes a single NCAP input
card to be proéessed. The card image and its TYPE code are
transmitted through common storage to subroutine MOCGIN which

processes the card according to its TYPFE as follows:

3-15G

o i s

e A 55 S b o 1 IR AR 138 3

TYPE=1 End of Card Secquence

The modify generator data record is created by replacing the
frequency and amplitude values of the previous generator record

with the updated FREC and AMP values processed by subroutine

MOLGIN. After saving the present driver record number in JRECO,

the previous generator driver record is read by subroutine DRIVRD

(its record number is obtained by backspacing over the NIT

frequency sweep driver records which are stored between it and
the present driver record at DRVREC). Using the record number
STADC, the previous generator data is read from file 20 by
subroutine DATARD and stored in the common data buffer BUFF.

The updated freguency values are stored in BUFF(1)-(10) and
the updated amplitudes 1in BUFF(11)-(30). MODE is set to 21 to
identify the generator modification function, the node card
switch is disabled, and subroutine GENOUT is called to write the

data and driver records to disk.

TYPE=3 Impedance Carxd

Since generator impedances cannot be modified, any impedance
card in a modify generator card sequence constitutes an input
error which 1is handled by subroutine ERROR before exit to the

calling program.

TYPE=4 Frequency Card

The card type code is saved in ITSV and the FR identifier is
decoded by subroutine ALPHA. The freguency number is decoded and
formatted by subroutine INTEG dna stored in FNOO. The frequency
value 1is decoded and formatted by subroutine DECIM and stored in
FREQO. If the frequency value is zero, subroutine MODGIN exits
with an appropriate error condition. '

At this point the end-of-data switch Isﬁ is wused to
determine the presence of freguency sweep parameters on the card.
If the end-of-daia in on (ISW=1l), the parameters ITYPEO and INCO
are set to indicate no sweep. Otherwise the sweep parameters
STOPO, INCO, and ITYPEO are decoded and formatted by subroutines
DECIM, INTEG, and ALPHA respectively.

The sweep type 1is tested against a table of wvalid
alphanumeric types. If no match is found, subroutine MODGIN
exits with an appropriate error condition. If a match is found,
the sweep type is encoded in ITYPEO. |

The number of the frequency being modified FNOC is compared
against the fre;uency numbers defined for the previous generator
FNO(I), I=1,10. If no match is found, subroutine MODGIN exits
with an appropriate error condition. If a match is found, the
table index I serves as the index for replacing FREQ(I), STOP(I),
INC(I), and ITYPE(I) with the modified values, after which

subroutine MODGIN returns to the calling program.

s P o 0 A 39 ST S ENU - oo, ~ g

TYPE=7 Amplitude Card

In order for amplitude data to be associated with the proper
frequency, each amplitude card must physically follow a frequency
card in the input deck. Therefore if the last card processed was
not a frequency card (ITSV # 4), subroutine MODGIN exists with an
appropriate error condition.

Otherwise the card type code is saved in ITSV and the AMP
identifier 1is decoded .by sub;outine ALPHA. The real and
imaginary parts of the complex amplitude are decoded and
formatted by subroutine DECIM and stored in AMPO(l) and AMPO(2).
The number of the frequency being modified FNOO is compared
against the frequency numbers defined for the previous generator
FNC(I), 1I=1,10. If no match is found, sgbroutine MODGIN exits
with an appropriate error condition. If a match is found, the
-table index I is wused to replace the original amplitude data
AMP(1,I) and AMP(2,I) with the modified amplitude, after which

subroutine MODGIN returns to the calling program.

Any other value of TYPE constitutes an input error which is

handled by subroutine ERROR before exit to the calling program.

il

o gy

T

vy

Y At £ S SN PO 0

ey

R g

Aarigs v

—

N

3-16A

¥
!
i
i
,m
i
N
£
i
5
{

T,

R S —

Y,

TN GAT M-

0 s Tk e

R, ' . 3 SRR = . s

NAME: MODIN @
<y

TYPE: SUBROUTINE

CENERAL PURPOSE:
Process *MODIFY card, resets MODE to identify device being
modified, turns modify switch 'ON' so remainder
of card sequence is processed according to MOPE of

device beina modified

VAPIABLES:

NONE

SUBROUTINES CALLFD:*

NONE

CALLING PROCRAMS:

PRCSS

DESCRIPTION -

Subroutine MOPIN initiates the processing of a MODIFY card
sequence. Rather than processing the input cards itself, it
resets MODE to identify the device being modified, turns the
modify switch on (MODFY=1), and returns to the calling program
where the remaining cards of the sequence are processed according 3

to the MODE of the device beina modified. i

3-16p

G4 AYPOTIMER

R i SRR T e

i LSRR S

e

“»
wr

L14IHSY

1dIHS

MOvVd

YMOVd INOVd

UMOvd

IMOVd

HMAING NVOS

NVOS

UMOvd

NVOS

LNOAYQ 93 LN

H0yy3

WI1030

HMvLva

VHdV

(NION)

3-17A

S S

awmr

T ——

¢
Ky

t

JORE.

)

S

3-178

B S et o s

v i e &

O
~
—~
U
™

-
=

«

[—

3~17E

NAME: NCIN L]
TYPE* SUBROUTINE

CENERAL PURPOSE -
Processes *NONLINEAR COMPONENTS card seguence according
to the value of TYPE:
Type = 1 End of card sequence
Type = 2 Parameter card
Type = 8 Resistor

Capacitor

]
(Y

Type

Type = 12 Inductor

VARIAEBLES-
ISW = End of data switch- Off = @9, On =1 3
NCOMP = Length of data record in words i
NCDEA = Positive node of connection é
NCOCER = Negative node of connection {
NUM = Number of nonlinear components this card

seguence

NW = Word counter for parameter input
STRING = ilphanumeric string representation of input

value

SUBRCUTINES CALLED-

ALPHA DATAWPR CECIM DRVOUT ERROR INTEG “»
“w

- i .

 ann

L e

CALLING PROGRAMS:
PRCSS

CESCRIPTION -

Subroutine NCIN is the ‘input processor for NCONLINEAR
COMPONENTS card sedquences. Its function 1is to decode the
nonlinear components input data according to an anticipated
format, translating the input into appropriate data and driver
records for use by subsequent NCAP phases.

Each call to subroutine NCIN causes a single MNCAP input card
to be processéd. The card 1image and 1its TYPE code are
transmitted through common storage to subroutine NCIN which

processes the card according to its TYPE ‘as follows:

TYPE = 1 End of Card Secuence

— i ot o i

The closing of a nonlinear components definition begins by
testing the input for errors. If no linear component cards were
processed (NCOMP.LE.@) or if the input error switch 1is on
(JART=1), return is made to the «calling program with an
appropriate error condition. Otherwise the data record is
written to file 20 from the first NCOMP words of the common data
buffer BUFF by subroutine CATAWR.

; The nonlinear components data record is structured as a

series of NUM contiguous 13-word entries, one for each nonlinear

3-17¢

R e

component defined in the card sequence:

BUFF(1)-(13) First Component Definition

BUFF(14)-(26) Second Component Definition

PUFF(NCCMP-12) - (NCCMP) Last Component Definition
The first word of each entry contains an integer code
representing the component type: l=resistor, 2=capacitor,
3=inductor. The second aqd third words represent the positive
and negative nodes of connection. The last ten words contain

from one to ten nonl{near coefficients which define the element:

PUFF(1) ,(14) ... (NCOMP-12) Component Codes
RUFF(2),(15)... (NCCMP-11) Positive Nodes of Connection
BUFF(3),(16) ... (NCCMP-10) Negative Nodes of Connection
RUFF(4) ,(17) ... (NCOMP-9) First Order Coefficients
BUFF(5),(18) ... (NCOMP-8) Second Crder Coefficients
BUFF(IB){(26)...(NCOMP) Tenth Order Coefficients

The nonlinear components driver record 1is completed and
written by subroutine DRVOUT to file 21 from the first ten words
of global common, where-

MCDE=5 - Nonlinear Component Identifier

STACLC Cata File Record Number

3-17H

IS

B T

-

V o 1

A}

v

o g T R

LNGTH=NCOMP' Length of Data Record in Words

MISC (1) =NCOMP Number of Nonlinear Components x 4

B e s R TETRp R ———r |

Other MISC driver parameters are not used.

TYPE=2 Parameter Card

From one to ten decimral paraméters are extracted from the
card . image, formatted, and stored in the d;ta buffer by
subroutine DECIM. The number of values decoded and their
placement in thé buffer depend on the parameter count, NXT, and
the end-of-data switch, ISW. Upon entering the subroutine, NXT
contains the number of coefficient values input on previous data

cards. Parameter storage starts at BUFF (NCOMP-10+NW) where

e

NW=NXT+l and proceeds through successive buffer locations as
coefficient values are decoded by subr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>