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I. Introduction

The inductive acceleration of electrons by adiabatic magnetic com-

pression of electron rings has been demonstrated in several latoratories.’' ™

For weak rings, the observed increase of the mean electron energy and the
shrinkage of the major and minor radii of the ring are consistent with
the constancy of the magneEiE/@oment wl= Pf/EmoB, wherePl is the single
particle momentum perpend%cular to the magnetic field and B the magnetic
field]. A two-hundred fold increase of the electron energy has been ob-
served by Kapetanakos®? et al., when the time varying magnetic field in-
creased from its initial value of 70 G to 15 kG.

The inductive acceleration of ions by magnetic compression of ion
rings is, in principle, very similar to that of the electrons. However,
in practice, the ion ring compression is complicated by the presence of
space charge neutralizing electrons. These electrons can generate an
azimuthal current either by electron-ion drags’s, radial electric fields

or pressure gradients. Thus, depending on the conditions of the system,

at least partial cancellation of the current that is carried by the ions

is likely, in particular near the magnetic field null. In some application:

partial cancellation of the ion current during magnetic compression is
highly desirable because most of the externally supplied energy goes into
useful kinetic energy and not into thermal and self-magnetic field energy
of the ring.

During the last few years, several models’" 1% have been developed in
relation to the magnetic compression of ion rings. The predictions of
these theoretical models are sensitive to their basic assumptions. In all

these models the dynamics of the neutralizing electrons either have been

Note: Manuscript submitted August 1, 1979.
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neglected or treated incompletely.

In a recent publication Sudan!! has suggested the use of magnetically
compressed rings for pellet fusion. In Sudan's scheme the image currents
on the walls of the tube that surrounds the ring provide the radial equi-
librium during the propagation of the ring from the compression region to
the target. The guide tube is destroyed and must be replaced in each shot.

In this report, we propose an alternative scheme for the generation
of high energy, high current ion pulses that also is based on the magnetic
compression of ion rings.

The basic difference between the present scheme and that of Sudan
is on the extraction and the propagation of the ion pulse after compression.
The proposed scheme does not require either an external magnetic field or
a tube for guiding the ion pulse from the compressor to the target.
Therefore, it may be in particular useful in those applications that require
an appreciable separation between the compressor or accelerator and the
target. In addition, the present approach assumes that the compression
of the ion ring is performed in a suitable environment that allows ap-
preciable cancellation of the ion current.

The proposed scheme for the generation of intense, high energy ion
pulses by magnetic compression of ion rings is shown schematically in
Fig. 1. A hollow, thin ion beam of energy about 2 MeV generated by a
low inductance, coaxial reflex tetrode!? is passed through a magnetic
cusp. As a result of the q(vz X Br) force, the ions of the beam obtain
azimuthal velocity and start to rotate. The rotational velocity (ve) of
the ions is further enhanced, at the expense of their translational velo-

city, by a static, converging magnetic field. The maximum value Bmax of
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the compressing field is such that the protons located at the outer edge

3 The ion

of the beam arrive at Bmax with zero translational velocity.®
ring is formed by trapping the 50-70 nsec duration ion pulse inside a
magnetic mirror with the aid of a gate field.

The rotational energy of the ring is enhanced by increasing in time
the confining magnetic field. For adiabatic compression, an appreciable
saving in magnetic energy is obtained by using imploding liners.!* After
compression, the ring is extracted out of the confining field by opening
the far mirror peak. Initially, the ring is allowed to expand adiabatically
in a spatially decreasing field. When the ratio v"/vl, where v..,vl
are the velocities of the ring parallel and perpendicular to the field
lines respectively, acquires the desired value, the ring is passed through
a sharp half cusp that further increases v,, at the expense of vl.
Although the radius of the beam remains virtually unchanged as it passes
through the sharp half cusp, the conservation of the canonical angular

S
Ae(r) =0 . However, for intense rotating beams Ae(r),f 0 on the right

qrA
momen t um P4:= mrv, + 5 J requires a rapid expansion of the beam when

of the half cusp because Ae(r) = ASXt(r) + Age]f(r) and A;e‘f(rQ £ 0, al-
though the externally applied vector potential ASXt(r) = 0 . The existence
of equilibrium for a hollow, rotating ion pulse that propagates in the
ASXt(r) = 0 region is shown in Section IV, using the Vlasov-Maxwell
equation.

The organizatioﬁ of this report is as follows: The magnetic compression
of the ring is discussed very briefly in Section Il. The transmission of

the ring through the cusp and the target location for the particular case

of pellet fusion is presented in Section Ill. The equilibrium of the
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hollow beam in the absence of an externally applied field with and without
a conducting tube is discussed in Section IV. Finally, a brief summary
of the results is given in Section V.
ll. Magnetic Compression of the Ring

Efficient transfer of the externally supplied magnetic energy into
particle.kinetic energy during magnetic compression of an ion ring requires
that the self magnetic field to be appreciably smaller than the applied
magnetic field. Under these conditions, the magnetic field lines are open
and thus only small electric fields can be sustained. |f the Budker's
parameter v (= NRO, where N is the number of ions per unit length and R, is
the ion classical radius) of the ring is not appreciably smaller than unity,
the self field can be kept small only if the electron return current part-
ially cancels the ring current. Such an electron current can be driven
by a radial electric field, a plasma pressure gradient along the minor
radius of the ring or collisions. Among the three, plasma pressure grad-
ients appear to be the most appropriate in the present case. The radial
force required for the existence of equilibrium is mainly provided by the
magnetic field.

If the self magnetic field of a space charge neutral ring is ap-
preciably smaller than the external field, the kinetic energy of the ions

E(t) and the particle current I(t) can be estimated from

E(t) = 2E(0)[B(t)/B(o)][Y(t)+1]"-1, (1)

and

1(t) = Io(o)[B(t)/a(o)]Y"(t), (2)
A




where E(0), 1(o) and B(o) are the initial values of energy, particle
current and magnetic field respectively, B(t) is the value of magnetic
field at time t and Y(t) the relativistic factor.

The technique of generating high magnetic fields by magnetic flux
compression is under investigation for several years. At NRL, large
initial diameter (~28 cm), 7-cm long seamless liners of annealed aluminum
have successfully imploded and peak magnetic fields in excess of 1.3 M
gauss have been obtained. !n addition, experiments have shown that
rotating, hollow cylinders of liquid liners (22% Na, 78% K) can be stably
imploded on trapped magnetic flux.

Presently, experiments are underway at NRL to form a strong proton
ring. The anticipated parameters of such a ring are shown in Table 1.
The values of the various parameters after compression, are also shown
in the table. |In an experiment, the values of the various parameters at
the peak of the compression will not be much different than those given in
Table | when the self magnetic field is small in comparison with the ex-
ternally applied field.

11, Extraction of the Ring

After the ring compression is over, the far mirror is switched off
and the ring is allowed to propagate adiabatically in a slowly decreasing
magnetic field. The velocity of the ring parallel to the magnetic field

lines at point 1 {(cusp entrance) is given by

1
Vul = le(I-BI/Bm) /29 (3)

where v, is the azimuthal ring velocity at the end of the compression,




ﬁn is the middle plane value of the compressing field and B, is the magnetic
field at the entrance of the cusp. The ratio 81/8m is mainly dictated by
the maximum ion pulse radius that can be tolerated in a particular appli-
cation. For example, in pellet irradiation experiments with the parameters
of Table 1, BI/Bm = |/2 appears to be appropriate. In order to further
increase v without an appreciable radial expansion, the ion pulse is passed
through a half cusp that has a transition width 6, that is smaller than the
average radius of the gyrating ions.
It is assumed that the cusp is described by the vector potential
Ae = y28 fR28,) .~ &

in a cylindrical coordirates system with its origin as shown in Fig. 1. For

g ERaz8 (4)

a charged particle of mass m and charge q in an axisymmetric field the non-

relativistic Hamiltonian is

H= (m/2)(vi + v§ + v2) + ao(r) , (5)

where ¢(r) is the electrostatic potential and

qrAe

ve = (Py = —=)/mr . (6)

The canonical angular momentum Pe is a constant of the motion and the

magnetic vector potential has two components, i.e.,
- REXE self
Ag(r) = A" (r) + A~ (r) .
The envelop (boundary) equation for a charged particle in the region

- 8§, <z <0 can be easily determined when ¢(r) = Agelf(r) = 0. Substi-

tuting Eqs. (4) and (6) into Eq. (5) and taking Pr = Pz = 0, the boundary

is given by!®




R, = 26, /21y {-1#[1 + (2/8, )0, 1%}, %)

where o - PGQL/H’ Ql = qu/mc, r, = (H/erﬂf)%, and Py > 0 for q > 0.
Equation (7) shows that crossing of the upper (+ sign) and lower (- sign)
boundaries in the region - 6,< z < 0 occurs when 1 + (z/Gl)o& = 0. There-
fore, the boundary remains open and thus a rotating particie can pass
through the cusp if

a;1 > 0. (€)

According to Eq. (8), a ring that reaches the entrance of the cusp (z =
- 61) with small self fields and small radial velocity, it passes through

provided that

2 2
(m/2) (v91 * 1) > R, (T!!V91 - qR B, /2), 9
where R is the major radius of the ring at z = - 61. Since L Rlﬁa,
Eq. (9) gives
Ve © o, (10)

which is not an unexpected result. For v_ >> 0, i.e., for a ! >> 1, Eq.
pa 1

(7) becomes
+ 1|0
R, (z) = (11)

ber /2| .

The discussion on the transmission of the rotating beam through the
half cups is based on the assumption that the self magnetic field of the
beam is very small in comparison to the external field. However, the ex-
istence of equilibrium in the region that is located to the right of the

half cusp (z > 0) requires the presence of self fields. Therefore, if the

£
2




self magnetic field is zero at the exit of the cusp means muct be found
that inhibit the flow of electrons in both the azimuthal and axial di-
rections. Since in multiple elastic scattering the square of the mean

scattering angle”’18

of charged particles injected with the same velo-
city into neutral gas is proportional to Ri an;I, where Ro(= q?/mc?) is
the charged particle classical radius, the electron current can be ap-
preciably inhibited by passing the beam through a neutral gas of approp-
riate pressure.

The dotted line in Fig. 2 illustrates qualitatively how the field in
a linear half cusp is modified by the self field of a long rotating beam.
Clearly, the half cusp involves into a full cusp.

The dynamics of a neutralized, rotating ion beam passing through a

19

cusp are very complex. There is experimental evidence that a fraction

of the light electrons is tied to the field lines and does not follow the
ions across the cusp. The transmission of a rotating beam through a cusp

is presently under investigation with a computer simulation code.

20,21

For pellet fusion, a full cusp may be more desirable than a half

cusp. Again, it is assumed that for z > 0 the cusp is described by

A, = rzBB/ZG

6 z>0 (12)

2°?

where 63 is the transition width and B3 is the axial magnetic field Bz =
22
r or

z < 0 case, the boundary equation is

(rAe) at the exit of the cusp, i.e., of z = 62. Similarly to the

R; = 2r2(52/z){‘¥ USRI T (z/ae)aajéi}, z>0 (13)

where a, = a, B,/B, and ryo, = Pe/(ZmH)%. Figure 3 shows the boundaries

of the full cusp for a, = 0.5 and a, = 0.1, i.e., for B, = B /5. Higher




values of B, may be more desirable. A pellet that is located near the
exit of the cusp is irradiated not only from the front but also from the
back because of the reflected ions. The range _f 100 MeV protons in gold
is about 0.8 cm and therefore the total diameter of the target (DT and Au)
should be ~ 1.7 ¢cm. Thus, heavier ions are more suitable. The size
of the pellet can be made compatible with the opening of the boundary
by adjusting the value of Ba‘
IV. Equilibrium

When a rotating beam that is immersed in a magnetic field is extracted
to a free magnetic field region, as in Fig. 1, the canonical angular momen-
tum can only be conserved if r increases, i.e., when an expansion of the
beam occurs. For intense rotating beams that are not current neutralized
the vector potential Ae(r) has two components,
1€,

Ag(r) = AE(r) + A;e”(r),

where AeXt(r) is due to the externally applied field and Ase'f(r) is due
) 6

to the azimuthal current of the bearn. Therefore, Pe can be conserved with-
out an appreciable increase of r, even in the absence of an external field,

provided that A;e]f(r) # 0. However, conservation of P, does not warranty

8
the existence of equilibrium. For the equilibrium to exist, a negative
force is needed which can be conveniently provided by the self B9 field.

For a solid rotating beam propagating in the absence of an external
magnetic field, the JZBe force balances the centrifugal and the JeBZ forces.

This equilibrium was studied initially by Yoshikawa,?? who used a cold fluid

model (VP = 0) and assumed b + ® (no surrounding conducting wall).

SP—




However, only hollow beams can be efficiently transformed with mag-
netic cusps. For this reason we study in this section the equilibrium
of a hollow beam. Any realistic model dealing with finite thickness
hollow beams should include the pressure gradient term. Hot beams (p # 0)
can be conveniently studied using the Vlasov-Maxwell approach.

The present calculation is carried within the Vlasov-Maxwell frame-
work and indicates the existence of equilibrium for a hollow rotating
beam, when the external magnetic field is zero and the radius of the
conducting guide tube b » o,

In addition to these theoretical predictions, recent experiments??
at NRL have demonstrated the existence of equilibrium for a hollow, over-
dense, rotating electron beam that propagates inside a conducting guide
tube in the absence of an external magnetic field. Presently, experiments
are planned to test the existence of equilibrium when the conducting tube
that surrounds the beam is removed.

The equilibrium configuration is shown in Fig. 4. It consists of a
space charge neutralized, hollow, infinitely long rotating ion beam that
is immersed in a uniform magnetic field Bo. The beam is surrounded by a
conducting cylindrical liner of radius b and propagates with a velocity
vz(r) along the axial direction. The following simplifying assumptions
are made in describing the equilibrium of the propagating ion beam:

(i) Equilibrium properties are azimuthally symmetric and indepen-
dent of z-coordinate, and

(ii) The equilibrium electric field of the beam is neutralized by
an electron background and the current carried by the electrons is

equal to zero, i.e., the self magnetic field is generated entirely

10




by the ions.

Initially, the equilibrium properties of the beam are computed for
finite Bo and b. Subsequently, the limited case of Bo =0and b > is
considered.

The equilibrium is described by the distribution function

mn qAZ PZO
Vz = T G(H-wpe-kl) (S(Vz + m—c—- S (l‘l)

£ (H-wP
m

e’

where w, k , m, n, ¢, m and on are constants, Az(r) is the axial component

of the vector potential,

H = (m/Z)(vi + vé + vi), (15)

Pg = mry, * (q/c)rAe(r), (16)
and

B =, * (q/c)Az(r). (17)

The argument of the first delta function in Eq. (14) may be expressed as
B« O, <l » WGt ] + U (), (18)

where

Uy(x) = m/2)[P /m - (q/mc)A (r)]°

- (q/C)rAe(r)w - mr? w%/2 - k, < 0. (19)

The density profile corresponding to the distribution of Eq. (14) is

11
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n(r) = rfo (H'wP >y V )dav L ; ’ al < T < aﬁ > (20)
o e z e
where a and a, are the roots of Uo(r) defined in (19).

The azimuthal current density is given by

~
J

Je(r) = ane(r) » 8 ST <a, 21)

-~

where Ve(r) is the mean azimuthal velocity of the rotating beam, i.e.,

]

= by o 3
Ve(r) = (va(r)) (l/n)fvef (H-wP9 . vz)d v

By , & ST <& - (22)

Equation (22) shows that the ion beam rotates with a constant angular
velocity ® around its axis of symmetry, i.e., the beam is in a rigid-
rotor equilibrium.

The azimuthal component of the magnetic vector potential is deter-

mined from

il Lo
&

o
[=}

)

[rAq(r)] = - (hn/c)qaur, (23)

and the axial component from

1d dAz(r) = < (hﬂ/c)qE[P /m - (q/mec)A _(¥)]. eh)
=—|r Zo z
r dr dr
The solution of Eq. (23) subject to the boundary conditions that
b
. ; = TR 2
Ae and Bz are continuous at a and a, and ieﬂBzrdr b Bo (flux con

servation) is
Bz(al)l'/g ’ OSrga.L

Ae(r) = Bz(al)r/E - n;q»(rz-af)2/2cr s BT <a 25)

Bz(al)r/2 - ";ﬁw[(ag- =)

X (2r2-af-a§)]/2cr, a, <rc< b,




where Bz(al) is the axial magnetic field in the inner surface of the beam.

The axial magnetic field Bz(r) = %'%F(Aer) is computed from Eq. (25)

and is )
arl, (a2 + al)
Bo+C 1- 557 s O<r<a
(a2 - r2) (a%+ a?
(a2 - a3) 2b?
2 2
41 (al 5 a2
Bo_E—I!L[ b2 s B, 520 4
where Iz = S%E(Q: - a:) is the azimuthal current per unit length. For

q >0, '2 has the same sign with w, which is, either negative or positive.
Although the expressions describing the density, azimuthal velocity,

Ae(r) and Bz(r) appear to be identical to those of reference 24, they are

defined in a different region because for the distribution function of

Eq. (14), a, and a_ are functions of Az(r).

The axial component of the vector potential Az(r) is determined from

Eq. (24) and is given by

0, 1 S D
A(r) =} (cP, /a){1-(a,/2*) [Io(r/A*)Kl(al/X*)+K°(Y‘/)\*)I,(a1/)\*)]}: a,<r<a,
(ZI/c)Qn(aB/r) +(cho/q){1—(al/>\*)[Io(a,/A*)Ko(q £3*) + (27)
t Ky(a,/3%)E (a,/3%)]}

where ln and Kn are modified Bessel functions of order n, A* = c/wp

and w; = 4mnq?/m. Equation (27) has been derived assuming that Az and B,

are continuous at a, and a, and Az(ax) = Be(al) = 0. The azimuthal magnetic

field By = -dAZ/dr computed from Eq. (27) is

13




0, Osrsa1
Be(r) = (hﬁqgéleolmc)[Kl(al/k*)lx(rlx*)-ll(ailx*)xi(r/x*)],aStsaa

2I/cr, a, <r <b,

(28)
where the current of the beam | can be expressed as

I = (2Tque, a 8, /m)(K (2, AL (3,A%) - L, (a, hNK (/h*)].  (29)

For a /X >> 1, Eqs. (27), (28) and (29) become
0, 0O<src< a,

A (r) = { (P /{1 - (allr)% cosh[(r-al)/k*]}, & =Tz (30)
- 3 %
(21/c)an(a,/r) + (cho/q{i - (a,/a,)z cosh[(a,-a )/ ]}’ a <r<b
o, O-s r<a
Be (r) = (hﬂq;A*on/mc)(ai /r)é sinh[ (r-a )/2\*], B sr<e (31)

2I/cr, a, <r<b,
and

I = (2vqn_3\*/m) (a, ) ¥sinn [(a,-3)/3*]. (32)

| Defining the Alfven limiting?® current I, as the beam current at which

the Larmor radius of a charged particle in the maximum self magnetic field

is equal to one-half of the beam radius, we obtain

Vz (a2 ) a,

(a/me) 2T /ac) ~ ¢ (33)

For a /A% >> 1, Eqs. (30) and (33) give

I, = Ca(on/q) (g, /az)é cosh[(a, - a Wi*l. (34)
Combining Eqs. (32) and (34), we get

L .5 *
-I-;= 2—)\; tanh [(32 = al)/k ]’

14




which is reduced to

I . a/2x*, for (a:a & )/A% >> 1 (34)
Ip
The conclusion from Eq. (34) is that the beam current | can exceed
considerably the Alfven current lA when the collisionless skin depth A%
is much smaller than the radius?® and the thickness of the beam.

The function -Uo(r) > 0 has a maximum, which can be determined from

Jt dUo(r)

dr r= po

- 9 (35)

Using Eq. (19), Eq. (35) can be written as
x (%)vz(po)Be(po) i (%)wpoBz(co) i lllwapo i

or

b (p IV (p )m
LOLPO] . (36)

= 04570,

Q. (p

z "0

where Qz(po) = qu(po)/mc and Qe = de(po)/mc. Since the radical in Eq.
(36) is greater than unity, the ratio w/Qz(po) can be either positive
or negative. Which mode of rotation is present depends upon the initial
preparation of the system.

When v, = const. Eq. (36) gives
Dy Lot Qz(po)’

29

as expected.?”,2% |t can be shown?® that the pressure P in the beam is

15
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P

-nU_(r). (37)

Using the 1-fluid equation with %?-= 0, we obtain

g2 +
Am(V-V)V = ng LXB - pp,
or
Vg dP
6—— - - ——
— m (JGBz JzBe)/c ar (38)

The balance of forces becomes apparent when Eqs. (19) and (37) are
inserted in Eq. (38).
The inner a and outer a, radii of the beam are the roots of Uo(r)
function and therefore U (a;) = U (a ) = 0. These radii are in general
o o'3
complicated functions of several parameters. Of particular interest in the
present work is the limited case Bo =0and b >+

Defining the layer strength parameter as

v = ﬂﬁhz(a: - af)/mcz, (39)

the constant Bz(ai) in Eq. (25) can be written as

B,(a,) = 2umcv/q. (40)

and the azimuthal component of the vector potential Ae(r) in the region

a <r f_aa as
(r2_ 2)2

= g - —————
Ae(r) Omvntc/q)L} 2r2(a§-af) ]. (41)

16




Substituting Eqs. (41) and (17) in Eq. (19), it is obtained

U (r) = Ulr) + mvZ(r)/2, (42)
where
wpZm Var- -
i) = sombommen, g - r“ + i e Zmr? 4+ W™ 4 43
e L (a5-a) ] 2(az-a) 5], o
and

v,(0) = v, (a)(a, W) EAOK (@ %) + K HL (a, A%] Gb)

The constant vz(ai) = on /m is the velocity of charged particles in
the inner radius of the beam.
The functions U(r) and -mv;(r)/z are sketched in Fig. 6. The two

roots af and a: of U(r) are given by

*

agry = (14 3) (2 - a?) + a

{‘1"‘“)(%&1“%] |_81-2‘s . g

The maximum value of U(r) occurs at

=% }°1
p? = a: + (af - af)/2v = ai + (2mnR )

and is

A S—

={a?(@v-1) + a2(2v+1) |/8v+k /mw2(2v+1), L
m2(2v + 1) t}5 . ] 8 20

17




where Ro = q?/mc? is the charged particle classical radius. Necessary

conditions for the equilibrium to exist are

u(p) <0

and

U] > 3 va(ay) - (46)

Substituting Eqs. (44) and (45) in Eq. (46), it is obtained

ﬁ,-

£ 1} &

3 *2| - * *
e bovl (2 ){(a /2 on(aglx K (a /2 )+Ko(ag/7\*)11 /%)

©2(az-a)
The radii of the beam a and a, are the roots of Uo(r) and are deter-

1 mined from Eq. (42). These two radii are given by

af = (PZ_ - 2mk )/m*w®(1 + 2v), (48)

i and

aZ(v+ 1) +val + 2k /m® =
[vi(ai)/w"’](allx*) I (0, AK (A" + K (a,ANL @, 1N . (49)
When a, /A* >> 1 and (a3 - al)/)\* >> 1, Eq. (49) becomes

a w2
(a,-2) ~ (W*/2nn {=——— T (#1)aZ + va2+ 2k /nwa:[} X
avs (a) =

In order to have a; -~ a 2 o,

[«;2/\,:‘@\1 )-[(v +1)a2+va2+2k /m? | > a /a, -
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(b) Infinitesimally thin beam

The various expressions given above are simplified considerably when
a, = a, i.e., for very thin beams.
In the thin beam approximation the radial velocity of particles is

approximately zero and then

gvi(r);s H - vag =H - (m/E)EPG/mr - (q/mc)A..J2 (50)
Using Eq. (50) and the relation H - wPy = k , Eq. (42) gives
af a a: = Pe/mw(l + V). (51)

Equation (51) can be easily derived from the conservation of Pe =

mr? 8 + qur/c. Substituting 8 =w and using Ae = mvwrc/q from Eq. (41),

we get Eq. (51). For a /A* >> 1, Eq. (47) becomes
(2v + 1)2 > bnvi(a )R {(a /a)) cosh®[(a,-a Y] - 1} w2,

Since
1= 2nq;§z(a5)dblaax*sinh[aa - 31)/K*]' in the thin beam approximation
Eq. (47) becomes

qa,
(2\) + I)E-R-— _>_ (1/0.)). (52)
(o]

The above equation shows that in thin beams the current I can be
large provided that the frequency of rotation is high.
Equation (52) can be written in a different form. Since I = q\)Vz/R°

and wa . vg, Eq. (52) gives

\4
il 2V

AN IS o AT o A AT




Since for infinitesimally thin beam Qz(po) = wv and Qe(po) = qI/mczal,

the equation that precedes Eq. (36) gives

Vo I
= a 2 (54)
z mczal(v + 1w

or after substituting for I

"e=( v )i (55)

The inequality of Eq. (53) is always satisfied when the equilibrium
condition of Eq. (55) is satisfied.

When the distance between the accelerator and the target is much
shorter than the beam length, a steady state could be established. Under
these conditions, using Eq. (15) with v, = o and Eqs. (51), (54) and

Vg = 3w, we obtain

3
2
ey T (56)
(2v + 1) 2maZH
1p

where Hp is the hamiltonian at the peak of the compression. Before the

establishment of the steady state, a fraction of the beam energy is in-

vested to build up the magnetic energy. |If L is the beam inductance per
unit length, then Eq. (56) becomes

2
(MD2 v =P
[ (@WI) + LvcZ (wt1)] 2‘“-312-—“9 (57)
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The beam inductance L has two terms, one associated with the rotation

and the other with the translation of the beam. In general, L is a func-

tion of v. For an infinitesimally thin beam, of length 1, the inductance

per unit length is given by

- v
L=c¢ 2[21n(2|/a1)-] * et ]

provided 1 >> al.
(c) An Example

Combining Eqs. (51), (55) and (56), it is obtained

R Y _ v

(2v+1) 2

qveo

where Vo is the azimuthal velocity of ions at the peak of the compres-

v

Substituting this value in Eq. (55), we get Ve

21

sion (Hp = %mve;). Equation (58) determines v when the value of I and
oo are specified. For r = 107A and Hp = 200 MeV, Eq. (58) gives v
The value of Vz is determined from Vz = IRO/qv and is 1.19X10'° cm/sec.
= 0.8 X 10'® cm/sec.

The beam radius is determined from Eq. (51). Using the value of
beam is only 38 cm, the ommission of inductive effects is justified
only if the target is located a few cm from the exit of the cusp.

thin. |If the thickness of the beam is finite, the procedure of deter-

mining the various parameters of the beam is more complicated.

(58)

0.8.

; Pe that corresponds to the values of parameters of Table 1, Eq. (51) gives
a,= 0.54 cm. Since for this particular case the length of the extracted
In the above example the beam has been assumed to be infinitesimally

Finally,

it should be emphasized that predictions that are based on infinitesimally




thin beams must be treated with care, because such beams are likely to be
unstable.
V. Summary

A scheme is proposed for the generation of high energy, high current
ion pulses by magnetic compression of ion rings. An important feature
of the present scheme is the extraction and unwinding of the ring after
compression. The propagation of the extracted pulse from the compression
region to the target does not require the presence of metallic boundaries
or the application of an external magnetic field. Therefore, such a
scheme is in particular useful for targets that are separated from the
compressor by a large distance. |t appears that the present technique
can lead to the generation of hundred of MeV ion pulses without the need
for further development in the existing pulse power technology. The
capabilities of the proposed scheme appear to be far beyond the present
requirements for pellet fusion. However, the successful evolution of the
proposed approach to a practical device rests very heavily on several
factors, including the formation and stability of ion rings, the stability
and finite length of the hollow beam and the ability to inhibit, at least
partially, the electron return current in the propagating ion beam.
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Table 1

Source

Average hollow beam radius at the anode (cm)
Magnetic Field (kG)

Pulse Duration (nsec)

Compression Region

26

Before
Compression
Proton energy (MeV) 2
Magnetic field at M.P. (kG) 18.2
Proton current (MA) 0.92
Number of protons 2 % 10%7
Ring kinetic energy (MJ) 0.064

26
2.3
70

After

Compression

100
910
46
2 X 10t

3.2
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Fig. 2 — lilustration of the effect of the self magnetic field of a rotating
beam on a linear half cusp
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Fig. 3 — Boundary of the allowed region (hatched) of a full cusp when
aq = 0.5and ag = 0.1
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Fig. 5 — Illustration of various forces acting on the beam
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Fig. 6 — Sketch of functions U(r) Eq. (43) and -mv%(r)/2 Eq. (44) vs. radial
distance. The intersections of two curves give the inner aj and outer ay radii
of the beam.




