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FOREWORD

This report was submitted by Photon Research Associates, Inc.,

La Jolla, CA 52037, under Contract No. F04611-78-C-0081 with the
Air Force Rocket Propulsion Laboratory, Edwards AFB, CA 93523.
The report documents the development of gas/particle radiative
transfer model techniques as pert of the Standardized InfraRed
Radiation Model (SIRRM) during the time period from September 18,
1978 to June 30, 1979, under Air Force Project Task 30581388,

The program manager and principal investigator is C. B. Ludwig
and the co-investigators of this phase of the program covered in
this report are G. N. ¥reeman and W. Malkmus (Phnton Research
Associates, Inc.) and M. Slack and R. Reed (Crumman Aerospace
Corporation).

This report has been reviewed, and is approved for publicatiocn
in accordance with the distribution statement on the cover, and
on the DD Form 1473.
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:§§J e Three-dimensional, non-uniform, axisymmetric medium
e Arbitrary particle mixtures and size distribution
e Line-by-line and band-model treatments
® Alternate levels of engineering approximation

These requirements are met by developing two basic approaches, a 6-flux
and a N-flux approach. This disE;nction refers to the associated sub-
division in angular space, six-orthogonal coordinates versus N non-
orthogonal coordinates in azimuth and elevation, thus providing the alter-
natives of computational simplicity of the 56-flux model with generality of
the N-flux model. Numerous parametric calculations were performed to study
the effect of optical depth, scattering albedo, phase function apd medium
geometry on the target signature and computational requirements.&Comparisons
with independent calculations such as the two-uimensional Monte ’Carlo
method were made. The results show the different degrees of accuracy
achievable with the various models as functions of the radiation field
parameters. To the authors' ﬁnowledge, the N-flux model represents the
first application of general finite-element techniques to emitting cylin-
drical media. It provides a powerful tool for the analysis of plume
scattering problems of arbitrary complexity. The accuracy of the prediction
is limited only by the computational resources of the user.

The solution of the eyguation of radiative transfer is derived on a mono-
chromatic basis. For the application to the finite spectral intervals
associated with the use of instruments with finite resolution, spectral
averaging procedures are required. Thus,an extension of earlier band model
formalisms for regular and random arrays of spectral lines was developed
to include scattering as well as absorption in a medium in which radiative
transfer is described by the two-flux method. Pepresentations of the
averaged transmissivity for the Elsasser model and the random model with
exponential-tailed S~' line intensity distribution were derived and
numerical results were obtained for large ranges of optical depths of
absorbing and scattering media. The effects of inhomogeneities away from
the line-of-sight are accounted for by ua contribution to the source
function which is calculated by a simplified six~flux technique.

A survey of available optical parameters (complex index of refraction as
a function of wavelength and temperature) was made for particles of interest.
The compilation by Aerospace was found useful as a starting base for a
number of relevant species, namely carbon, aluminum oxide, magnesium oxide
and zirconium oxide. Data for other species must yet be obtained. The
complex indices of refraction for carbon and aluminum oxide were used,
together with postulated size distributions, to calculate the volume ex-
tinction, scattering and abscrption coefficients and the angular scattering
phase function by the Mie Theory for homogeneous, spherical particles in
the 1-25um wavelength region. Based on these results, a tentative plan
was developed for the organization of the Data File and its integration into
the overall code architecture.
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INTRODUCTION

Validated models to predict rocket plume IR signatures must
be capable of treating a wide range of propulsion and trajectory
parameters as well as handling a number of sensor-related vari-
ables. While significant advances have beer made in the state-
of-knowledge of plume-related radiative transport phenomenologies
during the last ten years, particularly in regard to advanced
liquid propellants, prediction methods have not been developed to
adequately treat the coupling of gas #nd particle radiative
transfer in the plumes of solid propellant missiles. It is
particularly important that models be developed to accurately
treat plumes containing scattering particles while at the same
time also yielding accurate results for conventional liquid pro-

pellant plumes.

The primary goals of the SIRRM program are (i) to develop
an analytical methodology to treat coupled gas/particle radiative
tr nsport effects and (ii) to integrate this analvtical capability
together with the state-of-the-art treatments in hot gas/
armospheric radiative transport (i.e., band model methodologies,
band model parameters, line-by-line methcdologies, spectral line
parameters) into a comprehensive, user-oriented plume radiation

model.
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State-of-the-art plume signature predictions require four
basic steps. First, the species concentrations and temperature
in the exit plane are calculated through a combustion/nozzle
code. Second, these exit plane parameters are input to a gas- .
dynamiz code which calculates the exhaust plume flow field.
Third, the flow field serves as input to a radiation code that
calculates the intrinsic plume signature. Finally, the apparent
plume signature viewed by a remote observer sensor is obtained
through attenuating the source intensity by the atmospheric
absorption. When the source radiation is correlated with the
atmospheric attenuatinn (radiating plume species are alsc present
in the atmosphere zs absorbers), the last two steps are combined

into a single calculation.

The present study focuses on the third and fourth componeat,
i.e., the calculation of the intrinsic and apparent plume signatures.
The program is divided into four major tasks. Task I calls for
the formulation of the SIRRM code methodology. In Task II, the
code is to be developed and its capabilities demonstrated. The
validation and application of SIRRM takes place in Task III. The

documentation and code acceptance is done in Task IV.

Task I is concerned with the development of an integrated
physical model which accounts for the essential spectroscopic

and geometric effects governing single and multiple photon
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3 interactions in a two-phase gas-particle mixture. A key

ﬁ? ; element in this task is the theoretical description of coupling

b : phenomena associated with the spectral and spatial redistribution
of radiation by scattering. 1In order to provide a correct
description, the model must account for the interaction of
emitted, absorbed, and scattered radiation from line and continuum
sources along multiple, intersecting paths, The task is divided
into two subtasks. Subtask IA deals with the development of

the coupled, multi-scattering model, while Subtask IB calls for
the formulation of the overall methodclogy, i.e., the integration
of the scattering model with the other parts of the code. This

document is an interim technical report describing the development

Y A

:i : of the coupled multi-szcattering model performed under Subtask IA.

Section 2 contains the description of our efforts in deve-
loping the multi-scattering model with cylindrical geometry,
using both engineering approximations (six-flux) and exact
gsolutions (N-flux). Diagnostic calculations with these models
and comparisons of the results with those obtained by independent

codes indicate that the required objectives have been met.

Since the present scattering model is developed for the
monochromatic case, a parallel study was begun to treat the
spectral averaging. The step forward to a band-model formulation
coupling particle scattering with spectral line absorption is

taken in Section 3, where the Elsasser and random model formulations

3
-
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are developed for a two-flux scattering model and conceptual

approaches for the six-flux and N-flux models are outlined.

The fundamental inputs into any scattering models are

the optical parameters of the particles. These are discussed

in Section 4, including the Mie theory, the indices of refraction
and absorption, the scattering due to single particles and
particle size distributions, and the handling of the Data File

as it would be integrated into the overall code architecture.

1-4




SCATTERING MODEL

2.1 Introduction

The objective of Task IA is to formulate a scattering model

that incorporates the following capabilities:

° Coupled emission, absorption and scattering treatment
° Multiple scattering with cylindrical geometry

. Three-dimensional, non-uniform, axisymmetric medium

® Arbitrary particle mixtures and size distributions

* Arbitrary angular scattering phase function

® Line-by-line and band-model treatments

. Alternate levels of engineering approximation

The approach to meet these objectives is described in this section.
Our efforts included (i) the selection of physical models and
solution methods for the gas/particle radiation transfer problems,
(1i) the justification of sclected models and methods by means of
diagnostic calculations, and (iii) the final development of the

selected models and methods for integration into SIRRM.

In Section 2.2, we provide the requisite technical back-
ground, beginning with the equation of radiative transfer and its

implicit and explicit solution schemes.
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In Section 2.3, we review and assess the combined inter-
disciplinary experience of contributors in several fields (e.g.,
planetary and stellar atmospheric physics, radiant heat transfer,
plume physics) where multiple scattering techniques have reached
an advanced stage of development. Based on this assessment we
select the most approprilate approach to the plume problem, and
justify this selection on the basis of key physical requirements
and model capabilities. The discussion presented in this section
formed one of the essential elements of the Program Plan (Data

Item 1).

The other cssential element of the Program Plan was a set
of recommendations for the final development of the scattering
model to be incorporated into SIRRM. Since January 25, 1979, the
recommendations were followed and the results of developing en-
gineering approximations and the N-flux model are reported in
Sections 2.4 and Z2.5, respectively, together with numerical results

of diagnostic and parametric calculations.

The comparisons of the computational results between the
different models developed in the present pregram and with in-

dependent model calculations are made in Section 2.6. Conclusions

about the models and the results are summarized in Section 2.7.

2.2 Scattering Theory

The transfer of radiant energy through matter that emits,
absorbs, and scatters radiation was first described by astro-

physiciscs at the beginning of this century. The governing
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equation was derived by specializing the Boltzmann equation of
kinetic theory to the case of photons. To this day, the original
formulation remains essentially unchanged. However, the range
of problems amenable tou exact solution is quite small, and for

most cases of interest an approximate treatment is required.

The formal solurion to the equation ol transfer provides the
esgsential framework for development of a coupled gas/particle
radiation model. The task is to obtain a practical mathematical
solution based upon reasonable physical approximations to the
spectral and spatial characteristics of the medium. In this
section we review the available computational methods in order

to identify promising approaches for the problem at hand.

A comprehensive discussion and development of the radiant
transfer equation was given by Viskanta (1964). This equation

may be written in che integro-differential form

an, (s) : N
—Tﬁr“— = -n(oia)+ois))Nx(s)+no§a)N§(s)
(2-1)
no(s)

+ z{PA(g' N, (31)daG")

where
Nk(;) = gpectral radiance at point s in direction s
Px(s',g) = phase function for scattering from s' to 8
Ni(s) = blackbody spectral radiance at point s

oia),ois) = cross sections for ebsorption and scattering

n = number density

2-3
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The terms on the right-hand side represent, respectively, the
extinction (absorpticn plus scattering-out) and production (emlission
plus scattering-in) of radiation in the direction 8. The phase

function 18 normalized such that

z%a/}k(ﬁ',E)dQ(E') - 1 (2-2)
The absorption and scattering probabilities (nofa) and no§s>)

and the volumetric emission (ncia)Ng) are defined to include
implicitly the effect of multiple gas and particle species (i)

and temperatures (Ti) through the relations

(a) _ (a)

nox = i niUAi

(s) _ (s)

na, = L ngoy

1

(a)yo _ (a),.0
no, Ny = f nyoyi Nyy

(s) _ (s)
no,""Py = Xm0, 0P,

The effect of different particle sizes is also implicitly included.

The formal solution to the equation of transfer between points

] and s may be written in the form

S '
NGB = NG T(s,.s) fzf 5, (s )AL 28) gq (2-3)

O
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where the source function (S\) at point s in the direction s

and the transmittance (TA) from s' to s are given by

1

W Yis ' el "
5,3 = (L-w)N%% ;2 4{5(9 N, (3" da(E") (2-4)

Tk(s',s) = exp[rx(s')—rx(s)] (2-5)

and where the optical depth for extinction and the albedo for

single scattering are defined as

TA(S) = .fsn(ox(a>+cx(s))ds'
0
(s) (2-6)
)
9

T 0, @y

This formal solution is not explicit in that the local radiance
is seen to depend on the radiance distributicn throughout the
medium which is not krnown at the outset. Explicit solutions

can be obtained only for special cases as noted below.

In the absencg of scattering (0§8) = (0), the formal

solution to the equation of transfer assumes the explicit form

- R s dTA(s's)
N (8) = N, (s)T(s_,s) +-SJ' Ny(s") “_—E;T_— ds'
0

2-5
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k. where the transmittance between points s' and s is given by
N Q‘

i5 | T (8',8) = expl- F no(a) dsJ

4 (G J n

] 8

The evaluation of this equation on a monochromatic or spectrally-

averaged basis is the end object of numerous existing line-by-

% line or band model radiation codes.

The finite difference form of the formal solution to the
equation of transfer may be written directly from the preceding
integral equations. Thus, the radiance at position k in

direction i 4is given by

Nop = N5 e1Tie-1,6 P %Gk + 51,1010 -Tq i)

(2-7)

(i=1,2,...,1,k=1,2,...K)

where the source function is given by
I

= (1-0 )N + u EPJi ik
(1=1,2,...,1;k=1,2,...K)

and where the transmittance and phase integral are given by

Te-1,k = %P [(Uéa) + °é i)“v 15%-1 ““éa) + OéS))nks J

(k=1,2,...,K)

1
P = ..
IE 5£j P(s;08,)da(s,)

(1,3=1,2,...,1)

2-6
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: \ In these equations, the subscripts 1i,j,k denote the direction

1 ‘? ' 3,8" and position s, respectively, and the subscript A has

E &? been deleted for clarity. With appropriate boundary conditions

Ql %‘ ' on the radiance Nik(kﬂo,K;i-l,Z...,I), which include the effects
J i of any extermal sources, these equations constitute a closed

set.

Solution techniques may be grouped into two fundamental
{ ! classes: implicit or explicit. The implicit methods solve the
coupled equations for Ny and Sik in an iterative manner

starting from an assumed initial condition. A convenient proce-

T T T T e T R L

dure is to define an initial source function equal to the
known thermal emission component N§&) and corrected source
function Siﬁ) directly. This procedure is then repeated to

] _ convergence according to the iteration formulae

| :; @ () ()  (n)

?' i = Nike1 Teenie ¥ EGae 8 k) e i)

i=1,2,...,1I

i k=1,2,...,K (2-8)
. (n+1) (n) ! (n) n-1,2,...,N

’ Sik = Sik * i & PiiMik ‘

j=1

where the superscript (n) denotes the number of iterations or,

equivalently, the order of scattering.

2-7
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The explicit methods solve a single matrix equation
: for Nik obtained by direct substitution of the equation for
R
1k
in the form

After rearrangement of terms, the equation may be written

I
-1
i;l{Njk(mjiT k-1,k79%F 310 7 Ny k12855 e qPyy)0 =
(1=1,2,...,1;k=1,2,...,K)
[¢] Q

where Gji is the Kronecker delta.

Implicit and explicit methods offer different relative
advantages depending upon the optical and geometric properties
of the medium. These properties control the number of
iteration steps (implicit methods) or the size of the inversion
matrix (explicit methods) required to obtain a given level of

accuracy.

2.3 Review, Assessment and Selection of Multiple
Scattering Formulation

2.3.1 Review and assessment. In the presence of
scattering, explicit solutions can be obtained only for

suitable approximations to the radiation flux or to the

2-8
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phase function.  Approximations to the radiation flux in-
clude the optically thin limit (in which the medium is not
dense enough to absorb or scatter radiant energy from other
elements in the volume) and the optically thick limit (in which
the medium is so dense that radiant energy from other elements
does not penetrate). These limits are of interest only as test
cases for a more general model of arbitrary optical opacity.
Approximations to the phase function include the discrete-
ordinate method, the moment method, and the method of expansion
in orthogonal functions (Krook, 1955) from which the well-known
two-stream approximations of Schuster-Schwarzschild and Milne-
Eddington (Viskanta, 1964) may be derived as special cases.

In addition to these explicit methods, various implicit solutiom
techniques have been developed. These techniques typically

construct a convergent solution by incremental steps in space or

time.

A summary of available multiple scattering solution techniques
is given in Table 2-1. These methods can be roughly grouped
into four general classes: superposition, transformation,
convergence, and matrix. Each of these is discussed and developed
in detail in the survey papers by Hansen and Travis (1974) and
Irvine (1975). The identifications are necessarily somewhat
arbitrary in that some interrelated techniques are included
and some distinguishable subsets are excluded. Tables 2-2 and
2-3 list selected key investigations according to solution

technique and chronology, respectively. The former was compiled

2-9
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TABLE 2-1.
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METHODS OF SOLUTION FOR MULTIPLE SCATTERING

[ DERCRIP2ILN REWYIT CARMRPCR
1, Suparposition Methods
Layer Superposition of Wide application Non-suiteing
asdéition layers of known for planetary madim; plane-
' tranemigeion and atmorpherxap paralisel slab
reflection
Invariant Suparposition of lor-homogeneous long cowputations
{ubesdding optically thin atmospheres
layaxs
Syntiiasis Superposition of Ganerality Irafficient for
volume elementas symmatric media
. 2. ‘“transformation Mathods
X and Y Mathematicul Single angle Rayleigh
functions transformetion dependence acattering
w{ variant
imbedding
Spherical rhase intoycal Ganeral Lavge matrix
hatrwonics replacad hy sun appiicability
of sphurical
harmonics
Elganfunction Phase integral Mathematically Numericelly
replaced by rigorous prohibitive
sum of orthogonsl
sigenfunctions
3. Oonvergance Mathoda
Iteration Succesnive down- Simple concept Low opacity
ward and upward
intagrations to
convergence
Successive Suprroosition of Simple concept ilow opacity:
orders . solutions for non-suitting
different orders zedlum

Nonta Carlo

blecrete
oxrdinate

rinite
aiftexence

Pinice
elessnt

A e NI W DL st e s el i

of mcattering

Individual photon
historias traced
and suparposed

2.

Phass integral
replaced Ly
finite sum

Gpexates on
differential
equatiaon

Operatss on
integral equation

Simple concept:
geneyal
applicability

Matrix Methods

Ganeral
applicebility

Congr:*ational
sxperiance

Mmduces to
two-strsam ‘imit

2-10

Long cowputations

large matrix

Large matrix
unless symsatric

Large matrix
uniess sysemtric
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TABLE 2+2. REFERENCES FOR MULTIPLE SCATTERLNG METHODS

METHOD

REFERENCES

Layey Addition

Successive Ordars

Invariant Irbedding

Itexation

X and Y Functions

Discrete Ordinate

Spherical Harmonics

Eigenfunctions

Monte Carlo

pDiffusion

Finite Difference

van de Hulst, et al. (1963, 1968), ‘womey,

et al. (1966), Hamnsen (1969, 1971), Hovenier
(21971), Lacie and Hansen (1974), Grant and Huant
{1969, 1971), Ploss, et al. (1973),
Preisendoxzfer (1965).

van de Hulst and lrvine (1962), Ixvine (1964,
1965}, Uesugi and Irvine (1570), Poon and Ueno
(1974), Dave (1564), Hovenler (1971), Chou
(1978) .

Uesugi and Irvine (1970), Belliwn, et al. (1960,
1963, 1967, 1969), Wing (15%62).

Herman, et al. (1963, 1965, 1970), Dave, et al.
(1970), Crcsbies and Linsenbardt (1975).

van de Hulst (1979), Sobolev (1972, 1974),
Carlstedt and Mullikin (19566), Pahor and Kuscer
{1966), Buskridoe {1960, 1967).

Cchandrasekhar (1950), Jefferies (1955), Chu and
Churchill (1955), Lerceble (1956), Chin and
Churchill (1965%), Samuelson (1969), Liou (1973,
1974), Weinman and Guetter (1972), Whitney (1972,
1974), Kofink (1967), Love and Grosh (1965).

Canosa and Penafiel (1973), Dhavison (1958), Case
and Zweifel (1%67), Deuze, et al. (1973), Dave,
et al. (1974).

Case and Zweifel (1967), kKuscer and McCormick
(1973, 1974), Kaper, et al. (1970), Mika (19Gl).

Plass and Kattawar (1962, 1971), Llanielson,

et al (1968, 1969), Sanford and Pauls (1973),
Collins, et al. (1965, 1972), van Blerkom, et al.
(1971, 1974), McKee and Cox (1974), Xattawar,

et al. (1971, 1973), Marchuk and Mikhailov (1967).

Heasley (1977), Barkstrom and Arduini (1978),
Laung (1975, 1976)

Barkstrom (1976).
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TABLE 2-3.

CHRONOLOGY OF MULTIPLE SCATTERING METHODS

PEFERENCE

PHYSICAL SITUATION

FETHOD OF ANALYSIS

19%%

13%9%
1935
1956
1359
1943
1963

1364

1954
196%

1966

1967

1967

1967
1967
1967

1968

1969

Jafferies

Jefferias

Chu and
Lhurchill

Glovanelll

Chané@rasekhar

B2limen, Falada,
and Uene

®ellran, Xalabda,

snd Yeno

Smith

Malkevich, Fonin,
and Rozenterg

Chin andé
Churchill

Dalin

Weinman and
Swarttrauber

Smith and Funt

Hunt

Bobeo

~ Drobyshevich

Pomancva

Poranova

Point and infinite line sources
in a seni-infinite mediun

A strip of collirgted radiation
ircident on & seni-infinite
madium

Point source outside an antzo-
trevicaily acattering finite
leysr

An infinite line source on the
surface o within a s=emi-infin-
1te medium and a thick finite
layer

An infinicely narrow colliinated
beam incident on a semi-infintite
medium

An irfinitely narrow cnllimqted
beam incident on a finite laver
with oronerttiea varving with
depth

Callirated radiatioe incident
on an inharorcnecsus aniTotrari-
cally seatterirey fintte

lnyer

A unifern strip of cullimnted
rediption incident on a semi-
infinite mediuvm

Collimsted rudigtion incident on
a finite layer with nonuniform
reflection from lower surface

An arbitrary, cylindrical source
in an an.sotropically scettering
finite alab

Narrow collimated besm incident
on a semi-infinite anisotropli-
cally scattering mediuwm

CollimsteA rndiatlioen incident
on a nonabsorhiny finite
layer with horizontally non-
uniform scatteriny coefficlent

A uniform strip of collimatsd
radistion incidert on a seni-
rinite layver

Collimated radlstion incident
normally on an anisotropically
scattering finite redium

An igothermal semi-infinite sied

Collimated raulation incident on
an anisotropically scattering
finite layer with nonuniform
reflection from lower surlace

An infinitely nerrow collirazed
bear normally incident on a
semi-infinite anisotronically
scatteriny medium

An tnfin‘telv rarrov collimated
hesr normally incident on an an=-
isotronically scattering finite
Iaver

Diffusion approximstion

Discrete ordinates and
Fourier transform

Six~flux approximation

Approsch of Jefferies

Iuvurisnce principlen

Invariant imbedding

Invartant imbedding

Assured cosine-varying in-
cident rudiation to reduce
the two-dimensionsl fn-
tegral equation for the
source function to & one~
dimensional form

Horizontal vsristion of
downward radlation
neylected

Six-filux approximation

Small angle transport equas
tion used for unscattered
radiation, diffusion equa-
tion used for scattered
rediation

Glovan¥lll's approximation
used to sulve transport
equation

Same as Smith 1964

Expregsion of scattering
function as series of
Lependre polynomials

Diffusion equatien
solved By fterative
techrique

Yorirontal veristion of
cormare radlatlon
neglected

Three-dimensional rorents
used to solve the trany-
vort equation feor larpe
deptrs .

*rall anple aoproximation
to the transnort equation
solvee using spatial
rorents
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TABLE 2-3. (CONTINUED)

PEFIRINCE

PHYSICAL SITUATION

FETHOD OF ANALYS1S

1969

1869

1970

1370

1971

1971

b 2V

9N

1972

i)

1973

1973

1970

1978

Punk

Funt

fiochre~ and
Love

Funt

Bravo-2Zhivoteovakiy,

Dolin, Luchirin,
&nd fovel'yey

folubited 1y and
Tantosnev
iove and Turnes

Scofleld and
love -

Rybickl

Romanove

Fomanova

Xochetkov

Dushmakova, loge,
and Retaev

Nomanovs

Punk

Gordon and
Fnictel

Crosbile and
Koewing

Deckett, Poster,
Hutson snd Moss

Collimated woint source norrally
incident on an arlsotropiesily
scattering finite laver

Callirated Pessel functien
varyiny radiatien incident
on a finite layer

An fsotherral fintve nvlirdrical
mediun; toth lsotroric ard ani-
sotropic scatterirr

Collirated radistion norrally
incldent on » Tinite layer

Nerrow collirated bear norrally
incident on a seri-intinite an-
130tropically rcattering refiur

An Anf'tnitely narrov collirates

Team 8t the center of en gniso-
tronically scattering arhericel
medium

An 3motiereal zeri-infinite slal

A strip ©f SAfTuse radistien in.
cident on an erititne seri-in-

rinice mediun; vath isotropis
and anisotropic scatiering

An infinitzly narrowv collimeted
team incicert on a finite layer
and sem!-infinite medium

An infinitely narrow collimated
begrn norrylly jnctdent on a non-
absorhing finite laver

An infinitely narrow collimated
bepm norraily Incident on AR &N~
{sotroplcally scattering fintte
layer

An infinitely narrow collimated
beam nermally incident on an an-
fsotropicglly scattering finlte
layer

Diffuse und unidirectional
sources inside an anisotreplical~
ly scattering finite layer snd
seml-infinite medium

An Infinitely narrow collirated
beam normally innident on a i~
nite layer with wesk atsorption

A narrow collimated bear and
noncollirgted source in an in-
finite antsotropically scatter-
ing redium

An infinitely narrow collimeted
kear normellv incident on an an-
isotrovically wcatterinpg fintte
laver

A step and rinite strip of col-
limates dnd diffuse raclation
incident on 8 finite layer

A collimated cvlirdrical beam
norvally incident on a finite
layer

Yonte Carle techwigue

Interra) ecuation for the
source function formulated
using Creen's functiomn

¥ante Carlo technlaue

Interrel equation for
source function trans-
forred into s‘npular
equation Tor the re-
solvent ¥~rnel using
rroperties of a Creen's
function

Uzes nolution to transport
equation found in Dolin 1966

vonte Carlo technique

¥onte Carlo technique

*ante Carlo technioue

Tourizr transform and in-
variance technigues

Three-dirensional invariance
princirler uzed to obtain
equaticns for spatial mo-
mente of irtensity

fpatial morents used to
solve omall arnpgle aporoxi-
mation to the transport
eauAt Son

Yethod of aphericsl harmonice

¥ankel transformetion used
to solve diffusion equation

Intensity represented by trans-
verse roments and invariance
prineiples used

Monte Carlo technique

Iterative ray trscing, no re-
turn backzcattering and small
angle acproximationa used

Assurption of cosine vary-
ing incident radlation re-
ducea prodlem to one-gi-
mensional problem;
Amharrumian's method

Hunt ‘s interral eauattors
solved by iteratton
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from previous review papers together with our own review;

the latter was taken directly from Crosbie and Linsenbardt

(1976). Neither list is comprehensive, but both serve to

illustrate the depth and scope of previous work. Most of

these studies applied to non-emitting plane-paraldel atmospheres.

Only a limited number of the studies included the effects of

thermal emission, inhomogeneous media, non-isotropic scattering,
and non-planar geometry which are important in the present
application. None of the studies treated all these effects

simultaneously. Despite these deficiencies, this previous work

provides a firm base for the selection and development of a

multiple scattering model for Ewo—phase plumes.

Existing rocket plume radiation codes which treat particle
radiation were also reviewed and are presented in Table 2.4,
The early codes of Fontenot (1965), Gulrajani (1964), Hunt (1966)

and the Aeronutronic group (Carson, 1965) were all developed to

predict base heating. The more recent plume codes of Wilson

(1973), Rieger (1974), Vanderbilt and Slack (1976), and the ARAP
group (Fishburmne, 1977) were developed to predict plume IR signatures.

These codes approximate particle radiation effects by either of

two methods: Pseudo-gas or one-dimensional beam. The pseudo-gas

approximation includes particle emission/absorption effects but neglects

B R e piensii YA




TABLE 2-4. EXISTING ROCKET PLUME RADIATICN
CODES INCLUDING PARTICLES
PLUME CODES METHOD COMMENTS
Fontenot Inverse wavelength Simplistic approach; single particle

(1965)

Gulrajani (1964)
Hunt (1966)

Aeronutronic
(Carlson, 1965)

Wilson and Hahn
(1973)

Rieger (1974)

vVanderbilt &
5lack (1976)

ROCRD Code
(ARAP)

method

Neutron-scattering
analogy method

One~dimensional beam
approximation

One-dimensional beam
approximation

Pseudo~-gas approxi-

mation

One-~-dimensional beam
approximation

Pseudo —gas
approximaticn

size neglects scattering. Estimates
base-heating for constant radial
properties.

Based on Morizumi and Carpenters

(64) analysis. Five particle sizes.
Includes 1-D multiple scattering.
Neglects anisotropic scattering
effects. Assumes Q, +2. Base-heating
estimates.

Plume codes to analyze Saturn ullage
retro and strap-on exhaust plumes.
1-D anisotropic scattering approxi-
mation.

Unccupled gas and particles. Aadds
separately computed particle radia-
tion and gas radiation. Narrow
inband resolution. Treats S particle
sizes.

Computes coupled particle and gas
emission and absorption.

Couples multiple scattering and
gaseous emission/absorption along
beams. Spectral resolution 5 cm—*.
Treats 5 particle sizes. Treats
gases as non-scattering particles

vet retains correct solution of
radiative transfer equation for gases
alone and particles alone. Spectral
and inband output coupled to LOWTRAN
codes. DNave code for QS, Qa
Includes particle emission, but neg-
lects scattering. Assumes Beer's
law,

R —TF Cl U NP RN, +1 %, TR Ty Al A DI A o D) s v

¥




Rl e

scattering. The one-dimensional-beam approximation includes
particle scattering effects along the beam but neglects scattering
into the beam from other directioms. Of the two methods,

the one-dimensional beam provides a better physical description
of particle radiation effects with no appreciable penalty in
computational complexity. Wilson used the one-dimensional beam
approximation to compute the particulate radiation field in an
uncoupled manner for subsequent addition toc the gaseous radiation
field; the validity of this procedure is restricted to low
optical depihs. Vanderbilt and Slack used the one-dimensional
beam approximation to compute the coupled particulate and gaseous
radiation fields, thereby allowing the gas to absorb the
particulate continuum and the particles to scatter and absorb

the gaseous radiation. The code developed by Vanderbilt and
Slack is the best of the existing codes for predicting spectral
IR signatures from missile plumes. However, the lack of coupling

between adjacent 1-D beams means that it does not meet the SIRRM

code requirements, in general.

One dimensional beam methods have received extensive
application and limited verification in the area of radiative
heat transfer but only limited application and no verification
in the area of radiative signatures. This distinction is
important because of a fundamental difference between the two
phenomena. On the one hand, the radiative heat transfer to
an adjacent pcint is the sum of contributions from non-parallel
beams. On the other hand, the radiative signature to a remote

point is the sum of contributions from parallel beams. The
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latter effect 1s much more sensitive to errors in the directional
properties of the radiation field. Thus, the SIRRM code must
include a three-dimensional scattering model in order to achieve

the required directional accuracies.

2.3.2 Selection and justification. As noted previously,
the SIRRM scattering model for two-phase plumes must include the
following key physical effects: thermal emission, inhomogeneous
media, non-isotropic scattering, and non-planar geometry. In
addition, the SIRRM scattering model must possess the following
computational attributes: accuracy, efficiency, and generality.
These general attributes have rather specific meanings for the

present application as noted below:

Accuracy The chosen technique should incorporate sufficient
spatial resolution to yield an accurate mathematical solution.
The technique should demonstrate adequate agreement with

the predictions of alternative methods for suitable test
cases.

Generality The chosen technique should incorporatgﬁguf-
ficient spatial dimensions to represent the reaivphysical
problem. The technique should treat all ranges and varia-
tions of optical depth, scattering albedo, and phase func-
tion such that no limit is imposed on the nature of gas

or particle properties, plume properties, or observation

geometry.

2-17
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Efficiency The chosen technique should yield computed
results in machine times which are camparable to current
gaseous emission codes for an equivalent number of aspect
angles. Approximate techniques which incorporate physically
acceptable assumptions should be evaluated in order to
determine the most efficient technique for different classes

of problems.

The available methods were screened according to these criteria.

The dual requirement for engineering efficiency and scien-
tific accuracy, together with the need for computational gen-
erality, and flexibiltiy, led to the selection of straight-

forward, finite difference procedures of variable spatial and

angular resolution applied to locally cylindrical plume geometries.

Two basic approaches (herein identified as "6-flux" and "N-flux')
were distinguished and various alternatives were developed within
each classification. The semantic distinction refers to the
associated subdivision of angular space (6 orthogonal coordinates
versus N non-orthogonal coordinates in azimuth and elevation).
However, rthe fundamental distinction lies with the generality

of the N-Fflux model versus the computational simplicity of the

6-flux model.

Within the 6- flux model class, two independent sub-class
models were developed. The first model employs suitable approxi-

mations for the axial and tangential radiances in order to

TVIgTA TR !'lv!_-.wﬂ




reduce the solution to a one-dimensional radial inctegration
similar to existing two-stream models (Vanderbilt-Slack, 1976).
The second model employs a transformation of the multiple-
scattering source function in order to reduce the solution to

a coupled set of radial, tangential, and axial integrations, each
of which is functionally similar to existing two-stream models.
The two six-flux models are described and compared in Section

2.4,

The N-flux model class includes a generalized set of
optional finite-element grid geometries including independent
specification of the angular resolution in the azimuth and
elevation planes. The model solves the coupled three-dimensional
equations of transport using a generalized matrix network
to describe the radiance distribution and source function at each
grid point. The model can be exercised as either an engineering
or scientific tool by simple variations in the spatial and angular
grid network to achieve low or high resolution. Analytical

details are presented in Section 2.5.

Each of the models was exercised parametrically over the
full physical range to illustrate the effect of optical depth,
scattering albedo, end phase function on the local and integrated
target signature characteristics. These calculations provided
independent tests of the physical credibility and computational
efficiency of the separate models as well as comparative tests

of the accuracy and self-consistency of the compcsite model set.
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Additional verification was accomplished by performing inde-
pendent calculations with the NASA plane-parallel slab code
(Barkstrom, 1976) modified to include self-emission and with
the Grumman Monte Carlo cnde. Results of these calculations

are summuerized in Section 2.6.

2.4 S5ix-Flux Engineering Apprcaches

The basis for the engineering approaches developed under
Task TIA is the approximation of the multiple-scattering source
function by a six-element orthogonal angular quadrature., In

this approximation, the general differential equation of transport

' \
s “N("'-"Q)*‘ll-w(‘r')lNO(T)‘*‘ wlt) me-,n,n'm(r ,Q')ds' (2-10)
4r

is written for each orthogonal direction (i = 1,2,3) in the specific
form

dNit + o + F + - 1
= -Ni+(1._,,u)N + w[fNi"+ bNi' + s Z (Ni. + Ni.)J (2-11)

drt,
i'#1

t
1

where the ﬁerms on the right-hand side represent the respective
contributions of extinction, emission, and multiple scattering
to the radiance gradient and where the terms f,b,s represent
ithe forward, backward, and sideward components of the phase func-

tion (f+b+4s=1). This quadrature provides the minimum angular

R R e LUt




resolution necessary to account for three-dimensional multiple-
gscattering effects. For comparison to previous approaches, the

standard two-element, one-dimensional approximation is obtained

as a special case (s=0).

The orthogonal coordinates are chosen to coincide with the
natural cylindrical coordinates (r,0,2z) of the axisymmetric
plume. Figure 2-1 illustrates the grid network formed by the
intersections of these coordinates with the boundaries of the
finite elements (radial and axial). The six-flux equations are
solved as a coupled set along these mutually-perpendicular
integration paths. Radiances for oblique lines-of-sight are

computed in a subsequent step based upon the known six-flux

solution.

Within the six-flux model class, two different levels of
engineering approximation were employed. The first method
yields an approximate explicit solution based upon elimination
of the tangential (8) equations of transport in favor of simple
closure relations. The second method yields an exact implicit
solution based upon iteration or inversion of the fully-coupled
multi-dimensional equation set. Both methods were originally
developed for infinite cylindrical geometries (negligible axial
gradients)., The second method was subsequently extended to
finite cylindrical geometries in order to assess the influence
of plume axial gradients on the radiance at side aspect. The

following paragraphs provide analytical details,
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2.4.1 Method I. This method is based upon a transformation
of the three-dimensional equations of radiative transport to equi -
valent one-dimensional form for infinite planar or cylindrical media.
The resulting equation is integrated along a piecewise-uniform
path perpendicular to the surface to yield an explicit solution
for the normal and tangential radiances throughout the medium.
Radiances at intermediate angles are determined by analytical
interpolation. No restriction is placed upon the range of
physical properties considered (e.g. optical depth, scattering
albedo, phase function) or upon the variation of those properties

within the medium.

The ability to treat planar and cylindrical geometries in a
self-consistent manner provides an important connection between
the available literature (mostly planar) and the plume problem
(nearly cylindrical). As a result of this connection, the utility
of existing plane parallel codes (e.g., Barkstrom, 1976) for
defining baseline parametric trends is greatly enhanced. 1In
addition, solutions for planar media which are infinite in one
or two directions (i.e., ribbon or slab, respectively) provide
convenient bounds on the emitted radiation from equivalent

cylindrical media.

In the rectangular 1,8,z coordinate system of Figure 2-1, the

equation of transfer reduces to the six simultaneous equations

2-23
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These six equations are further reduced to two (zr) by means of

suitable analytical approximations for the perpendicular radiances

(¢6,+2). The z-equation is simplified through the assumption of

negligible axial gradients

aN *

v ¥ +
la;_"z‘! << N,

&

which reduces the equation to simple algebraic form. The 8H-equation
is eliminated through the assumption of approximate preportionality

factors

N = ¢ N * (plane)

+ -

+ I
N ~ @c%(Nr +Nr ) (cylinder)

which are piecewise-conscant over a radial integration step. The

range 0<9¢ <1 defines the limits of thin and thick optical paths

p
in the 6-direction. 1In general, the factor ¢ is approximated
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by the corresponding radiance ratio for a non-scattering medium.

For a uniform medium, this ratic is given simply by the emissivity

3 ratio

i ; Qp = 1-exp(~re)

5, % %, = [1-exp(~re)]/[1-exp(—r)

B where 1 1is the total optical depth for a cylinder of diameter 2R

b § and Tq is the half optical depth measured perpendicular to the

g 'j §

jﬁ ; line-of-sight. For a uniform cylinder Ty T[1~(r/R)23%.

-

%g ; Substitution of these approximations into the axial equation of

fﬁ ; transport yields the explicit formulae

W) A
: N?t = {(l—w)N°+ws(Nr++Nw'4 [1—w(f+b+2@ps)]_l (planar) 1
ﬁ . (2-13)
t 1 1 -1

A N?i = pl-w)N°+ws(1+¢c)(Nr++Nr )l‘lwm(f+b)} (cylindrical)’

With these approximations, the six-flux radial equation cof
transport may be written in the functional form of the two-rflux

equation with modified ceefficients. That is,

dn_* s o
+ aw. = -aN_~ + gN_" + yN (2-14)
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planar cylindrical

¢E$ o = 1-w(f+sy) a = l—w{f+s[x+¢c(l+x)3}
' B = w(b+sy) B = w{b+S[X+¢c(1+X)]}
Yy = {(1+x) (1-w) Yy = (+x) (1-w)

1

x
H]

2sm(1+¢p)[1-w(f+b+2¢psﬂ‘1 x = 2swll-w(f+b) 1"

g Integration over the uniform region from station (k-1) to k yields
explicit expressions for the outward and inward radiance components

at the outer and inner surfaces, respectively.

4 + _ - + o}
Ne = ANe T8N ted
~ (2-15)
- _ — o
Ny1 = 5Np FoNp o+ ey

where the subscript r has been deleted for clarity.

These equations contain the boundary conditions (Nk and
Dl;_l), the local source function (8°), and the local transport
coefficients (reflectivity, transmissivity, and emissivity) defined

by the relations

1-
b= }_‘__55,,2 n £ = o
£ = Iligéz £ n = exp[—k(rkwtk_lﬂ
" i N ) %
- L aieen) A [cat8) (a-8)]
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The axial radiances at the outer and inner surfaces then follow

directly.

The formulation for a uniform planar mé&ium is complete at
this point. For a non-uniform or cylindrical medium, the formu-
lation 1is completed by superposition of elemental solutions for
K piecewise-uniform subregions (k=1,2,...,K) subject to the

overall boundary conditions

= 0 (no external sources)

K
+ -
o = N (axial symmetry)

The radiance emerging from the K-th (outer) element is determined
from Eq. 2-15 by successive Gaussian elimination beginning at the

center (k = 0). The general recursion relation (developed by

induction) is given by

.
Nk = ,A.kNk + Bk

where
L Oty Gy ; Ay = 1
. o . -
B, =  DNp+G.B : B, = 0

. -1
G = e (-opA y)

Dk = Ek(1+CkAk—l)

The surface radiance (N{ = BK) is determined explicitly from the

sequential summation.

iy s b B B A B, . )
o ; - it e L LB




The preceding analysis yields the normal and tangential

radiance components for planar and cylindrical media. Between
these limits, the variation of radiance with elevation angle (¢)
or azimuth angle (6) (standard spherical coordinates) must be
determined by a suEsequent calculation. The following paragraphs
describe a simple approximate procedure based on analytical
interpolation. An alternative exact procedure based on the known

six-flux source function distribution is described under Method IT.

The approximate interpolation formulae are based on weighted
sums of the local-to-normal and local-to-tangential radiance

ratios for a non-scattering medium. From Figure 2-2

N(O.0) =~ [—MMLJ N(r/2,7/2)sin2¢
N(n/2,n/2) w=0

" [_N@AL N(n/2,0)cos?¢
N(n/2,00] g

where N(w/2,m/2) and N(n/2,0) are the normal and tangential
radiances predicted by the six-flux model. The 6 and ¢
variations are conveniently separated by rewriting N(6,¢) as

the product




R}

b\ i

S o . .

"309dsy jua8ue], puB TRULION 3B SSOUBIPEY pP33Induo) wmoxjy

UOTINQTIISTQ OUBTPEY JBUOTSUSWIQ-99IYL JO UOTILWISH r7-7 @an31g
i
]
|
|
|
| ,
— + e
i F4
/
i
i \\
1
i/ &
— < 4 &
(0‘8)N ¢
(P‘8)N .
(T/L°9)N

(sue1g uoIlRAITH)

MEIA AQIS

(eueld yinwizy)
MAIA dN3

i oA R R il

bl i

ani ol 4, R




R T e Ll b o e S a il ol TR T P IOPAACPET R AT E WP TAY T ITT T S A M g

ol

_N¢o,9) "/2,0) 2
[(N('rr/2 o) ] [N(w/Z,n/z)] (n/2,m/2)sin"¢
w=0
: +[N /2 )] N(ﬂ/Z,O)cosz¢}
4 N(n/2,0)} .0
l; This separation facilitates the integration over & to obtain the
'E local station radiation.
\ I(e) = ZSin¢fN(6,¢>)dr
‘) o
"! 9
- 2Rsin¢>fN(b $)cos8do
g = 2RsinoN(n/2, ¢l/.~E£3Lgl- cosfdo
: For uniform media the radiances for w=0 are simply proportional

toc the corresponding emissivities; i.e.,
N(6,¢) ~ e (tsinb/sing)

where +t 1is the optical depth based on the cylinder diameter.

In this case, the radiance is given by the simplified formula

N(8,¢) = E(TsinB/sin¢)|N(n/2,n/2)sin20/€(1)
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and the station radiation is well-approximated by the empirical

: v; formula (see Figure 2-3)
J'¢6) = 2Rsinée (1/5iné)(N(n/2,n/2)sin’e/e (1)+N(n/2,0)cos>¢] -

€(.5461/81n¢)/c(.6951/sin¢)

% The norn-dimensional ratio J'(¢)/2Rsin¢N(rn/2,¢) is observed to
. a apprrach n/4 or 1 in the optically thin or thick limits,
& { respectively. These interpolatior formulae suffice to define
E the entire radiation field at a given axial station in terms

of the computed normal and tangential radiances.

1.0

0.9 L

L g

J'($)/2RsingN(w/2,9)

K

; 0.8}
? /4 — - - T2
g —_— Numerical:f €(T'sind) /e(T') *sinbdd
% o
i
g — = — Empirical: €(.5467'/€{.6957")
f 2.7 " . -
i_ .01 1 1 10 122
3 o= T/sing
Figure 2-3. Estimaticn of Station Radiation for Uniform
Cylinder from Computer Centerline Radiance.
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2.4.2 Method II. This method is based upon a transformation

of the three-dimensional equations of transport tc equivalent iso-
tropic form for infinite and finite cylindrical media. The recuiting
equations are integrated along and perpendicular to the radial direc-
tion to yield an implicit solution for the isotropic (scalar) source
function distribution., Numerical results are obtained by iteration
using the method of successive scatterings. Sclutions for arbitrary
aspect are then computed directly in terms of the known socurce func-
tion by means of a two-stream integration along the observer line-
of-sight. As for Method I, no restriction is placed upon the range

or variation of physical properties within the medium,

The general six-flux equation of transport (see Eg. 2-11)

I+

dN, , ) )
+ * : + - .
'L.].' = QNi +(l-w)N0+w fNi + bN; +s Z(Nil + Nin )] (l=l,2,3)

1 i'#i

i+

a®

is transformed by simple rearrangement of terms to equivalent

isotropic form

+

[a N

N, . _
boges = -oNg 4+ BN." + y(NOHN')  (i=1,2,2) (2-16)
1

where the piecewise-constant coefficients are given by

o = l-w(f-s)
B = w(b-s)
Yy = (1-w)

and where the source function for multiple scattering is given by
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The key feature of the transformed equation set is that the source
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function now contains only the side-scattering component of the
phase function such thet N' is a scalar quantity. This important
simplification is obtained for any arbitrary phase function which
can be approximated by a six-angle orthogonal gquadrature.

For a known source function N' <(as from a previous iteration)
the transformed equation of transport is functionally equivalent to
Method I and can be integrated as before to yield
; - + o
! Nie = Podik F FadMiren F eae@ Ny
(1=1,2,3), (2-17)

+
= - L O '
Nig-1 = EacMige * PiaMigeer a8y

whare Ok Cikr ik are the reflectivity, transmissivity, and
4

emissivity of the element k in the direction i and N;k’ Nik-l
are the surface radiances. The coefficients p, t, & are
evaluated as before (see Method I) in terms of the coefficients
a, #, v, where the latter have new definitions as given above.

The requisite geometrical velaticns are given in Section 2.5.

For an array of K elements (k=1l, 2,...K), the boundary conditions
are
+ -
N, = N, (axial symmetry)
10 10 (i=l,2,3)
NEK = 0 (no external sources)

In the direction of integration, these equations form a

system of 2K equations for the 2K radiances Ni defined over
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a K-point linesr mesh. An additional 2K equations of sgimilar

form are required for each perpendicular direction in order to
define the source function at each grid point k. For each path,
the transport equation ylelds a one-dimensional solution matrix
which is a diagcnal sub-block of the full three-dimensional
solution matrix. The individual paths are coupled through the
scalar source function at intersecting points such that the com-
plete ensemble of paths is required to obtain closure. The complete
matrix is solved by iteration using the single-scattering solution
(multiple-scattering source function equal to zero) as the initial
guess. For the cases investigated to date (see Section 2.6), two
to eight iterations (depending on the product w-T) were sufficient

to achieve source function convergence within two perclnt.
L]

The importance of the isotropic source function,traﬁsformation
can be appreciated by reference to the tangential (é) integration
paths in Figure 2-1. Ex.ept for the s-axis, the intersections
of these paths with the cylindrical shells are observed to occur at
oblique angles which do not coincide with the six-angle quadrature
of the phase function. This situation presents no difficulty when
the source function is isotropic. However, a non-uniform angular
quadratuvre would be required to represent non-isotropic scattering
into the line-of-sight. Such an approach is somewhé% more complex
than the present method, but offers the potential for greater
accuracy through higher resolution. This capability is provided

by the multiple-flux model described in the following section.
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Multiple-Flux Exact Approach

(X
t

The basis for the erxact approach developed under Task IA
is the approximation of the multiple-scattering source function
by an angular quadrature of arbitrary resolution. The accuracy
of the predicted radiation field increases as the resolution of

the angular quadrature increases. Exact solutions are obtained

by increasing the resolution in successive calculations until con-
vergence is achieved.

The arbitrary angular resolution of the multiple-flux (hence-
forth called "N-flux'") model affords considerable flexibility in
the analysis of multiple-scattering problems. The resolution in
the elevation and azimuth planes is independently specified so
that individual optima can be established. An important feature
of the formulation is the introduction of non-uniform azimuthal
resolution which increases as the radius increases in order to
achieve uniform accuracy from the isotropic centexr to the aniso-
tropic edge. An alternative formulation based on uniform azi-
muthal resolution was considered early in the model development
effort, but was abandoned due to its greater complexity and lesser

accuracy compared to the present approach.

Figure 2-4 shows end-view and side-view projections of
representative lines-of-sight through an assembly of infinite
cylindrical shells in which the source function for multiple

scattering is assumed constant. In the present development,
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the source function for emission is also assumed constant over
the same region, but this is not a general requirement. The

unknowns are the radiances at the intersections of the cylindrical

shells with the parallel lines-of-sight. The constraints are the

transport equations for the intervening paths together with the

boundary conditions for each line of sight. Together they consti-

tute a determinate linear set. In the figure, the rectangular

z, y, x coordinates denote the plume axis, the line-of-sight

direction, and the line-of-sight spacing, respectively. The

spherical r, 0, ¢ coordinates denote the radius, azimuth, and

elevation of the local radiance vectors. The integration paths
are determined by prescribed values of x and ¢ where the x's are
chosen to correspond to the radii of the cylindrical shells.

The integrations are performed over half of the azimuth plane

(~m/2 <0< 7w/2) and half the elevation plane (0 <¢< w/2) or one-

fourth of the radiating wvolume ( v steradians). The remaining

volume is described by symmetry relations through simple
reflections in © and ¢.
Figure 2-5 shows the relationship between the radiances and

the source functions at different radial stations which provides

the coupling mechanism for multiple lines-of-sight. This relation-

ship is based on the assumption of infinite axial symmetry such

that the properties of the medium vary only with radius. Positive

or negative radiance vectors are constructed from line-of-sight rad-

iances directed outward or inward, respectively. 1In the elevation
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plane. the sonree fimation is approximatred hv an ampgnlar anadra-
ture of tixed tesolution given by Lhe plesculbed values ol aspect
angle. In the azimuth plane, the source function is appro#imated
by an angular quadrature of variable resolution which increases
in proportion to the prescribed number of cylindrical shells.

The resolution increases from the center (where the radiation
field is isotropic by symmetry) to the edge (where the radiation

field is most anisotropic) such that the accuracy of the quadrature

is maintained independent of radius.

Figure 2-6 shows the indexing system for the matrix elements
in the azimuth plane. The indic=s i and k designate the spacing
(x) of the line-of-sight and the radius (r) of the cylindrical
shell. The index j (which does rot affect the azimuth plane
projection) designates the elevation angle (¢) of the line-of-
sight relative to the cylinder axis. The i,k matrix elements
form an asymmetric square array in which the ordering of the
subscripts indicates the direction of the path (outward or
inward).

Figure 2-7 shows the geometric relations for each matrix ele-
ment in the azimuth plane. The inclination of the radiance vec-

tor relative to the radial direction is given by the complement

of the angle 04 OF eki where

- - = -1 = - =
eik = eki cos ( ) ; elk /2

The line-of-sight distance sijk or skji measured from the mid-

peint (x-axis) to the point k is given by
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] Figure 2-7. Geometrical Relations
in Azimuth Plane

2-42




T R T R

TR e ST

4
4
o

L
i

8

ijk

“Skji

sin Oik
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For uniform properties (pk, Kk) between points k and k + 1, rthe

transmission is given by

T

With these definitions,

13k

eXP[‘pk“k(Sijk+1 - Sijkﬂ

the equation of transport between

points k and k + 1 in the lower quadrant and points k - 1 and k

in the upper

kji

Ni sk

BTN RSN

Ty

quadrant may be written as

N+15iT15% * Bl LA S G

+

Nisk-1Tiqk-1 F [(1 S P LA

+

1

Sk+1ji)](l'Tijk)

(Uk—_];

P
P L DU o

\ O

7 (Syj1 Sk~1j1/](l - Tijk-1)

oA e - t. R I I ' 1

? (2-18)

LI

source function § accounts for multiple scattering from all

directions into the line of sight.

Sijk

Skyi

where

k

Fialt &

Piki‘jj'Nkj'i')Qi'j'k + P

kK J
:E: :E: i M et Privii M %t

N

oj‘ok“o

PojNoon

number of discrete azimuth angles at radius r,
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J = total number of discrete elevation angles

IPRINE = phase function for scattering from dlrection
ik}’ ei.k, ¢j' and its symmetric counterparte into

direction eik, ¢j
Qijk = golid augle for radiance vector Nijk or Nkji
¢ = subscript for axial component (¢o = Q).
The axial component of the source function (subscript zero)
is excluded from the double sum for reusons of symmetry. Symme-

trv with respect to 2z yields the following expression for exial

radiance

Now = (L= oy )M+ oS

Symmetry with respect to 6 yields the following expression for

axial source function

J
Sok T ijoZ(Nijk + Nkji)Qijk + PooNok'o

j=1 " i=1

=

Substitution of § , elimin-

. N .
ok into Nok and Jok into Nijk and N

kji
ates N(u from the radiance matrix. These values are couputed

g 38

independently sulbsequent to solution of the matrix.

The solid angles are evaluated in terms orf the discrete
spherical courdinates 6., $j shown in Figure 2-8. The solid angle
boundaries are assumed to bisect the angular region between

ad}acent radiance vecrors such that, for an interior element,

0, -8, byt obs
Q __( i+l k i 1'k)[cos(-~5— ) .J.i)

ijk
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For an exterior element, the sclid angle is one-bhalf (edge) or

one-fourth (corner) the value given by the above formula; i.e.,

d

- _<82k — 01K>|c03(21~j%11:i> - Cos(?i“jéfiii)]

5k — )L )
i=1; 3+ J (edge)
8,, - B (o, + ¢, b, + 6. \
kk k-1,k -1 +1
ijk = -( ) )[;osk~l~—7~l~—) ~ cos( 5 —~,]

i=%k; j7 J (edge)

0, - 0. 4. b+ by g
i+l .k i-1k k -1
ok = ( T3 1P){C°S(—J—2—J—“)’ cos %]

i =J3,; 1+ 1,k (edge)

Q = - EEF Uik £o3 fﬁ—iﬁfili - cos
10k . 3 2 %3

i=1,; j=J (corner)

8., - 6, + 6. 4 ¢
Qka = _( kk 2!( —;k)l—co‘?’(_“]___z.__]f.) - ¢cOoSs (DJ]

i=%k ; j=4dJ (corner)

For the axial component, the solid angle is given by
2, = n(l - cos YT)

The phase function is evaluated in terms of the angle B

formed between the given radiance vector and the line-of-sight.
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This angle is readily evaluated from the vector dot product of

the corresponding unit vectors ri'j'k and rijk where
rijk « x s8in ¢j cos eik + y gin ¢J sin eik + 2z cos ¢j

Thus,

~

i)'k . rijk sin ¢j' sin ¢j[cos(ei.k~ eik)]

!

>

4 .y 5 .
cos ¢J cos ¢J

COS Bilj 'liij

The phase function is defined to include scattering not only

from the direction 9i’k’¢j' but also from the symmetric direc-

tions 7 - ei‘k and ™ - ¢j' such that

Plilkjjl = P[B(ei|kn ‘bj!; eik) (\bj)]

+ P B(ﬂ - 0,

A
+ P_B(ei.k, LIS PRI ¢j)]

~

+ P B(W - ei.k, ™o~ ¢j" eik’ ¢j)]

L

For the axial component, the phase function is given by

g = 2 R - ¢,
Fia [P(CbJ) B ¢J)]
In this manner, the computed radiation field for n-steradians is

made to account for scattering from 4w-steradians.

The preceding equations may be solved by either iterative
or inversion methcds. 1In the iterative approach, the equations

are suitable for programming without further manipulation. At

2-47




each ilteration, the radlances Nok’ Nijk' and Nkji ave computed
based on assumed values for Sor Sijk' and Skji from the preced-
Ing lteraticn. subjezt to the boundary condiitiion NKji w O for
all 1, (nuv external sources); the sssumned values for the first
itevation are taken equal to zero (l.e., single scattering). In
the inversion approach, the equations are manipulated to elimin-
ate rhe source functions § in favor of tha radiances N which are

subsequently determined by matrix inversion.
The wanipulaticns required for the inversion method are

summarized below. Elimination of Sok in favor of Nok yields

k J
. P o E : z::
i=l j=1

+ Nkji)ﬁijk

Substitution of tﬁe ch into Sijk yields

K J;
Sijk = E Zl[Pii'k_jj' + Xjkkajo]Ni,'j'k

where

P, 0

0o
_ﬁ_l_?_~§_
k*oo"0

xjk = 1T =W




N

-4

A“;“‘, \

E% Elimination of Sijk and Skji in favor of Nijk and Nkji yields a
@i KJ(K - 1) dimensional linear equation set, with KJ(K - 1)/2
?3 equations for each quadrant.

 %

ﬁﬁ - Positive Quadrant:

vy |

. ' k J :

PN )

B¢ [Gi'j'ij " Yiik-13310kg5 /Ny

g 1'=] j'=1

k-1 J

t
s ~ 'pijk-laiki'jj'Nkj'i'] - E Z [(Gi|j|ijTijk"1

i'=1 j'=1

i

b + wijk-laii'k-ljj')Ni‘j'k-l F¥ik-181k1 53 M1y ]
{ o

¢ : wijk-lxjk(l - wk)Nk + (1 - Tijk-1 t Wijk-lxjk-1)<1
14

\§ W \)NO izl:k

g k"’l, k'l j“_-]_’J

3 k=2,K

5 Negative Quadrant:

U

{

! k J

:E: :E: [Kéi'j'ij - wijkaki'ij'j)Nkj'i'

1=l j'=1

k+] J

Viik®i ki i'j'k]' :E: :E: [(Gi'j'ijTijk

i'=1 j'=1

$

+ l”i.j}r.a‘k+1;i.'ij'J'>Nk+1j'i' + K"ijka‘at'kﬂij'jNi'j'1<+1]

; i~ \ (o] ) . 0
£ = l“ijk"jkﬂ(l‘ “k+1)Nk+1 + (1 " Tige t u’ijk"jk)(l - wk)“k
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where

- %k
b = (- T jic)
aiilkjjl = <Piilkjj! + xjkkajO)Qi'j'k

The above equations are subject to KJ boundary conditions

Ngyg = O {i=1,K; j=1,J}

The above relations suffice to determine the entire K?J dimen-
sional set of radiances for the cylinder. Repeated application
at successive axial stations yields the complete radiation field

for the plume.

2.6 Computed Results

Extensive parametric calculations were undertaken
in order to validate and compare the six-flux and N-flux
scattering approaches. The calculations included comparisons
with the predictions of other codes: the NASA finite-difference
code for plane-parallel geometries and the GAC Monte-Carlo
code for arbitrary geometries. The calculations were per-
formed for specified values of the monochromatic scattering
parameters (optical depth, scattering albedo, phase function)
rather than for a specified spectral region or particle size/
density distribution. This procedure enabled the scattering
codes to be exercised over the full range of optical environ-

ments without the attendant complexities of a complete system
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gimulatiori.. The evaluation of the optical parameters in terms |
of the physical properties of a specific gas/particle medium is

congsidered elsewhere in this report.

2.6.1 Planar media,. The relative simplicity and general
availability of solutions for planar media make such solutions
ideal for the preliminary test of physical models and parametric
effects. This section summarizes results obtained for uniform
one- and two-dimensional planar media usiag an explicit six-flux
‘model (Method I; Figures 2-9 through 2-12) and a standard finite-
element program (NASA code; Figures 2-13 through 2-15) modified

to include thermal emission.

Figure 2-9 shows the transmissivity, reflectivity, and emis-
sivity of a uniforn planar medium of unit optical depth at normal
aspect for varvious phase functions (isotropic, fore and aft,
forward cnly). In additicn, isotropic scattering solutions are
compared for one-~ and two-dimensional planar media (slab vs.
ribbon) in order to bound the possible range of values for
eylindrical media. In all cases, scattering is observed to
reduce the emitted component and to increase the transmitted-
plus-reflected component of the radiation signature. Comparisons
among the slab solution for different phase fumctions show the
effects of backscattering (b>0) and side-scattering (s>0) on

the reflected and emitted components. Comparisons between tLtie

T r—
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slab and ribbon solutions for isotropic scattering {(f=b=g)
reveal essential differences between conservative (e + v + p =1)
and non-conservative (¢ + v + p «1) radiation fields which would

not be predicted by a two-flux model (s=0Q).

Figure 2-10 shows the transmissivity, reflectivity, and emis-
sivity of a uniform slab at tangent aspect for the same vange
of parémetets as in Figure Z-9. In this case, the incident ra-
diation is assumed to be perpendicular to the surface while the
cbserved radiation is parallel. Thus, the transmitted radiation
component undergoes a change in direction from the incident side
to the emergent side which accounts for t + 0 as w » 0, The
emitted component parallel to the slab is black (infinite optical
depth) canly in the limit w - O; for finite w, the emissivity is
reduced due to lesses through the slab boundaries. Note that
thi¢ coupling between the normal and tangential radiance components

aoes not ocour for the two-flaux iwodels.

Figure 2-11 svows the radiance of a uniform emitting planar
medium at normal aspect over a range of optical depths in the
absence of external radiation sources. 7The values are normalized
ty the non-scattering solution for w = 0 and are therefore
equivalent to mormalized emissivities. The range of scattering
Darameters and geometries is the same as in Figures 2-9 and
2-10. 1In all cases, increased scattering (w) is observed to

reduce the observed radiance for constant 1t due to egual but
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opposite variations in the optical depths for absorption and
scattering. The effect of side-scattering is obszrved to

increase the radiance from the slab relative to the ribbon

and from the six-flux relative to the two-flux (f=b in both casesg)
but to decrease the radiance at large optical depths relative

to the forward-scattering case (f=1).

Although not shown, the normalized axial radiance component
[Nz(w)/Nz(O)] exhibited close similarity to the normalized
radial component [Nr(w)/Nr(O)] for isotropic scattering but
maintained constant wvalue [Nz(w)/Nz(O) = l] for two-stream
scattering. The normalizing values Nr(O) and N, (0) are simply
the given black body function (N°) times the apparent emiusivity
(1—e—Tr or unity, respectively). Thus, the six-stream approxi-
mation accounts for the redistribution of radiance (from axial

to radial) due to scattering whereas the two-stream approxi-

mation does not.

Figure 2-12 shows analogous results to Figure 2-11 except
that the optical depth parameter is based on the absorption
cuomporent rather tharn the total extinction (abserption + scatre
ing). In this case, the emitted radiation remains constant as
w increases rather than decreasing, as before, in proportion to
(l1~w). As a result, the curves lie above those in Figure 2-11
by an amount which increases with increasing w. In the case of

forward scattering, the radiance remains finite in the limit

w > 1.
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Figure 2-13 shows a comparison between the nredictions of ,
the two-flux and six-flux models and the NASA finicve-element
~ode for the normulized rediance at norwmal aspect from an iso-
tropically-scattering uniform slab of specified optical depth.
For small optical depth (1=.1), the NASA code is in close agree-
ment with the two-flux model (f=b=%). For large cptical depth
{t=10), the NASA code is in close agreement with the six-flux
model (f=b=s=1/6). For intermedidate optical depth (based on a
single NASA conde caiculation), the NASA code prediction is inter-
mediate bhetween the other two. Taking the NASA code as the
standard, this comparison provides physical insight into the
sources of error which can result from coarse angular quadrature.
In short, the twc- and six-flux quadratures, respectively, under-
predict and over-predict the effective emissivity of the medium.
However, from the comparative results of Figures 2-9 to 2-13 for
slabs and ribbons, the error in the six-flux approximaticn at
small optical depths should be appreciably reduzed for cylindrical
geometries (i.e.. plumes ).
Figures 2-14 and 2-15 show further comparisons between
predictions of the six-flux model and the NaASA code for |
an isotropically scattering uniform slab. These figures show
the variation with aspect angle of the radisnce and radiant
intensity (radiance times projected area) normalized to their
respective values at normal aspect. The predictions of the six-
flux model (Method I) represent interpolations between the values

actually computed for normal and tangent aspect and, therefore,
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have limited quantitative accuracy Letween those limits,

However, the predictions and comparisons are useful to illustrate
trends. In particular, beth models predict che same qualitative
variation of radiance with aspecu (I'igure 2-~14) which is strongly
derendent on opticel depth. Fcr small optical depths and low
scattering albedos, the radiance increases toward tengent

aspect due to the increased length of the optical path. However,
for large optical depths and high scattering albedos, the radiance
decreases towavd tangent aspect due to side-scattering losses

not predicted by two-flux models. The aspect dependence of the
radiant intensity (Figure 2-13) includes the variation in projected
area (proportional to sin ¢) and, consequently, shows a monotonic

decrease from normal to tangent ospect. In both Figures, the

six-flux model predicts lower luvels of radiation for higher
scattering albedos, with greater sensitivity for larger optical
depths. The opposite behavior of the NASA predictions for low

optical depth does not lead to larger absolute differences.

2.6.2 Cylindrical media. Cuompared to the wvast literature
on multiple-scattering solutions for planar media, relatively
little work has been published for cylindrical wedia. Accounting
for this essential geometric effect was a central feature of the
SIRRM model development. Hence, the logical first test of a new
solution for cylindrical media is a comparison with previous

golutions for planar media.
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Figure 2-16 shows the normal radiance of a uniform infinite
cylinder (centered line-of-gight) and of a uniform slab of equal
optical depth. The predictions are based on the six-flux model
(Method I or II) and on the GAC Monte Carlo code. Except in the

non-scattering limit (w=0), the radiances are observed to be

~ lower for the cylinder than for the slab due to side-scattering
losses (not predicted by two-flux models). The six-flux and Monte
Carlo results are shown to be in essential agreement for both
isotropic and forward scattering phase functions. The forward
scat:tering result is only slightly greater than the isotropic

scattering result due to the assumption of uniform properties;

AT G T e Y P R ST, e

larger sensitivities would be expected for the non-uniform con-

g

ditions of actual plumes.

Figure 2-17 shows the normal radiance for isotropic scattering

of a uniform infinite cylinder (centered line-of-sight ) and of

T B i e e

a uniform slab and ribbon of equal optical depth. The predictions
are based on the 6-flux model (Method I or II) with comparative

calculations from the N-flux model and the Monte Carlo code.

B pA—

The variation of radiance with optical depth (upper left plot)
1s qualitatively consistent with previous predictions for
planar media (Figure 2-11). Specific comparisons for equal
optical depths (remaining plots) show a uniform progression of
the cylinder radiances from the ribbon values at small optical

depths to the slab values at large optical depths. This be-~

T e SR IR 1o ST, G PIEhAE e S

havior is the result of side-scattering losses from the cylinder

which increase with decre: sing optical depth. These losses

.
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result in improved pradictive accuracy for the sii-flux wodel

at small optical depths. Comparison of the six-flux model pre-
dictions with the more exact predictions c¢f the N-flux model and
Monte Carlo codes reveals a resicual over-prediction for small
optical depths but substantial improvement relative te similar
nredictions for a slab (compare [igure 2-13). Comparison cf the
N-flux and Monte Carlo predictions for nnit optical depth revals
excellent agreement. The comparison isg cluse but less exact at

an opticaldepth of ten.

Figure 2-18 shows the tangeunt radiances (i.2., aspect = 0
or 180 degreer) for the same conditions as the normal radiances
in Figure 2-17. As before, the curves are shnwn normalized by
their values for a non-scattering medium, i.e., the local Planck
function [Nz(w=0)=No]. The curves reveal the same aualitative
trends as the normal radiances in Figure 2-17 except for a reduced
sensitivity to optical depth duc to cyvlindrical curvature. As »
result, the tangent radiances remain clese to the ribbon values
for all optical depths. This effect is confirmed by the more

exact predictions of the N-flux model and Monte Carlo code.

Tigure 2-19 shows the aspect dependence of ih2 emissivity
of a uniform infinite cylinder (centered line-of-sight) as
predicted for a given albedo by two-flux and six-£flux model
approximations (Method II). The curves are qualitatively consis-
tent (but quantitatively different) for small optical depths near
normal aspect. However, for large optical depths nerar tangent

aspect, the two approximations predict opposite trends due to
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the effect of uide-scattering losses near grazing incidence.

This behevior is cnnsistent with previous predictions of radiance
ve. asyect for a planar slab (Figuve 2-14) and may have signifi-
cant negative impact on the detectability of plumes from nose

aspect. Comparison of the predictions of Method I and II for

normal and tangent spect reveals good agreement for both phase

function app-oximations at comparable optical depths. Comparison

of the predictions of Method II ana the Monte Carlo code for

isotropic scattering at urit optical depth reveals agreement within

20 percent for all aspect angles.

e T R M e X N P R R NN N T A e b’

Figure 2-20 shows & comparison between the six-flux

4 gy

(Method I) and N-flux models for the normalized radiance

from an isotropically scattering uniform infinite cylinder

‘ (centered line-of-sight) over the full range of albedo and

; . optical depth. These curves are equivaler.t to normalized
emigsivities from Figure 2-19. As in Figure 2-14 (slab). the
present six-flux predictions represent interpolatiors between

¢ the values actually computed for normal and tangent acpect and,
therefcre, bave limited quantitative accuracy between those

i limits. In particular, the Method I interpolation formulae are
obeserved to under-predict relative to the N-flux model but to
yield valid qualitative trends. Both mcdels yield comparable
predictions at nmormal and tangent aspects. Comparison of N-flux
and Morite Carlo predictions are in excellent agreement and

appear to confirm the 6-flux Method 11 predictions in Figure

A = S iy e e e -
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Figure 2-21 shows the N-flux model prediction for the
variation of normal radiance with distance from the cylinder
axis for the same conditions as Figure 2-20. Integration under
these curves would yield the normalized station radiation at
side aspect. The effect of scattering is to reduce the radiance
from the off-axis regions, with greater sensitivity for larger
optical depths. The assumption of the six-flux model I that the
radiance profile is independent of albedo is, therefore, seen

to be in error for large optical depth. This assumption is not

nade by six-~flux model II.

Figure 2-22 shows a comparisun between the six-flux
(Method I) and N-flux model predictions for station radiation
as a function of aspect angle for the same conditions as Figure
2-20. Both models prelict the same qualitative effect of
increasing albedo, namely, decreased radiation relative to side
aspect with greater sensitivity fcr large optical depth. This
behavior is consistent with previous 6-flux model predictions
for a planar slab (compare Figure 2-15) except that the sensitivity
to albedo is greater in the present case. However, the six-
flux model (Method I) interpolation formulae appear to over-
predict the sensitivity as predicted by the N-flux wodel and as
confirmea by additional predictions with the GAC Monte Carlo

code. The latter twn predictioneg are shown to be in excellent

agreement .
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The preceding results for infinite cylindrical media
represent valid solutions for roclket plumes provided that
the variation in axial radiance is negligible over a distaunce
of one optical depth (i.e., szIdTZ<<Nz). This criterion is
satisfied throughout most of the plume mixing region but may not
be sarisfied in local regions of the plume inviscid core when
scrong shocks are present. 1n order to assess the impact of
shock-induced gradients on the coupled gas/particle radiation field,
the six-flux model (Method I11) ws3s extended to finite cylindrical
wedia with arbitrary ead-wall boundary conditions. Numerical
experiments were recently initiated to assess the impact of 4
Loty externd: tadltatlon source pavialiel to the axis on the
radiaiion scattered to side aspect. A key objective of this
avsessment is the determination of the axial region of influcnce
beyond which the infinte cylinder model becomes a valid approx

LIRS

Figure 2-23 shows the result of a preliminary test cal-

culation with the extended six-flux model. In this case, the

Tinfor is accumed aniform with no external radiation soar

o o3 the computed radiation field is symmet: ic about ',
cylinder mid-point. The radial and axial emissivities are obscrved
to decrease from the mid-points toward the corners as a result
of three-dimensional radiation-coupling effects. For the giver
optical depths, the mid-point radial emissivity is nearly equal

to the emissivity ¢f an infimite cvlinder; i.e., the uaid-point
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values are necarly iundependent of end-wall boundary conditions.
Thus, the axial region of influence is contaiued within the finire
cylinder considered. Comparative Monte Carlo predictions appear

te valldate the six~flux model result.

As a last test case, a condition of practical significance
was chosen. It involves an occulted emitting core and a non-
emitting scattering envelope, simulating a nose aspect signature
(see Figure 2-24). This is a stringent test case because the
noge aspect signature is due entirely to scattering and because
the core is a localized source leading to a highly anisotropic
rediazion field. A comparison between the forward scattered
vadiarce predicted by the 6-flux model (Method IT) and the Monte

Carlo method showed agreement within 20%.

COLD SCATTERING

MISSILE BODY

: \: RRRIGHAK e,
;
//// :
:
:
: o
e .-'. ; D )

SCA{TERED
RADIANCE .

Figure 2-24. Core/Envelope Structure for
Nose Aspect Test flase.
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2.7 Summary of Models and Results

The results discussed in Section 2.6 include calculations
for planar and cylindrical media using 6-flux, finite-difference,
and Monte Carlo solution techniques. The calculations include
the full range of optical parameters [albedo (0 to 1), optical
depth (.1 to 10), phase function (isotroplic to delta function)]

and observables (transmissivity, reflectivity, emissivity;
The

radiance and station radiation versus position and aspect).
results demonstrate the importance of three-dimensional multiple-
scattering effects and the relative ability of different
phvsical models to provide an accurate simulation.

Three new models were developed and verified in this phase
of the effort. The first was an explicit gix-flux model which
is exact (for six-flux phase functions) tor planar media and
approximate for cylindrical media. The second was an implicit
six-flux model which is exact (for six-flux phase functions) for
¢ylindrical media. The third was an implicit multiple-flux
("N-flux'') model which is exact (for arbitrary phase functions)
for cylindrical media. The six-flux models provide the minimﬁm
angular resolution necessary to account for three-dimensional

scattering effects. As such, they constitute valid engineering

approximations which are highly efficient for production calcu-

RIS Ao iR A % S A BT i - et g - -

lations. The N-flux model prcvides complete flexibility in the

e

selection of angular resolution (elevation and azimuth). As =

result, alternate levels of resolution can be tested and compared

with respect to accuracy and efficiency.
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The six-flux models are distinguished principally by the
degree of rigor in treating side-scattering effects. That is,
ﬁethod I ap?roximates these effects via simple closure relations
whereas Method I1I computés these effects via exact coupling
equations. Both methods solve initially for the normal and
tangential radiances and subsequently for the radiance at
arbitrary ahpect (1f required). The fundamental difference is

associated with the initial solution step.

To the authors' knowledge, the N-flux model represents
the first application of general finite-element techniques to
emitting cylindrical media. Previous application of this tech-
nique was to non-emitting planar media (Barkstrom, 1976). The
information content of the calculation is considerable. For
each radial station, the model predicts the complete three-
dimensional radiance distribution in spherical coordinates.
Typical results for two uniform isotropically scattering cy-
linders of different optical depth are illustrated in Figure 2-25.
The figure shows polar plots in azjmuth and elevation of the local
radiance distribution at a series of radial stations from the
s Cer of each cylinder to the edge. In each case, the ra'li.,
are normalized by the edge value for a centered line-of-sgight
at side aspect (0=¢=7/2). In the azimuth plane, the radiance
distribution is observed to be isotropic at the center and to
evolve toward a forward lobe at the zdge. In the elevation

plane, the radiance distribution is roughly eliptic at the center,
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(approaching isotropic for large optical depths) and evolves
toward a composite forward/side lobe at the edge. The radiances
are observed to increase or decrease from the center to the edge
for small or large optical depths, respectively, with the maximum
rate of change occuring near the surface. This result may be
compared to a non-scattering medium in which the radiance

always increases monotonically ouftward.

The N-flux model provides a powerful tool for the analysis
of plume scattering problems of arbitrary complexity. The
accurac;, of the prediction is limited only by the computational
resources of the user. Because of the significant cost im-
plications of repetitive calculations for multiple spectral

points, an important aspect of the continuing effort is the

optimization of the mathematical prccedures and the grid selection

(spatial and angular). Mathematical optimization includes the
selection of iterative or inversion procedures for small or large
scattering optical depth (wr) and the use of a different (finer)
radial grid for evaluation of the emission/extinction terms.

Grid optimization involves the correlation of accuracy and
efficiency with both the number of elements (radius and aspect)

and the vrositions of their boundaries.

A rough preliminary indication of the degree of resolution
required for a given accuracy is shown in Figure 2-26. This

figure is representative of the limited computational experience
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acquired to date but doves not necessarily possess broader quan-
titative applicability. The results shown are for an optically
thick uriform cylinder with isotropic scattering (t=10, w=.8).
No particular effort was made to optimize the grid selection for
a given number of points. The accuracy is observed to be much

more sensitive to the number of radial elements than to the

number of aspect angles.

By far the largest portion of the computing time is in the
calculation of the source functions. As a result, CPU time is
roughly proportional to the square of the number of aspect
angles (¢j¢j.) and to the cube of the number of radial segments
(rk,Oi,Gi.), Thus, doutling beth the number of aspect angles and
the number of radial segments r:sults in a computing time increase
of about a factor of 30. Optimization of the selection of these

numbers is, therefore, of considerable importance for production

calculations.

Figure 2-27 summarizes the parametric and comparative cal-
culations performed to date as reported in Sections 2.6 and 2.7.
This summary illustrates the interrelationships among the various
techniques and :-he scope of physical problems considered. The
emphasis in this phase of the study was on model development
and verification. Additional work is required in the areas of
model optimization and application. In particular, final quan-
titative assessment of the relative accuracy and efficiency of
the different calculation methods in different physical situa-

tions must necessarily await further mcdel refinements and
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Calculations Presented in Subsections
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additional paramerric predictions. These efforts are currently
underway. However, based on the parametric and cowmparative
calculations performed to date, certain general conclusions can
be drawn:

1) The six~-flux angular quadrature (Method I cr II) yields

quantitatively accurate predictions for normal and tangent

aspect in the cases of intermediate-to-large optical depth

or anisotropic scattering. The standards for comparison
are the NASA finite-element code for sliabs and the N-Flux
and Monte-Carlo codes for cylinders.

23 The six-flux angular quadrature {(Method T or iII) tends to
overpredict the normal and tangent radiation for isotropic
scattering at small optical depths. The error is greatest
for slabs and least for ribbons due to the corrective effect
of side-scattering losses. For cylindrical plume geometries,
the error appears to be acceptable (less than 20 percent).

3) The aspect dependence predicted by the six-flux methods is
based on prior solution for normal and tangent aspect. For
intermediate aspect angles, simple interpolation (Method I)
gave the correct qualitative behavior, but overestimated
the sensitivity to albedo by comparison to the N-flux model.
Line-of-sight integration (Method J7I) gave the correct
quantitative behavior by comparison to limited Monte Cario
calculations for intermediate optical depth.

4) The N-Flux and Monte Carlo calculaticns demonstrated uni-

formly excellent agreement for all cases investigated.
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BAND MODEL APPROACHES

3.1 1Introduction

The equation of radiative transfer, which is rigorous on a
monochromatic basis, is only approximate when applied over a
finite spectral.interval. The spectral averaging procedures
required for the calculation of radiant transfer in a multi-

ple scattering medium must be considered.

The integral form of the equation of transfer for a finite

spectral interval Al may be written

- S dT, (s".8) s .8
- G, A A

N, (s) —f Ny (8' N —— - vy

So ds' ds'

1 ~_h" _‘l —‘|I aT/\(S‘ 'S) A' )
+ I _f P)\(S 'S )wA,NA(S ) T-du(s ) | +ds
4 :

where a spectrally averaged quantity x is defined as

= . 1
xl\ = -AT f X}\d)\
AA

and where the relatively small spectral variations of Ni and P,y

within A\ are neglected. The integrand contains three spectrally-

averaged terms involving the transmittance derivative and its
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product with the albedo and radiance. Of these terms, only the
transmittance derivative is amenable to simple averaging through
superposition of the individuel species averages. Evaluation

of the product terms requires additional approximations which

are investigated in this section. The goal of this investigation
is to develop as comprehensive a band model theory of combined
scattering and gaseous absorption as possible and to determine
the functional dependence of the mean transmissivity aund emissivity
on the gaseous band model and particle scattering parameters

as a guide to their most reuasonable combination in the more
general three-dimensional numerical solutions of the radiative

transfer equation.

In developing a combined absorption-scattering band model
formalism, the approach has been used which is analogous to
that of the classical gaseous band-model theory, namely, from a
monochromatic solution of the radiative transfer equation, to
perform a spectral integration over a defined gaseous absorption
band, making approximations as required to obtain a closed form
solution (and studying the limitations on the accuracy of the

solution imposed by the required approximations).

3.2. Band Model Formulation For One-Dimensional Scattering

A starting point has been selected to be the 'one-dimensional"
(i.e., two-flux) scattering formalism of Vanderbilt and Slack
(1976), which has the advantage of having been developed to the
state in which various closed-form solutions exist which are

explicit in certain limiting casex.

3-2
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It is important to note that the two-flux and six-flux ap-
proaches to the problem of radiation from a plane-parallel slab
yield similar functional forms, differing only in the definitions
of the effective backward and forward scattering cross sections.
Thus, the so-called '"one-dimensional' scattering solution is
capable of reproducing the effects of three-dimensional scattering

in this particular case.

It is noted also that the condition of completely anisotropic

scattering which is sometimes evoked as justification for applica-
tion of the one-dimensional formalism is a sufficient condition,
but by no means a necessary condition for its applicability.
Because of its relative mathematical simplicity (in addition to
the fact that the previously mentioned sufficient condition for
its validity, i.e., the assumption of complete anisotropy, is

very closely approached in many real scattering problems),

this formalism will always be of great value in a large number

of practical situations.

We start with one approximate solution of the two-flux
scattering equation, which is exact in a limiting case and which
provides an iterative solution under more general conditions

(Vanderbilt and Slack, 1976):

W fm -W Fm
(x, +1)e mf 2B W du’ - (x_%-1)e ‘“f 32 eV aw’
0 x* 0___x (2-11
wm ¢ % 1) % 1 'wm
- Xm - (XO - )e

2

17(0) X0

% %
(X +1) (xg ™ LD)e
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where
s
W = chax%ds' (3-2)
0
and
20 ¥ x
¥ L 1. Z0sb)® o, 28wl
X Rl B B i (3-)

In these equations, N is the particle density, Oa the absorption
cross section and Ysb the Luckscattering cross section, and ¢

is the ratio of backscattering to total scattering. For simplicity,
the absorption and scattering cross sections are referenced to

a single particle density; however, for mixtures of particles or

particles plus gases, the expressions are readily generalized.

For the case of constant x, an exact solution is provided

for an otherwise inhomogeneous path, i.e.,

W W
-W' S ~2W m
2 fm l -1 mf W'
B - x,5-—--- W
;EII'[O e dw 4 e Be dW}

() e "
X 4+1
where W= xPr . (3-5)
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The absorption optical depth is denoted by T,» Which may
represent the sum of contributions from a number of gaseous

and particulate species,

For the isothermal case, direct integration provides (on

division by the Planck blackbody function) the known expression

for emissivity:

X E %
2 =X T, %-l “X1Tg -2X Ta)
.= iy .y |
- ﬁ‘—l ’ %_1,2 )-(zx}‘ra -0
() ¢

On factoring and rearranging into a form more suitable for

g S, Tt L O AT | YOS R0 UM Ao e x

our purposes, we obtain

e = l-e (3-7)
Briefly considering the limit of small RBw (x4¥1), we
obtain a somewhat more transparent form

£ =~ (3-8)
1 Bw "Ts"Ta
l+~2— T-w (l+e )

Because of the relatively small variation of the denominator
from unity, the mean value over a spectral interval can be

written as
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-1 -f(?a)
— 1 - o~ l"e 1.0°
&b—'/:.d(d — g ‘f(,'-l':—s (3-9)
; 143 () (2 *)
m 5 1-, +e e
- 1 T4 .
f(r,) = -zngmf e dw: (3-11)

Aw

represents the band-model curve-of-growth for the gas plus par-
ticle absorption component (that is, a known function). Equation
(3-9) explicitly shows the modifications resulting from the

simultaneous presence of scattering.

For y significantly greater than unity, it still appears rea-
sonable to considei’ the preponderant effect of spectral variation
to occur in the numerator (which varies from unity to zero).

The percentage error introduced by this assumption will be in-

vestigated in the numerical studies in Subtask II. We write

_ l_e-f(?a,rs)
: = Loe T (3-11)
v 1] e
where
(r 2 1)
-(t T T
£(r,, 1) = -Q.n:a% fe a as dw: (3-12)
Aw
roanresante 9 hand madsal aarresn AF >esark Fre sl Ao g S sl L,

We designate the numerator of Eq.(3-11) as 1-t' (since it

3-6
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R corresponds to the emissivity = l-transmissivity in the

E‘ E; LS SN N LT T N Y'Y S B YU YO

5; L . 3.2.1 Elsasser model. We examine the behavior of the func-

3 g tion t' when the absorption results from one gaseous component

SIS

o d represented by the Elsasser model (for which case the effects of

: g the gaseous spectral structure will be the greatest):

b T, = ¥é sinh B (3-13)
) coshB-cosx

g § where

g

; E‘ ?a = ku = Su/d (3-14)

zl i (mean absorption op+tical depth)

§ é B = 2m y/d (3-15)

é § (fine-structure parameter)

Eooy and

L X 27 {w u)o)/d . (3-16)

Lk Thus

E ﬁ 7 ) 2

T — N

| = %—fexp ‘(Ta tanh“g ;

; g 2 (1-cosx/coshg)

T

P b . (3-17)
. 2y, e ),
4 (L-cosx/coshRB)

The properties of this integral will be examined in detail for

the limiting cases of small @ and large &8.

3-7
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For large values of the parameter £ (i.e., for significant
overlapping of the spectral lines), the function t' becomes
(on expansion of the terms in l-cosx/coshB),

2,10 %
B+21aTstanhB)

yf TatanhBtry
B+27 7 tarhg) \T, EanhpFlt, /°°Sh‘3]

t' = exp[-(?aztanh
(3-18)
2

- 2
on[(Ia tanh

where Io is the modified Bessel function of the first kind.
Since exp{-x)x 1-x for small x, and Io(y)z l+z]:y2 for

small y (and y << x), the I, term provides a higher-order

correction to the exponential term. Thus a useful approximation

is

— — 2 2 oy A %

t' = exp[-—(’ra tanh B+2TaTS'CaUP- ) (3-19)
Note that for no scattering (t, = 0), we have

T = l-e=+¢t' = exp(—?atanhﬂ), (3-20)

the classical Elsasser model result.

For the more interesting case of B8 small (little over-

lapping of spectral lines), we have (using cosh 8 = 1)

3-8
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where

and

+2rars)

transform),

i Wmmmmmmm T

r ( sinhZB + %fs

a (1~cosx)2 ta

~}

2
~ 2 sinh“B
= T — - T
( a 4 sinix/2

( b a %
sin’y sin”y

a = ?aT sinhp

b = % Tazsinh g

y = %%

By making the substitution

(a+b) %z = ( az— +
sin"y

the function

sinhg
(l-cosx)

)

sinhB \*
as sinzx/Z/

- )
. 4
sin'y

TN T TN T &7 T o W 7 T e gy 7
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{3-21)

(3-22)

(3-23)

1
Z

to transform to a more standard form (e.g., that of a Laplace

n/2 k
= Z
t 7 exp ~( a + b ) dy
2 sin“y  sin'y (3-24)
3-9
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becomes
- 2 [ k ] z
t = - xp |~ (at+b) 2z
1T4re P {[Z _ at(a +4b(§+b)z )% ]E}
2(at+b)
| % -%
[2(a+b)| "b[at(aP+ib (at) 2?) ] (a%+4b (a+b)z?) b (3-25)
%%
- = o) la+(a2+4b(a+b)zz) l ;dz . J
2(a+b)| z

This form is somewhat unwieldy, and does not appear to be
immediately integrable. For the limiting case a = 0 (no

scattering), the expression above reduces to

e o= Hfewem —1a (3-26)
1 z(z-1)
% = oy E .
= erfe(b®) = erfe|(T8/2) | , (3-27)

the usual Elsasser model result for small B

In the other limiting case of b = 0 (more strictly

speaking, b/a + 0) the integral for t' reduces to

(3-28)

T
I

2 (-a%z) d
fexp a? 7—2‘:-2—-—% 2

3-10
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This expression may be converted to a known Laplace transform,

T

v yielding
%
3 T= 1- 2_/§ K _(x)dx
§ mJ o (3-29)
.
% where
a* = (T 1 sinhp)
: 2 a = Ta1581n B ,

as before, and Ko(x) is the modified Bessel function of the
second kind. BSuch functions (of integral order) appear to be
the least tractable of the Bessel functions. However, since
Ko(x) is only weakly (logarithmically) divergent at the origin,
series expressions may be used and integrated over the finite

interval indicated.

® Because orf the mathematical intractability of this Bessel
; function, a numerical study was made of t' . From the power
series definition of K, and a term-by-term integration of

Equation (3-29) we obtain

z x>
Y [branGo+ e |G G (3-30)

\.\
~
o]
—
%
SN
o
>
i
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where y = .5772156649. .., (Euler's constant)
1
b = ——
k A
k
_ 1 1
e T A + | bk
2k+1

By use of recursion relations between the coefficients, the
series is readily programmable, with high accuracy, even on a
pocket calculator, for values of =z as large as 12. However,
for 2z greater than about 8, higher accuracy may be achieved
by an asymptotic series. By expanding the exponential in a
power series and integrating, the following expressions are

obtained

! 2 . j = (.'+ -
t = V= exp(—aﬁE)E (-1)7 dj a %(3+%) , (3-32)
j=o

where

] . ,
d = 2(1352%&9)(121’%2‘)24) o (3-33)

3-12



e T TR 30 R T YU S T U e TR ey

Avu et e

This series is ''semi-convergent' and must be truncated when the
magnitude of the terms no longer decreases. For a}5 greater

than about 8, it is capable of provid.ng 3-place accuracy for t'

: deteriorates; lor a &1 , it is ellectively woribless.

@ 9 a*

; The function t¢' = 1- = ‘f Ko(x)dx is plotted in Figure 3-1
! )

g

in Cartesian coordinates and the curve-of-growth -&n t' is plotted

versus a% (log-log scale) over a much wider range of values of a%

in Figure 3-2.

o e e g

1
[
0 A A 'y A
c 5 1.0 1.5 2.0 2.5
R
a%
— 2 %
Figure 3-1. Function t' = 1- ;‘f K, (x)dx vs. a
0
3-13




100
10 |
1
-2n(t')
.1
.01
.001 - ! A 1 A
.0001 .001 .01 .1 1 10 100
a%
Figure 3-2. Curve-of-Growth -in(t') versus at for
%
g | 2 a r
€= 1-% Of r (x)dx .

3.2.2 Random band models: The mean trasnmissivity for a

given band mniodel may be written alternatively

t [=Ali,j_[t(k(“’»d“’J = ff(k)t(k)dk, (3-34)
Aw o

in which f(k) 1is the probability density function of the

absorption coefficient k . Because the properties of random

band mcdels without scattering are relatively simply derivable

from those of single lines, explicit expressions for such

probability densities have not been required for study of the

3-14
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gaseous band models. However, because of the exponential form
of the monochromatic transmissivity, the probability density

function in the expression

T = ff(k)e'k” dk (3-35)
(o]

can be seen tc¢ be the inverse Laplace transfcrm of the mean
transmissivity function. A study of the inverse Laplace trans-

forms of known transmissivity functions has been made by
Domoto (1974), who has found that for the exponential-tailed

s™' model a relatively simple functional form exists, namely,

%exp [a(Z- l{__ - _E_)] , (3-30)

corresponding to the transmissivity [unction

w - (5]
m

%
t(u) = expz— 2a [(1 + l%&) —1]} . (3-37)

We consider here the case of no particulate absorption, for which
the effects of the gaseous spectral structure will be the greatest.

The function t' previously defined as

S | jf 2.\
t' = 5 2 exp |- (Ta +2lals)2de (3-38)
(where 1, = ku) can be rewritten
ol ® ¥é 2 : Ta ?a 2 %
£ = Jf 3 ] exp[a(Z— T ?_) - (Ta +ZTaTs) dr,  (3-39)
0 Tt a a
3-15
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Direct integration is rendered difficult by the presence of
the radical in the exponential term. Before studying the general

behavior of T', some limiting cases (small T, large Ts) are examined.

a)l Small T,

For small values of T (TS <<?€), expansion of the radical

w0, K K

‘ - -T t 2\ 7% T Tat\% * ,
L, £t = e 9%f{1. —B- a _[a 8 'a (3-44
(=) L R PR

s

yields

2

TN s 3-40
i (1, +21ars) TP % T cee ( )
;é in which terms in 183/1a2 etc. have been suppressed. Substitution
?‘ produces
il
é‘ -, ® .?ﬁ a * a - -1
% t' = f (-—-—’;—-3—) exp 2a-T1 “(‘,r‘:;+l)'[ -(a'[a‘%ls )'Ia dla ’ (3_41)
? 0 Ty
E or, defining
. . 2 £
i - _'s
? a a(l za? ) , (3“_42)
b a
[ and
o 02k
; Ta = ’la(l' 5 — ) ’
aTq (3-43)

Since the integral is now in the standard form with new constants,

we have

-1 1.2 T ‘
t - 3(1~ 3 ) {-2 *[ a )\ _
e . exp a (1+ ;?r/ 1 (3-45)
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- “‘Ts Tsz -% Tsz % ¢ T[-a k
t' = e l- ——} exp{-2a(l- ——= (1+ ——) -1 . (3-46)
2aT 2at a

a a -

To the same degree of approximation we may write

- Ts2 5 Ta : Ts2

t' = exp -Za(l- — ) (1+ —~) -1}~ v + — . (3-47)
2a'ra a s 4at,

b) Large T,
In the limit of 1arée Tg the magnitude of the argument
of the exponential term in the integral becomes large, and the

minimum progressively less shallow, and occurring at smaller

¥ >
valuesz of T, - If T, >> T,, SO that

249 ¥ & (9 X
(1,7 + T'ath) r( TaTs) ’ (3-48)

the argument of the exponential term becomes

- (ZTa'fs)35 : (3-49)

Tr_a Ta
E(T ) = -a — (1- __-—)
a Ta T

a

The magnitude of this argument has a minimum at approximately

1 2
min . 3, -3
T, s (1,/2) (at,) , (3-50)
so that for large Tgr Tamin«?a
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In the region of this minimum, the argument may be expanded:

- 1/3
E(Ta) & - S(kaTaTs)

) %( Tg ) (Ta_Tamin)2 + ...

0aT
8Ta

the expression for t' then becomes

By recourse to the mean value theorem, noting the narrowness

of the maximum of the exponential in the neighborhood of

Tamin, the multiplicative factor of Ta”3/2 may be taken
outside the integral and evaluated at Tamin:
1 . 9

a

o jr-a a % _ 3-J 3 T min
£ “(;z:ﬁfﬁ;é) expl-3(%aTaTS) eXP['I(Za; )(Ta-Ta ) }dTa
a

o

(3-51)

(3-52)

(3-53)

The remaining integration may be performed by letting the lower

bound ~+-w :

1/3
t' zo/g exp[—3(95a'-?a'rs) ] X

This functional dependence provides an interesting analogy to

the square-root region for pure gaseous absorption in which
- ) %
t -+ exp 2(aTa)

3-18
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e) Arbitrary T _

Numerical studies have been carried out on the integral
representation of the function [', given by Eq. (3-39). Some
results of these calculations are shown in Figures 3-3 to 3-5,

in which t' is plotted against 7T_, the mean absorption

a’
optical depth, for various values of T4, the scattering

optical depth and a , the fine structure coefficient. The

linear scale for 1' does not show the precise asymptotic behavior
at T' very close to 0 or 1, but does indicate a smooth, well-
behaved dependence on Tgo encouraging confidence in the approach

of seeking an analytical or semi-empirical functional represen-

tation.

a = %/1600

0 g X s i .0
10'E 1071 1 10 104 103 m2

Figure 3-3. Plot of t' vs. T4 for a = w/1000 and
Tq ranging from 8 to 104.
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4.3

s = %/100
0 oo™ i A A " . 1.
10°¢ 10°% 1 10 107 103 104
?I
Figure 3-4. Plot of t' vs. T4 for a_= 7/100 and
T4 ranging from 0 to 103.

Et
T Ll Ot
a=1n/10 4.5
10* 107 104

0
1072

Figure 3-5. Plot of t' vs.

1071

T4 for a = 1/10 and
Tg ranging from O to 102.
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The asymptotic region of small t' was examined in detail.
The conclusion was reached that the particular asymptotic form
developed above [see Eq. (3~54)] is of major practical significance.

A plot of the ratio E'/exp[-3($a?ars)%] is presented in Figure

5 3-6. This ratio can be seen to approach the predicted theoretical
g value of (4/3)% = 1.1547 closely as a+0 even for small values of
i l ] : I '
¥ i ,' |
1 e o ,
] L | .
s S o
:
i
{ 2t
‘ = !
{ 2 .
I -t I |
“u -
; -
h-‘ 'l'
o )
s o
g} ' -
< | a=n/100
4 !
s . a=7/1000
m ‘ .
1 SRR - . IJ
2 R .
b . l ‘ ! f
; NN T S © THEORETICAL ASYMPTOTIC
! i - .‘ i '.; S I ' Pl -A’ ', " VALUE = (4/3)% « 1.1547
| IR . I :
f oo IR '
! i ! [ ' | ! I
[ : ' b [ R
\ i | ! . !
) . j
0 ! 'y ’l " 4 ' l : 4 , ‘l 1 n
1073, 1074 107 la " 10m 10%n 10°n 10%s 107n
n'futl

Figure 3-6. Plot of E'/exp[-3(%a?ars)l/3] vs. a?ars showing
asymptotic behavior for ''large" Ty (ranging from
1 to 103), for various values of a and a?a
The range of values of a?ars corresponds to a
range of t' from about 0.7 at the left to

essentially zero at the right.
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a?ars, when 1t is sufficiently large. Empirically, for a

£0.05 and TS%10a¥a, the asymptotic approach is quite close

(within about 107%, even for a?ars as small as 10‘2, corres-

 §1 ponding to transmissivities as large as 0.6). For larger values
of a, an asymptotic value is approached, whose magnitude
depends on the value of a. The particular functional dependence

could be determined theoretically or empirically (e.g., an

asymptotic value of (4/3)%exp(2a) provides an excellent fit over

the range of values of a considered here).

3.2.3 Empirical formulations for scattering band models.
A study was made of possible empirical forms in the scattering
band model representation based on the previous theoretical
studies and numerical calculations. No exact explicit expres-
sions were derived for the general case, but various limiting

cases were studied, and any empirical form considered should

have the appropriate theoretical asymptotic behuvior. The
numerical calculations then serve to select the best representa-

tion for intermediate values of the parameters.

Specifically, the function previously defined at t'

(analogous to the mean transmissivity function t for the

no-scattering limit) is desired to have the following limits:
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A) No scattering (TS”0>f t' > t = exp *f(Ta, a)| where f

ool LS e S5 T

is the appropriate gaseous band model curve of growth,

in which a 1is the fine-structure parameters and ?a

the mean absorption optical depth (= Eﬁx where k is the

L ¥ gaseous absorption coefficient and u, the amount of the
absorbing gas, in reciprocal units). The function £

may include particulate absorption, i.e., be replaced by
f(?a, a) + Ty where f is the pure gas curve of growth and
T 1s a spectrally constant absorption coptical depth

o
(gaseous and/or particulate).

B) Weak scattering (TS << ?a)

_— . i
£ X exp |-f(7,, a) -1,

in which £ may include particulate absorption as in (A).
C) Constant absorption coefficient (gaseous and/or particulate).
(a » » ; f(?a, a) -~ ?a for any band model)
t' -+ exp —(?az + Z?ars)% (this is a func-
tional requirement of either the two-flux or six-flux

treatment for constant absorption coefficient).

D) Strong-line, large scattering limit (no particulate absorp-

tion)
(?a/a large, 1. large)

l/BJ

- -
t' > ¢, exp cz(raars)

(@8]
f

[
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for a random band model, with c,~1l and c.n2.4. This
important limiting behavior was derived in the previous
study and is analogous to the strong-line limit for

- . |
gascous absorption t »  exp “2(18 a)®

An empirical form satisfying (A), (B), and (C) is

T = exp |-£(T,,a) 21+ F%T?_;S;%I (3-55)

This is the form utilized intuitively in the Vanderbilt-Slack

program. However, in limiting case (D) it approaches

%y |

— - 3% 3
t' -+ exp(-215" a™ T4

Alternatively, a form satisfying (4), (B), and (D) is

t' = exp |-f(7,,a) ;1+ -3-;s__11/3|

f(Ta.a)‘ (3_56)

Although this form provides a better fit to the numerical values
calculated for intermediate ranges of the parameters, it does not
have the proper form to match limit (C); instead

1/3

£ > exp |-(t’+ 315%1g) For this reason, a more elaborate

form containing all four limiting cases above is sought.

A convenient form having these required limits is

4 & +c)a|“
t' o= exp%-f(?a,a){l+-f(i7?aj a
. a

T
y » I
[ k?a+c)aln+lesz(1_ ff;iiiz;ln. ‘(3_57)
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where b, ¢ and n are empirical constants. Numerical evaluation
of this equation has shown significantly improved agreement
relative to the previous forms. The curve of growth f(?a,a)

may include a particulate absorption optical depth.

Figure 3-7, -9, end -1l show comparisons of the exact values
of T' previously calculated for w/10%® < a < /10 (solid lines)
with the approximation given by Equation (3-55) (dashed line).
This approximation is seen to be especially poor for large

Tg and small a (i.e., when condition (D) should be met).

Figure 3-8, -10 and -12 show comparisons of the same values
of t' with the empirical form given by Equation (3-57) for the
case c¢=1, n=1, b=1/8. The improved match overall is evident.

No effort was made at optimization of the parameters b, ¢, and
n. It is anticiapted that an optimized version of this form
(or a very similar one) will be used in the basic formulation

of the SIRRM band model representation.

All the results shown here have been obtained for the
exponential-tailed 1/S random band model. The expression for
the absorption coefficient probability distribution function
for the Goody model is so mathematically intractable as to make
it extremely unattractive for similar theoretical or numerical
studies. However, the conclusions reached here regarding proper
asymptotic and approximate forms are certainly also applicable
to the Goody model (whose curve of growth for the non-scattering
case is only slightly different from that of the exponential-

tajled 1/S model).
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Figure 3-7. Plot of t' vs. T4 for a = m/1000 and
1 ranging from 0 to 10" compared with

approximation (1).

a = %/1000

- ! 2 i o
107 10 1ol

Figure 3-8. Plot of t' vs. T, for a = n/1000 and
1, ranging from 0 to 10" compared with
approximation (3).

3-26

i i el i s e L S I A 3 » i s . o o




L L ESRETLYE

a = w/100 |

o 1.
103 104
Figure 3-9. Plot of t' vs. 1, for a = 7/100 and
tgranging from 0 to 10° compared with
approximation (1).
E‘!
- 0.
«4.5
s = /100
) 1.
103 10%

Figure 3-10.

Plot of t' vs. 1, for a = /100 and
Tg ranging from 0 to 10° compared with

approximation (3).
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Figure 3-11. Plot of T' vs. ?; for a = /10 and
T, ranging from 0 to 10® compared with
approximation (1).
Ev
. - 0.
a=1/10 45
N - 1.
108 107 104

Figure 3-12.

Pioéwéfugk vs. ;a for a = ﬁ/idiand

1, ranging from 0 to 10? compated with

8
approximation (3).
3-28
o e - S i, i e T




e et

The preceding development is for single band models (with

or without particle or other gaseous absorption). In practice,
it is anticipated that methods of combining band model parameters
will be utilized which are analogous to those in current use

in gaseous radiative transfer codes (e.g., the Curtis-Gedson

approximation).
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OPTICAL PARAMETERS OF PARTICLES

4.1. Introduction

The treatment of the gas/particles radiative transfer requires
as inputs the volume.extinction coefficients and angular scat-
tering phase functions. These quantities can be derived from the
primary optical parameters by use of the Mie theory, which des-

cribes the scattering and absorption properties of a homogeneous

sphere whose optical properties are given by the complex index
of refraction. Although the Mie theory is based upon the ideal-

ization of homogeneous spherical particles, it can be considered

SN N R R T

as a very reasonable first approximation since real plume particles

s

were often found to be solid spheres (Rochelle, 1967). 1In

addition, higher order account of particle non-uniformity and

R 3 P =

i non-sphericity is prohibitively complex (Kerker, 1969) and not

s

warranted by the present state of knowledge. Exact solutions

of the wave equations are obtained by the matching of boundary

T e En e

conditions at the surface of the sphere. The solutions are ex-

pressed as infinite series involving Legendre polynomials and
Ricatti-Bessel functions, Evaluation of the formal series
solution proves computationally difficult for some ranges of
the parameters and considerable effort has been expended in the

past on the development of efficient and accurate computational

methods of evaluating these solutions. The most recent treat-

W R

1 ment is by Dave (1972) and it is his approach that is being used

in the present program. A brief discussion together with the ex-

tension from single particles to particle distributions is given

in Section 4.2.
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A preliminary listing of the particulate aspecies of interest
is given in Table 4-1 together with an indication o? the availa-
bility of the index of refraction (n,) and the absorption .
index (n,) measured in a given temperature interval. Only four
out of nine particulate species are sufficiently knqwn, and
these will have to serve as representatives until more informa-

tion about the remaining species becomes available.

TABLE 4-1. LIST OF EXHAUST PARTICULATE SPECIES
AND THE AVAILABILITY OF ny and n,.

PARTICLE nl(T,A) nZ(T,A) SOURCE

AL,0, (s)  300-1800K 300-1800  Aerospace

¢ (s) 300K 300-3000 Aerospace/PRA Estimate
Mg0 (s) 300-2225K 300-2225 Aerospace

ZrO2 (8) 300-600K 300-600 Aerospace

Z2rC (s)

BN (s) 300K (Na-D) Kordes (1960)

3203 (%) 300K (Na-D) Handbook Chem.Phys.for (s)
BeO (8) 300K (Na-D) Handbook Chem.Phys.

Be3N2

Representative results of volume coefficients and angular
scattering phase functions for A2203 and carbon parﬁicle distri-
butions are given in Section 4.3. The results indicate that the
large variations in coefficients and phase functions typically
observed as a function of wavelength and scattering angle for
single particles are greatly reduced when realistic size dis-

tributions are introduced. 1In addition, the influence of the

4-2 j
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A preliminary listing of the particulate species of interest
is given in Table 4-1 together with an indication °€ the availa-
bility of the index of refraction (n;) and the absorption
index (n,) measured in a given temperature interval. Only four
out of nine particulate species are sufficiently knqwn, and
these will h;ve to serve as representatives until more informa-

tion about the remaining species becomes available.

TABLE 4-1. LIST OF EXHAUST PARTICULATE SPECIES
AND THE AVAILABILITY OF ny and n,.

PARTICLE nl(T,A) n2(T,A) SOURCE

2,0, (s)  300-1800K 300-1800  Aerospace

¢ (8) 300K 300-3000 Aerospace/PRA Estimate
Mg0 (s) 300~2225K 300-2225 Aerospace

ZrO2 (s) 300-600K 300-600 Aerospace

ZrC (8)

BN (s) 300K (Na-D) Kordes (1960)

3203 (%) 300K (Na-D)
BeO (s) 300K (Na-D)
Be3N2

Handbook Chem.Phys.for (s)
Handbook Chem.Phys.

Representative results of volume coefficients and angular
scattering phase functions for A£203 and carbon parﬁicle distri-
butions are given in Section 4.3. The results indicate that the
large variatioﬁs in coefficients and phase functions typically
observed as a function of wavelength and scattering angle for
single particles are greatly reduced when realistic size dis-

tributions are introduced. In addition, the influence of the
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OPTICAL PARAMETERS OF PARTICLES

4.1. Introduction

The treatment of the gas/particles radiative transfer requires
as inputs the volume.extinction coefficients and angular scat-
tering phase functions. These quantities can be derived from the
primary optical parameters by use of the Mie theory, which des-

cribes the scattering and absorption properties of a homogeneous

sphere whose optical properties are given by the complex index
of refraction. Although the Mie theory is based upon the ideal-
ization of homogeneous spherical particles, it can be considered
as a very reasonable first approximation since real plume particles
were often found to be solid spheres (Rochelle, 1967). In
addition, higher order account of particle non-uniformity and
non-sphericity is prohibitively complex (Kerker, 1969) and not
warranted by the present state of knowledge. Exact solutions

of the wave equations are obtained by the matching of boundary
conditions at the surface of the sphere. The solutions are ex-
pressed as infinite series involving Legendre polynomials and
Ricatti-Bessel functions. Evaluation of the formal series
solution proves computationally difficult for some ranges of

the parameters and considerable effort has been expended in the

past on the development of efficient and accurate computational

methods of evaluating these solutions. The most recent treat-
ment is by Dave (1972) and it is his approach that is being used
in the present program. A brief discussion together with the ex-~

tension from single particles to particle distributions is given

in Section 4.2.
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temperature on the coefficients and phase functions for solid

carbon is minimal.

In the last section, we recommend a scheme for the Data
File that combines flexibility and minimum requirements in the

operation of the SIRRM code.

4.2 Formalism of the Mie Scattering

4.2.1 Single particle. In the Mie theory, the primary

quantities:

S, (a,n,0)

S, (a,n,0)

Quxt (8.1)
Qgeqam)
are calculated (Van de Hulst,1957) where S1 and 82 are amplitude
functions related to the planes of polarization, Qext and QSca
are the extinction and scattering efficiencies, a is the size
parameter (a=2mr/A, with radius r of scattering sphere and wave-
length A1), n is the refractive index (n=n(}) =n; (A)-in, (1)) and
6 is the angle between the directions of incoming and scattered
radiation. After the primary quantities are calculated, the
intensities of the scattered radiation and their degrees of
polarization can be determined. The calculation is simplified
by repeated use of recursion relationships and efficient
computing methods have been developed (Deirmendjian, 1969; Dave

1969, 1970A, 1970B). In the following, the approach taken by
Dave (1972) is briefly described.
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The intensity scattered by a single spherical particle

per unit solid angle for unity incident intensity is given by

I(a,n,0) =7 (1r?) Q (a,n) M(a,n,0) (4-1)

where M(a,n,6) is the normalized scattering phase function, which

is given by

n .
M{a,n,0) =3, Ak(a,n) Py _1(cos 0) (4-2)

k=
where Pk_l(cbs @) are the Legendre polynomials. The coefficients

of the Legendre series are given by
) (1) (2)
Ak(a,n) = 5?6;73737- Lk (a,n) + Lk (a,n)

where the functions Lk(l)'(z)(a,n) are computed from the values
of the complex Mie amplitude an(a,n) and bn(a,n). The extinction

and scattering efficiencies are given by

00

(an) = £ 3 (20+1) Rela, + b}

Q
ext a? iy

w (4-3)
2
(a,n) = — (2n+1) {|a_|? + |b_]|?
a Z;& n n
The amplitudes a, and bn are expressible in terms of the spherical
Bessel functions of the first and second kind. Using the method

of logarithmic derivative function An(a,n) of the Bessel functions,

the numerical computations are facilitated. However, difficulties

=~
]
Pl




exist in computing An(a,n) under certain conditions (Deirmendjian,
1969). Kattawar and Plass (1967) found that these difficulties
can be aveided by using a downward recurrence scheme for An(a,n)

which is basically stable. Dave (1972) has adopted this scheme

in his approach.

4.2.2 Particle size distribution. Since rocket exhaust
plumes do not, in general, consist of particles with only one
fixed size, it is necessary to investigate the characterietics
of size distributions. These characteristics are described by

the volume extinction coefficient 8 the volume scattering

ext’

coefficient B the volume absorption coefficient Babs and

sca’
the normalized scattering phase function M(8). These quantities
are dependent on n()) and various parameters describing dif-

ferent size distributions. They can be expressed as

K
M(0) = A (r.) P, .(cos 0) (4=04)
%il k'] k-1
and
T3
B(xry) = f  Q,(a,m)r? N(r)dr (4-5)
Tmin
[}...5




where z stands for ext, sca or abs. The normalized Legendre

coefficients become

r
] J
- A B}
; Ak(rj) . Bsca(rj> '/r Lk(a,n) N(r)dr (4-6)
’ r
: min

The phase function is normalized according to

/M(e) sin6ded¢ = 4«
47

The distribution N(r) is given by
N(r) = Nf(r) (4-7)

where N is total number of particles per unit volume and

!
é f f(r)dr = 1. Dave (1972) has made provisions to use any

)
one of three different size distribution functions. We are

interested in the discontinuous power law type

f(r) = C for Toin S T € Ty

r w (4-8)

f(r) = C(rm/r)\ﬂ-1 for r,€r € r ..

4-6
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and the modified gamma function

he Y
f£(r) = a r%e br for r

min € £ € T (4-9)

max

It 1s found that the modified gamma function is representative
of size distributions encountered in exhaust plumes with

Af,0, particles (Dawbarn, 1978). However, many different size
distributions have been encountered which sometimes depend upon
the method of collection (see Figure 4-1). The coefficients

a, a, b and y can be adjusted to represent any of the measured

or calculated size distributions.

, 10
Cwf
o
o
) S s5pf

3 istribution 1
(8]
- ok
o]
2
£
g 30t
2

’ & 00

' N 20”\/// Distribution 2

7 2 //

4 ' 00772 4 6 8 10 12 14 16 18 20 22

Particle Size, um

Figure 4-1. Two A%,0, particle size distributions of Titan IIIc
d using two different collection methods (Dawbarn, 1978)
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The parameters for the modified gamma function are not in-
dependent of each other and they have to be adjusted in a certain
manner to obtain a given size distribution that has its maximum at
radius LI This interdependence was investigated. The four

parameters may be reduced to two by utilizing the conditions

dfr) - o for r = T, (4-10)
dr
and
ff@) = 1
(o]

Thegse conditions lead to

a/b = ¥ rmY (4-11)

1 = ay lutr (4-12)

a + 1 and T() 1is the gamma function. At r = r

where § = m’
f(r) must assume a value between zero and unity (as determined by
experiment). Introducing Equations (4-11) and (4-12) into (4-10)

and solving for T results in

- £ -a/y
£ = v Ry S (4-13)
m

Assuming upper and lower values for f(rm) , Equation (4-13) has
been solved for f(rm)ml and f(rm)N.Z using different values

of o and y . The solutions are shown graphically in Figure 4-2.

4 family of curves is made up for a given o , the upper and

4-3

v Vs i e PN PUREE R Lt i i




5 g

e

lower limits of which are given by f(rm)%l and f(rm)%.Z
Thus, pairs of « and vy can be chosen to describe any size
distribution for T between 0.01 and 10 pym. The choice is
dictated by the known (measured) standard deviation of the dis-
tribution function. The higher values of o and <y produce
smaller standard deviations.
530 i SRR R T
1 EE2 H T T
EEE:{: : =iy
B 1 i T‘;‘ it :T )
T=h i1 Lere - T T L;!“
10 i amasy Y s
= i e
: T n g i
1’ 7 2 {5-
Y 5 ; :
; 1
1
Ny
i
i g
1 i 1
N::
s i g £ i
TR H-Er A i
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1 1o
m
Figure 4-2. Families of Curves for which O.fo(rm)tl
at a given r_ as determined by pairs
of v and «a.
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Following a similar argument as was presented above for the
modified gamma function, the adjustable parameters in the dis-

continuous power law (Eq. 4-8) are determined through

r
[ §) m o
f f(r) = cf dr + ¢ r "t f VD g o
0 o ro
L. _*m
é 1/C-r
4
‘ Based on a review of existing experimental data (Rochelle, 1967),
we have chosen r, = 0.03 ym for solid carbon particles and C = 1.
f With these assumptions, then v~0. The size distribution is
! shown in Figure 4-3., It resembles that used by Stull and Plass
]
: (1960) which was based on data by Tesner (1959). 1Included in the
g same figure is also the size distribution based on Equation (4-9).
g RN it tenatiiRat tastsi e T T
‘ ot b ‘ { ' P
,* T
é, BT Ry ¥ Ml k: :
: ot H Py 1 :
7;:77}§ﬁ{f‘LT7; Pl TE;T HTH
3 :;:'1L1M+j ( i i iW fh sAbAnm ST
: (T ETED aiH
SHHIH R UL R s s
el e ! H r {8
o N T
E , f‘;gﬁgi;il‘ﬂ ISR R RERAL ahdddabiads HH
= ! 7’“&4 ) ﬁ”m L Hi0h pedpsssgisiediipgatagel
' T :ﬂ%* l l 18t} g T
’ i :iJ It;[ ,*“Lh~~ ) RE dhnapsfen pundnbpel vy
| magsn s iy HIEHHH
: obert L1 T TR R
. M T T ]
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gy b L T T T T T
i i : ,I“: 5 ER 3 Il;lv[~ v bttt )
y 1 ] ! vl [BS 53 M
E .5 1 1.5 2.0
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Figure 4-3. Size Distribution of Solid Carbon Particles in Rocket
Exhaust, based on the Two Distribution Functions Des-
cribed in the Text. Distribution used by Stull and
Plass (1960) is indicated by (+).
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4.3 Optical Paramciers

A set of representative values of n, and n; were collected
by the Aerospace Corporation for A,0;, C, MgO, and ZrO0,
(Whitson, 1975). Additional data for these particles were pre-
sented by Dowling and Randall (1977) in part based on experiments
conducted during the '"Particle Optical Properties Measurement
(POPM) Program". Our effort was concentrated in comparing these

data and study the influence of higher temperatures.
Carbon

As an example of the wide differences of measured refractive

index n,, and absorption n,, Dowling and Randall have compared

data on polyecrystalline and pyrolytic graphite, pressed carbon soot,

and a microcrystalline polished slab of graphite. The results

for n, are shown in Figure 4-4. We have added the NASA Handbook

2.6
2.4+
2.2+
2.0+
L8 _mmm__“"p'X.x:.glytic graphite
n 1.6 ,’\\ . .
© o NI
.21~ \ i . .
. Y crocrystalline polished
Lok \ - raphite slab
0.8 -
- \' pressed carbon soot
0-6 \ ’-.\ L adde X
3 , . "'—- — .
- T Lo ST o o
0.4 - “.—" NASA handbook
0.2
| | L L J
500 1000 1500 2000

Figure 4-4. The Absorption Index of Carbop Materials iT
the Wavenumber Region 400 cm~t! to 2200 cm-!l.
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data for room temperature. The '"repreasentative' values chosen

by Whitson are thcese for the polycrystalline graphite.

In addition to room temperature data, the NASA Handbook
lists high temperature data for the absorption coefficient of small
carbon particles. These data were based in part on theoretical
work and in part on measurements. We have extrapolated those

data to 3000 K and to X = 25 um, using the relationship

to convert the absorption coefficients kc (ecm?/gm) into absurption
indices, where oy = 2g/cm?® was chosen as a representative

value for the density of carbon. The resultc are plotted in
Figure 4~5. We recommend to use these values for n, until more
experimental data become available. For large particles compared
with A, the computed particle emissivity epproaches the emissivity
of a plane bulk sample. Dowling and Randall have calculsated

€y = 71 for A < 25 um, choosing n, = 3 and n, = 1. Using the
same formula, we have calculated € parametrically for 0 < n ;< 4
and 0.5 < n, < 1.5. The results are shown in Figure 4-6.

Measured spectral emissivities as reported by Whitson range from
.8 to 1.0 for different samples of graphite (except for pyrolivtic,
c-face) in the temperature regime from 1100 to 2800 K, pointing

to a somewhat lower value of n at higher temperatures.
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The orly high temperatura data for n listed by Whitson
are due to N. K. Krascella (1966), and are plotted in Figure 4-7
together with Whitson's 'representative' values at room tempera-

ture and our extrapolation to longer wavelengths.

5.“

5 Tt =T Y T T T r—
‘. -
qa, —
3. -
3. "
2. -4
z
2. -y
g
Z 1.:L/
s
=1.4. -
g
¥ .4
: N

0, d_._FL!__SJ__, ""';rL | L i ] [
0. . . . 10. 12. 10, 1 . B .
WAVEL

ELENGTHC M1 CRONS)

Figure 4-7. n,(Carbon) vs. A for T = 300 and 2250K,
based on the Compilation by Whitson
and our Extrapolation.

A2;0;

Experimental reflectivity measurements in the POPM program
at 300 and 678 K were used to determine n, and n, of AL,0,
(Dowling and Randall, 1977). The results are shown in Figure

4-8 and 4-9 and they indicate that n, and n, are reduced at
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Afi ' Figure 4-8. The Refractive Index (n,) of A2,0, in the

' Region 400 em™ ) to 2200 cm~l as Determined from
a Kramers-Kronig Analysis of Reflectivity Data
taken at T=300 and 678 K (Dowling and Randall, 1977).

ja’
T

z 300 K

.

T
w

7 T 177

: A
i 17¢’—~—’—_77
i 1 ] i L | y and 1 1 " 1 1 ] 1 1 ] 1 ] 1

500 1000 1500 2000
Wavenumber (¢m” l)

Figure 4-9. The Absorption Index (n,) of A2,0, in the
400 em~1 to 2200 em~1 as Determined from a
Kramers-Kronig Analysis of Reflectivity Data
taken at T=300 and 678 K (Dowling and Randall, 1977).
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higher temperatures in the resonance reglon. A comparison with

the ''representative' values by Whitson shows good agreement for the
room temperature data. Also the qualitative behavior at higher
temperatures in the resonance region has been observed by B. Piriou
(1966). The data as presented by Whitson are shown in Figures 4-10
and 4-11.

19.

Figure 4-10. n,(A2,0,) as a Function of A
for Two Temperatures as Pre-
sented by Whitson (1975).
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Figure 4-11. n,(A%,0,) as a Function of A
for Two Temperatures as Pre-
sented by Whitson (1975).

t [,

Mg0

M. E. Whitson (1975) has listed experimental data of
n, and n, taken by several workers. All of these are in general
agreement and the ''representative' values at room temperature

are based on these values. There appears tc be little or no

dependency on temperature, as the data by B. Piriou (1966)
indicate (see Figure 4-12 and 4-13). The experimental study

and'subsequent data analysis using classical dispersion theory

by Dowling and Randall (1977) confirm these data. A comparison

of n; and n; with Whitson's representative room temperature data
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Figure 4-13. n, of Mg0O vs. A for Three Different Temperatures.
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show good agreement (see Figures 4-14 and 4-15). 1In addition,
Dowling and Randall's data at elevated temperature (573 K) show

little or no temperature dependency (see Figures 4-16 and 4-17).

Zr0y

Whitson's report dees not contain any data of n,; and only

i

a limited set of n, at room temperature between 5 and 9 um.

Thus, the data obtained by Dowling and Randall filled an important

% gap. The reflectivity between 400 and 2200 cm” ' was measured

MO OSSN g ke AL i it
“saviy:

at room temperature and 573°K. The spectral structure is similar

to that reported by Whitson, albeit lower by about 20%. The

iir b piiniata)
R

results for n; and n, are shown in Figures 4-18 and 4-19,

respectively.

4.4 Numerical Results for A2,0, and Carbon

The volume extinction, scattering and absorption coefficients

and the scattering phase function have been calculated for A2,0;

and carbon with a code developed by Dave (1972). These two

species are the most important particulate constituents in

geometrical properties. Thus, the results give insight into
the functional dependencies of 8 and M on size distributions,

¢

;

¥

5

?‘ @; present missile exhausts and possess very different optical and
?

f

k

' wavelength and temperature. For A%,0,, the modified gamma

function was used for representing rthe size distribution 2 as

given in Figure 4-1, viz.

-.004r4]

N(r) = Nj.0551 v e
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Figure 4-16. The Index o{ Refraction (n,;) of MgO from 400 cm'l
to 2000 em~l as Derived by Classical Dispersion

Analysis (T = 300°K).
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Figure 4-17. The Absorption Index (n;) of MgO0 from 400 cm'1
to 2000 cm~* as Derived by Classical Dispersion
Analysis (T = 300°K).
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Figure 4-19. The Absorption Index_ (n,) of ZrO2 from
" 400 cm-l to 2000 cm~l as Determined from a
Kramers-Kronig Analycis of the Reflectivity Data.

4-22

R Y S WA T TR




LI
The total number of particles chosen was 10 cm ' which cor-
responds to a mole fraction of about 30% when the mean radius

is 5 ym. The min and max radii chosen were 1 and 9 um,

respectively. The input fer Brin’ @ , N and n, as a function

of A for a temperature of 1773°K are given in Table 4-2.

TABLE 4-2. INPUT PARAMETERS USED FOR A1203

A (pm) 2 nin 2 max B,y nz
1 6.29 56.55 2 1.573
3 2.09 18.85 2 2.0°3
5 1.26 131 2 6.0°3
7 .90 8.08 1.5 1.872
9 .70 6.28 1.2 8.0"2
11 .57 5.14 5 3
13 .48 4.35 3 1.0
15 .62 3.77 3 2.5
17 .37 3.9 5 6.0
19 B 2.98 4.0 6
21 .30 2.69 3.5 8
23 .27 2.46 3.0 6.0
25 .25 2.26 5.0 1.0

The results for the volume extinction, scattering and ab-

sorption coefficients and albedo (w = chalsext) as a function

of X (in steps of 2 um) are listed in Table 4-3 and the angular
scattering functions M(8) as functions of 6 are shown in Figures
4-20 through 4-32. It can be seen that the scattering becomes
more and more isotropic as the wavelength increases. This is also
shown in Figure 4-33, where the ratio of the side to forward

scattering component is plotted vs. X.
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TABLE 4-3. Results for Bext® Pgca’ Babs

and v as a Function of A for
AL,0, Particles in Rocket
Plume Exhaust at 1773K.

AGw) boxt Beca baba ;

1 2.182 1.961 .221 .899 , |
3 2,374 2.237 138 .962 r
5 2.517 2.259 .258 .897 1
7 2.99) 2,550 .433 .855 ii
9 1.641 .893 748 . S44 |
11 1.200 1.164 637 647 :
13 2.083 1.877 .805 . 700 .
1 3.890 3.331 .559 .856 3
17 2.760 2.617 123 .955 ik
19 2.848 1.540 1.307 .541 .
21 2.941 1.489 1,442 .510 ;
23 2.760 2.217 543 803 s
25 2.808 1.584 1.224 564

8 B and M(6) .on the temperature

The dependency of 8

ext’ "sca’ "abs

1s not expected to be strong, since n, and n, do not show large
variations due to the temperature. As will be seen for carbon
particles, relatively large variations in n, due to temperature
produce only moderate variations in the coefficients and negligible

ones in the scattering function. Similar results for the efficiency ;

factors of single aluminum particles were also found by Plass (1965). Q
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Angular Scattering Phase Function M(8)
for A2,0, at A = 1 ym.
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Angular Scattering Phase Function M(8)
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Figure 4-24. Angular Scattering Phase Function M(0)
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Figure 4-26. Angular Scattering Phase Function M(8)
for A%,0, at A = 13um.
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Figure 4-29. Angular Scattering Phase Function M(6)
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Figure 4-30. Angular Scattering Phase Function M(8)
for A%,0, at A =21 um.
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Figure 4-31. Angular Scattering Phase Function M(8)
‘ for AL,0, at A =23 ym.
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For the second particulate species, the volume coefficient
and angular scattering functions have been calculated for carbon.
The discontinuous power law was used to represent the size dis-

tribution as reported in the literature (Rochelle, 1967), viz.,

R AR

] N(r) = N for .0l < r < .03 um

2 N(xr) = N(-‘-g--'?’-)2 for .03 < r < 2 um

'; The total number of particles was arbitrarily chosen to be
10!%cm” ® which corresponds to about 20% mole fraction

(rmean v ,02um). The inputs for 8 in’ & , n1 and n»

are listed in Table 4-4. In order to study the influence

TABLE 4-4. INPUT PARAMETERS FOR CARBON PARTICLES

i; A Qnin 2 pax Ry n, na,
4 (1000K) _ (2500K)
3 1 013 18.8 1.5 .3 .5
L 3 0042 6.25 2.7 .37 1.1
5 0025 377 3.0 4 1.5 \
7 .0018 2.69 3.5 9 1.9
9 0014 209 3.7 4 1.7
E 11 .0011 .71 41 .32 1.3
i 13 .0010 1.45 4.4 .29 1.1
15 .0009 1.26 4.7 .23 9 .
Y .0007 1.11 4.8 .21 .75
19 0006 99 4.8 .18 6
2 0006 90 4.8 13 5
22 0005 82 4.8 13 N .
25 0008 75 4.8 12 3 . .
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of the temperature, n, is given for 1000 and 2500K. The results

ext' Psca’ Pabs and w for 1000 and 2500 K are shown in
Tables 4-5 and 4-6.
factor of about 3 for the higher temperature throughout the wave-

B

of B B

Although the absorption index is higher by a

length region from 1 to 25 um, the parameters 8 8

ext' “sca’ “abs

and w are not greatly affected. The influence on the scattering

phase function is even less, as can be seen in Figures 4-34 through

4-46.

As for A%,0,, we have used the ratio of the phase function
at 90° and 0° to indicate the degree of isotropic scattering of

C(s). The ratio 1s plotted in Figure 4-47 and compared with that

of A%,0,.

and w as a Function of A for
C(s) Particles in Rocket
Plume Exhaust (T = 1000 K,

N = 1013/cm3.




" TABLE 4-6. Renu}_ts for Bext Bgca’ Ba,:,s
and w as a Function of A for

C(s) Particles in Rocket
E Plume Exhaust (T = 2500 K,
]
b N = 1013/em3) .
J
':'.' Aum) 'oxt °lcn .lbl w )
sl 1 1927 936 992 .486
éf’ ’ 2137 1106 1031 .518
! s 2095 1082 1013 524
”;t 7 1977 1044 932 .528
4 9 1844 927 917 .503
; 1n 1698 812 586 478
13 1560 714 846 .458
15 2415 610 805 431
1 17 1283 520 763 .405
o , 19 1198 481 n7 .402
4 21 1090 461 629 423
g 23 913 397 517 435
4 28 m 327 450 421
10°
A=lya 1000K
------- 2500K
102
M(0)
10!
loo e B ey + A J

0° ® 180°

Figure 4-34., Angular Scatterin% Phase Function M(8)
for Carbon Particles at A = 1 um.
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Figure 4-36. Angular Scattering Phase Function M(9)
for Carbon Particles at A =5 yum.
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Figure 4-37. Angular Scattering Phase Function M(0)
for Carbon Particles at A =

Hm,
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Figure 4-40.
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Angular Scatterin% Phage Function M(0)
for Carbon Particle

g at A = 9 um,
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Angular Scattering Phase Function M(p)
for Carbon Particles at A =11 um.
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Angular Scattering Phase Function M(g)
for Carbon Particles at A =13 ym.
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Figure 4-44. Angular Scattering Phase Function M(6)
for Carbon Farticles at x = 21 ym.
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Figure 4-45. Angular Scattering Phase Function M(g)
for Carbon Particles at A =23 ym.
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Figure 4-46. Angular Scattering Phase Function M(p)
for Carbon Particles at X =25 um,
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and C(s) (o ---0).

4.5 Recommended Data File and Update Procedure

Based on the studies of the scatt:ring properties of

particles performed during Subtask JA it is recommended that

SIRRM shall include

(1) a permanent Data File of n (A T) n (A T)
ext(A ™, Bext(A T) and M (A 0, T) for
each species s and for each size distribution
d; (this Data File may be minimized to as few
temperatures and size distributions as indicated

by experience);
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(2) a subroutine that allows the user to update this
Data File or add to it as new optical para-
meters (nl(A,T), nz(A,T) and size distributions)
become available;

(3) a subroutine that compares the size distribution
as calculated by the JANNAF flow field with those
storad in the Data File and that will indicate to

the user whether or not the stored size distribution(s)

is (are) sufficient. We consider also the option

of an automatic updating.

The advantages of the recommended approach are the following:

+ Computer time is minimized by using a stored Data
File;

+ Storage requirements are minimized by using as few
size distributions for each species as possible;

- Flexibility is maintained by allowing the user to up-
date the Data File at his discretion;

+ Indication is given to the user before execution whether

an update of the Data File in terms of new and/or
additional size distributions is necessary.

A tentative logic flow diagram of the recommended approach is
shown in Figure 4-48. After the JANNAF flow field is read in and
the relevant flow field positions for the line-of-sight cal-
culations are determined, a subroutine calculates the analytical
expression for the size distributions for each position. This

is necessary since the JANNAF flow field does not give the
analytical expression but does provide the number density for
several specific particle sizes (private communications, S. Dash,

May 1979). Different analytical expressions will be uscd,

e .. e 1 St e
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such as the discontinuous power law for particles with very
small radii (carbon) and modified gamma function for particles

whth targer radil (Av O | cle)
v L)

The computed size distributions will be compared with
those already stored in the Data File. If the differences
are minor (criteria must yet be established) no undate is

required. If the differences arc¢ major, B Bsca and M(0)

ext’
may have to be calculated and stored in the Data File. If the

decision for an update is desired to be automatic (probably a
default input), SIRRM will read the appropriate n and n and

will calculate B R a and M(0). If the decision is not to

ext’' "sc
be automatic, the user has the option whether or not new values

of Bext' sca

is gained about the influence of different size distributions

pme x e e W

8 and M(0) should be calculated. As more experience

on the radiation field using the six-flux and N-flux models, the

decision about updating the Data File may become straightforward.
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