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2,4UIY CLASII•CATION OF THNS PAOE(Ws.eM 0 noe~r•d)

e Three-dimensional, non-uniforn, axisymmetric medium
* Arbitrary particle mixtures and size distribution
* Line-by-line and band-model treatments
* Alternate levels of engineering approximation

These requirements are met by developing two basic approaches, a 6-flux
and a N-flux approach. This distinction refers to the associated sub--
division in angular space, six-orthogonal coordinates versus N non-
orthogonal coordinates in azimuth and elevation, thus providing the alter-
natives of computational simplicity of the G-flux model with generality of
the N-flux model. Numerous parametric calculations were performed to study
the effect of optical depth, scattering albedo, phase function ahd mediim
geometry on the target signature and computational requirements._ Comparisons
with independent calculations such as the two-dimensional Monte C rlo
method were made. The results show the different degrees of accuracy
achievable with the various models as functions of the radiation field
parameters. To the authors' knowledge, the N-flux model represents the
first application of general finite-element techniques to emitting cylin-
drical media. It provides a powerful tool for the analysis of plume
scattering problems of arbitrary complexity. The accuracy of the prediction
is limited only by the computational resources of the user.

The solution of the equation of radiative transfer is derived on a mono-
chromatic basis. For the application to the finite spectral intervals
associated with the use of instruments with finite resolution, spectral

averaging procedures are required. Thus,an extension of earlier band model
formalisms for regular and random arrays of spectral lines was developed
to include scattering as well as absorption in a medium in which radiative
transfer is described by the two-flux method. Representations of the

averaged transmissivity for the Elsasser model and the random model with
exponential-tailed S-I line intensity distribution were derived and
numerical results were obtained for large ranges of optical depths of
absorbing and scattering media. The effects of inhomogeneities away from
the line-of-sight are accounted for by a contribution to the source
function which is calculated by a simplified six-flux technique.

A survey of available optical parameters (complex index of refraction as
a function of wavelength and temperature) was made for particles of interest.
The compilation by Aerospace was found useful as a starting base for a
number of relevant species, namely carbon, aluminum oxide, magnesium oxide
and zirconium oxide. Data for other species must yet be obtained. The
complex indices of refraction for carbon and aluminum oxide were used,
together with postulated size distributions, to calculate the volume ex-
tinction, scattering and absorption coefficients and the angular scattering
phase function by the Mie Theory for homogeneous, spherical particles in
the 1-25pm wavelength region. Based on these results, a tentative plan
was developed for the organization of the Data File and its integration into
the overall code architecture.

SECURITY CLASSIFICATION OF THIS PAGE(Whon Datr Entered)
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INTRODUCTION

Validated models to predict rocket plume IR signatures must

be capable of treating a wide range of propulsion and trajectory

parameters as well as handling a number of sensor-related vari-

ables. While significant advances have beet, made in the state-

of-knowledge of plume-related radiative trarnsport phenomenologies

during the last tan years, particularly in regard to advanced

liquid propellants, prediction methods have not been developed to

adequately treat the coupling of gas and particle radiative

transfer in the plumes of solid propellant missiles. Ir is

particularly important that models be developed to accurately

treat plumes containing scattering particles while at the same

time also yielding accurate results for conventional liquid pro-

pellant plumes.

The primary goals of the SIRRN program are (i) to develop

an analytical methodology to treat coupled gas/particle radiative

trmnsport effects and (ii) to integrate this analytical capability

together with the state-of-the-art treatments in hot gas/

atmospheric radiative transport (i.e., band model methodologies,

band model parameters, line..by-line methodologies, spectral line

parameters) into a comprehensive, useýr-oriented plume radiation

model.
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State-of-the-art plume signature predictions require four

basic steps. First, thu species concentrations and temperature

in the exit plane are calculated through a combustion/nozzle

code. Second, these exit plane parameters are input to a gas-

dynamic code which calculates the exhaust plume flow field.

Third, the flow field serves as input to a radiation code that

calculates the intiinsic plume signature. Finally, the apparent

plume signature viewed by a remote observer sensor is obtained

through attenuating the source intensity by the atmospheric

absorption. When the source radiation is correlated with the

atmospheric attenuation (radiating plume species are also present

in the atmosphere as absorbers), the last two steps are combined

into a single calculation.

The present study focuses on the third and fourth component,

i.e., the calculation of the intrinsic and apparent plume signatures.

The program is divided into four major tasks. Task I calls for

the formulation of the SIRRM code methodology. In Task II, the

code is to be developed and its capabilities demonstrated. The

validation and application of SIRRM takes place in Task III. The

documentation and code acceptance is done in Task IV.

Task I is concerned with the development of an integrated

physical model which accounts for the essential spectroscopic

and geometric effects governing single and multiple photon

1-2



interactions in a two-phase gas-particle mixture. A key

element in this task is the theoretical description of coupling

phenomena associated with the spectral and spatial redistribution

of radiation by scattering. In order to provide a correct

description, the model must account for the interaction of

emitted, absorbed, and scattered radiation from line and continuum

sources along multiple, intersecting paths, The task is divided

into two subtasks. Subtask IA deals with the development of

the coupled, multi-scattering model, while Subtask IB calls for

the formulation of the overall methodology, i.e., the integration

of the scattering model with the other parts of the code. This

document is an interim technical report describing the development

of the coupled multi-scatter~ing model performed under Subtask IA.

Section 2 contains the description of our efforts in deve-

loping the multi-scattering model with cylindrical geometry,

using both engineering approximations (six-flux) and exact

solutions (N-flux). Diagnostic calculations with these models

and comparisons of the results with those obtained by independent

codes indicate that the required objectives have been met.

Since the present scattering model is developed for the

monochromatic case, a parallel study was begun to treat the

spectral averaging. The step forward to a band-model formulation

coupling particle scattering with spectral line absorption is

taken in Section 3, where the Elsasser and random model formulations

1-3



are developed for a two-flux scattering model and conceptual

approaches for the six-flux and N-flux models are outlined.

The fundamental inputs into any scattering models are

the optical parameters of the particles. These are discussed

in Section 4, including the Mie theory, the indiceq of refraction

and absorption, the scattering due to single particles and

particle size distributions, and the handling of the Data File

as it would be integrated into the overall code architecture.

1-4



2

SCATTERING MODEL

2.1 Introduction

The objective of Task IA is to formulate a scattering model

that incorporates the following capabilities:

* Coupled emission, absorption and scattering treatment

Multiple scattering with cylindrical geometry

0 Three-dimensional, non-uniform, axisymmetric medium

• Arbitrary particle mixtures and size distributions

* Arbitrary angular scattering phase function

• Line-by-line and band-model treatments

0 Alternate levels of engineering approximation

The approach to meet these objectives is described in this section.

Our efforts included (i) the selection of physical models and

solution methods for the gas/particle radiation transfer problems,

(ii) the justification of sclected models and methods by means of

diagnostic calculations, and (iii) the final development of the

selected models and methods for integration into SIRRM.

In Section 2.2, we provide the requisite technical back-

ground, beginning with the equation of radiative transfer and its

implicit and explicit solution schemes.

2-i



In Section 2.3, we review and assess the combined inter-

disciplinary experience of contributors in several fields (e.g.,

planetary and stellar atmospheric physics, radiant heat transfer,

plume physics) where multiple scattering techniques have reached

an advanced stage of development. Based on this assessment we

select the most appropriate approach to the plume problem, and

justify this selection on the basis of key physical requirements

and model capabilities. The discussion presented in this section

formed one of the essential elements of the Program Plan (Data

Item I).

The other essential element of the Program Plan was a set

of recommendations for the final development of the scattering

model to be Incorporated into SIRRM. Since January 25, 1979, the

recommendations were followed and the results of developing en-

gineering approximations and the N-flux model are reported in

Sections 2.4 and 2.5, respectively, together with numerical results

of diagnostic and parametric calculations.

The comparisons of the computational results between the

different models developed in the present program and with in-

dependent model calculations are made in Section 2.6. Conclusions

about the models and the results are summarized in Section 2.7.

2.2 ScatterLng Theory

The transfer of radiant energy through matter that emits,

absorbs, and scatters radiation was first described by astro-

physicists at the beginninf, of this century. The governing
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equation was derived by specializing the Boltzmann equation of

kinetic theory to the case of photons. To this day, the original

formulation remains essentially unchanged. However, the range

-~of problems amenable to exact solution is quite small, and for

most cases of interest an approximate treatment is required.

The formal solution to the equation of transfer provides the

essential framework for development of a coupled gas/particle

radiation model. The task is to obtain a practical mathematical

solution based upon reasonable physical approximations to the

spectral and spatial characteristics of the medium. In this

section we review the available computational methods in order

to identify promising approaches for the problem at hand.

A comprehensive discussion arid development of the radiant

transfer equation was given by Viskanta (1964). This equation

may be written in the integro-differential form

dNx (s)
xn0(a)+G(S) N (S)+nu (a) °
( sX) X (2-))

+ -h--4--- J (s' ,S)WN (')d- (s')

where

NX(s) - spectral radiance at point s in direction s

P (s') - phase function for scattering from s to s

AN•°(s) - blackbody spectral radiance at point s

(a) X cross sections for absorption and scattering

n number density

2-3



The terms on the right-hand side represent, respectively, the

extinction (absorption plus scattering-out) and production (emission

plus scattering-in) of radiation in the direction s. The phase

function is normalized such that

47- s4d(S' 1 (2-2)

S(a) n (S))
The absorption and scattering probabilities (na and n(

and the volumetric emission (no(a) N) are defined to include

implicitly the effect of multiple gas and particle species (i)

and temperatures (Ti) through the relations

(a) - (a)

na = n C)

X~ ii

no(a)N0 - vni(a)N0

(Sa p N E ni as)
Xo X XiPi

n(S) -~ (S)pA AX niXi PAi

The effect of different particle sizes is also implicitly included.

The formal solution to the equation of transfer between points

so and s may be written in the form

NG +N T~'+fS(~~Ts

S
0

N!) 2-4



where the source function (S at point s' in the direction s

and the transmittrance (TA) frorm s' to s are given by

S(') f (I_)N+ e " N 8 a (2-4)

T (s,1 s) epT(',uS)(2-5)

and where the optical depth for extinction and the albedo for

single scattering are defined as

TAX(S) n(cx a)x+X + S))ds'
0

(2-6)(s)

X +X

This formal solution is not explicit in that the local radiance

is seen to depend on the radiance distribution throughout the

medium which is not known at the outset. Explicit solutions

can be obtained only for special cases as noted below.

In the absence of scattering (aos) = 0), the formal

solution to the equation of transfer assumes the explicit form

N OPs dTA (s's)
NA(S) - N (So)T(s, +f NX(s) d ds'

-ds'
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10here the transmittance between points a' and a is given by

T (',s) - exp no(a) ds"

The evaluation of this equation on a monochromatic or spectrally-

averaged basis is the end object of numerous existing line-by-

line or band model radiation codes.

The finite difference form of the formal solution to the

equation of transfer may be written directly from the preceding

integral equations. Thus, the radiance at position k in

direction i is given by

Nik Ni,kTkl,k + ½(Sik + Si,k_) (l-Tk.l.k)
(2-7)

where the source function is given by

I
Sik (l'-k)Nk + Wk k PjiNjk

j~l i~l,2 .... lk-l,,..K)

and where the transmittance and phase integral are given by

T [, [CF(a) + (S)n (a)s+ (((a) s))n
-klk ex k k_1 +k-ik-i -(N k k skj

= ' f P(ss )dQ(s
4r- 6Q si
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In these equations, the subscripts i,j,k denote the direction

,s,V and position s, respectively, and the subscript X has
'q

been deleted for clarity. With appropriate boundary conditions

on the radiance Nik(k-0,K;i-l,2...,I), which include the effects

of any external sources, these equations constitute a closed

set.

Solution techniques may be grouped into two fundamental

classes: implicit or explicit. The implicit methods solve the

coupled equations for Nik and Sik in an iterative manner

starting from an assumed initial condition. A convenient proce-

dure is to define an initial source function equal to the

known thermal emission component N and corrected source
ik

function Sk2) directly. This procedure is then repeated to•ik"

convergence according to the iteration formulae

(n) (n) (n) (n)
N -N T + k + -Nik - i,kI Tk-l,k + (ik + ik_)( -Tl,k)

i-fl,2,. ...

k-l,2,... ,K (2-8)
(n+l) (n) (n)

Sik Sik + wkE PjiNjk
j.1

where the superscript (n) denotes the number of iterations or,

equivalently, the order of scattering.

i

2-7
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The explicit methods solve a single matrix equation

for Nik obtained by direct substitution of the equation for

SSik . After rearrangement of terms , the equation may be written

in the form

E Njk(26jiT- Ikl,k- WkPji) - Nj,kl ( 2 6 ji + wk-lPji)

o- N + (lNk

( k)Nk (-wkl)Nk- (2-9)

where J is the Kronecker delta.

Implicit and explicit methods offer different relative

advantages depending upon tie optical and geometric properties

of the medium. These properties control the number of

iteration steps (implicit methods) or the size of the inversion

matrix (explicit methods) required to obtain a given level of

accuracy.

2.3 Review, Assessment and Selection of Multiple
Scattering Formulat ion

2.3.1 Review and assessment. In the presence of

scattering, explicit solutions can be obtained only for

suitable approximations to the radiation flux or to the

2-8



phase function.- Approximations to the radiation flux in-

clude the optically thin limit (in which the medium is not

dense enough to absorb or scatter radiant energy from other

elements in the volume) and the optically thick limit (in which

the medium is so dense that radiant energy from other elements

does not penetrate). These limits are of interest only as test

cases for a more general model of arbitrary optical opacity.

App'roximations to the phase function include the discrete-

ordinate method, the moment method, and the method of expansion

in orthogonal functions (Krook, 1955) from which the well-known

two-stream approximations of Schuster-Schwarzschild and Milne-

Eddington (Viskanta, 1964) may be derived as special cases.

In addition to these explicit methods, various implicit solution

techniques have been developed. These techniques typically

construct a convergent solution by incremental steps in space or

time.

A summary of available multiple scattering solution techniques

is given in Table 2-1. These methods can be roughly grouped

into four general classes: superposition, transformation,

convergence, and matrix. Each of these is discussed and developed

in detail in the survey papers by Hansen and Travis (1974) and

Irvine (1975). The identifications are necessarily somewhat

arbitrary in that some interrelated techniques are included

and some distinguishable subsets are excluded. Tables 2-2 and

2-3 list selected key investigations according to solution

technique and chronology, respectively. The former was compiled

2-9



TABLE 2-1. METHODS OF SOLUTION FOR MULTIPLE SCATTERING

I. Superposition MPtho~a

Lae uperposition Of vice application Xeo4\-ftdttiriq
addition layers of known for planetary uWdittm plans-

tranam-iasion and atmospherem parallel slab

re flection

Invariant SuperpOaition of Uor.-homoqensoos Xong co1putationa
L.WAWd&in opticall.y thn atmoimpheres

layers

Synthisias Superposition of Generality Inafficignt tor
volume elexinta Symtric wedia

2. TransforwAtion Method*

X and Y Mathematicav1 Stngle angle Rayleigh
functions transformation dapendene. scattering

of variant

imibedding

Spherical Phase intu•pa] General Laý-gm matrix
harmonkca replaced hy oUz Opplicability

of sphurical

harmonics

Ziganfunction Phase integral Mathematically Numerico1I.,

replaced by rigoro'a prohibitive

sum of orthyonal

elgenf unctins

3. Convergence method,

Iteration Succee-ive dow- Simple curcept Low opacity

ward and upward

integrtticane t~o
convergence

Successive SupernosAtior. of Simple concept Lo oWacity;

orders soolutions for nal-oittiny
different orders "'ii up
of scattering

Monte Carlo individual photon Simple concept; Long computations
historima traced genaral

and superposed Applicabi]ity

4. Matrix Methods

DAiarete Phase integral Gsoeral Large matrix
ordinate replaced by applicability

finite our

Finlte Operateas an omm "ticfal large matrix
difference diftferntial 6a riance unleas sysitric

equation

rinite Operates on Mduces to Large matrix

laent integral equation two-2t-1 m '461t onAos vymaetric
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TABLE 2-.,2. REFERENCES FOR MULTIPLE SCATTERING METHODS

METIOD REFERENCES

Layer Addition van de Hulst, et al. (1963, 1968), 'womey,
et al. (1966), Haisen (1969, 1971), Hovenier
(1971)k Lacis amd Hansen (1974), Grant and Hunt•'-'•, ,,(1969, -2971), Plcms, et a]l. ý1973),

Preisandorfer (1965).

Successive Orders van de Hulst and Irvine (1962), Irvine (1964,
1965), Oesugi and Irvine (1970), Pooh and Ueno
(1974), Dave (l64), Hovenrer (1971), Chou
(1978).

Tn'%ariant Imbedding Uesugi and Irvine (1910), Bellh-un, et al. (1960,
1963, 1967, 1969), Wing (1962).

Iteration Herman, et al. (1963, 1965, 1970), Dave, et al.
(1970), Crcsbie and Linsenbardt (1975).

X and Y Functions van de Hulst (1970), Sobolev (1972, 1974),
Carlstedt and Mullikin (1966), Pahor and Kuscer
(1966), Busbridge (1960, 1967).

Discrete Ordinate Chandrasekhar (1950), Jefferies (1955), Chu and
Churchill (1955), Lenoble (1956), Chin and
Churchill (1965), Samuelson (1969), Liou (0973,
1974), Weinman and Guetter (1972), Whitney (1972.
1974), Kofink (1967), Love and Gxosh (1965).

Spherical Harmonics Canosa and Penafiel (1973), Davison (1958), Case
and Zweifel (1967), Deuze, et al. (1973), Dave,
et al. (1974).

Eigenfunctions Case and Zweifel (1967), Kuscer and McCormick
(1973, 1974), Kaper, et al. (1970), Mika (19G1).

Monte Carlo Plass and Kattawar (196e, 1971), Lanielson,
et al (1968, 1969), Sanford and Paula (1973),
Collins, et al. (1965, 1972), Van Blerkom, et al.
(1971, 1974), McKee and Cox (1974), Kattawar,
et al. (1971, 1973), Marchutk and Mikhailov (1967).

Diffusion Heasley (1977), Barkstrom and Arduini (1978),
Laung (1975, 1976)

Finite Difference Barkstrom (1976).
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TABLE 2-3. CHRONOLOGY OF MULTIPLE SCATTERING METHODS

YIAR PEP•ZPECE PHITSCAL SZTUATION FrflHOD OF AN:ALYSIS

)955 Jererga ?Point and inFinite line sources Diffusion approximation
In a sent-infinIte nediun

I9M j.rrerls A strip of collirated radiation Discrete ordinates afid
aicident on a semi-inrinite Fourier transform
medLum

1955 Chu Iand Poit source outside an aniso- Six-flux approximation
Church11 troclcally kactterlnr finite

layer

1956 ~0ovanelli An infinite line source on the Approach of Jerferiea
surface or within a eiml-inrin-
I ts medium and a thick finite
layer

:258 Chandraseihar An Infil;tely narrow collimated Invarlanit principlas
41beam Incident on a sael-IrfInite

l-i3 Usllmann, alabe, An irrinntely narrow collimited Invariant irbeddlng

depth

1963 ftaIran, Kalaba, Coilliratat raditt' l~r incdent Invariant Imbedding
on an lnhvffor-raous Ani-rtrrl-

and Ueno cally scattmrlrr ftntt-

1961 Smith A uniferm atrip of cullimated Assured cosine-varying In-
radiation Incident an a semi- cIdent radiation to reduce
infinite medium the two-dlmensional In-

taegal equation for the
source function to a one-
dlrnslonsl form

19SA l4alkevich, 0onin, Collimated radtatton Incident on Horizontal variation of
a finite layer with nonuniform dnwnard radiationand Pozenhrg reflection from lowe'r aurface nerlected

1965 Cl-in and An arbitrary, cylindrical source Six-flux approximation
Churchill in an an~sotropically scattering

flnite slab

1966 Doln Narrow collimated basm Incident Smala angle transport equa-
on a asmi-Infinite enlotropl- tion used for unscattcred
cally scetterinr medium radiation, diffusion equa-

tion used for scattered
radiation

1967 Vitnman and CollimateA radiation Incident 01ovanwll's approximation
Swarztrauber on a nonabaor~lng finite used to solve transport

layer with horizontally non- eqnatlon
unirorm ecatterlnr coefficient

196? Smith end Punt A uniform atria of collimatcd Same aa Smith 1966
radiation Incidert on a aemi-
finite layer

1967 Hunt Collimated radiation Incident Expresason of scattering
normally on an anlsotropicaly function as aeries of
scatterine finite radium Lerendre polynomials

1967? babe* An Isothermal aaml-.nFinite slab oifruilon equation
solved by Iterative
technique

196? Drobyshevieh Collimated raulition Incident on Por!rontal variation or
an a"siotropically sactterlne dornvarl radiation
finite layer with nounifoorm neglected
reflection from lower surface

1968 Pomannva An Infinitely narrow rollirated -hree-dlmensaonal Poments
beae normallY incident on a used to solve the trans-
semi-infinite an!sotranlcally voet equation For larre
scatterlng red~um depths

1968 Foamnova An irrin'telv rarroe' collImated rpall aeplo anproximatmon
hear norm•lly inc~dent on an an- to the trfmnanort equation
iaotronlcaliy scatterlng fninte solved usinr spatial
las,'er rorents
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TABLE 2-3. (CONTINUED)

TUIN pgru[ix.i flTUICAL SITUATION I'mI.IOD N0 rWALT$1S

S193 Penk Collimated eoint source e 1rrally P1onte Carlo teefniiqme
Incident on an netepia"
oatterine finite layer

A 1S runt Collimated Peoss] function Interra) eouation for the
wvryInr radiation incident source function fortulated
on a finite layer using Creen's function

?1tE oce" and An Isntheoral !nlte t'll•rtrlcel "ointe Carlo teehn!sue
mediun. toth Isotroric ard ani-

SLov� sotrnpic zcAtterirr

.159 Punt Collirated rad•ltion norr-alv Intevrsl equation for
incident On e finite layer source function trans-

forred Into a•rvular
equation for the re-
solvent P-rnel usinr
rrotlerties or a Green's
tunttton

1969 Urovo-PivotoyvkIy. Nkrrow collieat-d bear norrally Uses solution to transport

Dolln, Luchinin, incident on a se'n-infin!te an- e•uation found In Dolln 196

and !ovvelyev Isotropicallt rcatterinr relur

f6; r-olubltaly and Pin inrtnitelf' nirmo collratedi Yorte Carlo technique
'neam at the center of on mn!so-

Tntoi�e••t ro•icAlly !catter-nr zrhe1,!csl

medIum

1970 Love end Turner on isothrmal seri-inftIrte slab yonte Carlo technique

1170 icorield and A strip of dsiius" radiation in- !onte Carlo technioue

Love eident on on -ittn, xe'-iin
finite med•ur, both isotrovis
and aniketropic scatterln,

1971 Pyblcki An infinittly narrow colllmated *ojrier transform and in-
Leam Incidert on a finite layer variance technioues
anid seri-,lninite m-dlum

1971 Portrova An infinitely narrow coljijrtep ?rae-dinensional Invariance
bean norMally incident on a non- princirlem used to obtain
*baorInr finite la'er equations for spatial eo-

ment, of irteneity

!971 Portnova" in Infinizely narrow collitated !oatlal roeents used to
bear nrormally inclient r'n an an- asolv s•nll arinle aporoxi-
!wotroptcallv Pcntt-r-nr ririte motion to the transport
layer eouation

:971 Kochetkov An infinitely narrow collimated Method of spherical harmonics
t'o-" normally incident on an an-
isotropically scatterrine ftnIte
layer

197? Mushmakova. ZLge. Diffuse und unidirectional Pankel transformation used
sources inside an anisotroplcal- to solve dirfusion equation

tnd R•taey ly scatterlnr rinite la:yer and

semI-infln~te medium

1973 "ofinovs An infinitely narrow collirated Intensity represented by trans-
beam normally Innident on a fi- verse moments and invariance
nite layer with weak absorption principles used

1973 Funk A narrow collimated boao and Monte Carlo technique
noncollitated source in an In-
finite anisotroplcally scatter-
int r dlun

1973 Cordon and An infinitelv narrow colllmstad Iterative ray trecinf. no re-
bear nornally Incident on an an- turn rbackecatterinE and small

Pnittel lsotroolcally 1catterinp finite Fnnle aTprosiwationa used
layer

1970 Crsbile and A step and rinitt strip or col- Assumption of cosine vary-
limated ind diffuse radiatiOn Inf incident radiatlon re-

Roewing incidInt on a finite layer duces proble, to ona-di-
manslonal problem;
Amhsrr,iissnan method

l974 Seekett. Poster, A collimated cylirdrical be&. Hunt's intetral eoustlors

utgon and Moss orrally incident on a finite solved by Iteration
o layer
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from previous review papers together with our own review;

the latter was taken directly from Crosbie and Linsenbardt

(1976). Neither list is comprehensive, but both serve to

illustrate the depth and scope of previous work. Most of

these studies applied to non-emitting plane-paralelel atmospheres.

Only a limited number of the studies included the effects of

thermal emission, inhomogeneous media, non-isotropic scattering,

and non-planar geometry which are important in the present

application. None of the studies treated all these effects

simultaneously. Despite these deficiencies, this previous work

provides a firm base for the selection and development of a

multiple scattering model for two-phase plumes.

Existing rocket plume radiation codes which treat particle

radiation were also reviewed and are presented in Table 2.4,

The early codes of Fontenot (1965), Gulrajani (1964), Hunt (1966)

and the Aeronutronic group (Carson, 1965) were all developed to

predict base heating. The more recent plume codes of Wilson

(1973), Rieger (1974), Vanderbilt and Slack (1976), and the ARAP

group (Fishburne, 1977) were developed to predict plume IR signatures.

These codes approximate particle radiation effects by either of

two methods: Pseudo-gas or one-dimensional beam. The pseudo-gas

approximation includes particle emission/absorption effects but neglects
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TABLE 2-4. EXISTING ROCKET PLUME RADIATION

CODES INCLUDING PARTICLES

PLUME CODES METHOD COMMENTS

Fontenot Inverse wavelength Simplistic approach; single particle
(1965) method size neglects scattering. Estimates

base-heating for constant radial
properties.

Gulrajani (1964) Neutron-scattering Based on Morizumi and Carpenters
Hunt (1966) analogy method (64) analysis. Five particle sizes.

Includes 1-D multiple scattering.
Neglects anisotropic scattering
effects. Assumes Qt - 2. Base-heating
estimates.

Aeronutronic One-dimensional beam Plume codes to analyze Saturn ullage
(Carlson, 1965) approximation retro and strap-on exhaust plumes.

1-D anisotropic scattering approxi-
mation.

Wilson and Hahn One-dimensional beam Unecupled gas and particles. Adds
(1973) approximation separately computed particle radia-

tion and gas radiation. Narrow
inband resolution. Treats 5 particle
sizes.

Rieger (1974) Pseudo-gas approxi- Computes coupled particle and gas
mation emission arid absorption.

Vanderbilt & One-dimensional beam Couples multiple scattering and
3.T]ck (1976) approximation gaseous emissiori/absorption along

beams. Spectral resolution 5 cm- 1 .
Treats 5 particle sizes. Treats
gases as non-scattering particles
yet retains correct solution of
radiative transfer equation for gases
alone and particles alone. Spectral
and inband output coupled to LOWTRAN
codes. Dave code for Qs' Qa

ROCRD Code Pseudo -gas Includes particle emission, but- neg-
(ARAP) approximati( n lects scattering. Assumes Beer's

law.
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scattering. The one-dimensional-beam approximation includes

particle scattering effects along the beam but neglects scattering

into the beam from other directions. Of the two methods,

the one-dimensional beam provides a better physical description

of particle radiation effects with no appreciable penalty in

computational complexity. Wilson used the one-dimensional beam

approximation to compute the particulate radiation field in an

uncoupled manner for subsequent addition to the gaseous radiation

field; the validity of this procedure is restricted to low

optical depLhs. Vanderbilt and Slack used the one-dimensional

beam approximation to compute the coupled particulate and gaseous

radiation fields, thereby allowing the gas to absorb the

particulate continuum and the particles to scatter and absorb

the gaseous radiation. The code developed by Vanderbilt and

Slack is the best of the existing codes for predicting spectral

IR signatures from missile plumes. However, the lack of coupling

between adjacent 1-D beams means that it does not meet the SIRRM

code requirements, in general.

One dimensional beam methods have received extensive

application and limited verification in the area of radiative

heat transfer but only limited application and no verification

in the area of radiative signatures. This distinction is

important because of a fundamental difference between the two

phenomena. On the one hand, the radiative heat transfer to

an adjacent point is the sum of contributions from non-parallel

beams. On the other hand, the radiative signature to a remote

point Is the sum of contributions from parallel beams. The

2-16
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latter effect is much more sensitive to errors in the directional

properties of the radiation field. Thus, the SIRRM code must

include a three-dimensional scattering model in order to achieve

the required directional accuracies.

2.3.2 Selection and justification. As noted previously,

the SIRRM scattering model for two-phase plumes must include the

following key physical effects: thermal emission, inhomogeneous

media, non-isotropic scattering, and non-planar geometry. In

addition, the SIRRM scattering model must possess the following

computational attributes: accuracy, efficiency, and generality.

These general attributes have rather specific meanings for the

present application as noted below:

Accuracy The chosen technique should incorporate sufficient

spatial resolution to yield an accurate mathematical solution.

The technique should demonstrate adequate agreement with

the predictions of alternative methods for suiitable test

cases.

Generality The chosen technique should incorporate suf-

ficient spatial dimensions to represent the real physical

problem. The technique should treat all ranges and varia-

tions of optical depth, scattering albedo, and phase func-

tion such that no limit is imposed on the nature of gas

or particle properties, plume properties, or observation

geometry.
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Efficiency The chosen technique should yield computed

results in machine times which are comparable to current

gaseous emission codes for an equivalent number of aspect

angles. Approximate techniques which incorporate physically

acceptable assumptions should be evaluated in order to

determine the most efficient technique for different classes

of problemE.

The available methods were screened according to these criteria.

The dual requirement for engineering efficiency and scien-

tific accuracy, together with the need for computational gen-

erality, and flexibiltiy, led to the selection of straight-

forward, finite difference procedures of variable spatial and

angular resolution applied to locally cylindrical plume geometries.

Two basic approaches (herein identified as "6-flux" and "N-flux")

were distinguished and various alternatives were developed within

each classification. The semantic distinction refers to the

associated subdivision of angular space (6 orthogonal coordinates

versus N non-orthogonal coordinates in azimuth and elevation).

However, the fundamental distinction lies with the generality

of the N-flux model versus the computational simplicity of the

6-flux model.

Within the 6. flux model class, two independent sub-class

models were developed. The first model employs suitable approxi-

mations for the axial and tangential radiances in order to
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reduce the solution to a one-dimensional radial integration

similar to existing two-stream models (Vanderbilt-Slack, 1976).

The second model employs a transformation of the multiple-

scattering source function in order to reduce the solution to

a coupled set of radial, tangential, and axial. integrations, each

of which is functionally similar to existing two-stream models.

The two six-flux models are described and compared ½n Section

2.4.

The N-flux model class includes a generalized set of

optional finite-element grid geometries including independent

specification of the angular resolution in the azimuth and

elevation planes. The model solves the coupled three-dimensional

equations of' transport using a generalized matrix network

to describe the radiance distribution and source function at each

grid point. The model can be exercised as either an engineering

or scientific tool by simple variations in the spatial and angular

grid network to achieve low or high resolution, Analytical

details are presented in Section 2.5.

Each of the models was exercised parametrically over the

full physical range to illustrate the effect of optical depth,

scattezing albedo, and phase function on the local and integrated

target signature characteristics. These calculations provided

independent tests of the physical credibility and computational

efficiency of the separate models as well as comparative tests

of the accuracy and seLf-consistency of the composite model set.
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Additional verification was accomplished by performing inde-

pendent calculations with the NASA plane-parallel slab code

(Barkstrom, 1976) modified to include self-emission &nd with

the Gruman Monte Carlo code. Results of these calculations

are suin rized in Section 2.6.

2.4 Six-Flux Engineering Approaches

The basis for the engineering approaches developed under

Task IA is the approximation of the multiple-scattering source

function by a six-element orthogonal angular quadrature. In

this approximation, the general differential equation of transport

dN.•_ji =_N(r .•)+_I-w(r)jNO(,)+ N Ifp(r ')N(r Q2')d&' (2-10)

4w

is written for each orthogonal direction (i = 1,2,3) in the specific

form

+I

LNi+ (1o4N' + w fN 1 + DNT+ S (N N4N (211)
dTi -Ni

I.where the ternms on the right-hand side represent the respective

contributions of extinction, emission, and multiple scattering

to the radiance gradient and where the terms f,b,s represent

Lhe forward, backward, and sideward components of the phase func-

tion (f+b+4s-1), This quadrature provides the minimum angular

22
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I
resolution necessary to account for three-dimensional multiple-

scattering effects. For comparison to previous approaches, the

standard two-element, one-dimensional approximation is obtained

as a special case (s=O).

The orthogonal coordinates are chosen to coincide with the

natural cylindrical coordinates (r,e,z) of the axisymmetric

plume. Figure 2-1 illustrates the grid network formed by the

intersections of these coordinates with the boundaries of the

finite elements (radial and axial). The six-flux equations are

solved as a coupled set along these mutually-perpendicular

integration paths. Radiances for oblique lines-of-sight are

computed in a subsequent step based upon the known six-flux

solution.

Within the six-flux model class, two different levels of

engineering approximation were employed. The first method

yields an approximate explicit solution based upon elimination

of the tangential (e) equations of transport in favor of simple

closure relations. The second method yields an exact implicit

solution based upon iteration or inversion of the fully-coupled

multi-dimensional equation set. Both methods were originally

developed for infinite cylindrical geometries (negligible axial

gradients), The second method was subsequently extended to

finite cylindrical geometries in order to assess the influence

of plume axial gradients on the radiance at side aspect. The

following paragraphs provide analytical details.
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2.4.1 Method I. This method is based upon a transformation

of the three-dimensional equations of radiative transport to equ!-

valent one-dimensional form for infinite planar or cylindrical media.

The resulting equation is integrated along a piecewise-uniform

path perpendicular to the surface to yield an explicit solution

for the normal and tangential radiances throughout the medium.

Radiances at intermediate angles are determined by analytical

interpolation. No restriction is placed upon the range of

physical properties considered (e.g. optical depth, scattering

albedo, phase function) or upon the variation of those properties

within the medium.

The ability to treat planar and cylindrical geometries in a

self-consistent manner provides an important connection between

the available literature (mostly planar) and the plume problem

(nearly cylindrical). As a result of this connection, the utility

of existing plane parallel codes (e.g., Barkstrom, 1976) for

defining baseline parametric trends is greatly enhanced. In

addition, solutions for planar media which are infinite in one

or two directions (i.e., ribbon or slab, respectively) provide

convenient bounds on the emitted radiation from equivalent

cylindrical media.

In the rectangular rez coordinate system of Figure 2-1, the

equation of transfer reduces to the six simultaneous equations
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dN . -N+ -w)N fN +bN r + s(N + ++N - N +NA

r = Nr r~N b r( 0 N N

ST- - -N (l--) + w + s(Ný +Nr++ N ++Nz)j (2-12)dN+.+ + ,ate, Wj, N±(I+N°+mNO-+bN0  (rFr Nz+N- 211

N = -Nz +(l-w)N° + w fNz±+bN7z + (N++N + N ++N

These six equations are further reduced to two (±r) by means of

suitable analytical approximations for the perpendicular radiances

(±-,±z). The z-equation is simplified Lhrough the assumption of

negligible axial. gradients

dN1±

z

which reduces the equation to simple algebraic form. The 0-equation

is eliminated through the assumption of approximate proportionality

factors

+ +

N P pN (plane)

N0 4 (N +N r-) (cylinder)

which are piecewise-constant over a radial integration step. The

range O<p <1 defines the limits of thin and thick optical paths

in the 0-direction. In general, the factor D is approximated
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by the corresponding radiance ratio for a non-scattering medium.

For a uniform, medium, this ratio is given simply by the emissivity

ratio

•p - l-exp (.-T

- Ii-exp(-Te)I /[l-exp (-T)

Where T is the total. optical depth for a cylinder of diameter 2R

and T is the half optical depth measured perpendicular to the

line-of-sight. For a uniform cylinder 2[-(r/R)2

Substitution of these approximations into the axial equation of

transport yields the explicit formulae

N/ Nz- = (1-wo)N°+wS (N r++N,-) 1-w0(f,+b+2ýDpS)]- (p]. an a-YI?-3•

N. z -w)NO (1-%)(Nr++Nr'A fl-w(f+b)) -J (cylindrical)

With these approximations, the six-flux radial equation of

transport may be written -in the functional form of the two-flux

equat ion with modified coefficients. That is,

dN
-caNr + N + YN (2-14)r r

where the piecewise-constant coefficients are given by

2i



planar cylindrical

a= l-W(f+sX) a = lIw{f+s[x+o (l+x)]}

0 (b+sx) = w{b+s[X+Oc(l+x)]}

y= (l+×)(1-W) Y = (I+x)(l-w)

X 2sw(1+1p)[l-w,(f+b+24p s)]-I X 2sw[l-w(f+b)]-I

Integration over the uniform region from station (k-1) to k yields

explicit expressions for the outward and inward radiance components

at the outer and inner surfaces, respectively.

N<+ pkN- + tkN+ + N-0

k k k- k •

(2-15)ltkNk + 0

N k-i = tk N k +- pk-j + kkNk (2-15)

where the subscript r has been deleted for clarity.

These equations contain the boundary conditions (Nk and

N +k-I )'the local source function (1°), and the local transport

coefficients (reflectivity, transmissivity, and emissivity) defined

by the relations

- 2 = +

• 1 2

--h . ; =k l

-- (l-tr--•) A (c+B) (a-B) ,]
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The axial radiances at the outer and inner surfaces then follow

directly.

The formulation for a uniform planar medium is complete at

this point. For a non-uniform or cylindrical medium, the formu-

lation is completed by superposition of elemental solutions for

K piecewise-uniform subregions (k=l,2,.... ,K) subject to the

overall boundary conditions

NK - 0 (no external sources)

N+ No (axial symmetry)0 NO

The radiance emerging from the K-th (outer) element is determined

from Eq. 2-15 by successive Gaussian elimination beginning at the

center (k - 0). The general recursion relation (developed by

induction) is given by

+
Nk = N k +B

where

Ak = k+tkCkAk. A0 =

Bk DkN +C B B 0

C = tk(lPkAk-J)

D k k (l+CkAk-d)

The surface radiance ( = B is determined explicitly from the

sequential summation.
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The preceding analysis yields the normal and tangential

radiance components for planar and cylindrical media. Between

these limits, the variation of radiance with elevation angle (•)

or azimuth angle (8) (standard spherical coordinates) must be

determined by a subsequent calculation. The following paragraphs

describe a simple approximate procedure based on analytical

interpolation. An alternative exact procedure based on the known

six-flux source function distribution is described under Method II.

The approximate interpolation formulae are based on weighted

sums of the local-to-normal and local-to-tangential radiance

ratios for a non-scattering medium. From Figure 2-2

N(0,0) ~ N(oc) j N(7r/2 7T/2)sin 2 0N(0,) • N(7/2,n/2) W-0

SNN(rr/2,O)cos2p
N(n/2,0) W=0

where N(7/2,fr/2) and N(ir/2,0) are the normal and tangential

radiances predicted by the six-flux model. The 0 and ý

variations are conveniently separated by rewriting N(0,ý) as

the product
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N( N(eI J ) [ N(1 2, •1]2 N(7/2, 1T/2)sin 2 •

w0 1. m0

lN(iT/ , O2 =

This separation facilitates the integration over 0 to obtain the

local station radiation.

r

V' (0) -22sinf N (0, 0)dr

0

= 2Rsin OfN (), CD) cosode

00

M 2siOO/2, f Ný,ý cosodO

For uniform media the radiances for w0= are simply proportional

to the corresponding emissivities; i.e.,

N(O,J) c O (sine/sinO)

where i is the optical depth based on the cylinder diameter.

In this case, the radiance is given by the simplified formula

N(6,4) - E(Tsin6/sinq) N(n/2,7/2)sin 2 0/c(x)

+ N(7/2,O)cos2pl
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and the station radiation is well-approximated by the empirical.

formula (see Figure 2-3)

J'(0) - 2RsinýE(-/sinO)[N(R/2,n/2)sin 2/E(T)+N(O/2,O)cos 2] •

i € ~(. 546-r/sin0)/e•(. 695Tr/sin0)

The non-dimensional ratio J'(V)/2RsinON(R/2,4) is observed to

apprnach 7/4 or 1 in the optically thin or thick limits,

respectively. These interpolatioi, formulae suffice to define

the entire radiation field at a given axial station in terms

of the computed normal and tangential radiances.

S1.0 -

0.9

a a ' •/'2RsinON (TT/2, fl

Tf/4 .. . 7T2
- ---- Numerical:f c(T'sinO)/E(T') sinOdO

0

- Empirical: C(.546T'/c(.695T')

f -. 01 .1 10 1

= T/sin4I; Figure 2-3. Estimation of Station Radiation for Uniform

Cylinder from Computer Centerline Radiance.
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2.4.2 Method II. This method is based upon a transformation

of the three-dimensional equations of transport to equivalent iso-

tropic form for infinite and finite cylindrical media. The recuiting

equations are integrated along and perpendicular to the radial direc-

tion to yield an implicit solution for the isotropic (scalar) source

function distribution, Numerical results are obtained by iteration

using the method of successive scatterings. Solutions for arbitrary

aspect are then computed directly in terms of the known source func-

tion by means of a two-stream integration along the observer line-

of-sight. As for Method I, no restriction is placed upon the range

or variation of physical properties within the medium.

The general six-flux equation of transport (see Eq. 2-11)

dNf :-+ -

+ - = 4(.,114,I1J& _N a+i'T1-J- Nw (i=1,2,3)d' ifN' b i '#" is(+ i

is transformed by simple rearrangement of terms to equivalent

isotropic form

dN-+
d. = -aN. + ýN. + y(N°+N') (i=1,2,3) (2-16)

-I I
where the piecewise-constant coefficients are given by

a = 1-w(f-s)

w= (b-s)

* and where the source function for multiple scattering is given by

-. •• 2-32



N' WS -~-y (N. + + N.Th
-•-W 1 "1

The key feature of the transformed equation set is that the source'1* function now contains only the side-scattering component of the

phase function such that N' is a scalar quantity. This important

simplification is obtained for any arbitrary phase function whi.ch

can be approximated by a six-angle orthogonal quadrature.

For a known source function N' (as from a previous iteration)

the transformed equation of transport is functionally equivalent to

Method I and can be integrated as before to yield

N. = N ++ + .( 0 + )
Nik ik ik tikNikI + "'ik(Nk+ k)

(i=1,2,3) (2-17)

N4kl - tikNik + PikNik1. 'ik(Nk+N'k)

where pik, tik, Lik are the reflectivity, transmissivity, and

emissivity of the element k in the direction i and N+k, Nikl

arc the surface radiances. The coefficients p, t, c are

evaluated as before (see Method I) in terms of the coefficients

a, f•, Y, where the latter have new definitions as given above.

The requisite geometrical relations are given in Section 2.5.

For an array of K elements (k=l, 2,...K), the boundary conditions

+N+ N: (axial syimnetry)
10 10 (i=1,2,3)

NiK 0 (no external sources)

In the direction of integration, these equations form a

sysL.em of 2K equations for the 2K radiances N defined over
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a K-point linear mesh. M, additional 2K equations of similar

form are required for each perpendicular direction in order to

define the source function at each grid point k. For each path,

the transport equation yields a one-dimensional solution matrix

which is a diagcnal. sub-block of the full three-dimensional

solution matrix. The individual paths are coupled through the

scalar source function at intersecting points such that the corn-

plete cnsemble of paths is required to obtain closure. The complete

matrix is solved by iteration using the single-scattering solution

(multiple-scattering source function equal to zero) as the initial

guess. For the cases investigated to date (see Section 2.6), two

to eight iterations (depending on the product W-T) were sufficient

to achieve source function convergence within two perc•ent.

The importance of the isotropic source function ,transformation

can be appreciated by reference to the tangential (8) integration

paths in Figure 2-1. Except for the s-axis, the intersections

of these paths witb the cylindrical shells are observed to occur at

oblique angles which do not coincide with the six-angle quadrature

of the phase function. This situation presents no difficulty when

the source function is isotropic. However, a non-uniform angular

quadrature would be required to represent non-isotropic scattering

into the line-of-sight. Such an approach is somewha~t more complex

than the present method, but offers the potential for greater

accuracy through higher resolution. This capability is provided

by the multiple-flux model described in the following section.
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2.5 Multiple-Flux Exact ARproach

The basis for the exact approach developed under Task IA

is the approximation of the multiple-scattering source function

by an angular quadrature of arbitrary resolution. The accuracy

of the predicted radiation field increases as the resolution of

the angular quadrature increases. Exact solutions are obtained

by increasing the resolution in successive calculations until con-

vergence is achieved.

The arbitrary angular resolution of the multiple-flux (hence-

forth called "N-flux") model affords considerable flexibility in

the analysis of multiple-scattering problems. The resolution in

the elevation and azimuth planes is independently specified so

that individual optima can be established. An important feature

"of the formulation is the introduction of non--uniform azimuthal

resolution which increases as the radius increases in order to

achieve uniform accuracy from the isotropic center to, the aniso-

tropic edge. An alternative formulation based on uniform azi-

muthal resolution was considered early in the model development

effort, but was abandoned due to its greater complexity and lesser

accuracy compared to the present approach,

Figure 2-4 shows end-view and side-view projections of

representative lines-of-sight through an assembly of infinite

cylindrical shells in which the source function for multiple

scattering is assumed constant. In the present development,
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the source function for emission is also assumed constant over

the same region, but this is not a general requirement. The

unknowns are the radiances at the intersections of the cylindrical

shells with the parallel lines-of-sight. The constraints are the

transport equations for the intervening paths together with the

boundary conditions for each line of sight. Together they consti-

tute a determinate linear set. In the figure, the rectangular

z, y, x coordinates denote the plume axis, the line-of-sight

direction, and the line-of-sight spacing, respectively. The

spherical r, 0, 0 coordinates denote the radius, azimuth, and

elevation of the local radiance vectors. The integration paths

are determined by prescribed values of x and 0 where the x's are

chosen to correspond to the radii of the cylindrical shells.

The integrations are performed over half of the azimuth plane

(-7r/2 <0< Tr/2) and half the elevation plane (0 <0< 7T/2) or one-

fourth of the radiating volume ( iTsteradians). The remaining
*

volume is described by symmetry relations through simple

reflections in 0 and •.

Figure 2-5 shows the relationship between the radiances and

the source functions at different radial stations which provides

the coupling mechanism for multiple lines-of-sight. This relation-

ship is based on the assumption of infinite axial symmetry such

that the properties of the medium vary only with radius. Positive

or negative radiance vectors are constructed from line-of-sight rad-

iances directed outward or inward, respectively. In the elevation

,i~i, - 37
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angle. In the azimuth plane, the source function is approximated

by an angular quadrature of variable resolution which increases

in proportion to the prescribed number of cylindrical shells.

The resolution increases from the center (where the radiation

field is isotropic by symmetry) to the edge (where the radiation

field is most anisotropic) such that the accuracy of the quadrature

is maintained independent of radius.

Figure 2-6 shows the indexing system for the matrix elements

in the azimuth plane. The indices i and k designate the spacing

(x) of the l.ine--of-sight and the radius (r) of the cylindrical

shell. The index j (which does not affect the azimuth plane

projection) designates the elevation angle (4) of the line-of-

sight relative to the cylinder axis. The i,k matrix elements

form an asymmetric square array in which the ordering of the

subscripts indicates the direction of the path (outward or

inward).

Figure 2-7 shows the geometric rclations for each matrix ele-

ment in the azimuth plane. The inclination of the radiance vec-

tor relative to the radial direction is given by the complement

of the angle Oik or 0 ki where

6ik - ki cos( `0 1 k!2

The line-of-sight distance s or skji measured from the raid-

pcint (x-axis) to the point k is given by

S~2-40
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I'

sUin 0ik

Sijk -Skji s'k sn - j

For uniform properties (Pkr kk) between points k and k + 1, ruhe

transmission is given by

Tijk eXP -pkK(k kijk,

With these definitions, the equation of transport between

points k and k + 1 in the lower quadrant and points k - I and k

in the upper quadrant may be written as

N k+liiijkT + W )N 2-(Skji
Nkji j+k o+2

I• i• " k+lj i)] l-ijk)

f (2-18)

Nijk =NijkITijk_ + [(I )Nkl
-+, "k- I S -lj k- I (1I

+ 2 -(skji + Sij _l)

.. t. ..... .. .. I, I I

!;ource flurict.ion S ;ccounts tor muItiple scat Lering frorn all

directions into the line of sight.

•!:•Sijk = Pii'k~j ,Ni, •'k + Piki'jj 'Nkj 'i') Qi'j 'k P poj '1o4 sok

k J

Skji P i'kij'j N i'j'k + Pki'ij'jNkj'i' 2i'j'k + Poj NokQo
Si'=l j '=l

where

k = number of discrete azimuth angles at radius rk
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J - total number of discrete elevation angles

Sii'kj 'j phase function for scattering fromn direction
ei'k, oil and its symmetric counterparts into

direction 0 ik' 6

0ijk - solid aUgle for rad'iance vector Nilk or NkJi

o - subscript for axial component (ýo = 0).

The axial component of the source function (subscript zero)

Is excluded from the double sum for reasons of symmetry. Symme-

try with respect to z yields the following expression for exial

.adiance

A(Nok - Wk)Nk° + wkSck

Symmetry with respect to 0 yields the following expression for

axiAl source function

J k

S P N + N. . I+P N ~ok E joE( ijk kJi"ijk Poo0ok~o

substitution of Sok into Nok and Nok into N. and N,.. elimin-01" ok okijkI

ates N from the radiance matrix. These values are computed

independently subsequent to solution of the matrix.

The solid angles are evaluatepd in terms of the discrete

spherical coordinates 0 ik ýi shown in Figure 2-8. The solid angle

boundaries are assumed to bisect the angular region between

adjacent radiance vectors such that, for an interior element,

cos .- (i f,k A j i J)
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For an exterior element, the solid angle is one-half (edge) or

one-fourth (corner) the value giver, by the above formula; i.e.

Ijk _('2 L C 0,1 +

i 1• j e 3 (edge)

~kjk 2 ( 2_~ c s~ T 1

i = k ; jf J (edge)

- i 1.1- K -6 1lk IŽH (j J -1)j~
i.Jk 2

j = J ; i l,k (edge)

i ;1 ; j = J (corner)
__ t ) cos ý

ik~jJ (corner)
_(kkk =-I' 2Cos 2 -Cos ,

i=k j =J (corner)

For the axial component, then solid angle is given by

Q0 Cos

The phase function is evaluated in terms of Lhe angle g

formed between the given radiance vector and the line-of-sight.
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.......-

This angle is readily evaluated from the vector dot product of

the corresponding unit vectors ri'J'k and where

rijk x sin +o ik +oin sin4) 5i ik z Cos4 ) j

Thus,

r ijk rijk s sin 4j, sin o ik- 6 ik)]

+ cos )., cos 4)

Cos Bij kij

The phase function is defined to include scattering not only

from the direction a iVk,, but also from the symmetric direc-

tions 7 - 0 ilk and r - 4j such that

i 'kjj' LP[ i'kl ýj'' 'ik' (j)]

± ~0i'k' 4 )j 0 k' 4j)])
+ P ['('i'k' -Cj'' 6ik' ýj)]

-+ - 'i'k' - kj, i cpj

For the axial component, the phase function is given by

Pý2[P(4).) + P(rT -).)]

In this wanner, the computed radiation field for 7t-steradians is

made to account for scattering from 4r-steradians.

The preceding equations may be solved by either iterative

or inversion methods. In the iterative approach, the equations

are suitable for programming without further manipulation. At
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each iteration, the radiance& Nok i and ore computed
based on assumed values for S S And S from the preced-

~ok~ ijk' knd frm1. rcd

ing iteration. subje:t to the boundary coniU'ion N 'jI - 0 fcr

all ij (n external sources); the assuined valaes for the firs~t;

itevation are taken equal to zero (i.e., single acatter.ig). In

the inversion approach, the equations arc manipulated to ellmin.-

ate the source functions S in favor of tha radiances N which are

subsequently determined by matrix inversion.

The &ýanipulaticns required for the inversion method arf.

summarized below. Elimination of Sok in favor of Nok yields

k J

Nok(l - W kPooS0o) (i- K)Nk 4 wkZ EP jo(N ijk
i=-1 j=1

+ Nk:i) "ijk

Substitution of the Nck into SIjk yields

k J

Sijk = li'b- j' I+ jkkPjlNitjk = I

S +4- xjkkPij 0Nkj 'i i'j 'k

+ Xjk(l - mk)Nk°

where

P jo 0o

Xjk T-7- ko-k'oo 0
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Elimination of S ijk and S kji in favor bf N ijk and N kji yields a

KJ(K - 1) dimensional linear equation Bet, with KJ(K -1)/2

equat~ions~ for each quadrant.

Pos.`tive Quadrant:

=1 j-Wl

k-I j

- lai lkjit*

t 1P.jk..lafik ljwN iljlkl + 4)j-'k'j ]klji
4)Pijk-lxjk(1 W ~k )N k ± (1 T Tijkl + ýPijk..lxjl-l)(I

ki. Negative Quadrant:

k i

+ i~jkx'k+l(i' j N k+1 )N '±l + (i- ijk ak+ lPijjikjk)(l -wk
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where

ijk •-Tij

aii'kjj' (Pii'kjJ' + XjkwkPjo) ij k

The above equations are subject to KJ boundary conditions

NKji - 0 {i- I,K ; j - l,J}

The above relations suffice to determine the entire K2 J dimen-

sional set of radiances for the cylinder. Repeated application

at successive axial stations yields the complete radiation field

for the plume.

2.6 Computed Results

Extensive parametric calculations were undertaken

in order to validate and compare the six-flux and N-flux

scattering approaches. The calculations included comparisons

with the predictions of other codes: the NASA finite-difference

code for plane-parallel geometries and the GAC Monte-Carlo

code for arbitrary geometries. The calculations were per-

formed for specified values of the monochromatic scattering

parameters (optical depth, scattering albedo, phase function)

rather than for a specified spectral region or particle size/

density distribution. This procedure enabled the scattering

codes to be exercised over the full range of optical environ-

ments without the attendant complexities of a complete system
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simulation. The evaluation of the optical parameters in cerms

of the physical properties of a specific gas/particle medium is

considered elsewhere in this report,

2.6.1 Planar media, The relative simplicity and general

availability of solutions for planar media make such solutions

ideal for the preliminary test of physical models and parametric

effects. This section suzmnarizes results obtained for uniform

one- and two-dimensional planar media using an explicit six-flux

model (Method I; Figures 2-9 through 2-12) and a standard finite-

element program (NASA code; Figures 2-13 through 2-15) modified

to include thermal emission.

Figure 2-9 shows the transmissivity, reflectivity, and emis-

sivity of a unifonm planar medium of unit optical depth at normal

aspect for various phase functions (isocropic, fore and aft,

forward only), In addition, isotropic scattering sohutions* are

compared for one- and two-dimensional planar media (slab vs.

ribbon) in order to bound the possible range of values for

cylindrical media. In all cases, scattering is observed to

reduce the emitted component and to increase the transmitted-

plus-reflected component of the radiation signature. Comparisons

among the slab solution for different phase functions show the

effects of backscattering (b>O) and side-scattering (s>O) on

the reflected and emitted components. Comparisons between the

2-51
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ala's ani ribbon solations for isotropic scatt:ering (ýf'b-'s)

reveal essential di~fferences between. conservrative (c + v + ~~L

and non-conservative ((.: 4- + p) <l) radi~ation fields which wouild

not be predicted by a two-flux model (s-0).

Figu~re 2-10 shows the transmissivit~y, reflectivit~y, and emis--

4 ~sivity of a uniform slab at tangpnt aspec~t for the same range

of parameters as in Figure 2-9. frn this case, the incident ra-

diation is assumned to be perpendicular to the suirface while the

observed radiation is parallel.. Thus, the transmitted radiation

component undergoes a change in direction from the incident side

to the emergent side which accounts for r - 0 as (A 0, The

emitted component parallel to the slab is black (infinjite optical

depth) cnly in the limit w + 0; for finite i), the em~issivity is

reduced due to losses through the slab boundaries. Note that

t~:~coupling between the normal and tangential radiance components

does riot oc.1.Lr for týhe tcf zLaodels.

Figure 2-li11 ow the radia-ice of a uni mrr emitting planar

medium at normal aspect over a r~anga of nptical depths in the

absence of ex'tern~al radiation so-arces, The vciluezz are normalized

Ly vhe non-scattering solution fom w =0 and are therefore

equivalent to nor-malibzed emrissivitie.s. Thc, range of scattering

parameters and geometries is the same as in Figures 2-9 and

2-10. In all cases. increased scatterinig ((,) is observed to

reduce the observe-,d radiance for constant i due to equal but
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opposite variations in the optical depths for absorption and

scattering. The effect of side-scattering is observred to

increase the radiance from the slab relative to the ribbon

and from the six-flux relative to the two-flux (f=b in both cases)

but to decrease the radiance at large optical depths relative

to the forward-scattering case (f=l).

Although not shown, the normalized axial radiance component

(Nz(w)/Nz(O)] exhibited close similarity to the normalized

radial component [Nr (w)/Nr(O)] for i3otropic scattering but

maintained constant value [Nz(w)/Nz(0) = 1] for two-stream

scattering. The normalizing values Nr (0) and NZ (0) are simply

the given black body function (N0 ) times the apparent emi:;sivity

(l-e r or unity, respectively). Thus, the six-stream approxi-

mation accounts for the redistribution of radiance (from ixial

to radial) due to scattering whereas the two-stream approxi-

mation does not.

Figure 2-12 shows analogous results to Figure 2-11 except

that the optical depth parameter is based on the absorptionV• mporent rather thatn the total extinction (absorption 4 :;cat:te•

ing). In this case, the emitted radiation remains constant as

w increases rather than decreasing, as before, in proportion to

(1-u). As a result, the curves lie above those in Figujre 2-11

by an amount which increases with increasing w. In the c.ase of

forward scattering, the radiance remains finite in the limit

W 4.
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Figure 2-13 shows a comparison between the nredictlons of'

the two-flux and six-flux models and the NASA finice-element

code for the normalized radiance at normal aspect from an iso-

tropically-scattering uniform slab of specified optical, depth.

For small optical depth (-=.l), the NASA code is in close agree-

ment witli the two-flux model (f=b-'). For large optical deFth

(VT,10, the NASA code is in close agreement with the six-flux

model (f=b=s=I/6). For intermediate optical depth (based on a

single NASA code calculation), the NASA code prediction is inter-

mediate betwecn the other two. Taking the NASA code as the

stqndard, this comparison provides physical insight into the

sources of error which can result from coarse angular quadrature.

In short, the two- and six-flux quadratures, respectively, under-

predict and over-predict the effective emissivity of the medium.

However, from the comparative results of Figures 2-9 to 2-13 for

slabs and ribbons, the error in the six-flux approximation at

small optical depths should be appreciably reduced for cylindrical

geometries (i.e.. plumes ).

Figures 2-14 and 2-15 show further comparisons between

-. •r•.,lctIuns of the s3ik-flux model and the NASA code for

an isotropically scattering uniform slab. The3e figures show

the variation with aspect angle of the radiance and radiant

intensity (radiance times projected area) normalized to their

respective values at normal aspect. The predictions of the six-

flux model (Method I) represent interpolations between the values

actually computed for normal and tangent aspect and, therefore.
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have limited quantitative accuracy Le-rtween those limits.

However, the predictions and comparisons are useful to illustrate

trends. In particular. beth models predict che same qualitative

variation of radiance with aspect: (Qigure 2-14) which is strongly

dependent on opticel depth. Fcr small optical depths and low

scattering albedos, the radiance increases toward tangent

aspect due to the increased length of the optical path. However,

for large optical depths and high scattering albedos, the radiance

decrc.ases toward tangent aspect due to side-scattering losses

not predicted by two-flux models. The aspect dependence of the

radiant: intensity (Figure 2-03) includes the variation in projected

area (proportional to sin ý) and, consequently, shows a monotonic

decrease from normal to tangent aspect. In both Figures, the

six-flux model predicts lower levels of radiation for higher

scattering albedos, with greater sensitivity for larger optical

depths. The opposite behavior of the NASA predictions for low

optical depth does not lead to larger absolute differences.

2.6.2 Cylindrical media. Compared to the vast literature

on multiple-scattering solutions for planar media, relatively

little work has been published for cylindrical media. Account~ing

for this essential geometric effect was a central feature of the

SIRRM model development. Hence, the logical first test of a new

solution for cylindrical media is a comparison with previous

solutions for planar media.

2-62



Figure 2-16 shows the normal radiance of a uniform infinite

cylinder (centered line-of-sight) and of a uniform slab of equal

optical depth. The predictions are based on the six-flux model

(Method I or II) and on the GAC Monte Carlo code. Except in the

non-scattering limit (w=O), the radiances are observed to be

, lower for the cylinder than for the slab due to side-scattering

losses (not predicted by two-flux models). The six-flux and Monte

Carlo results are shown to be in essential agreement for both

isotropic and forward scattering phase functions. The forward

scattering resuLt is only slightly greater than the isotropic

scattering result due to the assumption of uniform properties;

larger sensitivities would be expected for the non-uniform con-

ditions of actual plumes.

Figure 2-17 shows the normal radiance for isotropic scattering

of a uniform infinite cylinder (centered line-of-sight ) and of

a uniform slab and ribbon of equal optical depth. The predictions

are based on the 6-flux model (Method I or II) with comparative

calculations from the N-flux model and the Monte Carlo code.

The variation of radiance with optical depth (upper left plot)

is qualitatively consistent with previous predictions for

planar media (Figure 2-11). Specific comparisons for equal

optical depths (remaining plots) show a uniform progression of

the cylinder radiances from the ribbon values at small optical

depths to the slab values at large optical depths. This be-

havior is the result of side-scattering losses from the cylinder

which increase with decre• sing optical depth. These losses

2.-63
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result in improved predictive accuracy for the si.m..flux m1,odel

.it small optical deptbh,. Comparison of the six--flux model. pre-

dictions with the more exact predictions cf the N-flux model and

Monte Carlo codes reveals a residual over-prediction for small

optical depths but substantial. improvemeut relative tc similar

nredictions fo_ a slab (compare figure 2-13). Comparison of the

N-flux and Monte Carlo predictions for ,init optical depth revels

excellent agreement. The comparison is close but less exact at

anopticaldepth of ten.

Figure 2-18 shows the tangent radiances (i.e., aspect = 0

or 180 degree,-) for the same conditions as the normal zadiances

tn Figure 2-1.7. As before, the curves are shown normalized by

their values for a non-scattering medium, i.e., the local Planck

function [Nz (=0)=N°], The curves reveal the same qualitative

trends as the normal radiances in Figure 2-17 except for a reduced

sensitivity to optical depth due to cylindrical curvature. As r

result, the tangent radiances remain close to the ribbon values

for all optical depths. This effect is confirmed by the more

exact predictions of the N-flux model and Monte Carlo code.

Figure 2 -19 shows the aspect dependence of! the emrii;siv'it.y

of a uniform infinite cylindler (centered line-of-sight) as

predicted for a given albedo by two-flux and six-flux model

approximations (Method II). The curves are qualitatively consis-

tent (but quantitatively different) for small optical depths near

normal aspect. However, for large optical depths nrear tangent

aspect, the two approximations predict opposite trends due to

2-66



42 4

P9/

/ Af9

4ý -4 J

* v-4 Lf~0r-4

r- 4 Z4 Z=
4-r4

:j4 0 ;jj ci

1 -I - 4 IC1 f-4

1 00P

4-67



1-4~

f-4C

cv~G sz )C

I nE

r-4

0D -4 C

u G-

-- -- LE



the effect of uside-scatte~..Ing losses near grazing incidence.

This behavior is consistent with previous predictions of radiance

ye. asp;ect for a planar slab (Figu'..:e 2-14) arid may have signifi-

cant negative impact on the detectability of plumes from nose

aspcct. Comiparison of the predictions of Method I and II for

normal and tangent aspect reveals good agreement for both phase

function app:'oximations at comparable optifzal depths. Comparison

of the predictions of Met~hod II ana' the Monte Carlo code for

isotropic scattering at unit optical dapth reveals agreement within

20 percent for all aspect angles.

Figure 2-20 shows a comparison between t'l-e six-flux

(Methud I) and N-fluax models for the normalized radiance

from an isotrop:Lcally scattering uniform infinite cylinder

(centered line-of-sight) over the full range of aitbedo and

optical depth. These curves are equivalent to normalized

emissiviti_-s from Figure 2-19. As in Figure 2-114 (slab). the

present six-flux predictions represent interpolatiors betweenI

the values actually compuated for normal and tangent acpeot and,

therefcre, have limited quantit-at-ive accuracy between those

limits. In Par.ti-cular, the Method .I interpoLation fotrmulae. are

obozerved to under-predict r-elativ,,e to the N-fl1w: model but to

yield valid qualit.Ative trends. Both Mc-dels yield comparable

predictions at normal and tangntai pcs Comparison of N-flux

ind Monte Jaro pr#-dictions are in exce-l~lent agrekiment a3nd

appear to ce.nfirn,' the 6-flux Methodi 11 predRctIL:ns in Figure
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Figure 2-21 shows the N-fl'u model prediction for the

variation of normal radiance with distance from the cylinder

axis f.r the same conditions as Figure 2-20. Integration under

these curves would yield the normalized station radiation at

side aspect. The effect of scaLtering is to reduce the radiance

from the off-axis regions, with greater sensitivity for larger

optical depths. The assumption of the six-flux model I that the

radiance profile is independentt of albedo is, therefore, seen

to be in error for large optical depth. This assumption is not

xade by six-flux model II.

Figure 2-22 shows a comparison between the six-flux

(Method I) and N-flux model predictions for station radiation

as a function of aspect angle for the same conditions as Figure

2-20. Both models praeict the same qualitative effect of

increasing albedo, namely, decreased radiation relative to side

aspect with greater sensitivity fcr large optical depth. This

behavior is consistent with previous 6-flux model predictions

for a planar slab (compare Figure 2-15) except that the sensitivity

to albedo is greater in the present case. However, the six-

flux model (Method I) interpolation formulae appear to over-

predict the sensitivity as predicted by the N-flux raodel and as

confirmed by additional predictions with the GAG Monte Carlo

code. The latter two predictions are shown to be in excellent

agreement.
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The preceding results for infinite cylindrical media

represent valid solutions for rock.et plumes provided that

the variation in axial. radiance is negligible over a distance

of one optical depth (i.e., dNzi dTz<<Nz). This criterion is

satisfied throughout most of the plume mixing region but may not

be satisfied in local regions of the plume inviscid core when

szrong shocks are present. In order to assests the impact of

stiock-induced gradiernts on the coupled gas/particle radiation field,

the ý.ix-flux model (Method II) was extended to finite cylindrical

media with arbitrary end-wall boundary conditions. Numerical

experiments were recently initiated to assess the impact of -t

I L'-• extue.-.•i : sou1c-. pai-attlel t.(, he ax.is on the

radiaLion ý!;catteved to side aspect. A key objective of this

a_-;sesbntt Ls the determination of the axial region of influence

b•.yu• tA,ýich the in0 itve cylLnder model becomes a valid appro>u

Figure 2-23 shows the result of a preliminary test cal-

culation with the extended six-flux model. In this case, the

S• in )'fr i -q,'umed uni orm with no external tadiat in ,;,i:

-it the computed radiation field is sylTnnet L( about t

cylinder mid-point. The radial and axial emissivities are ob:;erve.-

to decrease from the mid-points toward the corners as a result

of three-dimensional radiation-coupling effects. For the giver,

optical depths, the mid-point radial emissivity is nearly equal

to the emissivity of an infirTitU cv] inder; i.e., the nid-point
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values are nearly indepeadent of end-wall boundary conditions.

Thus, the axial region of influence is contaiuLed within the finite

cylinder considered. Comparative Monte Carlo predictions appear

to validate the six-flux model result.

As a last test case, a condition of practical signLficance

was chosen. It involves an occulted emitting core and a non-

emitting scattering envelope, simulating a nose aspect signature

(see Figure 2-24). This is a stringent test case because the

nose aspect signature is due entirely to scattering and because

the core is a localized source leading to a highly anisotropic

r-.dia': ton field. A comparison between the forward scattered

radia-•ce prcldctctd by the 6-flux model (Method IT) and the MonLc

Cnrl~o method showed agreement within 20%.

COLD SCATTERING

MISSILE BODY

TEMITTING CORE

SCA fTERED

Figure 2-24. Core/Envelope Structure for
Nose Aspect Test Case.
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2,7 Summ.ary of Models and Results

The results discussed in Section 2.6 include calculations

for planar and cylindrical media using 6-flux, finite-difference,

and Monte Carlo solution techniques. The calculations include

the full range of optical parameters [ albedo (0 to 1), optical

depth (.1 to 10), phase function"(isotropic to delta function)]

and observables (transmissivity, reflectivity, emissivity;

radiance and station radiation versus position and aspect). The

results demonstrate the importance of three-dimensional multiple-

scattering effects and the relative ability of different

physical models to provide an accurate simulation.

Three new models were developed and verified in this phase

of the effort. The first was an explicit six-flux model which

is exact (for six-flux. phase functions) tor planar media and

approximate for cylindrical media. The second was an. implicit

six-flux model which is exact (for six-flux phase functions) for

cylindrical media, The third was an implicit multiple-flux

("N-flux") model which is exact (for arbitrary, phase functions)

for cylindrical media. The six-flux models provide the minimum

angular resolution necessary to account for three-dimensional

scattering effects. As such, they constitute valid engineering

approximations which are highly efficient for production calcu-

lations. The N-flux model prcvides complete flexibility in the

selection of angular resolution (elevation and azimuth) , As r

result, alternate levels of resolution can be tested and compared

with respect to accuracy and efficiency.
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The six-flux models are distinguished principally by the

degree of rigor in treating side-scattering effects. That is,

Method I approximates these effects via simple closure relations

whereas Method II computes these effects via exact coupling

equations. Both methods solve initially for the normal and

tangential radiances and subsequently for the radiance at

arbitrary aspect (if required). The fundamental difference is

associated with the initial solution step.

To the authors' knowledge, the N-flux model represents

the first application of general finite-element techniques to

emitting cylindrical media. Previous application of this tech-

nique was to non-emitting planar media (Barkstrom, 1976). The

information content of the calculation is considerable. For

each radial station, the model predicts the complete three-

dimensional radiance distribution in spherical coordinates.

Typical results for two uniform isotropically scattering cy-

linders of different optical depth are illustrated in Figure 2-25.

The figure shows polar plots in azimuth and elevation of the local

radiance distribution at a series of radial stations from the

2? 2er of each cylinder to the edge. In each case, the ra'.,• •

are normalized by the edge value for a centered line-of-sight

at side aspect (0=-7/2). In the azimuth plane, the radiance

distribution is observed to be isotropic at the center and to

evolve toward a forward lobe at the edge. In the elevation

plane, the radiance distribution Ls roughly eliptic at the center.
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(approaching isotropic for large optical depths) and evolves

toward a composite forward/side l.obe at the edge. The radiances

are observed to increase or decrease from the center to the edge

for small or large optical depths, respectively, with the maximum

rate of change occuring near the surface. This result may be

compared to a non-scattering medium in which the radiance

always increases monotonically outward.

The N-flux model provides a powerful tool for the analysis

of plume scattering problems of arbitrary complexity. The

accurac- of the prediction is limited only by the computational

resources of the user. Because of the significant cost im-

plications of repetitive calculations for multiple spectral

points, an important aspect of the continuing effort is the

optimization of the mathematical prccedures and the grid selection

(spatial and angular). Mathematical optimization includes the

selection of iterative or inversion procedures for small or large

scattering optical depth (wi) and the use of a different (finer)

radial grid for evaluation of the emission/extinction terms.

Grid optimization involves the correlation of accuracy and

efficiency with both the number of elements (radius and aspect)

and the Positions of their boundaries.

A rough preliminary indication of the degree of resolution

required for a given accuracy is shown in Figure 2-26. This

figure is representative of the limited computational experience
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acquired to date but does not necessarily possess broader quan-

titative applicability. The results shown are for an optically

thick uniform cylinder with isotropic scattering (Tf-10, W=.8).

No particular effort was made to optimize the grid selection for

a given number of points. The accuracy is observed to be much

more sensitive to the number of radial elements than to the

number of aspect angles.

By far the largest portion of the computing time is in the

calculation of the source functions. As a result, CPU time is

roughly proportional to the square of the number of aspect

angles (yj.p,) and to the cube of the number of radial segments

(rk,0j,0i,), Thus, doubling both the number of aspect angles and

the number of radial segments r.sults in a computing time increase

of about a factor of 30. Optimization of the selection of these

numbers is, therefore, of considerable importance for production

calculations.

Figure 2-27 summarizes the parametric and comparative cal-

culations performed to date as reported in Sections 2.6 and 2.7.

This summary illustrates the interrelationships among the various

techniques and ýhe scope of physical problems considered. The

emphasis in this phase of the study was on model development

and verification. Additional work is required in the areas of

model optimization and application. In particular, final quan-

titative assessment of the relative accuracy and efficiency of

the different calculation methods in different physical situa--

tions must necessarily await further model refinements and
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Figure 2-27. Overview of Parametric and Comparative
Calculations Presented in Subsections
2.6 and 2.7.
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additional parametric predictions. These efforts are currently

underway. However, based on the parametric and comparative

calculations performed to date, certain general conclusions can

be drawn:

1) The six-flux angular quadrature (Method I or II) yields

Squantitatively accurate predictions for normal and tangent

aspect in the cases of intermediate-to-.large optical depth

or anisotripic scattering. The standards for comparison

are the NASA finite-element code for slabs and the N-Flux

and Monte-Carlo codes for cylinders.

2) The six-flux angular quadrature (Method I or "I) tends to

overpredict the normal and tangent radiation for isotropic

scattering at small optical depths. The error is greatest

for slabs and least for ribbons due to the corrective effect

of side-scattering losses. For cylindrical plume geometries,

the error appears to be acceptable (less than 20 percent).

3) The aspect dependence predicted by the six-flux methods is

based on prior solution for normal and tangent aspect. For

intermediate aspect angles, simple interpolation (Method I)

gave the correct qualitative behavior, but overestimated

the sensitivity to albedo by comparison to the N-flux model.

Line-of-sight integration (Method TI) gave the correct

quantitative behavior by comparison to limited Monte Carlo

calculations for intermediate optical depth.

4) The N.-Flux and Monte Carlo calculatic.ns demonstraLed uni-

formly excel]lent agreement for all cases investigatedi.
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BAND MODEL APPROACHES

3.1 Introduction

The equation of radiative transfer, which is rigorous on a

monochromatic basis, is only approximate when applied over a

finite spectral interval. The spectral averaging procedures

required for the calculation of radiant transfer in a multi-

ple scattering medium must be considered.

The integral form of the equation of transfer for a finite

spectral interval A.X may be written

, d' ,- - dT (s'"s"
N (S) Now)

Sds' ds'

1 - -' dT (s '",s

"+, P(s",s')wANX(s") j<s "ds'

where a spectrally averaged quantity x is defined as

A AT- - f xxdX

and where the relatively small spectral variations of N and P

within AX are neglected. The integrand contains three spectrally-

averaged terms involving the transmittance derivative and its

3-I



product with the albedo and radiance. Of these terms, only the

transmittance derivative is amenable to simple averaging thrtuwh

suporposition of the individual species averages. Evaluation

of the product terms requires additional approximations which

are investigated in this section. The goal of this investigation

is t.o develop as comprehensive a band model theory of combined

scattering and gaseous absorption as possible and to determine

the functional dependence of the mean transmissivity and emissivity

on the gaseous band model and particle scattering parameters

as a guide to their most reasonable combination in the more

general three-dimensional numerical solutions of the radiative

transfer equation.

In devel.oping a combined absorption-scattering band model

formalism, the approach has been used which is analogous to

that of the classical gaseous band-model theory, namely, from a

monochromatic solution of the radiative transfer equation, to

perform a spectral integration over a defined gaseous absorption

band, making approximations as required to obtain a closed form

solution (and studying the limitations on the accuracy of the

solution imposed by the required approximations).

3.2. Band Model Formulation For One-Dimensional Scattering

A starting point has been selected to be the "one-dimensional"

(i.e., two-flux) scattering formalism of Vanderbilt and Slack

(1976), which has the advantage of having been developed to the

state in which various closed--form solutions exist which are

explicit in certain limiting casc:,.
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It is important to note that the two-flux and six-flux ap-

proaches to the problem of radiation from a plane-parallel slab

yield similar functional forms, differing only in the definitions

of the effective backward and forward scattering cross sections.

Thus, the so-called "one-dimensional" scattering solution is

capable of reproducing the effects of three-dimensional scattering

in this particular case.

It is noted also that the condition of completely anisotropic

scattering which is sometimes evoked as justification for applica-

tion of the one-dimensional formalism is a sufficient condition,

but by no means a necessary condition for its applicability.

Because of its relative mathematical. simplicity (in addition to

the fact that the previously mentioned sufficient condition for

its validity, i.e., the assumption of complete anisotropy, is

very closely approached in many real scattering problems),

this formalism will always be of great value in a large number

of practical situations.

We start with one approximate solution of the two-flux

scattering equation, which is exact in a limiting case and which

Tprovides an iterative solution under more general conditions

(Vanderbilt and Slack, 1976):

WW

() =(Xm½±l)emf 2 e WdW'-(X ½-l)e-Wm 2B W'dW
(m%+~ X 2B -W0Ww

1 (0) = O W0k -0
.__ Wm09 _Wi (3-2-

(X m+1)(XO%+I)ee m M)(0 1)e m
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where

s

fNaX½ds' (3-2)

0

FJ

In these equations, N is the particle density, o the absorption
a

cross section and ubthe bý,kscavtering cross section, and

is the ratio of backscattering to total scattering. For simplIcity,

tlie allsorption and ,,catLering cross s;ectiofls are refe~renced to

a single particle density; however, for mixtures of particles or

particles plus gases, the expressions are readily generalized.

For the case of constant X, an exact solution is provided

for an otherwise inhomogeneous path, i.e.,

2 OW Wdw k e 2Wm W M

I(0)= xk+l f Be dw X' mBeW' dW'(
1- ' 2 -2e

where W X½ra (3-5)
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The absorption optical depth is denoted by T, which may

represent the sum of contributions from a number of gaseous

and particulate species.

For the isothermal case, direct integration provides (on

division by the Planck blackbody function) the known expression

for emissivity:

-(•_)2e-2X½Ta

On factoring and rearranging into a form more suitable for

our purposes, we obtain

C½

X a

: l-e

i--

obtan asoreh at orearrangg r nto a fm m s f

• 1-e

I i+½•• 1 (-1 +e- -'a)

SBecausBreofl consideraingthelyio small vaiaio of thwenmnao

fobtainity somwhe moea traluepovrasentfralitralmnb

writte as
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_ ,. • i.•.. ?? .••• • . t. -- ±- -• • •• . • • • • • • ••.••o. ,,••.. •... • L• .• - C , r fl1•W-l• , v ; -, .•• • ,

C 1 fJ dw l-e se (= -W T S- (T - - (a))(-9

where

f(a) = -n f e da (3-H))

represents the band-model curve-of-growth for the gas plus par-

ticle absorption component (that is, a known function). Equation

(3-9) explicitly shows the modifications resulting from the

simultaneous presence of scattering.

For X significantly greater than unity, it still appears rea-

sonable to considec" the preponderant effect of spectral variation

"to occur in the numerator (which varies from unity to zero).

The percentage error introduced by this assumption will be in-

vestigated in the numerical studies in Subtask II. We write

- lfe ( (3-11)
I II.

1 "•" :•- 1 l+e a

where

f(_TT 9n JL fe-Cr a 2+2Ta-s 'r5)"fa r ~)= -Zn j dw• (3- 12)

A (A)

We designate the numerator of Eq. (3-11) as 1-t' (since it
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corresponds to the emissivity = 1-transmissivity in the

3.2.1 Elsasser model. We examine the behavior of the func-

tion F' when the absorption results from one gaseous component

represented by the Elsasser model (for which case the effects of

the gaseous spectral structure will be the greatest):

T a sinh a (3-13)

a cosha-cosx

where

T ku = Su/d (3-14)

(mean absorption optical depth)

= 2'wy/d (3-15)

(fine-structure parameter)

and

x = 2n (w-(,)/d•i0 (3-16)

Thus

1 •+ expL.I-2 tanh 2
ITj[\ (l-cosx/coshO) 2

(3-17)

+ 2- T tanh
+ as (l-cosx/coshO) d

The properties of this integral will be examined in detail for

the limiting cases of small B and large 6.
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For large values of the parameter • (i.e., for significant

overlapping of the spectral lines), the function i' becomes

(on expansion of the terms in l-cosx/cosho),

= exp[-(Ta2tanh2 +2T aTstanha)J

x o a+ta tanh +2 s)/Cshr3 (3-18)

where I is the modified Bessel function of the first kind.
Since exp(-x)z l-x for small x, and Io(y) _ l+1y2 for

small y (and y << x), the I term provides a higher-order

correction to the exponential term. Thus a useful approximation

is

-, [ 2 2 +2T -1 tail ))
t expI-(Ta tanh +ta s J (3-19)

Note that for no scattering (Ts = 0), we have

1= 1-c = t' = exp(- atanhO), (3-20)

the classical Elsasser model result.

For the more interesting case of 0 small (little over-

lapping of spectral lines), we have (using cosh 6 1)

3-8
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(•22as) --. sinh 2 2,r s sinhS 1

2 a2 sinh2  + sinhO

4 sin x/2 sin 2 x/2) (3-21)

b + a)
a in4 ysi~n y

where

a = -r sinhB (3-22)
a s

1b i 2 sih 2  (3-23)
4 a

and

y X x

By making the substitution

(a-fb) ( + b)
(si sin y)

to transform to a more standard form (e.g., that of a Laplace

transform), the function

-, '/ o2~ ½•+ ;)
Ssin y sin 1 (3-24)
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becomes

2t = .fexpf (a+b)½z2 [z
f 2 + [ a+(a +4b(a+b)z )

Z 1 2 (a+b)

2 J[ I -k (a 2+4b(a+b)z (3-25)

b bt a+(a2+4b(a +b)z 2 ))

-[12(a+b)l +2 z) dz

This form is somewhat unwieldy, and does not appear to be

immediately integrable. For the limiting case a - 0 (no

scattering), the expression above reduces to

-C,

t' -- J•fexp (- Vbz) dz (3-26)1 z(z-l)(

erfc(b ) = erfc I(Tas/ 2) (3-27)

the usual Elsasser model result for small 8

In the other limiting case of b 0 (more strictly

speaking, b/a 0) the integral for E' reduces to

=(_exp(a 4 - dz (3-28)
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This expression may be converted to a known Laplace transform,

yielding

2!!2~~ ~ t'=i-2o (x) dx

• o0  d (3-29)

where

(T aTs sinhý),
4 = (Trsna~

as before, and K0 (x) is the modified Bessel function of the

second kind. Such functions (of integral order) appear to be

the least tractable of the Bessel functions. However, since

K 0o(x) is only weakly (logarithmically) divergent at the origin,

series expressions may be used and integrated over the finite

interval indicated.

Because of the mathematical intractability of this Bessel

function, a numerical study was made of t' From the power

series definition of K , and a term-by-term integration of
0

Equation (3-29) we obtain

(x)dx -bk (vn(z)+ 4+ ckb (ý- )(½z)2kl (

(3--1
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where y .5772156649..., (Euler's constant)

bk = 2(kl)

k
1

ak (k!) (i--1 (3-31)

c k ak + b

2k+l

By use of recursion relations between the coefficients, the

series is readily programmable, with high accuracy, even on a

pocket calculator, for values of z as large as 12. However,

for z greater than about 8, higher accuracy may be achieved

by an asymptotic series. By expanding the exponential in a

power series and integrating, the following expressions are

obtained

7' - exp(-a) E (-l)j d a-(j+) , (3-32)

j=0

where

i 22 I •i 1 7 (3-33)
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¶• This series is "semi-convergent" and must be truncated when the

magnitude of the terms no longer decreases. For ak greater

than about 8, it is capable of providing 3-place accuracy for t'

deLeriorates; lor a it I iL is eilecLivuiy wuut'LLles!.

h n o2 a½
e f o t f Ko(x)dx is plotted in Figure 3-1

ST•0
in Cartesian coordinates and the curve-of-growth -Rn •' is plotted

versus a½ (log-log scale) over a much wider range of values of a½

in Figuie 3-2.

Fr

0 .5 1.0 ½ 1.5 2.0 2.5
a

a½
Figure 3-1. Function I' = 1- .f K0 (x)dx vs. a

0
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0

3.2.2 Random band models: The mean trasnmissivity for a

given band model may be written alternatively

S= t(k(w))dw f f(k)t(k)dk, (3-34)

Awa 0

in which f(k) is the probability density function of the

absorption coefficient k . Because the properties of random

band models without scattering are relatively simply derivable

from those of single lines, explicit expressions for such

probability densities have not been required for study of the

3-14



gaseous band models. However, because of the exponential form

of the monochromatic transmissivity, the probability density

function in the expression
00

T(u) f f(k)e-ku dk (3-35)

0

can be seen to be the inverse Laplace transform of the mean

transmissivity function. A study of the inverse Laplace trans-

forms of known transmissivity functions has been made by

Domoto (1974), who has found that for the exponential-tailed

S-' model a relatively simple functional form exists, namely,

f(k) [~a]exp [a(2Ž~ - I) (3-3G)

! corresponding to the tarnsmissivity function

2a [1 + (3-37)

We consider here the case of no particulate absorption, for which

the effects of the gaseous spectral structure will be the greatest.

The function i' previously defined as

A-- Af j a +2t a I) (3-38)

(where Ta ku) can be rewritten

= f[.l4] exP[a(2- :T - -a (Ta2+2TatjT a (339f• 3 Tp a( aa s)a a 'as (3-39)

0 r Taa
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Direct integration is rendered difficult by the presence of

the radical in the exponential term. Before studying the general

behavior of E', some limiting cases (small Ts0 large Tr) are examined.

a) Small T

For small values of r « )<<T expansion of the radical

yields
2

2 (340
(Ta +2Ta' s ½ TS__t_ ...- (3-40)a a s a+s - ia

in which terms in T 3/1 etc. have been suppressed. Substitution

produces
STad exp_.a +,) a-a -'s2)•ald

or, defining

2½a Ts
a(I - (3-42)

2aT a

and
T 2½

2aT-a 
(3-43)

,S T 2) /Ta a • *a 't
t2a e ( =aa da(3- 4 4 )

Saa

Since the integral is now in the standard form with new constants,

we have

Ts= (i _ Ts 2  ½ -* ½

2aa ep [ (3-45)
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.• .• •. ,• ,• ••,• • r _ r'l rq -, . w~l fl ',: ,r: ... -- •4- , • c ..... . .. '... .. . . . ....

or

-e T 5 ( 2 a -8 1+ a 1 (3-46)
Taa

To the same degree of approximation we may write

t"=ex 2a1 1+ ½ -1½ -__s-I
aTa at~ asex a 2a -T [( +aa 4a Ta (3-47)

b) Large T

In the limit of large Ts the magnitude of the argument

of the exponential term in the integral becomes large, and the

¶ minimum progressively less shallow, and occurring at smaller

values of T a If Ts >> Ta so that

•'iI(T + 2T.~s T (2T
a + s a T (3-48)

the argument of the exponential. term becomes

(2
"E (T -- -a 2--a T-s) (3-49)

T a T
a

The magnitude of this argument has a minimum at approximately

S1 2
m h (r /2) (aFa)~ p 30i~i mi <5•

a s a(3-50)

min -
so that for large Ts a <Ta
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In the region of this minimum, the argument may be expanded:

1/3
E(Ta) a - 3(½aTr S)

2
3/ T 5  min) + (3-51)

the expression for F' then becomes

ac)i I[ a (--a)( amin)- ada (3-52)
t' =of( )% epl-(½a~a¶s• -•2sa (a-

By recourse to the mean value theorem, noting the narrowness

of the maximum of the exponential in the neighborhood of

amin' the multiplicative factor of T-/ may be taken

outside the integral and evaluated at T a m

E T am• e a-0 min )2

min) o (r. a" (3-53)
a0

The remaining integration may be performed by letting the lower

bound - •

4 expf [_3 (ka a TS)1/3 (3-54)

This functional dependence provides an interesting analogy to

the square-root region for pure gaseous absorption in which

t + exp [2(a-a)½]
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c) Arbitrary rs

Numerical studies have been carried out on the integral

representation of the function I', given by Eq. (3-39). Some

results of these calculations are shown in Figures 3-3 to 3-5,

in which E' is plotted against Tat the mean absorption

optical depth, for various values of Ts, the scattering

optical depth and a , the fine structure coefficient. The

linear scale for T' does not show the precise asymptotic behavior

at ?' very close to 0 or 1, but does indicate a smooth, well-

behaved dependence on Ts, encouraging confidence in the approach

of seeking an analytical or semi-empirical functional represen-

tation.

0.

aT -10

5 S

[ ta - W/1000

0 .0' .J2

10 10 .0•'010 0

Fa

Figure 3-3. Plot of t' vsa for a = T/1000 and
Ts ranging from 8 to 104.
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Figure 3-4. Plot of t' vs. Ta for a = r/I0 and
Ts ranging from 0 to 10

1. 0.

.5 a 1001

03-2
.5 1 1 orw10

T -T.

Figure 3-5. Plot Of t'vs. T. for a wr/10 and
Ts ranging fromt 0 to 102.
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The asymptotic region of small t' was examined in detail.

The conclusion was reached that the particular asymptotic form

developed above [see Eq. (3-54)] is of major practical significance.

A plot of the ratio "t'/exp[-3(ka•aTs)ý] is presented inFa ~ Jis prsente inFigure

3-6. This ratio can be seen to approach the predicted theoretical

value of (4/3)k = 1.1547 closely as a-*0 even for small values of

- a. I'.

2 * - a-It/lU0
[",

aT I

iur . P I P'x[3. a T / s showing

S• -. 1 -.1. i ... . . .R E T I CALU A(Y/P)OiC-1 1 4

A, r :

1 t 12 , I v v

i:i010 it t 10ff 10 ii 103 104 105

A~aa

S~Figure 3-6. Plot of t'lexp[-3(½aTars)I/3 vs. a'-a s showing

•..•asymptotic behavior for "large" r• (ranging from
-- i •1 to l0), for various values of a and aTa.

SThe range of values of a-a'rs corresponds to a

range of t' from about 0.7 at the left to

essentially zero at the right.

3-21



a•T•Ts when T is sufficiently large. Empirically, for a

<0.05 and .r sl0a~a, the asymptotic approach is quite close
• i0•2

(within about 10%, even for a'aTs as small as 104 , corres

ponding to transmissivities as large as 0.6). For larger values

of a, an asymptotic value is approached, whose magnitude

depends on the value of a. The particular functional dependence

could be determined theoretically or empirically (e.g., an

asymptotic value of (4/3) exp(2a) provides an excellent fit over

the range of values of a considered here).

3.2.3 Empirical formulations for scattering band models.

A study was made of possible empirical forms in the scattering

band model representation based on the previous theoretical

studies and numerical calculations. No exact explicit expres-

sions were derived for the general case, but various limiting

cases were studied, and any empirical form considered should

have the appropriate theoretical asymptotic behb:vior. The

numerical calculations then serve to select the best representa-

tion for intermediate values of the parameters.

Specifically, the function previously defined at t'

(analogous to the mean transmissivity function t for the

no-scattering limit) is desired to have the following limits:
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A) No scattering (i.01,). exp 1-f(T J where f

is the appropriate gaseous band model curve of growth,

in which a is the fine-structure parameters and Ta

the mean absorption optical depth (= ku x where k is the

gaseous absorption coefficient and ux the amount of the

absorbing gas, in reciprocal units). The function f

may include particulate absorption, i.e., be replaced by

f( a, a) + To,, where f is the pure gas curve of growth and

Sis a spectrally constant absorption optical depth

(gaseous and/or particulate).

B) Weak scattering (T s T a)

S a

in which f may include particulate absorption as in (A).

C) Constant absorption coefficient (gaseous and/or particulate).

(a ÷ ; f(T , a) ÷ • for any band model)
a a

•' +exp{l(a2 ± 2? •)½ (this is a func-

tional requirement of either the two-flux or six-flux

treatment for constant absorption coefficient).

D) Strong-line, large scattering limit (no particulate absorp-

tion)
S(Ta /a large, -T large)

a s
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-. .. f~3flV~~NU~tW~wn~unarwtr.m¶ ¶f....I......

for a random band model, with c 1 ",l and c.'.,2.4. This

important limiting behavior was derived in the previous

study and is analogous to the strong-line limit for

gaseous absorption t ex) -2(-ia a)

An empirical form satisfying (A), (B), and (C) is

(T )(a, a) (3-55)

This is the form utilized intuitively in the Vanderbilt-Slack

program. However, in limiting case (D) it approaches

P + exp(-2Ta" aa ¶s)

Alternatively, a form satisfying (A), (B), and (D) is

to = exp I-f(Ta,a) V+ f(3a~a) (3-56)

Although this form provides a better fit to the numerical values

calculated for intermediate ranges of the parameters, it does not

have the proper form to match limit (C); instead

T' + exp I-(T-a3+ 3 a2,.s)]/3. For this reason, a more elaborate

form containing all four limiting cases above is sought.

A convenient form having these required limits is

n1a~arri aa II2  2ua) n]
a' -exp-f + (--a (ac)an+ a•( (3-57)
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where b, c and n are empirical constants. Numerical evaluation

of this equation has shown significantly improved agreement

relative to the previous forms. The curve of growth f(• ,a)

may include a particulate absorption optical depth.

Figure 3-7, -9, and -11 show comparisons of the exact values

of ' previously calculated for n/10' < a < ir/l0 (solid lines)

with the approximation given by Equation (3-55) (dashed line).

This approximation is seen to be especially poor for large

8 and small a (i.e., when condition (D) should be met).

Figure 3-8, -10 and -12 show comparisons of the same values

of ' with the empirical form given by Equation (3-57) for the

case c=l, n=l, b=i/8. The improved match overall is evident.

No effort was made at optimization of the parameters b, c, and

n. It is anticiapted that an optimized version of this form

(or a very similar one) will be used in the basic formulation

of the SIRRM band model representation.

All the results shown here have been obtained for the

exponential-tailed I/S random band model. The expression for

the absorption coefficient probability distribution function

for the Goody model is so mathematically intractable as to make

it extremely unattractive for similar theoretical or numerical

studies. However, the conclusions reached here regarding proper

asymptotic and approximate forms are certainly also applicable

to the Goody model (whose curve of growth for the non-scattering

case is only slightly different from that of the exponential-

tailed 1/S model).
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Figure 3-7. Plot of E' vs. Ta for a = IT/i0 0 0 and

Ts ranging from 0 to 104 compared with

approximation (1).

0.

.5

V/1000

a

Figure 3-8. Plot of E' vs. Ta for a - n/lO00 and

T ranging from 0 to I04 compared with

approximation (3).
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Figure 3-9. Plot of E' vs. Ta for a = f/100 and

"Tsranging from 0 to 10' compared with

approximation (1).

1.0

•!: [0 , _ _ _ _ _, -- ,. .. . 1.

10-2 1O-1 1 10 102 i03 14

Figure 3-10. Plot of t" VS. Ta for a = T/100 and

Ts ranging from 0 to 101 compared with

approximation (3).
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to10

10'2ltt ,2)0 104

Figure 3-11. Plot of E' VS. T for a = fr/1O and
r 5ranging from 0 to 102 compared with

approximation (1).

0.

a O ~ 1 0 010 104

Figure 3-12. Plot of F vs. ifor a TT/1O and

uT ranging from 0 to 102 compated with

approximation (3).
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The preceding development is for single band models (with

or without particle or other gaseous absorption). In practice,

it is anticipated that methods of combining band model parameters

will be utilized which are analogous to those in current use

in gaseous radiative transfer codes (e.g., the Curtis-Godson

approximation).
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4

OPTICAL PARAMETERS OF PARTICLES

4.1. Introduction

The treatment of the gas/particles radiative transfer requires

as inputs the volume, extinction coefficients and angular scat-

tering phase functions. These quantities can be derived from the

primary optical parameters by use of the Mie theory, which des-

cribes the scattering and absorption properties of a homogeneous

sphere whose optical properties are given by the complex index

of refraction. Although the Mie theory is based upon the ideal-

ization of homogeneous spherical particles, it can be considered

as a very reasonable first approximation since real plume particles

were often found to be solid spheres (Rochelle, 1967). In

addition, higher order account of particle non-uniformity and

non-sphericity is prohibitively complex (Kerker, 1969) and not

warranted by the present state of knowledge. Exact solutions

of the wave equations are obtained by the matching of boundary

conditions at the surface of the sphere. The solutions are ex-

pressed as infinite series involving Legendre polynomiols and

Ricatti-Bessel functions. Evaluation of the formal series

solution proves computationally difficult for some ranges of

the parameters and considerable effort has been expended in the

past on the development of efficient and accurate computational

methods of evaluating these solutions. The most recent treat-

ment is by Dave (1972) and it is his approach that is being used

in the present program. A brief discussion together with the ex-

tension from single particles to particle distributions is given

in Section 4.2.
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A preliminary listing of the particulate species of interest

is given in Table 4-1 together with an indication of the availa-

bility of the index of refraction (n,) and the absorption

index (n 2 ) measured in a given temperature interval. Only four

out of nine particulate species are sufficiently known, and

these will have to serve as representatives until more informa-

tion about the remaining species becomes available.

TABLE 4-1. LIST OF EXHAUST PARTICULATE SPECIES
AND THE AVAILABILITY OF nI and n2 .

PARTICLE nI (T, A) n2 (TX) SOURCE

S 2 03 (s) 300-1800K 300-1800 Aerospace
(s) 300K 300-3000 Aerospace/PRA Estimate

MgO (s) 300-2225K 300-2225 Aerospace
ZrO2  (s) 300-600K 300-600 Aerospace
ZrC (s)
BN (s) 300K(Na-D) Kordes (1960)
B2 03  (M) 300K(Na-D) Handbook Chem.Phys.for (s)
BeO (s) 300K(Na-D) Handbook Chem.Phys.
Be3 N2

Representative results of volume coefficients and angular

scattering phase functions for AZ 2 0 3 and carbon particle distri-

butions are given in Section 4.3. The results indicate that the

large variations in coefficients and phase functions typically

observed as a function of wavelength and scattering angle for

single particles are greatly reduced when realistic size dis-

tributions are introduced. In addition, the influence of the
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OPTICAL PARAMETERS OF PARTICLES

4.1. Introduction

The treatment of the gas/particles radiative transfer requires

as inputs the volume extinction coefficients and angular scat-

tering phase functions. These quantities can be derived from the

primary optical parameters by use of the Mie theory, which des-

cribes the scattering and absorption properties of a homogeneous

sphere whose optical properties are given by the complex index

of refraction. Although the Mie theory is based upon the ideal-

ization of homogeneous spherical particles, it can be considered

as a very reasonable first approximation since real plume particles

were often found to be solid spheres (Rochelle, 1967). In

addition, higher order account of particle non-uniformity and

non-sphericity is prohibitively complex (Kerker, 1969) and not

warranted by the present state of knowledge. Exact solutions

of the wave equations are obtained by the matching of boundary

conditions at the surface of the sphere. The solutions are ex-

pressed as infinite series involving Legendre polynomials and

Ricatti-Bessel functions. Evaluation of the formal series

solution proves computationally difficult for some ranges of

the parameters and considerable effort has been expended in the

past on the development of efficient and accurate computational

methods of evaluating these solutions. The most recent treat-

ment is by Dave (1972) and it is his approach that is being used

in the present program. A brief discussion together with the ex-

tension from single particles to particle distributions is given

in Section 4.2.
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temperature on the coefficients and phase functions for solid

carbon is minimal.

In the last section, we recommend a scheme for the Data

File that combines flexibility and minimum requirements in the

operation of the SIRRM code.

4.2 Formalism of the Mie Scattering

4.2.1 Single particle. In the Mie theory, the primary

quantities:

S1 (a,n,o)

S2 (a,n,E)

Qext (a,n)

Qsca (a,n)

are calculated (Van de Hulst,1957) where S and S are amplitude
1 2

functions related to the planes of polarization, Qext and Qsca

are the extinction and scattering eEficiencies, a is the size

parameter (a=2nr/X, with radius r of scattering sphere and wave-

length X), n is the refractive index (n=n(X)=nl(X)-in 2 (X)) and

0 is the angle between the directions of incoming and scattered

radiation. After the primary quantities are calculated, the

j intensities of the scattered radiation and their degrees of

polarization can be determined. The calculation is simplified

by repeated use of recursion relationships and efficient

computing methods have been developed (Deirmendjian, 1969; Dave

1969, 1970A, 1970B). In the following, the approach taken by

I .Dave (1972) is briefly described.

4-3



The intensity scattered by a single spherical particle

per unit solid angle for unity incident intensity is given by

I(anG) (Tr2) Qs(a,n) M(a,n,O) (4-1)

where M(a,n,e) is the normalized scattering phase function, which

is given by

nM(a,n,e) =kl Ak(aln) Pkl(COS )) (4-2)

where Pk-l(cos 0) are the Legendre polynomials. The coefficients

of the Legendre series are given by

A~n = r(1) (2)1Ak(a,n) = a2Q (a.,n) [Lk (a,n) + Lk (a,n)]

where the functions Lk(1),(2)(a,n) are computed from the values

of the complex Mie amplitude an(a,n) and bn (a,n). The extinction

and scattering efficiencies are given by
00

Qe(a, n) 2 (2n+l) Refan + bn}

00 (4-3)
(an) 2 E (2n+l) {1an1 2 + IbnI 2 }•sca~an a 2FI nn2

The amplitudes a and b are expressible in terms of the sphericaln n
Bessel functions of the first and second kind. Using the method

of logarithmic derivative function An (a,n) of the Bessel functions,

the numerical computations are facilitated. However, difficulties
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exist in computing A n(a,n) under certain conditions (Deirmendjian,

1969). Kattawar and Plass (1967) found that these difficulties

can be avoided by using a downward recurrence scheme for A (a,n)

which is basically stable. Dave (1972) has adopted this scheme

in his approach.

4.2.2 Particle size distribution. Since rocket exhaust

plumes do not, in general, consist of particles with only one

fixed size, it is necessary to investigate the characteristics

of size distributions. These characteristics are described by

the volume extinction coefficient a ext' the volume scattering

coefficient asca' the volume absorption coefficient 8 abs and

the normalized scattering phase function M(O). These quantities

ferent size distributions. They can be expressed as

K
M(O) = Ak(r.) Pk-l(Cos 0) (4-4)

k=i

and
r.
3

Oz (rj) = f Qz (a,n)r 2 N(r)dr (4-5)

min
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where z stands for ext, sca or abs. The normalized Legendre

coefficients become

rj

Ak(rj) A2  rf Lk(a,n) N(r)dr (4-6)
S sca (r)

min

The phase function is normalized according to

fM(e) sinededO = 4n

47T

The distribution N(r) is given by

N(r) = Nf(r) (4-7)

where N is total number of particles per unit volume and

f f(r)dr = 1. Dave (1972) has made provisions to use any

0
one of three different size distribution functions. We are

interested in the discontinuous power law type

f(r) =C for rmin < r r

(4-8)

v+1f(r) = C(rm/r)v for rm < r 4 rmax
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and the modified gamma function

f(r) - a roe-bryfor rmin 4 r < rmax (4-9)

It is found that the modified ganmma function is representative

of size distributions encountered in exhaust plumes with

A£20 3 particles (Dawbarn, 1978). However, many different size

distributions have been encountered which sometimes depend upon

the method of collection (see Figure 4-1). The coefficients

a, a, b and y can be adjusted to represent any of the measured

or calculated size distributions.

70-

60-C:

0)= ,Distribution 2

U NS•o 40-N

-N

304-7
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The parameters for the modified gamma function are not in-

dependent of each other and they have to be adjusted in a certain

manner to obtain a given size distribution that has its maximum at

radius rm This interdependence was investigated. The four

parameters may be reduced to two by utilizing the conditions

d f(r) 0 for r = rm (4-10)
dr

and
00

f f(r) - 1
C

These conditions lead to

a/b = rm (4-11)

1 = a y-I b-& r() (4-12)

where + = and r(E) is the gamma function. At r = rm.,Y

f(r) must assume a value between zero and unity (as determined by

experiment). Introducing Equations (4-11) and (4-12) into (4-10)

and solving for rm results in

- a$ e (4-13
f(r) =r (4-13)

m

Assuming upper and lower values for f(rm) , Equation(4-13) has

been solved for f(rm)%l and f(rm),. 2 using different values

of a and y The solutions are shown graphically in Figure 4-2.

A family of curves is made up for a given a , the upper and
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lower limits of which are given by f(rm)%l and f(rM)%.2

Thus, pairs of a and y can be chosen to describe any size

distribution for rm between 0.01 and 10 pm. The choice is

dictated by the known (measured) standard deviation of the dis-

tribution function. The higher values of ca and y produce

smaller standard deviations.

A I

7=1 1ý r7 1 10 ..

at gve r a dterie bypar

---- nd TMa=-

. 01. lo I

Figure 4-2. Families of Curves for which 0,2- f(rm )_ I

at a given r M as determined by pairs
of y and a•.
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Following a similar argument as was presented above for the

modified ganmna function, the adjustable parameters in the dis-

continuous power law (Eq. 4-8) are determined through

r

f f(r) - C f dr + C rm V+l r-(V+l) dr = 1
o o r

rm
r

mV = _

i/C-rr

Based on a review of existing experimental data (Rochelle, 1967),

we have chosen r = 0.03 pm for solid carbon particles and C = 1.

With these assumptions, then v•0. The size distribution is

shown in Figure 4-3. It resembles that used by Stull and Plass

(1960) which was based on data by Tesner (1959). Included in the

same figure is also the size distribution based on Equation (4-9).

IT:

.8 II

.6 ! i

f(r) A .

7 "T
.4

.2 ,1 i

,5 1 1.5 2.0
r (m)

Figure 4-3. Size Distribution of Solid Carbon Particles in Rocket
Exhaust, based on the Two Distribution Functions Des-
cribed in the Text. Distribution used by Stull and
Plass (1960) is indicated by (+).

4-10



4.3 Optical Paramenters

A set of representative values of nj and n 2 were collected

by the Aerospace Corporation for AZ 2 O3 , C, MgO, and Zr02

(Whitson, 1975). Additional data for these particles were pre-

sented by Dowling and Randall (1977) in part based on experiments

conducted during the "Particle Optical Properties Measurement

(POPM) Program". Our effort was concentrated in comparing these

data and study the influence of higher temperatures.

Carbon

As an example of the wide differences of measured refractive

index n,, and absorption n 2 , Dowling and Randall have compared

data on polycrystalline and pyrolytic graphite, pressed carbon soot,

and a microcrystalline polished slab of graphite. The results
for n 2 are shown in Figure 4-4. We have added the NASA Handbook

2.6-

2.4

2.2-

2.0
......... ................... Vrolytic graphite....... ....... .......... ..................... .............

n 2 1.,6 - r . ... ....

1.1.2 \polycrystalline graphite1.4- -/ - -....-....-..-..

.2 icrocrystalline polished

1.0- r.s.

0.8-\
0.6- 

pressed carbon soot

0.4 - - - ..."- NASA handbook

0.2

500 1000 1500 2000Sicm"]5
Figure 4-4. The Absorption Index of Carboy Materials iy

the Wavenumber Region 400 cm- to 2 200 cm-
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data for room temperature. The "repreaentative" values chosen

by Whitson are those for the polycrystalline graphite.

In addition to room temperature data, the NASA Handbook

lists high temperature data for the absorption coefficient of small

carbon particles. Theae data were based in part on theoretical

work and in part on measurements. We have extrapolated those

data to 3000 K and to X = 25 pm, using the relationship

k-k k

to convert the absorption coefficients kc (cm2 /gm) into absorption

indices, where po = 2g/cm3 was chosen as a representative

value for the density of carbon. The results are plotted in

Figure 4-5. We recommend to use these values fr.r n12 until more

experimental data become available. For large particles Lonipared

with X, the computed particle emissivity cpproachcs the emissivity

of a plane bulk sample. Dowliag and Randall have calculated

E n .71 for A < 25 pm, choosing ni = 3 and n 2 = 1. Using the

same formula, we have calculated En parametrically for 0 < n , 4

and 0.5 < n 2 < 1.5. The results are shown in Figure 4-6.

Measured spectral emissivities as reported by Whitson range from

.8 to 1.0 for different samples of graphite (except for pyrolytic,

c-face) in the temperature regime from 1100 to 2800 K, pointing

to a somewhat lower value of n at higher temperatures.
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.4~~1 'M .... .
q.....

The only high temperature data for n listed by Whitson

are due to N. K. Krascella (1966), and are plotted in Figure 4-7

together with Whitson's "representative" values at room tompera-

ture and our extrapol.ation 'to longer wavelengths.

4.4//

4.(

3.

-- 300 K
|3.

2.l
/ 2250 K

2A

U. 2! 5 .5 7 1.0 15!5 I 17.5 201 22.5 25.
UAVELENGTH(MICRONS)

Figure 4-7. n,(Carbon) vs. A for T ," 300 and 2250K,
based on the Compilation by Whitson
and our Extrapolation.

Experimental reflectivity measurements in the POPM program

at 300 and 678 K were used to determine nI and n2  of Ak. 20 3

(Dowling and Randall, 1977). The results are shown in Figure

4-8 and 4-9 and they indicate that n, and na2 are reduced at
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n,

"0300 K

"" 678 K

St i I I " I I I

S00 1000 1100 lo00
Wavenumber (cm )

Figure 4-8. The Refractive Index (nj) of AX20 3 in the
Region 400 cm& to 2200 cm- 1 as Determined from
a Kramers-Kronig Analysis of Reflectivity Data
taken at T-300 and 678 K (Dowling and Randall, 1977).

n 2

2 300 K

l 6-6'8 K _

500 1000 1500 2000
Wavenumber (cm"

1)

Figure 4-9. The Absorption Index (n) of At O3 in the
400 cm- 1 to 2200 cm- 1 as )Determined from a
Kramers-Kronig Analysis of Reflectivity Data
taken at T-.300 and 678 K (Dowling and Randall, 1977).
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higher temperatures in the resonance region, A comparison with

the "representative" values by Whitson shows good agreement for the

room temperature data. Also the qualitative behavior at higher

temperatures in the resonance region has been observed by B. Piriou

(1966). The data as presented by Whitson are shown in Figures 4-10

and 4-11.

13.

10.

9.

n
293 KN 1773 K

Figure 4-10. n,(M 2 0 3 ) as a Function of A-

Fir T. nTemperatures as Pre-

sented by Whitson (1975).
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n2 19- /\'1773 K:

11l-2

ii
2' 5' 5 O 1 7. 20. 2. 5-M

Figure 4-11. n 2 (AZ20 3 ) as a Function of X
for Two Temperatures as Pre-
sented by Whitson (1975).

M90
if,

M. E. Whitson (1975) has listed experimental data of

ni and n 2 taken by several workers. All of these are in general

agreement and the "representative" values at room temperature

are based on these values. There appears to be little or no

dependency on temperature, as the data by B. Piriou (1966)

indicate (see Figure 4-12 and 4-13). The experimental study

and subsequent data analysis using classical dispersion theory

by Dowling and Randall (1977) confirm these data. A comparison

of n, and n 2 with Whitson's representative room temperature data
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Figure 4-13. n 2 of MgO vs. X for Three Different Temperatures.
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show good agreement (see Figures 4-14 and 4-15). In addition,

Dowling and Randall's data at elevated temperature (573 K) show

little or no temperature dependency (see Figures 4-16 and 4-17).

rOp

Whitson's report does not contain any data of n, and only

a limited set of n 2 at room temperature between 5 and 9 jim.

Thus, the data obtained by Dowling and Randall filled an important

gap. The reflectivity between 400 and 2200 cm' was measured

at room temperature and 573 K. The spectral structure is similar

to that reported by Whitson, albeit lower by about 20%. TheF results for n, and n2 are shown in Figures 4-18 and 4-19,

respectively.

4.4 Numerical Results for Ak2 03 and Carbon

The volume extinction, scattering and absorption coefficients

and the scattering phase function have been calculated for AM2 0 3

and carbon with a code developed by Dave (1972). These two

species are the most important particulate constituents in

present missile exhausts and possess very different optical and

geometrical properties. Thus, the results give insight into

the functional dependencies of 8 and M on size distributions,

wavelength and temperature. For AX 2 0, the modified gamma

function was used for representing the size distribution 2 as

given in Figure 4-1, viz.

N(r) m NI.0551 y e"'004r4I
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Figure 4-14. Ccmpari.son of Index of Refraction (nj) for MgO,
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Figure 4-15. Comparison of Absorption LIdex (n 2 ) for MgO.
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Figure 4-16. The Index of Refraction (n,) of MgO from 400 cm
to 2000 cm- 1 as Derived by Classical Dispersion
Analysis (T - 3000K).
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Figure 4-17. The Absorptfon Index (n 2 ) of MgO from 400 cm- 1

to 2000 cm"f as Derived by Classical Dispersion
Analysis (T = 300 0 K).
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Figure 4-18. The Refract.ve Index (nd) of ZrO2 from 400 cm-1

to 2000 cm-- as Determined from & Kramers-
Kronig Analysis of the Reflectivity Data.
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Figure 4-19. The Absorption Index (n 2 ) of Zr02 from
400 cm- 1 to 2000 cm-r as Determined fron a
Kramers-Kronig Analycis of the Reflectivity Data.
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The total number of particles chosen was 10 cm which cor-

responds to a mole fraction of about 30% when the mean radius

is 5 urm. The min and max radii chosen were l and 9 um,

respectively. The input for amin, amax, n1 and n2 as a function

of A for a temperature of 1773°K are given in Table 4-2,

TABLE 4-2. INPUT PARAMETERS USED FOR At 2 03

am a n

G (m) min amax 11 n2

1 6.29 56.55 2 1.5-3

3 2.09 18,85 2 2.0"3

5 1.26 11.31 2 6.0"3

7 .90 8.08 1.5 1.8"2

9 .70 6.28 1.2 8.0-2

11 .57 5.14 .5 .3

13 .48 4.35 .3 1.0

15 .42 3.77 .3 2.5

17 .37 3.33 .5 6.0

19 .33 2.98 4.0 .6

21 .30 2.69 3.5 .8

23 .27 2.46 3.0 6.0

25 .25 2.26 5.0 1.0

The results for the volume extinction, scattering and ab-

sorption coafficients and albedo (W = 0sca/ext) as a function

of X (in steps of 2 um) are listed in Table 4-3 and the angular

scattering functions M(e) as functions of e are shown in Figures

4-20 through 4-32. It can be seen that the scattering becomes

more and more isotropic as the wavelength increases. This is also

shown in Figure 4-33, where the ratio of the side to forward

scattering component is plotted vs, X.
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TABLE 4-3. Results for 8ext, 8sca, Babs

and - as a Function of A for
AZ 203 Particles in Rocket
Plume Exhaust at 1773K.

I(IAM) b t Be0 a Saba

"1 2.182 1.961 .221 .899

3 2.374 2.237 .138 .942

5 2.517 2.259 .258 .897

7 2.983 2.550 .433 .855

9 ).641 .893 .748 .544

11 1.800 1.164 637 .647

13 2.o83 1. 77 .806 .700

1: 3.890 3.331 .559 .856

17 2.760 2.637 .123 .955

19 2.848 1.540 1.307 .541

21 2.941 1.499 1.442 .510

73 2.760 2.217 .543 .803

25 2.808 1.534 1.224 .564

The dependency of 8ext, 8 sca, aabs and M(e) .on the temperature

is not expected to be strong, since ni and n 2 do not show large

variations due to the temperature. As will be seen for carbon

particles, relatively large variations in n2  due to temperature

produce only moderate variations in the coefficients and negligible

ones in the scattering function. Similar results for the efficiency

factors of single aluminum particles were also found by Plass (1965).
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Figure 4-20. Angular Scattering Phase Function M(6)
for AM20 3 at X 1 tim.
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Figure 4-21. Angular Scattering Phase Function M(e)
for AL 2 0 3 at = 3 pm.
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Figure 4-22. Angular Scattering Phase Function M(8)
for At£20 3 at A 5 im.
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Figure 4-23. Angular Scattering Phase Function M(e)
for A120 at A 7 pm.
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Figure 4-24. Angular Scatteriug Phase Function M(O)
for A:.20 3 at A 9 ujm.
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Figure 4-25. Angular Scattering Phase Function M(e)
for Ax, O3 at X 0lm.
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Figure 4-26. Angular Scattering Phase Function M(e)
for AX 20 3 at X = 13um.
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Figure 4-27. Angular Scattering Phase Function M(e)for AM2 0 3 at A = 15i•m.

101-

100

101

10-1

0 0 180
Figure 4-28. Angular Scattering Phase Function M(e)

for At 203 at A = 17 pm.
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Figure 4-29. Angular Scattering Phase Function M(e)
for AM20, at X = U9nm.
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Figure 4-30. Angular Scattering Phase Function M(O)
for A9.203 at X = 21 pm.
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Figure 4-31. Angular Scattering Phase Function m(e)
for AM2 0 3 at A = 23 pm.
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Figure 4-32. Angular Scattering Phase Function M(e)
for At 203 at X =25 Jm.
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Figure 4-33. Ratio of Side to Forward Scattering
Components vs. Wavelength for Ak203
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For the second particulate species, the volume coefficient

and angular scattering functions have been calculated for carbon.

The discontinuous power law was used to represent the size dis-

tribution as reported in the literature (Rochelle, 1967), viz.,

N(r) - N for .01 < r < .03 Pm

N(r) - N('3 ) for .03 < r < 2 pm

The total number of particles was arbitrarily chosen to be

l0 10cm-' which corresponds to about 20% mole fraction

(rmean • .02um). The inputs for amin, arax, ni and n2

are listed in Table 4-4. In order to study the influence

TABLE 4-4. INPUT PARAMETERS FOR CARBON PARTICLES

A a n a III Y12 n2
(1000K) (2500K)

1 .013 18.8 1.5 .3 .5

3 .0042 6.25 2.7 .37 1.1

5 .0025 3.77 3.0 .4 1.5

7 .0018 2.69 3.5 .4 1.9

9 .0014 2.09 3.7 .4 1.7

11 .0011 1.71 4.1 .32 1.3

13 .0010 1.45 4.4 .29 1.1

15 .0009 1.26 4.7 .23 .9

17 .0007 1.11 4.8 .21 .75

19 .0006 .99 4.8 .18 .6

21 .0006 .90 4.8 .15 .5

21 .0005 .82 4.8 .13 .*

25 .0005 .75 4.8 .12 .3 -
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of the temperature, n2 is given for 1000 and 2500K. The results

of 8ext, 8aca' Saba and W for 1000 and 2500 K are shown in

Tables 4-5 and 4-6. Although the absorption index is higher by a

factor of about 3 for the higher temperature throughout the wave-

length region from 1 to 25 pm, the parameters 8ext, 8 sca' 8 abs

and w are not greatly affected. The influence on the scattering

phase function is even less, as can be seen in Figures 4-34 through

4-46.

As for Ak2 0 , we have used the ratio of the phase function

at 900 and 00 to indicate the degree of isotropic scattering of

C(s). The ratio is plotted in Figure 4-47 and compared with that

of AX 2 0 3 .

TABLE 4-5. Results for 8ext' asca' 8abs

and _ as a Function of X for

C(s) Particles in Rocket
Plume Exhaust (T = 1000 K,

N = 101 3 /cm 3 .

AGM) Oext Seca Saba

1 1921 934 987 .486

3 2134 1107 1027 .519

5 2096 1075 1022 .513

7 2006 1.039 968 S1I

9 1885 962 922 .510

11 1698 812 886 .478

13 1578 g00 778 .307

15 1407 717 690 .510

17 1305 661 643 .507

19 1308 693 614 .530

21 1229 746 484 .607

23 954 588 365 .616

25 819 475 344 .580
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TABLE 4-6. Remults for $ext' asca' 0abs
and Z as a Function of A for

C(s) Particles in Rocket

Plume Exhaust (T - 2500 K,
N - l0 1 3 /cm3).

A(mr) Aeat sees labs

1 1927 936 992 .486

3 2137 1106 1031 .518

5 2095 1082 1013 .524

7 1977 1044 932 .528

9 1844 927 917 .503

11 1698 812 886 .476

13 1560 714 646 .458

15 1415 610 805 .431

17 1283 520 763 .405

19 1198 481 717 .402

21 1090 461 629 .423

23 913 397 517 .435

25 777 327 450 .421

10 3

- 1000K
- ------- 2500K

102

M(8)

101

i0 .___.__.__.___.
100 ISO

Figure 4-34. Angular Scattering Phase Function M(e)
for Carbon Particles at X - 1 pm.
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Figure 4-35. Angular Scattering Phase Function M(8)
for Carbon Particles at ;, - 3 prm.
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Figure 4-36. Angular Scattering Phase Fu•nction M(0)

for Carbon Particles at X, 5 0m.
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Figure 4-37. Angular Scattering Phase Function M(0)

for Carbon Particles at A - 7 pm.
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Figure 4-38, Angular Scattering Phase Function M(e)
for Carbon Particles at X 9 pm.
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Figure 4-39. Angular Scattering Phase Function M(e)
for Carbon Particles at pm = 1i m.
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Figure 4-40. Angular Scattering Phase Function M(e)
for Carbon Particles at X =13 Um.
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Figure 4-41. Angular Scattering Phase Function M(O)
for Carbon Particles at X = 15 rim.
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Figure 4-43. Angular Scattering Phase Function M(o)

for Carbon Particles at X = 197rm.
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Figure 4-44. Angular Scattering Phase Function M(e)
for Carbon Particles at X = 211Jm.
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Figure 4-45. Angular Scattering Phase Function M(e)
for Carbon Particles at X =23 um.
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Figure 4-46. Angular Scattering Phase Function M(O)
for Carbon Particles at x =25 pm,
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Figure 4-47. The Ratio of the Phase Function at
900 and 00 Scattering Angle as a
Function of Xa for AZ 2 0 3 (+--+)
and C(s) (o---o).

4.5 Recommended Data File and Update Procedure

Based on the studies of the scattiring properties of

particles performed during Subtask IA it is recommended that

SIRIZM shall include

(1) a permanent Data File of n (sT), n (X,T)
Sd dexT ) )sd 2
,(X,), ' ext and ' (AOT) for

each species s and for each size distribution

d; (this Data File may be minimized to as few

temperatures and size distributions as indicated

by experience);
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(2) a subroutine that allows the user to update this

Data File or add to it as new optical para-

meters (n 0),T), n (A.T) and size distributions)
become available;

(3) a subroutine that compares the size distribution

as calculated by the JANNAF flow field with those
stored in the Data File and that will indicate to

the user whether or not the stored size distribution(s)

is (are) sufficient. We consider also the option

of an automatic updating.

The advantages of the recommended approach are the following:

- Computer time is minimized by using a stored Data
File;

• Storage requirements are minimized by using as fewr•, size distributions for each species as possible;

Flexibility is maintained by allowing the user to up-
date the Data File at his discretion;

• Indication is given to the user before execution whether
an update of the Data File in terms of new and/or
additional size distributions is necessary.

A tentative logic flow diagram of the recormmended approach is

shown in Figure 4-48. After the JANNAF flow field is read in and

the relevant flow field positi.ons for the line-of-sight cal-

culations are determined, a subroutine calculates the analytical

expression for the size distributions for each position. This

is necessary since the JANNAF flow field does not give the

analytical expression but does provide the number density for

several specific particle sizes (private communications, S. Dash,

May 1979). Different analytical expressions will be use(i,

L
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Figure 4-48. Logic Flow Diagram of Data File Update Procedure
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such as the discontinuous power law for particles with very

small radii (carbon) and modified gamma function for particte.;

wl 11h hirlger r(dii (AV. 0) , etc.)

The computed size distributions will be compared with

those already stored in the Data File. If the differeiices

are minor (criteria must yet be established) no undate is

required. If the differences are major, next' Osca and M(0)

may have to he calculated and stored in the Data File. If the

decision for an update is desired to be automatic (probably a

default input), SIRRM will read the appropriate n and n and
1 2

will calculate 0ext' sca and M(0). If the decision is not to

be automatic, the user has the option whether or not new values

Sof Sext, asca and M(O) should be calculated. As more experience

is gained about the influence of different size distributions

on the radiation field using the six-flux and N-flux models, the

decision about updating the Data File may become straightforward.
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