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1. INTRODUCTION

There are many situations in which the Kalman filter and smoother are applied,
where some of the assumed input parameters (usually the plant noise are measure-
ment noise matrices, Q and R) are unknown. The response to this problem in some
cases has been to modify the filter to generate estimates of Q and R as part of
the filter, or to modify the filter gain to allow for the fact that Q and R are
unknown (ref.1). A summary of these various approaches has been given by Mehra
(ref.2). It is noted that the incorporation of the estimation of Q, and R
within the filtering process is feasible only when there is enough incoming
information from the data collection system. That is, either Q and R must be
varying slowly enough for them to be determined within a time scale less than
that of their rate of change, or else the state vector, Xy must be overdetermined

by the measurements Yx at each data time ty-

In applications of the Kalman filter and smoother as a general purpose tool on
a testing range(ref.3), Q is normally unknown, and in many cases may be required

to vary rapidly over short periods of time. This particularly occurs when the
smoother is used to process data from cameras monitoring incidents such as inter-
ception, and sharp changes in acceleration. The application of the Kalman

filtering and smoothing algorithms in such cases is then of necessity sub-optimum,
and the practice has been to use the specification of Q as a tool to control the
bandwidth of the filter and smoother. In fact this approach has been so success-
ful in practice that it has been found unnecessary to include deterministic
changes in acceleration components when monitoring, say, sharp changes in accel-
eration. This is despite the fact that Q does not then represent a white noise
process, as required by the filter model. (This use of Q is similar to that
made sometimes in overcoming filter divergence (see Jazwinski(ref.4) p305)).

The altered use of the plant noise matrix, Q, requires a different interpret-
ation of the Kalman filter and smoother, and it is the purpose of this paper to
show how, for the particular general purpose smoother of reference 3, to derive
analytic expressions for the filtering gains and the smoothing frequency bandwidth
as a function of Q.

As a by-product of this derivation, functional relationships which further
elucidate the differences between the Kalman filter and the smoother appear.

In particular, the clear superiority of the smoother over the filter becomes
apparent when position measuring devices are used to estimate acceleration changes.
This reinforces in a different and more specific way the existing general recog-
nition of the comparative performance of the filter and the smoother(ref.5,6).

2. PROBLEM PRESENTATION AND ASSUMPTIONS

The model which will be utilised is basically that of the general purpose
Kalman smoother (ref.3), except that the analysis will be restricted to one-
dimension. This restriction should not unduly limit the applicability of the
results that are obtained, since it is usually possible to find an axis system
in which the filter operates essentially independently in each axis. (That is,
axes are aligned with the eigenvectors of the measurement noise matrix, R).

Thus the state vector, Xk’ at time tk’ will be a 3-component vector of missile
position, velocity, and acceleration. The equations of state are then -

X = Pk k-Dx o+, (1)

where E(akukT) = Qk’ E(Qk) = 0, and 9 is the plant noise.
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Here ¥(k,k-1) is the transition matrix defined according to a constant acceler-
ation model. Thus, for h = (tk—tk 1),

1, h, h%/2
(I)(k’k"l) = 0, 1, h
0, 0, 1

The equations describing the measurement system are

Sy H,0x, + v
k k 7k k’
(2)

E(Vk va) = Ry, E(Vk) = OQ}k is the measurement noise).

We also assume that the measurement system directly (rather than indirectly)
measures position, so that, if there are m measurements at time tk’ Hk is an mx3

matrix which is zero except for the first column which is all ones.
The filtering algorithms are then

*k/k-1 Plok-1) x4y g5 b
Pr/k-1 = ®UGk-1) P gy o (k,k-1) + Qs
" = 1 R H
$y = H R By, ( (3)
Pk T Pran @ O P 00
and
ko T Xxsker Pk Sk

J

Here 6yk is the vector of differences between the data and the data implied by
Xk/k-l' In particular, 5yk = Hk(xk_xk/k—l) *+ 7, since we are assuming direct
measurement. Fk is the information matrix, and will always be zero except
(Fk)11 =7, say. In interpreting Fk and fk it should be noted that if there is

a single measurement of position, with standard deviation 0 at each data time
t,» then () = 1/6%, and (§k)1 = Oy —(xk/k—l)l)/oz' We may use this know-

ledge of the form of Fk to replace the fourth and sixth equations of the system
of equations (3), by the single equation

Xk S AX g1t pr X, 4)

and we have found it convenient to define A = (I - PN, 5)
In defining Qk’ there are two equally reasonable approaches.

If, as is usually the case, equation (1) is a discrete approximation to a
continuously evolving system, then we may model the noise, Qk’ by assuming it

to arise from a continuous white noise in the acceleration component. Thus
dQ/dt = g, say, and the discrete Qk may be found by integrating the continuum

equivalent of equation (3) from tk_1 to tk' {The form of the integral becomes
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obvious if it is envisaged that there are a large number of '"dummy' data points
inserted between tk_1 and 13% for which there is no incoming data. i,e.

'=¢ =o0. Equation {3) is then recursively applied through these points).
Thus we have

Q = .[tk $(t, - 7)dQ/dr ¢I(t -T) dr
k k k
t

k-1
1/20 °, 1/8 h*, 1/6 h?

ql 1/8 n*, 1/3n®, 1/2 h?
1/6 h®, 1/2 n?, h

It is slightly less accurate to assume that noise is added to the acceleration

component in ''lumps" of hq = q at each data time. Then
0, 0, O
Q = q|0, 0, 0. (6)
0, 0, 1

The two definitions might be expected to give divergent results only when data
is arriving at sufficiently irregular time intervals, (in which case the
definition (6) would be less reasonable).

In the present analysis, however, we are looking for steady state relation-
ships linking Qk with other filtering parameters, and it is therefore reasonable

to assume a constant data rate (h = tk_tk—l’ all k), and to use the much simpler

definition (6). This definition will in any case give answers accurate to o(h).
The final equation needed to complete the filtering system arises from the
assumption of a steady state in the filtering process. Then
Pr/k = Pk-1/k-1 T B s (7

and we set

Plet/k © Pr/ker T F
The smoothing system is defined by
XN T sk T SN T Freid (8)
where
G = P ¢I(k+1,k)P£i1/k = poptt = .

The equation for P in equation (3) and equation (5) can be used to alternat-
ively express C as

c = pAl p1, (9)
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3. BASIC FUNCTIONS AND DEFINITIONS

3.1 Impulse response sequence
The impulse response sequence, H (n), of a digital filter is defined such

that

o0

f(n) = Z H(k) g(n-k),

= .00

where g(n) is the signal sequence, and f(n) the filtered signal(ref.7).
For the filter, as defined by equation (4) we may show that

_ N
Xk T Z AP I X

=0

=

and hence the filter impulse response sequence is

B (0 , n <0,
He@ = nopr, n>o. (10)

To derive the impulse response sequence for the smoother we take the basic
recursive relation of equation (8) and reformulate it by repeated substitution

of xk+1/“y xk+2/“>to give

and hence

L (1-c®).

where we have set T = P~
-L, and then breaking up the summation over N into 2

By substituting N = J

-1 J
parts zg: + ZE: we have
e~ (s}
J

oo e o]
T.J J+N J-N
Xgjoo = P Z AT Z A Phx, o+ Z A 21 S

J=0 N=1 =0
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o0

If we define T = ;{: (AT)JT AJ, and reverse the order of the second summation,

J=0
we may show by manipulation that

o0
X o = PT Z Apx, o+ P Z @hHN TPMx,

N=1 N=0

Thus, the smoother impulse response sequence is defined as

pr AN pr , N>o,

HN) =
s pal)™N 10, N <o, (11)

and by manipulation of the definition of we may show that satisfies
T = T+A TA

Instead of solving this equation for T, it is slightly more convenient to
use an associated matrix S, defined as

oo

s = Z ahHre A7,

J=0

S satisfies

s = It + aTsa. (12)
We may show that

TA = P'A - ATPTI®A = p1d - ATpTIdA - T@,
and hence that
T = (P! &39)A™!. (13)

Filter system gains

If at a time tk there is a step in (xk)l (position) of D, then the filter
will respond with a correction of Da, to the predicted position coordinate.
G; is called the filter gain with respect to position. Its inverse is the
approximate number of data points required before the filtered state vector
xk/k will fully respond to the step change D in position.

By considering step changes in velocity and acceleration in the input
signal we may arrive at similar definitions of @, and a3, the velocity and
acceleration filter gains respectively. These definitions are in fact
equivalent to the definitions of the gains a, f and ¥ of the a-f-y filter.
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Although a; represents the (non-dimensional) bandwidth of the filter with
respect to position, equivalent statements cannot be made of a, and a3z, for
reasons which will become more apparent in Section 5.

For a step change D in position at t, ., we have

T .
g.k - (7D30:0)’

and hence from equations (3),

Da, = (P§k)1 = Py1 7 D.

(Here we have used the notation

P = (Pij); i,j = 1,2,3).

Hence
a, = v Pyq. (14)

In the same way a step change of D in velocity will lead at the next data
time to an error in predicted position of hD. Then §T = (YhD,0,0), and the
initial correction to velocity is an amount

Da; = (P$)2 = Py,vhD.
Hence
@ = 7YhPia. (15)
Similarly we can show that

a3 = 1/2 v h? Pys. (16)

4. ANALYTIC SOLUTIONS

Filter

Letting P' = (ng), and d = (1 + vP11) ', the equation for Pk 1D

equation (3) may be expanded to give

7 - { 7 -

P}l, Pia , . P}3_ .
P = d P}z, P%z/d - 7P}§} , P?3/d - 7P}2_P13

Pis, P23/d - ¥P12 P13, P33/d - vP}3

The equation for P in equation (3) may be similarly expanded to give

k/k-1
P’ ‘in terms of the Pij' The steady state condition (7) may then be applied
to eliminate the P;j; and give 6 equations (note P and P' ‘are symmetric) in

the 7 parameters Pii, P12, P13, P22, P23, P33 and q. Thus, as expected,
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specification of q determines P, and in particular the filtering gains which
are related to P;i, Piy and P;3.

The equations (after some manipulation) are

dq = ’YP%B:
dhP33 = 7YPy3 Pia,
(1-d)Py3 = d(hPys + 1/2 h? P33),
1/2 ¥P3, = d(hPy5 + 1/2 h* P33), (17)
(1-d)P;, = d(hP;, + hPy3 + 3/2 h*Pp3 + 1/2 h3P33),
and 0 = (2hPy; + h?Py3 + h?Pyy + h3Py3 + 1/4 h%Ps3).

Here we have chosen to carry d separately, since we may use equation (14)
directly to show that d = 1-u,.

By substituting from equations (14) to (16) we may solve the equations (17)
to give the functional relationships

4ajas = di,

and (18)
aj - 4(2-a;)a, + 4ai = 0.

+

If we define g = 2-a, 2(1-a;), we may show by manipulation that

a, 2a} /g, and az = a}/g?. (19)

Note in particular that the relationships (18) and (19) are dependent only
on the structure of the filtering system (the constant acceleration model for
missile dynamics, the plant noise model, and the position measuring instrum-
entation), and not on the parameters of that systen.

An alternative form of equation (19) which may be useful is found by
setting r* = (1-4;). Then

a, = 1-r*, a, = 2(1-r)?, and a3 = (2-1)3/(1+1). (20)

The equation for the noise increment, ¢, may be found by substituting for
P13 in equation (17):

q = 4a3/(avn*).

This equation may alternatively be reconstructed so as to define a non-
dimensional parameter of the filtering system,

€2 = aj/(1-a1) = <vqn'/4, (21)

and € will then determine all other variables in the system.
In terms of r, equation (21) becomes

€ = (1-r)%/(r(1+r)).

The remaining terms in P may also be found from equation (17):

P22 = a2 (12-10a, —(1.2;/(8}12’)’0«1 (1-a1)),
P3 = a3z(2a,-a2)/(h” v(1-a:1)), and
P33 = 2a2 Cl.3/(h4 7(1-(1'1))'
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4.2 Smoother

Having obtained P, ® and I' in analytic form, it is obviously a straight-
forward step, though perhaps tedious, to substitute in the equation (5) and
(9) to find the smoothing matrix, C, in analytic form. However, rather than
follow this path, we choose to seek an analytic form of S, which plays a key
role in the impulse response form of the smoother (equation (11)), and which
will also be important in determining the step function response in Section 5.

We may immediately note from the definitions of A and S, and our knowledge
that P « 1/, that A is independent of 7, and S « 7.

To examine the dependence of these functions on h = (tk - tk—l) we note

that
@, «ni7i
1]
and
p.. « h2~i_j.
1)

It follows from the definition of A that

A, « hj‘i,
ij

and hence we can show that equation (12) is satisfied if
i+j-2

S.. ¢h
1]

The same technique may also be applied to equation (11) to show that

H N5 h7t, all N.

Having determined the dependence of all smoothing matrices on 7y and h, we
may without loss of generality assume ¥ = h = 1 in subsequent calculations.
By direct calculation we may show

1-ay, 1-a;, 1/2(1-a1)

A = -a;, 1-a2, 1/2 (1—-(1,2} >
~2a3 5 -2a;3 5 1-a3
and
B, -1, 1/2
A_l = 62 F) 1’ -1 >
263 > 0’ 1
where
Bi = (1-ay+a3)/Ba,
62 = ((12 —2a3)/B4 >
33 = a’3/64 >
and Ba = (1-01).
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Because of the relative simplicity of A™', it is simpler to roform

equation (12) in terms of A™' rather than A.  Then

AaHTsat s = anHTrear,

The solution of this set of 9 equations in the 9 unknowns Sij’ i, j =1,2,3

was in the first instance attempted by hand. A range of relatively simple
subrelations could be derived, but they were still too cumbersome to solve in
this way. The relations were

Si11 = Si12 + S21,

S12 = 2(Si3 + S22),

S21 = 2(S31 + S22),

83 S3z = 1+2(B4-1)(513+S31),

S31 = 832 = -523,

2(1+84)(S13+S31) + 2(2B1+B2+264) S22 = 1,
2c(S13-S31) = P2+B3, and

2c S3; = -Ba, where

c = Pa+B3-Ba(B2+363).

These subrelations were then solved using routines developed in APL to
manipulate polynomials of several variables(ref.8). The parameters B,
B,, Bs, Ba were represented initially as polynomials in r and s = 1/(1+r),
using the definitions of equations (20). Subsequently the solutions Si.

could be represented as rational polynomials in r. The solutions which were
found using this technique give

4(1-t)? (1+21-1*), 2(1-1)? (2+5r-1°), 1+4-6r* + 2r’
S = | 2r(1-t)? (1+r) , -T(1l+r) (1-4r+r?), 217 (1+1) /D,
-2¢% (1+71) , =21% (1+1) , 4r®

where A = 4(1-1)® (1+4r+r®), and we recall that a; = 1-r%.

5. RESPONSE TO STEP FUNCTION

General step function

In this section we shall consider how the impulse response sequences
derived in Section 3 may be used to find the filter and smoother responses
to step changes in the input signal. We are particularly interested in the
three separate cases of step changes in position, velocity, and acceleration.
However they may be treated together by using a general input signal of

& x ,

X, = Xo
0

: (22)

2

VA
co o

k
k
k

[P

where x and Xo are constant vectors to be defined later.
The Testriction for k > 0 is not severe since we may easily recover the
complementary set of step functions (with Xy = 0, k < 0) by using the

linearity of the filter and smoother.
The equation (1) of Section 3.1 may be applied to the signal Xy to give
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i
™73
:z
o

=
X /k k-N> k=0
N=k
and hence
Ak x ,, k=20,
o/o
X = (23)
k/k &Ky k<o

The equations (11) for the smoother may similarly be applied and simpli-
fied for k = 0 to show that

k-1
= P_ = =
Consider a signal Xk such that
oK
Xk = ¢ x - Xy

That is, Xk is the step function complementary to Xy s for which Xk = 0,
k <0. Because of the linearity of the smoother we know that

Xk/oo= (I)kx_ - xk/oo.

If we apply the impulse function (11) to Xk we have, for k <0

=00
_ ' T,-N
X oo = y P(A)T TP X o
[y
N=k
and hence
_ T, kI -1
Xk/°° = P(A") P Xo/oo.

Substituting for Xk/aaand Xo/“,we have finally

Tl kl | ki

x PN M x o @-paD! ¥ pyx , k<o (25)

k/e°

Equations (23) to (25) thus completely define in terms of analytically known
matrices the filter and smoother response to the general step function signal
defined by equation (24).
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5.2 Numerical solutions

We consider the input signal defined by equation (22), for which Xy = X_s

and hence x =X .
o/o -
In particular we are interested in determining the ability of the filter

and the smoother to estimate step changes in position, velocity, and
acceleration respectively.

Thus, for step in position, X1~ = (l,O,O)T;
for step in velocity, Xz- = (0,1,0)T;
and for a step in acceleration, X3. = (0,0,1)T.

The filter and smoother responses comparable to each of these steps will
simply be the appropriate diagonal term of the matrix coefficients of x.
in equations (23), (24) and (25).

Figures 1 and 2 give the results of numerical calculation of these

responses for two separate values of a;. Each figure shows the filtered
position component when there is an input step in position (x. = Xx;.); the
filtered velocity component when x. = x2- ; the filtered acceleration
component when Xx_ = x3- ; and the smoothed position component when x. = Xi- .

The other smoothed curves (for velocity and acceleration) were not included,
as they were found to have exactly the same shape as the smoothed position
component, except that they were displaced by half a data point and one data
point respectively to the left.

It is quite easy to show analytically that an appropriate choice of X,

as %x. or 0 will simply displace the smoothed position component half or one
data point respectively to the left. However the problem of showing
analytically that the respective smoothed position and velocity, or
position and acceleration components are identical is not readily soluble
(though it should be possible). (It is of course quite straightforward to
prove the necessary identities for k = 0,1,-1).

There are several features which are immediately apparent from the
figures 1 and 2.

(1) The fact that the smoother curves are identical means that the
smoother is able to accurately estimate changes in the

derivatives of the measured components of the state vector. At
DRCS this has been utilized extensively to allow camera
instrumentation to estimate sharp changes in acceleration. It is

clear that the filter does not perform nearly so well in this area.
That is, its performance deteriorates rapidly as it is called on
to estimate higher derivatives of the measured component.

(i1) The filter velocity and acceleration curves show a clear lag
before there is a response to the step change in velocity and
acceleration respectively. Since we may show from equation (23)
that the position, velocity, and acceleration curves at k = 1
are simply (1-a;), (1-a,) and (1-a3), then it is evident that
a; is a reasonable measure of bandwidth, whereas a, and as are not,
because of the lag.

(iii) Overshoot with the smoother is very much less than for any of the
filter curves.
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5.3 Smoother response

Rather than rely on numerical results, it is possible to derive an analy-
tical expression which gives a reasonable measure of the bandwidth of the
smoother.

From equation (24} we have

X = (®-PS) (I-A™Y) X

1/00 = Xo /00

/o’

Hence the magnitudes of the slopes of each of the smoothed curves at k = 0
are simply the diagonal elements of

W = -(®-PS)(I-A"1). (26)

We choose to define the smoother bandwidth, as, in terms of the smoothed

velocity response to a step in velocity, since this curve passes through the
midpoint at k = 0,

(i.e. (xo/ajz = 1/2(x)2).

All the matrices on the right hand side of equation (26) are known
analytically, and hence we may use the APL polynomial manipulation routines
to show that

a, = W = (1-1%)/ (1+4r+1?), 27

where r’ = (1-a1). (Note that all diagonal terms of W will be independent
of v and h).
We may also note from this equation that

a/a = 1+4r+r? > 1,

that is, for a given set of input parameters to the filter and the smoother,
the smoother will exhibit a narrower bandwidth than will the filter with
respect to position. This might be expected from intuition, since the
smoother is influenced by twice as much data as the filter.

The relationship between a; and a is plotted in figure 3.

6. CONCLUSION

This paper has presented derivations of the detailed analytic form of a Kalman
filter and smoother when position-measuring instrumentation is used to estimate
position, velocity, and acceleration changes in a point under observation. In
the course of an analysis of this system, a non-dimensional parameter, €, has
been defined (equation (21)) which is shown to completely determine the filtering
and smoothing characteristics of the system.

Through analysis of the response of the system to various input step functions,
a relationship is derived connecting the bandwidth of the smoother to the band-
width of the filter with respect to position. This relationship shows that for
given input parameters, the filter will have greater bandwidth (with respect to
position) than will the smoother.
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The analysis also shows the clear superiority of the smoother over the filter
when changes in velocity and acceleration are being estimated with position-
measuring instrumentation.

In two specific respects the analysis is incomplete. Firstly, it has not
been possible to derive a simple analytic representation of the bandwidth of
the filter with respect to velocity and acceleration, though it is clear from
figures 1 and 2 that they would differ markedly from that for position.
Secondly, it has not been possible to show analytically that there is an
identically shaped smoother output of position, velocity, and acceleration
when there is a step in the input signal of the same component.
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Figure 2
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Figure 3. Smoothing response (as) vs filtering response w.r.t. position (@)
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