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ABSTRACT

~ An algorithm is presented for labeling the connected
components of an image represented by a quadtree. The algo-
rithm proceeds by exploring all possible adjacencies for each
node once and only once. Once this is done, any equivalences
generated by the adjacency labeling phase are propagated.
Analysis of the algorithm reveals that its worst case average
execution time is bounded by a quantity proportional to the
product of the log of the region's diameter and the number of
blocks comprising the area’spanned by the components.
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1. Introduction

Connected component labeling is a basic operation in image
processing [RK]. The standard labeling algorithms use either
an array or run-length representation for the two-level
("binary") image whose components are to be labeled. 1In this
péper we present an algorithm for labeling the connected comp-
onents of 1's in a binary image that is represented by a quad-
tree ([Klinger,DRS,Sametl]).

We assume that the given binary image is a gk by 2" array
of unit square "pixels." The quadtree is an approach to image
representation based on successive subdivision of the array.into
quadrants. In essence, we repeatedly subdivide the array into
quadrants, subquadrants,..., until we obtain blocks (possibly
single pixels) which consist entirely of either 1's or 0's. This
process is represented by.a tree of out degree 4 in which the
root node represents the entire array. The four sons of the root
node represent the quadrants, and the terminal nodes correspond
to those blocks of the array for which no further subdivision is
necessary. For example, Figure 1lb is a block decomposition of
the region in Figure la while Figure lc is the corresponding
quadtree. In general, BLACX and WHITE square nodes represent

nodes consisting entirely os 1's and of 0's, respectively. Cir-

cular nodes, also termed GRAY nodes, denote non-terminal nodes.

o s
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Sections 2-6 present and analyze our algorithm. Included

is a formal description of the algorithm along with motivating

considerations. The actual algorithm is given using a variant

of ALGOL 60 [Naur].
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Definitions and Notation

2.

Let each node in a guadtree be stored as a record containing
seven fields. The first five fields contain pointers to the

node's father and its four sons labeled NW, NE, SE, and SW.

Give a node P and a son I, these fields are referenced as

FATHER(P) and SON(P,I) respectively. At times it is useful to

= Q iff SON(FATHER(P),

use the function SONTYPE (P) where SONTYPE (P)

Q) = P. The sixth field, named NODETYPE, describes the contents
of the block of the image which the node represents--i.e., WHITE,

if the block contains no 1's; BLACK, if the block contains only

1's, and GRAY, if it contains pixels of both types. Alterratively,
BLACK and WHITE nodes are terminal nodes while GRAY nodes are
non-terminal nodes. The seventh field, named REGION, identifies

the connected component containing the block represented by the

node. This field is only meaningful for BLACK nodes. It is set
as a result of the connected component labeling algorithm.

LABELED (P) indicates if node P has already been labeled.

Let the four sides of a node's block be called its N, E, S,

and W sides. They are also termed its boundaries. The inter-
relationship between a block's four quadrants and its bcundaries
is facilitated by use of the predicate ADJ and the function REFLECT

ADJ(B,I) is true if and only f quadrant I is adjacent to

boundary B of the node's block; e.g., ADJ(N,NE) is true.

REFLECT(B,I) yields the quadrant which is adjacent to quadrant I
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along boundary B of the block represented by I; e.g.,
REFLECT (W,NW)=NE, REFLECT (E,NW)=NE, REFLECT (N,NW)=SW, and
REFLECT (S,NW)=SW. Figure 2 shows the relationship between
the quadrants of a node and its boundaries.

Given a quadtree corresponding to a oW by gh array, we
éay that the root node is at level n, and that a node at
level i is at a distance of n-i from the root of the tree.
In other words, for a node at level i, we must ascend n-i
FATHER links to reach the root of the tree. Note that the

farthest node from the root of the tree is at level =2f.

NW NE

Figure 2. Relationship between a block's four quadrants
and its boundaries.
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3. Informal description of the algorithm

The connected component labeling algorithm has three phases.

The first phase

traverses the tree and explores all possible

adjacencies between pairs of BLACK nodes. During this process

all BLACK nodes
cﬁvered between
identifiers are
‘ Once the entire

phase processes

are labeled. Should any equivalénces be dis-
regions already labeled, then their component
added to a list of pairs of equivalences.

tree is traversed in this manner, the second

pairs of equivalences to yield equivalence

classes (e.g., [Knuth, Tarjan]). Finally, the third phase tra-

verses the tree one more time with all members of an equivalence

class being assigned the same component identifier (i.e., label).

Phase one traverses the tree in postorder (i.e., the sons

of a node are visited first).

in the order NW, NE, SW, and SE. For each BLACK terminal node,

say P, we explore the eastern and southern adjacencies. This

means that all of the node's BLACK adjacent southern and eastern
neighbors are visited.

then they are labeled with the label of P.

have a label, then it is assigned the label of one of its adja-

cent neighbors if it has a label. 1If adjacent BLACK nodes have

already been assigned labels that are different, then the labels

are added to the list of equivalences that will be merged in the

second phase.

If they have not Been previously visited,

If P does not already

B SRR

In particular, the sons are visited




The key to the algorithm is that phase one assures that
every adjacency of two BLACK nodes will be explored once and
only once. To see this, note that the traversal starts at
the NW-most son, if possible, and the brothers are traversed
in the order NW, NE, SW, and SE. Clearly, by the time any
BﬁACK node is visited, its northern and western adjacencies
have already been explored. Thus the northern and western ad-
jacencies need not be reexplored. This is because each node
labels all of its adjacent eastern and southern neighbors.

Note the analogy between phase one and the algorithm for
computing the total perimeter of an image represented by a
quadtree [Samet2]. When computing perimeter we must explore
adjacencies of BLACK and WHITE nodes rather than adjacencies of
BLACK and BLACK nodes. Besides the duality in the type of adja-
cency, there is only one other difference. The perimeter comp-
utation algorithm requires that adjacencies in four directions
need to be explored whereas adjacencies in only two directions
need to be explored in phase one. Four directions were necessary
in the perimeter computation algorithm because for each pair of
adjacent BLACK and WHITE nodes only the BLACK node causes the
adjacency to be explored (WHITE nodes do not).

As an example of the application of the algorithm, consider
the image given in Figure la. Figure 1lb is the corresponding .

block decomposition and Figure lc is its quadtree representation.




All of the BLACK nodes have numbers ranging between 1 and 41
while the WHITE nodes have numbers ranging between 42 and 91.
The BLACK nodes have been numbered in the order in which they
were labeled by phase one. The WHITE nodes have been numbered
in the order in which they were visited (i.e., the argument to
pgocedure LABEL). Thus node 1 has been labeled before nodes 2,
3}, etc. Figure 3 shows the labels assigned to the five compon-
ents. Phase two of the algorithm will merge the equivalence
nair BED to form component 4 and the equivalence pairs F=G

and G=H to form component 5.




TR

4. Formal statement of the algorithm

The following ALGOL-like procedures specify the connected
component labeling algorithm. Actually, we only present the
procedures corresponding to the first and third phases of the
algorithm. Phase two can be achieved by using a variant of
algorithm E in [Knuth].

The main procedure is termed COMPONENT and is invoked with
a pointer to the root of the quadtree representing the image.

The global variable MERGES is used to accumulate all of the
equivalence relations formed by adjacent BLACK ndoes. MERGES

is subsequently processed by phase two to-yield a set of equiv-
alence classes--i.e., one class per component. LABEL implements
phase one by traversing the tree and controlling the exploration
of adjacent BLACK nodes. FIND NEIGHBOR locates a neighboring

node of greater or equal size along a specified border. 1If no
such neighboring BLACK or WHITE node exists, then FIND NEIGHBOR
returns a pointer to a GRAY node of equal size. In such a case,
procedure LABEL_ADJACENT continues the search recursively by
examining all BLACK and WHITE adjacent neighbors of smaller size.
Otherwise, LABEL_ADJACENT assigns a label to the adjacent neighbor
if it is BLACK. The labels are assigned by procedure ASSIGN_LABEL.
Procedure UPDATE corresponds to phase three and results in the
traversal of the tree in order to propagate the equivalences

thereby uniquely labeling each component.




} % procedure COMPONENT (QUADTREE) ;
: /* label all of the connected camonents of the tree rooted at QUADTREE*/
1 begin
1 node QUADTREE;
pairlist MERGES;
MERGES<empty;

LABEL (QUADTREE) ;

process equivalences specified by MERGES;

UPDATE (QUADTREE) ;

procedure LABEL(P);

/*assign labels to node P and its sons*/

begin
node P,Q;
quadrant I;
if GRAY(P) then
begin
for I in {NW,6NE,SW,SE} do LABEL(SON(P,I));

end

else if BLACK(P) then

begin
? Q*FIND_NEIGHBOR(P,‘E')?

if not NULL(Q) then LABEL_ADJACENT(Q,'NW','SW',P); B
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Q«FIND_NEIGHBOR(P,'S');
if not NULL(Q) then LABEL ADJACENT(Q,'NW','NE',P);

if not LABELED(P) then REGION(P) GENREGION( ) ;
end

else return; /*a WHITE node */

end;

node procedure FIND NEIGHBOR(P,S);

/* given node P, return a node which is adjacent to side S of node P*/
begin
node P,Q;
side S:
if not NULL (FATHER (P) ) and ADJ(S,SONTYPE (P)) then
/*find a common ancestor*/
Q«FIND_NEIGHBOR (FATHER (P) ,S)
else Q+FATHER(P);

/* follow reflected path back to locate the neighbor */

return (if not NULL(Q) and GRAY(Q) then SON(Q,REFLECT (S ,SONTYPE(P))) [

else Q);




procedure LABEL_ADJACENT(R,Q1,Q2,P); : ; i

/* find all descendants of node R: adjacent to node P--i.e., in
quadrants Ql and Q2 */°
begin
node P,R;
quadrant Q1,Q2;
if GRAY(R) then 5
begin
' LABBL;ADJACENT(SONKR)Ql),Ql:QZ,P):
LABEL ADJACENT(SONi(R,Q2),0Q1,Q2,P);

end

else if BLACK(R) then ASSIGN_LABEL(P,R)

else return; /* a WHITE node */

end;

procedure ASSIGN_ LABEL(P,Q);
/* assign a label to nodes P and Q if they do not already have

one. If both have different labels, then enter them in MERGES */
begin

node P,Q;

if LABELED(P) and LABELED(Q) then

begin
if REGION (P) #REGION(Q) then add <REGION(P) ,REGION(Q) >

(=

. to MERGES;
end

else if LABELED(P) then REGION(Q)<+REGION(P)

else if LABELED(Q) then REGION (P)<+REGION (Q)

else REGION (P)+REGION (Q)+GENREGION( );




procedure UPDATE (P); 3
/* propagate the equivalences in the quadtree rooted at P */
begin
node P;
quadrant I;
if GRAY(P) then
begin
for I in {NW,NE,SW,SE} do UPDATE (SON(P),I);
end
else if BLACK(P) then REGION (P) LOOKUP (REGION (P) ,MERGES)

else return; /* a WHITE node* /




5. Analysis
The running time of the connected component labeling algo-

rithm is determined by the time necessary to execute its three
phases. Prior to analyzing this value we first examine the
spatial configurations confronted by the algorithm and how they
affect its execution time. It should be clear that the greater
the number of BLACK nodes, the more time is spent exploring ad-
jacencies in phase one. Phase two is more dependent on the
shape of the various components. The execution time of phase
two is dominated by the number of equivalence pairs that are
generated in phase one. An equivalence pair is generated when-
ever an adjacency of a previously labeled node is exploreq and
it is found that the adjacent neighbor has already been assigned
a different label. ;

The situation giving rise to the generation of an equivalence
pair can be best seen by examining Figure 4. Components 1, 2,
and 3 do not result in the generation of equivalence pairs
because of the manner in which phase one explores adjacencies--
i.e., in the eastern and southern directions thereby~processing
the quadrants in the order NW, NE, SW, SE. Thus we see that the
nodes or blocks comprising the quadtree are processed in the order
in which they are adjacent. This is not always the case for a
component having the form of component 4 in Figure 4 (in this

case we have the equivalence of D and E). This is especially




true when the vertical and horizontal segments are not comprised
of single blocks, or have adjacent northern or western neighbors
in the case of the horizontal segment. For example, in the image
represented by Figure la we find that no equivalence pairs were
generated for the components 1, 2, and 3 whereas this was not
true for the components 4 and 5. In particular, we have the
equivalences B=D for component 4 and F=G and GZH for component

5. Note that if the block labeled 40 would have been WHITE
rather than BLACK, then block 41 would have been labeled with

G and no equivalence pair would have been generated.

Phase one depends on the speed of the combination of proce-
dures LABEL_ADJACENT and FIND NEIGHBOR. These procedures are in-
voked in phase one (i.e., in procedure LABEL) twice as many
times as one has BLACK nodes. The actual amount of work per-
formed by these procedures is more accurately represented by
considering the number of nodes that are visited when an adja-
cency is being explored. Recall that we must find the neighbor,
and if it is GRAY, then visit all adjacent neighbors of a smaller
size. In the worst case, we are at level n-1, with a GRAY neigh-
bor, and all adjacent neighbors at level @. In such a case, we
must visit 2" nodes. For example, consider Figure 5 where n=3
and we wish to visit the blocks adjacent to the block labeled A
(i.e., blocks B, C, D, and E). We must visit the root of the
quadtree as well as A's neighboring GBAY node and all of its NW

and SW sons--i.e., a complete binary tree of height 2. 1In total,
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2 = 8 nodes are visited. In general, let the space be parti-
tioned into a 2" by 2" array. Assume a random image--i.e., a
BLACK node is equally likely to appear in any position and level
in a quadtree. Recalling the analogy drawn in Section 3 between
phase one and the perimeter computation algorithm we have the
following result:
Theorem 1l: The average of the maximum number of nodes visited
by LABEL_ADJACENT is n+l.
Proof: See Theorem 1 in [Samet2].

The speed of phase two of the algorithm depends on the
method used for processing equivalence relations and on the
number of pairs of equivalences and different objects of the set

on which the equivalences are defined. We use a variant of an

algorithm presented in [Knuth]. Its maximum execution time is

proportional to the square of the number of pairs of equivalences.

It is speeded up by using a modification due to D. McIlroy
[Knuth] to have a maximum proportionality to the product of tie
number of pairs of equivalences and the log of the size of the
set on which the equivalences are defined.

Recall that equivalence pairs are generated during phase one
only when we are exploring the adjacencies of a node that is

already labeled and its neighbor has also been labeled before,

albeit with a different label. We now prove the following lemma:




Lemma 1l: Phase vne generates a maximum of one equivalence pair
for each adjacency that is explored (i.e., each call to proce-
dure LABEL explores two adjacencies).

Proof: There are two cases depending on the direction of the

adjacency.

Case (a): An adjacency in the eastern direction can yield at
most «ne equivalence pair regardless of the size of
the reighbor. This is clearly true if the reighbor
is larger (e.g., blocks 38 and 35 in Figure 1b).
Similarly, if the neighbor is smaller, then only the
northernmost such neighbor could have been previously
labeled (e.g., blocks 12 and 20 in Figure lb) because
only it could have been the southern neighbor of a
previously labeled node.

Case (b): An adjacency in the southern direction can only yield
an equivalence pair if the neighbor is larger. No
equivalence pair may result if the neighbor is smaller.
This should be clear since southern neighbors could
only have been visited if they are adjacent to a west-
ern neighbor which has been visited previously.

Q.E.D,

Letting B denote the number of 3LACK nodes we have the following

theorem:

Theorem 2: 2B log B is an upper bound on the execution time of

phase two.




Proof: By the above lemma, phase one generates a maximum of
one equivalence pair for each adjacency that is explored. Re-
call that phase one explores two adjacencies for each BLACK
node. Also the set on which the equivalence pairs are defined
has a maximum number of objects equal to the number of BLACK
nodes, i.e., B. Thus when the equivalence merging algorithm
of [Knuth] is used, one has 2B log B as the upper bound for the
execution time.

Q.E.D.

2n=2 ince at most 3 of every 4 sons of a

Clearly, B = 3.2
node at level 1 in a complete quadtr~= are BLACK. At this point
we show how the upper bound of Theorem 2 may be tightened. As-
sume a 20 by g array and n 2 2. We first prove the following
lemma.

Lemma 2: 2273 jg an upper bound on the number of objects in

the set upon which the equivalences are generated in phase one.
Proof: Recall our discussion with respect to the types of equiv-
alences our algorithm is least proficient at handling. Clearly,
the best algorithm is one that never generates pairs of equiva-
lences. We mentioned the existence of a worst case configuration
of nodes where an equivalence pair had to be generated (see Comp-
onent 1 of Figure 4). Clearly, the upper bound of Theorem 1
arises when the quadtree corresponds to a single component--i.e.,
once all of the pairs of equivalences are merged, a single equiv-

alence class results. Therefore, consider a case where the




minimal instance of the worst case case is replicated--e.g.,

the 24 by 24 array in Figure 6. In the general case, i.e., a

n-1

o by 2" array, there are 2 objects on which equivalence

pairs are generated for the first four consecutive rows and

n-1

2 -1 such objects for each remaining set of four consecutive

2n-3

rows. Thus in a 2" by  u array there are less than 2 objects

in the set upon which equivalence pairs are generated (e.g., 1 ;. |
through 29 in Figure 6).

Q.E.D. |
We can now prove Theorem 2' as follows: |

Theorem 2': 2B(2n-3) is an upper bound on the execution time

of phase two.

Proof: From Lemma 2 we have that the maximum number of objects
in the set upon which the equivalences are generated in phase

one is less than 22n-3. From Theorem 2 and [Knuth] the execution

time of phase two is bounded by the product of 2B and the log of

the maximum number of objects in the set upon which the equivalence
3

pairs are derived--i.e., 2B log 22n— = 2B(2n-3).

Q.E.D.

T

The speed of phase three of the algorithm can be obtained in
a straightforward way. The tree must be traversed and for each
BLACK node P, REGION(P) must be set to the head of the equivalence

class obtained as a result of phase two. The actual lookup oper-

ation is bounded by the log of the maximum number of objects in
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the set upon which the equivalences were generated in phase one.

From Lemma 2 we have the value 2n-3. An upper bound on the size
of the tree is obtained by the following lemma.
Lemma 3: The upper bound on the number of nodes of the quadtree
is 4Bn+l.
Proof: See Lemma 1 in [Samet2]. Q.E.D.
We now have the following theorem:
Theorem 3: The upper bound of the execution time of phase three
is proportional to B(2n-3) + 4Bn+l.
Proof: Use Lemmas 2 and 3 and the time required to access the
head of an equivalence class.

Q.E.D.
Using Lemma 3 we obtain an upper bound on the average worst case
execution time of phase one.
Theorem 4: The upper bound on the average worst case execution
time of phase one is 6Bn+2B+l.
Proof: From Theorem 1 we have that for each adjacency involving
a BLACK node, phase one results in an average worst case of n+l

nodes being visited. There are two adjacencies for each BLACK

node. Also from Lemma 3 we have that the tree traversal component

of phase one visits at most 4Bn+l nodes. Therefore, we have
2B(n+l1l) + 4Bn+l = 6Bn+2B+1 nodes being visited.

Q.E.D.
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At this point we come to the main result:

Theorem 5: The average worst case execution time of phases one,
two, and three has an upper bound proportional to the product
of the number of BLACK nodes and the log of the diameter of

the image.

Proof: The log of the diameter of the image is n. Summing up

the contributions of phases one, two, and three as indicated by
Theorems 4, 2} and 3, we have the result 6Bn+2B+1 + 3B(2n-3) +

4Bn+l = 16Bn-7B+2.

Q.E.D.




b. Conc..ding 1uvwarks

An algorithm has been presented for labeling the connected
components of a binary image. The analysis was somewhat faci-
litated by the analogy with the perimeter computation algorithm
represented by a quadtree. The algorithm's running time has
been shown to have an average worst case time complexity propor-
tional t: the product of the log of thec image's diameter and the
number o the terminal nodes describiig the area spanned by the
components. This is of the same order of magnitude as the
complexity of the perimeter computation algorithm in [Samet2]
although it should be clear that the latter is smaller. Note that
Theorems 2 and 2' yielded different upper bounds on the execution
speed of phase two. We chose to use the result of Theorem 2°
because it had a direct relationship to the log of the region's
diameter.

In general, the performance of the algorithm is quite good
because in actuality very few equivalence pairs are generated.
Some variant of the worst case in terns of configurations leading
to the g:neration of an equivalence pair will occur no matter
which order of traversing the adjacencies is adopted. It shouid
be clear that phase two can be combined with phase one by per-
forming the merge dictated by the equivalence immediately in
procedure ASSIGN_LABEL rather than using the list MERGES and
executing phase two. We chose the previous approach in order to

simplify the presentation of the analysis. Also note that Lemma 1
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insures that the upper bound of the execution time of phase two
is not affected by generating the same equivalence pairs more
than once (e.g., in Figure 7 the equivalence ASB is generated
once by blocks 6 and 2 and once by blocks 9 and 2.

Note finally that if the algorithm is applied to both the
BLACK and the WHITE nodes, one can compute the number of holes,
and hence the genus, of the image. Genus can, of course, also
be computed by counting the number of occurrences of various

local patterns in the image.
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AN IMAGE,

ITS MAXIMAL BLOCKS, AND THE CORRESPONDING QUADTREE.
BLOCKS IN THE IMAGE ARE SHADED.
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