
I ‘
-

— ~~~~~~~~~~~-~- ~~~~~~

P

C)
_ _ _ _ _ _ _ _ _ _

cY~

HC)

D D C

~
.i. •

UNWERS1TY OF MARYLAND
COMPUTER SCIENCE CENTER

Fl COLLEGE PARK, MARYLAND

II
_ _ _ _

I

I DISflUBUTION STATEMENT ~
]• I A s d f ~~p~iblio g.hø. .

L_ DIa~tbwjcn Un1~ahsd

_______ 79 :t i 02 o6 9
_ .~~_ . _f s & L .. . g _~~C~~~~~~_ _ .

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
- -

~~T I i 7 9 7
1iJ RAG—53—76C —01 38

(., ,~ONNECTED COMPONENT ~ABELING0

~~I~G QUADTRE~S~
• j (uana~)~~met j •

Compu ciênc~ Department ~~~
‘ . v

University of Maryland -

College Park, MD 20742

~~_~~) 1~~~~~~~~~~
-/

~
-

~~~~I:~j -

~~~~~~ ~~~~~, 1~’~

ABSTRACT

An algorithm is presented for labeling the connected
components of an image represented by a quadtree. The algo-
rithm proceeds by exploring all possible adjacencies for each
node once and only once. Once this is done, any equivalences
generated by the adjacency labeling phase are propagated.
Analysis of the algorithm reveals that its worst case average
execution time is bounded oy a quantity proportional to the
product of the log of the region’s diameter and the number of
blocks comprising the area Ispanned by the components.

D D C
1~ir?(

~Pn n nc? n1 I
In1 N0v 5 løT9
UU ~ u~ 6uu L!~B

The support of the Defense Advanced Research Projects Agency
and the U.S. Army Night Vision Laboratory under Contract
DAAG-53--76C-0138 (DARPA Order 3206) is gratefully acknowledged ,
as is the help of Kathryn Riley in preparing this paper. The
author has benefited greatly from discussions with Charles R.
Dyer and Azriel Rosenfeld. He also thanks Pat Young for her
help with the figures.

~ DISTRIBUTION STATEMENT A
Appioved for public releosi~

‘I ’ ~ / L Distribution Unlimited J
~~~~ -

~ 
-



________________________________________ 
0~~

1. Introduction

cpnnec~ed compon~nt ~~~elin~ is a I?asic operation in image

processing [EK]. The stan4ard i~~eUng algpritbm~ use either ¶
an array or run-length representation for the two-level

(“binary”) image whose componer~ts are to be 1abel~d. In this

paper we present an algorithm for l4eling the connected comp-

onents of l’s in a binary image that is represented by a quad-

• tree ([Klinger ,DRS,Sametl]).

We assume that the given binary image is a 2~ by 2~ array

of unit square “pixels.” The quadtree is an approach to image

representation based on successive subdivision of the array into

quadrants. In essence, we repeatedly subdivide the array into

quadrants, subquadrants,..., until we obtain blocks (possibly

single pixels) which consist entirely of either l’s or 0’s. This

0 
process is represented by.a tree of out degree 4 in which the

root node represents the entire array . The four sons of the root

node represent the quadrants, and the terminal nodes correspond

to those blocks of the array for which no further subdivision is

necessary. For example, Figure lb is a block decomposition of

the region in Figure la while Figure ic is the corresponding

quadtree. In general, BLAC!~ and WHITE square nodes represent

nodes consisting entirely o/ l’s and of 0’s, respectively . Cir-

cular nodes, also termed GRA ? nodes, denote non-terminal nodes.

—• 0~~~-~~ 
--



-—

— ~~~~~~~~ r ..-‘~ 

-

~~

Sections 2-6 present and analyze our algorithm. Included

is a formal description of the algorithm along with motivating

considerations. The actual algorithm is given using a variant 
0

of ALGOL 60 [Naur ] .

k

JUSTITICAT(ON 

-•• ..-------
B y .

I -. 

-I 
•~~~~~~~ - -—

~~~~~ 
—---—-—-- .- - -~~~~~~~~-~~~

-— .•~~-~~~~~~~~ •—_-•-~~~~.—•- 0~~

2. Definitions and Notation

Let each node in a quadtree be stored as a record containing

seven fields. The first five fields contain pointers to the

nole’s father and its four sons labeled NW , NE, SE , and SW.

Give a node P and a son I, these fields are referenced as

FAT }IER(P) and SON(P , I) respectively. At times it is usefu:. to

use the function SONTYPE (P) where SONTYPE(P) Q if f SON(FATHER(P) ,

Q) = P. The sixth field , named NODETYPE , describes the contents

of the block of the image which the node represents--i.e., WHITE ,

if the block contains no l’s; BLACK , if the b lock contains only

l’s, and GRAY , if it contains pixels of both types . Alternatively ,

BLACK and WHITE nodes are terminal nodes while GRAY nodes are

non-terminal nodes. The seventh field , named REGION , identif ies

the connected component containing the block represented by the

node. This field is only meaningful for BLACK nodes. It is set

as a result of the connected component labeling algorithm .

LABELED (P) indicates if node P has already been labeled.

Let the four sides of a node’s block be called its N , E, S,

and W sides. They are also termed its boundaries. The inter-

relationship between a block’s four quadrants and its boun3aries

is facilitated by use of the predicate ADJ and the function REFLECT

ADJ(B ,I) is true if and onl~ f quadrant I is adjacent to

boundary B of the node’s block; e.g., ADJ(N,NE) is true.

REFLECT (B , I) yields the quadrant which is adjacent to quadrant I

_ _ _ _ _ _ ~~~

_
-. .

~~

- . -

0 along boundary B of the block represented by I; e.g.,

REFLECT(W,NW)NE, REFLECT(E,NW) NE, REFLECT(N,NW) SW, and

REFLECT(S,NW) SW. Figure 2 shows the relationship between

the quadrants of a node and its boundaries.

Given a quadtree corresponding to a 2n by 2r~ array, we

say that the root node is at level n, and that a node at

level i is at a distance of n—i from the root of the tree.

In other words, for a node at level i, we must ascend n—i

FATHER links to reach the root of the tree. Note that the

farthest node from the root of the tree is at level 4.

N

O NW INE
W — E

SW SE

S

Figure 2. Relationship between a block’s four quadrants
and its boundaries.

• .-~~~~ -~~~~~—.-—

—-• —• --~~~~~~~~~~~ - O---~~~~~~ --,—•--.--• --• - -~~~

3. Informal description of the algorithm

The connected conçonent labeling algorithm has three phases.

The first phase traverses the tree and explores all possible

adjacencies between pa-irs of BLACK nodes. During this process

all BLACK nodes are labeled. Should any equival~~0es be die-

c’)vered between regions already labeled, then their component

identifiers are added to a list of pairs of equivalences.

Once the entire tree is traversed in this i~anner, the second

phase processes pairs of equivalences to yield equivalence

classes (e.g., [Kn-uth , Tarjan]). Finally, the third phase tra-

verses the tree one more time with all members of an equivalence

class being assigned the same component identifier (i.e., label).

Phase one traverses the tree in postorder (i.e., the sons

of a node are visited first). In particular, the sons are visited

in the order NW, NE, SW, and SE. For each BL~CK terminal node,

say P, we explore the eastern and southern adjacencies. This

means that all of the node’s BLACK adjaceitt southern and eastern

neighbors are visited. If they have not been previously visited,

then they are labeled with the label of P. If P does not already

have a label, then it is assigned the label- of one of its adja-

cent neighbors if it has a label. If adjacent BLACK nodes have

already been assigned label3 that are different, then the labels

are added to the list of equivalences that will be merged in the
0

second phase.

~

0 - - - ~~o~~ 0 --0 ~~~~~~~~~~~~~~~~~~~~~~~~ ~ ._ O -—~~~~- ~~~~~~~~~ 0~~~~~~~~~~~~~~~

The key to the algorithm is that phase one assures that

every adjacency of two BLACK nodes will be explored once and

only once . To see this, note that the traversal starts at

the NW—most son, if possible , and the brothers are traversed

in the order NW , NE , SW, and SE. Clearly , by the time any

BLACK node is visited, its northern and western adjacencies

have already been explored. Thus the northern and western ad-

jacencies need not be reexplored. This is because each node

labels all of its adjacent eastern and southern neighbors.

Note the analogy between phase one and the algorithm for

computing the total perimeter of an image represented by a

quadtree [Sainet2l. When computing perimeter we must explore

adjacencies of BLACK and WHITE nodes rather than adjacencies of

BLACK and BLACK nodes. Besides the duality in the type of adja-

cency , there is only one other difference. The perimeter comp—

O utation algorithm requires that adjacencies in four directions

need to be explored whereas adjacencies in only two directions

need to be explored in phase one. Four directions were necessary
O in the perimeter computation algorithm because for each pair of

adjacent BLACK and WHITE nodes only the BLACK node causes the

adjacency to be explored (WHITE nodes do not) .

As an example of the application of the algorithm, consider

the image given in Figure la. Figure lb is the corresponding

block decomposition and Figure lc ~s its quadtree representation.

—Sm_ —~~~~~ — - — — — ~~~~~~~~~~~~~ 0~~~~~~~~ o -~~~~~ —- -- -0

— — ,~~~~~~— ‘- — .— -
~~~~~ 

,~~~~~~~~ 
,
~~~~~~

-• .-
~

0 ~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _____________________________________

I
• 

I
pd J. of the BLACK nodes have numbers ranging between 1 and 41

while the WHiTE nodes have numbers ranging between 42 and 91.

Th’- BLACK nodes have been numbered in the order in which they

were  labeled by phase one . The WH ITE itodes have been numbered

in the order in which they were visited (i.e., the argument to

procedure LABEL). Thus node 1 has been labeled before nodes 2,

3 , etc. Figure 3 shows the labels assigned to the five compon-

• en ts .  Phase two of the algorithm will merge the equivalence

pair BED to form component 4 and the equivalence pairs PEG

af t i  GEH to form component 5.

0=~ .~~__g_ 
~~~~~~~~~~ - - - -~~~~ - , — --~--~- -,

0~ -•-

- -
~~ —~-—— - ~~~~~~~~~~~~~~~~~~~~

- _

~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
0 ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~

0 —~~ ~~~ -0-~-~

4. Formal statement of the algorithm

The following ALGOL-like procedures specify the connected

component labeling algorithm. Actually, we only present the

procedures corresponding to the first and third phases of the

algorithm. Phase two can be achieved by using a variant of

algorithm E in [Knuth] .

The main procedure is termed COMPONENT and is invoked with

a pointer to the root of the quadtree representing the image.

T1’~e global variable MERGES is used to accumulate all of the

equivalence relations formed by adjacent BLACK ndoes. MERGES

is subsequently processed by phase two to yield a set of equiv-

alence classes——i.e., one class per component. LABEL implements

phase one by traversing the tree and controlling the exploration

of adjacent BLACK nodes. FIND_NEIGHBOR locates a neighboring

node of greater or equal size along a specified border. If no

such neighboring BLACK or WHITE node exists, then FIND NEIGHBOR

returns a pointer to a GRAY node of equal size. In such a case,

0 procedure LABEL_ADJACENT continues the search recursively by

examining all BLACK and WHITE adjacent neighbors of smaller size.

Otherwise, LABEL_ADJACENT assigns a label to the adjacent neighbor

if it is BLACK. The labels are assigned by procedure ASSIGN_LABEL.

Procedure UPDATE corresponds to phase three and results in the

traversal of the tree in order to propagate the equivalences

thereby uniquely labeling each component.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ — - 0 -

/* label all of the connected ca~ onents of the tree rooted at QUADTREE*/

begin

node QUADTREE;

pairlist MERGES; 0

MERGES4-empty ;

LABEL (QUADTREE) ;

process equivalences specified by MERGES ;

UPDATE (QUADTREE) ;

end;

procedure LABEL (P) ;

/*assjgn labels to node P and its sons~/

begin

node P,Q;

quadrant I;

if GRAY (P) then

begin

for I in {NW ,NE ,SW ,SE} do LABEL (SON(P ,I)) ;

end

else if BLACK(P) then

begin

Q+FIND NEIGHBOR (P, ‘E’);

if not NULL(Q) then LABEL_ADJACENT(Q, ‘NW’ , ‘SW’ ,P);

~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~
-.

~~~~~~~~
- - - - -

~~~~~~~~
-

~~~~~~~~~~~~~
— --



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~

Q~-FXND_NEIGHBOR(P, ‘S’)

if not NULL(Q) then LA~EL_ADJACENT (Q, ‘NW ’ ,‘NE’ ,P);

if not LABELED(P) then REG ION(P) GENREGION () ;
I

-

else return; /*a WHITE node */

end ;

F
—

node ~~pcedure PIND_NEIGHBOR(P ,S);

1* given node P, re-turn a node which is adjacent to side S of node P*/

begin

node P ,Q;

side S;

if not NULL (FATHER(P)) and ADJ(S ,SONTyPE (P)) then

/*fjnd a common ancestor~/

Q~-FIND NEIGHBOR (FATHER (P) ,S)

elSe Q~-FATHER(P);

/* follow reflected path back to locate the neighbor */

return (if not NUTJL(Q) and GRAY(Q) then SON(Q,REFLECT(S,SONTYpE(p)))

else Q);

H

_ _ _ _ _ _ _ _ _ _
H-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-~~ 
~~~1r’~ ~~~~~ r 

‘1’

procedure LABEL_ADJACENT(R ,Ql ,Q2,P);

/* find- aLl. descendants of node R~ ad- j-acent to node P—-i.e., in

quadrants Qi and Q2 ~/
begin

-

node P,R;

quadrant Q~ ,Q2;
0

• if GRAY (R) then-

begin

LABEL ADJACENT (SON(ft,Ql-) ,Ql ,Q2~,P) ;

LABEL_ADJ-ACENT-(SON(R,Q2) ,Q1 ,Q2 ,P);

end

else if BLACK(R) then ASSIGN_LABEL (P,R)

else return; /~ a WHITE node ~/
end;

procedure ASSIGN_LABEL(P,Q);

/* assign a label to nodes- P and Q if they do not already have

one. If both have different labels, then enter them in MERGES ~/
begin

node P,Q;

if LABELED (P) and LABELED(Q) then

begin

if REGION (P) ~REGION(Q) then add <REGION(P) , REGION (Q) >

to MERGES;

end

else if LABELED(P-) then REGION(Q)4-REGION(P)

else if LABELED(Q) then REGION(P)4-REGION (Q)

else REGION(P)+REGION(Q)+GENREGION();

end;

- - -~~~~~ -~~ ~ 0 ~~~ -~~~~ -- - - 0 -~ 0~~~~ —-0— — -~~ ~~~~~~~~~ -~~~~~~ —-

-~~~~~~~~‘~~~~~~~~~~~~ ~~~
-

procedure UPDATE (P);

/* propagate the equivalences in the quadtree rooted at P */

begin

node P;

quadrant I;
-

if GRAY (P) then
01 begin - -

for I in {NW,NE,SW,SE} do UPDATE(SON(P) ,I) ;

end

else if BLACK (P) then REGION(P) IWEUP (REGION(p) ,MERGES)

else return; /~ a WHITE node* /
end;

L. ______________________________________ — ~~~~~~~~~~~~~ -~~~——~.~~~~~~~---- -0-

--0

~

—,—

~~

•- — --0-— -0 -,-- •--

0 I-

5. Analysis 0

The running time of the connected component labeling algo-

rithm is determined by the time necessary to execute its three

phases. Prior to analyzing this value we first examine the

spatial configurations confronted by the algorithm and how they

affect its execution time. It should be clear that the greater

the number of BLACK nodes, the more time is spent exploring ad-

jacencies in phase one. Phase two is more dependent on the

shape of the various components. The execution time of phase

two is dominated by the number of equivalence pairs that are

generated in phase one. An equivalence pair is generated when-

ever an adjacency of a previously labeled node is explored and

it is found that the adjacent neighbor has already been assigned

a different label.

The situation giving rise to the generation of an equivalence

pair can be best seen by examining Figure 4. Components 1, 2,

and 3 do not result in the generation of equivalence pairs

because of the manner in which phase one explores adjacencies--

i.e., in the eastern and southern directions thereby processing

the quadrants in the order NW, NE, SW, SE. Thus we see that the

nodes or blocks comprising the quadtree are processed in the order

-
-

-
in which they are adjacent. This is not always the case for a

component having the form of component 4 in Figure 4 (in this

case we have the equivalence of D and B). This is especially

~~

0 m ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
-

true when the vertical and horizontal segments are not comprised

of single blocks, or have adjacent northern or western neighbors

in the case of the horizontal segment. For example, in the image

represented by Figure la we find that no equivalence pairs were

generated for the components 1, 2, and 3 whereaS this was not

true for the components 4 and 5. In particular, we have the —

equivalences BED for component 4 and FEG and GEH for component

5. Note that if the block labeled 40 would have been WHITE

rather than BLACK, then block 41 would have been labeled with

G and no equivalence pair would have been generated.

Phase one depends on the speed of the combination of proce-

dures LABEL_ADJACENT and FIND_NEIGHBOR. These procedures are in-

voked in phase one (i.e., in procedure LABEL) twice as many

times as one has BLACK nodes. The actual amount of work per-

formed by these procedures is more accurately represented by

considering the number of nodes that are visited when an adja-

cency is being explored. Recall that we must find the neighbor,

and if it is GRAY , then visit all adjacent neighbors of a smaller

size. In the worst case, we are at level n-l, with a GRAY neigh-

bor, and all adjacent neighbors at level 0. In such a case, we

must visit 2~ nodes. For example, consider Figure 5 where n=3

and we- wish to visit the blocks adjacent to the block labeled A

(i.e., blocks B, C, D, and B). We must visit the root of the

quadtree as well as A’s neighboring G~~Y node and all of its NW

and SW sons--i.e., a complete binary tree of height 2. In total,

_ — __-----_ • 0 — ~0_~0~~~~~~ ~~~~~~~~~~~~~~~~
— —~

-—- : -r~~~~~~~~
o_ ~~~~ 0~~~~~~~~ _ -_ - __ AM - ~~~~~~~~~~ _ _ _g~~~o 0 _ ?~~~ — --

- - -
~

- --
~

0- - . • - - - -00 ---0- -
~

-
~~~~~~

0--. - -
~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 -

_ •

2~ = 8 nodes are visited. In general, let the space be parti- 0

tioned into a 2n by ~~ array. Assume a random image--i.e., a

BLACK node is equally likely to appear in any position and level

in a quadtree. Recalling the analogy drawn in Section 3 between

phase one and the perimeter computation algorithm we have the

following result:

Theorem 1: The average of the maximum number of nodes visited

by LABEL_ADJACENT is n+l.

Proof: See Theorem 1 in [Samet2].

• The speed of phase two of the algorithm depends on the

method used for processing equivalence relations and on the

number of pairs of equivalences and different objects of the set

on which the equivalences are defined. We use a variant of an

0 algorithm presented in (Knuth]. Its maximum execution time is

proportional to the square of the number of pairs of equivalences.

It is speeded up by using a modification due to D. Mcllroy

[Knuth i to have a maximum proportionality to the product of t -~’

number of pairs of equivalences and the log of the size of the

set on which the equivalences are defined.

Recall that equivalence pairs are generated during phase one

only when we are exploring the adjacencies of a node that is

already labeled and its neighbor has also been labeled before ,

albeit with a different label. We now prove the following lemma:

-0 - - 0 0 — -0~~~~~~~~ --~~ -0--—~~~~~~~~~~
-0

~— ~~~
-
~~
—

~~~
-—-

~~~~ 
- .-

~~~ 
-
~~~~- - --- -—-.--— —--—- - -


- - • - -

-

Lemma 1: Phase ~ne generates a maximuiu of one equivalence pail

for each adjacency that is explored (i.e., each call to proce-

dure LABEL explores two adjacencies).

Proof: There are two cases depending on the direction of the

adjacency.

Case (a): An adjacency in the eastern direction can yield at
—

most e~ne equivalence pair regardless of the size of

the i eighbor. This is clearly true if the r~eighbor

is la~ger (e.g., blocks 38 and 35 in Figure lb).

Similarly, if the neighbor is smaller, then only the

northernmost such neighbor could have been previously

labeled (e.g., blocks 12 and 20 in Figure ib) because

only it could have been the southern neighbor of a

previously labeled node.

Case (bi : An adjacency in the southern direction can only yield

an equivalence pair if the neighbor is larger. No

equivalence pair may result if the neighbor is smaller.

This should be clear since southern neighbors could

only have been visited if they are adjacent to a west-

ern neighbor which has been visited previously.

Q.E.D. -

Letting B denote the number of BLACK nodes we have the following

theorem:

Theorem 2: 2B log B is an upper bound on the execution time of

phase two.

—

- -~ -- - -. - - - - -- ~~~~~~~~~~~~~ - ---~~~~- - - - 0-- - -

Proof: By the above lemma, phase one generates a maximum of

one equivalence pair for each adjacency that is explored. Re-

call that phase one explores two adjacencies for each BLACK

node. Also the set on which the equivalence pairs are defined

has a maximum number of objects equal to the number of BLACK

nodes, i.e., B. Thus when the equivalence merging algorithm

of (Knuth] is used, one has 2B log B as the upper bound for the

execution time.

Q.E.D.

Clearly, B~~ 3.2
2
~~

2 since at most 3 of every 4 sons of a

node at level 1 in a complete quadtr~~ are BLACK . At this point

we show how the upper bound of Theorem 2 may be tightened. As-

sume a 2~ by 2’~ array and n � 2. We first prove the following

lemma.

Lemma 2: 22n-3 is an upper bound on the number of objects in

the set upon which the equivalences are generated in phase one.

Proof: Recall our discuøsio’t with respect to the types of equiv-

alences our algorithm is least proficient at handling. Clearly ,

the best algorithm is one that never generates pairs of equiva-

leraces. We mentioned the existence of a worst case configuration

of nodes where an equivalence pair had to be generated (see Comp-

onent 1 of Figure 4). Clearly, the upper bound of Theorem 1

arises when the quadtree corresponds to a single component--i.e.,

once all of the pairs of equivalences are merged, a single equi”-

alence class results. Therefore, consider a case where the

minimal instance of the worst case case is replicated--e.g.,

the 2~ by 2~ array in Figure 6. In the general case, i.e., a

2” by 2’~ array, there are objects on which equivalence

pairs are generated for the first four consecutive rows and

such objects for each remaining set of four consecutive

rows. Thus in a 2n by 2” array there are less than 22n-3 objects

in the set upon which equivalence pairs are generated (e.g., -l

through 29 in Figure 6).

Q.E.D.

We can now prove Theorem 2’ as follows:

Theorem 2’: 2B(2n-3) is an upper bound on the execution time

of phase two.

Proof: From Lemma 2 we have that the maximum number of objects

in the set upon which the equivalences are generated in phase

one is less than 221~~
3. From Theorem 2 and (Knuth] the execution

time of phase two is bounded by the product of 2B and the log of

the maximum number of objects in the set upon which the equivalence

pairs are derived——i.e., 23 log 22n-3 = 23(2n-3).

Q.E.D.

The speed of phase three of the algorithm can be obtained in

a straightforward way. The tree must be traversed and for each

BLACK node P, REGION (P) must be set to the head of the equivalence

class obtained as a result of phase two. The actual lookup oper-

ation is bounded by the log of the maximum number of objects in

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



~~~~~- - - ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~- - - - -

the set upon which the equivalences were generated in phase one.

From Lemma 2 we have the value 2n-3. An upper bound on the size

of the tree is obtained by the following lemma.

LP1mn~ 3: The upper bound on the number of nodes of the quadtree

is 4Bn+l.

Proof: See Lemma 1 in [Samet2]. Q.E.D.

We now have the following theorem:

Theorem 3: The upper bound of the execution time of phase three

is proportional to B(2n-3) + 4Bn+l.

Proof: Use Lemmas 2 and 3 and the time required to access the

head of an equivalence class.

Q.E.D.

using Lemma 3 we obtain an upper bound on the average worst case

execution time of phase one.

Theorem 4: The upper bound on the average worst case execution

time of phase one is 6Bn+2B+l.

Proof: From Theorem 1 we have that for each adjacency involving

a BLACK node, phase one results in an average worst case of n+l

nodes being visited. There are two adjacencies for each BLACK

node. Also from Lemma 3 we have that the tree traversal componen4-

of phase one visits at most 4Bn+l nodes. Therefore, we have

28(n+l) + 43n+1 = 63n+2B+l nodes being visited.

Q.E.D.

-~1

-0

-, --~~~
--

-

- ~~~~~~~~~~~~~~~~~~~~~~ —

-

-

At this point we come to the main result:

Theorem 5: The average worst case execution time of phases one,

two, and three has an upper bound proportional to the product

of the number of BLACK nodes and the log of the diameter of

the image.

Proof: The log of the diameter of the image is n. Summing up

the contributions of phases one, two, and three as indicated by

Theorems 4, 2~ and 3, we have the result 6Bn+2B+l + 3B(2n-3) +

4Bn+l = l6Bn-73+2.

Q.E.D.

- —

-~~ r

- -.r... ~~~~~.fl ,—•_---?‘-•-_--— - - - -

. Conc.~~Uing i~1darks

An algorithm has been presented for labeling the connected

components of a binary image. The analysis was somewhat faci-

litated by the analogy with the perimeter computation algorithm

represented by a quadtree. The algorithm ’s running time has

been shown to have an average worst case time complexity propor-

tional t~: the product of the log of th~ image ’s diameter and the

— number of the terminal nodes describing the area spanned by the

component~3. This is of the same order of magnitude as the

complexity of the perimeter computation algorithm in [Samet2]

although it should be clear that the latter is smaller. Note that

Theorems 2 and 2’ yielded different upper bounds on the execution

speed of phase two. We chose to use the result of Theorem 2’

because it had a direct relationship to the log of the region ’s

diameter.

In general , the performance of the algorithm is quite good

because in actuality very few equivalence pairs are generated .

Some var i ,nt of t•t-~e worst case in tern~ of oonfiguratia~s leading

to the g’:~ iieration of an equivalence pair will occur no matter

which order of traversing the adjacencies is adopted . It should

be clear that phase two can be combined with phase one by per-

forming the merge dictated by the equivalence immediately in

procedure ASSIGN_LABEL rather than using the list MERGES and

executincj phase two. We chose the previous approach in order to

• simplify the presentation of the analysis. Also note that Lemma 1

L - — - - - ~~~~ ~~~~~~~
_ • - —-- - —~~~~~~~ —-— — 0~~~ ~~~ — -~~~ -— --—-

- -0- ~~~——- —~~~- — -•-.--- -,--
-

insures that the upper bound of the execution time of phase two

is not affected by generating the same equivalence pairs more -

than once (e.g., in Figure 7 the equivalence AEB is generated -

once by blocks 6 and 2 and once by blocks 9 and 2. -

Note finally that if the algorithm is applied to both the

BLACK and the WHITE nodes, one can compute the number of holes, •
-
~

and hence the genus , of the image. Genus can, of course, also
-

be computed by counting the number of occurrences of various -

local patterns in the image. - .

- - - -
~~~~~~~~~~~~~~~~

0- —
~~~~~~~~~~~~~

_ _ _ _ _ _ _ -0— —•- - —-0— —

H ‘~~~ - -

—

_ _

[e

C,,

—

m

-n — — 0~ —
-- -~~

— -
- // /

/ ,—

~r, -~~~
-
~~~~~ 

.
~~~ - -

,
- z

• — — — ‘ —.
~ 2z

•

_

2 ~~~~~~~~~~~~~
—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~ 

-

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~° —
~ 

—
~ 

- -

~~ -~~E. oo ~~~~~~~~~~~~~~~~~~~~~

~ I.,, ~~ 
— 

-

~~ oo~~~~ ,i ~~m ~~~~~~— I. — — — —~~~~ — — I —— ~0 - - - 
-
,

0 / I_
~ ~~

• 
~~~~~~ 

g,
~~ ~00 / oo tJl

— — — — — —
— %J1
2

— ~~
0 c•,~~ ,•1— — — — — — —

h.. - , - —~~~~~~~~~~ — - -_ ~~~~~~ . ~~

- - ~~~~~~~~~ 0

—

0

VI

a VI

• ::•~~~
C

UI VI
C

x

~

C
-I. —
—

•-l •
•

z

S

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



- -
~~~~~~~ --

~~~~T~~~~~~~ 
-.

0

±I~~ 
A I ~~~~~C I C C J g

A

_  I:I:: D:D~~~~

• FIG. 3. RESULT OF THE APP i CATION OF PHASE ONE FIG , 4 • SAMPLE COMPONENT SHAPES AND THE LAB E.S
TO FIG. jb , THAT THEY GENERATE.

C
- A

B

E
- 
— —

F I G .  5. SAMPLE IMAGE DEMONSTRATING THE MAXIMUM
NUISER OF NODES ThAT MUST BE VISITE D

~~~~~0•~~0~~ 
•- --•- •--- -••- -• -•i. ~~~~~~~~~~~~~~~~~~~~~

--- -0— - • . • -- ---,--•- -0-’
— -

1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L1 _ l_2
-
; 2 2 ,~ ‘1 1 1. 4 

- 
4~ ~( 4 1Q ~~ i~ 10 12 12— — — — — — — — -

~~ ~~ — _ — —

12— — — — —_ _
~~~~~~~~~~ _~~~~~~~~~ _  ~~_~~~_ 1~~_ L ~~ L2 ...

—

— —•~~- ~~~~~~~~~~~~~~S ~6. 5 5 5- -- 8 8 8 ~ ~14 14 14 14 12 12—— — — — — — — — ~ — — — — 12

-
18 _ 2_4 _~~~_ 7~~~ ~~~

~~~~~~~~ 12
I 12

20 22 23 27 128 29 12

H FiG . 6.. SAMPLE IMAGE FOR ~~~ WHICH RESULTS IN THE

GENERAT ION OF A MAXIMUM NUMBER OF
EQUIVALENCE PAIRS . 

-

1 3
_ _ _ _  

A 
_ _   

A

: 
~

. 2 

A 

.

. 

-
,

FIG. 7. SAMPLE IMAGE DEMONSTRATING ThE GENERATION
• OF THE SAME EQUIVALENCE PAIR MORE THAN

ONCE ,

—-0- --—— - -— -- -  - - -  - -— --- — — — - -

• __,_••___t~,__.•~~-•-•- 
~~~~

—-0-- •’~
- •

__ _ _ _ . _ a l t o - ~~~~~~~~~~~ 0 - a - o. _._ .. - o - -—- -~ -• -~~~--~~~~~~~ _ . 0 • . - o . - d_ .t_-. o - ~~o.~~~... •
.— — —•——-—‘—~~— — ~~~~~~~~~~~~~~~~~~

-0-~~~ -~~~

H:
_ _1.
____ ____

[DRS] C. R. Dyer, A. Rosenfeld, and H. Samet, Region repre-
sentation: boundary codes from quadtrees , TR-732,
Computer Science Center and Computer Science Department,
University of Maryland , College Park, Maryland , February
1979.

[Klinger] A. Klinger and C. R. Dyer, Experiments in picture repre-
sentation using regular decomposition , Computer Graphics
and Image Processing 5, 1976, 68-105.

EKnuth~ D. E. .~nuth , The Art of Comr .’ter Programm i,~~~ Vol. 1~Fundanuntal algorithms, second edition , Addison-Wesley,
Readin~j, Mass., 1973, 353—35~ , 360, 572.

[Naur] P. Nau;~ (Ed.), Revised repoL
4 on the algorithmic

language ALGOL6O , Communica t ions of the ACM 3, 1960,
299—314.

IRK] A. Rosenfeld and A. C. Kak , Digital Picture Processing,
Academic Press, New York , 1976, Section 8.1.

- [Sameti] H. Samet, Region representation : quadtrees from boundary
codes , TR-741, Computer Science Department, University
of Maryland , College Park , Maryland, March 1979.

[Samet2] H. Samet , Computing perimeters of images represented by
quadtrees, TR-755, Computer Science Department, University
of Maryland , College Park , Maryland , April 1979.

(Tarjan] R. E. Tarjan, On the efficiency of a good but not linear
set union algorithm, TR 72-148, Computer Science Depart-
ment, Cornell University, Ithaca , New York , November 1972.

——— - - - -—--- -- •—- -—- ——-- --—— --—--- —- - -- ----~~~~ ~~~~- 00~~

-0.— - —.,7••_---• — — ,~
-0 -0-.

- — -~.-—--- - -r _ _ _ _ _

Un~~~~a R s i f i ~~d
SECURItY CI.AS$ IFICATION OF THIS PAGE (1P3..n D.ta Enf#t.d)

D~~DAOT I~nrIIU~~~JTATIAI i RA CE READ INSTRUCTIONS
S~~~~r ~~V~~I ~~~~~~~~~~~~~~~~~ ~~~~~~~~~

—
BEFORE COMPLETING FORM

I. REPORT NUMB ER 2. GOVT ACCESSION NO. 3. REC IPIENVS CATALOG NUMBER

4.~~~ T LE (and S. ’ 5 TYPE OF REPOR1 S PERIOD C:..’EREO

CONNECThD COMPONENT LABELING USING Technical
QUADTREES

- a. PERFORMIN~~ 0RG. REPORT NUMBER

______________________________________ PR-756~
7. AUTH0R(~

) S. CONTRACT OR GRANT NUMBER(s)

Hanan Samet DAAG-53—7~C-Ol38

S. PERFORMING ORGANI ZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT . TASK

Computer Science Department” AREA S BORK UNIT NUMBERS

University of Maryland
College Park, MD 20742

II CONTROLLIP~G OFFICE NAME ANO ADDRESS 12. REPORT DATE

U.S. Arr~y Night Vision Laboratory t3I~UuBER OF PA G E S
Fort Beivoir, VA 22060 28

14. MONITORING IGENCY NAM E S AOD RESS(SS diff.r.nt from ControiUng Offi ce) IS . SECURITY CLASS. (of this report)

Unclassified
15& DECLASSIFICAT ION/D OWNG RADING

SCHEDULE

IS. DISTRIBUTION STAT EMENT (of this R.posS)

Approved for public release; distribution unlimited.

4 17. DISTRIBUTION STATEMENT (of Ih• .b.tr.ct .nt.,i d ln Block 20. ii different from Report)

IS. SUPPL EMENTARY NOTES

IS KEY WO ROS ~
(.onhlnu• on r.’er.. aid. ii nec.aaasy and ld.ntify by block numb.,)

- - - ________

Image processing
Pattern recognition
Region analysis
ConnectecY components
Quadtree~~~~~. ABST RACT (C - .tlnu • on revere. aid. SI n.c. ..aty end Sd.ntiSy by block number)

Ln algor~.thm is presented for labeling the connected components of
~tn image represented by a quadtree. The algorithm proceeds by ex-
ploring all possible adjacencies for each node once and only once.
Once this is done, any equivalences generated by the adjacency
1.abelinq phase are propagated. Analysis of the algorithm reveals
v hat it~ qorst case average execution time is bounded by a quantityproportic.nal to the product of the log of the region ’s diameter and
the numhc~r of blocks comprising the area connected by the component

DD
~~~~~~ ~473 EDITION OF 1 NOV 65 1$ OBSO LET E

tInc~1~~~~~ i fi~~d
SECuRITY CLA SSIFICATION OF TIllS PAGE (B5..n 0.,.

_ _ _ _ _ _ _ _  ~~ - --- -- - •-0~~~~~~~
,-

~~~~~~~
,-,

~~~~~~~~~~~~~~~~
- - -


