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ABSTRACT
•

A new method for the numerical simulation of three-dimensional

• incompressible flows is described. Our vortex-in-cell (VIC ) method

traces the motion of the vortex filaments in the velocity field which

these filaments create. The velocity field is not calcu~~~~~ directly

by the Biot-Savart law of interaction but~by creating a mesh-record of

the vorticity field, then integrating a Poisson’s equation via the

fast Fourier transform to get the stream function and generating a

mesh-record of the velocity field. The computed scales of motion are

assumed to be essentially inviscid. Viscous or subgrid-scale effects

are incorporated into a filtering procedure in wave vector space.

Three computational experiments were pursued in three-dimensional

• space. The velocity of translation of a single vortex ring was

measured and compared with the Biot-Savart law. The agreement was

excellent. Next, the evolution in time of an infinite periodic array

of closed vortex filaments (Taylor-Green) was studied. The results

were compared with those obtained previously by the ep ctral method.

The Fourier mode spectra were in very good agreement.c The third simu-

lation follows a mixing layer from an initial state of uniform vorticity

with two- and three-dimensional small perturbations. Streamwise per-

turbations lead to the usual roll-up of vortex patterns with spanwise

uniformity.~~~~~~ ned with spanwise perturbations, it was observed that

the third dimension is extremely important in the evolution of a mixing

layer even though it is an “ignorable coordinate” in the idealized

uniform shear flow. Substantial streamwise vortex deformation and

stretching is generated by the spanwise perturbations.
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Chapter I

INTRODUCTION

* It is becoming evident that a proper understanding of turbulence

will depend heavily on numerical methods of solving the Navier-Stokes

equations in three dimensions at high Reynolds numbers. In this work,

we describe a new method for the numerical simulation of three-dimen-

sional incompressible flows. Our approach differs from other numerical

fluid simulations in that, rather than solving the Navier-Stokes equa-

tions on an Eulerian mesh, we emphasize the vortical part of the flow

by solving the vorticity equation, using a hybrid method.

Numerics means discretization, and in breaking up the fluid or gas

into discrete elements, one can, and should, make use of the fact that

• vortices naturally preserve their identity. Even when the vorticity

is itself continuous, as in laminar shear flow, the parametrization

of fluid elements according to (infinitesimal) vortex filaments helps

greatly toward programeing hydro- or gas-dynamics into the computer.

Historically, the first numerical calculation using a two-dimen-

sional discrete vortex element method was made by Rosenhead~~ ~~, using

a few vortices. Since then, the same method has been applied to various

two-dimensional shear flows and is sumearized in a literature survey by

Fink and Soht 
]. Most of these efforts were directed toward understand-

ing the time evolution of finite-area vorticity regions or the initial

break-up of the laminar shear layer (usually done for short times or

small regions with periodic boundary conditions). Some of these recent

computer calculations involved thousands of vorticest3~
415

~. Other impor-

tant flows were also considered: two-dimensional turbulencet6~
7
~
8*9~,

separated flovsE1~
), and stratified flows in both homogeneous and porous

A 1
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12
~.

A flow field can be represented to any required precision by a

sufficiently large assembly of discrete vortices and the time evolution

of the field can be transcribed into a kind of particle mechanics of

these vortices. If one integrates analytically, in two or three dimen-

sions, the Poisson’s equation relating the velocity field to the vor-

ticity field (see Eq. 2.4), the result is a direct Biot-Savart integra-

tion or suamation over all the vortices making the vorticity field~~
4
~.

With N vortices, a time step in a direct suimnation scheme will in-

volve evaluating N-i terms for the velocity which displaces a single

vortex, and thus on the order of NxN terms per time step. For large

N , such a code will be very time consuming. Thus, the two-dimensional

mixing layer calculation of AshurstE7], where the number of vortices was

increased from one to eight hundred, required two hundred and fifty hours

of computing time on a CDC 6600. Understandably, previous direct sununa-

tion calculations were much more modest. MichalkeEl3] studied the

linear and partly nonlinear instability of seventy-two vortices arranged

on three close parallel lines. Actontl4), still in two dimensions,

studied the same problem, but with ninety-six vortices arranged initially

on four close sinusoids, and ran for a longer time. In Acton ’s simula-

tion, the sinusoid is seen to amplify, break and form two vortex blobs

which then merge into one.

An alternative method for time-stepping a set of parallel vortices

in two dimensions, the cloud-in-cell (d c) method as it is sometimes

called, was described by ChristiansenC15 5 16~. In this algorithm, the

basic variables are still the positions and strengths of the vortices,

but now a grid is laid down in the plane perpendicular to the vortex

2
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filaments and covering the flow area. At every time step, a grid vor-

ticity is generated by distributing the vorticity from each vortex over

the four neighboring grid points suitably weighted. This grid vorticity

is then used to generate a grid stream function by solving Poisson’s

equation. The stream function is differenced on the grid to produce a

velocity field, which is finally interpolated back to the vortex posi-

tions. The advantage of this apparently rather elaborate detour is

that the Poisson inversion can be accomplished by fast Fourier transform

techniques. If the grid is MXI4 , this is an order M2log2M calcula-

tion. Since in a typical 2-D calculation today, the number of grid

squares MxM is some small multiple of the total number of vortices N ,

this required on the order of N log2N operations per time step. The

smoothing and interpolations take of the order N operations. When N

is large, N log2N is considerably smaller than NXN

A disadvantage of the cloud-in-cell method (as against the direct

interaction method) is having to watch out for grid effects. In parti-

cular, “aliassing” should be avoided or minimized, as in the case of

conventional Eulerian fluid simulationst28~
57]. To counteract grid

effects, wangt173 did some extensive two-dimensional simulations in

which he improved on the CIC method by first, using cubic splinee for

interpolation (i.e. referring to the nearest 16 grid points for each

vortex node rather than to the nearest 4) and second, applying a gaus-

sian shape factor or “filter” in wave vector space. The insensitivity

of the resulting potential contours or flow lines to the underlying grid

is shown in some diagrams presented i~
E17

~.

The “filter” can serve a dual purpose in vortex methods. It

obviously helps to dc-emphasize the high harmonics which are the most

3
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sensitive to grid effects. But it also spreads the individual vortex

strands from singular filaments to tubes of finite thickness. It was

pointed outti8] that, because high induced velocities occur when two

vortices come close together, unless a finite core radius is used, the

accuracy of the discrete vortex element method does not improve as more

and more elementary vortices are employed to represent a given vorti-

city field. This small cut-off radius represents the smallest scale

we can compute. The effect is not cumulative; the vorticity is spread

a little way only.

It is well known in turbulence theory that energy is transferred

from large to small scale through the three-dimensional vortex-stretching

mechanism. Although many explanations have been givent19~, there seems

to be little quantitative support. It has also long been understood

that jets and wakes can be idealized by a series of vortex rings, but

few studies have been carried out in terms of three-dimensional vorticity

theory.

In three dimensions, the direct suianation scheme has been applied

t20,21,22,23)to a small number of simple vortex filaments , but at

considerable cost because of the time required to sum all the mutual

Biot-Savart interactions between the many elements in all the filaments.

In our method, the velocity field is not calculated directly by the Biot-

Savart law of interaction but by creating a mesh-record of the vorticity

field, then integrating a Poisson’s equation to generate a mesh-record

of the velocity field. The “cell” or “mesh” method speeds up the cal-

culations of the interactions and allows the three-dimensional vortex

pushing method to be applied to a space densely filled with vortex fila-

ments, each filament being resolved in fine detail along its length. 

~~~~~..
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Some features of our method are the following: a) each vortex of

finite size has a gaussian vorticity distribution , which is achieved by

combining quadratic spline interpolation with spectral shaping in three-

d imensional wave vector space where Poisson’s equation for the velocity

field is solved; b) a machine-coded FFT is applied to transform vorti-

city records from real space to wave vector space, and to transform

back velocity records every time step ; c) only the spline coeff i-

cients of the phys ical var iables are accumulated or recorded on grid

points. Good subgrid accuracy is achieved through the spline inter-

polation , minimizing grid effects and preventing numerical instability .

Some of the basic advantages of our discrete vortex element method over

the finite-difference methods for numerical simulation of flows are as

follows: a) the method lends itself to simulation of flows at high

Reynolds number; b) it eliminates the necessity to solve for the irro-

tational flow domain, which remains passive ; c) it eliminates the Cour-

ant-Friedrichs-Levy (CFL) condition , which imposes a time-step limita-

tion based upon the arbitrarily chosen mesh size instead of the physical

time scale based upon vortex interactions.

Bas ically, three computational experiments were pursued. The

first one involves vortex rings. The velocity of translation of a

single vortex ring in three-dimensional space was measured in a vortex-

in-cell (vic) run. This can also be calculated analytically, at some

cos t, using the well-known Green ’s function method (a Lagrangian method

using the Biot-Savart law). We compare the results of the two methods ,

(see Chapter IV, section 1).

The second experiment considers a particular periodic vortex pat-

tern due to Taylor and Greent24~ . After attempting a perturbation

5
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analysis to trace the evolution of this flow, it appeared that, as in

Taylor and Green’s original work, such an analysis would fail to pro-

vide medium to large time solutions, or high Reynolds number solutions.

Our vortex-in-cell method was used to print out Fourier mode energy and

enstrophy (mean square vorticity). These results were compared with a

purely spectral (Galerkin) method, most appropriate to simulate such a

naturally periodic flow. Also, a movie tracing the vortex lines in

three-dimensional space was produced directly from our vortex-in-cell

method, (see Chapter IV, section 2).

Our last experiment is related to the evolution of a mixing layer

from an initial state of uniform vorticity with simple two- and three-

dimensional small perturbations. We expect the streamwise perturbations,

where apanvise uniformity is maintained, to lead to the usual roll-up

of vor tex patternsE25~26~27]. Combined with a spanwise perturbation of

the same type, streamwise distortions of the vortex filaments occur.

Again, a movie tracing the vortex filaments in three-dimensional space

was produced.

An outline of the remaining chapters of our work is as follows.

The fundamentals of vorticity dynamics relevant to our technique are

discussed in Chapter II and a description of the computational method

is given in Chapter III. In Chapter IV, the results of computational

experiments are presented and discussed while conclusions and sugges-

tions are given in Chapter V.

4
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Chapter II

BASIC PRINCIPLES

We assume unbounded incompressible flow , fully periodic in each

of the three dimensions. Starting with the incompressible Navier-

Stokes equations where we assume no external forces, the equation of

motion of the flow field is given by:

~~~
= ~~~c’p +  vv2j~ (2.1)

where the “material acceleration” is defined: + •

Rather than solving (2.1) on an Eulerian mesh, we want to trace the

motion of the vortex f ilaments in the velocity f ield these f ilaments

create. The collection of vortex filaments in each periodic box forms

the vorticity f ield , ~ = V X • We there fore solve the incompressible

vorticity equation, obtained by taking the curl of (2.1):

= • + (2.2)

By using the equation of continuity,

V . = 0 (2.3)

we find that the velocity field can be determined kinematically from

-*V u = - V X W  (2.4)

In the following, we use the large-eddy simulation approachE
28] where

one calculates precisely the large-scale motions and models approxi-

mately the effects of the finer subgrid scales. The separation of

the large and small eddies mathematically can be achieved by filter-

ingE~~
J. If ~ is som e flow field containing all the scales, we

7
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define the large-scale or resolvable-scale component of ? to be a

convolu tion of ?~ with a filter function G(~) ,

f(~) .ifffG(~~~~’) ?(~~‘)  d~ (2.5)

In the present method, the computed scales of motion are assumed to

be essentially inviscid. Any actual viscous effects are on a subgrid

scale and are incorp’orated into the f ilter ing procedure described in

more detail in the next chapter.

From Helmnholtz ’s theorem, the motion is purely kinematic and the

vortex filaments follow material lines. Also , by def inition of

, V ‘ 0 , and Kelvin’s theorem states that, in an ideal fluid,

the velocity circulation r around a closed “fluid” contour is

constant in time, that is 0 where

r=J~~.dt=ffi~~~~d~ (2.6)

Here A is the cross-section area of the filament. In particular, the

effective vorticity f ield in each per iodic box is obtained from

the ac tual vorticity ~ by f i l te r ing:

~tc~,t ) _ffjG(iL~’) ~(~ ‘,t) d~ ’ . (2.7)

The unfiltered vorticity is generated by the space curve

as follows,

~~(~
‘, t )  =~~~ ~~~~~~~~ ~~ 

d~ (2.8)

and is highly singular. Here ~ is a parameter which traces each

filament along its length at any instant in time. The summation is

over individual vortex filaments. The evolution of each space curve

8 
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is determined from the continuous velocity field by

~~~~~~~ [fj G(~ _i~’) ~ (r’,t) d~ ’ (2.9)

with determined from (2.4).

In summary, equations (2.7), (2.8), (2.9) and (2.4) describe the

physics of vortical flow which must be discretized for solution on

the computer.

--~~~~~~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ -—~~~~~~~~~~ - . . -



chapter III

DESCRIPTION OF COMPUTATIONAL METhOD

For a variety of reasons, the vorticity field and other fields

are conveniently expressed in Fourier space, Just as in the more

successful numerical attacks on the turbulence problem by solution of

the Navier-Stokes equation E30_33
~ . The main reason the fields compo-

nents are recorded in spectral form is that calculus (differentiation

and integration) translates to algebra (multiplication and division)

i.~ the spectral domain. Of course, this implies periodicity in all

three dimensions.

Working in Fourier space also provides additional benefit from

the control one obtains over the filtering operation: the convolution

integral in (2.5) becomes a product in Fourier space. Translating

in Fourier space the basic pr inc iples given in the previous chapter ,

we can draw a computational chain of operations. Starting with a

given set of vortex lines with their circulation r , we want to find

their displacement:

1- 4~(~,t)
d~ 

(2.8) (2.9) f
(2.7) - -1.-~ (lt, t )  (2.4)

The numbers refer to the equations of the previous chapter. The

different parts of the scheme will now be explained, namely the

numerical modeling of the vortex filaments, the interpolations that

take place in order to use the fast Fourier transform, the shaping

of the vortices and the time-stepping procedure.

10



111.1 Filament Modeling

In our model, one describes each vortex filament by a succession

of closely spaced markers. Considering a single vortex in (2.8), we

have
- rf 6ç~-~~(~ )) ~~ d~

at an instant t , where r is given by (2.6). Taking the Fourier

transform, we get

~~~) _jffe ik~~ rf ô(~-~~~ )) ~~ d~ d~ (3.1)

If we now discretize ~ into piece-wise linear sections,

— + ( ]— ~Y~~ 1 , 0 ~ ~ 1

then

=E rf ~~~~~~~~~~ 
e

_ 1
~~

t
~~~ j , J_ i  d~ (3.2)

0

where in is the total number of markers describing the filament and

a Integrating (3.2) and letting

‘.4 -4
k r t ~ 

)
I i-i — €
2

we obtain
I ~~~~~-4m -, .~~ 
I -ik’r -ik’r

— rE 
t(r1 r1_1) ~e - e

• .1_i

rY~ 
i(# 1-11 1 )  e

1
~~~~j

nj.1) 
(e
”i - e~~i)

25
3

~ 
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r~~~ ~~~~~~~~~~~~~~~~~ 

e~~~~~~~~~~~3 1~ 
sin 

~~3—].

The labor of evaluating the trigonometric functions for all sections

of the filament in (3.3) to obtain one Fourier component ~(~) would

be prohibitive if each vortex required at each time step the evalua-

tion of all the Fourier harmonics • All this might turn out to be

as expensive as the primitive process of summing up all direct inter-

actions among the vortices~~~~. It is more efficient to first dis-

tribute vorticity onto the gr id according to an interpolation process

and then perform an FFT. Considering equation (3 . 3) ,  it amounts to

two things. First, we should be able to express sin as a
-ik’~ -

~

linear combination of e where is a function of r. and
3

Secondly, the resulting trigonometric exponential functions

should be approximated onto the mesh in Fourier space so that the FFT

can be performed. As of the substitution of sin , we went

back to Eq. (3.2) and evaluated it by gaussian quadraturet
35) to

obtain, 
m

r~~~ 
(rj

_r
~~~)

j_i 2

x~~e [(1+3~~)~j + (1-3~~)~j~~]+ ~~~~~~~~~~~~~~~~~~~~~~~~~

Indeed this is equivalent to the approximation,

-is 3~~ is 3~~~~~ e -~ + e cos___  — 2 \ 3~

(See Appendix I for derivation.)

12
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What we want now is to replace the pure harmonic e~ 
r for arbi-

trary ~ by an approx imant to be evaluated on the discrete spatial

mesh.

111.2 Interpolation

In each of the three dimensions , we use quadratic spline inter-

polation to approximate e
ikx 

in terms of e~~1t 
. In particular,

~~~~ is represented in the general interval n - ½ x ~ n + ~j  as

the superposition of three parabolic arcs as follows:

ikx 1 12  a 2e ~~
- g
~+i
(x_n+

~
) + g(4-(x-n) )

(3.4)
1 1 2

+~~~g 1 
+~~x

This representation ensur~es continuity of function and slope between

• adjacent intervals. The spline coefficients g~ are usually chosen

sc as to force agreement between function and approx imant at the

centers of the range in which each quadratic polynomial is used. In
•1

our case , we shall injec t, at this point, only the information that
ikthe spl ine coeff icients must share the phase shifts , e , per

interval , with the function to be interpolated. Thus we take

= S(k) e~~
r
~ where S(k ) is independent of n . (3.4) then becomes:

eiI
~

C S(k) [~ (x-n+~ )2 eik
~~~

1) +(~ - (x_n)2)e
i
~~

(3.5)

+ ~ (nf~_x)
2 e’~~~~1)]

or 

etks 
S(k)[1 - 

(1~~x
2) sin + ix sin k]

13 4 
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Note that the choice 4/(3-I-cos k) for S(k) would force agreement

between function and approximant at x — 0

We observe that the representative substitution for a general

interval (3.5) means one pretabulates the spline coefficients

S(k) f(k) ~~~ , not functions values, and one applies the spline

weights to the entries in this table for evaluation of local function

values. The indicated summation over k is, of course, done as a

fast Fourier transform. But one does not transform the original

spectrum f(k) , one transforms S(k) times the spectrum.

The adjustment factors S(k) must still be specified . As men-

tioned, in conventional interpolation, one pins the interpolant to

the function at specified points : the mid-points in each interval

for quadratic interpolation. This is appropriate when one has no

more information on a function than the values at integer abscissae.

In our case, we have more information available.

Since we know the function to be approximated throughout the

interval in principle from its Fourier harmonics, we can make a less

biased choice of S(k) . We can minimize the mean square error over

the interval by choice of S(k) • Using standard procedures, one finds

H that S(k) P(x) deviates from e1~~ with the least mean square error

when

S(k) _f¼
P(x ) e 1

~~ dx/f 
P2(x) dx (3.6)

and the mean square error is then

1 - (f’ ½ 
e 1

~~
C 
dx)
/f 

P2(i) dx

14



Here P(x) is the polynomial in brackets in (3.5). With our new

choice of S(k) , we can define the second order spline as that

second order polynomial which joins smoothly (up to the first deriva-

tive continuous) with the corresponding polynomial in the adjacent

intervals and which departs from the given function with least mean

square error.

The numerator in (3.6) is recognized to be the Fourier transform

of the second order spline when the trignometric functions in P are

expressed in terms of complex exponentials. The second order spline

is known to be the second convolution of the rectangle function with

itself. The rectangle function (= 1 for ~x1 < 1~ , = 0 for

l xi > ~~~ ) 
transforms to sin kf36~ . Thus the numerator in the

-

~~~~~~ 3
• expression (3.6) for S(k) is (j~ 

sin 
~~~~) • As for the denominator

D in (3.6) one finds:

D_ 16 +13 c08k+c05 k-. 
30

2k 2 4k
= 1 - s i f l  ~~+j~~sin ~

The formula for the mean square error now becomes

1 .(
~ 

sin ~
)
6/D

The square root of the mean square error is plotted versus k in

Figure 1 • One f inds that for small k , the rins error is of order

I’ k3 , specifically the rms error is

• 
k3 ~ .0058 k

3

12~~210

15

— ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~— - --
~ , .-~~~~~~~~~~~



- - - —,-~-- ~‘~‘ ~~~~~~~~~~~~~~~~~~~~~~ ‘ -.

_________________________________________

o I-i

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  o
w
— •1-4

‘
4J

V
V 0a.

V - .1-I
1.1
bO

U) ws-I

0’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

SI

H
. 

S 

I

\~~~~~~~~~
i1
r-l
W
I-i

H 
_ _ _ _ _ _ _ _ _I I I I I I I I I 0
0~ CD. csi 0
— 0 0 0 d

SèIOèIèJ 3 SVJ~J

16

.. —~~~~~~~~~ ~~~~~~~~~~
—

~~~—-. _t - ~~~~~~~~~~ - ~ —~~~--~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ 
— --

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- 

. -- ‘
~~~



.w r~’ - ~~~~~~~~~~~~~ ---r, . ~~~
‘ ‘

~~~~
‘ - - -

- - - -

As mentioned in the previous section, the purpose of interpola-

tIQn is, in fact, to distribute vorticity onto a grid. Figure 2

illustrates a one-dimensional model where three quadratic spline

distributions of vorticity with different total amplitudes are shown

to have their centers located at positions a, b, and c. It also shows

that three nearest grid points to each of the centers will share the

vorticity distribution according to the spline function weighting on

them. In other words, this is a particular way to distribute a

finite-sized vorticity on its neighboring grid points. In our example,

grid points N-2 to N will share the vorticity at “a” with N-i

getting most weighting. Similarly points N-i to N+2 will share

the vorticities “b” and “c’ . It is the array of this vorticity distri—

bution that will be transformed to calculate the potential array and

velocity field array. The quadratic spline weighting is superior to

• the zero-order weighting (NGP model) and first-order weighting (CIC

model) in the sense of creating less field-noise and resulting in

smoother simulation functionsC37~ ~~. This is an obvious conclusion

since vorticity is now distributed among three grid points instead of

one or two as in the other models and the interpolated distribution is

quadratic rather than a piece-wise step function, or first-order

linear function, with discontinuous derivatives. There is also a

reduction of aliassing. In three dimensions, the three nearest grid

points in each dimension (27 in all) will share the vorticity distri-

bution according to the spline function weighting on them.

The sensitivity to grids being introduced for interpolation pur-

poses was tested by Bunemant37~
38
~
39) and wangt’7~. BunemanE37) showed

that substantial distortion of the local stream function can result

17 
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F
from linear interpolation if the vortex is located at other than the

symmetric positions in the grid. By using least-mean-square fitted

quadratic splines , it was shown that the stream function is virtually

insensitive to the grids such that the same undistorted stream func-

tion will appear no matter where the vortex is located. Figure 3

illustrates that at four different subgrid positions, the firs t for

the vortex center directly on a grid point, the last for the vor tex

center in the middle of the cell and the two cases in between for

typical unsymmetrical vortex positions : the stream lines of the

vortex are perfec tly circular and unaffec ted by the existence of

the grid points.

111.3 Shape Factor. Subgrid “Viscosity”

• It is intuitively obvious that low~~it~ harmonics are interpo-

lated by a certain tabulation mesh better than high-~It~ harmonics.

Aliassing sets a limit at k a IT/A for each component of
max

(A ~ mesh spacing): any harmonic with a k-component higher than this

will be misinterpreted by the interpolator as a corresponding lower

harmonic with all k-c~,aponents lying within the interval (- tr/ A ,

In effec t, the ~.nterpolator will add a mixture of overtones

to the approximation of a pure harmonic. A reduction of aliass ing

was already achieved by going to a higher order interpolation than

linear. Another way to suppress aliasses is to de-emphasize harmonics

in the range near 
~~~

The effects of a finite cut-off of the spectrum on the physics

to be computed is an important question separate from the question

of interpolation. Two aspects of the cut-off problem are worth

emphasizing

19
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Firstly, a sharp cut-off in Fourier space is undesirable (no

matter how perfectly each harmonic is evaluated ) because it surrounds

the objects that interact via the field with halos in real space.

The halos decay only weakly with distance , like Air . If, instead,

the spectrum is brough t to zero more smoothly, say at least parabo-

lically, such halos become attenuated more strongly. A bell-shaped

-2cut-off factor, say G ( ki) , suggests itself. Consequently, even

if the object of interpolation studies is to push up the maximum

usable ) ItI , it should concentrate on performance in the range of low

and intermediate I 1~~ 
; lit ! -vaiues near k ax become irrelevant.

It is important to distinguish between the factor ~
2
~)~~1) intro-

duced into the spectrum by such shaping and the compensating adjust-

ment factors S2 (k) which improves interpolation performance . The

square is quoted here because both the vor ticity deposition and the

local effec ts of the veloc ity field call for interpolations.

Secondly, any cut-off factor t~

2
(l~~i) implies a shape for the

interacting vortices which is the Fourier transform of t~( l It 1) •

The dual appearance of the shape factors is emphasized by the fac t

that the interpolation errors, likewise, appear twice, as mentioned

above. So the shape enters the field interaction process twice,

namely both when the velocity field harmonics are excited by the

local sources (vortices) and when the velocity field harmonics react

back on them. Therefore, any such factor in the spectral domain

(introduced primarily for the purpose of fitting the field harmonics

• into a finite computer) can be interpreted physically as vorticity-

spreading.

There are good reasons for introducing shapes of the interacting

elements even when no interpolation is used at all and spectral data
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are evaluated precisely, without grids and tabulations. When a pro-

blem is solved entirely in the spec tral domain, non-linear terms,

i.e. products of transformed variables , manifest themselves as con-

~~~~~~~~~~~~ Here the cascading into higher harmonics (for which

• there is no room in the computer) has to be suppressed artificially

by some cut-off or shape-factor. Secondly,  the interacting “fluid

elements” in the real world are usually much more numerous than those

that can be accosnodated in a computer with its peripheral storage .

Each element in the computer stands in for a swarm of real elements.

It should therefore be given a spread.

In our simulation so far, we use a cubical mesh system, that is

Ax = Ay — Az = 1 . Therefore , we note that the shape factor G(~)

should be isotropic in space: it knows no coordinate axes. Hence

~(ii~I) is isotropic in c-space, being a function only of

The compensating adjustment factors S
2
(k) , on the contrary, must

be functions of the components of i~ . Since one has an a priori

freedom of choice as regards G(~) or ~(I~l ) , one is at liberty to

tailor G(~
’) so that it de-emphasizes the poorly interpolated (badly

aliassed) harmonics near — rr . Nevertheless a gaussian profile

G(~) seems to be more readily acce pted as realistic : for a viscous

vortex ring with small cross-section, Twig and Ting
t40

~ and SaffmanC4~~

found that the distribution of vorticity across the core is gaussian.

It has also the advantage of being well conf ined both in real and

Fourier space. However, with a finite band-width available for i~~(II tl  )

one can only approach a gaussian profile since the finite k-range

always causes some small residual halos. A fair compromise is achieved

by taking a cubic spline prof ile , tending to zero cubically as

22
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is approached:

• 

~~~~~ 
1It12(1_ 1~i.) for lIti ‘~~

2 (1 - 1~L)
3 

for ~~~‘ I Iti ~

- This choice is quite unrelated to the use of splines for interpola-

tion. The cubic splice profile was used for the quantity ~~
2

(II ti ) ,

not for c~( t k I ) . The transform into real space is
- 

- (_
~~ 

s~n 
. This is positive everywhere and has very small

- aidebands (or aliassea): the first satellite is two thousandth of

the center peak. Both this d~~(lIt1 ) and the corresponding profile

- • in real space look very much like gauasians. In fact, by using the

• Central Limit theoremt~~~ , one sees that

a2 (1ItI )~ exp(_ 6
~~~1 2),

Figure li , which implies

~(l~t ) urw exp( ~ (3.~r)

By transforming back into real space, we get

c(~) ~ exp ( 
r~
2

I~12) (3.8)

- 

- 

A spread-out vortex with gaussian profile is the result of vis-

cosity having acted, for a time proportional to the effecttvs area of

spreadC4l), on an initially ideal filamentary vortex. However, the
- 

area of the spread, i.e. the “age” of the vortices, is fixed as shown

I . by (3.8). Therefore, all vortices represented in this manner have

the same “middle-aged” spread !
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To summarize the interpolation and shaping operations, we start

with a vorticity field having singularities on each filament, Eq.

(2.8). The use of a grid with spacing A and Fourier transform

methods eliminates the singularities since only harmonic numbers up

to IT/A are recognized and the vortices are thus automatically

broadened by what is approximately equivalent to a rectangular filter

in Fourier space. In addition, further shaping of the vorticity dis-

tribution is achieved by explicit application of another filter whose

representation in Fourier space is c~(I t)  . The effective vorticity

field is then represented by a filtering operation on singular

as shown by (2.7) where G now indicates the transverse profile

of the vortex filaments. We choose d(It) to be almost gaussian

(bell-shaped, coming to zero smoothly before the spectrum would cut

• off more drastically ) ,  (Figure Ii. ) and then each filament acquires a

transverse profile in real space that is nearly gaussian. The shape

factor C is applied again when one calculates the evolution of each

space curve in time from the continuous velocity f ield ~~(~~ t ) ,  Eq.

(2.9) with ~t determined from (2.4). In practice, this means apply-

ing the square of the transform of C as a filter in Fourier space.

The use of the filter G provides damping of the high wavenumber

components of the field, damping that would otherwise occur through

subgrid scale dissipation or by viscous diss ipationC28~.

111.11- Solving

The advance of vortices from one time step to the next in our

code requires the handling of (6 field .components * 32~ mesh points — )

196608 field components and about 32000 “vortex-markers”. If we now

consider Eq. (2.4) in Fourier space, the velocity field at the loca-

tion of a “vortex-marker” is obtained by weighting the entries in the

25
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table of splice amplitudes with the spline weights. The latter are

deduced from the relative position of a vortex in its interpolation

cell. The spline amplitudes are obtained from the velocity harmonics

by first multiplying with a factor S(kx) and two similar factors

which have k~ and k
~ 

in place of kx , then calling a three-

dimensional FFT on the resulting array.

The same fac tors appear again when the displacement of the kth

vorticity harmonic is calculated. The interpolation can be done for

the sum of all the harmonics , and the table into which one interpo-

lates are then the FFT’ s of the harmonics of vorticity, modified by

the factors insuring best mean square fit in each dimension .

In going from the table of spline amplitudes for vorticity to

the table of spline amplitudes for velocity harmonics, one therefore

has not only to perform a forward and backward FFT, with Eq. (2.4)

in Fourier space in between , but one must also introduce the squares

of the spline fitting factors indicated above.

Similarly, we mentioned that any vorticity shaping factor should

be introduced both when the local velocity field action on the distri-

buted vorticity cloud is evaluated and when its excitation of the

vorticity harmonics is accumulated. In both cases , one could perform

a convolution in real space, but it is much quicker to replace this

by a multiplication in Fourier space. The transform of the shape

factor is therefore introduced squared along with the above mentioned

spline fitting factors in the course of solving the equations for

the velocity field in Fourier space. It is convenient to introduce

the (squared) shape factor along with the inverse Poisson operator

In our 32~ code, there are only 256 possible different

values of ~~1
2 in the sphere l~l ~ kmax (611. values for a i6~ code),

26
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so any function of can readily be pretabulated. The schematic

description given below summarizes the algorithm.

r d~/d~ d~/dt

quadratic splice quadratic spline~
interpolation interpolation

I
1 ‘1

~~
FFT 1 1

FPT I
I I

spline 1 spline

factors 1 Lfactors
I I

• 
~k
2O2 Il lfilter: e filter: e

- .2 -~ .. .-. -4
to/k — Y  A j K X Y _ U

(Prof ile: e~~

2
”~
2) 

SI 4 SI 

(profile : e~
r id )

111.5 Time Advancing

The choice of a time differencing method is dictated by the

trade-off between the increased cost per step (in computation time •

and/or storage) of high-accuracy methods and the large time step

allowed by such methods. When the choice is made on this basis, we

are interested in knowing only that the method is stable fpr the

time step chosen. There is no reason to choose a method with extra

stability if the cost is higher. Two commonly used methods, which

are second-order accurate and require only one function evaluation

per time step, are the leapfrog and the Adama-Bashforth methods.

Both are multi-step explicit methods and require storage for two time

step.. The leapfrog method is given by

A 
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— + 2At ‘

with truncation error - At2 —f ,

and the Adams-Bashforth method is given by

I - + At(3u~ - u~~~)/2

with truncation error - ~~~~~ At2 —~~~
-
~~ , i = x,y,z

4 Both the methods are weakly unst:b1eE42,43]. Nevertheless, used with

an occasional forward Euler step, it seems to be possible to suppress

the weak instability associated with leapfrog differencing ‘ . Also ,

— a linear stability analysis shows that the Adams-~ashforth method

exhibits improved stability over the leapfrog method and that its • - 
-

- - total spurious computational production of kinetic energy is smallt44~.

• In this work, we started using the leapfrog method mainly to test our

code on the rings experiments and then after used the Adams-Bashforth

method. The first step in time differencing is generated by Euler’s

method:

w~~= t o~~+A t u~

1~

i- I :
28
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Chapter IV

RESULTS

The numerical solution of the scheme described in the previous

chapters for different initial conditions were carried out on the cDC-

7600 computer at NASA-Mes Research Center. The computing time per

computational time step to move a vortex made of m markers was approxi-

mately as follows:

0.311. + m/5000 for a i63 calculation,

0.9]. + m/1275 for a 32~ calculation.

In our 32~ algorithm, some programming refinements have been made; since

the vorticity field and velocity field are purely real functions in real

space, it is possible to use a complex Fourier transform of length 16 to

get the vorticity transform of length 32 and similarly to transform back

the velocity harmonics to obtain the velocity field in real space. (See

Appendix II for derivation andt45~.) This trick improves speed as well

as it saves storage.

IV.]. Sinale Vortex Rings

A first experiment was done, with a i6~ mesh, on a single vortex

ring of radius R about the z-axis. Its center is initially located

at (8,8,8) in our mesh and thereafter moves along the z-axis. The

circulation is I’ a 2 • In particular, we investigated the initial

speed of the vortex ring as a function of radius and position around

the ring. “

To check the accuracy of our mesh technique we also computed the

speed of the vortex ring using a continuum or Green’s function approach.

Since the filter we use in the mesh method is approximately gaussian

(Eq. 3.8), we consider a single vortex ring of gaussian cross-section.

29
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On the one hand, if we consider equations (2.7) and (2.9) in Four-

ier space, they become respectively,

i~(It , t)  — ô(I~ I ) • ~ (1~,t) (4.i)

and

(~~,t) (~_) 3J ’f J  e~~~~~ ~(1TtI ) ‘ ~‘(Lt) dit (4.2)

On the other hand, equation (2.4) translates to

~t(k,t) = ~~~ X ~CLt~ (11.3)

in Fourier space. Equation (3.1) together with (I-i..i) gives, for a single

vortex filament of gaussian cross-section,

= F o(I i~ )fe
r’ 

~~~~~
— d~

Using (4.2) and (4.3), we then get

à~ (~~,t )  fff ~fe
’
~~

’
~~~ i~ x ~~~~~ d~ 

=

(11-.li-)

For the j~_5p~C~ integration, we introduce spherical coordinates

— I~I sin(B)cos(~)~
’
1 + 1~1 sin(8)sin(cp)~

’
2 + ~~ 

cos(e)

(see Figure 5)

Figure 5. Vector in o
spherical coordinates. 
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-~~ r - rwhere ve choose •3~~~I~~~~

This choice of e3 and the fact that 
~, ‘~~3

a
~~2 •~~3

aO  implies

that 1 (~ ‘ -~~) — 
~I cos (e) I ~~~

‘ -~1 . After integrating with respect to

, (4.4) becomes

~j (g,t)r f~~~~(t~ 1) ~~~~~~~~~~~~~~~~~~~~~ sin (O )cog (6 )
(~~)

2 
~ I-

~
,-~1 ~

f (~“-~~) x d~ d 6 dl~ l

Now , let C — cos Ce) which implies dC — - sin (6 )ct e ,

~~ 
(~,e) 

— 
F /~ ~~(1~ t) I~1 if’ e~ h1~1 CI~’~~1 c
(2n)216 1.

~’-
-
~ 

-l

- f  (~~~‘-~~~~) X d~ dC ~~~

- 1~e~~1~~ C1r~~1 
~ dC - 2i1°~~~~~ 

I~’-~l) 
- 
ain(l~l I~’-~1 )1

‘-1 IJ~I I ~~~
‘ -~1 I ~1 ~~ 

2 J
So the integral over J~J becomes

- 2  1d 2 (1~ 1) ~o 1( 1kh1r ’41) d1~~ ~~~~~~~~~~~~~~~~~~~~ dl+ 2, i -~’-~i~ ,~, 
k

~—~2 
2 ,

Since ~(Ik1) is of the form e ’1~ ~ “4 (see Eq. (3.7)), where o

is th. width of the gaussian filter , the sum of these two integrals is , —

fo11owing~~~3 and~~
63:
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We finally obtain for (4.11-),

~j (~~,t) — ~~~~~~~~~~~~~~~~~~ 
2¾ )
(~ ,_~.

) x ~-~- d ~ (4.5) 
—

where 2
F(C) = erf (C) - 2r(¾C e~~ (4.6)

(4.5) gives the filtered velocity of translation in free space for a

single vortex filament of gaussian cross-section. It should be mentioned

that for ~
2 << R2 , (11.5) can be approximated to yield

~ h[ ’~(~) - ~ where C = 1.058 and 
~ 

is the unit vector in

the direction of translation z (see Appendix III for derivation). Note

that the actual speed of a thin vortex ring with a gauss ian dis tribution

of vorticity has been calculated by SaffmaJ~~~ and is given by the above

formula but with C — 0.558. The difference is due to the fact that

Saffman’s result is based on the collective motion of an infinite number

of vortex tubes with internal interaction between the filaments whereas

• our result represents the speed of a single computational ring filament.

• In Figures 6 and 7, we plot the velocities of translation measured

at two positions around the ring versus different ring radii R .

Remember that the vortex-in-cell (vic) method used here implies periodic

boundary conditions in each of the three dimensions. Therefore, veloci-

ties measured at, say (R+8,8,8) and (8+R/2½ ,8fR/2~,8) are not quite the

same : see Figure 8. In order to explain the difference, we note that
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the Fourier transform crea tes images in a car tesian fashion as seen in

a (x-y)-plane (Figure 8). The images oriented diagonally with respect

to our computational ring are far ther so they will ILOt slow our ring down

as much as the ones on the axes. Figure 6 shows the velocity recorded at

points of the ring close to the x- and y-axes, where the velocity

should be a minimum since the images are closer. Figure 7 shows the velo-

city recorded at points 45 degrees off the x- and y-axes, where the

velocity should be a maximum.

Our results are compared with the Green’s function method given by

(4.5) to which were added the Biot-Savart contributions of the periodic

images. (This part of the calculation was carried out using Leonard ’s

~ 
20]

lagrangian code at NASA-Ames . Contributions of 124 images were

supplied in this manner. Contributions of further images were negligible).

The gaussian width used in the Green ’s function calculations was chosen

to give the best fit to the vortex-in-cell results and was found to be

a
2 

= 1.1 times the cell area. This is in good agreement with a theore-

tical estimate of a~ = 12/IT2 1.2 based on a gaussian fit to the low

lk ~ behavior of our filter (Eq. 3.8). Recall that our filter is not

strictly gaussian but is brought smoothly to zero at = ir

• The four next figures show pictures of the initial velocity field

in the middle of the mesh cells for a ring of radius R = 11.

Figures 9 and 10 show the field in the planes 1.5 mesh units below

and above the plane of the r ing, respectively at z = 6.~~~ and z = 9.5

where the magnitude of the field is the same but pointing in opposite

direc tions , respectively toward and away from the center of the ring.

Figures 11 and l2show the field in the planes x = 6.5 and x = 9.5

Figure 13 shows the lateral vortex profile in the (x-z)-plane at four
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instants. We can see the constancy of the motion in time.

A second test was done on a set of two vortex rings of radius

R — 1~ about the z-axis. Their centers are initially located at

(8,8,7) and (8,8,10) in the mesh and thereafter move also along the

z-axis. Both have the same circulation F a 2 .

We know that two similar vortex rings at some distance apart on a

coamon axis of synmietry will do the following: the velocity field

associated with the rear vortex ring has a radially outward component

at the position of the front ring and so the radius of the front ring —

gradually increases (with F constant). This leads to a decrease in

its velocity of translation, and there is a corresponding increase in

the velocity of translation of the rear vortex which ultimately passes

through the larger vortex and in turn becomes the front vortex. The

maneuver is then repeated. Indeed, we observed that maneuver.

Figures i4, 15 and 16 show the initial velocity field respec tively

in the planes z — 5.5, z — 8.5 and z — 11.5. As expected, at

z a 5•5 and z — 11.5, the magnitude of the field is the same but

pointing in opposite directions, respectively toward and away from the

center. At z — 8.~~ , centrally between the two rings, the field reaches

a minimum. Figures l7andl8 were taken at x — 6.5 and x = 9.5. The

last five figures (19-23 ) show the displacement in the (x-z)-plane and

the (x-y)-plane at ten instants. We see the ring, going through each

other repeatedly and the buildup of distortions due to the influence of

images.
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IV.2 Taylor-Green Vortex System 

24] 1~In a class ic paper, Taylor and Green considered the dynamical

evolution of a model three-dimensional vortex field in order to clarify

the dynamics of turbulence. The relatively simple Taylor-Green flow -

pattern illustrates the basic turbulence decay mechanisms: production

— of small eddies and enhancement of dissipation. The latter is associa-

ted with an increase of vorticity and with the stretching of the vortex

lines. The Taylor-Green system has also proved exceedingly useful for

testing numerical and perturbation methods, as we will discuss below.

In their paper, Taylor and Green made an attempt to trace the

subsequent motion of an infinite incompressible fluid with velocity

t components U
x~ 

u , u , given initially by

U
x 
= A cos(ax) sin (by)  s in(cz)

• u = B sin(ax) cos(by) sin(cz) (4 .7)

u~ = C sin(ax) sin(by) cos(cz)

The arbitrarily assigned constants a, b, c, A, B, C, should fulfill

the incompressibility condition, divG~) = 0 or As + Bb + Cc = 0 .

The flow is triply periodic and a typical example of the initial flow

pattern for a given set of constants is shown in Figures 211. and 25~

At an early stage of their calculations, Taylor and Green realized that

it was imposs ible to obtain significant results in the general case

when the initial motion is represented by (4.7), so they confined their

attention to a spec ial case , namely a — b a c, A — -B and C — 0
~~ — A cos(ax) sin(ay) sin(az)

U
y 

— -A sin(ax ) cos(ay) sin(az) (14.8)

U — 0z
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The motion remains periodic in x, y and z for all time, with wave-

lengths 211/a in each of the x,y and z directions. Taylor and

Green used power series in the time t to find u~, U
y~ u~, and the

pressure p at time t . They took averages throughout a periodicity

cube and deduced the series for the mean square vorticity, , as

far as the term t5

In order that the effect of vortex lines stretching may be illus-

trated, the vortex motion must be three-dimensional and possess a

definite scale. It is difficult to think of a motion possessing these

charac teristics for which the calculations would be easier than for the

motion (14.8). That is the reason why the vortex system derived from

(14.8) has undergone many analytical studies since the original paper

of Taylor and ~~~~~~~~~~~~ Numerical solution of the Navier-Stokes

[50]equations (2.1) and (2.3) by a spectral method has also been applied

to the Taylor-Green system (14.8).

In our case , for reasons to be explained below, we went back to

(14.7) and considered another special case, namely when a = b = c and

-A = 2B = 2C

Ux 
= 2A cos(ax) sin(ay) sin(az)

~~ — -A sin (ax) cos(ay) sin(az) ( 14.9)

— u
2 

a -A sin(ax) sin(ay) cos(az)

See Figures 21i- and 25 • This flow is symmetric in the coordinates y

and z . The initial vorticity field = V x is

Wx O

— 3aA cos(ax) sin(ay) cos(az) (11.10)

— 3aA cos(ax) cos(ay) sin(az)
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The initial vortex lines are the planar curves

sin(ay) sin(az) = const.

(11.u)
in the planes x — const.

See Figure 26 for an illustration of the vortex lines.

The quantity - V~ , which represents amplification and rotation

of the vorticity vector by the strain rateCl9), is initially nonzero.

Therefore, the vortex lines given by Eq. Ii.ii will induce a velocity

field which, while transporting the lines, may also change their lengths.

Also, since the initial value of each component of (~ x ~) is nonzero,

the three components of velocity continue to be nonzero after the initial

instant and the field becomes truly three—dimensional. (14.8) and (14 .9) 
-

• are perhaps the simplest examples of self-induced vortex stretching in a

three-dimensional velocity field. We chose to study the system (14.9)
mainly because the vortex lines (14.11) (which we trace numerically in our

code) are easier to define and diecretize than the ones resulting from

the system (14.8) which are the twisted curves

sin(ax)/sin(ay ) — const., sin2(ax ) cos(az) — const.

On the other hand, we do not know of any paper describing a perturba-

tion analysis of the motion initiated by (14 .9) . Therefore, before going

into the details of the numerical simulation we will investigate the

evolution of our Taylor-Green vortex system (14.9) by developing a per-

turbation solution to the Navier-Stokes equations (2.1), (2.3) in powers

of the Reynolds number Re rather than in powers of the time t • Gold-

stein~~
’
~ developed such a series solution for the system (14.8) and found

that this series is more inclusive than a series in time t in the sense

that each term of his series was a resummation of an infinite number of
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partial terme of Taylor and Green’s series. It can also be shown that

each term of the series in time is derived from only a finite number of

terms of the 8eries in Re .

The dynamical problem is to solve the Navier-Stokes equations for

incompressible flow:

(2.1)

- V .~~~= 0 (2.3)

subject to the (incompressible) initial conditions (14.9). The pressure

field in (2.1) is effectively a “Lagrange i~tultiplier” that insures

compliance with the incompressibility constraint (2.3). Taking the diver-

gence of the equation of motion (2.1) and applying the equation of con-

tinuity (2.3), we find the following equation for the pressure:

2 2i~u ~ i~u ~ Thu
-

p \~~X f \~~y / \~~Z (14.12)

Thu ~u ~u ~u ~u ~u
+ 2(~~

1 ~~~ + ~~~ —i + ~~~~\~x ~y ~
y ~z ~z ~x

We reduce all the equations to non-dimensional form by writing

u — u u ’ = u  u — u
x 

~~~~~~~~~ 
y ~~~~~~~~ Z 

~~~~~~ 2’A A A pA

x’ — ax, y’ = ay, z’ = az, t’ = Aat , (14.13)

W ’ a W  W ’ W (U’ = Wx 
~~~~~~~~~ 

y 
~~~ 

z .A
aA aA aA

R e — A
va 
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From then on, to simplify the notation, we drop the prime so that equa-

tions (2.3), (2.1), and (14.12) become

(14.i4)

+ 

~~~~2 

- :: 2 2 

(14.i~~~)

- = 
(

~~~ i) + + (~ )
/~~u ~u ~u ~u ~u ~ U \

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (14 .i6)

The initial conditions (11.9) are

~~~ — 2 cos(x) sin(y) sin(z)

u = - sin(x) cos (y) sin(z) (11. 17)

u = — sin(x) sin(y) cos(z)

at t — 0 .

For small values of the Reynolds number the last term in (14.15) dominates

while the quadratic terms remain bounded and may be neglected; thus we

have to solve the equation

1 
~~~~~~ 

(14.i8)

with the initial conditions (14.17). The solution is

= 2 e
_3t

~~~ cos(x) sin(y) sin(z)

~ I u~~ = - e 3t
~~~ sin(x) cos(y) sin(z) (14.19)

A I u~0 — 
- e

3t hlRe 
sin(x) sin(y) cos(z)

6o 
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For the second approximation, we substitute from (11.19) into the

quadratic terms in (14.15) and into (14.16), solve (14.16) for p , sub-

stitute the value found for p into (14.i~), and then solve (14.15) again

for ~ . This process is equivalent to substituting

t/Re — T , (14.20)

expanding i~~ , p in series

2 3 
(14.21)

p = p
0
+ p

1
Re+ p2

R e + p
3
Re+. . .

substituting into (14.15) and (li..16) and equating coefficients of powers

of Re - In this way we find the equations

- = ( : ~)~+ (~;yO)
2

+ (:zo)

2

/~u ~u ~u ~u ~u ~u
+21 v0 _.

~Q,+ 
zO v0 + 

xO zO
\~x ~y ~y ~z ~z ~x

27’)u ~u 2~u ~u 2~u ~u2 xO xl vO y1 zO zi
- v = + 

~~ ~y 
+ 

~~ 
~~

-
~~
-- (14.22)

+ 2 + + 
~u 0 ~~~~~ + 

~u 1 ~~~
\~x ~y ~x ~y ~y ~z ~y ~z

~u au ~~x 0 i ~~~ xi sO

~z ~x

and so on, together with

61

‘-S 5-—-— -5-~~- —--5— —- 
~~

-5—— — - —



-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ‘--5—’— -55.55~~~5-5- -_ —

i1 - u 0 Vu0 + V p 0

4 
(14.23)

~~~2 
- = 

-. • c ~~~~~~~ 

+

and so on. The solutions required for p0, p1, etc., are the periodic

solutions; the solutions required for 
~~~ 

etc., are periodic, and

are zero when T — 0 .

Substituting from (14.19) into the first of equations (14.22) we find

that

V2p
0 = ½ e_6T (14 cos(2x) + cos(2y) + cos(2z) - cos (2x) cos(2y)

(14.214)
- cos(2x ) cos(2z) - 14 cos (2y) cos(2z))

Hence

p
0 

- e 6~ (8 cos(~x) + 2 cos(2y) + 2 cos(2z) 
- cos(2x) cos(2y)

- cos(2x ) cos(2z) - 14 cos(2y) cos(2z)) (14 25)

From the first of equations (14.23), it may now be found that

V2u
y1

_ 
~~~~~~~~~~ = - ~ e~~~ (cos(2x) sin(2y)) (14.26)

Also u = 0 when T = 0 • Hence
yl

U
1 

= - f
1 
cos(2x) sin(2y) (14.27)

where

j 1  -8T - e

= - 

~ 
(T 

7T
2 
+ 3~2

T3 
- 
175 T14 

+ • • •) (14.28)
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u
1 

may be found similarly. It is easy to see from the expressions

for ito, p0 that the expression for u~1 may be obtained from that

u
1 

by interchanging y and z • Hence

u~1 — - f
1 
cos(2x) sin(2z) (11. 29)

After verifying that u~1 contains no term independent of x , we find

u~~ from the equation of continuity, the result being

U
xi 

= f
1 
(sin (2x) cos(2z) + sin(2x) cos(2y)) (14.30)

Proceeding in the same way, we find the following expressions for

p1, u2, 
~~ 

u
3 
. See Tables 1, 2, and 3. We note that the expression

for u is obtained from that for u by interchanging y and z ,

and so~~n. From the first velocity approximation (i.e. ~~) on, if one
expands the exponential factors (e

_3t
, f1, the g’s, h1) in Taylor series,

one can show that these factors are ascending powers in T starting res-

pectively from the zeroth order in T up. Considering (14.20) and (4.21),

we conclude that the solution of the equation of motion, for large Rey-

nolds number and for sufficiently small valueá of t , can be represented

by

_ 
o) C X Y Z )  + ~(1)( )  ~ + ~

(2)(xyZ) t2 + • • . (14.31)

where ~~
1)
(x,y,z) is the factor of T~ in the expansion of

-~~~ ~
‘
~~~~n — 0 ~~1, 2, 3  
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TABLE 1

Express ions for p
1 

and u
2

p U U U1 x2 y2 z2

sin(3x) sin(y) sin(z) 
~j 

(e
_L

~’.
T 

- e
’.9T
) 0 0 0

sin(x) sin(y) sin(3z) ~~ (e~~~~ - e
_9T
) 0 0 0

sin(x) sin(3y) sin(z) ~~ (e
11
~ - e 9T

) 0 0 0

cos(x) sin(y) sin(z) 0 0 0

cos(3x) sin(y) sin(z) 0 g~ 0 0

cos(x) sin(3y) sin(z) 0 - 0 0

cos(x) sin(y) sin(3z) 0 - g~ 0 0

cos(3x) sin(3y) sin(z) 0 - 0 o

cos(3x) sin(y) sin (3z) 0 - 0

sin(x) cos(y) sin(z) 0 0 - 
~~
— g1 a

sin(x) cos (3y ) sin(z) 0 0 0

sin (x) coa (y) sin(3z) 0 0 - 0

sin(3x ) cos(y) sin (z) 0 0 - g~ 0

sin(3x) cos(3y ) sin(z) 0 0 0

sin(x) sin(y) cos(z) 0 0 0 -

sin (x) sin(y) cos(3z) a a a

sin(x) sin(3y) cos(z) 0 0 0 - g2

sin(3x) sin(y) cos(z) 0 0 0 -

sin(3x) sin (y) cos(3z) 0 0 0 
- 

g
3
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TABLE 2

• Expressions for p
2 and u

3

__________________________ _ _ _ _ _ _ _  

U
3 

U
3 

U
3

cos(2x) l
i 0 0 0

cos(2y) 12 0 0 0

cos(2z) 12 0 0 
- 

0

cos(2y) cos(2z) 1
3 

0 0 0

cos(2x) cos(2y) 14 0 0 0

cos(2x) cos(2z) 14 0 0 0

cos(2x) cos(2y) cos(2z) 1
5 

0 0 0

cos(Il.x) 1
6 0 0 0

cos(14y) 1
7 

0 0 0

cos (14z) 1
7 

0 0 0

cos(14x) cos(2y) cos(2z) 18 0 0 0

cos(4x) cos(2y) 1
9 

0 0 0

cos(4x) cos(2z) 1
9 

0 0 0

cos(4y) cos(2z) h o 
0 0 0

cos(2y) cos(li.z) l~~ 0 0 0

cos(2x) cos(4y) 
~~~ 

0 0 0

cos(2x) cos(4z) 
~~~ 

0 0 0

cos(2x) cos (l1.y ) cos(2z) 112 0 0 0

cos(2x) cos(2y) cos(4z) 112 0 0

sin(2x) cos(2y) 0 -h1 0 0

sin(2x) cos(2z) 0 -h1 0 0

cos(2x) sin(2y) 0 0 hL _________

cos(2x) sin(2z) 0 0 0 h1

0 .. .. ..•~~ ....
0 .... ..I•

5 . .  0 .... . . • •  • 5~~~~S
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We see that when u is expressed as a triple Fourier series the

• coefficients of the various terms are expressible as series of ascending

powers of Re multiplied by functions of T , the coefficient of

cos x sin y sin z being an even series commencing with the zeroth power

of Re , that of sin(2x) cos(2z) and sin(2x) cos(2y) being an odd

series commencing with a term in Re , those of

cos(3x) sin(y) sin(s) , cos(x) sin(3y) sin(z) , cos (x) sin (y ) sin(3z )

cos(3x) sin(3y) sin(z) , cos(3x) sin(y) ein(3z)

being even series commencing with terms in Re2 , and so on. Similar -

results hold for u and u~ . (See equations (14.19), (14.27), (4.29),

(14.30) and Tables 1-3.) Hence, going back to the “prime” notation and

equations (11.13), if we write

2 2 2 2 ,2 ~2 ,2 ,2 2 2
4 q = U

x 
+ u + u~ , q — u

x 
+ U + u

~ 
= q /A ,

(14.32)

W
2

= u ? +w
2 + w 2 

, w ’2 = w f + w’2 + w ~
2 - w 2/a2A2

and denote by q ’
2 and w’2 the space-average values of q ’2 and

w taken throughout a periodicity cube, it follows from the orthogonal

property of the terms in the triple Fourier series that q’
2 and u,’2

will be expressible as even power series in Re and can be obtained

correc t to the term in Re4 if in u’ the coefficient of

-: cos(x’) sin(y’) sin(z’) is found to Re
14 
, that of sin(2x’) cos(2s’)

— and sin(2x’) cos(2y’) to Re3 , and the remaining coefficients to

Re2 , with corresponding results for u and u . Hence to find q ’2

- . and u,’2 as far as the term in Re14 it remains only to find the

coefficients of sin(x’) coe (y’) sin(z’) in u’~ 14 . Further, of all

67
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the terms in only those in h1 are required in finding q’
2 and

14 -~
w’ to Re the remaining terms in u~ (the dotted lines in Table 2)

affec t only the terms in Re6 in q ’2 and u,’ 2 

, and need not to be

found if we are finding q ’2 and u,’2 only up to Re14

In the s ame way when p’ is expressed as a triple Fourier series,

cos(2x ’) , cos(2y’) , cos(2z’) , cos(2x’) coa(2y’) , cos(2x’) cos(2z’)

cos(2y’) cos(2z’) occur with coefficients which are even power series

in Re beginning with the zeroth power of Re , sin(3x’) sin(y’) sin(z’)

sin(x’) sin(y’) sin(3z’) , sin(x’) sin(3y’) sin(z’) with coefficients

which are odd power series in Re beginning with terms in Re , and so

on, as can be seen from equation (4.25) and Tables 1-3. Hence the

average values of the pressure and of the pressure-gradient are expressi-

ble as even power series in Re , with coefficients which are functions

of T , and from equation (14.25) and Tables 1-3 the constant and the

Re2 term can be found. No terms in sin(x’) sin(y’) sin(z’) have been

found to occur in p
~ 

. No further calculations of the expressions for

p ’ have, however, been carried out, so the average values of the pres-

sure and the pressure gradient could be found only as far as the term

in Re2

The coefficient of sin(x’) cos(y’) sin(z’) in u 4 was found

to be k,1 , where

- 5315 e
_3T 

+ ~ 
-9T + i~~ e

hlT 
- ~gi e

_
~
ST + 55163 ~~~~~— 1141295616 163814 1376256 14~o~6o 26492928

+ 1401 T e~~~
’r 

- 4141 ~~~~~ - 27 T e
_19T 

- 
~~ 
e~~

5
~

157696 28835814 1802214 3153920 ~

The expressions for ~~
‘ required to calculate q ’

2 and u,’2 to
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the terms in Re14 are therefore (see equations (14.19), (14.20), (14.21),

(14.27), (11.29), (14.30) and Tables 1-3)

u~ — (2e
3T + g1 

Re2 2 k
1 

Re~) cos(x
’) sin(y’) sin(z’)

+ (f1 
Re - h

1 
Re3)(cos (2y’) + cos(2z’))sin(2x’)

+ 
~2 

Re2 cos(3x ’) sin(y’) sin(z’)

— g~ Re2 (sin(3y’) sin(z’) + sin(y’) sin(3z’))cos(x’)

- g~ Re
2 
(sin(3y ’) sin(z’) + sin(y’) sin(3z’))cos(3x ’)

u ’ — (_  e 3T 
- g

1 
Re2 + k1 Re

hl) sin (x ’) cos (y ’) ain(z ’)

+ (- 
~~1 

Re + h
1 

Re3) cos(2x’) sin(2y ’)

— 

~~ 
g
2 

Re2 ain(3x’) cos(y’) sin(z’)

+ g
2 
Re2 sin(x’) cos(3y ’) sin(z’)

~~ 
g2 Re sin(x’) cos(y’) sin(3z’)

+ ~~ g3 
Re2 sin(3x’) cos(3y’) sin(z’)

— (- e_3T - g
1 
Re2 + k1 Re14) ein(x’) sin (y ’) co.(z’)

+ (-- f1 Re + h1 ~e3) cos(2x’) sin(2z’)

- Re
2 sin(3x’) sin(y’) cos(z’)
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_ _ _ _  _ _ _ _ _ _- -

+ 
~~~~~ 

g2 Re2 
sin(x’) sin(y’) cos(3z’)

- g~ Re2 sin (x ’) sin (3y ’) cos (z ’)

+ ~~ g3 
Re2 sin(3x’) sin(y’) cos(3z’) . (4.34)

Hence

— ~ (e
_3T 

+ g
1 
Re
2 

- k1 
Re~) + (f1 Re 

- h
1 
Re3)

~~~~~~~~~~~~~~~~~~~~~~~~~~~ . .

= ~ (e
6
~ + Re

2 
F
1 
+ Re4 F

2 
+ . . . .) (4.35)

where F
1 

and F
2 are given in Table 4.

In the same way, if we write down the formulae for 
~~
‘ correspond-

ing to (4.314) and take the mean value of the sum of the squares , we find

that

- ~~ (e
3
~ + g

1 
Re
2 

- k1 
Re~
)2 + 8 (f1 Re 

- h
1 
Re3)

2

+Re14(~~~~g~~+~~~~~4)+. . .

— ~ (e
_6T 

+ Re
2 
G
1 
+ Re14 

+ . . . .) (4 .36)

where and are given in Table Ii.

There is some independent verification of these results since q’2

and are related. By multiplying the equatiorm of motion in order

by ti
n

, U
1
, u5 

and adding we obtain the usual equation of energy, which,

when average values are taken, becomes

~ q
2)_ - (14 .37)
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TABLE Ii.

Expressions for F1, 
F
2, G1 

and

F
1 

F
2 C

1 
___________

-6T 6393 ,.‘.~~~ .‘. 6~~~9~~e 
128 70647808 

- 

128 706147808

-12T - 5  - 5e 14096 32 2~~8

-114T 
— 

-j
~~~ - 275 -~~~~~~~~ 

— 

- 275e 
128 31414064 128 11471456

-16T 59 59e 614 143oo8 8 16128

.-18T 0 5741 0 17223e 
1021400 102400

- 20T - 143sgn - 1620677e 0 
14139520 

0 1496714214

T -20T - 5867 - 29335e 0 
3914214 0 

59136

—22T 2151465 2058619e 0 14325376 0 12976128

T -22T 12979 132809e 
- 0 

90112 270336

-22T 
0 

1211’.S 11.15
e 

112614 0 10211.

-28T 
_______ 137e 0 
78814800 0 

563200

-30T 
- 

-33  -33e 0 
573141i~0 

0 
114 688

-38T 3 19e 0 819200 0 819200
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where
iI~u ~

2 /~ u 
~2 

~~~~~~~ \21 /~u ~u
~~~ - 2 I (— ~~~I 

+ (—
~~J +1— ’ )  ~~~~~~~~~~~~~~~~~~~

~‘.L L\~
X ~I \~y p! \~~Z / J \~y ~ Z

j  ~2 ,
~u ~u ~u ~u

+ (—A  + —i) +1 —~- +
~z àxi ~ax ~y

x y z ~~ y z z y ~
,y z x x z

+ 
~~~~~ 

(U~~W
y 

- uyWx)] + 
v2q2 , (4.38)

so that

= , (4.39)

and

- ;~, (14.40)

i.e. H

., (
~ 

q i2)= - (4.41 )

Hence

L ( T~ 
(4.42)

~~ T \ ½~~~~ i — W

From (li..35) and (11.36) it follows that the F and G are connected L

by the relations

(14.143)

which are seen from Table 14 to be satisfied.

Our formulae include those that could be obtained by developing in

- - 
- 

powers of the time t • The trick is to replace the exponentials in our

formulae by their expansions in T and then use (14.20) to get the per-
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turbation solutions in powers of t . Notice that finite order t runca-

tions of (11.35) or (11.36) do not have the singular behavior exhibited

by truncations of a series in powers of t as t -~ ~ • However ,

examination of the displayed terms of (11 .35) or (11.36) suggests that

= for t/Re ~~ 1 , perturbation series in powers of Re may diverge for

Re ~ 12

Neither perturbation series in powers of t nor Re can describe

the evolution of the flow field for large t or Re . In addition to

the fundamental fluid dynamical interest in the development of the

Taylor-Green vortex, the flow is a most convenient one on which to

debug and perform tests of our vortex-in-cell (VIC) method. For these

purposes , we compared our results with the ones obtained from a program

• developed by Rogallo~~ for the simulation of homogeneous incompressible

turbulence. In Rogallo’s algorithm, the velocity field is represented

spatially by a truncated triple Fourier series (spectral method) and

followed in time using a fourth-order Runge-Kutta scheme. Notice that

for the Taylor-Green vortex, the results from this spectral method are

infinite-order accurate, i.e. errors go to zero faster than any finite

powe~ of 1/k as k -, 
~ , in contrast to the finite order accur-max 

6acy of difference schemes~
5 ‘. Since there are no experimental results

of the Taylor-Green system to compare with and the perturbation analysis

being woefully inadequate to descr ibe either the large t or the large

Re behavior, the spectral method provides the best results to compare

with.

The Taylor-Green system is one of continuous vorticity (eq. 14.io),

and it is important to represent such a continuum by a sufficient number

of discrete vortex filaments. These are given by eq. 14.11. Assuming

73

I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~ 



~ 
- 

~~~~~~~~~~~~ ~~~~~~~~~~~~~ -. - ——  --5— 
—

our computational box in the range C-iT, iT] in each dimension, Figure

26 shows the initial discretized vortex filaments. Each filament having

effectively a gaussian core, they were distributed in such a fashion as

to fill the space up equally. To assign the proper circulation F to

each of them, let’s consider eq. 14.io at z’ = ± TT/2 (i.e. z = rr/2a)

which implies tu’ = = 0 and w ’ = - 3 cos(x’) cos(y’) . Using eq.

2.6, we obtain

F = - 3Jj~os (x ’) cos(y’) dx’ dy’

where the surface A is taken to be a square centered at each filament.

This gives us a range of circulation values identical for all octants of

our space except for their sign alternating from one octant to another.

Figure ~4and 25display that feature.

These initial conditions being set in our code, we let the program

run and made up a movie tracing the vortex lines in the three dimensions.

Figure 27 shows four stills of that movie. The movie was taken from a

16x16x16 computational box with the vorticity field represented by i4li-

vortex filaments, each broken into an average of 214 nodes. The limita-

tion in the total number of nodes is owing to the 3-D graphic system that

can only display about 3700 three-dimensional points per frame. Also ,

the graphics package draws straight lines between nodes whereas through-

out the computations sharp corners were eliminated by smoothing and quad-

ratic spline interpolation. The movie showed that the vortex filaments

themselves do not remain planar and that there is a considerable tendency

towards disordering, conv.luting and stretching . However, it was observed

that the symmetry of the initial conditions in the y- and z-directions

is generally preserved throughout the entire calculation except for
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Tilted (y-z)-plane at t = 0 . (x-z)-plane at t = 0

Figure 27. Taylor-Green system. i14~I1. vortex filaments made of 31456 nodes
in a i6xi6xi6 mesh.

Tilted (y-z)-ptane at t — 0.6 . (x-y)-plane at t — 1.8
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minor discrepancies which occur when the instabilities make the flow

erratic.

Besides being able to follow the motions of the vortex lines, our

code also provides automatically all kinds of spectral quantities. For

later purposes, we define the following:

total energy EfE(k) dk — ~ 
q’2 = i~ (u;~ + U ’

2 
+ u~2)

total enstrophy mfk
2 E(k) dk ~ w’

2 
= ½ 
(
~~~2 + + w~2)

streamwise component of total energy EJE(k) dk ½ u 2

cross-flow component of total energy nfE (k ) dk — ½ ti ’
2

spanwise component of total energy 2fE~
(k) dk = ½ u~

2

After rescaling our problem to a 32X32X32 simulation and representing

the vorticity field by 10211. vortex filaments, each broken into an aver-

age of 30 nodes (total = 30720), we investigated the spectral dynamics

of the Taylor-Green system.

The first thing we did is to run a movie of the energy spectrum.

Figure 28 and 29 display four stills of that movie. On a semi-logari-

thmic scale , the energy E(k) contained in the shells of radius k is

plotted versus the harmonic radii available in a 32X32x32 simulation.

The upper right corner displays the running time and the total enstrophy.

The seven next figures (Figu res 30 to 36) display the energy con-

tained in the seven lowest modes as time goes. Our vortex-in-cell

(VIC ) results are compared with the ones given by the 32X32x32 spectral
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Figure 28. Energy spectrum in shells of radius k . 10214 vortex filaments
made of 30720 nodes in a 32x32x32 mesh.
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Figure 30. Energy in the first harmonic versus t ime. Vortex-in-Cell (vic)
method compared with spectral method. 32X32X32 mesh.
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Figure 31~ Energy in the second harmonic versus time. Vortex-in-Cell (VIC )
method compared with spectral method. 32x32x32 mesh.
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Figure 32. Energy in the third harmonic versus time . Vortex-in-Cell (VIC)
method compared with spectral method . 32X32X32 mesh.
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Figure 33. Energy in the fourth harmonic versus time. Vortex-in-Cell (VIC)
method compared with spectral method. 32X32X32 mesh.
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Figure 34. Energy in the fifth harmonic versus time. Vortex-in-Cell (vic)
method compared with spectral method. 32x32x32 mesh.
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Figure 35. Energy in the sixth harmonic -‘~ersus time. Vortex-in-Cell (vIc)
method compared with spectral method . 32X32X32 mesh.
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Figure 36~ Energy in the seventh harmonic versus time. Vortex-in-Cell (VIC )
method compared with spectral method. 32x32x32 mesh.
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simulation where v — 0 . Our f i l ter ~ was chosen as to fit best the

spectral results at t — 0 and was left fixed thereafter. The agree-

ment is excellent, specially for early times.

Figure 37 displays from top to bottom the total energy, the stream-

wise component of total energy and the cross-flow component of total

energy versus t ime . In our Taylor-Green system,

JE (k) dk =JE (k) dk

by synnnetry, as we pointed out earlier in the perturbation analysis.

The agreement with the spectral code is very good. Notice a slight

increase (...3.5~) in the total energy at t = 7.2 . This is an indica-

tion that the stretching and the fixed core filament is starting to

create inaccuracy. Recall that the filter ô is fixed from t = 0 on

and that we do not do any rediscretization or repacking of the vortex

filaments after the beginning of the calculation. This last problem

[21 22 23]
is commonly associated with Lagrangian calculation ‘ ‘ , that

is the continual addition or removal of particles from the calculation.

Depending upon the physical nature of the problem, particles may become

crowded and yield unrealistically high gradients of flow variables or

the number of particles in a region of interest may be so low that no

realistic representation of the flow is possible. From the point of

view of maintaining a uniform accuracy, a procedure which can rearrange,

add or dele te par ticles as necessary should be applied.

Finally, Figure 38 shows, on a semi-logarithmic scale the total en-

strophy versus time for a longer time span. The agreement with Rogallo’s

resultø is again very good until the already mentioned problems come up.

On the same figure, we also plotted the total enstrophy versus time when
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Figure 37. Total energy, x-component and y-ccmponent of total energy
versus time . Vortex-in-Cell (VIC) method compared with spectral
method. 32X32x32 mesh.
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we initially set an arbitrarily narrower filter Ô for the entire cal-

culatiot . This was like broadening the vortex profilee or making the

flow more viscous.

In conclusion, it is clear that a perturbation analysis of the

Taylor-Green system does not display much interesting features of the

flow pattern for medium or large t or Re . However , our vortex-in-

cell method gives very good agreement with a purely spectral decomposi-

tion of the flow. The use of the filter c~ provides damping of the

high wavenumber components of the vorticity field, damping that would
[28)

otherwise occur through subgrid scale dissipation or by viscous

dissipationtl9). The nature of the dissipation provided by G is not

well established at this time. However, based on comparisons with

spec tral calculations , we can make the following observations. Invis-

cid simulations of three-dimensional motions which have no scales

smaller than the gr id spacing ~ are accurately simulated with no

energy loss by the present method using a broad filter ~ . However,

as the energy cascades to scales smaller than ~ , some dissipative

effects must be provided. The application of the gaussian filter ~

provides energy dissipation for the Taylor-Green problem, where such a

cascade exists. As a f inal observation , we pointed out that a reseeding

procedure should be incorpora ted in our code to guarantee numerical

stability at later times in the calculations.
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IV.3 Shear Layer

In many flows of practical interest, there are interactions between

irrotational regions and rotational turbulent regions. As an example of

such a flow, we chose to simulate the mixing layer. In a mixing layer,

at high Reynolds number , the regions are separated by a thin interface

across which there is essentially a jump in the vorticity parallel to

the layer (see Figure 39, showing such jumps at the top and at the bottom

— of the layer). The usual difficulty in simulating such a flow arises

from the fact that such a vorticity jump would be diffused by finite

difference methods. Using the vortex-in-cell method , we can retain

sharp gradients in vorticity by avoiding difference approximations to

the term representing convective transport of vorticity , ~ • V~
’ (see

Eq. 2.2).

Large coherent eddies have been observed in turbulent shear

[ 25, 26)
layers and seem to play an 1mportant role in the mixing. It hac

been observedC26] that the pairing of large eddies is central to the

question of shear-layer development. Since large eddies have such an

importance, it is of considerable interest to attempt to model the amal-

gamation process. In this section , we follow the evolution of the

- - 
mixing layer disturbed by simple two- and three-dimensional perturbations.

In our coordinate system, as defined in the previous section, the

x—direction is the streamwise direction, the y-direction is the cross-

flow direction, along which the vorticity jumps are encountered , and the

z-direction is the spanwise direction , along which the unperturbed flow

is uniform (see Figure li.0). Our mesh system is 32X32X32 cells. As said

earl ier , using fas t Fourier transforms to solve the Poisson ’s equation

generates periodic boundary conditions in each of the three directions.

Therefore , in order to insure continuity of the velocity f ield in the
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I
cross-flow direction y , we cannot attempt to study a flow with a

single velocity shear layer. We rather investigate a parallel flow

with two opposite linear velocity shear layers, that is, a flow where

the initial fluid streaming velocity profile is an even function with
t 

respect to the y axis (see Figure 111). The initial vorticity field

consists of two uniform layers of vorticity, infinite in the spanwise

direction z and having opposite vorticity so that their sum equals

zero. In our simulation, these two layers are replaced by arrays of

discrete line vortices divided evenly into two groups and distributad

separately in different parts in space. Those with positive vorticity

are located within a thin layer in the lower half plane (from y = - 9

to y — - 7) while the others carrying negative vorticity are distri-

buted in the layer at the sysmietric position in the upper half plane

(from y — 7 to y — 9). That is to say y ranges from -16 to

+16 (Figure ~2). This distribution ensures the maximum spacing

between the two layers and their periodic images in the cross-flow

direction y . The results shown in this section were obtained by

initially perturbing only one of the layers so that the effect of the

periodic boundary in the cross-flow direction y can be monitored by

observing subsequent perturbations by the initially undistributed layer.

Each layer is made up of 160 filaments, and each filament resolved into

32 nodes.

As a first case, we choose a streamwise (x) perturbation of the

filaments: y — y0 + sin(iix/8), x ranging from -16 t~ +16. The per-

turbation is identical for all z (Figure ho). It means that we in-

traduced a first-harmonic down-stream vorticity variation within the

L layer having positive vorticity. This sets a purely two-dimensional

problem where there is no spanvise z dependence for all times. The
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s-component of vorticity is the only non-zero coaiponent(19). Figure 1i~0

shows the initial vortex lines. Figures h2 and 1i~3 display stills of the

vorticity contours at four instants in time and taken at the center of

the computational box, z — 0

In these contour maps and the following ones, the dashed lines

stand for negative contours and the solid lines for positive contours;

the tiny numbers along the contours indicate the different levels and

the small square in the lower right corner of the contours indicate the

mesh size. It should be pointed out that the graphics package draws

straight lines within the mesh size which explains the lack of smooth-

ness in the contours. On the other hand, recall that our algorithm

• - which governs the temporal evolution of the flow guarantees a higher

level of msoothness.

Pigures~12 and~ 3 show the roll-up into two vortices as has been

observed by other investigatorst1h~
17
~7~57~. This is the phenomenon

of amalgamation referred to earlier. Also, the initially unperturbed

top layer eventually undergoes the two-dimensional vortex roll distur-

bances. Notice that the sense of the pairing rotation in the positive

layer is opposite to that in the negative layer. No pairing of these

vortices further occurs because of the synmietry of the initial distur-
• 

bance. Notice also that during the initial stages of the rolling-up

(up to TIME — 0.9), the initial structure of the rolled-up sheet is

still evident. However, once the “eddies” are well formed and begin

to rotate, they lose this structure and develop into isolated blobs of

vorticityEl4]. Contrary to Acton’s simuiation[1~~, the two vortex

blobs at TIME — 3.6 will not merge into one, due to the synmietrical

opposition of the vortices from the negative layer and the fact that

- r we introduced a first-harmonic variation only.
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Figures 1111 and 11.5 display stills of the streamwise component of

velocity at the same four instants in time and same position in space as

for the vorticity contours. Similarly, Figures1l6 and11-7 show four stills

of the cross-flow component of velocity. As expected in this two-dimen-

sional case, the spanwise component of velocity was found to be null

(within roundoff errors). Discussions related to the spectral dynamics

of two-dimensional perturbations will be incorporated with the ones on

the three-dimensional case that follows.

Our final investigation was to initialize a full three-dimensional

perturbation: y = y0 + sin(itx/8) sin(rtz/8), x and z ranging from

-16 to +]6. It means that we introduced a first-harmonic streamwise and

spanwise vorticity variation within the layer having positive vorticity;
I

the filaments as well as the nodes making each filament, both followed

a sinusoidal distribution within the layer.

• This problem has all three components of vorticity and velocity pre-

sent for t > 0 • Generation of streamwise vorticity is observed as shown

by the contour plots (Figures 50 and 51) and the streaks formed by the

vortex lines (Figure.h8 and 11.9). Figures 148 and 149 show two views of the

vortex filaments of the perturbed layer evolving in time. Here we

encountered the same display problem as with the Taylor-Green system;

owing to the limitations of our graphics package, only one-third of the

computed nodes could be shown in Figures148and 119. That is the reason

• why we refrain from displaying all the vortex lines of the two layers

together and concentrate attention on those of the layer initially dis-

turbed. However, in all contour plots, both layers are displayed to-

gether.

Quite early in time, the display of the vortex filaments becomes
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obscure due to the intense stretching of the filaments from streamvise

perturbations. It is then more informative to look at the different

contours of vorticity and velocity. The twelve next figures (50-61)

show six groups of four stills for different contours taken at the

center of the computational box, x — 0 . Sequentially, we have the

(y-z) contours of w , w , w , u , u , and ux y z x y z

In our four last figures, we combine, for comparison purposes, the

results obtained through the streamwise perturbation and the ones ob-

tained through the three-dimensional perturbation. Figure 62 displays,

on a semi-logarithmic scale, the streamwise and spanwise components of

total energy versus time for both cases. Of course, the two-dimensional

mixing layer does not exhibit a spanwise contribution of energy since its

spanwise component of velocity is null. In Figure 63, we see the cross-

flow component of total energy versus time for both cases; since the

energy variation is plotted on a semi-logarithmic scale with respect to

time, the initial linear section of the curve represents the exponential

growth of the component energy in time, and its slope is hence the

linear growth ratet58359360 6h]. Figure 61.1. shows the total energy versus

• time for both cases. In the two-dimensional case, the energy stays con-

stant whereas the three-dimensional case implies stretching of the vor-

tices: at t — 2.7, the energy has increased by only one percent but

at t = 3.6, the total energy is up by eleven percent. Finally in the

last figure (65), the total enstrophy versus time is displayed for both

cases

The main conclusion to be drawn from these computer experiments is

that the third d imension is extremely important in the evolution of a

mixing layer even though it is an “ignorable coordinate” in the idealized

uniform shear flow.
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Chapter V

CONCLUSION

In this work, we have developed an approach to three-dimensional,

time-dependent computations of flows u8ing a novel vortex tracing method.

More than thirty thousand finite-sized vortices were advanced in

their self-consistent velocity field, using a second-order explicit time

differencing method. The vorticity distribution within each of the

vortices is given a gaussian profile by means of a shape factor imposed

in wave vector space. A machine-coded Fourier transform is used to

transform into and out of this space at each time step. Poisson’s

equation is solved by dividing by the square of the magnitude of the

• wave vector. The curl operation is also performed in wave vector space.

Subgrid accuracy is obtained through best-square-fit quadratic spline

interpolations. This numerical method has been tested and no undesir-

able grid effects or numerical instabilities were found.

The use of the filter d provides damping of the high wavenumber

components of the vorticity field, damping that would otherwise occur

through subgrid scale dissipationt28] or by viscous dissipationEl9].

Based on comparisons with spectral calculations on the Taylor-Green

problem we can make the following observations concerning the nature of

-• the dissipation provided by c~ . Inviscid three-dimensional flows which

have no scales smaller than the grid spacing ~ are accurately simulated

with no energy loss by the present method using ô = 1 . However, as

the energy cascades to scales smaller than ~ , some dissipative effects

must be introduced. The application of a gaussian filter c~ provides

energy dissipation for the Taylor-Green problem, where such a cascade

exists, but produces no loss of energy for the case of a single vortex

ring or a pair of coaxial rings, i.e. when there is no cascade. Based
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on this limited experience, we believe the use of a filter ~ yields

an appropriate model of subgrid scale dissipation.

- Compared with a purely Lagrangian method for the case of the vortex

rings and with a purely spectral method for the Taylor-Green system, we

saw that our vortex-in-cell method can certainly compete in computing

time efficiency and adequately produce the same accuracy for real and

spectral dynamics results. It is a great advantage to be able to gener-

ate direct visualizations of the real flow together with all kinds of

spectra , so usefu l in the study of turbulenceEl9]. This advantage was

used to produce movies of the vortex line evolution, for the Taylor-Green

system and for the mixing layer , alongside with movies shoving the cas-

cading of energy f rom the lower to the higher modes.
- 

Also , through vorticity and velocity contours taken at each time

* 

- 
step, our preliminary study of the mixing layer showed the now well-

established two-dimensional vortex roll disturbance. The exponential
I

growth in the cross-flow component of energy for the two- and three-

dimensional cases was also observed. It was remarkable to see , in the

• three-dimensional perturbation case , distinct streamwise distortions

and “cusping” due to the stretching of the vortex lines.

A discussion of the limitations of our method of performing fluid

dynamical experiments on the computer is called for , namely:

- 
a) the flu id is treated as incompressible

b) gravitation (buoyancy ) has not been taken into account

• - 
c) the viscosity is not defined explicitly

d) the boundary conditions are periodic

• e) the number of elementary vortices , although large , is finite

• f )  all elementary vortices are of the same finite-size profile
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Limitations (a) and (b) can be overcome by including consideration of

potential flow contributions which are affected by pressure and buoy-

ancy (transport of vortices is not). Our method could then be applied

to studying, for instance, Rayleigh-Taylor instabilities~
62a63).

One way of introducing explicitly the effect of viscosity is to

change the size of the elementary vortices according to their age, in

other words, to remove the limitation (f) . Some ad-hoc methods for

modifying the effective size of vortices have been suggested by Buneman~~
8
~:

to some extent, one can make up thinner, younger vortices by surrounding

a positive (clockwise) vortex concentrically with a halo of negative

(anti-clockwise ) vortices. However, the limit of resolution is set by

the cut-off imposed in it-space, and such narrowed patterns tend to

result in undesi rable sideband s or aliasses. Chorin and Bernard [18~

treat close elementary vortices as singular filaments by di rect inter-

action and let only distant vortices interact via the grid. By close

and distant , we mean less or greater than a few times the rms vortex

profile radius. They then use a random walk of filamentary vortices as

a spreading device to simulate viscous effects.  Their work was two-

dimensional . Such a hybrid method (the PPPM method , for particle-

particle/particle-mesh) of treating interacting objects was employed

successfully in simulations of molecular interactions~~~~. A linked

list is kept which allows one to find nearest neighbors up to any chosen

distance and calculate their direct effect, as well as the effect which

one would have obtained from them via the mesh. The difference is then

added to the total mesh field. In this manner, the more localized

nature of the flow field due to stretched or young vortices can be pro-

perly distinguished from the broader flow field of compressed and old

vortices.
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Non-periodic boundary conditions can be simulated in a variety of

ways. One way is to use readily available sine and cosine transforms

instead of complex exponentials to simulate (possibly vortex-shedding)

planar walls in one or two of the three dimensions . One would retain

periodicity in the third dimension , having in mind the simulation of

channel flow or flow through a re-entrant wind tunnel of rectangular

• cross-section (but with curvature effects absent). Mother variant is

• the simulation of “infinite” boundary conditions using similar approaches

as i~~~
t65) and int~~~. In the case of the mixing layer, the use of per-

iodic boundary conditions is justifiable only if one moves with the

mean speed of the flow. However, the size of the eddies grows linearly

with the streamwise distance, and one reaches a point at which the size

of the computational box must be increased. This problem can be ch ain-

ated if a way can be found to work in an infinite domain. From a prac-

tical point of view, this means that we must either use functions appro-

priate to such a domain , e.g., Laguerre or }Iermite polynomials , or use

a mapping which makes the transformed domain finite . We shall look into

the possibility of making use of some kind of mesh mapping in the cross-

• flow direction . In order to preserve the applicability and usefulness

of the Fourier methods , the mapp ing should be chosen in such a way that

these met hods can be applied with little loss in convenience or accuracy

Restriction (e) is merely a limitation due to computer memory size

and will be alleviated with improved computer technology. 611X614.x614 mesh

codes handling almost one million particles are already becoming avail-

able for plasma simulations and could be adapted to vortex tracing.

However , the large data bases required in such codes call, for non-tri-

vial modifications of our present mode of operation: first , most data

will have to reside on disc most of the time, to be read in for the

— - 

_•~•i~
_ 



S _____

arithmetic and imeediately written out again. Second , a faster machine

than the CDC 7600 is needed to process the many more vortex elements in

a run of reasonable duration : one thinks of a Cray-i or the soon to

come Cray-2 computer !

Eventually, it may be possible to treat practical flows such as

airfoils, combustion chambers , etc., by our method. Before that can be

done , much more effort should first be de’~oted to developing an explicit

model of the viscosity, the treatment of the boundary conditions and

the mesh layout and/or mapping .

• ~ 
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Appendix I

.

NUMERICAL INTEGRATION

On one hand , using the series expansion for sine, we have,
,-8 -4

,, ~r1-r 1 )~~~letting k 2

sin ] . 52 1 
_ _ _

ej  ~~~~~~~ j + j~6’ j -
5~40 j + . .

On the other hand , we obtained in (3.2):

- r~~ ~~
- )  ‘

~i—i

1 -i~’1~ +(i-~~~~~where I~ stands for
f 

e I d~ . By using the
0

trapezoidal rule to evaluate I
i 
, we get :

• 
-8 -8 -8 -8-ik r -ik~r

• - — e + Error

where

-

- 

l E rrorl I[i.(~~~~~~
)]2 

e 
~ .[~~~+(‘ i

~iit <
~~~~~ <i

• This accuracy to the first order in is shown in the resulting
- approximation of

-8 -4 .4

- : sin _ ~~~~~~~~~~~~~~~~~~~ +
• 

. 
s
~ 

2

—i S is
— e  ~~+ e  ~

2

• 
• 
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— cos C

~~~ 
— 1 - + . . . .

To increase accuracy, we may use Simpson ’s rule to evaluate Ij

~ 
/ -i~4 -i~~%(~~4 ~) -ii.;

— ~ ~e + 14 e ~ + e .1’ 
/+ Error

where

E [

~~~
.(.

~~~~~~~~~ 8
)]1

4 

~~~~~~~~~~~~~~~~~ 
— 

14 •
•

rror = 2880 e O < ~~~< 1  180

The accuracy is now to the third order in e,~ as shown in

sin € 1

/ 2 14
_
~ J1~~~i_÷~~i_ I÷ a

2 211 • • • •/  3

~2 e~
L ~~~~~~~~~~~ . .

We have increased the accuracy of our approximation but we needed one

more exponential so it increased the complexity of our algorithm.

A compromise is to use a gaussian type formula for I
J
t3~~ ,

keeping the approximation down to the sum of two exponentials. Using

the zeros of the second order Legendre polynomial :

P2 (x) — ~ (3x2-i) — 0

which implies x1 — +~j  and x2 — -~j~ we obtain
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- ~ {e
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[(1+3 )~~+(1-3~~ )~ ].F e ’½{(1~3
¾)~~+(1÷3 ¾)~~~]}

+ Error where

• !Error ! 
~~

J

~~ 1~~~
; i

~
i

)j 14 
e~~~~~~~i~~~~~~~i ’]~ < 1

• i6€~
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So the accuracy is still to the third order in

~~~ € ,
~ e~~~1

3 ½ 

+ e
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Appendix II

PERYO1~4ING A 2N-POINT TRANSFORM BY MEANS OF AN N-POINT TRANSFORM

The imaginary part of a complex function can be used advantageously

to compute the transform of a real function F(n ) defined by 2N

samples by using a discrete transform which sums only over N values. 
-

•

That is , we wish to break the 2N point function F(n) into two N

sample functions . We divide F (n ) as f ollows:

h(n ) — F (2n )
n = 0 , 1, . . . . , N—i

g(n) — F (2n+1)

That is , function h (n) is equal to the even numbered samples of F (n) ,

and g(n) is equal to the odd numbered samples. (Note that h(n) and

• g(n) are not the even and odd function decomposition of F(n).) The
[145]

discrete Fourier transform can then be written as

2N-1

~(k) E 
F(n) e

_ 1
~~~

’2N

F(2n) e 
211k(2fl)/2N 

+~~~ F(2n+1) e~~~~
k(2

~
4
~~
V2N

fl—6 n=0

=~~~ F(2n) ~~~~~~~~ + e
_
~~~~

N 
~~~ F(2n+1) e

2
~~ ’~~~

n—0 n0

h(n) ~~~~~~~~ + e
_
~~

1(
~~ 

E 
g(n) ~~~~~~~~

— l~(k ) + ~~~~~~ ~(k) , k = 0, 1, ..., N-i (AII.1)

To efficiently compute lc(k) and ~(k) , let

y(n) — h(n) + i g(n)

That is, y(n) is constructed to be the sum of two real functions where

one of these real functions is taken t o  be imaginary. From the linearity

property~
14
~~, the discrete Fourier transform of y(n) is given by
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(k) — 1 (k ) + i ~(k)

+ I I~,(k)) + I(~~(k) + i

- 
~~~~~ 

- 
~~
1

(k )) + i(~~1
(k) + ~~(k ))

— R ( k )+iI (k )

where we used the decomposition into their real and imaginary parts for

1 (k) and ~ (k) . We decompose both R(k ) , the real part of (k) , and

1(k ) , the imaginary part of (k) , into even and odd ccmponen ts~~
6
~

(k) - ¾(R(k) + R(N-k)) + ¼ (R (k) - R(N-k))

+ i 1~(i(k) + I(N-k)) + i %( i(k ) - I (N-k))

• Knowing that a real even, a real odd, an imaginary even or an imaginary

odd function transforms respectively into a real even, an imaginary odd,

an imaginary even or a real odd functiont3 ~~, we have

• 

~~~(k) = ½(a(k) + R (N-k)) + i ~(i(k ) - I(N-k))

• and (AII.2)

~ (k) = 1~(I(k) + 1(N-k)) - i ~(R(k) - R(N-k))

Substitution of (AII.2) into (AII.1) yields

~(k) — 
~~~~ 

+ i p1(k)

where the real part of the discrete Fourier transform of the 2N sample

function F(n) is -

= ½(R(k ) + R(N-k))+ ¼cos(Tn~/N )( I (k ) + I (N-k))

- ½sin(nk/N)(R( k ) - R(N-k))  (AII .3)

and similarly the imaginary part is
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~i (k) — ½ (I(k) - I (N-k)) - ~ sin(nk/N)(I(k) + I(N-k))
- 

~~ cos(nk/N)(R(k) - R(N-k)) (Ali ll.)

These formulas hold for k — 0, 1, ...., N-i but since F(n) is a real

function defined by 2N samples to start with, its Fourier transform is

an hermitian function~~
6
~ and the rest of the spectrum is defined from

(AII.3) and (AII.14.) as follows:

—

k — 0, 1, . . . . , N—i

~~j(N+k ) = -

As of ~(N) , 
p
1(N) = 0 since F(n) is real and we assign ~~(N) to

be zero through our shape factor.

In a straightforward manner, (AII.3) and (AII.1&) can be inverted to

yield

R(k) = ½ (#r(k) + 

~r~~
_’

~~ 
- ½cos(rrk/N)(~1(k) +

- %sin(rrk/N)(~ (k) -

1(k ) = ½(# j (k) - ~i(N-k))- ~sin(rtk/N)(Pj(k) + ~j(N-k))

+ ½cos (~Tk/N )(~ (k) -

Considering the graphical representation of a complex fast Fourier

transform~
14
~~, the scheme developed above is equivalent to half a level

in addition to the log2N levels of the FFT over N points.

132

- - - - ~~~~~~~~~- . -~~~~—- -- -— 
~~~~

-• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -- —_— —— - - S



-5—’-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~

Appendix III
-: 

VELOCITY OF A SINGLE VISCOUS VORTEX RING

In equation (14.5), we consider a single vortex ring of radius R

and of gaussian cross-section a • We assume that o2 
<~ ~2

e
R

Figure 66. Vortex ring
of radius R

I-

From Figure 66 , we say that — R and that 
~~~~~~~~~~ 

is the length

of the chord subtending the angle e , therefore 
~~~~~~~~~~ 

— 2R sln (¼B)

By definition of a vector product, we have then

X ~~~~~

‘ 
- j

~~
-
~~

’
~ 

sin(~8) ~~ 
= 2k sin

2
(~e) 

~~

where ~~
‘ is the unit vector in the direction of translation z . Also,

- 
• 

z

for an arc of e radians, the length ~ — Re so (14.5) becomes 
-

E!~ I F/2R sin(~e)\ 2R
2 sin2(~e) de= 2rr 

0 ~ 2~ J(14R2 i 2(¼e ))
3s’2

- I’l pi~/2 ~‘ ~~

~~ ~~~ sin(m) l 1 d— 14TTR 10 a /sin(~) ~

Letting ~ 
a sin(~ ), dC — cos (~) den, 80

— ~~zf ” F(2
¼
a

R
C)C(l~C2)~ 

dC (AIhI.i)
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With C ranging from 0 to 1 , we can consider a binomial series

expansion for (i-C2Y~ such that

1 

~~~~~~~~~~~~~~~~C 2 8 8

Hence (AIII.1) is rewritten

— 
~~~~

[j

1 
~ F 

~~ +f F(2

a%(
~~

i C

2

)

% 

- 

~
) dC] (AnI.2) -

In the second integral, we use the assumption that a2 <C R~ so F can

• be approximated to 1 (see Eq. li.6) , which implies

~~~ 

r~~
[j

l 
F(2

¼
RC)dC 

~(t(l C
2
)~ 

- 

~
) dC]

o But

2 ~ 
- 
~\dC = him in (Iisci_€

2
~~l)

0 C(i-C ) /
= 1n 2

So, 

~~~~~~~
[i1 P(2

¾
a
RC) dC + in 2] ~~

Letting ~ = 2½
cT
RC and using (14.6),

After integrating by parts on the first term of the integrand,
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2¾ R/a 2
• ~ i....{ln(2

¾ 
R) f(2

¾~ o) -f ~~~~~~ e d~

• 

- erf(~~~’t)+ in 2] ~~~~

Letting C a ~2 , the integral in the above expression becomes

ln(C) e ’ d( - ln(C) e C 
dC - ln(C) e~~ dC(1TC) ¾ o (nC) ¾ 

2R2/0
2 (iic )¾

Since 
~~ 

ln~C) — 0 , it is safe to say that the second integral of
C

2 , 2
the right-hand size is of the order e 2R ia 

, 80

2 22R / a  -C 2 2• ln(C) e dC — ~ (- 21n(2)- v )  + o(e
_2
~ 

Ia )
0 (TTC)

where ‘1 is the Euler’s constant.

On the other hand, using an asymptotic expansion for the error func-

tion, we have 
2 2 2 2

12¼_R\ 0e 2R /0 a~ e
_2R Ia

erf~ i~~i -  +

~ 
a, a(2~) R(32VT)

12¾ R’ ~
‘ 
-2R~/ 

2\
Again, it is safe to say that erf~ ~ 

1 - O~e 
a 

/

2 2asymptotically for a <‘C R .

Finaliy, we obtain

~ ~~~~~ R)+ ¼(2 ln(2)+ 1 + ln(2)+ 0(.
_2R2/02)];2 (AIII.3)
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Hence 
-

in (2¼ ) + x i1~
, -

~t I4TTRL \0 ! 2 J z

or

~~~c~~~j[lfl(~~~
)_ C]~ (AIII.1I.) 

-

where

c~~~i.o58

.
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