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FOURIER 1 RAN SFORM AUTOCORRELAT ION

INTRODUCTION

Optical Power Spectrum (OPS) System. • The optical Fourier Transform Auto-
correlation (FTA) system described in this report was investigated for its ability to
overcome two significant problems associated with the usual OPS (Optical Power
Spectrum) system. These problems are the presence of phase noise in the object
transparency, and the diffraction effects arising from the finite sampling aperture within
which the Fourier transfo rm is taken. The essential diffe rence between the conventional
OPS system and the FTA system is that the OPS system detects the modulus squared of
the Fourier transfo rm of the amplitude transmitted by the object transparency, and the
FTA system detects the Fourier transform of the modulus squared of the amplitude
(the intensity) transmitted by the object transparency. This report presents an analysis
of the FTA system and of the realizations that have been made to implement the theory .
Experimental data is lacking because the large amount of data necessary to characterize
a transfo rm can only be taken with an automated system.

The study was based on the fact that the Fourier transform of the intensity power
transmittance of an object transparency is equal to the autocorrelation of the Fourier
transform of the amplitude transmittance of the object transparency. This can be ex-
pressed in one dimension a&

F L  ~ (x) 12 1 F [  ~~ (x)] ®F[ ~ (x) j ( I )

where the symbol ® denotes correlation , F represents a Fourier trans form. and
~
, (x)  A (x) eiO( x) (where A(x) and 0(x) are real and i = .,J-l)  is the complex am-
plitude transmittance of the object transparency. Also ,

= kti (x) 2 = A2 ( x )  2)

is the intensity transmittance of the object transparency. The intensit y t ransmit tance
is indcp cident of any phase term 0(x ) .

K - 13 r a c e  w e l l , T1p4- FourIer Transform and Its Amthratso,Is McGrass .llill. 1965. I I l ls book is the
~~fc rencc for all the l ourier Irarislorm mathematics used ~n t hIs reporl ,
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The Effect of Phase Noise . • In this section , the effect that phase noise and a finite
sampling aperture have on the detected signal in an OPS system is described. An OPS
system diagra m is shown in figure 1.

COLLIMATED
LASER
LIGHT 

OBJECT LENS FOURIER
TRANSPARENCY TRANSFORM

PLANE
(DETECTOR)

Figure 1. Schematic of a Generalized OPS System.

A squaring detector, such as a photodiode array or photographic film , is used to detect
the light energy falling on the transform plane. A squaring detector is a device that
senses the energy flow in a radiation field. The name comes from the fact that the energy
density is given by the square of the field amplitude: This means , in effect , that if the
Fourier transform of the object function g (x) is given by F E g (x) I = tJ, (f) , then
the detected energy is given by u/I (fl fi * (1) = A2 (f) .

if the object function contains some phase noise terms, then we can define in one
dimension.

g(x) = g1 (x) + ig2 (x) (g1 (x) and g2 (x) real) (3)

where g1 (x) represents the amplitude transmittance of the transparency resulting from
the silver grain image on it and g2 (x) represents the phase noise caused by emulsion
surface relief and index of refraction inhomogeneities in the emulsion and film base. 4
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Fourier transfo rming g (x) and separating the real and imaginary parts of the transfo rm
yi elds

Re fr F g ( x )  J.~ = f ~ [ g 1(x) cos(2 irfx) + g2 (x) sin (2irfx) I dx (4)

lm IF I g(x) ] } = if° [g1 (x) sin (2 irfx ) + g2 (x) cos(2 ,r fx) I dx (S)

Upon detection , only the real terms will be detected and these will be squared. By de-
fining the cosine and sine transform s ,

- C ( g 1 (x) J = f° g1 ( x) cos (2 ir fx)dx (6)

S I g2 (x) I f° g2(x) sin (2irfx) dx (7)

- Then , detection will give

( Re IF  [g(x)1 1 1 2  = C2Eg 1(x) I + S2[g2(x) I + 2 C 1g 1(x) I S [g 2 (x) 1 (8)

- Expressing equation 8 in words; the odd components of the phase noise g2 (x) will be
transformed into an amplitude distr ibution , which will be added to the even components
of the amplitude due to g1 (x) and will be mixed with the desired signal from g1 (x)
when the Fourier transform is detected. Equation 8 shows that phase noise is a serious
problem in pattern recognition because it obscures the desired information due to g1 (x)
in the detected OPS.

(,
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The Effect of the Sampling Aperture . • The aperture used to define the area of a
photog raph that is sampled and transformed is also a source of noise. The limited region
of g(x) means that the Fourier transform is no longer evaluated over all space , but
rather only between some finite limits x 1 and x 2 . This limitation causes the transform
of g (x) to be convolved with the transfo rm of the aperture function. This aperture
function is defined somewhat artifically, so that we may still have a Fourier transform
integral fro m —oc ~~ oo, Let the aperture functio n be defined as centered on x = 0, so
that

x 1 = -x , = d.

aperture = rect 1 for (xl<d~ (9)
2d J 1 O for (x(>d ’

and the transform

g (x) e~ 2~~
’X dx 5 °° rect (-

~
.) g (x) e i2 fffX dx (10)

Now , we can make use of the fact that

F [ rect (
~

j i = 2d sinc (2df) ( 11)

- - where

sinc (x) = 
sin (,rx) (12)
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and the theorem that for any two functions a(x) and b(x)

F [  a(x) b(x) I F (  a(x) 1 * F[b (x )  1 ( 13)

where the asterisk denotes convolution.

The final result is

f  rect —~~- g (x) ~~~~~ dx 2d sinc (2df) * F [ g (x) 1 (14)
—~~~ 2d

In an OPS system , the convolved amplitudes are squared , which effectively prevents
the removal of the aperture effect from the detected signal. In general , deconvolution
can not be performed without retransforming the complete complex signal into a multi-
plication problem , after which the aperture function can be divided out. However , - de-
convolution is an excessively difficult and noisy operation and is not done in practice.
The effect of the aperture function is most evident at the ‘d.c. spike” of the transform
caused by the average or zero spatial frequency which contains most of the energy in
the transfo rm . The transformed aperture function around the d.c. spike is removed by
subtracting the amplitude field owing to the aperture. However , if the amplitude field
is squared , then the aperture effect is multiplied with the desired signal and cannot be
removed by subtraction. Because the aperture function cannot be deconvolved or even
subtracted in the zero order , much effort has been spent on apodization , defined as
rolling off the aperture transmittance as a function of radius to prevent ring ing of the
aperture transform. Unfortunately, apodization also removes the important property
of translation invariance from the detected transform modulus and severely restricts
the usefulness of the OPS system as a pattern recognition device.

8
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The Fourier Transform Autocorrelation System. • Figu re 2 is a diagram of the
FTA system designed to implement equation 1. The system is essentially a Twyman-
Green interferometer , whose mirror plane is imaged by a telescope into the object plane.
Light transmitted through the object plane is then collected and detected by a photo-
multiplier tube (PMT) detector. The two beams of the interfe rometer , one from each
arm , give two transforms F I g(x) 1~ and an angle between the beams gives the correlation
to synthesize the fu nction

F I g ( x ) 1  *F I g ( x ) I

as in equation 1.

The title “Fourier Transform Autocorrelation ” is somewhat misleading because ,
exen th ough the original idea for this system came from equation 1, it has been found
to be more fruitful to analyze the FTA system as a detector of moir~ patterns formed
between a proj ected cosine grating generated by the interferometer and similar spatial
frequencies in the object transparency. Complicated objects , such as an aerial photo-
graph , contain many spatial frequencies and directions in which these spatial frequencies
are found. The determination of the amplitudes , phases , and directions of these spatial
frequencies constitutes taking the Fourier transform of the object transparency . The
analysis section that follows will show how the FTA device takes a Fourier transform
and will discuss details of implementation .
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ANALYSIS

The analyses contained in this section are briefly described below (All of the des-
criptions refer to figure 2). The analysis proceeds from the most general and mathe-
matically simplest form into more detailed considerations dictated by the particular
apparatus used. Analyses I and 2 are concerned with the heterodyne methods that have
been tried. Analyses 3 and 4 determine the system spread function , (therefore its re-
solution), and anal ysis 5 is concerned with system tolerances and mechanical requi re-
ments.

Analysis I :  Wave Amplitude Anal ysis is a description of the case where mirror Ml
is tilted through an angle 6 , and mirror M2 is linearly translated in a di-
rection normal to its surface at a constant velocity v.

Analysis 2: Effect of Piezoelectric Mirro r Oscillation shows the effect of oscillating
mirror M2 sinusoidally rather than translating it with constant velocity .
This method has great advantages in experimental simplicity and in ease
of analysis of the detected signal.

Analysis 3: Effect of Sampling Aperture on Detector Bandwidth shows the effect of
the system aperture on the bandwidth of spatial frequency detection in
the Fourier transform plane. This in effect defines the system point spread
function in the spatial frequency or radial direction in the transform space.

Analysis 4: Object Rotation Effects shows the effect of obje ct rotation on signal
detection. In effect , this defines the system point spread function in angle
(a) in transform space. Together with analysis 3, we the n have a theoretical
point spread function for the system.

Analysis 5: System Position Resolution Requirements is an analysis of the resolution
needed in the til ting of mirror M I and in the rotation of the object such
that a Fourier transform resolution consistent with the device spread func-
tion may be obtained.

10 

~~~~~~~~~~~~~~~~~ ~~ -— - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



Wave Amplitude Analysis. • The FTA device initially operated by tilting mirror Ml
through angle 0. Mirror M2 remained normal to the beam but was linearly translated
along the optical axis at a velocity v. The object transparency was located in the object
plane of figure 2. Angle 0 lies in the plane of the interferometer , which will be called
the x , z plane. Thus , z is defined to be along the path of the ligh t , x is positive upwa rd
in figure 2 , and y is positive out of the paper in order that x , y, z may form a right-
handed coordinate system. Since the telescope is a I : I system, an angle 0 at mirror Ml
will be imaged into the same angle 0 in the object plane. Mirror Ml is imaged into the
object plane by the telescope, as shown in dashed lines, so that a til t 0 does not result
in a beam translation in the object plane. The two plane wave beams from MI and M2
give the following normalized amplitudes:

M l :  e4kOX where k = ~2~i_ and X = wavelength of light (632.8nm)

M2: eikvt where v = velocity of mirror in direction of light path

M2

- -

1:1 CONDENSOR
TELESCOPE OBJECT LENS DETECTOR

I PLANE
COLLIMATOR

— ‘— BEAM
1’ EXPANDER

HELIUM—NEON
LASER

Figure 2. Fourier Transform Autocorrelatiofl System.
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The sum of these two beams produces the amplitude field incident on the object plane.
This field is multiplied by the object transmission function g(x ,y) to prod uce the ampli-
t ude field just behind the object plane. Because the system only reads out along the
x-azis , we red uce the amplit ude field equatio n to one di mensio n :

h ( x) = [e ik~’t + e~kO)( ] g(x) ( I S)

This field is detected (integrated) by a squaring detector to give

h ( x) h* (x) = I h ( x ) ( 2

lh  (x) ( 2 = [e 1l~ t + e~~0”1 g(x) [e~~~t + e’1’0”I g (x)

= ~g(x ) ( 2  [2 + e k(0x + Vt) + eik( OX + vt) 1 (16)

= 2J g(x) ~2 ( i  + cos [k( Ox + vt) I }

Normalize this equation by droppi ng the factor of 2 , and integrate the light over a (one-
dimensional) detector of length L to get

f jh (x) 12 dx = f (g (x) 2 dx + f Ig (x) 12 cos [ k( Ox + vt) I dx (17)
L L L

Since the integration is only over x , we can separate out the time-dependent part of the
cosine using the identity

cos (A + B) cos A cos B - sin A sin B

f lh(x) 12 dx = 5 Ig(x) 12 dx + cos (kvt) 5 Ig(x) 12 cos (k0x) dx
L L L

(18)

— sin (kvt) f  Ig(x) 12 sin (kOx) dx
L

1 2

L ~~~~~~~~~~~~~~~~~~~~~~~~ 
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The two forms, equatio n 1 7 and 18 show different properties of the result.

Equation 17 has the important second integral in the form of a correlation of g(x) 2
with cos (k Ox). The definition of correlation is

g ®h  J g(u) h(u + x) du (19)

To give the response of a finite system, the correlat ion must be mu ltiplied by the system
aperture L. This action does not invalidate the correlation , but only causes convolution
of the result by a spread function characteristic of th ’  aperture (see analysis 3).

Equation 18 shows that for a given spatial frequency cos (kOx) there are two de-
tectable ti me-varying terms which appear in quadrature . If we can obtain a reference
signal of the same temporal frequency as cos (kvt), we can separate the last two integrals
of eq uation 16 by phase detection. This separation is very important since the form of
these two integrals is that of a cosine transfo rm and a sine transform of (g(x)(2 . If we
can separate these two integrals in the readout , we can then obtain the complete Fourier
transfo rm of Ig(x) 12 from the identity.

F [h ( x ) I = C [ E ( x ) I + i S 10(x) ] (20)

where C = cosine transform

S = sine transform

E(x) = even part of h(x)

0(x) = odd part of h(x)

13
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If the function h(x) is completely real , as Ig( x)~2 is , then its even part transforms to areal fun ction , and its odd part transforms to an imaginary function. Therefore , the evenand odd parts do not need to be separated , since the sine and cosine tr ansfo rms will dotha t for us. We then get the simplified result

F [ Ig(x) I2 I = C [ lg(xN 2 I + i S [ Ig(x) I2 ] (21)

which is a combination of the last two integrals of equation 18. To examine the effectof having the complete Fourier transform of Ig(x) 12 , defi ne the apertured amplitudefu nction in the input pla ne as

g( x) = rect -
~~~~ 

[A  + g~ (x) + ig~(x)] (22)

where we have split g(x) into its average amplitude A, its real varying part g1.(x), andits imaginary varying part g~(x).

l g ( x) 1 2 = rect2 (-h) [A + ~ (x) + i g 1 (x) } [A + g~(x)~~i g j (x) I
(23)

rect 2 (
~

..) [A 2 + g2
~~(x) + ~

2
~~(x) +

Now use the fact that rect 2 
~~~~ rect ‘u.— , and transformD D

F [Ig (x) ~2 = D sinc(Df) * ~A
2 ö(O + F [g 2 (x) J + F [g~(x) ] + 2AF

(24)= D sinc(Df) * ~A
2&(f) + F [J g (x) 12 ] + 2AF

The FTA apparatus gives this Fourier transform , and the t erm A 2 D sinc (Dfl, centere dat f = 0, can be digitall y subtracted. This Process removes the effect of the apertureconvolved with the d.c. spike in the tran sfo rm . Although thi s is not equivalent to decon-volvi ng the aperture function at all points of the transform , it does remove the mosttro ublesome aperture effect which is troublesome because of the extreme intensityof the d .c. term . As stated earlier , this is done witho u t apodi zation , and the r sitioninvarianc e property of the transform modulus is retained .

14
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Effect of Piezoelectnc Mirror Oscillation. • This method was investigated because of
experience with a ystem incorporating the idea presented in analysis 1; where the
mirror M2 was translated at a constant velocity v over a long distance. This translation
was accomplished by moving a stage with a 1-inch micrometer , driven by a synchronous
60-RPM motor. Mirror M2 was mounted atop the stage, A switch mechanism reversed
the motor at the end of its travel in each direction , and data was taken in the middle
of travel. Two problems were evident with this system. First , the stage did not have
straight ways, and a progressive tilt was introduced into the beam as the stage moved
away from the center of its range where it had been initially adj usted. Second , the syn-
chronous motor did not give a constant velocity because of an inherent property of such
motors called “cogging.” The only way to eliminate cogging is by using a flywheel ,
which would be difficult to fit and would hamper reversing. These problems prompted
the following analysis in which mirror M2 is oscillated by a piezoelectric (PZ) driver
rather than linearly translated by a micrometer-driven stage.2 A diagram of the elec-
tronics required for PZ modulation of the FTA is shown in figure 4.

In equation 15 replace (v t) with

A sin (2irft ) = A sin (c~.,t)

where: A = am plitude of oscillation of PZ

f = frequency of oscillation of PZ

2irf = phase velocity

Then , by a similar analysis , we get the detected signal

flh(x) 12 dx fI g(x) l2 dx + cos[kA sin (wt)] fig(x) 12 cos (kOx) dx
L L L 

(25)

-‘sin[kA sin (wt)] f ~g(x )~2 sin (k0x) dx
L

idea was developed from lectures in Geometrical Optics by Duncan Moore at the Institute of Optics of the

University of Rochester , NY.

l5 
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The amplitudes of the cosine and sine transforms can be expressed as Bessel series ex-pansions using the following identities:

cos [k A sin (c,.,t)j J 0 (kA ) + 2i 2 (kA) cos (2~~t) + 2J4 (kA) cos (4c~.,t) +....

sin( kA sin (~)t )j = 2J 1 ( kA) sin (wt) + 2J 3 (kA ) sj n (3~~t) + 2J 5 (k A) sin (Swt) +. .. .

This is a very useful result because we see that simple frequency bandpass filtering will
give the coefficients of the sine and cosine transforms without a phase reference signal
or phase detection systems. More precisely, if we detect the fundamental frequency
(wt), then for a constant amplitude of PZ oscillation,

detected amplit ude 
= M (26)

2J 1 (kA)

Detection of the first harmonic (2wt) frequency then gives

detected amplitude 
= N (27)

2J2 (kA)

where M and N are the amplitudes of the sine and cosine transforms respectively , of
the particular spatial frequency of ~g(x) I 2 which is being tested for as determined by
the mirror angle 0. The value of J 1 (kA) and J2 (k A) must be accurately known to get
a good result . It is usefu l to plot J 1 (kA) and 

~2 (k A) to find the region of kA that
will give the best result. For kA>3, the J 1 and J 2 functions are appro x imately in quad -
rature so it is useful to consider the region l<kA~3, which encompasses amplitudes of
slightly less then ‘4X to around ‘/2X at which kA = 71 The graph shows that the region
abo ut halfway between ‘/~ and Y2A gives the best combination of high amplitude and
low slope for the functions (figu re 3). Low slope is desirable so that the value of the
fu nction is not too sensitive to slight amplitude changes of the PZ driver.

Without using electronic phase detection it is difficult to get an accurate value for
the optical path di fference (OPD = kA). Without an accurate OPD it is impossible to
calc ula te accurate values of J 1 (kA) and 

~2 (kA) and , thereby to get good values for
the amp litud es of the sine and cosine transform s.
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The principal problem associated with OPD detection is that the origin of coordinates
for the sinusoidal fringe pattern projected by the inte rferometer is unknown. This leads
to a phase ambiguity that is not constant for different spatial frequencies. If the modulus
of F I Jg(x)j 2 I is required , this phase ambiguity does not have to be recovered ; but if
the complete transfo rm is needed (as it is for such operations as deconvolution of
aperture effects), then a phase reference must be provided . A reference phase can be
derived at low spatial frequencies by sampling a portion of the field input to the object
transparency. This could be done with a beamsplitter , a microscope objective to magnify
the fri nges, and a detector to sample the fi eld in a small region. Al though high spatial
frequencies cannot be phase-referenced by the method described , it is only necessary
to know the phase of low spatial frequencies (up to about 10 cycles per millimeter)
for the purpose of deconvolution of an aperture function. The problem of aperture
function deconvolution will be addressed in the next section of this report.
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Figure 4. FTA System Electronics Block Diagram.
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Effect of Sampling Aperture on Detector Bandwidth. • The detected moire pattern,will cause a signal amplitude in the detector which is proportional to the original moire
fringe contrast , fringe spacing, and system apert u re . The system aperture is the sampling
apert ure on the object and will be circular. Let the moire pattern equation be

10 [ 1  + m cos (2irfx ) I
rn contrast (28)

f = spatial frequency in x—direc tion

Normalize the intensity by I = I and integrate this function over a circular aperture
of radius £/2 using pola r coori?inates r , 0 where x = r cos

2 f ~ ~~/2 [ I + m cos(2irfx) ] r d r d0 (29)

2 
~ç

71 
1

Q/2 dr dO + 2 m ~~ 
~~~~ cos (2irfr cos 0 + 27rfx 0 ) r dr dO

The arbitra ry phase shift 21r fx 0 has been added to make the result general. The first
integral is just twice the detector area. Split the second integral into two integrals by

cos (A + B) = cos A cos B - sin A sin B

The resulting integral s must be evaluated fro m tables , but the fi nal result for the detec ted
signal is

output = (constant) 1 1 + m ( 2J 1(irQf) ) 
cos(2irfx 0 ) I (30)

irQ f

The observed fringe contrast is now m 2J 1 (~I~~ ) rather than ju st m , which shows
lrQf

that as the apert ure is made larger , the ~f range over which a good response is seen is
reduced. The effect is that the instrument spread function in the synthesized Fourier
transform space is a Besinc function , ju st as it is fr~r conventional optical Fourier trans-
form s using circular apertures.

3This section developed from lectures in interferometry by M. Parker Grvens at the Institute of Optics of the Universityof Rochester, NY.
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Since we are dealing with a Besinc function , Rayleigh’s criterion may be used for
resolvable points in the transfo rm plane. This criterion is defined as the distance in fre-
quency space from the central maximum of the Besinc function to its first zero. The
first zero of the function is at 1 .220ir. Substituting the argument of our derived function ,
we get

irQf = I.220,r

= 1.220
2

The following table was generated using Rayleigh’s criterion:

aperture diameter (2 ) in mm ± t~î in cycles/mm

± 1 . 2 2

2 ± 0.6 1

3 ± 0.41

4 ± 0.31

::::
7 ±0.17

8 ±0.15

9 ± 0.1-1

10 ±0.12

This table indicates the extreme sensitivity of the system. The narrow spread function
means that the tilt of mirror Ml to scan in frequency must be very precise , and the ro-
tation of the object transparency to scan in direction a must be similarly precise. An
exact calculation of these requirements is in An alysis 5.

~~~ IL. 
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Object Rotation Analysis. • For the purpose of this analysis , assum e that the sam-
pli ng aperture of the FTA is infinite. This assumption is equivalent to saying that the
device point-spread function (psi) will be a delta function. To find the psf of a real device
with a finite sampling aperture , we only have to convolve the psf found in this analysis
with the Fourier transform of the samp ling apert ure. In the previous section this function
was shown to be a Besinc for circular apertures.

The assumption of an infinite sampling aperture simplifies this analysis and enables
the result to be more general. The detector acts as a low-pass spatial frequency device
that will only pass a zero spatial frequency moiré for an infinite sampling aperture. This
low-pass filtering means that the difference frequency between the cosine grating pro-
jected by the interferometer and some spatial frequency in the object must be zero to
be detected . To derive the conditions under which this diffe rence spatial frequency is
zero , assume an object function consisting of a single spatial frequency in the x direction.
The field immediately behind the object transparency is then given in normalized form by

= [ I  + A cos(2ir f 1 x) I cos(2ir f2 x + ‘y) (31)

where

A = transparency modulation as a fraction of average transmittance

= object spatial frequency

f2 = spatial frequency projected onto object

= arbitrary phase offset

For simplicity in notation , define

P = 2ir f 1 x

Q = 2ir f2 x

2 1
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The optical field is then rewritten as

~i (x) = [ I + A cos (P) I cos (Q + 7)

(32)

= cos (Q + ~) + A cos (P) cos (Q ÷ 7)

Detection of this field then gives (33)

hi’ (x) 12 = cos2 (Q + y) + 2A cos (P) cos2 (Q + ‘y) + A2 cos2 (P) cos2 (Q +

Since it must collect all the light passing through the FTA device , the detector must
also be infinite in extent. This requirement is of course relaxed for a real device with
a finite sampling aperture. Use trigonometric identities to remove squared cosines, and
get the following equation whose terms are grouped into significa nt categories:

Iii’(x)12 = 1/2 + A2/4 bias terms

(34)

+ l/ 2 cos(2Q + 27) + A cos ( P)
high-frequency terms

+ (A 2/4) cos (2Q + 27) + (A/4) cos (2P)

+ A cos(P)cos(2Q + 27)
cross term s

+ (A 2/4)cos(2P)cos(2Q ÷ 27)

The detector acts as a low-pass filter for spatial frequencies so that the high frequency
term s will not be detected. To determine detectability of the cross term s, expand them
by trigonometric identities.

(35 )

A cos ( P) cos (2Q + 27) = ( A - 2 )  cos (F — 2Q -- 27) + ( A/2 )  cos (P + 2Q ÷ 27)

(A 2 /4)cos ( 2P) cos(2Q + 2 7 ) =  (A 2 /8 ) cos ( 2 P — 2 Q --~’y ) ÷ (A 2 /8) cos(2P + 2Q + 27)

(36)
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Low-pass fil terin g will not detect the sum terms. Th e detectable t erm s are now
red uced to a manageable size. Substituting back for P and Q, we get the detectable terms

2 + A 2
I = + (A/2) cos [2irx (f1 — 2f 2 )— . 27]

(37)

÷ (A2/8)cos [4irx (f1 — f2)—27]

Assuming an infinite sampling aperture , the cosine te rms will be detected when

F -  f1 - 2 f 2 = 0

i t

and

- = 0

These conditions define two delta functions in the Fourier transform and give the unfor-
tunate result that the FTA point-spread function is double valued .

A physical interpretation of the above result can be seen if the two projected light
beams are diffracted into plus and minus orders by an object fu nction consisting of a

— biased cosine grating, which gives the two coincidence conditions as shown in Figure 5.
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a) conditio n f 1 - 2f 2 = 0 where f 1 = object spatial frequency

= projected grating spatial
freq uency

~~~EAM 2

— 
— — 

— — — 
— — 

S

BEAM F INTERFERING ORDERS

BEAM 2 
— INTERFERING ORDERS

0 OF BEAM 1BEAM 1 +1 OF BEAM 2

“—INTERFERING ORDERSOBJECT -1 OF BEAM 1
0 OF BEAM 2

Note that beam I is fixed and beam 2 is steered.

Figure 5. Physical Interp retatio n of Double-Valued Output of FTA.
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Notice that the condit ion f 1 - 2f 2 = 0 appears as interference along a single direc-
tion and the conditio n f 1 - f 2 = 0 appea rs as interference along two directions. The
influence of the fundamental term (f 1 - f2 = 0) drops as the modulation of the object
grati ng decreases as can be seen from the table below.

A A/2 A 2 /8 A 2 /8 as /o of A/2

0.5 0.125 25

0.5 0.25 0.03 1 13

0.3 0.15 0.011 7

0.1 0.05 0.0013 3

0.05 0.025 0.00031 1.3

The variable A is the object modulation , A/2 is the coefficient of the first harmonic term
(f 1 - 2f 2 = 0) and A2 /8 is the coefficient of the fundamental harmonic term.

An attempt to change the FTA from a double-value to a single-valued device would
necessitate Fourier transforming the output and aperturing in the detector space to block
out un wanted orders . Examinatio n of figure 5 shows that the -1 order of beam 1 takes
part in both condition (a) and one of the beams of condition (b). Detection of an un-

-
- ambiguous frequency requires an attempt to isolate the beam corresponding to the zero

order of beam I and the +1 order of beam 2 as shown in condition (b). Isolation of this
- - desired beam is made easier by the fact that beam 1 is fixed in direction so the aperture

need not be moved as the device scans in spatial frequency. Other considerations mitigate
against such a solution however. First , the time-varying amplitude of the isolated beam
will have a coefficient of A2 / 16 and will give signal-to-noise problems at the low modula-
tions found in aerial photograph y. Second , the zero order of beam 1 is very strong
(bright) and will cause a large bias term leading to an increase in detector noise . These
two considerations are very important because bench work has shown that the FTA
device has a signal-to-noise problem that is quite severe.

If it is desirable to attempt to aperture the output of the FTA device as described
above, a criterion for minimum detectable spatial frequency can be derived. This criterion
will necessarily be dependent on the size of the sampling aperture used in the object
plane because readings of spatial frequency will be degraded by energy from unwanted

25
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diffraction orders entering the detector aperture. This energy comes fro m ringing of the
transform of the input aperture function. As an example of such calculation , note that
the Besinc function has the normalized form given in the preceding section.

_~~~~~~ 
(irQf)

where Q = diameter of object plane apert ure

f = spatial frequency

If we want to collect energy from this “spread fun ction” out to the third zero-crossing
without collecting energy beyond the third zero-crossing of the adjacent (and unwanted)
order , we have the sit uation shown in figure 6.

— — — — Zeros of Besinc fu nctions

Figure 6. Placing an Aperture on the FTA For Single-Valued Output.

From tables , t he third zero of the Besinc function is found when the argument is 10.1 73.
that is

i r Q f  = 10.173

2 6
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The orders are separated by twice this distance; so the solution for minimum detectable
spatial frequency is

20.35
f =  —

which can be seen to be inversely related to the object sampling aperture size. Some
representative values are

2 (mm) f (cy/mm)

10 0.65

5 1 .30

1 6.48

Notice tha t the optimum size of the detector aperture is also dependent on the object
sampling aperture diameter. Criteria for any separation of desired and unwanted orders
can be simila rly derived.

System Position Resolution Requirements. • To realize the potential dev ice resolution
given by Rayleigh ’s crite rion , mechanical rigidity and high positional accuracy of the tilt
(0) of mirror Ml (figure 2) and the rotation (~) of the object tra nsparency in its own
plane will be required. The analysis in this section will provide some numbers to be used
in apparatus design. Assume that the maximum sampling aperture to be used in the
system will be 10 millimeters n diameter, that the max imum spatial frequency of interest
is 1 00 cycles per milli mete r, and that the telescope in the device images at I :  I .
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A maximum aperture of 10 millimeters implies by Rayleigh ’s criterion that the
frequency spread M = ±0.122 cycle per millimeter. This then corresponds to the
necessity of setting the angle of mirror M2 to a L~0 given by differentiating the grating
equation for normal incidence.

sin O = f X  where f = __________

grating spacing

d (sin 0)
= A (38)df

cos 0 dO
= A

df

A df
dO = ______

cos 0

0.6328 x l0~dO = mm (39)
0.122

dO = 7.7202 x iO~ radian

16 arc seconds

Using a micrometer that can be read to 0.001 inch , we need a pivot arm on mirror M l
of a length given by

.001
dO (radians) = ___________

x

.001x = __________ = 12.95 inches
7.7202 x l0~

28 
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This will give a ~~ least count consistent with Rayleigh’s criterion. Using a micrometer
with a total travel of 1 inch will give a maximum angle of about 4 , and since 3.63
corresponds to a grating frequency of 100 cycles per millimeter this will be a good choice.

A standard micrometer screw has 40 turns per inch. If the micrometer is turned by
a 60 revolutions per minute motor , then a sample must be taken every 0.04 second ,
which implies that 40 cycles of a 1,000 Hertz modulation frequency will be sampled in
each interval. This should give a good P-P signal value. The bandwidth of the filter circuits
that isolate signals on the output of the PMT will then be

BW = — = 12 .5 Hz (40)
2r 2(1/25)

This should give good noise rejection .

A scan at one angular orientation of the object transparency will take 33 turns ,
or 33 seconds , to go from 0 to 100 cycles per millimeter in spatial frequency. Allowing
a turn-around time , it is reasonable to assign 40 seconds to a single radial scan in spatial
frequency.

In addition to scanning in spatial frequency, the device must scan in angle 0 in
order to read out the two-dimensional Fourier transform of the object. Because of the
symmetry of the modulus of the Fourier transform of a real object , only a scan over
an angle 0 =. 180 need be taken if the modulus of the transform is of interest. To
calculate the increment ~x needed to satisfy Rayleigh’s criterion , notice that the nu mber
of radial samples just calculated is given by

100 cycles/mm
= 820 samples

0.122 cycles/mm

Then , around the circumference of the transform plane from 0 to 180 ‘we have

820ir~ t 2580 resolvable ~~ sam ples
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then ,

180’
= _____  = 0.0698’ = 4~ l l ”

2580

The total nu mber of data poin ts will be

4- (820)2 = 1 ,056,203

and the total time requ ired will be

40 seconds x 2580 = 103,200 seconds

- - 

= 29 hours

- 
- By using a small sampling aperture, the number of sample points will be reduced in pro-

portion to its area. Although it might be possible to go to faster data sampling rates ,
this system has a signal-to-noise ratio problem; there fore , a conservative design is de-

- j sirable. Implementating a spiral scan through the transform space may enable data to be
collected more efficiently by eliminating the redundancy at low spatial frequencies ,
which the radial scan provides. Radial scanning is assumed in this design for experimental
simplicity. Current plans for data handling are to plot sine and cosine transforms on an
analog plotter. In a later generation device , these transforms can be digitized and the
Fourier transform phase and modulus can be calculated using the mathematica l equiv-
alent of an Argand diagram . An Argand diagram is shown on the next page.
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SINE TRANSFORM S[Ig(x)(2]

~OS1NE ~UNSFORM C[Ig(x)I2]

mathematically, by trigonometry we get

F [ lg (x) 12 1 = r e~°

(41)

= (S2 [ I g ( x) 12 ] + C2 [ I g ( x) j 2~~ exp ~i Tatf 1 }

The resulting values of modulus and phase can be stored for later processing or display.
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DISCUSSION

The FTA device is unique in its capability to take a complete Fourier transfo rm (am-
plitude and phase) of the intensity transmittance of an input transparency by purely
optical means. This capability is valuable because of the deleterious effect of phase noise
on readings obtained with OPS systems, which detect the mod ulus of the Fourier trans-
form of the amplitude transmittance of the input transpare ncy. The fact that the FTA
device can detect the entire Fourier transform and not just the modulus , may be signifi-
cant if it is desired to enter FTA data into a computer for further processing, but it is
not significant for pattern recognition work where the position-invariance property of
the trans form modulus is a desirable characteristic. As shown in the Analysis section ,
the ability to detect a complete Fourier transform also enables the subtraction of the
transform of the sampling aperture that is convolved with the d.c. spike in the transform
plane. This capability can be useful for those cases where measurements of low spatial
frequency components are impeded by the ringing of the sampling aperture transform.

Although it has the above stated advantages , the FTA has inherent disadvantages,
which cause problems that do not have solutions at this time.

Briefly, these problems are :

1. The FTA is not a parallel processor in that the Fourier transform of the input
must be built up one point at a time .

2. Data rates are slow. This can be improved somewhat by engineering, but will
remain a problem because of the mechanical motions that are required.

3. The device output is double valued . Aperturing in the transform plane can eli-
minate this problem at a cost of signal-to-noise ratio as shown in the Object
Rotation Effects section .

4. The signal-to-noise ratio is poor because of the large background bias that is
always present .

5. Extremely precise mechanical movements are required for reasonable sampling
conditions as shown in the preceding section. This requires a great deal of stability
in the apparatus.

In bench work with a prototype , problems 4 and 5 were found to be very severe.
Although this is to be expected from new experiments , the degree of rigidity and pre-
cision req uire d to make repeatab le readings would necessitate extreme measures in a
fi nal device design.
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This study has been terminated because of the problems listed above. The insights
into the details of Fourier transformation by optical systems that have been gained in
this study have been applied in other projects at ETL. In particular, a deeper appreciation
of the problem of phase noise in OPS systems has been achieved that will lead to other -‘

less cumbersome methods for eliminating this noise from measurements taken with OPS
systems. A significant reduction or elimination of phase noise should lead to a much
more valuable pattern classifier that is capable of a wider range of classification than is
possible with current systems.
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