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FOREWORD

This report was prepared by the "ind Tunnel Branch, Aircraft Labora-
tory, Wright Air Development Center, under Research and Development Order
Number [;5&<l,29, "I'imensional and Axially Symmetric Transonic Flow,."

The author wishes to express his gratitude to Ur. K. G. Guderley for
contributing the leading theoretical ideas behind this study, and also for
his continued encouragement and guidance.

This werk was performed while the author was assigned as project
engineer, Theoretical Aerodynamics Unit, in the Wind Tumnnel Rranch, WADCe
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ARSTRACT

The simulation in wind tunnels of flows with a sonic free streem
velocity is studied from the theoretical standpoint, and a preliminary
experimental phase is also described.

The solutions which are valid asvmptotically are extended to ine
clude higher order terms so that flow patherns at distances of technical
interest from bodies with and without lift can be discusseds This is
done with a view toward determining the essential charscbteristics which
streemlines near a wind tunnel wall would have to possess if the simule-
tion of Mach One flow were to be obtained, and also toward deloermining
which body shepe parameters sre needed in order te apply the correct scale
factorss. The results indicate that the ratio of model to tunnel sire
where a single parameter is sufficient to ;ive the conditions at the wall:
is quite large,

A set of preliminary wind tumnel tests was made with inclined plene

wells in the test sectione This approximation of the correct streamlire

contour yielded data w'ich appears to be in pood agreement with the theo-
retical results at ifach One.

The security classification of the title of this report is UNCILASSI-
FIZDe

PUBLICATION REVIWY
This report has been reviewed and approved.

FOR THE COMMAMDING GENERAL:

Colonel, USAgfr ’

Chief, Aircraft laboratory
Aeroneutics Division
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INTRODUCTION

In recent years the interest in obtaining date for models operating
in the immediete vicinity of the soniec welocity has been quite presistent.
Such quantities as local Mach number distribution and drag have been shown
to heve & smooth behavior eas Mach One is passed; but it is not clear how
the values of the 1ift curve slopes, inter-action coefficients, duct
efficiencies, stebility derivatives, and other characteristics which are
sensitive to the relative sizes of the subsonic and supersonic regions
behave in mixed flows,

Present methods utiliszing free flight models, transonic bumps, and
very smell models in large wind tummels have provided some excellent
gqualitative date, but there does not seem to be an experimental technique
which can provide the degres of sccuracy normally obtainable from wind
tunnels operating outside the transonic range. However, there are several
techniques currently under consideration for filling this gap.

The purpose of the present investigetion is to study the extent to
which wind tunnels can be used to determine the aerodynamic characteristics
of models in the immediate vicinity of Mach One.

The epproach used is to first consider the distortion of the tunnel
walls which would be necessary in order to simulate a streamline in &
free flow field. 1In the type of theoretical analysis used it 1s posslible
to express the velocity potential as a "basic" potential plus a series
of higher order particular potentisls which are added to satisfy the
boundary conditions et the body. The basic potential is the one which
is significant at large distenses from the body, and therefore largely
determines the wall configuration.

To obtein & general fesling for the actusl effect of higher order
terms due to the shape &nd 1ift of bodies on the flow fields at varicus
distances from & perticuler medel, these date have been computed for
severel simple bodies and thse results are compared with the solutions
given by the bazic potentiel slons.

The distances from the bodies where the influence of the higher
oréer terms bscome of the sams general proportions es the exparimental
soatter giver e feirly good indication of the ratio of model to tunnel
size where thao influsnce of the tunpel well om any model of a cerbtain
group would nost be significent in the resulte.

Thie report, which reprasomte ths firct port of e lerger progrewm,
gives an sccount of the analytical study, end in eddition, the results
of & preliminary experimentel programs In the experimentel phase, the
ideal well shape wes approximated by e nozzle block with & throat
followed by & long straight section set et en engle. A comparison of
these results with the eanalytical date seems to be quite encouraging
despite the approximation used.
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SECTION I

ANALYTICAL STUDY

It is somewhat more convenient to treat the case of planar flow
first, since the hodograph differential equations are linear, The
general approach is that used by Br. K. G. Guderley (Reference 1)e

Formulation of the Problem

The differential equation for the velocity potential, ¢ » can be
simplified in the case of small perturbations of a flow with sonic
free stream velocity to:

(7”)¢x *xx"*yy’o (1)
With the introduction of the inclinetion of the velocitylvector (=) N
and the dimensionless perturbation velocity given by 77=(Y+l)3(%,.-|)
as variables, the application of the Legendre transformation yields in
the hodograph plane, the Tricomi équation: ¢"]77- q7¢.0,o (2)

A set of solutions to this is given by:

$r-a w(r+ l.)*[A-, n"f..(t)*él"?" fa (t')] (3)

.here n = m/2 and = 982/47)3 e The functions fy ( § ) setisfy the

n ] -
b1 - 4_20 e 1| . NO-D ¢,
cauions £ 8-+ (4 -2 4] + 2L feo
It is the hypergeometric function, fj, used in Reference 1. The values
of the coefficients Ap are to be determined.
jorking with these functions reveals that the even values of m give
varieus symmetrical body shepeses The addition of odd values gives asyme

metrical bodies,.

The corresponding points in the physical plane are given by:

X= g_: 'a!:wl' [A-I M-z(fq* 3‘ f-'l )*gﬂ‘n |ﬂ|"-'(—nfn+3& f;u EISign K

Y'% %wl);i' '3(7+|.)% It’l’k A I’l.l%f; +§-'An|1)|n-%f;' sign(n9)
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By using the consistent approximetion that y = O at the body, it is

possible with these expressions to prescribe the velues of x and at
M points on & given body from a resultant system of (M + 1) equations
in (M + 1) unknowns and hence, to find the values of Anend 9§ . The'

position of the nose of the body is given by the branch point of the
streamlines in the hodograph plane. This occurs at a finite walue of
|7) 3 1.e., there is no stagnation point. Therefore, all such bodies
have cusped leading edgese . .

It should be mentioned that the (M + 1) expressions are non-linear
and futhermore the question is not settled as to whether the procedure ,
converges as M is increased. Consequently it is possible thet the points
at the boundary where mastching does not ocour will oscillate in an unde=
sirable manner. "

Streamline Shapes

The verticael deviation of a streamlire from its original position
: © X ' )
far upstream is given by ’Y"=/ O¢Y dx e The zero subscript denotes
—m * N .

the space point considered. Because of the differential equation (1),
the following expression can be written: :

(/ Eﬁx'ﬁxx (r+1)- ¢w]~ dxdy =0

Using CGreen's theorem one obtains

/c(7” )%’.‘_zdv +/c¢v€'xf° | o o

If a closed contour is chosen which is give;i-by the lines

Y=0,¥=Y%,X=-00, . (See Sketch). ;
and the line AB which arises Y
from the mapping of a line A Y=Yo :‘___an_'vo
¢ =€° from the hoedograph Be'e
. +to the physical plane, Y=0 A 0
X
BO0Y

All terms drop out excépt:

o z} ' ¢,
/(‘:o [ﬂ”"’odx =£v, [(.rﬁ)ixé— * %%]fgz ' [; [.tY v-od,x
. | o |
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The integral on the left gives the streamline displacement at Y=Yy, fz fo

If we transpose to the hodograph and integrate

%- ¢ >“:An[.,,i:" I [4-<n+%)+%<n-'u)(-'nf,\+aef;)] )

where ")o(e ) is the value of ) for Y20 and where% is the displacement
of the streamllne ‘4’ O. 1In symmetrical flows,Y gives the actual body
shapes. It can readily be obtained by the summatlon ofBAx from the nose

to the value of f congidered. .

Cuspod Body

The simplest body which has been investigated by this method is
given by the potentisls for n = ~1 and n = 2, This is a cusped profile
with & constant pressure gradient over its length. For such a body,
the transformed velocity potential is given by

- 2
b=(r+ 7 ¥aoW [A..ﬂf..ﬂz’l fz] | (6)
end the stream function by: (see pageld?, Reference 1)

. -V Y% LA f}
Y =-a,w (yel)  3p 1G] sicn (n@)[A_,ly'f—fAzh;l ](7).

Aleng. the body, V¥ = 0 end equation (7) gives
! l/3
»

Substitution into (/4) yields A 7.. Using equatlon (L), (5), and =
(8) the pressure flelds, dev1ab10na1 ordlnates and body profiles were
computed for AQ/A.' = 10, 100 and 1,000, These patterns were compared

with the patterns given by "basic" potential (n = -1), and the results
AQ/A_‘ = 100 are shown in Figure 1, It can be seen from the comparison
curves of this figure that if *,01 is chosen arbitrarily as the experi-
mental scatter in Cp , if (¥ =1 A1), and ir Y 800A_, the differences
between the two curves will be of the order of the scatter.

*1f X% is the length of_ & body from the nose to the sonic point on
the body, and Yg, the body ordinate at that point, and if the value of
A_, is fixed, the DOdleS which arise from various wvalues of A2 all have
the same velue of Y6 /5‘0 e Accordingly, there exists a "bluntness
factor”; ie.e., blunt bodies which have a smaller actual thickness can in-
fluence the asympbtotic solution to the same extent as a thicker body with

a higher slenderness ratio., It will be shown later that, 73/)(5" .
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is a eharscteristic parameter whioh will be the same for all affine bodies .
whioh have the same asymptotic flow fields,

Iodg Profile

Guderley and Yoshihara have computed the pressures on a wedge
at Mach One for both the symmetrical (Reference 2) and asymmetrical
(Reference 5) cases. It is a fairly straightforward procedure to find
the flow field in the vicinity of suoh a body as follows: There are
three convenient forms of solutions in addition to the set of solutions
montioned in the previous seotion. They are:

4," - A, “')'-' ;_»ﬁl(c.,) Cs= 9 (9—27’10)2/4_,,73...(9)

6 (10)

by = - 8. L bw 9(nm) o5 mmb (11)

where £, is the same hypergeometric function discussed previously and
in this case represents singulerities spaced along the line % = O at

intervals of 2 9,. ¢'¢,f¢ z¢¢ 3 satisfies the boundary condition
¥ =0 at B- ta., the semi~angle of the wedge. In¢ and ¢3, the

2P,
function 3(7,~‘) is given by f/’,”() =121 ézg (—z—?%la—é)

where z:". is a linear combinstion of Bessel functions of order 1/5.

These two solutions;b zand¢ 3» ore used to satisfy the boundary cone
ditions along the ocharacteristic in the supersomnic region which emanates
from the point ) = 0,0?- 6,
Agaln, the predominent term near the origin of the plane is
[,(n = 0) and 6ne can find the influence of the other terms for various
values of ¥, snd .

This too was carried out for small values of 7] and O . The resultant
flow fields are shown in Figure 2a.
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Comparison of the Two Bodies

It is of intersest to compare these two bodies whose solutions now
have been derivsd,

It 6o is the ratio Ys/Xs, the following table gives the mmericel
values which have been obtained for the cusped body and the wedge:

-1 :
Ia(eo)b’/z-l Cusped Vedge
2.62 s 2.80
Ys/%5 A2 17495 . 22,00

These velues would be identical if the ratio of the ira_lues ‘of the
coefficients is given by Ay o/A'lw = 1,070 If this were true, for

the cusped body Xg = 283 Go'm and for the wedge, X5 = 2,80 Go-mo

These values are quite close and in light of the fact that the
accuracy of the numberical methods used was about *1%, it can be said
that within this accureacy, a wedge and cusped body which have the same
lengthe and heights to the sonic lines have the same effect on the
asymptotic flow field. If this could be shown to be the general case,
the problem of simulating Mach One flows would be greatly simplified.

Asymptotic Solutions in the Physical Plane

A method which wes first used in Reference %3 is quite convenient
for considering the asymptotic flow fields for both the planar symmetrio
and axisymmetric cases. The general technique has been used in Reference
Ly to obtain the asymptotic shock wave patterns at Mach One,

With e free stream of sonic velocity, the velocity perturbation
potential differential equation in the physical plane cen be written as:

(;’+1)¢z ¢‘n' ¢yy"A¢y/’-o (13)

In the planar cagse A = O and in the axisymmetric case A = 1, If a solu=
tion is assumed of the form ¢ = y3n=2 f({) whorog s (¢ + ].)"/3 xy™® the
resultant equation is " (n2§ 2.8')-n Sf' (5n=5+A)=f(3n=2) (3n=3+A) = 0
It has been determined that for the planar case 71 = Li/5 and for the axie
symmetric caseM = L/7 (f is found by mmerical integration), Asymptotio=
cally the shock coinoides with a line of comtantg e In the planar case
f = 2,01%, and in the axisymmetric case, { = 2,210, The stresmline

deviational ordingtes are in the axi tric case given by:
| t - .
?-%y-b‘/‘?[{; A LR R PR ()

and in the planar case

7.53,1/5[;3""- 2§ g2fe| =557 (15)
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Since it is simpler to obtain the flow field at a given value of
x and y by this method, it was used extensively in this study. The plots
of these functions are shown in Figure 1,

Similarity Considerations

If two separate systems are related by the following transformation:
-,
- -y —-— 2

XN 22, XN , X= Z,X ,Y=22,2, ¥ (16)

Equation (13) omes

) bz - Prg-Adg /o =0
r+1) ¢g Pyx - Pyy-APy/y
The points in the two systems given by these relations are called “corres-
ponding™ points.

The preservation of the form of the differential equation indicates
that if $ is a solution for a flow problem in the X v plane, then * is

a solution in the x, y plane. IfZ’f l, Z"l,only the scales of the two

systems are different, and if zz I 2 # | The relations given above
are known as the transonic 51m11ar1ty relatlons.

Consider the case where two different affine bodies in these two
flow fields are producing the same conditions asymptotically; i.e., if
the axes of the two systems were made to coincide, the velocities at a
given point at a large distance would alsc coincide. Then the two flows

are described asymptotically by the identical forms ¢ = Y?* f(s) and
-— 3" Z

¢ (f) This may happen although z’, and 22 are not equal
to one, but for the prescribed similarity to exist the wvalues of ¢and

$ must coincide at the identical point in space. In general the
"identical™ points will not be the "corresponding" points.

Using Equetion 16 and the asymptotic expressmn for # the f‘ollow—
- g, - 312/ 2
ing is obtained: 4; =z (z 2z ) f( ( ) )
. 1 zz g t e
jdq Zz" Zu =9 he expression reduces to ?" {?X‘f."ﬁlndepcndent of
of the wvslus of Zy or Z,. Hence, with this relation between Z; and Zpo,

—
les ymines of L{iv end «;& end slao 4,; ard B ooincide at the identical wnoinks.

O~
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Now consider the poseibility of relating the dimensions of two bodies
which give asymtotically the seme flows at identieal points., If ocorres-

ponding points are denoted by like subsoripts; x; = Z 5 Ry, y; = Z 2212 ?1

and if 3@/& y is not too largs then ¥j -/?ﬁydx and ?i n/¢ 7 dX. 'Using
Yegones. yoconsT.
Ln-3

Y121 2 (i-mn)
£

the ebove relation between Zj_ end ng ﬁ*’"w

o~

- =P Lne + h
With those exmpreossions ono ean wrlibte o ?iﬂ v R ¥y Zz (é 3)

i 21 -n)

s

This equetion is indepondent of Zy if ﬁ « «n/(h o= 3%)e This velus of

ﬂgivm the power lew releting tho stresmline shapes in the two flowse
The relation in the plemar czse (where n = L/5) is given by £ = =L end
end in the axisyrmetric case (vherc n = L/7) by £ = L/S5.

_ It is possible to go further end to say that if the values of x and
x &t one set of corresponding points sre denoted by the subscript 1 and

the values of ¥ and '? are taken at another set denoted by the subscript

. - =8
2, then x; ’yvzg = X3 Yo o The case where point 1 is at the nose of the

profile and point 2 is at the sonic point on the contour corresponds to
that discussed prsviously for the cusped body.

The assumption regarding 3¢y/ dy is not always valid., For sufficient-

ly slender bodies, in the planar case, it is valid everywhere, and it it
describes the way in which bodies of an affine family will be related to
give the same asymptotic flow fields. However, in the axisymmetric case
it is not to be expected that this assumption will hold very close to
singly connected body shepes, but rather, the given power law would apply
to rings or stream tubes near a set of bodies.

The flow field in the wicinity and in the interior of closed axi-
symmetric bodies has been considered previously. Karman (Reference 7)

2
gives the reletion vV - /)' ¢y ox es the predomivent

expression at the bounderye The resulis iwﬁ; = <l for this cess,

Correlation of Bernle Plemer Solutions in the Fo
Solutions ’ T ”

W e

3 Plore with B

N i
I [ k8 -
%au. +ho 3 £ ¥ - mm {gng e ~ 2 ’m} e:” 3 [ Ty
- .
- - H - 7, A et
er itk ] ir F |2 AN e Al n A
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24
‘L"/27-"-- o Using Squation (4) for x and y:

AN TR A-.(rﬂ.’-'/‘s")'.z ('(-,*3”:')['3‘7*”-)'?7’-% d%

For ¥ = 1.k, A;l = 1,018, Using this value for A-; gives the same asymptotic
valwes at any point x, y in either system.

Let Equation (16) be applied to the previously discussed cusped body
in an X, ¥ plane such that the length and height to the sonic line are

given by Xz = 1.0 and Y& = ,1736. This body corresponds to the 20°
wedge which was used in the experimental phase,

The flow for such a body can be obtained by choosing A2/A..1 to give
the proper thickness ratio and then applying a scale change Y'ZZX,V'Zz

/3 1/ 6
(2,08) end Y3 = A.\ (AZ/ A_') (2.47)

Y

2
since X¥&= A~I(A2/A-l)

3§ .¥% _ ar3e A2
Xy % *

0 A-1 z.08 A
and Zz = ~0364

If a streamline of interest is at ¥ = 3,00, the following relations can
be used to get the asymptotic results fron; the solutions in the physical
/73 4

plane: X=Z,(r+l) (Y723) « 1,65¢

/5
23
Ys 8 2,(Y/2;) ¥+ aan¥

-1/3 ~2/5 '
C,” 2tye) On/2,)  f =.256f

These results will be used in a later discussion.

The solution given for the basic singularity of axisymmetric flow
should at sufficient distances give the correct flow fields feor all bodies
of finite span. Again the problem is to determine the relation hetween the
"strength™ of the basic singularity and the body dimensions. It is of
interest to determine whether the "sufficient™ distance is a practical one
in terms of model and tunnel dimensions.
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1ifting Cases

A convenient way to treat bodies at small angles of attack is to
linearize the shift of the mapping in the hodograph plane. If we consider
vhe case where the mepping of the body is close to the original one, and
we let 77 (9 )8 ﬂo(B)*H (a) be the map of the body in the hodograph,
let ¢ 07,9”¢° “"lee the new potential, and further let f(e)‘ fa(g)*F(e)
be the map of the body in the physical plane, Buderley has shown in
Reference 6 that the new linearized boundary condition is

9,7 + 7,0p d7/d08 = F(O)-~ FiBh=0
if the body location or contour in the physical plane does not change.

Cusped Lifting Bodies

The simplest body with 1ift that can be treated is that given by n = -1,
0

1/2, and 2. If ¢° = A_m'" f_'+Azq7‘fz..-(16), ) - A./z'r’ zf./z... (17)

and . if the originel body is moved through an angleX , while the singularity

remains at the origin of the 7, ﬂ plane, the boundary condition is given

by \Q.-,f)- de/i‘i)':—r‘)oﬂe"a =0 substituting of (16) and (17) into this

expression gives:
p P g B i f . |
rfliff b dlgt g hog o} o

-1
It/is possible to satisfy this equation at conly one point by a choice of
Al/2.

Reference 1, page 34, gives recurrence relations between -r and
{l+ 3/2 which yield: -

o - 1815 (£, s20t0f, |
fe - -s L1721,

Usir: these relations, if = 0 is chosen as the matching point,

~ e !
Ay, > 8A/3 Vo " (Y4) "R (98, /A, )

73
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The resultant camber shape can be found by an integration of the
average values of the slopes of the upper and lower sides of the body,
and the numerical results as shown in Figure la indicate it to be
parabolic. The resultant camber line shape and lift data are shown
in Pigure Lo This particular case mey not be too enlightening, but
it can be expected that the chord line could be caused to pass through
any desired number of additional points on a straight line by taking
higher order terms and properly choosing the coefficients. The resultant
body would still ha-e a cember line which is not straight, but the de=-
viations might not be significant in the results. The inadequacy in the
nose regcion also exists in the other approaches to the lifting problem
in transonic flow vresently in use.

In regard to the effect on the walls of a tunnel on 1lift of such
bodies, since the predominant lifting term will be given by 4%&and /\9@

will be proportional to of , forX4£ 8, it is apparent that the 1lifting
effect will be of lower order than the basic singularity. This is in
contrast to the subsonic cases where the influence of l1ift predominates
over the influence of thickmess at far distances.

"edge Frofile with Lift

In Reference 5, the method of linearizing the boundary condition is
used to find the change in flow due to angle of attack on the previously
determined flow of a double wedge airfoil. In this case the F(g) = 0,
isee, the wind direction is changed but not the boig attitudes The
singuler point then moves from the origin of the?ﬁ plane to a point
7 =0, =d'. The boundery conditions ere then satisfied along the
lines @@= + @, and also along the characteristics emanating from 7 = 0,
f? = % 6%. It is shown that for sufficiently small angles of abtack,

the "separation bubhle” which must oceur at the nose has negligible
influence on the lift.

The resultant change in pressure distribution btased on the assumptions
mentioned is shovwn in Firure 2ce.

With these results, one is led to reason thet a "transonic dip" may
exigt in the dC[/d(Ycurve for wedges with thickness ratios greater than
about +10. Results have previously been obtained analytically for the
incompressible 1ift of a double wedge. ™hen a Prandtl~Glauert correction
is applied, this gives for all subsonic Yach nunbers higher values of
dCL/dC( than those obbained at lach One. (The accuiracy of these results
is open to guestion because of the infinite velocities which arise at the
shoulder and at the nose). The values obtained for purely supersonic
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flows are also higher. The Mach One results further indicate a hori=
zontal tangent to this curve. Hence, it would appear as though the
curve has a rather unusual behavior without considerations of viscositys
This is one of the problems which would seem to justify considerable
ffort in obtaining experimental data at Mach numbers very close to one,.

In most practical problems with three dimensional bodies it would
be difficult to find the relation between the basic singularity and the
body dimensions sanalytically. In light of this, an experimental program
hes beern initiated to help fix the body shape parameters whieh would
effect the flow field configurations at larce distancese.

SECTION IT
PRELIMINARY 4XPERTHENTAL STUDY

One of the more obvious ways of simulativg a free streemline in a
wind tunnel is tc have flexible walls which can readily be adjusted to
a desired set of ordinates. The &Y supersonic tunnel at WADC is awaiting
delivery on such a piece of equipment, and in preparation for a program
utilizins this device, some preliminary work has been done with a set of
fixed geometry hblocks which have a throat followed by a long, straight
sections See Tirure 5She

itisl rurpose for conducting this preliminary study was to
a the influence of the tunnel boundary layer under

ure rise vhich exists shead of & mocel in Mach One flow, BRe-
cause of this, & comparatively large model wes used. It was also
desirable to determine whether or not it weas possible to simulate planar
flowr by shapin: the portions of the model near the walls so that the
boundary layer on the -all would not chanre the efiective thickness of
the model in that region,

It will be noted in Picure 3a that the free streamline have inflec=-
tion points quite close %c I = O. Conseguently, one might obtain a
fairly ¢ood approxiration of the desired fiow field if the correct slope
is simulated by the QUratht wall at Tthe model abscissae. It is necessary,
however, to evaluate %the efiect of small chanres in wall contour on the

flow in the vicinity of e nwodels

<

It is also of interest to determine how much relatively large changes
in well configuration will effect the flow in the vicinity of a given
bolye It can be seen thet if the divergent walls which were used in this
study were mace effectively parellel, the result would be a "choked™ flowe
This corresponds approximately to 2 free flow at some Mach number which
iz hizher than the upsiream Mach number in the choked tunnel but less
vhan one. It is further evident from conbinuib: considerations that
with parallel walls and » synrmetricel nattern, on isobar corresponding to
the upstream pressure would divide thesez other isobars wrich went from
the well to the wocel and those which crosrcad the tunnel centerlinees

WADC TR 52-8% 11




One can expect, in this case, that if the pressure drops continuously
on & model toward the rear, a montonically increasing Mach number at
least to the sonic line along the wall of such a tunnel will exist,

A further question of importemce involves the effect of 1lifting .
bodies on the flow patterns. In this preliminary phase, the wall and
model pressure distribution were obtained for a 20° wedge at angles
of attack up to 6°,

Experimental Equipment

1, VWind Tunnel

This tummel was a 6" square test section and is powered by an Allis
Chalmers 1000 hp axial flow compressor. The vertical walls of the test
section are glass panelleds The nozzle blocks are equipped with static
pressure orifices. The block ordinastes are shown in Figure 5b. Both
mercury and TBE manometer panels are provided for obtaining pressure datae.

2., Optical Equipment

The system for flow visualizetion includes interferometer, schlieren,
and shadowgraph with arrangements for photographing with Polaroid Land
film or conventional film. A comparison of interferograms with pressure
data indicates that at the density level used, the inherent inaccuracy
of this interferometer is about *,02 in Mach number and consequently it
was used only to study the flow pattern qualitatively in this program.
Some of the resultant interferograms and schlieren photographs are shown
in Figures 8, 9 and 12,

3. TWedge Model (See Figure 10)

A 10° half angle single wedge of 1" chord and 5 1/4" span was used
in the preliminary runs. In an attempt to simulate planar conditions
as well as possible, the 3/8" gap to the glass windows was filled with
a plastic material that could readily be shaped. Fressure btaps were
loceted at mid-chord at positions 1/2" from each tip and also at mid-span
in 1/%“ intervels chordwise, The assembly was mounted to a rod, which
could be traversed in the streamwise directions. The shape of the plastic
fillers which gave the most nearly planar flow is that shovm in Figure 10.
It is clear that perfect simulation of planar flow cannot be obtained
in this mamner, However, the differsnce in Cp between the tip orifices

and the mid-span orifices never exceeded 0.02 during runs where data is
taken,

Yo after body was placed behind the wedge section since it was de-
sirable to minimize any influence of viscosity. Angles of attack were
obtained by placing shims above and below the holding screws behind the
wedge shoulder.,
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e Biconvex Model (See Figure 12)

A biconvex section with the same chord and thickness as the wedge
was also fabricated. This had two orifices placed at the mid-chord, mid-
span position, one on top and the other on the bottom. The same plastic
spacer was used for tests with this model.

™ind Tunnel Runs

211 runs were mede with P, = 1000 PSF and To‘ = 100°F. Pressure

data were taken from a TBE manometer. The following is a listing of
the configurations of the runs which were made in this phase:

Model in Degrees Nose Station Run No.

Wedge 0 L2" to 58" 0 to 32
Wedge 2, L, 6 L2" to ©5g® 33 to &2
Wedge 1/2, 1, 11/2 " . 83 to 49
Biconvex 0 Lo™ to 58" 90 to 95
Biconvex 1/2, 1, 2 w 96 to 100
Riconvex 2 2" to 54" 101 to 112

Discussion of Experimental Results

The two initial problems of the preliminary phase do not seem to
have any troublesome consequences. It is not likely that separation or
appreciable boundary layer thickening will occur at the walls of a
flexible nozzle in the regions of interest even with comparatively large
models. For the configurations which will be used for the next phase,
the simulation of planar flow by shaping the plastic fillers at the
tips is quite satisfactory.

The aerodynemic data obtained appear to be quite interesting.
Figure 6a shows the wall pressures which were obtained by traversing
the wedge model from Station 42 to Station 56 at @ = O while Figure
Oa shows the corresponding schlieren pictures. With the ttodel in the
most downstream position, the flow is choked by the model support system.
This can be seen from the fact that forward movement of the model does
not influence the shock position. There is a supersonic region down-
stream of the throat which is terminated by a normal shocke The flow
pattern ahead of the model as shown in the schlieren is at some subsonic
veloeity (M = .75) where the local supersonic region first begins to grow
at the shoulder of the wedge. The first "choking™ by the model is evi-
denced by the forward movement of the tunnel shock, and also by the
eppearance of sonic pressures :t the wall. As the model is moved forward
the supersonic region grows until it fills the entire rearward field of
view,

ADC TR 52-88 13




It will be noted that the pressure distribution at the wall approaches >
the theoretical form for Mech One as the wedge is moved forward. At ‘
Station L6 for& = 0 the wedge pressures (Figure 5a) as well as the wall .
pressures (Figure 5c) are very close to the values given by similarity
theory.

For the additional tests that were run, this position was considered
to be the optimum configuration which cpuld be obtained with these nozzle
blockse It can be seen thet if a Mach One flow can be sufficiently well
simulated at a model by these straight blocks, it corresponds to a free
flow over that model with some other body or "source distribution®™ far
out in the flow field. If another model of the same basic singularity
strength is substituted for the original one, the resultant pressure
distribution at the wall due to this basic singularity should not change.
Hence, it might be possible to find the body shape parameters without an
ideal wall shapes The results obtained thus far have been quite encourag-

ing.

In Figure 5¢c the dotted line shows the pressure distribution given
by the basic singulerity, and the dashed line is the distribution given
by a cusped body of the same length and thickness to the sonic line as
the wedge which was useds. Based on the foregoing discussion of the
analytical results, the theoretical pressure for the wedge itself should
be very close to this.

The pressures on the surface of the wedge at Station L6 are in very .
good agreement with the theoretical values of Reference % for at least
80% of the surface. The nose region is not accurately described by
Reference since the /%[ goes to infinity under the approximations used ‘
while the actual flow should have a stagnation point at the nose.
Dr. Guderley has recently corrected these results to include the nose
regione* The corrected pressure distribution is also shown in Figure 2b.
The agreement with the uncorrected theory is apparently a compensation
of the approximation errors of the theory and the thickening effect of
the boundary layer,

Wedge at Angle of Attack

Figure Tb shows the 1ift data obtained by recording the pressures
on the surface of the wedge forof from O to 6°. Since only one side
of the wedge had enough holes to obtain the pressure distribution, runs
were astually made with corresponding positive and negative angles of
attacke To check whether the angles were the same, the orifices at the
mid=chord point of the opposite side were also recorded, and it was
necessery that the pressure at this point match the curve for the corres=-
ponding rune

It will be noted that there are two distinct regions of this 1lift
curve. The dashed line is the theoretical value obtained in Reference
5 forqK Go+ It can be expected that as the supersonic region at the
nose grows, the sctual curve will deviate from the one obtained analytically

*Report to be published.
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by neglecting this region. When the entire upper side becomes super-
sonic the body can be expected to act essentially like a flat plate.
The flet plate follows the relation Cpe~« 2/3, and hence, the steeper

slope. For thimmer wedges the range of angles of attach where
1s less and consequently the transition will occur sooner.

Biconvex Section

Figure 11 shows the wall pressure date obtained with the model nose
at Station L6e This sppears to have the closest to correct pressure
pattern. Comparison of this pattern with that given by the wedge reveals
some interesting information. The maximm Cp for the biconvex section
is 4,300 while for the wedge it is .33l From the similarity considerations
previously discussed, for the wedge the scale factor Z, is .036L. If it
is assumed that the ratio of the values of Cp would be the same asymptotie-

[
ally since Cp = 2 (K + 1)-1/3 f (_;.z....)""-’/ 2, for the bicomvex section, the

value of Z, would be 026l The interferogrem for this run (Figure 12)
indicates that the sonic line is at X5 = ,j00. The "corresponding®
cusped body or wedge of this length to the sonic line has a height to
that Y5 = .113. The geometry of the biconvex section gives Y5 = ,113,

4 .
Hence, there is agreement in the role of Y0 / A% for all three sections
thus far considered.

Conclusions
Ae The analytical results indicates

1. Within the accuracy of the numerical methods used, wedges and
cusped bodies of the same length from the nose to the sonic line and
thickness at the sonic line give the ssme asymptotic flow fields.

2¢ Planar bodies of a given family which give the ssme asymptotio

4
flow fields hpve the same values of Y§ /X3 .+ This value is propore
tional to AZ . .

3¢ For planar flows, over bodies of normal thickmess ratios,the
distance,where the streemline shape will be given sufficiently well by
the "besic™ solution,is within the bounds of experimental feasibility.
In the example considered it is about 20 ochord lengths,

L. For moderaste engles of attack the influence of 1lift on wall
configurations is small compared to the influence of thickness,

5e¢ For the axisymmetric case, asymptotic solutions are also given,

but it is not clear how to correlate these results with particular closed
body shapes except by experiment.
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Be The Preliminary Sxperimental 8tudy Indicates:

1. Even for the ratios of tunnel height to model thickness less
than twenty, which were used in this study, good agreement with theo-
retical results at Mach One can be obtained.

2e¢ The straight walled tumnel appears worthy cf further study as

a memns of simulating sonic planar flow over bodies.

3¢ With due consideration for the crudeness of the experimental
setup, pressure distributions on a wedge withek<< 9, are in good agree-
ment with the predictions of Reference 3 and 5.

- 4

Lie There is evidence that the value of Y& /X8 is the parsmeter
which will determine the basic source strength and hence, the wall
configuration,
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20°WEDGE BICONVEX

FIGURE 9: SCHLIEREN PHOTOGRAPHS OF MODEL TRAVERSES
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