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FOR EWORD

This report is submitted as part of Contract AF

33 (038) 21406, whicn was initiated by the Office of Air

Research. Work under this contract was begun at the Graduate

School of Aeronautical Engineering at Cornell University

in March 1951. The report is one of a series to be publi shed

as the result of the work carried out under this contract.

'The present investigation was carried out partly

under the support of the contract mentioned above and

partly as the author's thesis investigation for the degree

Master of Aeronautical Engineering. The subject of the

investigation was suggested to the author by Professor

J. M. Wild, now Acting Chief Engineer of the ARO Corporation.

The author wishes to acknowledge his indebtedness to Mr.

Wild and to the Faculty of the Graduate School of Aeronautical

Engineering of Cornell University and in particular to

Professor W. R. Sears for his suggestion of this study

and his invaluable advice and encouragement throughout

the study and to Professor N. Rott for his most helpful

suggestions and criticism while preparing this report.

The work on this project was conducted under

Research and Development Order No. 465-5-6, Practical Problems

in Aerodynamics. Mr. L. S. Wasserman of the Flight Research

Laboratory, Wright Air Development Center, was the project engineei
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ABSTRACT

The flow characteristics behind weak stationary

shock waves reflected from various edges lying in the main-

stream direction are determined according to linearized

theory. Five different types of edges axe considered,

made up of various combinations of solid and free plane

surfaces. An assumption regarding the singularity of one

of the perturbation velocity is required in order to render

the solutions unique.

B' superposition of such basic "edge" solutions,

the flow behind a snock wave reflected from a wall with a

slot (i.e., a strip of free-surface between panels of solid

wall) and from multiply-slotted walls are obtained. These

solutions apply only to regions upstream of multiple inter-

actions of the slot edges; however, these regions include

the most interesting regions of flow in the case of re-

flection from slotted wind-tunnel wall, for example.

The relation of the single-slot problem to the

problem of a narrow rectangular supersonic wing is discussed.
PUBLICATION REVIEW

The publication of this report does not constitute

approval by the Air Force of the findings or the conclusions

contained therein. It is published only for the exchange and

stimulation of ideas.

FOR THE COMMANDING GENERAL:

$~~light Research Laboratory
Research Division
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INTRODUCT ION

In recent supersonic wind tunnel research work, there

occurs sometimes the necessity of a slot, or multiple

slots, along the test section, parallel to the stream.

The slot is usually in the form of a strip of free surface,

say, stationary air, between neighbouring solid walls.

Also there may be mutually perpendicular edges in various

combinations of solid wall and free surface,. When a two-

dimensional shock wave from a wind-tunnel model is re-

flected from the slot or the edge, the flow character-

istics after reflection becomes three-dimensional. The

determination of the flow field is the subject of the

present study0,

In Part I of this thesis, basic ideas and equations

are discussed and derived. In Part II, flow character-

istics after a weak shock hitting an edge are determined.

(Five different kinds of edge problems are considered),

Then the problems of a shock reflected from a single slot

in infinite solid wall and from a multiply-slotted solid

wall are considered in Part III and IV respectively0,

In Part V, correspondence of boundary conditions for

velocity component w of the narrow rectangular supersonic

wing and u of the narrow slot problem are established.

It is shown then that their difference in singularities

makes the solutions of the two problems not identical0,

V
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PART I

BASIC CONS IDERAT IONS

Let U be the undisturbed supersonic velocity along

x axis. When the stream passes over some boundaries or

obstacles, there is velocity disturbance which may be

denoted by its components u, v, w along x, y, z axes

respectively° Assume the flow to be irrotational and

steady and denote as the perturbation velocity potential

such that

VW!i

These perturbation velocity components as well as pertur-

bation density, pressure are supposed so small, compared

with the undisturbed values, that their square terms or

.cross product can be neglected0  Using Euler's equations

of motion, continuity equation, together with the equa-

tion of state of gas, assumed perfect, one can easily

derive the well-known Prandtl-Glauert equation

Where -a denotes j , u, v, w or perturbation pressure,

and m2 = M2 -1, M.. being the free stream Mach number,

Before going into the edge problems, it will be

advisable to present first the two dimensional result of

WADC ¶ 52-164 1



a shock reflected from a solid surface or from a free

surface.

Assume a weak compression shock, such as that

results from a supersonic flow about a thin airfoil

at a small angle of attack o(, impinges on a solid wall,

infinite in extent, A compression shock will be re-

flected from the wallo Consistent with the assumption

of small perturbation, the angle of reflection will be

same as angle of incidence which should be taken to be

equal to Mach angle sin"1 _1i ol tan"1 I in the present
V -$.m

approximation. Values of perturbed velocity components

are summarized in the following figure:

S• -- - -- u---

mn (1.2)

W V0L__ W' \ / *'

X 7711//-1,,1171/// ///777// Solia wall

If a weak compression shock impinges on a free

surface, an expansion wave will result after reflection.

Perturbed velocity components has the following values:

V. /

Vo \./ v-a (1.3)

Wr~ _trot WWAD wl- 56L2-6-2
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Again, within the present approximation, both angle

of incidence and angle of reflection will be equal to

Mach Angle. Mo:.eover, although the free surface will

deflect downward through an angle of ?4d after reflection,

we will still consider it undeflected in the edge problems

discussed.

Five different kinds of edges are going to be con-

sidered in Part II:

(A)

1111117177i-(14)
free surface solil wall

(B) 1711;71 f "11i1 11
solid wall

(1.5)

Iolid wall

(C)

solid wall

(1.6)

tfree surface

(D) �tfree surface

(1.o7)

solid wall

(E)

I -free surface

(1.8)

ifree surface

WAD TR 52-164 3



When a shock hits an edge, the flow problem around

the edge becomes a three dimensional one. However, due

to the principle of forbidden signals of supersonic aero-

dynamics, (Reference 1), the edge effect is restricted

within the Mach cone which has an apex at the intersection

point of the shock and the edge. Outside Mach cone, the

flow characteristics are still two dimensional as mentioned

before, Furthermore, the present problems contain no

characteristic length. By dimensional theory argument

(Reference 2), one concludes that the edge effect results

in a conical problem, ioe. all flow characteristics are

constant along the ray radiating from the apex of Mach

cone. The powerful technique of conical flow may then

be employed here.

Change cartesian coordinates x, y, z to cylindrical

one x, e , • where

(lo.9)

Equation (1.1) reduces to

M, IX - - 1WloO

If fl denotes the cartesian velocity components

u, v, w or perturbation pressure, but not velocity potential,+,

WANO M 52-164 4



conical flow properties ensure that 11 will be a function

Of , s#only. By introducing

equo (1.10) becomes

9  +I (1.12)

Use Tschaplygin transformation (Reference 2)

Su • or,.=9.+• (l1.3)

.(Note that on Mach cone: 1) 1/m, s - 1)

(l1.2) reduces to

5-• • (1lo14)

which is the Laplace equation of -a in s,0

To find 2 = u, v, w within the Mach cone, one has

to solve equation (l1.4) with the appropriate boundary

values of a or ! (the normal derivative) described

completely along the boundary (some of these boundary

values are immediately known, some would be determined

with aids of irrotationality). Thus we usually have the

so called "mixed boundary value problems." Technique

to find the solution and uniqueness of solution and

singularity behaviors will be considered in Part II.

""Note that if one of the velocity components is known,

WADOC T 52-164 5



the other two may be found by irrotationality condition,

eog. if u is known, v,w may be obtained from

V_ Ai~hco am Cu &J a (I

or in (s, uj)

V M ,CM( I _w (1.17)

Usually one is interested in the pressure distribu-

tion. As is well-known in the perturbation theory, the

pressure coefficient cp is given by

A

WADN 'f 52-164 6



PART II

SHOCK REFLECTED FRCM AN EDGE

We shall consider the flow characteristics of the

edge problems for the five cases mentioned on page 4

one by one, In case A, we shall develope the method

solving the problem in detail, and find the three velocity

components u, v, W completely. In other cases, only u

(ioe. the pressure) is solved; v and W can always be

found by means of (115) -- (1o18) if required.

The notation

K s-
m

or mK=- Uo(

is used in this part.

Case A:

- •- a. / 0 1 a.X-

VMWat mK VMS otw= oC ( w~ A.1

Let us find u first. The boundary values of u along

Ac is 2K and along BC and Bo, zero. Along oA, we only

VADC TR 52-164 7



have W=o. However, as there is no change *of W along x

direction, we have zw = o and hence by irrotationality.

o along OAo Thus the problem of finding

u due to edge effect is to solve

U - m(A.2)

in the semi-circular region subjected to boundary condi-

tions as-shown in .Fig. (A.3):

To solve (AS}, use conformal transformation

-v 4-(A.4)

where r eý 
A5

(A.6)

p.-='L& • 0 - -

The problem is transformed to
"5P' W= a- (A0

(A.7)

4/

WADe TR 52-164 8



As the sides with u = o and = o requires antisym-

metric and symmetric continuationxespectively, Fig. (Ao7)

may be completed to a full circle:

(A.8)

UWo

One of the fundamental solution of Equation (A.2)

is u=p ,where j is the angle

shown in the Figure. This may / '- h
r

be verified by direct substitu-

tion and may be imagined as the

potential of a vortex of st-rength

IL situated at t., G.. To solve the problem (A.8), one

may place vortices of strength +-• ) - ) -W

and +t- at A. c, D respectively. Then at any point

r inside the circle,

S=• -a-e, - e a • - ÷ + constant

-)- (e+-e 4 ) + constant

-A-MLA A(,- A.,) + constant

To determine the arbitrary constant, take point po Here

A,= . , and u=o as given. Hence the constant has

to vanish.

WADO T 52-164 9



U _ •-( A, - Ax) (A.o9)

It can be easily seen that the boundary conditions

along AB, BC, CD are all satisfied. For example, along

AB, A, and N\ 2 always take constant values -•- and -"-
ýF +

respectively. Then u = 2K as required,

To express A 1 , A 2 in terms of r, @ , remember

that the circle is an unit circle.. By some algebric

manipulation, we have

CoA a ao-2rcoqco50 + I-M (A.1O)

C2a. inJcoq)t. e CO--

and A -A,-A

-�4sh IC(--r•)Cos 8

L i" + xI, Coa O-2 se) CO (A.12)

Here =- -

A4-- •r4 co- + I (Ao13)

By means of (A.6)

• -- .'=c-•" + S (A.14)

Finally, by equo (1.13) the solution may be expressed

in physical coordinates ,:

WAN TR 52-164 10



U = - X t- ( - - A -
u rn (Ao15)

where

ta (A 0,16)

and

(A.17)

The pressure coefficient is, due to (1.19)

c 4'A AA. 8M :- (A.18)

where A takes same value as in (A.16), (Ao17).

On free surface: w=-r, =o

¢= 0

on solid surface: Co r )C1 (

C C 0o5. ( I- .1 (A .19)

The distribution of c p along these surface and a set of

constant pressure lines (i0o-bar) has been plotted in

Figure 1 and 2 (P0 47, 48) respectively.

The point c in Figure 2, po Q8 is quite interesting.

At this point the boundary values given by the two-

dimenSional results are discontinuous, and the expression

of (A.16) takes the indeterminate form tan (--). It

follows that every iso-bar of different values of cp

WADC Tm 52-164 11



converges to the point. Moreover, the tangents of all

iso-bars are horizontal (parallel to boundary surface)

at c except the one of c = 2-, which makes 1350 with

the horizontal (see Appendix I),

The position variable used in Figure 2 is h9

However, if we assume m = 1 (ioe. Mu =,[F-) and give x a

definite value, say 1, , represents the actual physical

radiel distance to, It is interesting to note that: when

going inward radially from points along AC the pressure

decreases quite rapidly, and from points along BC the

pressure increases very rapidly. The phenomena becomes

more acute in the neighborhood of C.

These statements may be clearly seen from the following

expression of

Here, we find

,<

,•,- . . 4•--•v

and when ni2= 1

+ Tlor 0 -r- W

WADC TR 52-164 12



From these considerations, we are easily led to assert

that AC and BC are expansion wave and compression wave

respectively, They may be considered as the continuatic•
a.F. WA-YLonj.

of the originally reflected C.

.waves, as shown in the accom-

panied figure,

Now let us consider V On Figure (A.1), along

AC and BC, V.o 0  Along oA, Z- = o gives - -

ioe, V is constant along x. Since V=oon Mach cone

(bounded by 2-dimo flow), this constant vanishes, and

we have v= o on the entire free surface. The problem

of solving V is to solve v= in the following region,

7/ (Ao 2"

p! - !eI) ý7"1 2

• .o <iOV m, ~-pX'rO0C .. c usn•r4q e"ss,: of solution

cf Cnd Cv, .. 1b em . . . -ution of

.. ,:,•. wil •e i Y emL.ua. o o if the:xce ",

g. .....r or" oy ý 1,r boundary ( -eference )

..... .r ,.,.,,.• i;. Pr.ox if t hnpe is any sj.nauIa Ji ty at tc

.5 1"c!•-cJA i y ,,oPQJ.A.~.-:-

TA7"U.3 TP. 52.K14 h



By (A.15), (A.16)

-~ ~ Co.*,- (i m' (A022)

~•1)

"Jn-i (A.23)

Due to (1.15)

When vhý = 1, V = o Hence F(W) vanishes,

V -XC. _! I- Y V (A.24)

Thus V is not identically equal to zero, but has a

singularity of type. This solution satisfies all

boundary conditions of Fig. (A.21).

For W, refer to Fig. (Ao1), we have W=o along oA,

AC and W = -2to(d = 2 Km along CB. Along Bo, since

u=o , v o, we have• T o, o-- .= 0.

By means of continuity equation in small perturbation

theory

" t • b5 - " (A .2 5 )

We have 2Y= o along Bo. Thus to find W is to solve

WADC MR 52-16[ 14



(A. 26)

"aw~ o' W~----4

The problem is similar to Fig. (A.3), to which it can

be transformed. Replacing 2K in (A.9) by 2Km and W in

(A.16) by (w -w), we have the solution for problem

Fig. (A.26):

W = 2Kmi = - 2 Xo'• - (A.27)

where j -- I (A.28)

- SI~.: (~ -S 5h (A. 29)

and

O,4 A <T7 Whe-n o W <-u '""

A • .he "r 4 W E 7V ran= (Ao30)
00

There may be also some singularities which satisfies

Zeroboundary conditions (Note that Laplace eqn, i4 a

linear differential equation and superposition of

solutions may be used). Compute W by equo (1.16).

With aids of (A.22), (Ao23) we have

W1AC T. 52-164 15



+ 44( (A.O

Where G(td) = o if same value of tan-( ) Z that

in (A.30) is used. (Integration detail is given in

Appendix II).

Here we see that in addition.to the solution (A.27),

we have a solution of singularity of type. The latter

satisfies the following conditions:

V ---

V (A.31)

- 0

By direct differentiation of v and W (A.27aand Ao24),

it can be easily verified that

is also satisfied.

It is clear now that to solve the edge problem (and

in fact many other problems in conical flow) one should

be rather careful about the possible existence of a

WAD, ' 52-164 16



singularity, It may be possible to set up the boundary

value problems separately for u, v and w. However, the

possible existence of singularity makes the solution of

Laplace equation not unique even if the differential

equation and the boundary conditions are properly satis-

fied. To make solution unique, it is necessary and suf-

ficient to make physical assumptions on singularities for

one of the quantities u, v, w0  In our case, we shall

assume there is no singularity in u (the assumption may

be justified from a physical point of view) and find u

uniquely by solving the mixed boundary-value problem,

v and W admit singularities. They will be determined

uniquely by means of irrotationality conditions, i.e.,

by equation (1.15), (1.16), if u is known.

It is also interesting to notice that in the present

case, the regular part of W is a mirror image of u (com-

pare Ao27,with A.15) and the singular part is a mirror

image of v (compare AoZ.7with A.24). That is,

W ) r (A , -n-.co) +V(

Case B:
le4ilected 5ocK wave

SW Y• O
(B.1)

ih2iden4- 17koKwaye



Owing to irrotationality conditions and 2-dimensional

values, the problem of finding u becomes that of solving

the following boundary-value problems:

(B.2)

Use conformal transformation,

(B.3)

where The problem is then transformed

to:

V *L.O /

7 '(B.4)

which has same solution as that of

(B.5)

WADe T 52-16h 48



To solve (B.5), place vorticesK and - K at A and B

respectively. For any point (re ) inside the circle,

4 - 0.-(&,-i) + constant

JSA + constant

At point C, A = wand u = 2K as given. Hence the
0

constant should be equal to jK. We have

u -- K (A + •n) (B.6)

To express Ain reputq=-Z in equo (A.1O)

a •r -arco:519- (B.7)

where

A- 0 S(B.8)
0 A < " when

Transform back to(s, w,)

h==5 C••oSo -- I (B.9)

where

I ' <AWer, 0 W (B.10)

W when M

The pressure coefficient

WADC M 52-164 19



The value of fp along the solid wall has been

plotted in terms of physical coordinates 7 , W. (See

Fig. 3, p. 49). A set of constant pressure lines (iso-

bar) is also plotted (See Fig. 4, p..

Here, similar to what we have in case A, the line AC

behaves like an expansion wave and BC, like a compression

wave, or continuation of the reflected shock wave.

/C

wwave-

i.•i,.••o•• •"//////A'/"'-(Bol2)

Case C:

U K

V 0(C. 1

tA~

Here to find u, one has to solve

Vs = 0 (C.2)

with boundary conditions given in Fig. (C.3)

WADIC M 52-16i[ 20



(C.3)

Use conformal transformations

5 - " (C.4)

where :5 -to- e Problem (C.3) is transformed

to

a vM0 (C.5)

which has same solution as that of

(C.6)

Problem (C.6) may be considered as a superposition

of the following two problems: (C.7) and (Co8).

(A-0

e' U .O:N.f_
" -U

WADO TR 52-164 21



7 4360

(c.8)

These two problems are same as that of Fig. (A.8) except

herel- for (C.7) and (C.8) respectively and boundary

value of u is reduced by one-half. Hence by (A.12),

solution of (C.7) will be

Lj. ±_ -ian4 A v-( ,- r I) C-oe K

7+ 4-= 70 (c.9)

where

(Thr C

0- 0 when o

Solution of (C.8) is

ýL" ;L r___ cos ,
U = -+Z h' I (C l ;A)

Where o , when o- &. -

Go back to problem (C.3). The solution in (s,w) is

W (C.12)

where

+Qr z (S - ) Cos 4.

WADO M 52-16h 22



o i ' when o•":- -

w h r o :!_ S lwhen O~~S~

and S }

Case D:

V-O

V=- ' -sur\ac (Dol1)
Wfree surface

solid surface

To find u due to edge effect is to solve the following

problem:

(D.2)

WADC TR 52-164 23



By same conformal transformation formula as in

Case C, equ. (C.4), the_ problem is reduced to

to roe

which has same solution as that of

N N (D.5)

Nx

Compare (D.5) with (A.8). If i 6 (A.8 ,,,we. "pu t f

replace fi by ( ~+ e )and re d u c e!; he_-- boundary.. yal-e by

one-half, we have the problem' cf (D.5). Thus according

~t(0 )a~nd (q12),we, have bhe solutionl~bfl.(7D 5)'

__ (D.6)

WADC TR1 52-16)4 24



where

A , when 0 !60 s:-

- when 6,

when • *0 r'j

,Transformed back to (s, w), the solutionýýbecomes

7K (D.7)

where 'to

and

:o n A when o-- to *---s.<

6, 'when 6 ,4 W I

A, 7 when - cz -t 7%

Case E:

U,,• "w= •.,• •'=°v~o r.4--lj sko-cw v E.I

(E.1)

NN aYAK+rep- -Sur-Fac-

wave-

DC 5ree. sur16ce.

WADO TR 52-164 25,



To find u due to edge effect, we have to solve the

following problem:

(E.2)

By same transformation formula as used in Case B, the

problem is transformed to

____ ____ ____(E. 3)

which has same solution as that of

(E.4)

WADC TR 52-164 26



Placing vortices as shown in the figure, we find that

the solution will be

[aU (A I + 3LEA-,

where Z-3Irx• - xr Co5 -

A~7ý when !5-

n oA< when o ieý 2  ,

and ra + "FrC°o4'S}

A .; = + r {c o 5O + 4 s in s)

o<A,<-r\ when "o < $W

Transformed back to s,wJ, the solution of (E.2) will be

m (E.6)

where

SO <A,<7• when M 4E-0 -1-

x --

W < 1  w-hn-, 7c wh en o

4 .,C4 ýS.' C + ,M- ' "

< uo TZY r

YJYKL'~ )'2?



PART II I

SHOCK REFLECTED FROM4 SINGLE SLOT IN INFINITE SOLID WALL

Consider a shock reflected from a slot in an infinite

wall, i~e.~ from a strip of free surface between solid

walls, which are infinite in extent, in both sides. As

mentioned in the last part, the flow characteristics

after reflection at AA' (Fig,, 3.1) will be three-dimen-

sional within the Mach cone. It is conical first. Then

after a distance m4 (d is the width of slot) from AA',

the two waves from A, A' will intersect at-p and the flow

behind this will start to be a superposition of these two

conical waves. The flow is thus no longer conical. More

farther down-stream, at a distance md from AA' the waves

radiating from A, A' reaches opposite edges B9, B respect-

ively. Behind that, if allowed to continue unaltered,

the waves would produce a non-vanishing normal velocity

on solid wall, which is physically impossible. To remove

that, one says two new waves begin to radiate from B', B

with such a strength that it will annul the non-vanishing

normal velocity on solid wall and leave the zero pressure

(u = o) condition in the Slot unaltered. These new waves

will reach c, c' after another distance md and produces

more new waves.
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The flow in any one of the regions in Fig,, (3.1)

will be only influenced by the waves radiating from the

points which are within the fore cone of the particular

region. For example, the flow in region V will be a

superposition of the two-dimensional wave, the initial

circular waves from A, A' and the new circular waves from

B, B'. Care should be taken in carrying out the super-

positionksuch that the proper boundary conditions are

satisfied.

Collecting the results obtained in Part II, we have:

in I:

V 0

(3.3)

in I':

U
v = o(3.4)

in II:

-A.7(3.5)

where



O:EA<W7 when M W~h<)

A~o when o y fl flhlmd=(

A -x when s oos7 M =x

Yw *0 • -,4,"_. (3.6)

where = W - , -C (3.7)

o <7V when o W , n W x

- 9, when P W X

,v when o - -

In above

j=d ( d+4)• + • (3.8)

here 0 < cv *'-"

w0 owhen d=o/

O=w when •0..•<--

in III.-



o-EtA<7 when o o- W, M-W<X I

A= when o o- W'=)•

/\=o when -M oE -) !x V X

3E! C K -05 T. • (3.11)

w44:-, Ax.- ;,U- (3.12)= - - M• r\••

where ___.XTW___rW____

when o* "3& , MW.,

when X " '

6 when o u3 rn- MV"=X

In above
S,_)(.•_•,)x+ •.(3j13)

0< - "

cw=o when '(A:,

t=7r when ~o

in III:

Symbolically the solution in region III can be written

III +II + I' - I
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The correctness of the result may be verified very

easily by consideration of the boundary conditions.

For a point (x, y, z)

U = XA~ ff-+ 1 (3015)

V -ML V + VX/ (3.16)

\t4- M WL + W~ o + Tr (3.17)

in IV, IV' and regions further downstream:

To determine the flow of the new wave reflected from

the opposite edge, a more complicated problem results,

which will be a subject for further study. Some discus-

sions on this problem is given in Part Vo

The pressure coefficient cp along z axis in Fig.

(3.2) is plotted for regions I and III at x = 2 md. See

Fig. 5, poSI and Appendix III.

WAD TR 52-164 33



PART IV

SHOCK REFLECTED FRCA MULTIPLY-SLOTTED SOLID WALL.

To determine the flow due to a shock reflected from

a multiply-slotted surface, we should have, in addition

to what we did for free surface slot in Part III, a

similar consideration of superpositions and reflections

of waves in the solid wall part, Also more new waves

will come from other slots. The entire picture of the

flow field depends upon the ratio of the width of slot,

d, to that of solid surface between slots, Ai; and, more-

over, on M, ,. For practical interest, that ratio dI--rL

is relatively small. In Fig. 4.1, 4.2, L=- M

are used.

As shown in Fig. 4.1, 4o2, waves radiating from

A, A' behaves at that in Part III first. After a distance

mu. from A A', the wave from A (or A') reaches edges

A' D' (or A D), and if allowed to continue unaltered,

would produce a non-vanishing u on the free surface.

To annul that u, a new wave starts to radiate from D' (orz)

which will satisfy the condition w = o on solid wall at

the same time, A more complicate flow pattern will

naturE.. L ,i result f on supe cs r O : ) c J'',e.e wi,.

"d t1 J T

"" T'i i Ii i
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situation will become even much more complicated when

we go further down-stream. Assume the slots and the

solid walls are uniformly spaced with constant d/A ratio.

Then, as shown clearly in the figure, the flow above

the slot will be symmetrical about the vertical perpen-

dicular plane bisecting the slot and the flow above the

solid wall, symmetrical about the vertical perpendicular

plane bisecting the solid wall spacing. Moreover, we

need only to specify the flow characteristic between the'

LL and RR lines in Fig0 4.1. The flow right or left to

that region is just a repetition of this typical'one.

Same as in Fig. (3.1), the flow in any region in

Fig,, (4.1) will be a superposition of waves radiating

from the points which are within the fore cone of that

particular region. By means of results of Case A, Part

II, the flow characteristics of the regions which are

not influenced by waves from B, B', . @' or further

downstream points can be determined. That is, we know

all these regions which are above or forward of the

extra-heavy lines in Fig. 4.1, 4o2.

Use the coordinate system as indicated in Pig. 4.1,

4.2. Formulas of u, v, w in regions I, I', II, II' III

are same as that in Part III, i.e. (3.3) to (3.17) in-

clusively, except that in (3.8), J(3.9), (3.13), (3.14),

d should be replaced by -r.
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In III', for a given point (x, Y, Z),

V311~ + VX,

kV1 Z= WM + WVX/

In II1'LO III'R and IIII", similar formula may be

written except that appropriate tv, w should be used.

The pressure coefficient c p along z axis inFig.

(4.2) has been plotted for regions 11, III', III" at

x rrV2 (A + 3d). See Fig. 6, pSZ,. Detail calculation

is given in Appendix IV,,(o I)
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PART V

DISCUSSION

For the problem of a shock reflected from a single

slot, there results, as has already been pointed out in

Part II, pairs of new waves when the original waves "

radiating from one side of slot reach the opposite side.

This is also true for the problem of a flat plate wing

of very low aspect ratio (less than I for Mc J5)

at an angle of attack d, The pressure distribution of

the latter problem has been calculated by Gunn (reference

4) up to 2,5d (d is the span of wing) from the leading

edge, and by Stewartson (reference 5) with an asymptotic

expression. There arises the question:* Are these two

problems similar, and if so, can we borrow some results

of Gunn'sor Stewartson's solution for our problem?

The differential equation governing the velocity

potential or the velocity components u, v, w of either

problem is a linearized one. Any solution which satisfie

the differential equation may be superposed to form a ne

solution, provided the appropriate boundary conditions

are satisfied. This is the so called "cancellation win(

method. By this method, for example, the lift distribu-

* Question suggested by Prof. W. R. Sears.
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on a given wing may be determined by cancelling excess

lift on a related wing with a known loading; ioe. the

problem can be expressed as the two-dimensional wing

problem plus a cancellation wing, For the narrow flat

plate problem, the boundary conditions are:

_=O V.o

(5.1)

which may be considered as sum of-the 2-dimensional flow;

Vj= 0

-6 00 (5.2)

VI 0

plus the "cancellation wing" problem:
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W". / \ ,,- r,

-- •-- W .. . .("•
36 0

The W component of the problem is symmetrical about the

plane of wing (the x-y plane for small-perturbation

approximation), Thus we- have..

--1 -6W - throughout the x-y plane.

The problem of finding W2 of (5.3) is to solve

with the f ollowing boundary conditions: Pig S.5, hex+ pa9e.)

SU 5



or just to solve (5.4) for the upper half region of

(5.5), due to- o , ioe.

(5ý6)

Now, for the slot problem, we have

Sol W we-lli -wu al
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which may be also considered as the sum of 2-dimensional

flow.

V% =

W -- (5.8)

and the "cancellation wing" problem:

U,. z 2. W)

W' I• *• W"-• (5.9)

By irrotaticinality condition, the problem to find u2

of (5.9) is to solve

-U - e-a - -- mO

""AxD (551-)
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with the following boundary conditions:

4n%

compare (5.4) with (5.10), also (5.6) with (5.li). The

differential equations are identical, The boundary con-

ditions would be also identical if m 1 (i.e. Mo =jZ )

and -2ck in (5.11) is replaced by o( I n other words, it

seems that the expression of W component of the narrow

flat plate airfoil may be used as that of u component

of our slot problem; except some changes of constants,

However, as we have shown it clearly in Case A, Part I,

there may be some singularity in W while the assumption

of finite pressure rules out the possibility of singularity

in u. The possible existence of singularity makes the

solution of problem not unique. Hence the u-W corre-

spondence breaks down finally.

The above consideration may be best illustrated by

the semi-infinite rectangular wing (infinite toward left)

al. an angle of attack , with comparison to Case A in

J-' 7i.. V,3 conf' r : such - v<ikc. ha bee!- computed

t



by Gunn (reference 4, p. 338, note that results given there

are for wing extended to infinity toward right) by means

of Laplace transform. After changing to our notation, W "rysiJei

Mach cone reads as

By cosie o g n ath + a
X + Xo - (1

it _ __

'7 (5.12)

By consideration given above, the W2 Of cancellation

wing is, putting m = 1,

In (5o13), change ok into -26\ , we have u 2 of "cancellation

wing" of slot problem for m=l. Since u1 = o, the u com-

ponent of slot problem at Mm will be equal to u2 , i.e.

7(5.14)

The first term on right side of (5.14) is exactly
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came as. (Ao15), p. 12, However, in addition, we have a

singularity term here

rn~ ',I
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APPENDIX I

To plot the constant pressure lines or iso-bars,(Fi..z)

rewrite (A. ixl, )
_- - O -(1)

in the form

z( (2)

where A Pi7 ( (3)

By some algebraic manipulation, (2) may be written as

+ C -040 (4)

Give different value to cp, ioe. to ', we may plot a

set of curves of vs. W, That results the Fig. 2.

p. 48c

To find the slope of the iso-bar, introduce A, S

4, such tha't

+4 s
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Denote ? = A2 and by the formula

We may rewrite (2) as

or

4 (9)

squaring and collecting, we have

+ :L-I (10)

Hence

A+c. +,, /

a0 (12)

Thus the slopes of all iso-bars are zero at C, except

possibly not for iso-bars of P o or o

For P = o, by (8), we kave.

I- V" (13)

or -A +_T (14)

Both (13) and (14) give-= o at C.

For P .ioeo cp = 2 S/m, we have, by (8)
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•- •- • ÷ s• =o(15)

of = (16)

Th tLS ci-cc

• C - 1 _-S,•.{ --- I (17)

Hence the tangent of the iso-bar of cp = 2dl/m

at C makes an angle of 1350 with the horizontal axis

which is parallel to the boundary surface.
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S..APPENDIX II

To evaluate the integration of

W= --- M- + x + COC5 CO"5

write

~-5~~

"Thena

w =4r,•• Co5,6 + :x• Co t.c o Cos' • doe

4-•-•J, W~ o

C 5os( Co-, do

st• ( .co~LO Cos --o]-

___ ~de I +___05_CO_+__ __Wdo

de d
~]

-
5ie e .
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* We have

VY~~ hLO____

But

and

~+S +-u -S D-$nL

- (I - -co~A)

Moreover
kr Celt a r)

We have finally
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APPENDIX III

As may be seen clearly from Figo 3°2, the contri-

butions to pressure'coefficient along z axis due to

waves A and A' are equal. By Eqno, (l.19),N(3.10), the

Cp along z axis (ioe. y = o) may be written as

where

here A has the same meaning as in (3o5)o

Let x = 2md, and then make all length dimension -

less by dividing with d/2. We have

where

Lo Z a••÷<3

Refer to Fig, 3,2,

for Po z* = 4

for PI z* = F = 3.873

forz* = 3 = 1.732

Thus,

for z* = 4 to 1, Q p

for z* = 115 to J-3, is calculated from the

formula given above,
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i1T= 3.873 0

3.85 o8711

8,75 1.622

3.50 2.017

3.25 2.075

3.00 2°045

2.75 1.975

2,50 1.882

2.25 19773

2.00 1L648

1.,75 1.508

4-3= 1.732 1,497

Coefficient*% is plotted in Fig, 5, p. 51.
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APPENDIX IV

Refer to Fig,, 4o2, Contribuioror: tc pressuI-CA coJf..

ficient alonc z axis due to wpvýws A and Af equa.l

and contribution due to waves oe., arc' (-4 are also equal°

Thus along z axis (y = o), in re.iuro J117

C= L + ' =

where k -- (2)

Here A, has the same meaning as A in (3.5), except

with y = o

-- + (3)

W,= +- (4)

Let x m + and make all length dimensionless

by dividing with as in Appendix M. Take =2.5

Then

66, <(V)

For p along z axis in region III", we have,

in addition to that given by (2), the contributions
A

from waves cA , tj o Denote the latter by It,
"A _A 2  (8)
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A2. ih ,,

(1) fr Z* 4- to(140

.11. ,4 -:'

P mý

W• I: -• +m - 3 • :"
(I for z•. 505 to ,. p=4

(•) for z*- = £•" to T

( &u r7.• v 2tx4 p• hex
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,24 4o8990 4

4q85 3.1675

4.75 2.6061

4.50 1.9012

4,-25 1.4927

4,O0 1,2024

3o75 .9776

3.50 .7937

S= 3.1623 05887

(5)for z* = J to ýT

4P= 1 \ i-t -A ,-

1= 3.1623 05887 0 °5887

3o0 .5032 .2257 o,7289

2.75 °3845 .3171 ,7016

2.50 .2788 °3523 .6311

S= 2.4495 .2590 .3555 o6145

Coefficient A is plotted in Fig. 6, pý 5Zý
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