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FOREWORD

This report is szmitted as part of Contract AF
33 (038) 21406, which was initiated by the Office of Air
Research. Work under this contract was begun at the Graduate
School of Aeronautical Engineering at Cornell University
in March 1951, The repoft is one of a series to be publiShed
as the result of the work carried out under this contract,

-The present investigation was carried out partly
under the support of the contract mentioned above and
partly as the author's thesis investigation for the degree
Master of Aeronautical Engineering.’ The subject of the
investigation was suggested to the author by Professor v
J. M, wWild, now Acting Chief Engineer-of the ARO Corporation.
The author wishes to acknowledge his indebtedness to Mr,
Wild and to the Faculty of the Graduate School of Aeronautical
Engineering of Cornell University and in particular to
Professor W, R, Sears for his suggestion of this study
and his invaluable advice and encouragement throughout
the study and to Professor N, Rott for his most helpful
suggestions and criticism while preparing this report.

The wbrk on this project was conducted under

Research and Development Order No. 465-5-6, Practical Problems
in Aerodynamics. Mr. L. S. Wasserman of the Flight Research

Laboratory, Wright Air Developmént Center, was the project enginee:
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ABSTRACT

The fiow characteristics behind weak stationary
shock waves reflected froﬁ various edges lying in thegmain—’
stream direction are determined according to linearized
theory. Fiye diffeioﬁt types of edges are considered,
made up of various combinations of solid and free plane
surfaces. An assumption regarding the singularity of one
of the perturbation velocity is reqdired in order fo render
the solutions unique, |

By superposition of such basic "edge" solutions,
the flow behind a shock wave reflected from a'wall with a
slot (i.e., a strip of free-surface between panels of solia‘
wall) and from mpltiply—slotted walls are obtained, -These
solutions apply only to regions sttream of hultiple inter-
actions of the slot edges; however, these regions include |
the most interesting regions of flow in the case of re-
fléction from slotted wind-tunnel wall, for example,

The relation of the single-slot problem to the

problem of a narrow rectangular supersonic wing is discussed.

PUBLICATION REVIEW
The publication of this report does not constitute
approval by the Air Force of the findings or the conclusions
contained therein., It is published only for the exchang; and

stimulation of ideas.

FOR THE COMMANDING GENERAL:

’ (, / 4
SLIE B« WILLI el, US
3 /4 light Research Laboratory

Research Div:.sion
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PEOYRITIES e g

INTRODUCT ION

In recent supersonic wind tunnel research work, there
occurs sometimes the necessity of a slot, or multiple
slots, along the test section, parallel to the stream,
The slot is usually in the form of a strip of free surface,
say, stationary air, between neighbouring solid walls,
Also there may be mutually perpendicular edges in various
combinations of solid wall and free surface, When a two-
dimensional shock wave from a wind-tunnel model is re-
flected from the slot or the edge, the flow character-
istics after reflection becomes three-dimensional., The
determination of the flow field is the subject of the
present study,

In Part I of this thesis, basic ideas and equations
are discussed and derived, 1In Part II, flow character-
istics after a weak shock hitting an edge are determined.
(Five different kinds of edge problems are considered),
Then the problems of a shock reflected from a single slot
in infinite solid wall and from a multiply-slotted solid
wall are considered in Part III and IV respectively,

In Part V, correspondence of boundary conditions for
velocity component w of the narrow rectangular supersonic
wing and u of the narrow slot problem are established,
It is shown then that their difference in singularities

makes the solutions of the two problems not identical,
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PART I

BASIC CONSIDERATIONS -

Let U be the undisturbed supersonic»velocity alpng
X axis, When the stream passes dvér some poundaries or
obstacles, there is velociﬁy disturbancé which may be
denoted by its components u, v, w along x, y, z axes
respectively, Assume the flow to be_irrotatioﬁal and

steady and denote ¢ as the perturbation velocity potehtial

such that
u-lt‘ 3 V=‘3.i. Wn'?i. |
(D 13 ’ Az *

These perturbétion velocity components as well as pefipr-
bation density, pressure are supposed so small, compared
with the undisturbed values, that their square terms or-
cross product can be neglected, Using Euléf's‘equations
of motion,‘continuiiy equation, togéther with the equa-
tion of state of gas, assumed perfect, one can easily

derive the well-known Prandtl-Gléuert equation

X

"R = Qyy - Q5 me (1.1)

Where <« denotes ¢ , u, v, w or perturbation pressure,

and m? = Mg -1, M, being the free stream Mach number,
Before going into the edge problems, it will be

advisable to present first the two dimensional result of

WADC TR 52-16)



a shock reflected from a solid surface or from a free
surface,

Assume a weak compression shock, such as that
results from a supersonic flow about a thin airfeil
at a small angle of attack of, impinges on a solid wall,
infinite in extent, A compression shock will be re-
flected from the wall, Consistent with the assumption
of small perturbation, the angle of reflection will be
same as angle of incidence which should be taken to be

equal to Mach angle sin~! ml of tan~! .# in the present
[ 2]

approximation, Values of perturbed velocity components

are summarized in the following figure:

v } j_d

If a weak compression shock impinges on a free
surface, an expansion wave will result after reflection,

Perturbed velocity components has the following values:

b ¥ )

airfoil o, /- expansion wave

U=p
YV =3¢

1] Weo
> x
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Again, within the present approximation, both angle
of incidence and angle of reflection will be equal to
Mach Angle, Mo.eover, although the free surface will
deflect downward through an angle of 2¢, after reflection,
we will still consider it undeflected in the edge problems
discussed,

Five different kinds of edges are going to be con-

gidered in Part II:

(a)
———— — TIIIIIIIII
{ 3 (1,4)
free surface solid wall
(B) v
solid wall
(1.5)
olid wall
ot
(c)
| Esolid wall
! , (1.6)
:free surface
(D) e e e -
tfree surface
(1.7)
solid wall
(E)
~ Cfree surface
(108)

|
{
|
1 free surface

W/
J
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When a shock hits an edge, the flow problem around
the edge becomes a three dimensional one, However, due
to the principle of forbidden signals of supersonic aero-
dynamics, (Reference 1), the edge effect is restricted
within the Mach cone which has an apex at the intersection
point of the shock and the edge, Outside Mach cone, the
flow charaqteristics are still two dimensional as mentioned
before, Furthermore, the preseﬁt problems contain no
characteristic length, By dimensional theory argument
(Reference 2), one concludes that thevedge effect results
in a conical prbblem, i.e. all flow characteristicg are
constant along tée ray radiafing from the apexnof Mach
cone, The powerful technique of conical flow may'then
be employed here. ' |

Change cartesian coordinates x, y, z to Cylindrical

one x, ®w , «w Where ,

W =]yt 27

(1.9)
| w = 'fah"‘ %
Equation (1,1) reduces to
A .
M 2y - Qop -t o __il;‘ 2, =o (1.10)

If £2 denotes the cartesian velocity components

u, v, w or perturbation pressure, but not velocity thent;al,¢§"
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conical flow properties ensure that 2 will be a function
of %? , Wonly, By introducing

t= % (1.11)

equ, (1.10) becomes

(m’rl"-|).:2,,,7+(2m‘9_7‘).)_(2?.__’.9_ ~0 (1.12)

r)l ww =

Use Tschaplygin transformation (Reference 2)

. mn 2 ]
Sm= or = - ———
ey )= w Tres (1.13)
(Note that on Mach cone: n=1/m, s = 1)
(1.12) reduces to
Dss + 524+ 3!,? 2wy =0 (1.14)

which is the Laplace equation of Q. in s,w

To find <« = u, v, wwithin the Mach cone, one has
to solve equation (1014) with the appropriate boundary
values of O or gf} (the normal derivative) described
completely along the boundary (some of these boundary
values are immediately known, some would be determined
with aids of irrotationality). Thus we usually have the
so called "mixed boundary value problems." Technique
to find the solution and uniqueness of solution and

singularity behaviors will be considered in Part II,

‘Note that if one of the velocity components is known,

WADC TR 52-16l




the other two may be found by irrotationality condition,

e.g. if u is known, v,w may be obtained from

_ArAdnw o2« Ceaw OU
‘) 7 3w Ty apd 40+ @) (1.15)

= lrsmw o ww 2w :
w _J[ n '—'57)' + = @w]»d’) + &lw) (1.16)

or in (s, w)

V.,.FQJ[ ":1 S 24 o A3 mw%}ds4F(w) (1.17)

We [T oo 28 4 1 p 28 Tds+ @) (1.18)

Usually one is interested in the pressure distribu-
tion, As is well-known in the perturbation theory, the

pressure coefficient p is given by

Coz 2ot |, (1.19)
4 R w
WADC TR 52-16L 6




PART 11

SHOCK REFLECTED FROM AN EDGE

We shall consider the flow characteristics of the
edge problems for the five cases mentioned on page 4.
one by one, In case A, we shall develope the method
solving the problem in detail, and find the three velocity
components u, v, W completely, In other cases, only u
(i.e. the pressure) is solved; v and W can always be
found by means of (1,15) -- (1,18) if required,

The notation

K=z - Ud
m
or mK = = Ugl

is used in this part,

Case A:
QXPOhSiON wave Q,mpr¢$$;°h) shoek
o
¥
UasaK
veo }
w0 ( A N
[ W=zo

Let us find u first., The boundary values of u along

Ac is 2K and along BC and Bo, zero, Along oA, we only

WADC TR 52-16l, _ 7




have W=o0, - Howevei‘, as there is no change -of W alrong X

2w

~direction, we have <% = © and hence by irrotationality

2 _ M . along OA, Thus the problem of finding |

23 2N ,
u due to edge effect is to solve

kY

3-__’3\4 i 2U i?‘q
‘Vs,bu" 'bs‘+8‘bs+s“’a¢o"

= O

(A.2)

in the semi-circular region subjected to boundary condi-

tions as shown in ,Fig. (A.3):

¢ s
> . 5
Ys‘wu =0
=) 2 A

‘F"_'_u"‘ o -——4-*-.—-——:—%:0_———.-

To solve (A.3), use conformal transformation

3 = oF
where < - t*e.ie
§o’ = s
or 5—‘r~‘ ‘ .o ot
%UJ :%%- 39-%

The problem is transformed to

—

"‘—*‘u‘°

WADC TR 52-16L 8
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As the sides with u = o and ?.}% = 0 requifes antisyme
metric and symmetric c_ontinuatiovnxespectively, Fig, (A°7‘)

may be completed to a full circle:

(A.8B)

U= AR

Uwo

One of the fundamental solution of Equation.(A.2)
is u=_§_1p , where J is the angle
shown in.the Figure, This may
be verified by direcf éubstitu-

tion and may be imagihed as the

potentialef a vortex of strength

& situated at F., ©,. To solve the problem (A.8), one

x
. : aK
may place vortices of strength +—.’l7'é— y = “.,'; > - =

and +’;‘.—K at A, B, ¢, D respectively, Then at any point

r,® inside the circle,

2K 2K

U = e —x6, —Xg + "_7"_‘_9*' + constant

-t ..:5 e, — 2K .
% (61 -6.) - ?(95"94)_ + constant

= Z5(A,-A,) + constant
To determine the arbitrary constant, take point p, Here

A=A, = E. , and u=o0 as given, Hence the constant has

to vanish,

WADC TR 52-16L 9




U=22(A = As) (A.9)
It can be easily seen that the boundary conditions
along AB, BC, CD are all satisfied, For example, along
AB, A, and A 2 always take constant values %" and —'f‘;—
respectively, Then u = 2K as required,
To express A,, 1\2 in terms of r, @ , remember

that the circle is an unit circle. By some algebric

manipulation, we have

2 sing (Cos¥ — r Coe )
Cos 2§ —2rcos P Ccond® + > (A.10)

fﬁn A‘ -

2 Siny(Cos  +¥ Cose)
tan A, = (A.11)
Cos2¢ + 2rCos®Cost + >

and A A, — A,

]

tan { 4Sn¢ F(1—r?)Cose
F¥ + 2¢*(Cos 2¢ -2 cos’e) + | } (A.12)

=
Here klr_q’

A = *an—l a3 F(l—=¥r*)Cos® }

rt — 4r*con?e + | (A.13)
By means of (A.6)
o o 2B G % 3 (1o
= tan
] ST —45 cos Y 4+ | (A.14)

Finally, by equ. (1.13) the solution may be expressed

in physical coordinates ?(, w:

WADC TR 52-16l 10




= _ 22Uk A
U = - -

(A.15)
where
almn(i=mn) coz %
A = tan® 7) . ] (A.16)
) —2mn Cos™ &
and
o< A< X when o2 w «x, my<}
(A.17)
A= % when o £ wsE, mna=|
A= g when T <wew, m)=|
The pressure coefficient is, due to (1.19)
- 47 A
‘P=F T (A.18)
where A takes same value as in (A,16), (A.17).
On free surface: w=x, A =0
on solid surface: w=o, A =(Cos( |-amr,)
43 -\
Cp = S CosT (1 -amy) (A.19)

The distribution of o along these surface and a set of
constant pressure lines (isc-bar) has been plotted in
Figure 1 and 2 (P, 47, 4R) respectively,

The point ¢ in Figure 2, p. 48 is quite interesting,
At this point the boundary values given by the two-

dimensional results are discontinuous, and the expression

of (A.16) takes the indeterminate form tan'lt%).' It

follows that every iso-bar of different values of cp

WADC TR 52-16L 11




converges tc the point., Moreover, the tangents of all o
iso-bars are horizontal (parallel to boundary surface)
at ¢ except the one of Cp = 2{%°,‘which makes 1350 with
the horizontal (see Appendix I).
The position variable used in Figure 2 ismn,
However, if we assume m = 1 (i.e. Mg =J7Z) and give x a
definite value, say l,)nq represents the actual physical
radiel distance W, It is interesting to note that: when

going inward radially from points along AC the pressure

decreases quite rapidly, and from points albng‘BC the
pressure increases very rapidly. The phenomené becomeé
more acute in the neighborhood of C,

These statements may be clearly seen from the following

expression of o

T
w Nl
@;,: L4l Cer - (1= 2mn Awm =)
D ™ ijf)(\—)nn) ((~Yh‘z')xw5'b()) (AQZO)

Here, we find

¢ . . a . :

:{é‘?o i+ | —2mn ¥ 50 | jle. mi"’i%ﬁ.%
e : -2 W ) Y
e <e F i-amedigeo e, ’Q""“:?ﬁﬁrl.-.‘r;

and whenlﬁy: 1l

2 _

e -+t 0 For ok w= X

‘bQ

" T T for Fewem
WADC TR 52-16l 12




From these considerations, we are easily led to assert
h that AC and BC are expansion wave and compression wave

respectively. They may be considered as the continuatic-

axp. WAYE comp. "Shct‘."
of the originally reflected
, waves, as shown in the accom- xp.
panied figure, _
B‘“‘“‘“‘%vzzvzxn%77
Now let us consider v , On Figure (A.l), along
o VY . ‘ oV Y
AC and BC, V=o Along oA, == = 0 gives — = —_
] = ¢ g 14 -bﬂ g CES ) an = O .
‘ /T’:Mng BO L Hence 2% = o by irrotationalit
> eR%) . X .5 ) ! -
i.e. v 1is constant along x. Since v=oon Mach cone
(bounded by 2-dim, flow), this constant vanishes, and
: we have v= o on the entire free surface, The problem
of solving ¥ is to sclve ¥ v=0o in the following region.
%\\
i ﬁ'"‘\:\
Vo' 0 .
| , (A, 2]
—_‘r," ‘ ;
- N e - ‘?ﬁ'
By the wsallieknown proof of uniguensss of solution
cf Tyl et and Netwennts Problem, the selutien of
. cally egual to zexo, if therxe is
. poowingularity within or on the boundary (reference 3}.
Foever, we don®t know if there is anv singularity at t
precent time, Letfs find v by 15 {irrota-
ticnzlity conditinn

o




By {A.15), (A.16)

- ;-8 u)
W _2awd e (1= 2y Ak 5) (A.22)
) x J my (- mn) (\-—m"f)"ﬂim’u)) '
W 2wd Am L (1+am)eed Imp (1=mn) (A.23)
ey mr (1-m*n" e w)
Due to (1.15)
w 2 (mn)% (1-mn)*
= - 4R o W ’ 1= mn
When mn =1, Vv = o , Hence F(W) vanishes,
Vo= - .&Ei.cw.g_J - Y (A.24)
™ Th')

Thus v is not identically equal to zero, but has a
singularity OfAE%E type. This solution satisfies all
boundary conditions of Fig, (A.21).

For W, refer to Fig., (A.l), we have W=o0 along oA,

AC and W = -2UWd = 2 Km along CB., Along Bo, since

‘;D_L_l’
X

Uu=0, V=0, we have — = o, %ﬁ = 0,

By means of continuity equation in small perturbation

theory |

We have %grz %g = o along Bo, Thus to find W is to solve

WADC TR 52-16L 1




(A.26)

be— %\;{_ =0 —*—q_, W=()‘——"l

The problem is similar to Fig. (A,3), to which it can
be transformed, Replacing 2K in (A.9) by 2Km and w in
(A.16) by (x -w), we have the solution for problem
Fig. (A.26):

' = 2km L = - L A.27
. o
where A = ‘fah-l 22 s*(1-3) Sm—‘f—. (n.28)
$-43sin 2 + |
= tant § 2Imn G=mn) sh £ (A.29)
Y — 2m7nshﬁ%%
and
0L AXLKT wben oswgT, mN<|
g .
A =T when % $wsEw, M= | (A.30)
AN =o when ¢ £wsX my=|

There may be also some singularities which satisfies
Zeroboundary conditions (Note that Laplace eqn., iS§ a
linear differential equation and superposition bf
solutions may be used). Compute W by equ, (1.16),
With aids of (A.22), (A.23) we have

WADC TR 52-16L 15




w o= x4 S’mi"—J (oni) 4 A0 Coetd Cm'££<£L»»')) + &(w)
n ) (mn)® Qemn)r(i- " sim ")

i

_ ch{ Lanm ol z{ :\-]mr)(l—hm) Sm-@-}

AW
) - 1"7’) Sin = (A_J?a
AII‘ok l""’
- Sin — m + §(w)

Where G(w) = o if same value of tan-l( ) a8 that
in (A.30) is used. (Integration detail is given in
Appendix II),

‘Here we see that in addition to the solution (A.27),
we have a solution of 51ngu1ar1ty of‘fi= type. The latter

satlsfles the following conditions:

(A.31)

l‘l——?;_g\- o—‘—"’"*"“‘w-o i

By direct differentiation of v and W (A.27gand A.24),

it can be easily verified that
' Y 2w

2 Y

is also satisfied,

It is clear now that to solve the edge problem (and
in fact many other problems in conical flow) one should

be rather careful about the possible existence of a

WAD® "R 52-16l 16




Case B:

singularity, It may be possible to set up the boundary

value problems separately for u, v and w, However, the
possible existence of singularity makes the solution of
Laplace equation not unique even if the differential
equation and the boundary'conditions are properly satis-
fied, Td make solution unique, it is necessary and suf-
ficient to make physical assumptions on singularities for
one of the quantities u, v, w, In our case, we shall
assume there is no singularity in u (the assumption may
be justified from a physical point of view) and find u
uniquely by solving the mixed boundary-value problem,
v and W admit singularities, They will be determined
uniquely by means of irrotationality conditions, i,e.,
by equation (1,1%), (1.16), if u is known.

It is also interesting to notice that in the present
case, the regular part of W is a mirror image of u (com-
pare A,27,with A,15) and the singular part is a mirror

image of v (compare A.27,with A.24), That is,

"W, 0) =muln, n-w) + vin, r-w)
&r

reflected Shock wave
c y

uxax
Y=o

U=K
V=ao
w=mK

(B.1)

incident f3Im'>d< wave
WADC TR 52-16L 17




Owing to irrotationality conditions and 2-dimensional
values, the problem of finding u becomes that of solving

the following boundary-value problems:

(B.2)

Use conformal transformation,

_ 3
> = (B.3)

where X =re}° , ¢ = 5;‘“’ . The problem is then transfqmed

to:

(B.4)
which has same solution as that of
(B.5)

WADC TR 52~-16L 18




To solve (B.5), place vortices

JK and - K at A and B
S n _
respectively, For any point (r, 6 ) inside the circle,

U = R(8,-6.) + constant

= -!,5‘.—/\ + constant

At point C, A = §1¢ and u = 2K as given, Hence the
constant should be equal fo K. We have

K a
u"“;v—(A"l--g'ﬁ)

(B.6)
To expressl\inr,e)put ¢=% in equ. (A.10)

A__{_m;\j B(1-2rcese) }

2 ar*—arcose — | (B.7)

where |
XEeanctxw when osps X
{ (B.8)

‘ 6 <A< 7 when Feos<xn
Transform back to(s, w,)

A=hl’-)4§ E(l-—lS% Cwéw) ? (Bog)
Z as¥ . :s!cw-}w - K
where

{12</\<'§‘.7‘ when ¢ s w=< - (B.10)
o ¢A <X when ;xi&w&:}w
The pressure coefficient

Cp = 22 (A + Fw) (B.11)

WADC TR 52-16l 19




The value of ﬁp along the solid wall has been
plotted in terms of physical coordinates  , w. (See
Fig. 3, p. 40). A set of constant pressure lines (iso-
bar) is also plotted (See Fig. 4, p. 50).

Here, similar to what we have in case A, the line AC
behaves like an expansion wave and BC, like a compression

wave, or continuation of the reflected shock wave,
c

—

reiledw shock
wave
Comp yessio¥ /

wave. sxpansiod wave

f’///?////A s (8012)

wave

B

2
/
. V
incident sheck %
2
/
o
V

Case C:

w= 2R

V=0

Wz 0
V=0 (C"l)
W= mK id wall

|,w free. surfmce

| Uxo

1

{
Here to find u, one has to solve

c 3

vs‘w u =0 (Co2)

with boundary conditions given in Fig. (C.3)

WADC (R 52-16l 20




(C.3)

Use conformal transformations

%
5= (C.4)

where s -rée, ¢ =se® . Problem (C.3) is transformed

to
(C.5)
l"—%"‘ﬁ-o—-‘r
which has same solution as that of
(C.6)

= —
Problem (C.6) may be considered as a superposition

of the following two problems: (C,7) and (C.8),

WADC TR 52-16l 21




These two problems are same as that of Fig. (A.8) except

here¢=Z% X for (C,7) and (C.8) respectively and boundary
©) 2

value of u is reduced by one-half, Hence by (A.12),

solution of (C.7) will be

- 2r(\~r*) Cos ©
u-man{ =K
™ b* 4 r* (1 ~4Co’p) + | = (C.9)
where
o <% when os0= X | ra|
J, == when o ¢g =2 ¢y o (C.10)
=0 when Feoexm
Solution of (C.8) is
_ 2K - 1rc0$9)= K
U = *F‘+bh ( l— r> "&%”ﬁl (C.11)
Where o =9, = T , when os 6= &
Go back to problem (C,3), The solution in (s,w) is
T, +2U
U=- 5 == (C.12)

where

3 5
_ - 2as (1= s%) cos %
4 1'°|= +Qn {5* +| }

+ 33 |- 4 Cos ¢ )
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0g 4, <7 when osws 3w, S<1

19‘=1‘ when s2ws X g o)
leo when Es“)&%w, S =1
and X Jstua,-%’-
-JL = an
|- 33
0519,.&.1;. when °$‘°$‘§"": S8

Case D:
¥
afleched shockl wave
U=o
v=o0
u"K W= 2mK
(D.1)
—— e e tdt e catams —_— v — Do
wamK Use free_f;urface

V2o
meident shock
wave

2
E?Lolid surface

To find u due to edge effect is to solve the following

Y

problem:

(D.2)

23
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By same conformal transformation formula as in
Case C, equ. (C.4), the problem is reduced to

—
“[f‘k\

| {E/,/ ?‘L o ©(D,4)

Amo

(D.5)

- /
Compare (D.®) with (A.8). Iﬁﬂﬁﬁ (AQB)&ngmguﬁ,¢_;

1
b

3
replace s by (X +0) and reducel the-boundary value by
coe Yp bploap o
one-half, we have the problem Qf,(D.5)n Thus according
,tp(A, 9) and {A,12); we; have-the splution bfu (D;;‘l')') eyl
U= $on' { 2B r)Sme 3 TS
- g
v eG4 sive) + | §

= X A (D.6)
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where

0 & A<X , when oso&§, r<|

’\- T ., When3 se <X | r=|

‘Transformed back to (s, w), the solutionﬁibecomes

__m A _,:‘
M="m = o (D.7)
where L
: 3 - W
Ao o § IS G-sY) S 3
ST e 2 S a
g el e S¥ - sS(+asm g )+ | |
an SRR Yol N e L NI A ‘
6 < A <% when °$w$%1§)54‘
A =s when 0w =% | 3=
ﬂ ‘ 3
A=7c When &< ws in s=|
Case E:
T
L - raflected Shock
Uee 7 wave
v=s
wzamkK
urik L | (£.1)
v=e Rl
W mK { o " free. surface
|
lu=o
incident shock |
wave.
I
MYQQ surface
|
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To find u due to edge effect, we have to solve the

following problem:

(E.2)

By same transformation formula as used in Case B, the

problem is transfcrmed to

(E.3)

(E.4)
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Placing vortices as shown in the figure, we find that

the solution will be

u=—7E‘_ [27( — (A‘-\'-?./\;)] (E°5)
where
\—-2arles 6
2r* —2y7 Cos 6 —1

°o<A;<x when T 2 esw, r=|

<A‘<_>s_“,when o&e«;»:’é. F<

IHE]

and

Ao = +an’ B+ {Er(Cose+{E5he)
(2r™=t) +r (Cos® +JT s5h6)

o< A,< 74 When ‘o €9 ¢ %

Transformed back to s,w, the solution of (E,2) will be

- ud M x2A. ) .
u=-3 (2 27
(E.6)
where
.
L (E(1—23%ces §)
/\‘ ="T'OY) 'S 1 "
zss—zs’cO-sg -
0 <A <x when L &wsg_.’\.
LY <2xwhen 0o <« w =< &
T <a<gn z
and % C W
Ao = +ap (& +I3 s (Cos & +I= 3 £)
= - “x“f‘/ 3 . - "
((n;i'—«) +=¥(coz ¥ +EsnE)
;. &
¢ < My <% 5 wher G S WE T
o7




PART III

SHOCK REFLECTED FROM SINGLE SLOT IN INFINITE SOLID WALL

Consider a shock reflected from a slot in an infinite
wall, i e, from a strip of free surface between solid
walls, which are infinite in extent, in both sides, As
mentioned in the last part, the flow characteristics
after reflection at AA' (Fig, 3.1) will be three-dimen-
sional within the Mach cone. It is conical first., Then
after a distance E;-(d is the width of slot) from AA',
the two waves from A, A' will intersect at p and the flow
behind this will start to be a superposition of these two

conical waves, The flow is thus no longer conical., More .

farther down~stream, at a distance md from AA' the waves

radiating from A, A' reaches opposite edges B', B respect-
ively, Behind that, if allowed to continue unaltered,

the waves would produce a non-vanishing normal velocity
on solid wall, which is physically impossible., To remove
that, one says two new waves begin to radiate from B!, B
with such a strength that it will annul the non-vanishing
normal velocity on solid wall and leave the zero pressure
(u = 0) condition in the Slot unaltered, These new waves
will reach c, c' after another distance md and produces

more new waves,
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(3.1)

> ¥

I |p,
P /

(3.2)

. v

; -y ;

. Frea :
<o id wall surface. Shid wall

Cross - Section alon,q PP in F\"g (3.1)
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The flow in any one of the regions in Fig, (3.1)

will be only influenced by the waves radiating from the
points which are within the fore cone of the particular
region, For example, the flow in region V will be a
superposition of the two-dimensional wave, the initial
circular waves from A, A' and the new circular waves from
B, B', Care should be taken in carrying out the super-
positiong such that the proper boundary conditions are
satisfied,

Collecting the results obtained in Part II, we have:

in I:
U= 0
vV = 0
(3.3)
W = —2Ud
in I'V:
U
u -2
V=l (3.4)
W: o
in I1I1:
U = -2 A
. nT (3.5)
where
i }ah"'Y 7&’ %mﬂ)« { % o MID’) ﬂﬁs‘h%?
FANE -~

Y i LMY B o
=

¢4} l{’
b
4




oA <K when 0 W< x y MWr<x

A=o When 02w «Z mup=x

A= When T swsn, mW=x

U [ x-m@r -
v]'_ = *47( xm’:b?’ Slh—‘;{— (306)
= AT o, W 274
Wx * T CP R =
where = +an % 2 mo (l-mdD) Cos 2 (3.7)
X — 2amwr cos™ L
°$"9<7TWheno&w5-K . mw <X
Veo When L 2w =% , mw=x
. V) = ¢ when oews.g' mw =x
In above
LAEN TP (3.8)
- > ’
W = +an ( “&*’:) (3.9)
here 0 < W<K
- _d
W= o when 2=0, Y > <
- . W= when Z =0, F;!<»§
in II%:
. Ui N 2-¥d f‘...

[ia T




o 2WEX, my< X

So.s A <x when

A= when o&wégl MW =

A=0 when & £W €%, mwY =x
AW - w
V][_' = - !xm";r’ Cos 3 (3.11)
A [x=n gjp £ — 22
Wyt = - " mY Sin3g N (3.12)
} .4
where 1,0 =—-—-\'ay'§‘ 2lme()-m) S
X-ZMVS;n"%{—
0<-0<¥% » when oL WEX , mP¥<X
J=x + WhED TswWER, mr=x
when 0 £ W= , -
P=o I mo=Xx
In above
o =J(y—-5)" + 2* (3.13)
- 3.14
w = d+an ('ﬁ‘%%.) ( )
0< WL
w=0 when 2 =9, 97-3_-

= - d
w=xwWhen 2=0, 9.43:

in III:

Symbolically the solution in region III can be written

III = 1I
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The correctness of the result may be verified very
easily by consideration of the boundary conditions,

For a point (x, y, z)

Vm_ 1 Vx + VII (3-16)
W = Wg + Wy + T (3.17)

in IV, IV' and regions further downstream:

To determine the flow of the new wave reflected from
the opposite edge, a more complicated problem results,
which will be a subject for further study, Some discus-
sions on this problem is given in Part V,

The pressure coefficient cp along z axis in Fig,
(3.2) is plotted for regions I and III at x = 2 md, See
Fig. 5, p.5| and Appendix III,

WADC TR 52-16L 33




PART 1V

SHOCK REFLECTED FROM MULTIPLY-SLOTTED SOLID WALL .

To determine the flow due to a shock reflected from
a multiply-slotted surface, we should have, in addition
to what we did for free surface slot in Part III, a
similar consideration of superpositions and reflections
of waves in the solid wall part, Alsoc more new waves
will come from other slots. The entire picture of the
flow field depends upon the ratio of the width of slot,
d, to that of solid surface between slots, a; and, more-
over, on My, , For practical interest, that ratic %%
is relatively small, In Fig. 4,1, 4.2, -‘;—Lz;'—g » Mo =]z
are used,

As shown in Fig., 4.1, 4.2, waves radiating from
A, A' behaves at that in Part III first. After a distance
mna from A A', the wave from A (dr A') reaches edges
A' D' (or A D), and if allowed to continue unaltered,
would produce a non-vanishing u on the free surface.
To annul that u, a new wave starts to radiate from D* (or D)
which will satisfy the condition w = o0 on solid wall at
the same time. A more complicate flow pattern will

naturelly result from super positiont of the new wavee

anc ihe edditiorns} wevee {ror neighborine clote.  The




€
avai
€ = — 3 o W D +qu...l.Hl!R
H = >
(5] 1 W
8 %) ) » .WT
=] : &
H
|
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JI m »aP < aaliat
|
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situation will become even much more complicated when
we go further down-stream, Assume the slots and the
~solidfwalls.are uniformly spaced with constant d/n ratio,
" Then, askshewnbclearly in the figure, the flow above
" the sletﬂwill’be'symmetrical about the vertical perpen-
:diculéiﬂplane biSecting the slot and the flow“above'fhe
‘solld wall, symmetrical about the vertical perpendlcular
‘;plane blsectlng the SOlld wall spacing., Moreover we=
need only to Spec1fy the flow characterlstlc between the”
LL and RR lines 1n ‘'Fig. 4.1, The flow right or»left,toa
that region is just a repetition of this tYpicdl*bhé;
Same as in Fig. (3.1), the flow in any region in
Fig, (4.1) will be a superposition of waves radiating
from the points which are within the fore cone of that
particular region, By means of results of Case A, Part
1I, the flow characteristics of the regions which are
not influenced by waves from B, B', B, @/ or further
downstream points can be determined., That is, we know
all these regions whlch are above or forward of the
extra heavy lines in Flgq 4,1, 4, 2, F
Use the coordlnate system as indicated in Fig, 4 l
"4.2, Formulas of u, v, w in regions I, I', iI,«II';JIIi
are same as that in Part 111, i.e. (3.3) to (3.17)Lin¥
clusively, except that in (3.8), (3.9), (3.13), (3.14),
d should be replaced by =-r,
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In 1II', for a given point (x, y, z),

quL’ = u]l'. -*. unl + 129(

Vg = Vg + Vags

\le = Wg + WI’
In III'[, IIIk and III“, similar formula may be

written except that appropriate @, u»shquld be used,

| The pressure coefficient p along z axis in Fig.
(4;2) has been plotted for regions I', III', III" at
X ﬁvm/Q'(n.+ 3d)., See Fig@ 6, pOSZ. Detail calculation
h 'iélgiQén in Appendix IV.(P.6l)

L
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PART V

DISCUSS ION

For thé problem of a shock refleEted from a single
slot, there fesults, as has already been péinted out in
Part II, pairs of new waves when the original waves
radiating from one side of slot reach the opposite side,
This is also true for the problem of a flat plate wing
of very low aspect ratio (less than 1 for Meu =J3)
at an angle of attackd . The pressure distribution of
the latter problem has been calculated by Gunn (reference
4) up to 2,5d (d is the span of wing) from the leading
edge, and by Stewartson (reference 5) ;ith an asymptotic
expression, There arises the question:* Are these two
problems similar, and if so, can we borrow some results
of Gunn'sor Stewartson's solution for our problem?

The differential equation governing the velocity
potential or the velocity components u, v, w of either
problem is a linearized one, Any solution which satisfie
 the differential equation may be superposed to form a ne
solution, provided the appropriate boundary conditions
are satisfied, This is the so called "cancellation wing

method, By this method, for example, the lift distribu

* Question suggested by Prof. W. R, Sears,
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on a given wing may be determined by cancelling excess
liftvon a relatéd wing with a known loading; i,e, the
problem can be expressed as the two-dimensional wing
problem plus a cancellation wing, For the narrow flat

plate problem, the boundary conditions are:
' P u-l,:f—- , V=0, W==U%

W=o U=o
Y=o Vwo
W= o W =0

(5.1)

u-—%%—, V=o, W=-Ud

which may be considered as sum of ‘the 2-dimensional flow:

W
W = -
V| = 0
Wy = ~WA
0N ¢ - o (502)
‘\/llz o
Wi = ~UWa,

plus the ncancellation wing" problem:
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‘// > . o

bR TN e

Vy =6 / / A \ Vi =0

Wy & T / u;:-‘-’;} u;:-% \ W, = W

— S . (£.3)

fv - TB

u,:?% e 52 u = u, = 2

Vamo Va=o

W}.= V& \ W, = u‘&

Uz =o = Vi W,

The W component of the problem is symmetrical about the
plane of wing (the x~-y plane for small-perturbation

approximation). Thus we have
22 o oan - ° throughout the x-y plane,
The problem of finding W, of (5.3) is to solve

a TW 3w W .
'-Ox'ﬁ- Q?I o)it (504)

with the following boundary conditions:( Fig 5.5, next page)
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(5.5)

or just to solve (5.4) for the upper half region of

W,
(5.5), due to ===, i,e.

(5.6)

Now, for the slot problem, we have

u-V:D) w-'lwd

|

LS

Solid wall
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which may be also considered as the sum of 2-dimensional

flow,

M‘ﬂo
V‘ =0
Wy = ‘lwok (508)

— — — p—— — — —— — s —— ot et

and the "cancellation wing" problem:

Uyx0 =V =W, =0

o
ut"}% 1,4,:-"'-?,“Q
Vy so Vymp
© Wi WA w, = 2T (5.9)

l'—-wx=2"¢\——."—“;- o —mfutym 30—

By irrotationality condition, the problem to find Us

of (5.9) is to solve

m> U Tu D Us .
axr T Ay T a7 (5.10)
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with the following boundary conditions:

(5.11)

compare (5.4) with (5,10), also (5.6) with (5.11),. The
differential equations are identical. The toundary con-
ditions would be also identical if m =1 (i.e. Mo =JZ )
. and -2ck in (5,11) is replaced by & . In other words, it
seems that the expression of W component of the narrow
flat plate airfoil may be used as that of u component
of our slot problem; except some changes of constants,
However, as we have shown it clearly in Case A, Part I,
there may be some singularity in W while the assumption
of finite pressure rules out the possibility of singularity
in u, The possible existence of singularity makes the
solution of problem not unique, Hence the u-W corre-
spondence breaks down finally.

. The above consideration may be best illustrated by

the semi-infinite rectangular wing (infinite toward left)
al an angle of attack ¢/ with comparison to Case A in

Fert }i. Tho W compoanent of such & wing hae beern computed




by Gunn (reference 4, p, 338, note that results given there v
are for wing extended to infinity toward right) by means
of Laplace transform, After changing to our notation, W inside

Mach cone reads as

W —ua g T {sih“W . s;;'f"_‘?':?)}
X+ mz X-mz

4+ U

w
x Jww = Lsg

= 4+ B [ () o 2
|- 2 h’)') C.osz.u)_.
2

*'-E%gij-£%¥12-Cos-%} )
7 (5.12)

By consideration given above, the Wy of cancellation

wing is, putting m =1,

-t > 5_....
1‘1__«5“ (Bn(i-n) ¢ }+2u°( = ©  (5.13)

T g 5 Cos

‘-17 Cos—g:
In (5.13), change & into =20, , we have uy of "cancellation
wing" of slot problem for m=l, Since u; = o, the u com-

ponent of slot problem at Mo will be equal to up, i.e,

U= - mTe \- er)ccs ;’ rnr) A (5.14)

JUJ\ +an { 2m(i-m) ngj._ﬂi =MD s L
mIv

The first term on right side of (5.14) is exactly
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same as (A.15), p. 12, However, in addition, we have a

singularity term here’
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APPENDIX I ]

To plot the constant pressure lines or iso-bars,(Fig.2)

rewrite (A5 ,P12)

- W
an%+an\ z]mr)(l—mn) foar (1)
| —2mn Cos —"1%

in the form

) Gemy) e m e (a9

where T = 5{— +2n <:EE—_W) (3)
m

By some algebraic manipulation, (2) may be written as

| + (W

)7)7 =
c?[ \+ 247 (14 (’osu))]
Give different value to Cps i.e, tod, we may plot a
set of curves of M?‘vsoco, That results the Fig. 2,
p. 48.

To find the slope of the iso-bar, introduce 8,3,

%, such that

o >
N 3T+ s> = mn (5)
for! T = W (o)
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Denote P = %2 and by the formula

2cos L = V4 o5 m H;;?-?- (7)

We may Tewrite (2) as
2
[\-[3"+‘s‘][3+:!§‘+5*] =——‘P(_l—‘3-—!g’*+ 5*) (8)

or

(-(+2P)] g7+ > =S (1P + [(57= 3)(14+27) +P ] (9)

squaring and collecting, we have

. . (+ 2P + 2P0
‘S+(H"P) +‘S(‘*?)(3+*?3— {+ 2P

+ %‘P‘-)\’(Hl?)é(\‘é)% = 0 (10)

Hence
s -z(\+z\>)(7+g)g“+1?(\+1?)(!~2‘3) . (11)
43 +(\-\-‘P)’53+35(1+1?)(?>’f>—?3—%§§—
Atc. =1, 3=o0
_d_}__a o (12)
3% 2 (t+ 2¢)

Thus the slopes of all iso-bars are zero at C, except
possibly not for iso-bars of P = o0 or o .

For P = o, by (8), we have

- {3* 4+ <> = o (13)
or 3 +.]3"+§" = 0 (14)

Both (13) and (14) give;—;ra o at C.

For P =, i.,e, ¢cp = 2 &/m, we have, by (8)
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—2 -3 5 <= -» | (15)

ot S = l 1~ 2% ‘ (16)
ThusS ot c. |
ds
(_~

ds)axf_ = (* 4"‘.‘":5):-( = -1 - A7)

Lwp

Hence the tangent of the iso-bar of Cp = 24 /m

at C makes an angle of 135° with the horizontal axis

which is parallel to the boundary surface,
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APPENDIX II

To evaluate the integ:étion bf

’ . >, 2 1_&0_
W = lwds,'h% l—-fn');zm? Co::(.o-t.a"‘s:L : d ()
i - Cm)% (1= mn)*(1=-m")"sin* w)
write - : _
M7 =X = sm @
Then

x . 4 ;Q
W= AT o | CosTe & SmTe (2 Coswcos 2) 4e
A n sm’e ( 1= sm'e Sin 'a))

= _ﬂi S;y) __w_ : | . — _ | ‘
x N Sm’G- ( \‘-s,‘yﬁ'e Sin (0) ( ‘_$|.h4.6 Slhz(’,())
*
w
+ sm e ( R Cosw Cos —5:)]
e
(] = sin*e sin“w)
2TL W de |+ Cos W +sian de
= S'h__ 1 e - > . .
T = Sin 6 Sm W | + S1he smu)
| + CosW—Sihw d6
+ : > .
Sin W |~ 3m O SmD

As

ds ‘ . :
J | sihwsn e = m +ah (4 1 Shw +0.M9)
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| ==

m_ws ~|

= Zgoy
A? s + Iy v o us -1 ﬂ. .Mz..\ 4S + wnnﬂﬂou M us—1
- N —_— e ————————
nus +| =

MmUWS+ Mmsed + |

£ wg - & S0 Mmws vt |
P e T iR S

huis 41 Muig — MSe) + |

muws + 1 ﬁi
| = Gaus+Fs5)

mwis + b 9:..w+;.|w%u.%:,ﬁu - mus +1Tmuwg
T s + =500

-
Cswg = RGN
‘ mse !
= = Zcon GusT + Es0T @ Mws + 7+ 2
o buimg
Mug—| } Muis+ mso) + | N
guet Mws —\ “ U : - Ae:q murs +1 : ue
ﬁ T . v Tn».+ m ws +1 muis— ms03+ | + . o M
X _Wws 4 fous z v < "
m34w+3w3+_vzﬂ£wmm.l YN WUT v T T M
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- We have

) W=- i?ris}h%)— Coto —3%& g %h-‘(m‘fahe) '_‘{'ar:, (J I~SinW +an6)}

But

= heo — |~ S +
*354(JTI;ﬁ:B*a”Q)—*aﬁq(IT:EEEE+ahe)==4an%xl'+s w-Ti=<mw) 3"0}

\= [1=sivw +an's
and
,;I |+ Shw — !\——sa’nw
2 l T .
=J(J\+syku)-—'l-5:h‘—0) =/]l“1..l\~—ilhw
N W)
=I;~(I-(.osw) = 2=
Moreover

+ane = !——L—m 3 Ceste = =m0
y=-mn mn)

We have finally

W= - ﬂ S;h w |—-mn _ 1110( +aV)_' lSl'h'g ..[Vhf)(l... mr))
o,y w —w
l"lm’) Sih -
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_ APPENDIX III

As may be;sééﬁ ciearly frqﬁ Fig° 3,2, the contri-
butions to preésuré'cbéffiCiént'along i axis_due to
waves A and‘A'“arevequal; By Egn, (LlQ;?sz,lO), the _‘
cp along z axis>(i,e; y = o) may be writfen és

Cp=-Z(2Ug) =Ry &

where

= 2 A
here A has‘thé $ame‘meaning as in (3.5),

Let x = 2md, and then make all length dimension -

less by dividing with d/2. We have
A = '1'&"\_‘ { "I 7* _('\" ’)*) S;n%}

P S » o
5 — HTswg

where

0" m%z;}:ll-\» 2%

Ww = 4an! 2* < %
»* 2
> = -
(£)

Refer to Fig., 3.2,

for Pg : Z¥% = 4

for Py 2% = 415 = 3.873

for Pp ; z% = J3 =1,732
Thus,

for z* = 4 to J15, #, =0

for z*

I

115 to I3, #y is calculated from the

formula given above.
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z* o *

b
AI5 = 3,873 o
3.85 | L8711
3,75 | | 1,622
3,50 | 2.017
3.25 2,075
3.00 2,045
2;75 - 1,975
2,50 1,882
2,25 1,773
2.00 ' 1.648
1.75 1,508
43 = 1,732 1,497

Coefficient #; is plotted in Fig., 5, p. 51,
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APPENDIX IV

Refer to Fig. 4.2. Contributionc to pressure coef-
T
ficient along z axis due to waves A and Af equal
and contribution due to waves o and ¢ ¥ are also egual,

Thus along z axis (y = o), in region I1T®

cp = -%—"‘{ g + Up + 22) = fop B (1)
where k‘? = _;6?,\‘“4, (2}
Here A, has the same meaning as A in (3.95), except
with v = o
AR S (3)
w, = +an? () (4)

Let x = m (-%t+—3§%) and make all length dimensionless
by dividing with %: as in Appendix IO. Take-& = 2.5,
Then
v w
= (LT 2 (5
: %'— Z*smlég
x b
N =my = = Jeos + 2 (6)
. - 2¥
W, = tor ("‘Z}? ) , LTewi<n (73

For ﬁp ealong z axis in region III", we have,

in addition to that given by (2), the contributions

N
from waves o , o/ . Denote the latter by ﬁ?,
A
3
‘ﬁb = “ﬁ‘/\2 (8)
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Hence write

(Y for z* =

(2) for z*

e

]

WADG TR 52-10L

v‘\'
;
W
- i
{13
.\
;
Lo
TNE

duAd = 4 8900

D0 - 31600

g = "i f) = 2 o 4495

4]

5.5 to 494 t -4
24 to J10

B
=M —4

( humerical values tabulated n next page)
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rAd | 4

.
IF - 4.8990 4
4,85 3.1675
4,75 2,6061
- 4,50 1,9012
4,25 1.4927
4,00 1,2024
3,75 .9776
3.50 . 7937
AI0 = 3,1623 ,5887
(3)Yfor z* = .IIE to R)—
= 2A - BAL 4
z* BN -4 'g‘ﬁ—,\2 *’b
10 = 3.,1623 .5887 0 .5887
3.0 5032 . 2257 . 7289
2.75 ,3845 3171 , 7016
2.50 ,2788 . 3523 6311
{6 = 2,4495 2590 3555 ,6145

Coefficient ‘ﬁb is plotted in Fig. 6, p. B2,
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