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Preference Trees

Preference Trees 3

The analysis of choice behavior has concerned many students of social
science. Choices among political candidates, market products, investment
plans, transportation modes and professional careers, have been investigated
by economists, political scientists and psychologists using a variety of
empirical and theoretical methods. An examination of the empirical litera-
ture indicates that choice behavior is often inconsistent, hierarchical,
and context dependent.

Inconsistency refers to the observation that people sometimes make different
choices under seemingly identical conditions. Although inconsistency can be
explained as the result of learning, satiation, or change in taste , it
tends to persist even when the effects of these factors are controlled or
minimized. Furthermore, even in an essentially unique choice situation, which
cannot be replicated, people often experience doubt regarding their decisioms,
and feel that in a different state of mind they might have made a different
choice. The observed inconsistency and the experienced uncertainty associated

with choice behavior have led several investigators to conceptualize choice as

a probabilistic process, and to use the concept of choice probability as a
basis for the measurement of strength of preference. (Thurstone, 1927: Luce,
1959; Marschak, 1960).

Choice among many alternatives appears to follow a hierarchical elimination
process. When faced with many alternatives (e.g., job offers, houses, cars)
people appear to eliminate various eubsets of alternatives saquentially
according to some hierarchical structure, rather than scanning all the
options in an exhaustive manner. This strategy is particularly appealing when

the number of alternatives is large and an exhaustive evaluation is either not
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feasible or very costly in time and effort. Indeed, these considerations have

led several theorists, notably Simon (1957), to modify the classical criterion
of maximization, and to view the choice process as a search for an acceptable
alternative that satisfies certain criteria. Such a search is naturally
executed by a sequential elimination procedure.

Choice behavior appears to be context dependent. That is, the strength
of preference of x over y depends on the context of the other available alterna-
tives. Furthermore, choice probability depends not only on the values of the
alternatives, but also on their similarity or comparability, see, e.g., Tversky
(1972 a). An analysis of the structural relations among the alternatives, there-
fore, is an essential element of any theory which purports to explain the effects
of similarity and context on choice,

The present paper develops a probabilistic, context-dependent choice model--
called preference tree-—based on a hierarchical elimination process. The first
part of the paper illustrates the tree model and investigates its formal
properties and their psychological significance. In the second part of the paper,

the model is applied to several sets of choice data that are represented as
preference trees. The problem of constrained choice is investigated in the third

section and the implications of the tree model are discussed in the last section.

THEORY

In order to motivate and develop the theory of preference trees, we
discuss first the more general model of elimination by aspects, or EBA,
According to this model (Tversky, 1972a, b) each alternative is viewed as a
collection of measurable aspects, and choice is described as a covert process
of eliminations. At each stage in the process one selects an aspect (from
those included in the available alternatives) with probability that is propor-

tional to its measure. The selection of an aspect eliminates all the
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alternatives that do not include this aspect, and the process continues
until only a single alternative remains. Consider, for example, the choice
of a restaurant for dinner. The first aspect selected may be seafood;
this eliminates all restaurants that do not serve acceptable seafood.
Given the remaining alternatives another aspect, say a price level, is
selected and all alternatives that do not meet this criterion are elim-
inated. The process continues until only one restaurant--that includes
all the selected aspects--remains.

In order to characterize this process in formal terms, some notation
is introduced. Let T = {x,y,2,...} be the total finite set of alternatives
under study, and let A,B,C, denote nonempty subsets of T. Let P(x,A) be
the probability of choosing alternative x from an offered set A. Naturally
IP(x,A) = 1 fcr all ACT, and P(x,A) = 0 for xfA. For simplicity,

::Awrite P(x,y) for P(x,{x,y}). Choice probabilities are typically

estimated from relative frequency of selecting x on repeated choices from A.

Next, consider a mapping that associates with each x in T a finite nonempty set

x' = {a,8,...} of elements which are interpreted as the aspects of x. An
alternative x is said to include an aspect a whenever a is an element of
x'. The present theory represents choice alternatives as collections of
aspects which denote all valued attributes of the options including quan-
titative attributed (e.g., price, quality) and nominal attributes (e.g.,
automatic transmission on a car, or fried rice on a menu). The present
analysis, however, does not require prior identification of the aspects

associated with each alternative.

For any subset A of T, let A' be the set of aspects that belong to at

e .’e‘?’}
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least one alternative in A, i.e., A' = {a|aex' for some xcA}. In particu-
lar, T' is the family of all aspects under consideration. For any a in T',
let A = {xeA|aex') denote the set of all alternatives of A that in-
clude a. Note that A' is a set of aspects while Ay is a set of alternatives.
Using these constructs, the EBA model can now be defined as follows.

A family of choice probabilities P(x,A), xeAcT , satisfies EBA if there
exists a non-negative scale u defined on T' such that for all xeA<T

I u(a)P(x,A,)

(1) P(x,A) = aex'

L u@®)
BeA'

This recursive formula, which defines the EBA model, expresses the pro-
bability of choosing x from A as a weighted sum of the probabilities P(x,A,)
of choosing x from proper subsets of A. It is easy to show that aspects
which are common to all the alternatives under comsideration do not affect

choice probability and can, therefore, be discarded.

Insert Figure 1 here

To illustrate the model,consider the case of three alternatives where
A= {x,y,z}, and let x' = {a,8,8 ,0}, v' = {8,8,u,\}, and 2' = {y,5,u,)\},

see Figure 1. Thus, Aa = {x}, A, = (x,v}, & » {w,2}, A\ = {x,v,z2},etc.

8
Discarding ) which is shared by all alternatives and normalizing the scale
u such that u(a) + u@) + u(y) + u(§) + u(8) + u(u) = 1 yields

P(x,A) = u(u)P(x.Aa) + u(e)P(x.Ae) +u@)P(x,A)

= y(a) + U(G)P(K'V) +u@® )P(XOZ)O where
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u(a) + u@@) H u(x'-y')
u(@) + u@®) + uf) + u(w)  ulx'-y") + u(y'-x")

P(x,y) =

This equation for binary choice probabilities coincides with Restle's (1961)
model. According to the EBA model, x can be chosen from A (i) if a is

selected first, (ii) if 6 is selected first and then either a or § are

TR TN e W

£ selected later, (iii) if § is selected first and then either a or 6 are
| selected later. The probability of choosing x from A, therefore, is the
sum of the probabilities associated with these outcomes.

Since there may be many aspects that are unique to x or common to x
] and y only, a, 8, etc. should be interpreted as collections of aspects.
However, for the purposes of the present treatment it is possible to com-

bine, say all the aspects that are unique to x, and treat them as a single

aspect. Formally, for any nonempty proper subset A of T let A= {alaex'for all

xeA and afy' for any yeT-A}. Thus, A is the set of aspects shared by all

alternatives of A that are not shared by any alternative in T-A, and
{KIA[TT# T,¢} is a partition of the set of all aspects into 2% =2 aspect
sets. To avoid additional notation we use—a,s, etc,to denote these aspect
sets and supress the distinction between individual aspects and collections
of aspects.

If all pairs of distinct alternatives in T are aspect-wise disjoint,

i.e., x'nv' is null, then P(x,Aa) = ] for any a in x', hence Equation (1)

reduces to

tu(a)
o aex’ o U(x) where u(x) = I u(a)
@ X, A0 tu(@®) Zu(y) aex'
geA' yeA




Preference Trees

8

e

This is the choice model developed by Luce (1959, 1977). When all choice
probabilities are nonzero, Luce's model is equivalent to the assumption
that the ratio P(x,A)/P(y,A) 1s a constant which depends on x and y but
not on the offered set A. Hence, it i{s called the constant-ratio model,
abbreviated CRM. This model is simple and parsimonious; it expresses all
probabilities of choice among n alternatives in terms of n scale values.
(Since the unit of measurement is arbitrary, the number of independent

parameters to be estimated is one less the number of scale values). The

constant-ratio model, however, fails to account for the effects of sim-
ilarity between alternatives on choice probability, as shown by several
authors, e.g., Debreu (1960), Luce and Suppes (1965), Restle (1961),
Rumelhart and Greeno (1971), Tversky (1972 a). The relevant experimental

studies were reviewed by Luce (1977).

In contrast, EBA provides a natural explanation of the similarity

effect. Furthermore, it has several testable consequences that impose
considerable constraints on observed choice probabilities and permit a
measurement-free test of a model. The EBA model, however, does not restrict
the structure of the aspects in any way, and hence it vields a large num-
ber of‘scale values (2" - 2) which limits its use as a scaling model. In
particular, ERA cannot be estimated from binarv choice probabilities

since the number of parameters exceeds the number of data points. The
question arises then whether EBA can be significantly simplified by im-
posing some structure on the set of aspects. Stated differently, can we
formulate an adequate theory of choice that is less restrictive than CRM

and more parsimonious than EBA? We can view CRM as the set-theoretical
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analogue of a unidimensional representation and EBA as the counterpart of
a high dimensional representation. What then is the analog of low
dimensionality in a set-theoretical representation?

In this paper we investigate the representation of choice alternatives
as a tree-like graph. A graph is a collection of points, called nodes,
some of which are linked directly by lines called edges or links. A
sequence of adjacent links with no repetitions is called a path. A (rooted)
tree is a connected graph without cycles containing a distinguished node
called the root. Thus, any two nodes in a tree are joined by a path, and
no path starts and ends at the same node. For ease of reference, we place
the root at the top of the tree and the terminal nodes at the bottom as in
Figure 2. To interpret a rooted tree as a family of aspect sets, we
associate each terminal node of the tree with a single alternative in T,
and each link of the tree with the set of aspects that are shared by all
the alternatives which include (or follow from) that link and are not
shared by any of the alternatives which do not include that link. Naturallyv,
the length of each link in the tree represents the measure of the respec-
tive set of aspects. Hence, the set of all aspects that belong to a given
alternative, is represented by the path from the root of the tree to the
terminal node associated with the alternative. and the length of the path

represents the overall measure of the alternative.

Insert Figure 2 here
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An illustrative example of a trre representation of a menu is presented
in Figure 2. The set of alternatives consists of five entrees: steak,

roast beef, lamb, sole and trout, that appear as the terminal nodes of

the tree. Thus, the link labelled )\ represents the aspects shared bv all
meat entrees but not fish, 8 represents the aspects shared by steak and

roast beef but not lamb or fish, and vy represents the unique aspects of

Er e e Dy

lamb. The names of the alternatives are displaved vertically and the
suggested labels of the clusters (defined by the links) are displaved
horizontally.

A tree representation imposes considerable constraints on the family
T* =(x'[xc¢T} of aspect sets associated with a given set of alternatives.
In particular, a tree defines a hierarchical structure on the altermatives
in T induced by associating each link a of the tree with the set
Ta = {xeT|aex') of all alternatives that include, or follow from, that link.
In Figure 2, for example, Tu = {sole, trout! and TJ = {gteak}. It is
easy to verify that for any two links a,3 in a tree,either T;:Té or
TS::Td or TJ)?Q is empty. The constraints implied bv the tree greatly

restrict the structure under consideration and drasticallv reduce the

n . .
number of parameters from 2 - 2 (the number of proper nonemptv subjets of T)

to 2n -2 that corresponds fo the maximal number of links in a tree with
n terminal ncdes. To appreciate the nature of the constraints, note that
the paths whic. connect any three terminal nodes with the root either

all meet at the same node, or two paths join at one node while the third
path joins them at a higher node, i.e., one that is closer to the root.
In Figure 2, for example. 'steak' and 'roast beef' join first and then

lamb joins them later.
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This property of trees implies the following inclusion rule: for
all x,y,z in T,either x'ny>x'nz' or xn=z="axNy'. That is, one out of any
% two binary intersections of three alternatives include the other. Equiva-
lently, any subset of T with three elements contains one alternative, say
z, such that z'nNx' = zNy' which, in turn , is included in x'nv'.
We denote this relation bv (x,y)z, with or without a comma. Thus, the

tree in Figure 2 is described as ((steak, roast-beef)lamb) (sole, trout).

Figure 3a illustrates the inclusion rule by a Venn diagram, and Figure

3b displays the corresponding tree.

Insert Figures 3a and 3b here

A comparison of Tigures | and 3a reveals that, under the inclus.on rule,
two out of the three binary intersections coincide with the triple inter-
section (xViz' = ynz' = x'"ny'nz'), hence the number of parameters or
aspect sets reduces in this case from 6 to 4, excluding A that represents
the aspects shared by all three alternatives . The following elementary

result, proved in the mathematical appendix, shows that the inclusion

rule is not only necessary but also sufficient for representation by a tree.

STRUCTURE THEOREM: A family {x'|xeT} of aspect sets is representable by

a tree iff either x'ny'sx'Nz' or x'Nz'sxNy' for all x,v,z in T.

When the family {x'|xeT} of aspect sets satisfies the inclusion rule,
the process of elimination-by-aspects reduces to elimination-by-tree,

or EBT for short. That is, one selects a link from the tree (with probability

il Ao, i P
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that is proportional to its length) and then eliminates all the alterna-
tives that do not include the selected link. The same process is then
applied to the selected branch, until only one alternative remains. 1In
Figure 3, for example, P(x,{x,y,z}) = u(a) + u(®)u(a)/(u(a) + u(®)), and
P(z,{x,y,z}) = u(y), assuming the measure u is normalized so that
u(a) + u@®) + u(y) + u(8) = 1. Elimination by tree, then, is simply the
application of elimination by aspects to a tree structure. Note that CRM
corresponds to a degenerate tree, or a bush, with only one internal node -
the root.

Hierarchical Elimination

The representation of choice alternatives as a tree suggests an

alternative decision model in which the tree is viewed as a hierarchy of

choice point:s.1

This theory, called the hierarchical elimination model or
HEM, can be described as follows. One begins at the top of the tree and
selects first among the major branches, or the links that follow directly

from the root. One then proceeds to the next choice point at the bottom of

the selected link, and the process is repeated until the chosen branch
contains a single alternative. The probability of choosing an alternative
x from an offered set A is the product of the probabilities of selecting
the brgnches containing x at each stage of the process, and the probability
of selecting a branch is proportional to its overall weight. For example,
the probability of choosing trout from the choice set presented in

Figure 2 equals the probability of selecting fish over meat multiplied
by the probability of choosing trout over sole. Thus, each node in the
tree is treated as a choice point, and one proceeds in order form the top

to the bottom of the hierarchy.
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To define the hierarchical elimination model in a more formal manner,

let Au denote the set of alternatives in A that include the 1link a,

f.e., A= {xeA|aex'} , Define a|3 if 8 follows directly from a , i.e.,
AGDAB , and AYDAB implies ijAu. Let u(a) denote the length

of a, and let m(a) be the measure, or the total length, of all the
links that follow from a, including a . In Figure 3b, for example, 8|a,

9|8, and m(8) = u(a) + u@) + u(e). If T* is a tree and A & T, A*={x'|xeA}

is also a tree that is referred to as a subtree of T. Naturally, the

relation I and the measure u on T* induce corresponding relations and
measures on A*., Finally, for BC A, let P(B,A) denote the probability that

the alternative selected from A is also an element of B, i.e., P(B,A) =

P : L P(x,A).
XeB
A family of choice probabilities P(x,A), xeACT, is said to satisfy HEM if

there exists a tree T*, with a measure u, such that the following three

conditions hold

(a) if y|8 and 8 |a then P(A,A) = P(A, 4 )P (4 ,A)
P(Aa.Ay) m(a)

(3 () if YIS and y|a then i
PUB .AY) m@)

, provided P(A%.AY) # 0.

(¢) thg above conditions also hold for any subtree A* of T*, with the

induced structure on A%,

The first condition implies that the probability of selecting x, say,
from T is the product of the probabilities of selecting the branches that
contain x at each junction. This condition is readily testable since it is
formulated directly in terms of choice probability, with no reference to
the scale u. The second condition states that the probabilities of selecting

one branch rather than another at a given junction are proportional to the
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weights of the respective branches -- defined as the total length of all
their links. If we view each junction as a pan balance and the weight of
each subtree as mass, then (b) can be interpreted as a weighing process

where the probability of choice among subtrees is proportional to their

mass. The third condition ensures that (a) and (b) apply not only to the
entire tree, but also to anv subtree obtained by deleting alternatives
from T. Note that the above definition of HEM, like the definition of
EBA, excludes in effect the presence of identical alternatives. Thus, we
assume that any two alternatives have some distinctive aspects with

a nonzero measurc, however small.

The notion of hierarchicai elimination and the idea of elimination-by-tree
represent different conceptions of the choice process that assume a tree
structure. EBT describes P(x,A) as a weighted sum of the prob-
abilities P(x.Au) of selecting x from the various subsets of A. In HEM

on the other hand, P(x,A)is expressed as a product of the probabilities

P(AQ.AS). 3la, of selecting a subtree containing x at each level in the hierarchy.
Compare, for example, the two formulas for the probability of choosing steak from
the set of entrees T displayed in Figure 2. To simplify the notation we suppress
the scale u and write a for u(a), etc. Furthermore, the scale is normalized so

that a+y8+p+™M\4+u = |, According to EBT, then

P(Steak, T) = o 0GR Grrtm *+ Grda) * Gho)

whereas according to HEM

P(Steak, T) = (atBry#or)) x (H8 ) « (0

The difference in form reflects a difference in processing strategy. EBT assumes

free access; that is, each aspect can be selected (as a basis for
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elimination) at any stage of the process. On the other hand, HEM assumes

sequential access; that is, aspects are considered in a fixed hierarchical '
fashion. The contrast between models based on random and on sequential
access can also be found in theoretical analyses of memory and pattern
recognition.

It would appear that EBT is applicable to decisions, such as the

selection of a restaurant or the choice of a movie where there is no fixed

e i s

sequence of choice points, whereas HEM seems appropriate for decisions that
induce a natural hierarchy of choice points. A student who has to decide
what to do after graduation, for example, is more likely to consider the ]
alternatives in a hierarchical manner. She may first decide whether to go

to graduate school, travel, or take a job. And she may not evaluate in

detail the available graduate schools, travel plans, or job opportunities,

before the initial decision is resolved. The preceding discussion suggests

that EBT and HEM capture different decision strategies that might be

followed in different situations. However, the following theorem establishes

a rather surprising result that, despite the difference in mathematical

form and psychological interpretation, the two models are actually equivalent.

EQUIVALENCE THEOREM: EBT and HEM are equivalent. That is, any set of

choice probabilities satisfies one model iff it satisfies the other.

The proof of the Equivalence Theorem is given in Section II of the Appendix.
It shows that, given a tree T* with a measure u, EBT and HEM yield

identical choice probabilities and hence it is impossible to discriminate
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between these strategies on the basis of these data alone. It might be
possible, however, that other data such as verbal protocols, reaction time
or eye movements can be used to distinguish between the two strategies. To
avoid confusion, we shall use the term 'preference tree' or 'Pretree’ to
denote the choice probabilities generated by EBT or by HEM, irrespective
of the particular strategy.

An immediate corollary of the equivalence of EBT and HEM is that any
alternating strategy consisting of a mixture of EBT and HEM is also equivalent
to them. For example, a person may choose a restaurant according to EBT but
select an entree according to HEM, or vice versa. It is a remarkable fact
that all the various strategies obtained by alternating EBT and HEM yield
identical choice probabilities. Thus, Pretree provides a versatile representation
of choice that is compatible with buth random-access and sequential-access strategies
Consequences

We turn now to discuss general properties and testable consequences of the
tree model, starting with the similarity effect. There are two distinct ways
in which the similarity between alternatives affect choice probability. First,
similarity,or the presence of common aspects creates statistical dependence
among alternatives. If X has more in common with y than with Z, for example,
then the addition of X to the set {2z,y} tends to hurt the similar alternative y
more than the less similar one z. In the extreme case where x is almost
identical to y,the addition of x will divide the probability of choosing y

by two while leaving the probability of choosing 2z unchanged.
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Second, similarity facilitates comparison. If x is more similar to y than
to z, and P(y,z) = 1/2, then P(x,z) will be less extreme than P(x,y),
i.e., closer to 1/2. Thus, the more similar pair generally yields a mare
extreme choice probability because similarity tacilitates the comparison
between the alternatives.

To illustrate the effects of similarity, consider a hypothetical example
of choice among transportation modes. Suppose the available alternatives
include two airlines a, and .2' and two trains t

1 1

there is no reason to prefer one airline over the other, but one train t, has a

and t,. Suppose further that
-

very slight but clear advantage over t1 since it makes one fewer stop along

the way. Because the train is more comfortable but the plane is faster suppose

one 1s undecided as to whether to fly or take a train, and hence

) = 1/2,

P(al,az) = 1/2, P(tz,tl) = 1, and P(al,t ) = P(az,t

)| 1

Let P(x,xyz) denote P(x,{x,y,z}), It follows at once from CRM that
P(tl,tlalaz) = 1/3. Introspection suggests, however, that the selection from
(tl.al,az) is likely to be viewed as a choice between a train and a plane,
whence a and a, are treated as one alternative that is compared with tl. Conse-
quently, P(tl,tlalaz) will be close to 1/2, while the two other trinary choice
probabilities will be close to 1/4. The commonality between a and a5 there~
fore, produces a statistical dependence which increases the relative advantage
of the odd alternative e

Furthermore, CRM implies that if two alternatives are equivalent
in one context, then they are substitutable in any context., That is, it
should be possible to suhst{CuCe one for the other without changing choice

probability., Since P(al,tl) = 1/2 and P(tz,tl) = 1, we obtain by substitution

P(t,.al) = 1, This result, however, scems implausible because the slight
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albeit definite advantage of t2 over tl is not likely to eliminate all
conflict in the choice between tz and al. P(tz,al), therefore, is expected

to be significantly smaller than one, contrary to CRM. Further discussions
of this problem, originally presented by Debreu (1960), can be found in

Luce and Suppes (1965, pp. 334-335) and Tversky (1972 a, pp. 282-284),

Insert Figure 4 here

Figure 4 represents the above example as a preference tree. It is
easy to verify that, according to the tree model with a =8 and 6 + a =6,
P(al,az) = P(tl,al) = P(tl,az) = /2, P(tz,tl) = 1, but P(tz.az) = (y+5)/
(y+25 ) which approaches 1/2 as Yy approaches 0. Furthermore, P(tl,t aa )

2

1
= 5/(25 + a) which approaches 1/2 as o approaches 0. Hence the tree model

provides a simple and parsimonious account of the similarity effects that
are incompatible with CRM.

The effects of similarity on choice probability can also be explained
by a Thurstonian or a random utility model such as the additive random aspect
model (Tversky, 1972b). In this development each aspect a is represented
by a random variable Va 9y cach x in T is represented bv the random variable

v =

% a%x' VOl and, following the random utility model, P(x,A) ecuals

P(Vx ;Vv for all yeA). This model, like EBA, accounts for the observed
dependence among the alternatives in terms of their common aspects that
produce positive correlations among the respective random variables. An
additive random aspect model differs from the present development in that

the aspects are represented by random variables rather than by constants,
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and choice is described as a comparison of sums of random variables rather
than as a sequential elimination process. Nevertheless, it was shown
(Tversky, 1972b) that EBA, and hence Pretree, is also expressible as a
random utility model, though not necessarily an additive one. A random
utility analog of the tree model, developed by McFadden (1978), is

discussed later.

The following testable properties were derived from EBA (see
Tversky 1972a,b; Sattath and Tversky 1976). Since EBT is a special case of
EBA, these properties apply to the tree model as well.

Moderate Stochastic Transitivity: If P(x,y) >1/2 and P(y,z) :_1/2 then

P(x,z) >min (P(x,y), P(y,2))).
This is a probabilistic form of the transitivity assumption. Note that the tree
model does not entail the stronger property where 'min' is replaced by 'max'.
Regularity: P(x,A) > P(x,AUB)
The probability of selecting x from a given offered set cannot be increased
by enlarging that set.

The Multiplicative Inequality: P(x,ANB) > P(x,A)P(x,B).

The probability of selecting x from AB is at least as large as the
probability of choosing x from both A and B in two independent choices.

The properties discussed so far follow from the general EBA model. We
turn now to some new properties of binary choice probabilities that characterize
the tree model. To simplify the exposition we introduce the probability
ratio R(x,y) = P(x,y)/P(y,x), and restrict the discussion to the case where
P(x,y) # 0 so that R(x,v) is always well-defined. The results can be

readily extended to deal with choice probabilities that equal 0 or 1.
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Consider first the case of three alternatives, and note that any subtree
of three elements has the form portraved in Figure 5, except for the
permutation of the alternatives and the possibility of vanishing links. We
use the parentheses notation to describe the structure of the tree , e.g.,

the tree in Figure 5 is described by (xy)z and the tree in Figure 4 by

(alaz)(tltz).

Insert Figure 5 here

Using the notation of Figure 5 it follows at once that R(x,v) = a/8
is more extreme (i.e., further from one) than R(x.z)/R(v,z) = (a+8)/(8+8).
Hence any three elements, that form a subtree (xv)z, satisfv the following
trinary condition.

(4) If R(x,v) > 1 then R(x,v) > % s 1,

where a strict ineaualitv in the hypothesis implies strict {nequalities in
the conclusion, and an equality in the hvpothesis implies equalities in the
conclusion.

The trinary condition (4) reflects the similarity hvpothesis in that
the commonality between alternatives enhances their discriminabilitv. This
is seen most clearlyv in the case where 8 > 0, o > 3, and 8+ & = v, {.e.,
R(x,y) > | and R(v,2) = 1, see Figure 5. According to the trinarv condition
R(x,v) = a/3 > (o+2)/(8+8) = R(x,z). Although v and z are pair-wise

equivalent, P(x,v) exceeds P(x,z) because x shares more aspects with v
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than with z. Note that when 6 vanishes, R(x,y) = R(x,z)/R(y,z) as required
by CRM. In this case, where (xy)z, (xz)y and (zy)x all hold we omit the
parentheses altogether and write xyz.

Next, let us consider sets of four alternatives. It is easy to verify
that, up to permutations of alternatives, any subtree of four elements has
one of the two forms displayed in Figure 6, including degenerate forms with

one or more vanishing links.

Insert Figure 6 here

It follows readily that in the tree (xy)(vw) portrayed in Figure 6a

(s) Rx,v) _ (o + 9)/(y +12) _ (a + 6)/(5 + 1) _ R(x,w)
R(y,v) (B + 8)/(y +)) (& + 8)/6 + 1) R(y,w)

If we interpret R(x,v)/R(y,v) as an indirect measure of preference for x over y, i

measured relative to a standard v, then the above quarternary condition asserts :

4 e (e 3

that this measure is the same for different standards (v and w) provided the

A

pairs (x,y) and (v,w) belong to distinct clusters.

If the reclation among the four alternatives under consideratfom has the

form depicted in Figure 6b, that is ((xy)v)w, then the following quarternary

condition holds.

(6) R(x,v) - R(y,v) _ (a=3)/y o Lorg=x)y _ R(x.v) = R(v,v)
R(x,w) = R(y,w) (a=R)/3 (n+g-v)/S  R(x,w) = R(v,w)

Note that under CRM the quarternary conditions hold for any four alternatives.

B L e Y
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At this point, the reader may suspect that the consideration of more
elaborate tree structures involving larger sets of alternatives will yield
additional independent consequences. However, the following theorem shows
that the trinary and the quarternary conditions are not only necessary
but they are also sufficient to ensure the representation of binary choice

probabilities as a preference tree.

REPRESENTATION THEOREM: A set of nonzero binary choice probabilities
satisfies the tree model with a given structure iff the trinary (4) and

the quarternary (5 & 6) conditions are satisfied relative to that structure.

The theorem shows that if Equations (4), (5) and (6) are satisfied rela-

tive to some tree structure, then there exists a ratio scale u defined on

that structure such that

ul(x'-y') u(x'=y')

P(X,)’) - u(x]-y|) & u'(?'_x|) or R(x,y) = m

Recall that u(x'-y') is the measure of the aspects of x that are not

included in y, or the length of the path from the terminal node associated

with x to the meeting point of the paths from x and v to the root.

The proof of the Representation Theorem is presented in Section III of
the Appendix. This result shows, in effect. how to construct a preference
tree from binary choice probabilities whenever the necessaryv conditions
hold. The trinary and quarternary conditions are readilv testable--given
any specified tree structure. Moreover theyv can be used to determine which
structure, if any, is compatible with the data. Recall that at least one

permutation of every triple must satisfy Equation (4), and at least one
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permutation of every quadruple must satisfy Equation (5) or (6). Hence, by
finding the appropriate permutations of all triples and quadruples, any
tree structure that is compatible with the data will emerge. T+ is readily
verified that the scale values (i.e., the length of the links associated
with a particular tree structure) are uniquely determined up to an arbitrary
unit of measurement,except when alf/binary choice probabilities are one-
half. The tree structure, however, is not always unique. That is, a given
set of binary choice probabilities could be compatible with more than one
tree structure. An example of this kind is presented in Section IV of
the Appendix along with a proof of the proposition that the tree structure
is uniquely determined by the set of binary and trinary choice probabilities.
Furthermore, if both binary and trinary choice probabilities are
available, they must satisfy the following conditons. Suppose the tree

model holds with (xy)z, see Figure 5, then

(€)) P(x,2) . a+d ~ atda/(a8) . Px,xv2) .4
P(z,x) L Y P(z,xyz)

(8) P(x,Y¥) a _ _atda/(a¥s) = Pix,xyz)
8 atd )

P(v,X) 3+ /( P(y,xyz)

provided all choice probabilities are nonzero Thus, according to the
tree model with (xy)z, the constant-ratio rule (8) holds for the adjacent

pair (x,vy) but not for the split pair (x,z). Note that this rule is

violated by (7) in the direction implied by the similarity hypothesis for
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(xy)z. Since y is closer to x than to z in that structure ( in the sense
that y'n x'= v'n z'), the addition of y to the set {x,z} reduces the prob-
abilitylof choosing x proportionally more than the probability of choosing
2. On the other hand, since z is equally distant from x and from y ( in the

sense that x'( . z' = y'N 2') the addition of z to the set {x,y} reduces the
probabilities of choosing x and y by the same factor.

Aggregate Probabilities

So far, we have modeled the process by which an individual chooses among

alternatives. Because of the difficulties in obtaining independent repeated

choices from the same individual, most available data consist of the proportions

of individuals who selected the various alternatives, referred to as group
data or aggregate probabilities. It should be emphasized that these data do
not pertain to group decision making, they merely characterize the aggregate
preferences of different individuals.

It is well-known that most probabilistic models for individual choice
(including CRM and EBA) are not preserved by aggregation. That is, group
probabilities could violate the model even though each individual satisfies
it, and vice versa. Consider, for instance, the case of three individuals
l, 2, 3 and three alternatives x, y, z. Suppose the observed choice prob-
abilities P(x,v), P(y,z) and P(z,x) are, respectively, .75, .75 and .15
for individual 1; .15, .75 and .75 for individual 2; and .75, .15 and .75
for individual 3. The individual choice prob-
abilities all satisfy EBA, but the expected aggregate probabilities .55,

.55 and .55, respectively, violate EBA. Hence, the validity of EBA as a
model for individual choice is neither necessary nor sufficient for its

validity as an aggregate model. Nevertheless, we contend that similar
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principles govern both types of choice data, and propose a new interpre-
tation of EBA as an aggregate model.

Suppose each individual chooses in accord with the following sequent.
elimination rule. Civen an offered set A, select some (nonempty) subset of
A, say B, and eliminate all the alternatives that do not belong to B.
Repeat the process until the selected subset consists of a single alternative.
Let QA(B) be the proportion of subjects who first select B when presented
with the offered set A, i.e., the proportion of subjects who eliminate all

elements of A-B in the first stage. Naturally, EQA (Bi) = 1, and QA(A) = ]
B.<A
i

iff A consists of a single alternative. Note that QA(B) 1s an elimination

probability--not a choice probability. The two constructs are related via

the following equation.

(9) P(x,A) = 7 QA(Bi)P(x,Bi).

B.c A
1

Thus, the proportion of subjects who choose x from A is obtained by summing, :

over all proper subsets Bi of A, the proportion of individuals who first select Bi
multiplied by the proportion of subjects who choose x from the selected subset.
This general elimination model, by itself, does not restrict the observed é
choice probabilities because we can always set Qy(B) = P(x,A) if B ={x},
and QA(B) = 0 otherwise. Nevertheless, it provides a method for characterizing

probabilistic choice models in terms of the constraints they imposed on the

elimination probabilities.




Preference Trees

26

A family of elimination probabilities, QA(B), Bc A T, satisfies

proportionality iff for all A, B, C, Bi’ Cj in T,

QA(B) ZQT(Bi)

(10) ’
Q) :QT'(CJ,S

where the summations range, raspectively, over all subsets Bi’cj of T such that
Bin A =B and Cjn A =C, It is assumed that the denominators are either
both positive or both zero. This condition implies that, for any AcT,
the values of QA are computable from the values of QT' More specifically,
the percentage of subjects who first select B, when presented with the
offered set A, is proportional to the percentage of subjects, presented with N
the total set T, who first select any subset B, that includes in addition to
B only elements that do not belong to A.
To illustrate the proportionality condition, consider the choice
among entrees. Let T = {r,s,t} and A = {r,t}, where r, s and t denote,
respectively, roast beef, steak and trout. According to proportionality,

therefore,

QA(r) QT(r) + QT(r,s)

QA(ci QT(t) + QTT:,?T

Note that in the binary case, where A = {r,t}, QA(r) = P(r,A) = P(r,t).
The rationale behind the proportionality condition is the assumption

that, upon restricting the offered set from T to A, all individuals who

first selected BUC from T, CCT-A, will now select B from A since the

alternatives of C are no longer available. For example, those who first
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selected {r,s! from T will select roast beef when restricted to A because
now steak is not on the menu. The following theorem shows that the

(aggregate) process described above is compatible with EBA.

AGGREGATION THEOREM: A set of aggregate choice probabilities on T are com-
patible with EBA iff there exist elimination probabilities on T that satisfy

Equations (9) and (10).

The proof of this theorem is readily reduced to earlier results, see the
Appendix in Tversky (1972a) and Theorem 2 in Tversky (1972b). It shows
that if (9) and (10) hold then

EQ(Bi)P(x,AnBi)
SQ(Bi)

P(x,A) =

where Q(Bi) = QT(Bi)’ and the summations range over all BiC:T such that
Bin A is nonempty. This form, in turn, is shown to be equivalent to EBA,
Hence, the Aggregation Theorem provides a new interpretation of EBA as a model
for group data.

It is instructive to compare the above version of the EBA model to the
original version defined in Equation (1). First, note that the scale Q(B)
1s not a measure of the overall value of the alternatives of B. Rather, it
vreflects the degree to which they form a good cluster, as evinced by the pro-
portion of subjects who first selected B when presented with T. The counter-
part of Q(B) in the original version of the EBA model is u(B), the measure of the
aspects that belong to all alternatives of B, and do not belong to any alter-

aative in T=-B,

i
l
|
i
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The individual version of the EBA model assumes that at any point in
time one has a fixed ordering of the relevant aspect-sets which, in turn,
induces a (lexicographic) ordering of the available alternatives. However,
at a different point in time, one may be in a different state of mind which
yields different ordering of aspects and alternatives. Indeed, the
stochastic component was introduced into the model to accommodate such momentary
fluctuations. The new aggregate version of EBA assumes that each
individual has a fixed ordering of the relevant aspect-sets, and the
stochastic component of the model is associated with differences between
individuals rather than with changes within an individual. Hence, the former
version explains choice probabilities in terms of an intra-individual distribution
of states of mind, whereas the latter version explains the data in terms of an
inter-individual distribution of tastes.

The EBA model may provide a useful model of aggregate data because the same
principles that give rise to EBA as a model of individual choice appear to
apply to group data. As a case in point, let us reexamine the similarity
effect using the transportation problem discussed earlier. Suppose the
group is divided equally between the train tl and the plane a, and is also

equally divided between the two airlines a and a,. Hence,
P(tl,al) = P(al,az) =1/2

We propose that the proportion of individuals who choose the train ty from

the offered set {tl,al,az} lies between 1/2 and 1/3 because the addition of

a, to {tl,al}is likely to affect those who chose a, more than those who chose t;.
More generally, the addition of a new alternative or product (e.g., a low-tar

cigarette or a liberal candidate)hurts similar alternatives (e.g., other low-tar
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cigarettes, and liberal candidates) more than less similar alternatives.
Furthermore, as in the case of individual choice, the similarity
between options appears to enhance the discrimination between them. |
Suppose that each individual prefers train ty over train t; since it is
slightly faster. Suppose further that the group is equally divided
between a, and t;, so that P(al.tl) = 1/2. Contrary to CRM which implies
P(tz.al) = 1, we predict that P(:z.al) is likely to be between 1/2 and 1

because many of those who prefer a, over t, are not likely to switch from

1
a plane to a train because of the slight, albeit clear, advantage of the
faster train. Since the same correlational pattern emerges from both
individual and group data, the EBA model may be applicable to both, although
the assumptions and the parameters of the model have different interpretations
in the two cases.

Consider, for example, the assumption that the alternative set

T -{al'a2't1} in the transportation problem has a tree structure (a1 az)tl.

In the individual version, the tree assumption implies that any aspect that

is shared by the train and any one of the airlines 1is also shared by the

other airline. In the aggregate case, the tree assumption entails that both
QT(al'tl) and QT(az'tl) vanish, that is, nobody eliminates from T one airline

ﬁ only. Hence, if all individuals share the same tree structure but not necessarily
the same preferences, the aggregate data will generally exhibit the same
qualitative structure. The actual measure, derived from aggregate data however,

does not relate to the measures derived from individual data in any simple manner.
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APPLICATIONS

In this section we apply the tree model to several sets of individual
and aggregate choice probabilities reported in the literature, construct
tree representations for these data and test Pretree against CRM. As was
demonstrated in the previous section, the trinary and the quarternary
conditions provide necessary and sufficient conditions for the representation
of binary choice probabilities as a preference tree. For error-free data,
therefore, these conditions can be readily applied to find a tree structure
that is compatible with the data. Since data are fallible, however, the
construction of the most appropriate tree structure, the estimation of
link-lengths and the evaluation of the adequacy of the tree model, pose
non-trivial computational and statistical problems.

In the present paper, we do not develop a comprehensive solution to
the construction, estimation, and evaluation problems. Instead, we rely
on independent judgments (e.g., similarity data) for the comstruction of
the tree, and employ standard iterative maximization methods to estimate
its parameters. To evaluate goodness-of-fit we test the tree model
assuming the hypothesized tree structure, against the binarv version of
Luce's constant-ratio model.

It has been shown by Luce (1959) that the binarv CRM, according to
which P(x,y) = v(x)/(v(x)+v(v)),is essentially equivalent to the following
product rule
(11)  P(x,y)P(y,2)P(2,%) = P(x,2)P(z,y)P(y,X), L.e., R(X,¥IR(y,2)R({2D) =1
Thus, any two intransitive cyvcles through the same set of alternatives

are equiprobable. On the other hand, the trinarv condition (4) vields
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(12) If P(x,y) > % and (xy)z then R(x,y)R(y,2)R(x,2) > 1,
or P(x,y)P(y,z)P(z,x) > P(x,z)P(z,y)P(y,x).
Any hypothesized tree structure, therefore, can be examined to test
whether the product rule is violated in the predicted direction.
The analysis of the data proceeds as follows. We start with a given
set of individual or collective pair comparison data along with a hypothesized
tree structure, derived from a priori considerations or inferred from
other data. Maximum likelihood estimates for both CRM and Pretree are obtained
using Chandler's (1969) iterative program (STEPIT), and the two models are
compared via a likelihood ratio test. In addition, we perform an estimate-
free comparison of the two models, by contrasting the product rule(1ll) and

the trinary inequality (12),

Choice between Celebrities

Rumelhart and Greeno (1971) investigated the effects of similarity on
choice probability, and compared the choice models of Luce (1959) and Restle
(1961). The stimuli were 9 celebrities including three politicians (L. B.
Johnson, Harold Wilson, Charles DeGaulle), three athletes (Johnny Unitas, Carl
Yastrzemski, A. J. Foyt), and three movie stars (Brigitte Bardot, Elizabeth
Taylor, Sophia Loren). The subjects (N=234) were presented with all 36 pairs
of names and were instructed to choose for each pair "the person with whom
they would rather spend an hour discussing a topic of their choosing".

On the basis of a x2 test for goodness-of-fit, applied to the aggregate
choice probabilities, Rumelhart and Greeno (1971) were able to reject
Luce's model (x2(28) = 78.2 , p < .0C1) but not a particular version of
Restle's model (¥2(19) = 21.9 s P >.25). Recall that Restle's model coincides

with the binary form of the EBA model.
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The list of celebrities used in this study naturally suggests the foll-
owing tree structure with three branches corresponding to the three different
occupations represented in the list: (LBJ, HW, CDG) (JU, CY, AJF) (BB, ET,SL).
The estimates of the parameters of the cree? displayed in Figure 7, are
identical to those obtained by Edgell, Geisler and Zinnes (1973), who
corrected the\procedure used by Rumelhart and Greeno (1971) and proposed a
simplification of the model which amounts to the above tree structure. The
tree model appears to fit the data quite well (x%(25) = 30.0 , p >.20),

although it has only three more parameters than Luce's model.

Insert Figure 7 here

Since Pretree includes CRM, the likelihood-ratio test can be used to
test and compare them. The test is based on the fact that if Model 1 is
valid and includes Model 2 then, under the standard assumptions, —2ﬂn(L1/L2)
has a xz distribution with dy-d, degrees of freedom, where Ly and Ly denote
the likelihood functions of models 1 and 2, while d; and d; denote the
respective numbers of parameters. If the inclusive model is saturated, i.e.,
imposes no constraints, then the above test is equivalent to the common x2
test for goodness of fit. When the likelihood-ratio test is applied to the
present data, CRM is rejected in favor of Pretree, x°(3) = 48.2 op < .001,

The average absolute deviation between predicted and observed probabilities

is .036 for CRM and .023 for Pretree.

It should be noted (see Falmagne, Reference Note 1, 1979) that the
test statistics for Pretree does not have an exact x° distribution because

the parameter space associated with the model is constrained not only by
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the equations implied by the quarternary conditions, but also by the
trinary inequality. The result, however, is a stricter test of Pretree
since the inequalities imposed on the solution can only reduce goodness of
fitc.
Since the product rule (11) and the trinary inequality (12) are the
key binary properties that give rise, respectively, to CRM and Pretree, it
is instructive to compare them directly. Using the tree structure presented
in Figure 7, the trinary inequality applies in 9 x 6 = 54 triples and it is
satisfied in 89X of the cases. Because the various triples are not indepen-
dent, no simple statistical test is readily available. To obtain some
indication about the size of the effect, we computed the value of R(xyz)=
R(x,v)R(y,z)R(z,x) for all triples satisfving (xy)z and R(x,y) > 1. The
median of these values equals 1.40, and the interquartile range is (1.13, 1.68).
Recall that under CRM the trinary inequality is expected to hold in 50% of
the cases, and the median R(xyz) should equal one. The summary statistics
for all the studies in this section, are presented 16 Table 1.

Political Choice

S P il ikl

The next three data sets were obtained from Lennart Sjoberg,who collected
both similarity and preference data for several sets of stimuli, and showed
a positive correlation between interstimulus distances (derived from multi-
dimensional scaling) and the standard deviation of utilitv differences
(derived from a Thurstonian model), Sjoberg(l1977) and Sjoberg and Capozza (1975)
conducted two parallel studies of preferences for Swedish and Italian
political parties. In these experiments, 215 Swedish students and 195

Italian students were presented with all pairs of the seven leading Swedish
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and Italian parties ,respectively. The subjects first rated the similarity
between all 21 pairs of parties on a scale from 1 to 9, and then indicated
for each pair which party they prefer. In addition, the subjects were
presented with all 35 triples of parties and asked to choose one party from
each triple.

The average similarities between the parties were first used to
construct an additive similarity tree according to the ADDTREE method
developed by Sattath and Tversky (1977). In this construction, which
generalizes the familiar hierarchical clustering scheme, the stimuli are
represented as terminal nodes in a tree so that the dissimilarity between
stimuli corresponds to the length of the path that joins them. For illustration,
we present in Figure 8 the additive tree (ADDTREE) solution for the sim-
ilarities between the Swedish parties. The product-moment correlation be-
tween rated similarities and path-length is -.96. Assuming the tree structure
derived from ADDTREE, Chandler's (1969) S1EPIT program was employed to
search for maximum likelihood estimates of the parameters of Pretree--using
the observed choice probabilities. The obtained preference tree for the
Swedish data is presented in Figures 9, and the preference tree for the

Italian data is presented in Figure 10.

Insert Figures 8, 9, 10 here

Several comments about the relations between similarity and preference
trees are in order. First, the rules for computing dissimilaritv and preference

from a given tree are quite different. The dissimilarity between x and v
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is represented by the length of the path (i.e., the sum of the links)
that connects x and y, while the degree of preference R(x,y) is rep-
resented by the ratio of the respective paths. Second, the numerical
estimates of the links in the two representations tend to differ
systematically. In general, the distances between the root and the
terminal nodes vary much more in a preference tree (due to the presence
of extreme choice probabilities) than in a similarity tree. Furthermore, some |

links that appear in the similarity tree sometimes vanish in the estimation

i o i e

of Pretree (as can be seen by comparing Figures 8 and 9) indicating the
presence of aspects that affect judged similarity, but not choice probability.
Third, the root in a similarity tree is essentially arbitrary since the
distance between nodes is unaffected by the choice of root. The probability
of choice in Pretree, however, is highly sensitive to the choice of a root.
Consequently, several alternative roots were tried and the best-fitting
structure was selected in each case. I
Tests of goodness of fit indicate that Pretree provides an excellent
account of the Swedish data x2(11) = 5.8, p > .5, with an average absolute
deviation of .012, compared with x2(15) = 49.1, p < .00l, with an average
absolute deviation ot .038 for CRM. Pretree also provides a reasonable
account of the Italian data x2(11) = 19.5, p > .05, with an average absolute
deviation of .023, compared with x2(15) = 67.6, p < .001, with an average
absolute deviation of .042 for CRM. The applications of the likelihood ratio

test indicate that Pretree fits these data significantlv better than CRM;

the test statistics are x%(4) = 43.3, p < .00l, for the Swedish data and
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x2(4) = 48.1, p < .001, for the Italian data. Furthermore, for the Swedish
data, the trinary inequality is satisfied in 96% of the cases (N = 23), the
median R(xyz) equals 1.73, and the interquartile range is (1.38, 2.27).
For the Italian data, the trinary inequality is satisfied in 78% of the
cases (N = 18), the median R(xyz) equals 1.74, and the interquartile range
is (.93, 2.78).
The availability of both binary and trinary probabilities in the political
studies permitted an additional test of Pretree. Recall from (7) that the
tree model implies

P(x,2) 2 P(x,xyz)

provided (xy)z,
P(z,x) P(z,xyz)

while CRM implies that the two ratios are equal. For the Swedish data, the
above inequality is satisfied in 87% of the cases (N = 46), the median
P(x,z)P(z,xyz)/P(z,x)P(x,Xyz) equals 1.28, and the interquartile range is
(1.12, 1.64). For the Italian data, the inequality is satisfied in 81% of the
cases (N = 36), the median of the above product ratio equals 1.19, and the
interquartile range is (.86, 2.28). Note that under CRM

P(x,2)P(z,xyz) /P(z,x)P(x,xyz) = u(x)u(z)/u(z)u(x) = 1.

Choice between Academic Disciplines

In a third study conducted by Sjidberg (1977), the alternatives con-
sisted of the following twelve academic disciplines that comprise the social
science program at the University of Goteborg: Psvchologv, Education,
Sociology, Anthropology, Geographv, Political Science, Law, Economic Historv
Economics, Business Administration, Statistics, Computer Science. A group
of 85 students from that university first rated the similarity between

all pairs of disciplines on a 9 point scale, and then indicated for each
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of the 66 pairs the discipline they prefer.
As in the two preceding analyses, the tree structure was obtained via
ADDTREE, and STEPIT was employed to search for maximum likelihood estimates
of the parameters. The resulting preference tree for the choice between

the twelve social sciences is presented in Figure 1l.

Insert Figure 11 here

A x? test for goodness of fit yields x2(50) = 45.5, p > .25 for Pretree,
compared with x2(55) = 69.1, p > .05, for CRM, and the likelihood ratio
test rejects CRM in favor of Pretree, x2(5) = 23.6, p < .001. The average
absolute deviation between predicted and observed probabilities is .025
for Preetree and .035 for CRM. Finally, the trinary inequality is satisfied
in 84% of the cases (N = 86), the median R(xyz) equals 1.52, and the inter-

quartile range is (1.21, 1.86).

Choice Between Shades of Gray

In a classic study of unfolding theory, Coombs (1958) used as stimuli
12 patches of grey that vary in brightness. The subjects were presented
with all possible sets of 4 stimuli, and were asked to rank them from the
most to the least representative grey. Binary choice probabilities were
estimated for each subject by the proportion of rank-orders in which one
stimulus was ranked above the other. The data provided strong support for

Coomb's probabilistic unfolding model in which the stimuli are represented
as random variables, and the derived choice probabilities reflect momentary

fluctuations in one's perceptions of the stimuli as well as in one's notion

of the ideal gray.
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Insert Figure 12 here

To represent Coombs' data as a tree, consider a line representing
variation in brightness (with white and black at the two endpoints) that is

folded in the middle at a point corresponding to the prototypical gray. The

stimuli can now be represented as small branches stemming from this folded line,
see Figure 12. Because of the large number of zeros and ones in these data,we

did not attempt to estimate the tree. Instead, we inferred the characteristic
folding point of each subject from the data and used the induced tree structure

to compare, separately for each subject, the trinary inequality against the
product rule, letting P(x,yv) denote the probability that x is judged to be farther
than y from the prototypical gray. Triples involving zero probability were
excluded from the analysis. The results for each one of the four subjects,
presented in the bottom part of Table 1, show that the product rule (1l1) :

is violated in the manner implied by the trinarv ineaualitv (12)

Insert Table 1 here 3

Table 1 summarizes the analvses of the studies discussed in this section.
The left-hand part of the table describes the statistics for the trinary i

inequality, where N is the number of tested triples. n is the percentage

e

of triples that confirm the trinary inequality, R is the median value of

R(xyvz) = R(x,v)R(y,z)R(z,x), while R1 and R3 are the first and third quartiles $

of the distribution of R(xvz). The right-hand part of Table 1l describes

t
i
|
i
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the measures of goodness of fit for both CRM and Pretree,where d is the

T e

averaée absolute deviation between observed and predicted choice probabilities.

Tree Representation of Choice Data

The examination of the trinary inequality provides an estimate-
free comparison of CRM and Pretree. The results described in Table 1 show
that, in all data sets, CRM is violated in the direction implied by the
1 similarity hypothesis and the assumed tree structure. The statistical
tests for the correspondence between models and data indicate that
Pretree offers an adequate account of the data that is significantly better

than the account offered by CRM. Apparently, the introduction of a few

additional parameters, that correspond to aspects shared by some of the
alternatives, results in a substan ial improvement in goodness of fit.
Furthermore, Pretree yields interpretable hierarchical representations of
the alternatives under study along with the measures of the relevant
aspect sets. ;

The preceding analyses relied on similarity data or on p. 1bf1-d. asigdder-

ations to construct the tree structure, and used choice probabilities to
test the model and to estimate the tree. This procedure avoids the diffi-
culty involved in using the same data for constructing the tree and for
testing its validity. It is also attractive because similarity data are
easily obtained, and because they are typically more stable and less variable
than preferences. An examination of Sjdberg's data, for example, shows that
subjects who reveal mérkedly different preferences tend, nevertheless, to
exhibit considerable agreement in judgments of similarity. The only

drawback of this procedure is that it fails to produce the best tree

whenever the similarities and the preferences follow different structures. The
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development of an effective algorithm for comstructing a tree from fallible
preferences and the development of appropriate estimation and testing pro-
cedures remain open problems for future research.

The correspondence between the observed and the predicted choice prob-
abilities indicate that the tree structures inferred from judgments of
similarity generally agree with the structures implied by the observed
choice probabilities. This result supports the notion of correspondence
between similarity and preference structures, originated by Coombs (1964),
and undersccres the potential use of similarity scaling techniaques in the
analysis of choice behavior. Other analyses of the relations between the
representations of similarity and of preference, based on multidimensional
s.aling, are reported in Carroll (1972), Nygren and Jones (1977).

Sjoberg (1977) and Stefflre (1972).
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CONSTRAINED CHOICE AND THE EFFECT OF AGENDA

The preceding development, like other models of chofce, deals
with the selection of a sfngle element from some offered ret. The
present section investigates chofice that {s constrained by a partitfion
imposed on the offered set. For example, the chofce of an alternative
from the set {x,y,v,w! can be constrained bv the requirement to choose
first between {x,v} and{v,w! and then to choose a single element from the
selected pair. Constraints of this tvpe are guite common: thev could he
imposed bv others, induced by circumstances,or adopted for convenfence.

For example, the decisfon regarding a new appointment {s sometimes
introduced as an {nitfal decisfon hetween a genfor or a junfor appointment,
followed by a later choice among the resgpective junfor or genfor candidates,
Deadlines and other time limits provide another s=ource of constraint,
Suppose the alternatives of AC T, for example, are no longer avafilable
after April lst. Prior to this date, therefore, one has to decfde whether
to choose an element of A, or to select an element from T = Asin which case
the chofice of a particular element can be delaved. The selection of an

agenda and the grouping of options for voting (which have long heen

recognized as influential procedures) ave famflfiar examples o!f external
constraints.

There are many situations, however, in which a person constrafins
his chofce to reduce cost or effort. Consider, for example, a conzumer who
futends to purchage one ftem from a set {(X,v,v,w! of 4 competing products,
Suppose there are two stores {n town that are quite distant from each other:

one store carries onlvy x and v, while the other carvieg only v and w. Under
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such circumstances, the consumer is likely to select first a store and then

a product, because he has to decide which store to enter but he does not have
to choose a product before enCering'the store. Similarly, people typically
select a restaurant first and an entree later -- even when they are
thoroughly familiar with the available menus. Thus, the need to make some
decisions (e.g., of a restaurant)at an earlv stage and the common tendency

to delay decisions (e.g., of an entree) to a later stage constrain the
sequence of choices leading to the selected alternative.

The effect of an agenda on group decision making has been investigated
by an economist, Charles R. Plott, and a lawver, Michael E. Levine, from
Caltech. Levine and Plott (1977) conducted an ingenious study of a flving
club, to which they belong, whose members had to decide on the size and
composition of the club's aircraft fleet. There were a few hundred competing
alternatives, and the group was to meet once and decide bv a majoritv vote.
Levine and Plott constructed an agenda designed to maximize the chances
of selecting the alternative they preferred. The group followed this agenda,
and, indeed, chose the option favored by the authors. A second studv
demonstrated the impact of agenda under controlled laboratory conditioms.

Plott and Levine (1978) developed a model for individual voting behavior

and used it to construct tor each alternative an agenda for the group,
designed to enhance the selection of that alternative. The results indicate
that, although the specific model was not fullv supported, the {mnosed

agenda had a substantial effect on group choice.
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A Theoretical Analysis

An agenda or a constraint imposed on an offered set imposes a hierarchical
structure or a tree on that set. Suppose, for example, that {B,C,D} is
a partition of A: hence, under the constraint[[B][C]][D]the choice of an
alternative from A proceeds by first choosing between D and BUC and then
choosing between B and C--if D is eliminated in the first stage. It is
essential to distinguish here between the intrinsic tree structure (defined
in terms of the relations among the aspects that characterize the alternatives)
and the imposed structure that characterizes the external constraints. The
choice among {x,y,v,w}, for example, whose aspects form the tree (xy) (vw)
may be constrained by the requirement to choose first between {x,w} and
{y,v}. To avoid confusion we use parentheses, e.g., (xy)v, to characterize
the intrinsic tree, and brackets, e.g., [xv]z, to denote the imposed

constraints.

Let P(x,[A][B]), xcA, ANR = §, depote the probability of selecting
x from AUB subject to the constraint of choosing first between A and B.
The present treatment is based on the following assumption.
(13) P(x,[A]}[B]) = P(x,A)P(A,AUB) = P(x,A) :\ P(v,AUB).

VeEs

That is, the probability of choosing x under [A][B] is decomposable into two
independent choices: the choice of x from A, and the choice of A from
[A][B]. Furthermore, the latter choice is reduced to the selection of anv
element of A from the offered set A{B. Hence for A = {x,y! and B = {v,w},
P(x,[xy]l(vw]) = P(x,v)(P(x,xyvw) + P(y,xvvw)). Equation (13) does not
assume any choice model, it merely expresses the probabilitv of a constrained

choice in terms of the probabilities of non-constrained choices.
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A choice model is called invariant if the probability of choice is
unaffected by constraints imposed on offered sets. Thus, invariance
implies that P(x,[A][B]) = P(x, AUB) for all xeAUB. It is easy to see
that CRM is invariant. In fact, the invariance condition is equivalent to

Luce's (1959) choice axiom, which asserts that P(x,A) = P(x,B8) P(B,A)

whenever BCA and P(x,A) >0. Consequently, Luce's model is the only
invariant theory of choice; all other models violate invariance in one
form or another!

Two hierarchical structures or trees defined on the same set of
alternatives are called compatible iff there exists a third tree, defined
on the same alternatives,which is a refinement of both. Refinement is
used here in a non-strict sense so that every tree is a refinement of it-
self. Thus, ((xy)z)(uvw) is compatible with (xyz) ((uv)w) because both
are coarsenings of ((xy)z)((uv)w) . On the other hand, (xv)z and (xz)y are
incompatible since there is no tree that is a refinement of both. Note
that the (degenerate) tree structure implied by CRM is compatible with any
tree. The relation between the intrinsic preference tree and the imposed

agenda is described in the following theorem.

COMPATIBILITY THEOREM: If (13) holds and Pretree is valid then a set of
choice probabilities is unaffected sy constraints iff the constraints are

compatible with the structure of the tree.

A proof of the theorem is given in Section V of the Appendix; the
following discussion explores the simplest example of the effect of agenda,

Suppose T={x,y,z}, Pretree holds and the intrinsic tree is (xy)z.
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Let a,3 and y denote the measures of the unique aspects of x, vy and z,
respectively, and let 6 denote the measure of the aspects shared by x and
y, see Figure 5, Setting a+B+y+6 = 1, yields

P(x,xyz) = a + 8a /(a¥8), P(v,xyz) = ’3+8R/(at8), P(z,xyz) = vy,

There are three non-trivial constraints in this case. The first,
[xy ]z, coincides with the tree structure, hence it does not influence choice
probability. The other two partitions, [xz]v and [vz]x, are svmmetric with
respect to x and y, hence we investigate only the former. By (13), we have
P(y, [xz]y) = P(y,xyz). More generally, an imposed partition, e.g., [xz]v,
does not change the probability of selecting the isolated alternative, e.g., v.
The imposed constraint, however, can have a substantial effect on the

probability of selecting other alternatives, e.g., x and z. Since

P(x, [xz]ly) = P(x,z) (P(x,xyz) + P(z,xyz)),
P(x, [xz]y) >P(x,xvz) iff
P(z,xyz) P(x,z) >P(x,xyz) P(z,x).
In the tree model, with (xy)z this inequality is alwavs satisfied, see Equation

(7), because

P(x,z at® | ata/(@®) _ P(x,xvz)
P(z,x) Y Y P(z,xvz) ,

hence, P(x,(xz]y) > P(x,xyz). Imposing the partition [xz]v, therefore, on
the tree (xy)z is beneficial to x, immaterial for y, and harmful to z.
To interpret this result, recall that x and vy share more aspects with

each other than with z. In the absence of external constrain:s, z benefits
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directly from the competition between x and y -- as demonstrated by the
above inequality which shows that x loses proportionally more tham z by the
addition of y to the set {x,z} . The constraint [xz]v reduces, in effect, the
direct competition between x and y, and enhances x at the expense of z.

A numerical example illustrates this effect. Suppose a= .0001,

8 = .0999, 6 = .4 and y= .5. In a free choice, therefore, P(z, xyz) = .S,
P(v,xyz) = .4995 and P(x,xyz) = .0005 because x is practicglly dominated
by y. Under the constraint [xz]y, however, the probabilities of choosing

z, y and x, respectively, are .2761, .4995 and .2244. Thus, the imposed
partition increases the probability of choosing x from .0005 to .2244

This occurs because x fares well against z, but performs badly against
y. In a regular choice where x is compared directly to vy, its chances are
negligible. Under the partition [xz]v, however, these chances improve
greatly because there is an even chance to eliminate vy in the first stage,
and a close-to-even chance to eliminate z in the second stage.

The above treatment of constrained choice should be viewed as a
first approximation because its assumptions probably do not alwavs hold.
First, the alternatives in question may not form a tree. Second, the
independence condition, embodied in (13), may fail in many situatioms.
Finally, the probability of selecting A over B mav not equal ;;AP(x.ALJi)

- particularly when A and B have a different number of elements that could
induce a bias to choose the larger or the smaller set. Nevertheless, the
proposed model appears to provide a promising method for the analysis of

constrained choice.




Preference Trees

47

Constrained Choices among Prospects and Applicants

The present experiment investigates the effect of agenda on ind-
ividual choice, and tests the implications of the preceding analysis. Two
parallel studies are reported using hypothetical prospects (Study I ) and
college applicants (Study II) as choice alternatives. Each prospect was
described as pZ chance to win $a and (100 - p)% chance to win nothing,
denoted ($a,p%). Each applicant was characterized by a high school grade
point average (GPA) and an average score on the Scholastic Achievement
Test (SAT). The subjects were reminded that the SAT has a maximum of 800 with
an average of about 500, and that GPA is computed by letting A = 4,

B = 3, etc.

One hundred students from Stanford University participated in each

e A S A -

of the two studies. Every subject was presented individually with 10 triples

of alternatives, each displayed on a separate card. Each triple was divided

LN Mt LI

into a pair of alternatives and an odd alternmative, and the subject was

instructed to decide first whether he or she preferred the odd alternative

of one of the members of the pair. If the odd alternative was selected,

the elements of the triple were not considered again. If the pair was
selected, the subject was given an opportunity to choose between its
members after the presentation of all ten triples. The delav was designed
to reduce the dependence between the trinarv and the binary choices.
The subjects in Study I were asked to imagine that they were actually

faced with the choice between the displaved prospects, and to indicate
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the decision they would have made in each case. The subjects in Study II
were asked to select, from each triple, the applicant that thev preferred.
Subjects were reminded that their task was to express their preferences
rather than predict which applicant was most likely to be admitted to college.
The participants in both studies were asked to consider each choice carefully

and to treat each triple as a separate choice problem.

The alternatives in each triple, denoted x,y,z, were constructed so that
(i) x and y are very similar, (ii) z 1is not very similar to either x or vy,
(iii) the advantage of y over x on one dimension appears greater than the
advantage of x over y on the other dimension, so that y is preferable to x.
In Study T, z is a sure prospect while x and y are risky prospects with
similar probabilities and outcomes, and with y superior to x in expected value.
For example, x = ($40, 75%), y = ($50, 70%) and z is $25 for sure, denoted
($25). 1In Study II, x and y are applicants with relatively high GPA and
moderate SAT, while z is an applicant with a relatively low GPA and fairly
high SAT. For example, x = (3.5, 562), y = (3.4, 596) and z = (2.5, 725).
The results of a pilot study indicated that one-tenth of a point on the GPA
scale is roughly equivalent to twenty SAT points. According to this criterion
for overall quality, applicant y is’better' than x in all cases. All triples

of prospects and applicants are displayed in Table 2.

The present experiment was designed to compare choice under [xy]z with
choice wunder [xz]y. Hence, for each triple, one-half of the subjects had
to choose first between the pair (x,y) and z, while the remaining one-half

had to choose first between the pair (x,z) and y. Each subject made five
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choices under [xy)z and five choices under [xz]y. The order of triples and

constraints, as well as the positions of the option cards (i.e., left, center,
right) were all counterbalanced.

Because alternatives x and y have much more in common with each other
than with z, the tree structure that best approximates the triples is (xy)z.
Hence, the constraint [xy]z is compatible with the natural structure of the
alternatives, while the constraint [xz]y is not. The preceding analysis
implies that the latter should enhance the choice of x, hinder the choice of

z, and have no substantial effect on the choice of y, Stated formally,

d(x) = P(x,[xd y) - P(x,[xylz)>0
d(y) = P(y,[xz]y) - P(y,[xy]2) =0
d(2) = P(z,[xz]y) - P(z,[xy]2) <0
Obviously, in the absence of any effect due to the imposed constraints d(x) =

d(y) = d(z) = 0. The proportions of subjects that chose x and y in each

triple under the two constraints are presented in Table 2, along with the

values of d(x), d(y) and d(z) defined above.

Insert Table 2 here

NPT T
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The results reported in Table 2 tend to confirm the predicted
pattern of choices. In both studies the values of d(x) are all positive
while the values of d(z) are negative with a few small exceptions.
Furthermore, in both Studies I and II the means of d(x) are significantly
positive,yielding t(9) = 9.2 and t(9) = 8.6, respectively, p < .OOi, while
the means of d(z) are significantly negative, yielding t(9) = -3.0, p<.05,
in Study I, and t(9) = 5.5, p< .001 in Study II. The means of d(yv) were
also negative,vielding t(9) =-2.3 and t(9) = -2.8,respectively, .0l <p< .05.
Hence, the shift from :he natural constraint [xylz to the constraint [xzly
increases the chances of x and decreases the chances of z and, to a
lesser extent, of y. The latter effect,which departs from the predicted
pattern may reflect a response bias against the odd alternative.

The pattern of results described in Table 2 seems to exclude two
alternative simple models that produce an agenda effect. Suppose choices
are made at random so that one chooses between the odd and the paired

alternatives with equal probability. As a consequence,

d(x) = P(x,[xz]y) - P(x,[xy]lz) = Lxklxk =0
d(y) = P(y,[xz]y) - P(y,[xy]z) = %%x)% = >0, and
d(z) = P(z,[xzly) - P(z,[xy)z) = 4ixk-% = <0

which are incompatible with the experimental findings.

The random choice model gives a distinct advantage to the odd alternative,
hence its failure suggests a different model according to which the odd
alternative suffers a setback, perhaps because people prefer to delay the

choice and avoid commitment. This hvpothesis, however, implies

d(x) = 0,d(y) <0, and d(z) >0 - - again contrary to the data.
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Since all triples have the same structure, it is possible to pool
all x-choices, y-choices and z-choices across triples and test our
hypotheses within the data of each subject. Let Pi(x,[xz]y) denote the
proportion of triples in which subject i made an x-choice under the constraint
(xz]y, etc. Let d (x) = P;(x,[xz]y) - P (x,[xylz), d;(z) = P(z,[xzlv) -
Pi(z,[xy]z), and let D1 = di(x) - di(z). Thus, D; measures the advantage
of x over z due to the shift from [xylz to [xzly. Recall that, in the
absence of an agenda effect d;(x) = d;(z) = D; = 0, while under the proposed
model di(x)> 0> di(z) and hence D; has a positive expectation. The means
of the Didisttibutions are ,21in Study I and .25 in Study II, which are
significantly positive ,yielding t(99) = 4.2, and t(99) = 5.8, respectively,
p < .001 in both cases. In Study I, 60% of the Dys are positive and 22%
negative; in the Study II, 62% are positive and 18% negative. Hence, the
predicted pattern of choices is also confirmed in a within-subject comparison,
where choices are pooled over trials rather than over subjects.

In summary, tne data show that imposed constraints have a significant
impact on choice behavior, and that the results confirm the major predictions
of the proposed model of constrained choice. The present results about individual
choice, that are based on the correlational pattern among the alternatives, should
be distinguished from the results of Plott and Levine (1978) who demonstrated the
effect of agenda on the outcome of group decision based on majority vote. An
agenda often introduces strategic considerations that could affect the outcome
of a voting process, even if it does not change the ordering of the options for
any single individual, much as group decision can be intransitive even when

its members are all transitive. Although different effects seem to
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contribute to the failure of invariance in individual and in collective choice,

they are probably both present, for example, in many forms of committee

decision making. The influence of procedural constraints on either

individual or social choice emerges as a subject of great theoretical and
practical significance. For if the choice of a new staff member, for example,
depends on whether the initial decision concerns the nature of the appointment
(e.g., junior vs. senior), or the field (e.g., perception vs soctal ), then
the order in which decisioné are made becomes an important component of the
choice process that cannot be treated merely as a procedural matter.

The present model of individual choice under constraints may serve three
related functions. First, it could be used to predict the manner in which
choices among political candidates, market products or public policies
are affected by the introduction or the change of -~~endas. Second, the model
may be used to construct an agenda so as to maximize the probability of a
desired outcome. Experienced politicians and seasoned marketeers are undoubt-

edly aware of the effects of grouping and separating options. A formal

e Y

model may nevertheless prove useful, particularly in complex decisions
where the number of alternatives is large and computational demands exceed

cognitive limitations. Third, the model can be employed by a group or a

R e e ey

committee as a framework for the discussion and comparison of different agen?as.
Although an 'optimal' or a 'fair' agenda may not exist, the analysis might

help clarify the issues and facilitate the choice. If all members of the group,
for example, perceive the available options in terms of the same tree structure,
even though they have different weights and preferences, then the use of an
agenda that is compatible with that structure is recommendable since it ensures

invariance. The applications of the present development for the construction,

selection, and evaluation of agendas are still left to be developed.
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DISCUSSION

Individual choice behavior is variable, complex and context dependent,
and the attempts to model it are, at best, incomplete. Even the most basic
axioms of preference are consistently violated under certain circumstances,
see, e.g., Kahneman and Tversky (1979), Lichtenstein and Slovic (1968),

Tversky (1969). The present treatment does not attempt to develop a compreh-
ensive theory of choice, but rather to analyze in detail a particular strategy
that appears to govern several decision processes. There are undoubtly decision
processes that are not compatible with Pretree. Some of them could perhaps

be explained by EBA, while others may require different theoretical treatments.
The selection of a choice model, however, generally involves a balance between
generality or scope on the one hand, and simplicity or predictive power on the
other. Pretree may be regarded as an intermediate model that is much less
restrictive than CRM since it is compatible with the similarity hypothesis,

vet it is much more parsimonious than the general EBA model since it has at
most 2n - 2 rather than 27 - 2 parameters.

Furthermore, the tree model may provide a useful approximation to a more
complex structure, in the same way that a two dimensional solution often provides
a useful representation of a higher dimensional structure. Consider, for
example, a person who is about to take a one-week trip to a single European
country and is offered a choice between France (F) and Italv(I) and between a
luxury tour(L) and an economy tour(E). Naturally, the luxurv tour is much more
comfortable but also considerably more expensive than the economy tour. It
is easy to see that the four available alternatives FL,FE,IL,IE do not satisfy
the inclusion rule because, for any triple, each alternative shares different
aspects with the other two. Hence, the EBA model cannot be reduced to a tree

in this case, although it can be approximated bv a tree -- provided one of the
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attributes looms much larger than the others.

Suppose the decisfon maker {a very concerned about the sfte of the
trip (Italy vs. France) but is not overly concerned about comfort or price.
In thia case, the weighta associated with the tour-tvpe (luxury vs. economy)
would be small {n comparison with the weights associfated with the aites.
Hence, the observed chofce probabilities could be approximated fairly well
by the tree (FLFE) (ILIE). On the other hand, {f the decis{on maker {s
much more concernad about the tvpe of tour than about {ts site, his chofce
probabilities will be better described by the tree (FLtL) (FEIH). The
quality of efther approximation depends on the degree to which one attribute

dominatesa the other, and {t could be asscssed di{rectly by examining the

trinary and the quarternary cond{t{ons., An cxtenston of the tree mode!

that deals with factorini structuros will he deseribed olovhere,

Hierarchical or tree=like models of chofce have been recentlv
emploved by students of economica and market research who {nvestigate
questions such as the sharve of the market to be captured by a new product,
or the probability that a consumer will awitch from one brand to another.

Luce's model provides the simplest answers to such questions, but as we

have already seen, {t {8 too reatrictive. Perhaps the afmplest wav of
extending CRM {8 to assume that the offered set of alternatives can be
partitioned {nto classes w0 that the model holda within each homogeneous
clasa, even though {t does not hold for heterogeneous sets,

Thia assumption underlies the analvafs of brand switching developed
by the Hendry Corporation, and described bv Kalwani and Morrison (1977),
According to the Hendry model, the probability that a consumer will
purchase a new brand given that he switched from his old one, {a prop=

ortional to the market share of the new brand== provided the two brands
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belong to the same class of the partition. The application of this model,

therefore, requires prior identification of an appropriate partitiomn, or
tree structure, that i{s presumably constructed on the basis of informed
intuition. The similarity-based scaling procedure emploved in this paper,
and the test of the necessary trinary and quarternary conditions could
perhaps be used to construct and validate the partition to which the
analysis of brand switching is applied.

The partition of the alternatives into homogeneous classes satis-
fving CRM was also used by McFadden (1976, 1978) {n his theoretical
and empirical analvses of probabilistic choice. As an economist, McFaddén
was primarily interested in aggregate demand for alternatives (e.g., different
modes of transportation ) as a function of measured attributes of the
alternatives and the decision makers (e.g., cost, travel time, income).

The Thurstounian, or random utility, model provides a natural framework
for such an analvsis which assumes, in accord with classical economic
theoryv, that each {ndividual maximizes his utility function defined over
the relevant set of alternatives and the random component reflects the
sampling of individuals with different utility functions.

McFadden (1978) pegan with the multinomial logit (MNL) model in which

P(x,A) = expi X484 /va exp i vi84
where X eeeaX, are specified attributes of x, and 0;...,8, are parameters
estimated from the data. This is clearly a special case of Luce's model(2),
where log u(x) {8 a linear function in the parameters Qpoeeestye It is
expressible as a random utilftv model by assuming an extreme value distribution
F(t) = exp [-exp-(at+b)],a >0, see e.g., Luce (1977), Yellott(l1977),

The MNL model has been applied to several economic problems, notably
transportation planning (McFadden, 1976), but the failure of context-

independence led McFadden (1978) to develop a more general family of choice
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models, called generalized extreme value models, that are compatible with the
similarity hypothesis. One model from this family, called the nested logit
model, assumes a tree structure in which the probabilities of choice at each
level of the tree conform to the multinomial logit model, see McFadden (1978).
Although the nested logit model does not coincide with Pretree, the two models
are sufficiently close that the former may be regarded as a random utility
counterpart of the latter.

Psychological models of individual choice fall into three overlapping
classes: decomposition models, probabilistic models and process models.
Decomposition models express the overall value of each alternative as a function
of the scale values associated with its components. This class includes all
the variations of expected utility thecry as well as the various adding and
averaging models. Probabilistic models relate choice data to an underlying
value structure through a probabilistic process. The models of Thurstone and
Luce are prominent examples. Process models attempt to capture the mental
operations that are performed in the course of a decision. This approach,
pioneered by Simon, has led to the development of computer models designed
to simulate the decision making process. Pretree, like the more general
EBA, belongs to all three classes. It is a decomposition model that
expfesses the overall value of an alternative as an additive combination of
the values of 1its aspects. Unlike most decomposition models, however, the
relation between the observed choice and the underlving value structure is
probabilistic , and the formal theoryv is interpretable as a process model of
choice behavior that is based on successive eliminations following a tree
structure.

This paper exhibits three correspondence relations (i) the equivalence of

elimination-by~ tree and the hierarchical elimination model, (ii) the compat-
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i , ibility of aggregate choice and the individual EBA model, and (i{ii) the
correspondence between preference and similarity trees. The three results,

however, have different theoretical and empirical status. The equivalence of

EBT and HEM is a mathematical fact that permits the application of the tree

model to both random and hierarchical decision processes. The second result

offers a new interpretation of EBA as an aggregate choice model, thereby
providing a rationale for applying EBA to aggregate data. Finally, the comp-
£ atibility of similarity and preference trees is an empirical observation which

suggests that the two processes are related through a common underlying structure. r
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MATHEMATICAL APPENDIX

I. Proof ot the Structure Theorem

To show that a tree representation of T*={x'|xeT} implies the inclusion
rule, let t(x) denote the path from the root of the tree to the terminal
node associated with x. For any x, y, 2, in T there are 4 possible tree
structures, and they all satisfy the inclusion rule as shown below.
a. If t(x) and t(y) meet below t(z), then x'ny'>sx‘nz’.
b. If t(x) and t(z) meet below t(y), then x"nz'>x"y'.
c. If t(y) and t(z) meet below t(x), then x'ny' = x",z'.
d. If t(x), t(y) and t(z) all meet at the same node then x'y' = x'nz'.

In order to establish the sufficiency of the inclusion rule, let
: e {xeT|aex"'}, and let S(T) be the set of all T, for any a in T'. To
prove that T*={x'|xeT} is a tree, it suffices to show that S(T) is a
hierarchical clustering. That is, for any a,3 in T' either T&:T , or

8

Té>Ta, or TdWTB is empty. Suppose S(T) is not a hierarchical clustering.

Then there exist some distinct aspects a, 3 in T' and some x, y, z in

T such that xeT nT,, veT -T. and zeT, -T . Hence,a is included in x"v',
a B a 8 B a

81s included in x'nz', but a is not included in z' and 8 is not included in
y'. Conseauently, x'Ny' neither includes nor is included in x'nz' and

the inclusion rule is violated, as reauired.
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II. Proof of the Equivalence Theorem.

e RN YT

(i) EBT implies HEM,
If EBT holds for T, then it must also hold for any AcT with the induced
tree structure. Hence, it suffices to demonstrate the first two parts of Equation (3)
(a) If v|8 and 8|a then P(AA) = P(A,»AQ)P(AG,A ).
P(A,A)  m(a)

(b) If v|8 and v|a then = » provided m(B) ¥ 0.
P(AB,AY) m@®)

We begin with the following auxiliary result. If 8|a, then

m(a) %
P(x,Ae) = P(x,Aa)
m(8)-u(8)
Let al,...,an be a sequence of links leading from x to a. That is,
AOll = {x}, ai*llai' i=1,...,n-1, and a = a. Assuming CBT and Sia
u(an) u(an_l) u(al)
P(x,A,) = P(x,Aa )+ P(x,AOl JHo s o eae— P(x,A“ )
B m(8)-u(8) N m(3)-u(8) n-1  m(8)-u(8) 1
u(a) m(a )-u(a ) fu(a )
= a P(x,A1 ) + L 2 -l P(x,Aa J e
m(8)-u(8) “n m(8) -u(8) m(an)-u(mn) n-1
u(a,)
#-—-———L————-P(x,Aa )
m(an)-u(an) 1
u(a ) m(a )-u(a,)
= P(x,AOl ) + P(x,A‘ )
m(8)~u(3) n m(8) -u(8) “n
m(a)
= P(x.Aa).
m(8)-u(8)

as required. To prove (b) we assume that y|8 and y|a , hence




IP(x,A))
P(A.A ) s o
P(A_,A) IP(x,A )
LI XEA Y
B
ZP(x,Aa) m(a)
XeA, m(y) -u(y)
IP(x,A,) m(B)
XeAg m(y) -u(y)
_ m(a
5 miS%
since EP(x,Aa) = ZP(x,AB) &4
xeAa xeAB

To prove (a), suppose Y|8 and 8|a.

z’(As 'Ay) e ey

stB

P(x,AY) =m@®)/(m(y)-u(y)), and

P(Aa’Ay) z P(x,AY)

XeA
a
m(B)
m(y)-u(y)

z P(x,AB)
XeA

a
m(B)

" Plarhs) ay-aey

= p(Aa’AB) P(AB’AY)

(ii) HEM implies EBT.

We have to show that for any Ac T, P(x,A) satisfies

The proof is by induction on the cardinality of A. Let A serenay be
the sequence of segments leading from x to the root of A. That is,
{x} = Aal, ai+1[ai’ i=1,..., n-1, and Amn ® K. 4 y|8, xeAB,and
Equation (3) holds then
Px,A) = —28Lp(x,a,)
m(y)-u(y)
A stk esssinvsinitn . Locistscoiic sl S
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By our auxiliarv result

Equation (1).




Thus, using the inductive hypothesis, we obtain
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P(x,Aa )
n-1
n-2
.Z u( ai)P(x,Aa.)
i=1 i

m(un-l)
p(x;Aa ) B S —— P(X'AG )
n m(un)-u(an) n-1
u(un-l) m(a )-u(a )
3 \P(x,Aa ) + n-1 n-1
m(a )-u(a) n-1 m(a ) - u(a)
u(a ) m(a  )-u(a )
o n-1 P(x,AG ) + n-1 n-1
m(un)-u(an) n-1 m(un) - u(an)
n-1
I u(a,) P(x,A )
= j=] ! !

m(un) - u(an]

which is the recursive expression for P(x,A ).

o, g ele, )
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ITI. Proof of the Representation Theorem.

The proof is divided into a series of lemmas. Let Py denote the set of
binary choice probabilities defined for all pairs of elements in T.

Lemma 1: If T = {x,y,z}, then Pr satisfies Pretree with (xy)z iff the trinary
inequality (4) is satisfied in this form.

Proof: Necessity is obvious. To prove sufficiency, we use the notation of
Figure S, where R(x,y) 2 1. Set a= 1, B = R(y,X), and select 62 0 so that
[R(x,2) - R(y,z)]8 = R(¥,z) - R(y,x) R(x,z), and let y = R(z,x)(1+8).

(Note that when R(x,y) > 1, ® is uniquely defined and positive, and when
R(x,y) = 1, 8 can be chosen arbitrarily).

Let ﬁT be the set of binary probabilities obtained by using the above
expressions for a,B8,y,8 in the defining equations of the model. It can be
verified, after some algebra, that ﬁT = Py as required.

Before we o further,note that if Py satisfies Pretree with (xy)z and

R(x,y) > 1 then B/a = R(y,x). Furthermore.

1 e R(N,2) s ROLD) - ROVOR(,Z) g
. = implies — =
T+ 2 e RO,2) * R(x,2) - R(y,2)
1¢i
a__ ard e y Y R(v,z) - R(v,Xx) R(x,2) 1-(v,x)
——— z 1 A & 2 P, = >
T > R(x,z) implies : " R(z,x)(1+ .2 - R(v.2 ) R(x, 2)~R(Y, ).
Q
Hence, the lengths of all the links are determined up to multiplication

by a positive constant. Furthermore, the present model readily entails the

following property.
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Lemma 2: Suppose A and B = {x,y,v} are sets of objects such that y,veA

and xfA, and suppose that both P, and PB satisfy Pretree. (It is assumed that

A
P(v,y) is the same in both structures). Then the measures on A' and B' can
be selected so that u(v'-y') -- as well as u(y'-v') -- are the same in both

| measures.

Lemma 3: Suppose A = {x,y,v} and B = {y,v,w} satisfy Pretree, with representing
measures u, and g, in the forms (xy)v and (yv)w, respectively, If C = AUB = {x,y,v,w}
satisfies the appropriate quarternary condition with (xy)(v,w) or with ((xy)v)w,

then there exists a representing measure u on C' which extends both uy and ug-
Naturally, we assume that uy and up were selected according to Lemma 2.

Proof: Consider the form (xy)(vw), see Figure 5a. By Lemma 2, uA(B+e) = uB(B*e)

and uA(A+y) = uB(A¢y). Hence, uy and ug can be used to define a measure u on C'.

To show that u is a representing measure on C' we have to show that R(x,w) =

u(8+a)/u(A+8). Since C satisfies Pretree, it follows from (5) that

R{x,w) = R(y,w)R(X,V)R(V,y)
a ugs+e% u(a+8) u(i+y)
u(A+8) u(A+y) u(p+9)

u(f+a
=
u(A+§

Next, consider the form ((xy)v)w, see Figure Sb. Here, we have to show that

R(x,w) = u (a*8+))/u (3). Applying (6) it follows that
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(1-R(x,v))R(y,w) + R(v,w)(R(x,v) - R(y,V))
l‘R(y,V)

R(x,w) =

4(}_ u(a+ )11!8+6*A! , u(y+n) (Lga+e) _u(g+e) )
* u(y) u(s) u(s) uly) u(y)

u(y

u(a+6+1) as required.

u(s)

Lemma 4: PT satisfies Pretree with a specified structure iff for every ScT, with

four elements or less, Ps satisfies Pretree relative to the same structure.

Proof: Necessity is immediate. Sufficiency is proved by induction on the cardinality
of T, denoted n. Suppose n > 4, and assume that the lemma holds for any cardinality
smaller than n.
Suppose (Xxy)Vv holds for any v in T. Let A =T - {x}, and B = {x,y,v}. By
the induction hypothesis, both PA and PB satisfy Pretree with the appropriate
structure. By Lemma 2 we can assume, with no loss of generality, that the measures
of y and v in A' coincide with their measures in B'. Since any aspect in T'
appears either in A' or in B', and since the aspects that appear in both trees
nhave the same measure, we can define the measure of any aspect in T' by its measure
in A' or in B'. Letting P denote the calculated binary probability tfunction, we
show that §T = P

Since FA =P, and P_ = P

A 8 g: it remains to be shown that P(x,w) = P(x,w) for

any weT-B.
Let C = {x,y,v,w}, which satisfies Pretree, by assumption, with either (xv)(vw)

or ((xy)v)w. Since C = BU{y,v,w}, Lemma 3 implies that the representing measure
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on C' coincides with the restriction to C' of the defined measure on T'. Hence,
F(x,w) = P(x,w) as required.

In conclusion, Lemma 3 together with Lemma 1 show that the trinary and the
quarternary conditions are necessary and sufficient for the representation of
quadruples. Lemma 4 shows that if Pretree is satisfied by all quadruples, then
it is satisfied by the entire object set. This completes the proof of the rep-
resentation theorem.

IV. Uniqueness Considerations.

It follows readily from the representation theorem that, given a tree
structure, the measure u is unique up to multiplication by a positive constant
except in the case where ;Zf/binary choice probabilities equal 1/2. We show
that the tree structure is uniquely determined by the binary and the trinary

choice probabilities, but not by the binary data alome.

To show that binary choice probabilities do not always determine a unique

tree structure, consider two different trees (xy)z and (yz)x, and let
a,3 , Y denote, respectively, the unique aspects of x, v, z, let © denote the
aspects shared by x and y, and let A denote the aspects shared by y and z. Let
u and v be the measures associated with (xy)z and (yz)x, respectively, and
suppose that

u(@) = 2, u(3) =1, u(y) = 1, and u(®) = 2

v(a) = 8, v(3) =3, v(y) =1, and v(}) = 1
By the assumed tree structures u(l) = v(8) = 0. It is easy to verify that the
two trees yield identical binary choice probabilities: P(x,y) = 2/3, P(y,z) = 3/4,

P(x,z) = 4/5. We next show that the tree structure is uniquely determined by the

binary and the trinary choice probabilities, provided all binarv probabilities

are non-zero. Consider a tree (xy) z with a measure u, and aspects a,8 , vy, 8
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defined as above. Assume u(a), u(3), u(y) and u(8) are nonzero. It follows

from (xy)z that

P(x,y) _ ua) _ ua) + u(®ula)/(ua) + u(3)) _ P(x,xyz)
P(y,x) u(8) u(8) + u(®)u(3d)/(u(a) + u(3)) P(y,xyz)

Suppose the data were compatible with another tree structure, say (yz)x with

no loss of generality. By the same argument

P(y,2) = P(y,Xy2) = and hence
F(z,y) P(z,xys)

u(@) +u@) . u(@) + u@)u(d)/(ula) + u(d))
u(y) u(y)

which implies u(a) = 0 contrary to our assumption. Given both binary and
trinary probabilities, therefore, the structure of any triple and hence of the

entire tree is uniquely determined.

S
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V. Proof of the Compatability Theorem.

It follows readily from HEM, see Equation (3), that
P(x,A) = P(x’Al)P(Al’AZ)'"P(An-l’An)

for some sequence A ,...,An such that An-A, and AiCA i=l,...,n-1. We

1 i+1’
show first that the sequence can be chosen so that ai=i+1, 1 <1i<n,
where ai is the cardinality of Ai' This condition is obviously satisfied

in a binary tree where each node joins at most two links. Suppose then
that the tree contains three links that meet at the same node, e.g.,

§|y, 8|8 and § |a. Hence, by part (b) of Equation (3),

m(a) b m(a) X m(a)+m@®)  _
m(a)+m@® )+m(y) m(a)+m(B) 7 m(a)+m@ )+m(y)

= P(Aa'AJJAB)P(AaUAB’AS)’

and the result is readily extended to nodes with k links. Under Pretree,

P(A,A) =

therefore, P(x,A) is expressible as a product where each factor P(Ai,A

i+1)
is a probabilitv of choosing between two branches.
Under Equation (13), the probability of selecting x from A under

a specified agenda equals P(x,BI)P(Bl.B7)...P(Bm,A), for some 31:S "':3ﬁ:A'

2
By compatibility, there exists a tree and hence a binary tree that refines
both the adenda and the intrinsic tree structure. Bv the above argument,
P(x,A) is expressible as a product P(x’AI)P(Al’AZ)'"P(An-l’An) where ai=i+1,
1 <i<n, corresponding to a binary tree that refines both structures.

Thus, each B,, j=1,...,m, appears among the A , i=1,...,n. Suppose

] i's
Bj = Ai and Bj+1 = Ai+t’ hence
i+t-~1
L P(Bj’Bj+1) = By ! kzi P(Ayshpyy)r and

k, TSRS - A i . ” — Al s . fainkazsn. b
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P(x,A) = P(x,Al)P(AI,Az)...P(A An) = P(x'Bl)P(Bl'BZ)'"P(Bm'A)'

n-1’

ommsaa g Lo o . o e

Hence, choice probability is unaffected by an agenda that is compatible with

the intrinsic structure of a preference tree.

If the agenda is not compatible with the intrinsic tree, there exists
some X,y,z in T such that both (xv)z and [xzly hold. It is easv to verify
(see the discussion in the text) that P(x,xvz) # P(x,[xz]v) in this case,

which establishes the necessity of the compatability condition.
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Reference Notes

1. Falmagne, J. C. Probabilistic theories of measurement. Paper presented
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Footnotes

1The present notion of a preference tree should be distinguished from

the concept of a decision tree, commonly used in the analysis of decisioms

A tan -

under uncertainty.
2To obtain compact figures we use a heavy line (see Figure 7) to

indicate double lenght, and an extra heavy line (see Figure 11) to indicate

ten-fold length.
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R Table 1
Summary Statistics for the Comparison of CRM and Pretree
W Study Trinary-Inequality Statistics CPM Pretree Difference
| Alternatives
3 N n R R, Ry d x2 4f d x? daf y?  df
. Rumelhart & Greeno (1971)
Celebrities 54 897 1.40 1.13 1.68 .036 wm.m* 28 .023 30.0 25 am.ww 3
Sjoberg (1977)
Swedish Parties 23 96% 1.73 1.38 2.27 .033 bo.~* 15 .012 5.8 11 bw.u* 4
Sjoberg & Cappoza (1975)
Italian Parties 18 78% 1.74 0.93 2,78 . 042 mw.m* 15 .023 19.5 11 am._» 4
Sjoberg (1977)
Social Sciences 86 847 1.52 1.21 1.86 .035 69.1 55 .025 45.5 50 wu.mw 5 |
Coombs (1958) {
Shades of Gray ;
Subject 1 9 837 2.06 1 4 G sda i
Subject 2 139 767 5.08 1 9 T REROENSD S, <00
Subject 3 127 702  1.45 0.58 3.52 4

Subject 4 184 947 €.66 2.84 100
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Table 2

Probabilities of Choice Among Prospects and
Applicants Under Two Different Constraints

ALTERNATIVES CONSTRAINTS EFFECTS
m I Prospects [xylz [xz]y
h X y z
o Triple ($,%) ($,%) ($) P(x,[xylz) P(z,[xylz) P(x,[xzly) P(z,[xzly) d(x) d(y) d(z)
R 1 (40,75) (50,70)  (25) .08 .22 .18 .20 .10 -.08 -.02
| 2 2 (80,15) (75,20) (10) -2 .40 .24 .32 .12 -.06 -.08
| % 3 (65,90) (75,85) (55) .12 .42 .20 .46 .08 -.12 .04
| & 4 (120,5) (85,10) (5) .08 .54 .18 .38 .10 .06 -.16
i 5 (75,30) (100,25) (20) .04 .54 .20 .48 .16 -.10 -.06
’ 6 (125,35) (120,40) (35) .04 .44 .18 .32 14 -.02 -.12
| 7 (30,65) (40,60) (15) .18 .36 .30 .40 .12 -.16 .04
1 8 (35,95) (45,90) (30) .06 .40 .16 .28 .10 02 =12
| 9 (50,85) (60,80) (40) .04 .48 .22 .30 .18 .00 -.18
10 (65,25) (95,20) (15) .02 .42 .24 .28 .22 -.08 -.14
m Mean .078 .422 .210 .342 .132  -.052 -.080
|

I1I Applicants

A

x y z
Triple (GPA,SAT) (GPA,SAT) (GPA,SAT)
1 (3.3,654) (3.2,692) (2.2,773) .16 .40 .30 .32 .14 -.06 -.08 i
2 (3.6,592) (3.5,625) (2.6,785) .18 .38 .28 .26 .10 .02 -.12
3  (3.5,579) (3.7,571) (2.5,701) .00 .48 .18 .40 .18 -.10 -.08 .
4 (3.1,602) (3.0,641) (2.1,730) .14 .36 22 .26 .08 .02 -.10 |
5 (2.9,521) (3.1,515) (2.3,703) .04 .50 .20 .34 .16 .00 -.16 |
6 (2.8,666) (2.9,661) (2.0,732) .06 .40 .26 .24 .20 -.04 -.16
7 (3.8,587) (3.7,629) (2.6,744) .14 .38 .28 .30 .14 -.06 -.08 =
8 (3.4,600) (3.6,590) (2.4,755) .06 .40 .24 .30 .18 -.08 -.10
9 (3.7,718) (3.9,712) (3.1,798) .00 .40 .20 .22 .20 -.02 -.18
10 (3.5,562) (3.4,596) (2.5,725) .20 .28 .26 .30 .06 -.08 .02
Mean .098 .398 .242 .294 144 ~,040 -.104
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Figure Captions

Figure 1. Schematic representation of three alternatives.

Figure 2. Tree representation of the choice among entrees.

Figure 3. An illustration of the inclusion rule x'ny'->x'nz'
(a) as a Venn~-diagram, (b) as a tree.

Figure 4. A preference tree for the choice among modes of transportation.

Figure 5. A preference tree for three alternatives.

Figure 6. Preference trees for four alternatives.

Figure 7. Preference tree for choice among celebrities.

Figure 8. Additive tree (ADDTREE) representation of the similarities
between Swedish political parties.

Figure 9. Preference tree for choice among Swedish political parties.

Figure 10. Preference tree for choice among Italian political parties.
Figure 11. Preference tree for choice among social sciences.

Figure 12. A schematic preference tree for the choice between shades

of gray.
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Figure 1. Schematic representation of three alternatives.
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Figure 2.
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Tree representation of the choice among entrees.
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Figure 4. A preference tree for the choice among modes of transportation.
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Figure 5. A preference tree for three alternatives.
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Sophia Loren

Elizabeth Taylor

Movie Stars

Brigitte Bardot
A.J. Foyi

Carl Yastrzemski

Johnny Unitas

Athletes

Charles DeGaulle
Harold Wilson

Politicians

L.B. Johnson

Preference tree for choice among celbrities.

Figure 7.
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Figure 8. Additive tree (ADDTREE) representation of the similarities
between Swedish political parties.
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Right

Christian Democratic

Conservative

Liberal

Center

Social Democratic

Traditional Communist

Left

Militant Marxist

Preference tree for choice among Swedish political parties.

Figure 9.
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National Right Wing

Liberal

Christian Democratic
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Social Democratic

Left

Socialist

Communist

Preference tree for choice among Italian political parties.

Figure 10.
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Psychology

Education

Sociology

Anthropology

Geography
Political Science

Law

Economic History
Economics

Business Administration
Statistics

Computer Science

Preference tree for choice among social sciences.

Figure 11.
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Prototypical Gray
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Figure 12. A schematic preference tree for the
choice between shades of grav.
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