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.&~ ~ until only a single alternative remainsj Pretree is considerably more parsi-
monious than the more general del o Elimination—by—Aspects (EBA) because
it has at most 2n rather than 2 parameters, where n is the number of choice
alternatives. At the same time, Pretree is much less restrictive than models
(e.g., Luce, 1959) which assume that the strength of preference of x over y
is independent of other alternatives. It is shown that the proposed model,
which is based on random selection of aspects, is also compatible with a
different decision strategy in which the aspects are considered in a fixed

individual and aggregate choice probabilities are
discussed, and an addit nal interpretation of Pretree (and EBA) as an ag-
gregate tmodel is develop . Testable consequences of Pretree are derived,
and necessary and suffici t conditions for the existence of tree represent-
ations for binary choice p babilities are established. The analysis of
several sets of individual d aggregate choice probabilities shows that Pre—
tree fits the observed data a explains the prevalent violations of the
constant ratio rule. Tree repre tations of choice alternatives are con-
structed using both similarity and pr Finally, Pretree Is
applied to the analysis of choice that is constrained by a partition im-
posed on the offered set (e.g., an agenda). It is shown that choice pro-
babilities are unaffected by constraints If and only if the constraints are
compatible with the structure of the tree. The effect of an agenda on in—
dividual choice is investigated experimentally, and Its Implications to
committee decision making and consumer behavior are discussed.
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Preference Trees 3

The analysis of choice behavior has concerned many students of social

science. Choices among political candidates, market products , investment

plans, transportation modes and professional careers, have been investigated

by economists, political scientists and psychologists using a variety of

empirical and theoretical methods. An examination of the empirical litera—

ture indicates that choice behavior is often inconsistent , hierarchical ,

and context dependent.

Inconsistency refers to the observation that people sometimes make different

choices under seemingly identical conditions. Although inconsistency can be

explained as the resul.t of learning, satiation , or change in taste , it

tends to persist even when the effects of these factors are controlled or

minimized. Furthermore, even in an essentially unique choice situation , which

cannot be replicated, people often experience doubt regarding their decisions ,

and feel that in a different state of mind they might have made a different

choice. The observed inconsistency and the experienced uncertainty associated

with choice behavior have led several investigators to conceptualize choice as

a probabilistic process, and to use the concept of choice probability as a

basis for the measurement of strength of preference. (Thurstone, 192fl Luce,

1959; Marschak, 1960).

Choice among many alternatives appears to follow a hierarchical elimination

process. When faced with many alternatives (e.g., job offers , houses , cars)

people appear to eliminate various subsets of alternatives sequentially

according to some hierarchical structure, rather than scanning all the

options itt an exhaustive manner. This strategy is particularly appealing when

the number of alternatives is large and an exhaustive evaluation is either not 

- --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -•~~•- •~~~ ~•-
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4
feasible or very costly in time and effort. Indeed , these considerations have

ted several theorists , notably Simon (1957), to modify the classical criterion

of maximization , and to view the choice process as a search for an acceptable

alternative that satisfies certain criteria. Such a search is naturally

executed by a sequential elimination procedure.

Choice behavior appears to be context dependent. That is , the strength

of preference of x over y depends on the context of the other available alterna-

tives. Furthermore , choice probability depends not only on the values of the

alternatives , but also on their similarity or comparability, see, e.g., Tverskv

(1972 a). An analysis of the structura l relations among the alternatives , there-

fore, is an essential element of any theory which purports to explain the effects

of similarity and context on choice .

The present paper develops a probabilistic , context—dependent choice mode l-—

called preference tree~~based on a hierarchical elimination process. The first

part of the paper illustrates the tree model and investigates its formal

properties and their psycholog ical significance. In the second part of the paper ,

• the mode l is app lied to several sets of choice data that are represented as

preference trees. The problem of constrained choice is investigated in the third

section and the implications of the tree model are discussed in the last section ,

THEORY

in order to motivate and develop the theory of preference trees , we

discuss first the more general mode l of E’limination by aspects , or EBA.

According to thia mode l (Tversky, 1972a, b) each alternative is viewed as a

collection of n~ asurable aspects , and choice is described as a covert process

• of eliminations . At each stage in the process one selects an aspect (from

those included in the available alternatives) with probability that is propor-

tional to its measure . The selection of an aspect eliminates all the
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alternatives that do not include this aspect, and the process continues

until only a single alternative remains. Consider, for example, the choice

of a restaurant for dinner. The first aspect selected may be seafood;

this eliminates all restaurants that do not serve acceptable seafood.

Given the remaining alternatives another aspect, say a price level, is

selected and all alternatives that do not meet this criterion are elim-

inated. The process continues until only one restaurant—that includes

all the selected aspects——remains.

In order to characterize this process in formal terms, some notation

is introduced. Let T — {x,y,z,...} he the total finite set of alternatives

under study, and let A,8,C, denote nonempty subsets of T. Let P(x,A) be

the probability of choosing alternative x from an offered set A. Naturally

ZP(z,A) — I for all ACT, and P(x,A) — 0 for xe~A. For simplicity,
xtA
we write P(x,y) for P(x,{x,y}). Choice probabilities are typically

estimated from relative frequency of selecting x on repeated choices from A.

Next, consider a mapping that associates with each x in T a finite nonempty set

(n,3,...} of elements which are interpreted as the aspects of x. An

alternative x is said to include an aspect ~ whenever n is an element of

x’. The present theory represents choice alternatives as collections of

aspects which denote all valued attributes of the options including quan-

titative attributed (e.g., price, quality) and nominal attributes (e.g.,

automatic transmission on a car, or fried rice on a menu). The present

analysis, however, does not require prior identification of the aspects

associated with each alternative.

For any subset A of T, let A’ be the set of aspects that belong to at
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least one alternative in A, i.e., A’ {nl ncx ’ for some xcA). In particu-

lar, T’ is the family of all, aspects under consideration. For any i in T’,

let As’. {xeA~cstx’) denote the set of all alternatives of A that in—

d ude n. Note that A’ is a set of aspects while A~ is a set of alternatives.

Using these constructs, the EM modal can now be defined as follows.

A family of choice probabilities P(x,A),xcAcT , satisfies EBA if there

exists a non—negative scale u defined on T’ such that for all xCACT

E u (cz)P(x ,An )
(1) P(x ,A) — cscx ’

E u(~ )

This recursive formula, which def ines the EM model , expresses the pro-

bability of choosing x from A as a weighted sum of the probabilities P(x,A.~)

of choosing x from proper subsets of A. It is easy to show that aspects

which are coimnon to all the alternatives under consideration do not affect

choice probability and can, therefore, be discarded.

Insert Figure 1 here

To illustrate the model,consider the case of three alternatives where

A — {x,y,z), and let x’ {cs,$,S ,~~~~ , y’ — (t3 ,e ,u,\ ’
~, and z’ — (~~,3 ,~~,\i ,

see Figure 1. Thus, A • (xl , A@ — (x,v), A~ — k,.~,z’, A~ — ~x,v ,z} ,etc .

Discarding A which is shared by all alternatives and normalizing the scale

u such that u(n) + u(a) + u(’v) + u(S) + u(8) + u(i~) — 1 yields

P(x ,A) — u(~ ) P(x ,A )  + u ( S)P(x
~

Ae) + u~S )P(X.Aç )

— u(ci) + u ( e ) P ( x ,v) + uGS )P (x ,z ) ,  where

______  • .•
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— 
u(a) + u(â) u(x’—y ’)

P(x ,y) u (a) + u(~ ) + u~~) + u(i.’) u(x ’—y ’) + u(y ’—x ’)

This equation for binary choice probabilities coincides with Restle’s ( 1961)

model. According to the EM model, x can be chosen from A (i) if a is

selected first, (ii) if 8 is selected first and then either a or S are

selected later , (iii) if S is selected first and then either a or 0 are

selected later. The probability of choosing x from A, therefore , is the

sum of the probabilities associated with these outcomes.

Since there may be many aspects that are unique to x or coi~ ion to x

and y only, a, 8, etc. should be interpreted as collections of aspects.

However , for the purposes of the present treatment it is possible to corn—

bine, say all the aspects that are unique to x, and treat them as a single

aspect. Formally, for any nonempty proper subset A of T let ~ — {cxjctcx ’for all

xEA and aty’ for any ycT—A }. Thus, A is the set of aspects shared by all

alternatives of A that are not shared by any alternative in T—A, and

{A~AflT # T,~~} is a partition of the set of all aspects into ~~~~ aspect

sets. To avoid additional notation we use a,3 , etc,to denote these aspect

sets and supress the distinction between individual aspects and collections

of aspects.

If all pairs of distinct alternatives in T are aspect—wise disjoint,

i.e., x’~ y’ is null, then P(X~
Aa

) — 1 for any a in x ’, hence Equation (1)

reduces to

(2) P(x A~ • 
cicx ’ u(x)_ where u (x) — E u(a)

‘ ‘ Eu(B) Zu(y)

~cA’ yck

—— - ~~~~~~~~~~~ 
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This is the choice model developed by Luce (1959, 1977). When all choice

probabilities are nonzero, Luce ’s model is equivalent to the assumption

that the ratio P(x,A) /P(y, A) is a constant which depends on x and y but

not on the offered set A. Hence, it is called the constant—rat io model,

abbreviated CRM. This model Is simple and parsimonious; it expresses all

probabilities of choice among n alternatives in terms of a scale values.

(Since the unit of measurement is arbitrary , the number of independent

parameters to be estimated Is one less the number of scale values). The

constant—rat io model, however , fails to account for the effects of sim-

i l a r i ty  between alternatives on choice probability , as shown by several

a uthors , e.g., Debreu (1960). Luce and Suppes (1965), Restle (1961),

Rumelbart and Greeno (1971), Tversky (1972 a). The relevant experimental

studies were reviewed by Luce (1977).

In contrast , EPA provides a natural explanation of the s imi lar i ty

effect. Furthermore , it has several testable consequences that impose

considerable constra ints  on observed choice probabilities and permit a

measurement—free test of a model. The EPA model , however, does not r e s t r ict

the structure of tha aspects in any way, and hence it yields a large num-

ber of scale values (2l
~ - ~) which limits its use .is a scaling model. In

particular . EPA cannot be estimated from binary choice probabilities

since the number of parameters exceeds the number of data points. The

• question arises then whether EPA can be si g n i f ica n t ly  s impl i f ied  by im—

posing some structure on the set of aspects. Stated d i f f e r e n t ly , can we

tormulate an adequate theory of choice that is less res t r ic t ive  than CR11

and more parsimonious than EM~ We can view CR11 as the set—theoretical

-~~~~ —--~~—- -~~----—~
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analogue of a unidimensional representation and EPA as the counterpart of

a high dimensional representation. What then is the analog of low

dia.nsionality in a set—theoretical representation?

In this paper we investigat, the representation of choice alter-natives

as a tree—lik, graph. A graph is a collection of points, called nodes,

some of which are linked directly by lines called edges or links. A

sequence of adjacent links with no repetitions is called a path. A (rooted)

tree is a connected graph without cycles containing a distinguished node

called the root. Thus, any two nodes in a tree are joined by a path, and

no path starts and ends at the same node. For ease of reference, we place

the root at the top of the tree and the terminal nodes at the bottom as in

Figure 2. To interpret a rooted tree as a family of aspect sets, we

associate each terminal node of the tree with a single alternative in T,

and each link of the tree with the set of aspects that are shared by all

the alternatives which include (or follow from) that link and are not

shared by any of the alternatives which do not include that link. Naturally

the length of each link in the tree represents the measure of the respec-

tive set of aspects. Hence, the set of all aspects that belong to a given

alternative, is represented by the path from the root of the tree to the

terminal node associated with the alternative, and the length of the path

represents the overall measure of the alter-native.

Insert Figure 2 here

_ _ _ _  _ _ _ _  ~ - • - • -~ ‘-~~~ - --
~~~~~~~ - - 
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An illustrative example of a rr~’e representation of a menu is presented

in Figure 2. The set of alternatives consists of five entrees: steak ,

roast beef , lamb, sole and trout , that appear as the terminal nodes of

the tree. Thus, the link labelled \ represents the aspects shared by all

meat entrees but not fish, 8 represents the aspects shared by steak and

roast beef but not lamb or fish, and -. represents the unique aspects of

lamb. The names of the alternatives are displayed vertically and the

suggested labels of the clusters (defined by the links) are displayed

horizontally.

A tree representation imposes considerable constraints on the family

T* —{x ’IxcT} of aspect sets associated with a given set of alternatives,

In particular , a tree defines a hierarchical structure on the alternatives

in T induced by associating each link a of the tree with the set

r — xcT~ a€x ’} of all alternatives that include, or follow from , that link .

In Figure 2, for example, T (sole, trout’ and I — ~steak~ . It is
U

easy to ver i fy  that for any two links ~~ in a tree,either T~~T, or

T3~ T or TpT. is empty . The constraints implied by the tree greatly

res t r ic t  the structure under consideration and drastically reduce the

number of parameters from 2~ — 2 (the number of p roper nonemptv subjet s  of T)

to 2n —2 that corresponds to the maximal number of links in a tree with

n terminal n des. To appreciate the nature of the constraints, note that

the paths whic. onnect any three terminal nodes with the root either

all meet at the same node , or two paths join at one node while the th i rd

path joins them at a higher node , i.e., one that is closer to the root.

In Figure 2, for example. ‘steak’ and ‘roast beef’ join first and then

lamb joins them later.

_ —---~~ • ~~~- - - - • - .-~~~~~~ -~~~ 
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I 
This property of trees implies the following inclusion rule: for

all x ,y,z in T,either x ’c~y ’~
,
~’nz’ or x~~~’nx ’~y ’. That is, one out of any

two binary intersections of three alternatives include the other. Equiva—

lently, any subset of T with three elements contains one alternative, say

a, such that z’flx’ — z’~1y ’ which , in turn , is included in x ’r~v ’ .

We denote this relation by (x ,y)z, with or without a comma. Thus, the

t tree in Figure 2 is described as ((steak, roast—beef)lamb) (sole, trout).

Figure 3a illustrates the inclusion rule by a Venn diagram, and Figure

3b displays the corresponding tree .
I

Insert Figures 3a and 3b here

A comparison of ‘igures I and 3a reveals that, under the inclus~~n rule,

two out of the three binary intersections coincide with the triple inter-

section ¼x ’l I z ’ y ’~~z ’ — x’~ y’flz’) ,  hence the number of parameters or

aspect cets reduces in this case from 6 to 4, excluding •\ that represents

• the aspects shared by all three alternatives . The following elementary

result , proved in the mathematical appendix , shows that the inclusion

rule is not only necessary but also sufficient for representation by a tree .

STRU CTURE TRE0R~~1: A family {x’}xeT} of aspect sets is representable by

a tree iff either x ’f ly ’~ x’flz’ or x ’flz’~ x ’flv ’ for all x ,y,z in T.

When the family {x’!xcT} of aspect sets satisfies the inclusion rule,

the process of elimination—by—aspects reduces to elimination—by—tree ,

or EBT for short. That is, one selects a link from the tree (with probability

— - —~~~~~ ~~~L
_________  . - - ---

~ 
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that is proportional to its length) and then eliminates all the alter-na—

tives that do not include the selected link. The same process is then

applied to the selected branch , until only one alternative remains . In

Figure 3, for example, P(x,{x,y,z}) u(cz) + u(8)u(a)/(u(n) + u(8)), and

P(z, {x ,y,z}) — u(y), assuming the measure u is normalized so that - ‘

u(n) + u(s) + u(y) + u(8) 1. Elimination by tree, then, is simply the

application of elimination by aspects to a tree structure. Note that CRM

corresponds to a degenerate tree, or a bush, with only one internal node —

the root.

Hierarchical Elimination

The representation of choice alternatives as a tree sugoests an

alternative decision model in which the tree is viewed as a hierarchy of

choice points.1 This theory, called the hierarchical elimination model or

HEN, can be described as follows. One begins at the top of the tree and

selects first among the major branches, or the links that follow directly

from the root. One then proceeds to the next choice point at the bottom of

the selected link, and the process is repeated until the chosen branch

contains a single alternative. The probability of choosing an alternative

x from an offered set A is the product of the probabilities of selecting

the branches containing x at each stage of the process, and the probability

of selecting a branch is proportional to its overall weight. For example,

the probability of choosing trout from the choice set presented in

Figure 2 equals the probability of selecting fish over meat multiplied

by the probability of choosing trout over sole. Thus, each node in the

tree is treated as a choice point , and one proceeds in order form the top

to the bottom of the hierarchy .

- 
L~~~~~~~~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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To define the hierarchical elimination model in a more formal manner,

let A~ denote the set of alternatives in A tha t include the link a,

i.e., A —  {x€AI cscx’} • Define cz jg if B follows directly from a , i.e.,

A~~~~~~, and ~~~~~~ implies ~~~~~~~ Let u(a) denote the length

of a, and let m(a) be the measure, or the total length, of all the

links that follow from a, including a . In Figure 3b. for example, Oja .

3~B, and m ( O)  — u (~) + u(8) + u(O). If T* is a tree and A CT, A*.{x’jxcA}

is also a tree tha t is referred to as a subtree of T. Naturally, the

relation and the measure u on T* induce corresponding relations and

measures on A*. Finally, for B~~~A, let P(B,A) denote the probability that \

the alternative selected from A is also an element of B, i.e., P(B,A) —

t P(x,A).
xc B

A family of choice probabilities P(x,A),xcAcT. is said to satisfy HEN if

there exists a tree T*, with a measure u, such that the following three

conditions hold

(a) if yjB and 3ln then P(A ,A )  — P(A ,I~~)P(I~~,A )

(3) (b) if y~8 and y la then P(Aa~
A.y) 

— 

II~~(~~~~ , provided P(A , ,A ) ~ 0.P(~~,A )  m~~) 
‘
~ 

“

(c) the above conditions also hold for any subtree A5 of T5, with the

induced structure on A5.

The first condition implies that the probability of selecting x. say,

from T is the product of the probabilities of selecting the branches that

contain x at each junction. This condition is readily testable since it is

formulated directly in terms of choice probability, with no reference to

the scale u. The second condition states that the probabilities of selecting

one branch rather than another at a given junction are proportional to the

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~~~~~~~~~ • • ~.
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weights of the respective branches —— defined as the total length of all

their links. If we view each junction as a pan balance and the weight of

each subtree as mass, then (b) can be interpreted as a weighing process

where the probability of choice among subtrees is proport ional to the i r

mass. The third condition ensures that (a) and (b) apply not only to the

entire tree, but also to any subtree obtained by deleting alternatives

from I. Note that the above definition of hEM , like the definition of

• EBA , excludes in effect the presence of identical alternatives. Thus , we

assume that  any two alternatives have some distinctive aspect~ with

a nonzero measurc, however cnall.

The notion of hierarchical elimination and the idea of elimination—by—tree

represent different conceptions of the choice process that assume a tree

structure . ERT describes P(x,A) as a weighted sum of the prob—

ab ilit lo s P(X
~
Aa) of selecting ~ from the various subsets of A. In REM

on the o ther  hand , Pi~x ,A)js expressed as a product of the probabilities

P (A~ , A ’h . ~~~~~ ‘, of selecting a subtree containing x at each level in the hierarchy .

Cotipa re , for  example , the two formulas for the probability of choosing steak from

the set of entrees I displayed in rigure 2. To simplify the notation we suppress

the scale u and w r i t e  a for  u (tx ) , etc. Furthermore, the scale is normalt~ed so

tha t ~~~~~~~~~~~~~~~~ • 1. Accord ing to EBT , then

P (S t e a k , I )  — a 
~~~~~~~~~~~~~ + c~~+0 ~ ~

whereas accord ing to HEM

P(Steak, T) — (ci+(~+’r+O+\) 
~~~~~~~ ~ ~ 

( a~w
The difference in form reflects a difference in processing strategy . FRI assumes

free access; that is, each aspec t can he ~oIected (as a basis for
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elimination) at any stage of the process. On the other hand, HEN assumes

sequential access; that is, aspects are considered in a fixed hierarchical

fashion. The contrast between models based on random and on sequential

access can also be found in theoretical analyses of memory and pattern

recognition.

It would appear that EBT is applicable to decisions, such as the

selection of a restaurant or the choice of a movie where there is no fixed

sequence of choice points, whereas HEM seems appropriate for decisions that

induce a natural hierarchy of choice points. A student who has to decide

what to do after graduation, for example, is more likely to consider the

alternatives in a hierarchical manner. She may f i rs t  decide whether to go

to graduate school, travel, or take a job. And she may not evaluate in

detail the available graduate schools, travel plans, or job opportunities,

before the initial decision is resolved. The preceding discussion suggests

that EBT and REM capture different decision strategies that might be

followed in different situations. However , the following theorem establishes

a rather surprising result that, despite the difference in mathematical

for-ni and psychological interpretation, the two models are actually equivalent .

EQUIVALENCE THEOREM : EBT and REM are equivalent. That is, any set of

choice probabilities satisfies one model 1ff it satisfies the other.

The proof of the Equivalence Theorem is given in Section II of the Appendix.

It shows that, given a tree T* with a measure u, EBT and REM yield

identical choice probabilities and hence it is impossible to discriminate
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between these strategies on the basis of these data alone. It might be

possible, however, that other data such as verbal protocols, reaction time

or eye movements can be used to distinguish between the two strategies. To

avoid confusion, we shall use the term ‘preference tree’ or ‘Pretree’ to

denote the choice probabilities generated by EBT or by HEM, irrespective

of the particular strategy.

An immediate corollary of the equivalence of EBT and REM is that any

alternating strategy consisting of a mixture of EBT and HEN is also equivalent

to them. For example, a person may choose a restaurant according to EBT but

select an entree according to HEM, or vice versa. It is a remarkable fact

that all the various strategies obtained by alternating EBT and HEM yield

— identical choice probabilities. Thus, Pretree provides a versatile representation

of choice that is compatible with buth random—access and sequential—access strategies

Consequences

We turn now to discuss general properties and testable consequences of the

tree model, starting with the similarity effect. There are two distinct ways

in which the similarity between alternatives affect choice probability. First,

siniilarity ,or the presence of common aspects creates statistical dependence

among alternatives. If x has more in common with y than with Z, for example,

then the addition of x to the set (z,y} tends to hurt the similar alternative y

more than the less similar one z. In the extreme case where x is almost

identical to y, the addition of x will divide the probability of choosing y

by two while leaving the probability of choosing z unchanged .

L 
-- 

- 

• . - j
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Second , similarity facilitates comparison. If x is nero simil ar to y than

to z, and P (y , z) — 1/2 , then P(x,z) w ilt be te’~s extreme than P(x ,y),

i.e., closer to 1/2. Thus, the more similar pair generally y ields a more

extreme choice probability because similarity Uicilitntt’s the comparison

between the altornatives.

To illustra te the effects of similarity, consider a hypothetical examp le

of choice among transportation modes. Suppose the available alternatives

include two airlines a
1 
and a2 , and two trains t

1 
and t ., . Suppose further that

there is no reason to prefer one airline over the other , but one train t, has a

very slight but clear advantage over t
1 

since it makes one fewar stop along

the way. Because the tratn is more comfortable but the plane is faster suppose

one is undecided as to whether to fly or take a train , and hence

P(a1, a2) 1/2 , P(t,,t 1
) — 1 , and P(a1,t 1

) — P(a2,t1
) 1/2.

Let P(x,xyz) denote P(x,(x,y,ri) , It follows at once from CRM that

P(c1, t
1
a
1
a
2
) — 1/3. Introspection suggests , however , that the selection from

(t1,a1,a2
} is likely to be viewed as a choice between a train and a plane ,

whence a
1 
and a ., are treated as one alternative that is compared with t

1 . Conse-

quently, P(t1,t1a1
a
2
) will be close to 1/2, while the two other trinary choice

probabilities will be close to 1/4. The coimn~~ality between a
1 

and a
2. 

there-

fore , produces a statistical dependonc o which increases the relat ive advantage

of the odd alternative t
1 .

Furthermore , CRM implies that if two alternatives are equival ent

in one context , then they are substitutable in any context . That i~ , it

shou ld be pns~ ih1e to stib~ titute one for the other without chang ing choice

probability. Si nce P (a 1, t 1
h a 1/2 and P(t2 , t 1

) 1, we oht.~in by s u b s t i t u t i on

P(t,,a1
) — 1. This result , however , seems iutp l~ ’i~ ih ls’ because the slight
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albeit definite advantage of t
2 
over t

1 
is not likely to eliminate all

conflict in the choice between t
2 
and a. P(t

2
,a

1
), therefore, is expected

to be significantly smaller than one, contrary to CR)!. Further discussions

of this problem, originally presented by Debreu (1960), can be found in

Luce and Suppes (1965, pp. 334—335) and Tverskv (1972 a, pp. 282—284)~

Insert Figure 4 here

Figure 4 represents the above example as a preference tree. It is

easy to verify that, according to the tree model with ~ — B and 6 + n

P(a
1
,a
2
) — P(t

1
,a

1
) — P( t

1
,a2

) — 1/2 , r (t 2 , t 1) — 1 . but P(t2,a2
) — (y4~5)/

(y+26) which approaches 1/2 as y approaches 0. Furthermore, P(t
1
,t

1
a1
a1)

— ~/(2~ + ci) which approaches 1/2 as ci approaches 0. Hence the tree model

provides a simple and parsimonious account of the similarity effects that

are incompatible with CR)!.

The effects of similarity on choice probability can also be explained

by a Thurstonian or a random utility model such as the additive random aspect

model (Tversky , 1972b). In this development each aspect ci is represented

by a random variable V 
~ each x in T is represented by the randoi~ variable

V — , V and , following the random utility model , ?(x ,A) ecual~x ci~ x ~
P (V ~‘1 for all ycA). This model, like EBA , accounts for the observed

dependence among the alternatives in terms of their common aspects that

produce positive correlations among the respective random variables. An

additive random aspect model differs from the present development in that

the aspects are represented by random variables rather than 1w constants,

- —..--‘- ~~~~ —- ~. ________
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and choice is described as a comparison of sums of random variables rather

than as a sequential elimination process. Nevertheless, it was shown

(Tversky, 1972b) that EM, and hence Pretree, is also expressible as a

random utility model, though not necessarily an additive one. A random

utility analog of the tree model, developed by McFadden (1978), is

discussed later .

The following testable properties were derived from EM (see

Tversky l972a ,b; Sattath and Tversky 1976). Since EBT is a special case of

EBA , these properties apply to the tree model as well.

Moderate Stochastic Transitivity: If P(x,y) > 1/2 and P(y,z) > 1/2 then

P(x,z) > min (P(x,y) , P(y , z))).

This is a probabilistic form of the transitivity assumption. Note that the tree

model does not entail the stronger property where ‘m m ’  is replaced by ‘max ’.

Regularity: P(x,A) >P(x,AIjg)

The probability of selecting x from a given offered set cannot be increased

by enlarging that set.

The Multiplicative Inequality: P(x,A flB) >- P(x,A)P(x,B).

The probability of selecting x from M~8 is at least as large as the

probability of choosing x from both A and B in two independent choices.

The properties discussed so far follow from the general EM model. We

turn now to some new properties of binary choice probabilities that characterize

the tree model. To simplify the exposition we introduce the probability

ratio R(x,y) — P (x ,y)/P(y,x), and restrict the discussion to the case where

P(x ,y) ~ 0 so that g(x,v) is always well—defined . The results can be

readily extended to deal with choice probabilities that enual 0 or 1.

- - V :- 
- 
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Consider first the case of three alternatives, and note that any subtree

of three elements has the form portrayed in Figure 5, except for the

permutation of the alternatives and the possibility of vanishing links. We

use the parentheses notation to describe the structure of the tree . e.g.,

the tree in Figure 5 is described by (x’v)z and the tree in Figure ~ by

(a
1a2
) (t

1t~
).

Insert Figure 5 here

Using the notation of Figure 5 it follows at once that R(x .v) — a/S

is more extreme (i.e., further from one) than R(x .z)IR(v ,z) —

Hence any three elements, that form a subtree (xv)z , satisfy the following

trinary condition.

(4) If R(x , v) > I then R(x,v) 
~ 

~

where a strict inenualitv in the hypothesis inpiles strict ineoualities in

the conclusion, and an equality in the hypothesis implies equalities in the

conclusion.

The trinary condition (4) reflects the similarity hypothesis in that

the commonality between alternatives enhances their discriminahilitv. This

is seen most clearly in the case where ~ ~ 
). - ‘~ - .~. and 8+ :~ • ~~, I.e..

R (x ,y) I and R(v,z) — 1, see Figure 5. According to the trinary condition

R(x,y) a/S > (a+~)/(5+6) — R(x,z). Although v and z are pair—wise

equivalent , P(x ,y) exceeds P(x,z) because x shares more aspects with v

_ _  _ _-

~~~~~~~ 
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than with a. Note that when 8 vanishes, R(x,y) — R(x ,z)/R(y,z) as required

by CR14. In this case, where (xy)z , (xz)y and (zy)x all hold we omit the

parentheses altogether and write xyz.

Next, let us consider sets of four alternatives. It is easy to verify

that, up to permutations of alternatives, any subtree of four elements has

one of the two forms displayed in Figure 6, including degenerate forms with

one or more vanishing links.

Insert Figure 6 here

It follows readily that in the tree (xy)(vw) portrayed in Figure 6a

~~~~~~ 

R ( x ,v) — 
(cz + 9)/(y + X )  (cx + O) / (~ + X )  

— 
R (x ,w)

R(y,v) (B + S) / (y  + )~) 
— (S + O)/(S + A )  — 

R(y,w)

If we interpret R(x,v)/R (y , v) as an indirect measure of preference for x over y,

measured relative to a standard v , then the above quarternary condition asserts

that this measure is the same for different standards (v and w) provided the

pairs (x ,y) and (v ,w) belong to distinct clusters.

If thc relation among the four alternatives under considcrat~on ia~ the

form depicted in Figure 6b, that is ( (xy)v)w , then the following quarternary

condition holds.

(6) R (x ,v) — R (y,v) 
= 

(c~—~~ )/y  
= 

(cx~~~~—~~ )/ ~ R(x .v)  — R(v ,v)
R (x ,w) — R (y,w) (ct4 )/S (r ~. s . O — y ) / S  R(x ,w) — R(v ,ti)

Note that under CR)! the quarternary conditions hold for any four alternatives.

p. ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
~~~~ . ~~~~~

_ _ _
~~~~~
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At this point , the reader may suspect that the consideration of more

elaborate tree structures involving larger sets of alternatives will yield

additional independent consequences. However , the following theorem shows

that the trinary and the quarternary conditions are not only necessary

but they are also sufficient to ensure the representation of binary choice

probabilities as a preference tree.

REPRESENTATION THEOREM : A set of nonzero binary choice probabilities

satisfies the tree model with a given structure if f the trinary (4) and

the quarternary (5 & 6) conditions are satisfied relative to that structure .

The theorem shows that if Equations (4), (5) and (6) are satisfied rela—

t ive to some tree structure , then there exists a ratio scale u defined on

that structure such that

u(x’—y ’) u(x’—v ’)P X ,~~ — 
u(x ’—y ’) + u~y ’—x ’J or R(x y) = 

u(y ’—x ’)

Recall that u(x ’—y ’) is the measure of the aspects of x that are not

included in ‘sr , or the length of the path from the terminal node associated

with x to the meeting point of the paths from x and v to the root .

The proof of the Representation Theorem is presented in Section III of

the Appendix. This result shows, in effect. ~iow to construct a preference

tree from binary choice probabilities whenever the necessary conditions

hold. The trinary and quarternary conditions are readily testable——given

any specified tree structure. Moreover they can be used to determine which

structure, if any, is compatible with the data. Recall that at least one

permutation of every triple must satisfy Equation (4). and at least one

- ~~~~~~~~~~~~~~~~~~~ - --- -- ----- -- 
~- - — - -~~~~ - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ L . ~ ---~ - . - - — —.~~~~
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permutation of every quadruple must satisfy Equation (5) or (6). Hence, by

finding the appropriate permutations of all triples and quadruples , any

tree structure that is compat ible with the data will emerge. ‘~~ ~s readily

verified that the scale values (i.e., the length of the links associated

with a particular tree structure) are uniquely determined up to an arbitrary

unit of measurement,except when alIbinary choice probabilities are one—

half. The tree structure , however, is not always unique . That is, a given

set of binary choice probabilities could be compatible with more than one

tree structure. An example of this kind is presented in Section IV of

the Appendix along with a proof of the proposition that the tree structure

is uniquely determined by the set of binary and trinary choice probabilities.

Furthermore , if both binary and trinary choice probabilities are

available, they must satisfy the following conditorts . Suppose the tree

model holds with (xy)~~, sec Figtt rc 5 . then

(7) P(x,z) ~+~- ci+ o/(~4~J ?(x,xyz) and
P(z,x) y P(z,xyz)

(8) P(x ,y) a 
— 

cx+Oct/(cx+3) - ~~x,xyz)

P(y,x) — 
3 ,~ +~j / (~~4t~~) p (y , xyz~

provided all choice probabilities are nonzero Thus, according to the

tree model with (xv)z , the const.mt—ratio rule ($) holds for the adjacent

pair (x,v) but not for the split pair (x,.~). Note that this rule is

violated by (7) in the direction implied by the similarity hypothesis for

- - ~~~~~~~~~~~~~~~~~~~~~~~~ =-~-~.- -
—- - . - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~ --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(xy)z. Since y is closer to x than to z in that structure ( in the sense

that v ’~) x’~ v ’ fl z’),the addition of y to the set (x ,z} reduces the prob—

ability of choosing x proportionally more than the probability of choosing

a. On the other hand , since a is equally distant from x and from y ( in the

sense that x’~ z’ • y’~ a’) the addition of z to the set (x ,y) reduces the

probabilities of choosing x and y by the same factor.

Aggregate Probabilities

So far, we have modeled the process by which an individual chooses among

alternatives.  Because of the d i f f i cu l t i e s  in obtaining independent repeated

choices from the sane individual , most available data consist of the proportions

of ind ividuals who selected the various alternat ives , referred to as group

daca or aggregate probabilities. It should be emphasized that these data do

not pertain to group decision making , they merel y characterize the aggregate

preferences ~f different ind ividuals.

It is well—known tha t most probabilistic models for ind ividual choice

(including CR1’! and EBA) are not preserved by aggregation. That is , group

probabilities could violate the model even though each individual satisfies

it , and vice versa. Consider , for instance , the case of three individuals

1, 2, 3 and three alternatives x, y, a. Suppose the observed choice prob-

abilities P(x,v), P(y,z) and P(z,x) are, respectivel y, .75 , .75 and .15

for individual 1; .15 , .75 and .75 for ind ividual 2; and .75, .15 and .75

for ind ividual 3. The individual choice prob-

abilities all satisfy EBA , but the expected aggregate probabilities .55,

.55 and .55, respectively, violate EM. Henc e, the validity of EM as a

model for individua l choice is neither necessary nor sufficient for its

validity as an aggregate model. Nevertheless, we contend that similar

- z

~ 

- 
_ _ _ _ _ _ _ _ _ _ _ _ _
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princ iples govern both types of choice data , and propose a new interpre-

tation of EM as an aggregate model.

Suppose each individual chooses in accord with the following sequent .

elimina t ion rule. r iven an offered set A , select some (nonetnpty) subset of

A , say B, and eliminate all the alternatives that do not belong to B.

Repeat the process until the selected subset consists of a single alternative .

Let QA
(B) be the proportion of subjects who first selec t B when presented

with the offered set A , i.e., the proportion of subjects who eliminate all

elements of A—B in the first stage. Naturally, iQ
A 
(s

i
) = l~ and QA(A) = 1

B . ~ A

iff A consists of a sing le alternative . Note that Q
A
(B) is an elimination

probability——not a choice probability. The two constructs are related via

the following equation.

(9) P(x,A) = 
~3.cA  I

Thus , the proporti:n of subjects who choose x from A is obtained by su~~ing,

over all proper subsets B~ of A, the proportion of individuals who first select B.
1

multiplied by the proportion of subjects who choose x from the selected subset .

This general elimination model , by itself , does not restric t the observed

choice probabilities because we can always set QA (B) = P(x ,A) If B ‘{ ~~
} ,

and Q
A
(B) = 0 otherwise. Nevertheless, it provides a method for characterizing

probabilistic choice models in terms of the constraints they imposed on the

elimination probabilities.

,- 
~~~~~~~~~~~~
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A famil y of e l iminat ion p robab i l i t i e s , (? A
( B )

~ 
Bc Ac~.T , satisfies

pro~ortic~pality i f f  f or al l  A , B , C , B . ,  C . in T ,

(10) ~~~~ — 
EQT

(B i)

QA
(C) 

~~~~~~

where the sumxnations range , respectively, over all subsets 81, C3 
of T such that

B .fl A — B and C.fl A — C. It is assumed that the denominators are either

both positive or both zero. This condition implies that , for any A~ .T,

the values of are computable from the values of More specifically ,

the percentage of subjects who first select B, when presented with the

offered set A , is proportional to the percentage of subjects , presented with

the total set 1, who first select any subset B~ that includes in addition to

B only elements that do not belong to A.

To illustrate the proportionality condition , consider the choice

among entrees. Let T — (r ,s,t } and A — (r ,t}, where r , s and t denote ,

respectively , roast beef , steak and trout. According to proportionality ,

therefore ,

QA
(t) 

~~~~ 
+ QT

(r,5)
_____ — 

QT
(t) + QT

(t,SJ

Note that in the binary case , where A — {r,t}, QA (r) — P(r ,A ) P(r t).

The rationale behind the proportionality condition is the assumption

that , upon restricting the offered set from T to A , all ind ividuals who

first selected BUC from T, CC.T—A , will now select B from A since the

alternatives of C are no longer available. For examp le , those who first 

- - ~—.-——-- -‘ ----- -- -- — -—~~~~~-— __ _ _ _ 1___~ ~1— 
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selected (r , sl from T will  select roast beef when restricted to A because

now steak is not on the menu. The following theorem shows that the

(aggregate) process described above is compatible with EM.

AGGREGATI ON THE OREN~ A set of aggregate choice probabilities on T are com-

patible with EBA 1ff there exist elimination probabilities on T that satisfy

Equations (9) and (10).

The proof of this theorem is readily reduced to earlier results, see the

Appendix in Tversky (1972a) and Theorem 2 In Tversky (1972b). It shows

tha t if (9) and (10) hold then

P(x ,A) — ~Q (B
.)P(x ,A fl B.)

~Q(B.)

where Q(R. ) — QT
(B.), and the su~miiations range over alt B.CT such that

B .C A is nonempty. This farm , in turn , is showi~ to be equivalent to EBA .

Hence , the Aggregati on Theorem prov ides a new interpretation of EBA as a model

for group data .

It is instructive to compare the above version of the EM model to the

origina l version defined in Equation (I). First , note that the scale Q (B)

is not a measure of the overall value of the alternatives of B. Rather , it

reflects the degree to which they form .i good clust er , as evinced by the pro-

portion of subjects who first selected B when presented with T. The counter-

part of Q (B) in the original version of the EllA model is u~j) , the measure of the

aspects that belong to all alternatives of h , and do not belong to onv alter—

native in T—B .

_ 
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The individual version of the ERA model assumes that at any point in

time one has a fixed ordering of the relevant aspect-sets which, In turn,

induces a (lexicographic) ordering of the available alternatives. However,

at a different point in time , one may be in a different state of mind which

yields different ordering of aspects and alternatives. Indeed , the

stochastic component was introduced into the model to accommodate such momentary

fluctuations. The new aggregate version of EBA assumes that each

individual has a fixed ordering of the relevant aspect—sets , and the

stochastic component of the model is associated with differences between

individuals rather than with changes within an individual. Hence, the former

version explains choice probabilities in terms of an intra—individual distribution

of states of mind , whereas the latter version explains the data in terms of an

inter—individual distribution of tastes.

The EBA model may provide a useful model of aggregate data because the same

principles that give rise to EBA as a model of individual choice appear to

apply to group data. As a case in point , let us reexamine the similarity

effect using the transportation problem discussed earlier. Suppose the

group is divided equally between the train t
1 
and the plane 81, and is also

equally divided between the two airlines a1 and a2. Hence,

P(t
1
,a1

) P(a
1
,a2

) 1/2

We propose that the proportion of individuals who choose the train t1 from

the offered set (t1,a1,a2} lies between 1/2 and 1/3 because the addition of

a2 to (t1,a1}is likely to affect those who chose a1 more than those who chose t1.

More generally, the addition of a new alternative or product (e.g., a low—tar

cigarette or a liberal candidate)hurts similar alternatives (e.g., other low—tar
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c igare tt es , and liberal candida tes) mo re than less similar alternatives.

Furthermore , as in the case of individual choice , the similarity

be tween options appears to enhance the discrimination between them.

Suppose that each individual prefers train t2 over train t1 since it is

slightly faster. Suppose further that the group is equally divided

between a
~ 

and t1, so that P(a1, t1) 1/2. Contrary to CR14 which implies 
—

P(t2,a1) — 1, we predict that P(t2,a1) is likely to be be tween 1/2 and 1

because many of those who prefer a
~ 

over t1 are not likely to switch from - 
—

a plane to a train because of the slight , albeit clear , advantage of the 
—

faster train. Since the same correlational pattern emerges from both

individual and group data, the EM model may be applicable to both, although

the assumptions and the parameters of the model have different interpretations

in the two cases.

Consider , for examp le, the assumption that the alternative set

T (a1,a21 t1
} in the transportation problem has a tree structure (a1 a2)t1.

In the individual version , the tree assumption implies that any aspect that

is shared by the train and any one of the airlines is also shared by the

other airline . In the aggregate case, the tree assumption entails that both

QT(al,tl) and QT(a ),tl) vanish , that is, nobody eliminates from T one airline

only. Hence, if all individuals share the same tree structure but not necessarily

the same preferences, the aggregate data will generally exhibit the same

qualitative structure . The ;ictual measure, der ived from aggregate data however,

does not relate to the measures derived from individual data in any simple manner.

hIII__ 
,.
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APPLICATIONS

In this section we apply the tree model to several sets of individual

and aggregate choice probabilities reported in the literature , construct

tree representations for these data and test Pretree against CR14. As was

demonstrated in the previous section, the trinary and the quarternary

conditions provide necessary and sufficient conditions for the representation

of binary choice probabilities as a preference tree. For error—free data ,

therefore, these conditions can be readily applied to find a tree structure

that is compatible with the data. Since data are fallible, however, the

construction of the most appropriate tree structure, the estimation of

link—lengths and the evaluation of the adequacy of the tree model, pose

non—trivial computational and statistical problems.

In the present paper , we do not develop a comprehensive solution to

the construction , estimation, and evaluation problems . Instead , we rely

on independent judgments (e.g., similarity data) for the construction of

the tree, and employ standard iterative maximization methods to estimate

its parameters. To evaluate goodness—of—fit we test the tree model

assuming the hypothesized tree structure , against the binary version of

Luce ’s constant—ratio model.

It has been shown by Luce (1959) that the binary CR14. accord ing to

which P(x ,v) • v(x)/(v(x)+v(v)),is essentially equivalent to the following

product rule

(11) P(x ,y)P(y,z)P(z,x) — P(x ,z ) P ( z ,v)P(v x), i.e., R(x.v ) R ( v ,z ) R~~~z) • I

Thus , any two intransitive cycles through the same set of alternatives

are equiprobable. On the other hand , the trinarv condition (4) yields

~ 

- - ~~~~~~~
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( 12) If P(x ,y) > ½ and (xy)z then R(x,y )R(y,z)R~4z~) 1,

or P (x ,y)P(y, z)P(z ,x) > P(x ,z)P(z ,y)P(y,x).

Any hypothesized tree structure, therefore, can be examined t o  t e s t

whether the product rule is violated in the predicted direction.

The analysis of the data proceeds as follows. We start with a given

set of individual or collective pair comparison data along with a hypothesized

tree structure , derived from a priori considerations or inferred from

other data. Maximum likelihood estimates for both CR14 and Pretree are obtained

using Chandler ’s (1969) iterative program (STEPIT), and the two models are

compared via a likelihood ratio test. In addition , we perform an estimate—

free comparison of the two models , by contrasting the product rule(ll) and

the trinary inequality( l2) .

Choice bet~een_Celebri~ies

Rumelhart and Greeno (1971) investigated the effects of similarity on

choice probability, and compared the choice models of Luce (1959) and Restle

(1961). The stimuli were 9 celebrities including three politicians (L. B.

Johnson. ~arold Wilson, Charles DeGaulle) , three athletes (Johnny ljnitas, Carl

?astrzemski, A. J. Foyt), and three movie stars (Brigitte Rardot , Elizabe th

Taylor , Sophia Loren). The subjects (N—234) were presented with all 36 pairs

of names and were instructed to choose for each pair “the person with whom

they would rather spend an hour discussing a topic of their choosing”.

On the basis of a test for good ness—of—fi t ,  applied to the aggregate

choice probabilities, Ruineihart and Greeno (197 1) were able to reject

Luce ’s model (~
2 (28) — 78.2  , p < .001) but not a particular version of

Restle’s model (~
2(19) 21.9 , p ‘.25). Recall that Restle ’s model coinc ides

with the binary form of the EM model.

- L ~~~~~~~~~~~~~~~~~~~~ _ _
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The list of celebrities used in this study naturally suggests the foil—

owing tree structure with three branches corresponding to the three d i f fe ren t

occupations represented in the list: (LBJ, NW, CDG ) (JU , CY , AJF) (BB , ET ,SL).
2

The estimates of the parameters of the tree, displayed in Figure 7 . are

identical to those obtained by Edgell, Geis].er and Zinnes (1973), who

corrected the ‘procedure used by Rumeihart and Greeno (1971) and proposed a

simplification of the modal which amounts to the above tree structure. The

tree model appears to fit the data quite well (~
2(25) — 30.0 , p ‘- .20),

although it has only three more parameters than Luce’s model.

Insert Figure 7 here

— Since Pretree includes CR14, th e likelihood—ratio test can be used to

test and compare them . The test is based on the fact that if Model 1 is

valid and includes Model 2 then, under the standard assumptions, —2~n(L1/L2)

has a x 2 distribution with d1—d., degrees of freedom, where L1 and L1 denote

the likelihood functions of models 1 and 2 , while d1 and d2 denote the

respective numbers of parameters. If the inclusive model is saturated , i.e.,

imposes no constraints, then the above test is equivalent to the common -
~~~

test for goodness of fit. When the likelihood—ratio test is applied to the

present data , CR14 is rejected in favor of Pretree , ~~(3) — 48.2 ,p< .001.

The average absolute deviation between predicted and observed probabi l i t ies

is .036 for CR14 and .023 for Pretree.

It should be noted (see Falmagne , Reference Note 1, 1979) that  the

test statistics for Pretree does not have an exact ~ distribution because

the parameter space associated with the model is constrained not only by

~~~~~~

- - -
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the equations implied by the quarternary conditions, but also by the

trinary inequality. The result, however , is a stricter test of Pretree

since the inequalities imposed on the solution can only reduce goodness of

fit.

Since the product rule (11) and the trinary inequality (12) are the

key binary properties that give rise, respectively , to CR14 and Pretree, it

is instructive to compare them directly .  Using the tree structure presented

in Figure 7 , the trinary inequality applies in 9 x 6 — 54 triples and it is

satisfied in 39Z of the cases. Because the various triples are not indepen-

dent , no simple statistical test is readily available. To obtain some

indication about the size of the effect. we computed the value of R(xyz)

R(x,y)R(y,z)R(z ,x) for all triples satisfy ing (xy)z and R(x ,y) > 1. The

median of these values equals 1.40, and the interquarcile range is (1.13, 1.68).

Recall that under CR)! the trinarv inequality is expected to hold in 50% of

the cases, and the median R(xyz) should equal one. The summary statistics

for  all the studies in this section, are presented in Table 1.

~‘olitica1 Choice

— The next three data sets were obtained from Lennart Sjóberg ,who collected

both similarity and preference data for several sets of stimuli, and showed

a positive correlation between interstimulus distances (derived from multi—

dimensional scaling) and the standard deviation of utility differences

(derived from a Thurstonian model). Sjoberg(1977) and Sjbberg and Capozza (l~ 75)

conducted two parallel studies of preferences for Swedish and Italian

political parties . In these experiments, 215 Swedish students and 195

- 
- Italian students were presented with all pairs of the seven leading Swedish

i ~~~~~~~~~~~~~~~ ~~~--- -— —~~---
- —
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and Italian parties ,respectively. The subjects first rated the similarity

between all 21 pairs of parties on a scale from 1 to 9, and then indicated

for each pair which party they prefer. In addition , the subjects were

presented with all 35 triples of parties and asked to choose one party from

each triple.

The average similarities between the parties were first used to

construct an additive similarity tree according to the ADDTREE method

developed by Sattath and Tversky (1977). In this construction, which

generalizes the familiar hierarchical clustering scheme, the stimuli are

represented as terminal nodes in a tree so that the dissimilarity between

stimuli corresponds to the length of the path that joins them. For illustration ,

we present in Figure 8 the additive tree (ADDTREE) solution for the sim-

ilarities between the Swedish parties. The product—moment correlation be-

tween rated similarities and path—length is — .96. Assuming the tree structure

der ived from ADDTREE , Chandler ’s (1969) STEPIT program was employed to

search for maximum likelihood estimates of the parameters of Pretree- —using

the observed choice probabilities. The obtained preference tree for the

Swedish data is presented in Figures 9, and the preference tree for the

Italian data is presented in Figure 10.

Insert Figures 8, 9, 10 here

Several comments about the relations between similarity and preference

trees are in order. First, the rules for computing dissimilarity and preference

from a given tree are quite different . The dissimilarity between x and v
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is represented by the length of the path (i.e., the sum of the links)

that connects x and y, while the degree of preference R(x,y) is rep-

resented by the ratio of the respective paths. Second, the numerical

estimates of the links in the two representations tend to differ

systematically. In general, the distances between the root and the

terminal nodes vary much more in a preference tree (due to the presence

of extreme choice probabilities) than in a similarity tree. Furthermore, some

links that appear in the similarity tree sometimes vanish in the estimation

of Pretree (as can be seen by comparing Figures 8 and 9) indicating the

presence of aspects that affect judged similarity, but not choice probability .

Third, the root in a similarity tree is essentially arbitrary since the

distance between nodes is unaffected by the choice of root. The probability

of choice in Pretree , however , is highly sensitive to the choice of a root.

Consequently, several alternative roots were tried and the best—fitting

structure was selected in each case.

Tests of goodness of fit indicate that Pretree provides an excellent

account of the Swedish data x2(ll) — 5.8, p > .5, with an average absolute

deviation of .012, compared with x 2 (15) — 49.1 , p < .001 , with an avera~e

absolute deviation or .038 for CR14. Pretree also provides a reasonable

account of the Italian data ~
2(11) — 19.5, p > .05, with an average absolute

deviation of .023, compared with x2(15) — 67.6, p < .001 , with an average

absolute deviation of .042 for CR)!. The applications of the likelihood ratio

test indicate that Pretree fits these data significantly better than CR)!;

the test statistics are x 2 (4) — 43.3, p < .001 , for the Swed ish data and 

~~~~~~~~~~~~ 
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— 43.1, p < .001,- - for the Italian data. Furthermore , for the Swedish

data, the trinary inequality is satisfied in 96% of the cases (N — 23), the

median R(xyz) equals 1.73, and the interquartile range is (1.38, 2.27).

For the Italian data, the trinary inequality is satisfied in 78% of the

cases (N — 18), the median R(xyz) equals 1.74, and the interquartile range

is (.93, 2.78).

The availability of both binary and trinary probabilities in the political

studies permitted an additional test of Pretree. Recall from (7) that the

tree model implies

P(x ,z) P(x ,xyz)
provided (xy)z,

P(z ,x) P(z,xyz)

while CR)! implies that the two ratios are equal. For the Swedish data, the

above inequality is satisfied in 877. of the cases (N — 46) , the median

P(x ,z)P( z ,xyz)/P(z,x)P(x ,xyz) equals 1.28, and the interquartile range is

(1.12 , 1.64) . For the Italian data, the inequality is satisfied in 81% of the

cases (N — 36), the median of the above product ratio equals 1.19, and the

ittterquartile range is (.86, 2.28). Note that under CR)!

P(x ,z)P(z ,xyz)fP(z,x)P(x ,xyz) u(x)u(z)/u(z)u(x) — 1.

Choice between Academic Disciplines

In a third study conducted by Sj~berg (1977) , the alternatives con--

sisted of the following twelve academic disciplines that comprise the social

science program at the University of Goteborg: Psychology , Education,

— 
Sociology, Anthropology, Geography , Political Science, Law, Economic History

Economics, Business Administration, Statistics, Computer Science. A group

of 85 students from that university first rated the similarity between

all pairs of disciplines on a 9 point scale, and then tndicated for each
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of the 66 pairs the discipline they prefer .

As in the two preceding analyses, the tree structure was obtained via

ADDTREE , and STEPIT was employed to search for maximum likelihood estimates

of the parameters. The resulting preference tree for the choice between

the twelve social sciences is presented in Figure 11.

Insert Figure 11 here

A x’ test for goodness of fit yields x ’(SO) — 45.5. p > .25 for Pretree ,

compared with x2 (55) — 69.1, p > .05, for CR)!, and the likelihood ratio

test rejects CR)! in favor of Pretree , x2(5) — 23.6, p < .001. The average

absolute deviation between predicted and observed probabilities is .025

for Preetree and .035 for CR)!. Finally , the trinary inequality is satisfied

in 84% of the cases (N 86), the median R(xyz) equals 1.52 , and the inter—

quartile range is (1.21 , 1.86).

Choice Between Shades of Gray

In a classic study of unfolding theory, Coombs (1958) used as stimuli

12 patches of grey that vary in brightness. Th~ subjects were presented

with all possible sets of 4 stimuli, and were asked to rank them from the

most to the least representative grey . Binary choice probabilities were

estimated for each subject by the proportion of rank—orders in which one

stimulus was ranked above the other. The data provided strong support for

Cooinb ’s probabilistic unfolding model in which the stimuli are represented
as random variables, and the derived choice probabilities reflect momentary

fluctuations in one’s perceptions of the stimuli as well as in one’s notion

of the ideal gray.

L1:II~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _____  
~~~.
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Inser t Figure 12 here

To represent Coombs ’ data as a tree, consider a line representing

variation in brightness (with white and black at the two endpoints) that is

folded in the middle at a point corresponding to the prototypical gray. The

stimuli can now be represented as small branches stenm~ing from this folded line ,

see Figure 12. Because of the large number of zeros and ones in these data ,we

did not attempt to estimate the tree. Instead , we inferred the characteristic

folding point of each subject from the data and used the induced tree structure

to compare, separately for each subject, the trinary inequality against the

product rule, letting P(x,y) denote the probability that x is judged to be farther

than y from the prototypical gray . Triples involving zero probability were

excluded from the analysis. The results for each one of the four subjects,

presented in the bottom part of Table 1, show that the product rule ~11)

is violated in the manner implied by the trinarv ineoualitv (12~

Insert Table 1 here

Table I summarizes the analyses of the seudies discussed in th i s  section .

The left—hand part of the table describes the statistics for the trinary

inequality, where N is the number of tested triples. is the percentage

of triples that confirm the trinarv inequality , R is the median value of

R(xvz) — R(x,y)R(y,z)R(z,x), while R
1 

and R
3 
are the first and third quartiles

of the distribution of R (xvz). The right—hand part of Table 1 describes

- - - -~~~~~~~~~
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the measures of goodness of f i t  for both CR)! and Pretree,where d is the

average absolute deviation between observed and predicted choice probabilities.

Tree Representation of Choice Data

The examination of the trinary inequality provides an estimate—

free comparison of CR)! and Pretree. The results described in Table 1 show

that, in all data sets, CR)! is violated in the direction implied by the

similarity hypothesis and the assumed tree structure. The statistical

tests for the correspondence between models and data indicate that

Pretree offers an adequate account of the data that is significantly better

than the account offered by CR)!. Apparently , the introduction of a few

additional parameters , that correspond to aspects shared by some of the

alternatives, results in a substan lal improvement in goodness of fit.

Furthermore , Pretree yields interpretable hierarchical representations of

the alternatives under study along with the measures of the relevant

aspect sets.

The preceding analyses relied on similarity data or on ~~ . ioii t asla4..deT-

ations to construct the tree structure, and used choice probabilities to

test the model and to estimate the tree. This procedure avoids the diff i—

culty involved in using the same data for constructing the tree and for

testing its validity. It is also attractive because similarity data are

easily obtained , and because they are typically more stab le and less variable

than preferences. An examination of Sjöberg ’s data , for example, shows that

subjects who reveal markedly different preferences tend , nevertheless, to

exhibit considerable agreement in judgments of similarity . The only

drawback of this procedure is that it fails to produce the best tree

whenever the similarities and the preferences follow different structures. The

- - -
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development of an effective algorithm for constructing a tree from fallible

preferences and the development of appropriate estimation and testing pro-

cedures remain open problems for future research.

The correspondence between the observed and the predicted choice prob—

abilities indicate that the tree structures inferred from judgments of

similarity generally agree with the structures implied by the observed

choice probabilities. This result supports the notion of correspondence

between similarity and preference structures, originated by Coombs (1964),

and underscores the potential use of similarity scaling technioues in the

analysis of choice behavior . Other analyses of the relations between the

representations of similarity and of preference , based on multJdjmensjonal

s aling , are reported in Carroll (1972), Nvgren and Jones (1977).

Sjöberg (1977) and Steffire (1972).
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CONSTRAINED CHOICE AND THE EFFECT OF ACENDA

Th. preceding development, like other models of choice, deals

with the selection of a single element from some offered set. the

present section investigates choice that is constrained 1w a partition

imposed on the offered set. For example. the choice o~ an alternative

from the set {x,v .v.w} can be constrained by the requirement to choose

first between {x ,v~ and (v ,w~ and then to choose a sing le element from the

selected pair. Constraints of this type are ;lte common~ they could he

imposed l v  others, induced by circumstancos ,or adorted for conven i ence.

For example , the decision regarding a new appointm ent is sometime s

introduced as an initial decision between a senior or a ¶unit’r appointment ,

followed by .i later choice among the respect lye hinior or senior candidates .

Deadlines and other t ime limits provide another ‘~outei ’  ~f ~~~~ ç(

Suppose the alternatives of AC ~
‘. for e~amplo . are no longer  ava~ IaI’le

after Ap ril let. Prior to this date, therefore , one has to decide whothoF

to choose an element of A , or to select an elemen t from r — A ,tn which case

the choice of a particular element can be delayed . The selec t ion ot an

agenda and the grouping of opt ions for voting ~wh I ch have long seen

recogn t ~ed as tnf ~ien t la.l pro codur es~ are a n t  l i a r  oxan ~’ os ~~~~ ~‘xt t’~ na

constraints.

Ther~- are mans’ ci tuSt ions • however , in wh I ~~~ ;~ per son con s ta I us

his .I~~~ ~~ to reduce cost or effort . Consider  • I ot -  • a conctimor who

intend s to purchase one tom from a set ~ • v ,v • w of -‘ ~‘ompet ~~ produc t

Suppose there are two stores in town that are quite -Ustant rom each ot hot-

one store ca r r i e s  out  v ~ and r , wi~ 110 he other  car t -  irs on l v  v and v .

-
- -- - —
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such circumstances, the consumer is likely to select first a store and then

a product , because he has to decide which store to enter but he does not have

to choose a produc t before entering the store. Similarly, people typically

select a restaurant first and an entree later —— even when they are
thoroughly familiar with the available menus. Thus, the need to make some

decisions (e.g., of a restaurant)at an early stage and the conmton tendency

4 to dela” decisions (e.g., of an entree) to a later stage constrain the

.4 sequer.ce of choices leading to the selected alternative .

The effect of an agenda on group decision making has been investigated

by an economist, Charles R. Plott, and a lawyer , Michael E. Levine, from

Caltech. Levine and Plott (1977) conducted an ingenious study of a flying

club , to which they belong , whose members had to decide on the size and

composition of the club ’s aircraft fleet. There were a few hundred competing

alternatives, and the group was to meet once and decide by a majority vote.

Levine and Plott constructed an agenda designed to maximize the chances

of selecting the alternative they preferred . The group followed this agenda ,

and, indeed , chose the option favored by the authors. A second ~tudv

demonstrated the impact of agenda under controlled laboratory conditions.

Plott and Levine (1978) developed a model for individua l voting behavior

and used it ~o construct for each alternative an agenda for the group,

designed to enhance the selection of that alternative . The results indic ate

that , although the specif ic  model was not f u l ly  supported . t l~c hit ’o~~’ l

agenda had a substantial effect on group choice .

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _  _ _ _ _  
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A Theoretical Analysis

An agenda or a cons traint imposed on an off ered set imposes a hierarch ical

structure or a tree on that set. Supposo , for example, that (B ,C,D} is

a partition of A: hence, under the constratht [[B1[CJ](D]the choice of an

alternative from A proceeds by first choosing between D and BLJC and then

choosing between B and C——if D is eliminated in the first stage. It is

essential to distinguish here between the intrinsic tree structure (defined

in terms of the relations among the aspects that characterize the alternatives)

and the imposed structure that characterizes the external constraints. The

choice among (x ,v ,v,w}, for examp le, whose aspects form the tree (xy)(vw)

may be constrained by the requirement to choose first between {x,w } and

jy ,v}. To avoid confusion we use parentheses, e.g., (xy)v, to characterize

the intrinsic tree, and brackets, e.g., txy]z , to denote the imposed

constraints.

Let F(x,[A](SJ), xcA , A I1I~ — ~~~, denote the probability of selecting

x from A UB subject to the constraint of choosing first between A and B.

The present treatment is based on the following assumption .

(13) P(x ,[A1[B]) P(x,A) P(A ,ALIB) — P(x,A~ ~ P(v.AU R ).
V LA

That is, the probability of choosing x under [A1 [B1 is decomposable into two

independent choices: the choice of x from A , and the choice of A from

[A] (B1 . Furthermore , the latter choice is reduced to the selection of any

element of A from the offered set AUB. Hence for A (x ,v ’ and B — (v.w~ ,

P(x ,Ixy l [vw]) P(x,v)(P(x,xyvw) + P(y,xvvw)). Equation (13) does nor

assume any choice model , it merely expresses the probability of a constrained

choice in terms of the probabilities of non—constrained choices.

-
- —~~ 
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A choice model is called invariant if the probability of choice is

unaffected by constraints imposed on offered sets. Thus, invariance

implies that P(x,(A ] ( B ] )  — P(x , AUB) for all xcAUB. It is easy to see

that CRN is invariant. In fact, the invariance condition is equivalent to

Luce’s (1959) choice axiom, which asserts that P(x,A) — P(x ,3) P(B ,A)

whenever BCA and P(x ,A) > 0. Consequently, Luce’s model is the only

invariant theory of choice; all other models violate invariance in one

forts or another!

Two hierarchical structures or trees defined on the same set of

alternatives are called compatible 1ff there exists a third tree, def ined

on the same alternatives,which is a refinement of both. Refinement is

used here in a non—strict sense so that every tree is a refinement of it—

self. Thus, ( (xy)z) (uvw ) is compatible with (xyz)((uv)w) because both

are coarsenings of ((xy)z)((uv)w) . On the other hand , (xy)z and (xz)y are

incompatible since there is no tree that is a refinement of both. Note

that the (degenerate) tree structure implied by CB}.i is compatible with any

tree. The relation between the intrinsic preference tree and the imposed

agenda is described in the following theorem.

COMPATIBILITY THEOREM: If (13) holds and Pretree is valid then a set of

choice probabilities is unaffected y constraints 1ff the constraints are

compatible with the structure of the tree.

A proof of the theorem is given in Section V of the Appendix ; the

following discussion explores the simplest example of the effect of agenda .

Suppose T{x ,y, z }, Pretree holds and the intrinsic tree is (xy)z.
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Let c*,8 and y denote the measures of the unique aspects of x, y and z,

respectively, and let ~ denote the measure of the aspects shared by x and

y, see Figure 5. Setting a+e+-y-+e — 1, yields

P(x ,xyz) — ~ + ~~ /(cz-4fl), P(y,xyz) — ~+A~~I(c,-+s), P(z ,xyz)

There are three non—trivial constraints in this case. The first ,

(xy lz, coincides with the tree structure, hence it does not influence choice

probability. The other two partitions, [x z ~y and [vz )x, are svnvnetric with

respect to x and ‘i , hence we investigate only the former. By (13), we have

P(y ,[xz )y) — P(y , xyz). More generally, an imposed partition , e.g., [xz ly,

does not change the probability of selecting the isolated alternative , e.g., s.’.

The imposed constraint, however , can have a substantial effect on the

probability of selecting other alternatives, e.g., x and z. Since

P(x ,[xz ly) — P(x,z) (P(x ,xyz) + P(z,xyz)),

P(x ,[xz ]y) ~P(x ,xvz) iff

P(z,xyz )  P (x ,z) P(x ,xyz) P( z ,x).

In the tree model, with (xy)z ,this inequality is always satisfied , see Equation

H (7) , because

P(x ,z) a+t~ a/(cv48) P (x ,xyz)
P(z ,x) y y P(z,xvz)

hence, P(x , (xz jy) P(x ,xyz). Imposing the partition (xz~v , therefore , on

the tree (xy)z is beneficial to x, immaterial for ‘.‘, and harmful to

To interpret this result , recall that x and v share more aspects with

each other than with z. In the absence of external constrai~ s, a benefits

L-_____ 
____ ____ 
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directly from the competition between x and y —— as demonstrated by the
above inequality which shows that x loses proportionally more than z by the 

—

addition of y to the set {x,z} . The constraint [xzjv reduces, in effec t, the

direct competition between x and v, and enhances x at the expense of z.

A numerical example illustrates this effect. Suppose a .0001,

— .0999, e — .4 and ys .5. In a free choice, therefore , P (z , xyz) .5,

P(y ,xyz ) — .4995 and P(x,x-vz) — .0005 because x is practically dominated

by y. Ut~~er the constraint Exzjy, however , the probabilities of choosing

z, y and x, respectively, are .2761, .4995 and .2244. Thus, the imposed

partition increases the probability of choosing x from .0005 to .2244

This occurs because x fares well against z , but performs badly against

y. In a regular choice where x is compared directly to y, its chances are

negligible. Under the partition (xz]v , however , these chances improve

greatly because there is an even chance to eliminate y in the first stage,

and a close—to—even chance to eliminate z In the second stage.

The above treatment of constrained choice should be viewed as a

first approximation because its assumptions probably do not always hold .

First, the alternatives in question may not form a tree. Second , the

independence condition , embodied in (13), may fail in many situations.

Finally, the probability of selecting A over B may not equal ~~P(x,AU 1)

— particularly when A and B have a different number of elements that could

induce a bias to choose the larger or the smaller set. Nevertheless, the

proposed model appears to provide a promising method for the analysis of

constrained choice.

- ,,, .~. _-.~ - -
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Constrained Choices among Prospects and Applicants

The present experiment investigates the effect of agenda on ind-

ividual choice, and tests the implications of the preceding analysis. Two

parallel studies are reported using hypothetical prospects (Stud y I )  and

college applicants (Study II) as choice alternatives. Each prospect was

described as p% chance to win $a and (100 — p)Z chance to win nothing ,

denoted ($a,p%). Each applicant was characterized by a high school grade

point average (CPA) and an average score on the Scholastic Achievement

Test (SAT). The subjects were reminded that the SAT has a maximum of 800 with

an average of about 500, and that GPA is computed by letting A 4,

B — 3, etc.

One hundred students from Stanford University participated in e&,~h

of the two studies. Every subject was presented individually with 10 triples

of alternatives, each displayed on a separate card . Each triple was divided

into a ~~~~ of alternatives and an odd alternative, and the subject was

instructed to decide first whether he or she preferred the odd alternative

of one of the members of the pair. If the odd alternative was selected ,

the elements of the triple were not considered again. If the pair was

selected , the subject was given an opportunity to choose between its

members after the presentation of all ten triples. The delay was designed

to reduce the dependence between the trinarv and the binary choices.

The subjects in Study I were asked to imagine that they were actually

faced with the choice between the displayed prospects , and to indicate

4 
..— —~~~~ —--.,.- - ->
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the decision they would have made in each case. The subjects in Study II

were asked to select, from each triple, the applicant that they preferred .

Subjects were reminded that their task was to express their preferences

rather than predict which applicant was most likely to be admitted to college.

The participants in both studies were asked to consider each choice carefully

and to treat each triple as a separate choice problem.

The alternatives in each triple, denoted x ,y , z, were constructed so that

(I) x and y are very similar, (ii) z is not very similar to either x or y,

(iii) the advantage of y over x on one dimension appears greater than the

advantage of x over y on the other dimension, so that y is preferable to x.

In Study T , z is a sure prospect while x and y are risky prospects with

similar probabilities and outcomes, and with y superior to x in expected value.

For example, x — ($40, 75%), y — ($50, 70%) and z is $25 for sure , denoted

($25). In Study II, x and y are applicants with relatively high GPA and

moderate SAT, while z is an applicant with a relatively low CPA and fairly

high SAT. For example, x — (3.5, 562), y — (3.4, 596) and a — (2.5, 725).

The results of a pilot study indicated that one—tenth of a point on the CPA

scale is roughly equivalent to twenty SAT points. Accord ing to this criterion

for overall quality, applicant y is’berter’ than x in all cases. All triples

of prospects and applicants are displayed in Table 2.

— The present experiment was designed to compare choice under [xy)z with

choice under (xz]y. Hence, for each triple , one—half of the subjects had

to choose f irst between the pair (x y) and a , while the remaining one—half

had to choose f irs t be tween the pair (x ,z) and y. Each subject made five



Preference Trees

49

choices under (xy)z and five choices under (xz)y. The order of triples and

constraints, as well as the positions of the option cards (i.e., left, center ,

right) were all counterbalanced .

Because alternatives x and y have much more in common with each other

than with z , the tree structure that best approximates the triples is (xy)z.

Hence, the constraint (xy]~ is compatible with the natural structure of the

alternatives, while the constraint ~xz]y is not. The preceding analysis

implies that the latter should enhance the choice of x, hinder the choice of

a. and have no substantial effect on the choice of y. Stated formally,

d(x) — P(x ,tx~jy) — P(x,fxy]z)-0

d(y) P(y,[xz]y) — P(y,[xy]z) 0

d(z) P(z ,[xz]y) — P(z,(xy]z) < 0

Obviously, in the absence of any effec t due to the imposed cons traints d(x) —

d(y) d(z) 0. The proportions of subjects that chose x and y in each

triple under the two constraints are presented in Table 2, along with the

values of d(x), d(y) and d(z) defined above.

Insert Table 2 here

_ _ _ _ _  
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The results reported in Table 2 tend to confirm the predicted

pattern of choices. In both studies the values of d(x) are all positive

while the values of d(z) are negative with a few small exceptions.

Furthermore, in both Studies I and II the means of d(x) are significantly

positive,yielding t(9) — 9.2 and t(9) 8.6, respectively, p < .001, while

the means of d(z) are significantly negative, yielding t(9) — —3.0, p < .05,

in Study I, and t(9) — 5.5, p < .001 in Study II. The means of d(y) were

also negative,yielding t(9) — —2.3 and t(9) — —2.8,respectively, .Ol<p < .05.

Hence , the shift from :he natural constraint [xvlz to the constraint [x:l y

increases the chances of x and decreases the chances of z and , to a

lesser extent, of y. The latter effect,which departs from the predicted

pattern,may reflect a response bias against the odd alternative.

The pattern of results deucribed in Table 2 seems to exclude two

alternative simple models that produce an agenda effect. Suppose choices

are made at random so that one chooses between the odd and the paired

alternatives with equal probability. As a consequence,

d(x) - P(x ,[xz]y) - P(x,txy]z) — ½ 5 ½ _ ½ x ½  0

d(y) P(y [xz]y) — P(y,[xv ]z) ½— ½ x ½ — ¼ > 0 , and

d(z) P(z ,fxz]y) — P(z,[xy]z) — ‘i~~½—½ — —¼~~0

which are incompatible with the experimental findings.

The random choice model gives a distinct advantage to the odd alternative,

hence its failure suggests a different model according to which the odd

alternative suffers a setback , perhaps because people prefer to delay the

choice and avoid commitment. This hypothesis, however , implies

d (x )  0 , d ( y )  < 0 , and d (z) > 0 — — again contrary to the data.
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Since all triples have the same structure, it is possible to pool

all x—choices, y—choices and a—choices across triples and test our

hypotheses within the data of each subject. Let P1(x ,[xz ]y) denote the

proportion of triples in which subject i made an x—choice under the constraint

(xz ]v , etc. Let di (x) — Pi (x ,[x z ]y) — P
~
(x,[xy)z), di (z) — P(z ,txz ]v) —

P1
(z ,[xy~Iz), and let D1 — di(x) — di(z). Thus, D~ measures the advantage

f
of x over a due to the shift from [xy]z to [xz]y. Recall that, in the

absence of an agenda effect d~ (x) — d~ (z) — D~ — 0, while under the proposed

mode]. di(x) > 0> di(z) and hence has a positive expectation. The means

of the Didistributions are .2l in Study I and .25 in Study II, which are

significantly positive ,yielding t(99) — 4.2, and t(99) — 5.8, respectively ,

p < .001 in both cases. In Study I, 60% of the D~s are positive and 22%

negative ; in the Study II, 62% are positive and 18% negative. Hence, the

predicted pattern of choices is also confirmed in a within—subject comparison .

where choices are pooled over trials rather than over subjects.

In sur~ia~y, tn~ da~a 3how ~ ac imposed constraints have a significant

impact on choice behavior, and that the results confirm the major predictions

of the proposed model of constrained choice. The present results about individual

choice, that are based on the correlational pattern among the alternatives , should

be distinguished from the results of Plott and Levine (1978) who demonstrated the

effect of agenda on the outcome of group decision based on majority vote. An

agenda often introduces strategic considerations that could affect the outcome

of a voting process, even if it does not change the ordering of the options for

any single individual, much as group decision can be intransitive even when

its members are a].]. transitive . Although different effects seem to

_ _ _ _  
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contribute to the failure of invariance in individual and in collective choice,

they are probably both present, for example, in many forms of committee

decision making. The influence of procedural constraints on either

individual or social choice emerges as a subject of great theoretical and

practical significance. For if the choice of a new staff member , for example,

depends on whether the initial decision concerns the nature of the appointment

(e.g., junior vs. senior), or the field (e.g., perception vs social ) ,  then

the order in which decisions are made becomes an important component of the

choice process that cannot be treated merely as a procedural matter.

The present model of individual choice under constraints may serve three

related functions. First, it could be used to predict the manner in which

choices among political candidates, market products or public policies

are affected by the introduction or the change of -‘ ~ ndas. Second , the model

may be used to construct an agenda so as to maximize the probability of a

desired outcome. Experienced politicians and seasoned marketeers are undoubt-

edly aware of the effec ts of grouping and separating options. A formal

model may nevertheless prove useful, particularly in complex decisions

where the number of alternatives is large and- computational demands exceed

cognitive limitations. Third, the model can be employed by a group or a

committee as a framework for the discussion and comparison of different agendas.

Although an ‘optimal’ or a ‘fair’ agenda may not exist, the analysis might

help clarify the issues and facilitate the choice. If all members of the group ,

for example, perceive the available options in terms of the same tree structure,

even though they have different weights and preferences, then the use of an

agenda that is compatible with that structure is recommendable since it ensures

invariance. The applications of the present development for the construction .

selec tion,and evaluation of agendas are still left to be developed .

~~~~~~~~— - — --- __ _ _ ~~~~ __ _ _
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DISCUS SION

Ind ividual choice behavior is variable , complex and context dependent ,

and the attempts to model it are, at best, incomplete. Even the most basic

axioms of preference are consistently violated under certain circumstances,

see, e.g., Kabneman and Tversky (1979),  Lichtenstein and Slovic (1968),

Tversky (1969). The present treatment does not attempt to develop a compreh-

ensive theory of choice, but rather to analyze in detail a particular strategy

that appears to govern several decision processes. There are undoubtlv decision

processes that are not compatible with Pretree. Some of them could perhaps

be explained by EBA , while others may require different theoretical treatments.

The selection of a choice model, however , generally involves a balance between

generality or scope on the one hand, and simplicity or predictive power on the

other. Pretree may be regarded as an intermediate model that is much less

restrictive than CRI I since it is compatible with the similarity hypothesis,

yet it is much more parsimonious than the general EBA model since it has at

most 2n — 2 rather than 2~ — 2 parameters.

Furthermore, the tree model may provide a useful approximation to a more

complex structure, in the same way that a two dimensional solution often provides

a useful representation of a higher dimensional structure. Consider , for

example, a person who is about to take a one—week trip to a single European

country and is offered a choice between France (F) and Italy(I) and between a

luxury tour(L) and an economy tour(E). Naturally, the luxury tour is much more

comfortable but also considerably more expensive than the economy tour . It

is easy to see that the four available alternatives FL, FE , IL,IE do not satisfy

the inclusion rule because, for any triple , each alternative shares different

aspects with the other two. Hence, the EBA model cannot be reduced to a tree

in this case , although it can be approximated by a tree —— provided one of the 
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belong to the same class of the partition . The application of this model ,

therefore, requires prior identification of an appropriate partition, or

tree structure, that is presumably constructed on th. basis of informed

intuition. The similarity—based scaling procedure employed in this paper ,

and the test of the necessary trinary and guarternarv conditions could

perhaps be used to construct and validate the partition to which the

analysis of brand switching is applied .

The partition of the alternatives into homogeneous classes satis-

fving CRM was also used by McFadden (1976, 1Q78) in his theoretical

and empirical analyses of probabilistic choice. As an economist , McFadden

was primarily interested in aggregate demand for alternatives (e.g., different

modes of transportation ~ as a function of measured attributes of the

alternatives and the decision makers (e.g., cost , travel time, income).

The Thurstonian, or random utility , model prov ides a natural framework

for such an analysis which assumes, in accord with classical economic

theory , that each individual maximizes his utility function de f ined over

the relevant set of alternatives and the random component reflects the

sampling of individuals with different utilit y functions.

McFadden (1978) began with the multinomial logit ()INL) model in which

P(x,A) exp~ X j~~~j  / ~ exp ~
j  y~A

where x~. . ,  ,x~ are specified attributes of x. and ~~~~
. •~ n 

are parameters

estimated from the data, rhis is clearly a special case of Luce ’s model .~ “ ,

where log u(x) is a linear function in the parameters 
~l’~ ~ is

expressible as a random utilit y model by assuming an extreme value distributi on

F(t) • exp C—exp— (at+b)),a ~ ~, see e~g., Luce ( 1’ ) ,  ~~~~~~~~~~~~~~

- 1 The MNL model h i s  been applied to several economic prob~cms, notably

transportation planning (McFadden , 19’ti’u , hut the latlure of context~

— 
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models , called generalized extreme value models, that are compatible with the

similarity hypothesis. One model from this family, called the nested logit

model , assumes a tree structure in which the probabilities of choIce at each

level of the tree conform to the multinomial Logit model , see McFadden (1978).

Although the nested logit model does not coincide with Pretree, the two models

are sufficiently close that the former may be regarded as a random utility

counterpart of the latter.

Psychological models of individual choice fall into three overlapping

classes: decomposition models, probabilistic models and process models.

Decomposition models express the overall value of each alternative as a function

of the scale values associated with its components. This class includes all

the variations of expected utility theory as well as the various adding and

averaging models. Probabilistic models relate choice data to an underlying

value structure through a probabilistic process. The models of Thurstone and

Luce are prominent examples. Process models attempt to capture the mental

operations that are performed in the course of a decision . This approach ,

pioneered by Simon, has led to the development of computer models designed

to simulate the decision making process. Pretroe , like the more general

ERA , belongs to all three classes. It is a decomposition model that

expresses the overall value of an alternative as an additive combination of

the values of its aspects. Unlike most decomposition models , however, the

relation between the observed choice and the underlying value structure is

probabilistic , and the formal theory is interpretable as a process model of

choice behavior that is based on successive eliminations following a tree

structure .

This paper exhibits three correspondence relations (i) the equivalence of

elimination—by— tree and the hierarchical elimination model , (ii) the compat-

-
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ibility of aggregate choice and the individual EM model , and (iii) the

correspondence between preference and similarity trees. The three results,

however, have different theoretical and empirical status. The equivalence of

EBT and HEM is a mathematical fact that permits the application of the tree

model to both random and hierarchical decision processes. The second result

offers a new interpretation of EM as an aggregate choice model, thereby

providing a rationale for applying EM to aggregate data. Finally, the conup—

atibility of similarity and preference trees is an empirical observation which

suggests that the two processes are related through a common underlying structure.

~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



— 

IPreference Trees

58

MATHE~!ATICAL APPENDIX

I. Proof ot the Structure Theorem

To show that a tree representation of T*_{x’IxcT} implies the inclusion

rule, let t(x) denote the path from the root of the tree to the terminal

node associated with x. For any x, y, z, in T there are 4 possible tree

structures, and they all satisfy the inclusion rule as shown below.

a. If t(x) and t ( y ) meet below t(z), then x’f ly ’.~x’r~z’.

b. If t(x) and t(z) meet below t(y), then x~~z’~ x’~ v ’.

— 

c. If t(y) and t(z) meet below t(x), then x ’ny ’ — x’:z’.

d. If t(x), t(y) and t(z) all meet at the same node then x’-~v ’ • x’u~z’.

In order to establish the sufficiency of the inclusion rule, let

T (xcTj czcx’}, and let S(T) be the set of all T for any a in T’. To

prove that T*_{x’IxcT} is a tree, it suffices to show that S(T) is a

hierarchical clustering. That is, for any ce,~3 in T’ either T~~T3
, or

L 

T
3~
T , or T~~T5 

is empty . Suppose S(T) is not a hierarchical clustering .

Then there exist some distinct aspects a, S in T’ and some x, y, z in

T such that xcT ~T , ycT —T and zcT —T . Hence,a is included in x~~v ’,a S  B a -

Us included in x’nz ’, but a is not included in z’ and B is not included in

v’. Conseauentlv , x’fly ’ neither includes nor is included in x ’r~z’ and

the inclusion rule is violated , as recuired .

~~~~~~~~~~~~~~~ _ _____  ~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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~~I. Proof of the Equivalence Theorem,

(i) EBT implies HEM .

If EBT ho lds for 1, then it must also hold for any A~~T with the induced
tree structure. Hence, it suffices to demonstrate the first two parts of Equation (3)

(a) If y~~ and ~Ia then P(A
a~

A )  a P(A ,A9)P ( A 8,A ) .

P(A ,A ) m(~)(b) If y~8 and y~cz then “ a 
, provided rn(S) ~ 0.P ( A 5J A )  m(t3 )

We begin with the following auxiliary result. If ~Ia , then
m(a)

P(x ,A8) a P(x ,A )
rn(S) -u(S)

Let a~,.. .,
~~~~~ 

be a sequence of links leading froir x to -i . That is ,

A (xl , a~,i I a j ,  i=l ,... ,n-l , and a. Assuming CDT and 3 a

u(a ) u( a
1

) u( a
1)

P(x ,A ~ a P(X
~

Aa )+ - P(X
~

Aa 
)+ .

~~ P(x,A~ 
)

~ rn(S) —u(S) n rn(S)-u(S) n—i rn(S) —u(S)

u(cz ) m(cz )-u(ce ) fu t a  j )
a ~ P(x ,A ) + 

n 
_________  

P(X ,A )
rn(S) -u(S) n rn(S) —u(S) m (a ) —u (a ) n— I

u(ai)
+ P ( x ,A ))

1

u(c t )
a P(x , A ) • P ( x ,A )

rn(S)-U (S) a 
rn(S)-u(S) n

m( a)
• P (x , A )
rn(S)-u(S)

as required . To prove (h) we assume that -, j~ and \ a , hence

_ _ _  _ _ _ _ _ _  _ _  _ _ _  
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E P( x ,A )
P(A01A )  xcA~ 

‘
~

P (A 8,A )  ~P(x ,A )

xcA
8 

‘
~

£P(xA ) m (c*)
xcA In(y)-u(y)

~P(x ,A
8

) m(B)
xcA

8 m(y)—u(y) 
- 

- -

-

since EP (x ,A )  = EP(x ,A8) a

x~A xEA
a 5

To prove (a), suppose yfs and S J a .  By our auxiliary result

&(A ,A ) — Z P(x ,A ) — m ( 3 ) / (m (~’)—u(y)), and
~ xrA

5

P(A ,A )

a

Z P(x ,A ) mfS)
8 m(y)-u(y)

xcA
a

= P (A ,A
8
) ~(~~

(S)
~~~

= P (A ,A
8

) P(A 8, A )

(ii) HEM implies EBT.

We have to show that for any A cT , P(x ,A) satisfies Equation (1).

The proof is by induction on the cardinality of A. Let a
1 ,... .a~ be

the sequence of segments leading from x to the root of A. That is ,

(x} a A , ci
~.1icz. . i = 1,..., n-I , and A a A. If y~5 , xcA5, and

Equation (3) holds then
P(x ,A ) = 

rn( S) P ( x ,A8)
‘

~

‘ 
m(y)-u(y)

L _ _ _ _ _ _ _
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Thus , using the inductive hypothesis , we obtain

P(x A ) a P(x,A )

n m (a )-u(n ) 
a

1

u(a )n- i m(a
a P(x ,A ) • P(x ,A )

m(a )-u(a) 
a

1 m(%) - u(a~) a
n i

n-2
E u( ct.)P(x,Au(a~~1) m(a~ 1)—u (a 1) .

~~~~~ 

i a.
a P(x ,A ) + 

- __________________a 1 m(a~) - u(a ) m(a 1)-u(a~~1)

n-i
Z u(c*.) P(x,A )

a.
a lal

- u(a~)

which is the recursive expression for P(x,A ).

1.1  
- - ~~~~~~~~~ -— ~~~~~~~~~~~~~



Preference Trees

62

HI. Proof of tne Representation Theorem.

The proof is divided into a series of lemmas . Let denote the set of

binary choice probabilities defined for all pairs of elements in T.

Lemma 1: If I = {x ,y, z}, then P1 satisfies Pretree with (xy)z iff the trinary

inequality (4) is satisfied in this form.

Proof: Necessity is obvious. To prove sufficiency , we use the notation of

Figure 5,where R(x,y) ~ 1. Set a~ 1, 5 R(y , x), and selec t 8~ 0 so tha t

[R(x ,z) - R(y ,:) ] 6 a R(y ,z) — R(y,x) R(x,z), and let y = R( : ,x)(l+8).

(Note that when R(x y) > 1, 9 is uniquely defined and positive , and when

R(x ,y) = 1, 0 can be chosen arbitrari ly).

Let be the set of binary probabilities obtained by using the above

expressions for a,$,y,S in the defining equations of the model . It can be

verified , after some algebra , that 
~~~

. = P1 as required.

Before we ~o further,noce that if P
1 
satisfies Pretree with (xy): and

R(x ,y) I then 8/a  = R(y ,x). Furthermore.

~
- +  1 0+c& R(x ,z) ~~ R (y,:) - R(y, x ) R(x ,:) and

8 ~~
=
~~~~~~~

= implies — =
~ -+  - 9+5 R(y, z) ci R(x ,:) - R ( y , z )

— 
~~~~~~~~ R(x ,z) imp lies 1 R(: ,x)(l+R~~~~ 

- R(y ,x) R(x,:) 
___________

I R (x ,z) —
a

Hence, the 1engU~ ~f all the link3 are determined up to multiplication

by a positive constant. Furthermore, the present model readily entails the

following property .

~ 

~~~
-M 

-
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Lemma 2: Suppose A and B • {x,y v} are sets of objects such that y, VCA

and x%A , and suppose that both and P
8 satisfy Pretree. (It is assumed that

P(v ,y) is the same in both structures). Then the measures on A’ and B ’ can

be selected so that u(v’-y ’) -- as wel l  as u(y ’-v ’) -- are the same in both
measures.

Lemma 3: Suppose A = {x,y,v } and B = (y , v,w} satisfy Pretree , with represen t ing

measures U
A 

and u8, in the forms (xy)v and (yv)w , respectively,, If C = AU B a {x,y,v ,w}

satisfies the appropriate quarternary condition with (xy)(v ,w) or with ((xy)v)w ,

then there exists a representing measure u on C’ wh ich ex tends both u
A 

and UB .

Na turally , we assume that U
A 
and U

B were selected according to Lemma 2 .

Proof: Consider the form (xy) (vw), see Figure 5a. By Lemma 2 , uA
(B+B) = uB(8+0)

and uA (A+ y) a u8(A+ y). Hence , uA and u8 can be used to define a measure u on C’.

To show that u is a representing measure on C’ ~~ have to show that R(x ,w) a

u(0+a)/u(~.~). Since C satisfies Pretree , it follows from (5) that

R(x,w) • R(y,.~i)R(x,v )R(v ,y)

a u(t3.8) u(ci+8) u(A+y)
u(A+~5~ u(X+’y) u(5+0)

u(A+6)

Nex t, consider the form ((xy)v)w , see F i~’ure Sb. ~1ere , we have to show tha t

R(x ,w) a u (a+S+\)/u ES). Applying (6~ it follows that

TI~~~~~~~~~~_. ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~~~~ 
-
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(1— R (x,v ) ) R ( y , w) • R(v ,w ) ( R ( x ,v) - R(y, v ) )
R(x ,w) a 

l-RCv,v)

/,~ 
u(a+~j~~~(8.0+AI + 

u (’y+A l (u(a+0) u(8+0)

a ~~~~~~ 

— ii~~) J u(~S) u(~S) j  u( y ) u(y)

U’y

u(cz+0+A ) as required.
u( 6)

Lemma 4: P1 satisfies Pretree with a specified structure iff for every SC!, with

four elements or less , PS satisfies 
Pretree relative to the same structure .

Proof: Necessity is immediate. Sufficiency is proved hr induction on the cardinality

of 1, denoted ii. Suppose n > 4 , and assume that the lemma ho lds for any cardinality

smaller than n.

Suppose (xy)v holds for any v in 1. Let A = T - (x} , and B = {x ,v , v} .  By

the induc tion hypo thes is, both P~ and sa t i s fy  Pretree with the appropriate

structure. By Lemma 2 we can as sume , with no loss of generality , that the measures

of y and v in A’ coinc ide with their measures in B’ . Since any aspect in 1’

appears either in A’ or in B’ , and since the aspects that appear in both trees

have the same meas ure , we can define the measure of any aspect ~n I’ by its measure

in A’  or in B’ . Letting P denote the calculated binary probability fun cti on , we

show that ~~~. P
1
.

Since = 
~A 

and = it remains to be shown that l~(x ,w) = r ( x ,w) for

any wET-B.

Let C (x , , v ,w } , which satisfies Pretree, by assump ti on , ~ith either tx v )ivw ~

or ((xy)v)w. Since c = BU{y, v ,w } ,  Lemma 3 implies that the representing measure

~ 

~~~~~~~~~~~~~~~~
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on C’ coincides with the restriction to C’ of the defined measure on 1’. Hence,

P(x ,w) P(x ,w) as required.

In conclusion, Lemma 3 together with Lemma 1 show that the trinary and the

quarternary conditions are necessary and sufficient for the representation of

quadruples. Lemma 4 shows that if Pretree is satisfied by all quadruples, then

it is satisfied by the entire object set. This completes the proof of the rep-

resentation theorem.

IV. Uniqueness Considerations.

It follows readily from the representation theorem that, given a tree

structure, the measure u is unique up to multiplication by a positive constant

except in the case where ~Z1’binary choice probabilities equal 1/2. We show

that the tree structure is uniquely determined by the binary and the trinary

choice probabilities, but not by the binary data alone.

To show that binary choice probabilities do riot always determine a unique

tree structure, consider two different trees (xy)z and (yz)x, and let

cz,3 , 
y denote, respectively , the unique aspects of x, y, z, let ~ denote the

aspects shared by x and y, and let X denote the aspects shared by y and z. Let

u and v be the measures associated with (xy)z and (yz)x , respectively, and

suppose that

u(c&) a 2, u(3) a 1, u(y) = 1, and u(8) 2

v (ct) — 8, v( S) — 3 , v( y ) 1, and v ( X )  1

By the assumed tree structures u(A) v(0) = 0. It is easy to verify that the

two trees yield identical binary choice probabilities: P(x,y) 2/3, P(y ,z) = 3/4 ,

P(x ,z) a 4/5. We next show that the tree structure is uniquely determined by the

binary and the trinary choice probabilities, provided all binary probabilities

are non—zero. Consider a tree (xy) z with a measure u, and aspects a,S , ‘,~~, B

~rwiA 
~~~~~~~~~~~~~~~~~~~~ 

- - - -
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defined as above. Assume u(ci), u(3), u(y) and u(0) are nonzero. It follows

from (xy)z that

P(x ,y) — — u(ci) + u ( 0 ) u ( c i ) / ( u ( c i )  + u(3)) 
— 

P(x,xyz)
P(y, x) u(S) u(S) + u(8)u(3)/(u(ct) + u(S)) P(y,xyz)

Suppose the data were compatible with another tree structure, say (yz)x with

no loss of generality. By the same argument

P( y,z) P(y,xyz) 
, and hence

P(z,y) P(z ,xvz)

+ u(s) u(s) + u(~ )u(~ )f( u(ci) + u(s))
u(y)

which implies u( c i)  — 0 contrary to our assumption. Given both binary and

trinary probabilities, therefore, the structure of any triple and hence of the

entire tree is uniquely determined .

q

_ 
_ _ _ _ _  

_ 
4:

~~~~ —~~~-~~~~- ~~~~~~~~~~ - --—--—-
~~

-- — 
~~~~~~~~~~ 
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V. Proof of the Compatability Theorem.

It follows readily from H~4, see Equation (3), that

P(x,A) — P(x ,A
1

)P(A
1
,A
2
). . .P(A~~~ ,A )

for some sequence A
1
,. ..,A such that A A , and A

I
CA

I+i, i—i ,... ,n—l . We

show first that the sequence can be chosen so that a
1
i+l, I < i <

where a~ is the cardinality of A1. This condition is obviously satisfied

in a binary tree where each node joins at most two links. Suppose then

that the tree contains three links that meet at the same node, e.g.,

~ ~ Is and ~5 ct. Hence, by part (b) of Equation (3),

P(A A ) m(cz) 
— 

m (cz) x m(ci)+m(5) 
=

m(a)+m(8 )#m(’y) Tn(ci)+m(5) m(ct)+~n(5 )+m (y)

= P(A ,A U A ~ )P(A u~~ ,A~ ) ,

and the result is readily extended to nodes with k links. Under Pretree,

therefore , P(x ,A) Is expressible as a product where each factor P(A.
~
A
i+I
)

is a probability of choosing between two branches.

Under Equation (13), the probability of selecting x from A under

a specified agenda equals P(x,B1
)P( B

1
,8,). .P(B~ ,A). for some 31

C3
2 

.. . 3A .

By compatibility , there exists a tree and hence a binary tree that refines

both the adenda and the Intrinsic tree structure. By the above argument,

P(x ,A) is expressible as a product P(x,A
1

)P (A 1,A~). . .P(A~~~,A )  where a
i
i+l,

1 < i < n, corresponding to a binary tree that refines both structures.

Thus, each ~~ j1 .,... ,m , appears among the ~~~~ i 1 ,...,n. Suppose

B~ a A
1 and Bj+i Aj+~~ 

hence

i+t—l
P(B~~B~~1 ) P(A

I~
AI+~

) — 

k—i 
P(Ak , Ak+l). and
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P(x ,A) P(x ,A1 )P( A
1
,A
2
). . .P(A 1, A )  — P(x ,B

1
)P(B

1
,B

2
) .  . .P(B ,A).

Hence, choice probability is unaffected by an agenda that Is compatible with

the intrinsic structure of a preference tree.

If the agenda is not compatible with the intrinsic tree, there exists

some x,y,z in T such that both (xy)z and [xzly hold. It is easy to verify

(see the discussion in the text) that P(x,xvz ) ~ P(x , [xz]v) in this case,

which establishes the necessity of the compatability condition.

_______________________ ____ 

- 
-
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Reference Notes

1. Falmagne, J. C. Probabilistic theories of measurement. Paper presented

at the Soviet—American Seminar on Decision Models, Tbilisi, Soviet Union,

April 1979.

I
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Footnotes

‘The present notion of a preference tree should be distinguished from

- 
the concept of a decision tree, commonly used in the analysis of decisions

under uncertainty.

2
To obtain compact figures we use a heavy line (see Figure 7) to

indicate double lenght, and an extra heavy line (see Figure 11) to indicate

ten—fold length.
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Figure Captions

Figure 1. Schematic representation of three alternatives.

Figure 2. Tree representation of the choice among entrees.

Figure 3. An illustration of the inclusion rule x’(~y’~ x’r-z ’

(a) as a Venn—diagrazn, (b) as a tree.

Figure 4. A preference tree for the choice among modes of transportation.

Figure 5. A preference tree for three alternatives.

Figure 6. Preference trees for four alternatives.

— 
Figure 7. Preference tree for choice among celebrities.

Figure 8. Additive tree (ADDTREE) representation of the similarities

• between Swedish political parties.

Plgure 9. Preference tree for choice among Swedish political parties.

Figure 10. Preference tree for choice among Italian political parties.

Figure 11. Preference tree for choice among social sciences.

Figure 12. A schematic preference tree for the choice between shades

of gray. 
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y 6
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Figure 2. Tree representation of the choice among entrees.
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Figure 4. A preference tree for the choice among modes of transportation.
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