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FOREWORD

This report was prepared by the Mapping and Charting Research Laboratory
of the Ohio State University Research Foundation under USAF Contract No. AF
18 (600)-90. The contract is administered by the Mapping and Charting Branch
of the Photographic Reconnaissance Laboratory, Weapons Components Division,
Wright Air Development Center, Wright-Patterson Air Force Base, Ohio. Mr.
A.S. Rosing is Project Engineer on the project applicable to the subject of
this report.

Research and Development Order Nos. 3-695-14, "Research in Photogrammetry
and Geodesy for Aeronautical Charting," and B-693-58, "Aeronautical Charting
Systems," are applicable to this report.

This report was originally initiated at the Ohio State University Research
Foundation as OSURF Technical Paper No. 161.

* 52

WADO Th 52-151

I



ABSTRACT

The form of a single level surface that envelops all attracting matter
and the value of the potential or of the gravitational attraction at a definite
point on or outside the surface determine uniquely the field of force on and
outside of the surface. This statement holds good even when we add to the
gravitational attraction the centrifugal "force" due to uniform rotation. Hence,
if we assume that the surface of the earth is an exact ellipsoid of rotation
under its own attraction combined with the centrifugal force of uniform rotation
about the minor axis, the field of force on and outside this ellipsoid is unique-
ly determined, if we assume, for instance, the value of gravity at the equator.

This determination is carried out by means of a rather special set of curvi-
linear coordinates. In terms of these coordinates the value of the potential
at any point in exterior space and the value of gravity are expressible in
closed form in terms of Lengendre functions of the second kind with imaginary
argument, and these again are expressible in terms of the elementary functions.
In practice, however, it is found more convenient to expand the Lengendre
functions in series, also the formulas dependent on them. See formula (32)p.12
for the potential expressed in closed form, and formulas (45),p.15, and
formulas (61) and (65),p.20 also formulas (7 6 )p.23 for the values of gravity
on the ellipsoid.

Various incidental developments are given. This is first of a series of at
least three papers on the general subject.

PUBLICATION REVIEW

The publication of this report does niot constitute approval by the Air
Force of the findings or conclusions contained therein. It is published only
for the exchange and stimulation of ideas.

FOR THE COMMANDING GENERAL:

IN B. AVERY

r o~nel, USAF
Chief, Photo Reconnaissance Lab.
Weapons Components Division
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TH GRAVITY FIEID FOR AN ELLIPSOID

OF REVOLUTION AS A LEVEL SURFACE

INTRODUCTION

In Volume II of Stokes' collected papers _/ there are two mathe-

matical articles dealing with attractions and gravity, both of them

published in 1849. In the first of these, published in the Cambridge

and Dublin Mathematical Journal and entitled "On Attractions and

Clairaut's Theorem," Stokes states several theorems, disclaiming, as

he says, any pretense to originality. Many of the theorems are in

fact due to Gauss.

The second paper, published in the Transactions of the Cambridge

Philosophical Society and entitled "On the Variation of Gravity at the

Surface of the Earth," gives the formula V/ on which the whole gravity

project of the Laboratory ultimately depends. In the opening pages of

this second paper are two passages that seem worth quoting as an intro-

duction to this paper. They deal with the general problem of this

paper rather than with the details of Stokes' Formula. For the present

purpose the two concluding sentences of the first passage are the im-

portant ones.

1/ George G. Stokes, Mathematical and Physical Papers. Vol. 2, Cambridge,
1883.

_/ It is convenient to distinguish between Stokes' Formula given in this
paper of 1849 and what is commonly known as Stokes' Theorem, a very
general mathematical theorem dealing with the line integral taken around
a closed curve of the tangential component of a vector point function
and its relation to a certain surface integral.
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"On adopting the k•pothesis of the earth's original fluidity,

it has been shewn that the surface ought to be perpendicular to the

direction of gravity., that it ought to be of the form of an oblate

spheroid of small ellipticity,, having its axis of figure coincident

with the axis of rotation, and that gravity ought to vary along the

surface according to a simple law, leading to the numerical relation

between the ellipticity and the ratio between polar and equatorial

gravity which is known by the name of Clairaut's Theorem. Without

assuming the earth' s original fluidity, but merely supposing that it

consists of nearly spherical strata of equal density, and observing

that its surface may be regarded as covered by a fluid, inasmuch as all

observations relating to the earth's figure are reduced to the level of

the sea, Laplace has established a connexion between the form of the

surface and the variation of gravity, which in the particular case of

an oblate spheroid agrees with the connexion which is found on the hy-

pothesis of original fluidity. The object of the first portion of this

paper is to establish this general connexion without making arV hypothesis

whatsoever respecting the distribution of matter in the interior of the

earth, but merely assuming the theory of universal gravitation. It ap-

pears that if the form of the surface be givens, gravity is determined

throughout the whole surface, except so far as regards one arbitrary

constant vhich is contained in its complete expression, and which may

be determined by the value of gravity at one place. Moreover the

attraction of the earth at all external points of space is determined

at the same time; so that the earth's attraction on the moon, including

that pwt of it which is due to the earth' s oblateness, and the moments

or the forces of the sun and moon tending to turn the earth about an

equatorial axis, are found quite independent3y of the distribution of

matter within the earth."
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With respect to the determination of the gravity field from a

knowledge of the form of a level surface and the value of gravity at a

definite point on the surface or at a definite external p1oint Stokes

remarks:

"Nevertheless., although we know that the problem is always deter-

minate, it is only for a very limited number of forms of the surface S

that the solution has hitherto been effected. The most important of

these forms is the sphere. When S has very nearly one of these forms

the problem may be solved by approximation."

In the case of an exact ellipsoid no approximation is needed.

Stokes had already noted the purely mathematical analogy of the problem

to a seemingly very different physical probleiii, that of the steady state

of temperatures in a homogeneous solid,, subject to certain boundary con-

ditions. The solution in this Part I is based on one of the com~monest

methods of attacking these problems in the flow of heat. The second

solution., a synthetic onel, based on the concept of "coating.," is given

in Part II,, partly as an illustration of the convenience of this concept.,

partly because of certain other advantages. Part III will give some

further developments.

WAIC TR 52-151 i



§- The Special Ellipsoidal Coordinates and their Properties.

The complete development of the subject would occupy an

undue amount of space. For the proofs of many of the statements refer-

ence may be made to books such as Werly's Fourier's Series and Spherical

Harmonics, (Boston, 1895), or Todhunter's The Functions of Laplace

Lame and Bessel. (London, 1875). Detailed discussions of the Legendre

functions and of Laplace's equation in curvilinear coordinate systems

may also be found in Whittaker and Watson' s Modern Analysis (Cambridge,

1927) or MacRobert's Spherical Harmonics (London, 1927).

If the z-axis be taken as the axis of rotation, the relation be-

tween ordinary rectangular coordinates x., y and z and the special ellip-

soidal coordinates ,, A and X is taken as

x - c cosec 4 Sech • cos X

y - c cosec a Sech sin X (1)

z - c cot a Tanh P.

These formulas are those of equation (12) p. 242 of Byerly with a re-

placed by - ,, in order that the a here used may remain small in

practice. Byerly's y and z are here interchanged.

From (1) we find

Sech2 p + Tanh 3p- 1 a3 + (2)
C cosec a c cosec2 a c2 cota. 2

WADC TR 52-151 1



The family of surfaces a - const. thus represents a set of confocal

ellipsoids of revolution about the z-axis, the distance from center to

focus being

V'c~cosec 'a - c ~coted - C.

Equation (2) will give C in terms of x, y and z. The equation to be

solved is a quadratic in the square of a trigonometric function; only

one root of the quadratic is availablei the other root gives imaginary

values of a. The result of solving for d may be written

sin 2 d = r 2 +c2 - V(r
2+c2 )z - 4c 2(x 2 +y')2(X2+y2)

or (3)

coted, r 2-c 2 + Akra-c2)2 + 4 c*ZI

2c

In (3) r 2 stands for x2 +y2 +z2 .

In a similar way

cosec2-coted-l- , ,,1 X 2 - (2()
c 2Sechp cSeh= c2 Tanhp"

The family of surfaces • - const. thus represents a set of unparted

confocal kqperboloids of revolution, the distance from center to focus

being Cc2 SechaP + c 2 Tanh• - c-, as before. The ellipsoids are there-

fore confocal with the byperboloids and consequently the two families

of surfaces intersect each other orthogonally.

From the first two equations of (1)

tan IL (5)
x

which, for I - const., represents a family of planes containing the z-axis.

These planes evidently cut both the ellipsoids and the hyperboloids ortho-
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Any point in space, therefore, maz' be given by specifying the

values of a, P, and X; these numbers determine the ellipsoid, IWper-

boloid and plane, the intersection of which fixes the point. There are

apparently four points of intersection of the three surfaces, but the

ambiguity may be removed by using the analogy between the quantities

and X and ordinary latitude and longitude. It is evident from (4) that

X is indeed the longitude of the point reckoned from the xs-plane and

if, instead of the entire plane defined by (4), we use only the half-

plane on the side of the axis specified by the angle I, the four possible

points of intersection are reduced to two, one above and one below the

zy-plane.

The relation of the coordinate P to latitude may be derived by

considering the well-known parametric equations of an ellipse of semi-

axes a and b., in the xz-plane

x - a cos u
(6)

z - b sin u

The geometric significance of the parameter u and its relation

to the vectorial angle Y is shown in figure 1. The geometric relations

there indicated suggest the name "reduced latitude" frequent3y given

to S while by astronomical analogy Y is the geocentric latitude and*

is the geographic latitude. The well-known relations between these

latitudes are

tan u - 1 tea b tan#,

b a2

tan Y. -k tan u= b1 tanO (7)a aw e,(7

tan tan u5 tan .
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Figure 1 - Meridional Section of an Ellipsoid

a = semimajor axis,

b = semiminor axis,

PN is normal to the ellipse, cp being
the geographic latitude of P.

The vectorial angle T is the geocentric
latitude of P.

The angle u is usually referred to as
the reduced latitude of P.
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From (2) it is seen that the semi-axes of the ellipsoid are

c cosec a and c cot a. By writing these for a and b in (6) and intro-

ducing the additional coordinates y and I to make the ellipse (6) into

an ellipsoid of revolution about the axis we get

x - c cosec a cos u cos X 1

y-ccosecsacooussinX. (8)

2 - c cot a sin u.

By comparing (8) and (1) it is seen that the two sets of equations

would be identical if we put

Sech P - coo U, } (9)

Tanh P - sin u. -

The two equations (9) are equivalent and mean that the reduced

latitude u is the Gudermunnian angle of P. This implies besides (9)

the additional relations

m - log, tan ( u),

Sink P - tan u, (10)

Cosh P - sec u.

Equations (9) and (10) enable us to use either u or P in our

equations at will. It is found more convenient to use 9 when obtaining

expressions for the potential and the intensity of gravity,, but after

the results are obtained, it is more satisfactory to express them in

terms of u. The fact that u and P have the same sign and that u may be

considered as the reduced latitadd enables us to choose between the two

points of intersection of the ellipsoid given by equation (2), the IWper-

boloid given by equation (4) and the half-plan. corresponding to the

meridian of I given by equation (5). The point an the positive side of
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the xy-plane corresponds to a positive or north latitude and a point on

the negative side to a negative or south latitude.

When x, y and z are given, a is found from (3); P is then found

by the following formula easily deduced from (1)

Sinh -tan u - z sec ()

and X is found from (5).

Any expression for the potential V due to attracting matter

must at points outside of such matter satisfy Laplace's equation. For

the special ellipsoidal coordinates a, P and X here adopted, Laplace's

equation is

sin a-V (12)
sv in, +osh P - sina cc) r 0 . (12)si ýa C oh 7_ a ax?

See Byerly, p. 242 equation (11). This equation may also be

readily obtained from the equation given by dhittaker and Watson, p. 551.

Special solutions of this equation are

m-n n n
Vmn = (-i) (An cos nX + Bn sin nK) Pm(Tanh A) Pm (i cot a), (13)

m+n+l n L d Qm(i cot c)

Vmn - (i) (An cos nX + Bn sin nX) Pm(Tanh P) sec d d(i cot a)n

In equations (13) An and Bn are constants,

Pm(Tanh •) represents a Legendre's zonal harmonic of de~gree m.,

n n d n m(Tanh P)
PM(Tanh ) is the associated function Sech P d(Tanh P)

n

with a corresponding meaning for PM(i cot a).

Qm(i cot a) represents a Legendre's function of the second kind.
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The expressions for Qo (x) and Q, (x), x being any variable, are

Q( 1. loge(11+, if lxI< 1,

-x .9 o l9\'
or Qo(x) 1 loge(j+1.9) if~ jxi>

Q1 (x) - -1 + x loge(l+X), if Jj < i,

(15)tx~
Q1(x) -1 +2 loge , if Ixl> x.

From Qo (x) and Q, (x) the "'s of higher orders may be found by

means of the recurrence formula

(m+l) Qm+l(x) - (2m+1)x qn1(x) + m QMil(X) - 0 (16)

The Q's are connected with the P's by the relation

Qn(x) I P. ) loge(1-+4 - R, (17)

where

R 2n5 2-9 X) +1n i-.-(X 1 Pnl)3 (x) n Pn_5(2n-l)k+x

+ T2k-)(n-k+l) Pn-2k+l(x) + " " (13)

The series for R ends with a term in P, (x) when n is even and

with a term in Po (x) if n is odd. If Nx> 1, loge(l-+x) in (17) is
. x+l\

to be replaced by logex_-•}

Another form for Q% (x), valid when lxi > 1 is the infinite series

___ _ .M.' _ 1F + (m+1)(m+2) 1% ( 2) +l) (a--1) -3.1• 17 2 '-(2m+3) 'n

+ (m+l)(m+2)(m+3)(m+4) 1 (19)
2.4 (2m+3)(2m+5) - J.

WADC TR 52-151
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From the definitions we find

Qo(i cot a) - - i a,

Q 1(i cot a) - - 1 + a cot u., (20)

Q2(i cot a) -i[ cot-(I cote+a 1

The derivatives of Qo and Q. will be needed later; they are

d Qo(i cot C)

da
(21)

d Q(i cot cc [3 cosecZcz (1-a cot a) -
da

The expressions for Qm (x) and Q6 (i cot a) satisfy the differential

equations:

(i-x2) d -M d Q2(X) + m(m.i) Q6(x) . 0,
dx2  dx

(22)

sin d (i cot d) - m(m+l) Qm(i cot a) - Or

dc?

The first of (22) is also satisfied by the Legendre functions or zonal

harmonics of the first kindso For convenience in dealing with real

quantities only let us define the quantities

qo (a) - i Qo(i cot a) - 4,

q, (c) - - Q,(i cot a) - (1-a cot a), (23)

q2 ((E) - -i Q2(i cot 9) 1 cots a +.1) 0 --3 cot ]•

A table of q2 and q'2 is given at the end of this part, for

values of ao corresponding to values of the earth's flattening expressed

as a reciprocal. For the International Ellipsoid of Reference there is

also a short table giving q%(a) and q'aa) corresponding to certain

elevations above the ellipsoid for points at the equator, the poles, and

at geocentric latitude 45*.
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Evidently

d "() aq&(jL) m 3 coec'2 a L () -(4,

da(
d %a) - q'(a) - 6 cosec'a %(cL).(4

In solutions of the type (13) evidently a q maq be substituted

for a q.

§2 - The Sipression for the potential.

The potential of the centrifugal acceleration U in rectangular coordi-

nates is given by

U •.U (x2 + 9), (25)

w being the angular velocity of rotation. In our special ellipsoidal

coordinates it is

U 2 ca coseca a Sech2 , (26)

or in terms of Legendre' s coefficients

a2 ca cosec2 , (1 - P,(tanh s)]. (27)
U= 3

The coordinate system is determined ty the position of the comnon

foci. Let us take these foci of the ellipsoid of revolution that is to

form an equipotential surface for the combined mass-attraction and

centrifugal force, and let Go be the value of a corresponding to this

particular ellipsoid. From equation (2) it is seen that sin ao equals

the eccentricity of the meridian ellipse, so that for the Internaticha

Ellipsoid of Reference, for which the ellipticity is 1/297,

ao - 4 42' ll.'048 - 0.0820840 radians. Then the problen consists in

building up an expression for the potential V - U + V (V being the

potential due to mass-attraction), in which U and V are expressed in

WADC TR 52-151 9



terms of a, 0, and X, which shall satisfy the following conditions:

(1) V satisfies (12)

(2) V - o at an infinite distance from the origin,

(3) W - (U + V) is independent of P and X. when a is put equal

to ao; that is, since l is a function of %o only, W is constant on the

ellipsoid a = ao, which is, therefore, an equipotential surface.

(4) V must approximate to kM as r increases, k being the gravi-r

tation constant, M the mass and r the radius vector.

Condition (1) is satisfied by any solution formed of special

solutions of either type shown by equation (1i). The semi-axes of the

coordinate ellipsoid being c cosec a and c cot a, it is seen that a - o

corresponds to a point at infinity, and that only solutions of the

second type under (13) may be used if condition (2) is to be satisfied,
n

for the P,(i cot a) of the first type increases without limit when a

approaches zero, whereas as may be seen from the series (19) by putting

i cot a for x, d g(i cot 4 approaches zero with a. It is clear that
d (i cot a)"

since the equipotential surface is to be symmetrical about the axis of

rotation, there can be no terms involving the longitude, that is,

n - o in all cases, and mince the surface is symmetrical about the

equatorial plane, there must be no terms that change sign with a;

this condition excludes from V terms in which m is odd. EV using (27)

and noting that Po (Tanh P) - 1 we therefore can write
2 C2 cosec a

W- U + V- 3 +AoQo(icot a)

+ P. (Tanh p) [A2 Q2(i cot a) - ca cosec a ]+ AP 4 (Tanh P)Q,(i cota) (28)

+ A6P6 (Tanh •) Q6 (i cot a) + "

WADC TR 52-151 10



The powers of i necessary to make the terms real are supposed

to be included in the A's. If, according to condition (3), 1 is to

be independent of P when a -ao then o = A4 -A 6 - A8

A3Q2(i cot o)- 0 = (29)3

which determines A2 . Accordingly (28) becomes, after recombining the

separate parts of the expression for the centrifugal force into their

original form (26), and substituting for Q2 in terms of q.

? c 2 cosec3 a

WAo 0 (i cot a) + 2 Sech 2  (

(30)
14 c cosec 0• 3 GO P. (Tah P) % (a).

We can satisfy condition (4) by choosing AO suitably; to do this

we must ascertain the relation between a and r, when r is large or c

small. By squaring and adding equations (1) we get

r - clcosec2 a Secha p + cot' a Tanh 2 p . (31)

But the expansions for cosec a and cot a in -power series are

1 a 1£cot a -a 3 " .- and cosec a + -• ..

These substituted in (31) give

r - c -1 _ Tanh? 2 + Sech2  + terms in aa, etc. ,

from which it appears that r - is a good approximation when a is small

or r large.

By equation (17) Q2(i cot C) or q2 (41) is of the third order when a in

small, a being of the first, so the term in (30) which involves q2(a)

need not be considered in satisfying condition (4). It is thusseen that

condition (4) is satisfied by taking Ao - R V__ and the expression (28)
C
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for W becomes
k~a i~ c coec? co c 3 cosec2 %€

W ------+k M a + C2 cosec2 a Sech P + 3, c a (Tanh P) q2 (d). (32)c 2 3 q2( do)

This equation satisfies all conditions and is therefore the

potential function that has the ellipsoid of revolution c - do as an

equipotential surface for the combined effects of mass-attraction and

centrifugal acceleration.

§3 - The formula for the Intensity of Gravity.

As a preparation for obtaining the gravity formula let us derive

the distance between the two ellipsoids characterized by the coordinates

a and a + Ap, Ad being infinitesimal. Take a point P on the first ellip-

soid whose coordinates are (cc, p, X), or in rectangular coordinates

(x, y, z), and a point Q on the second whose coordinates are (a+ Ad, p, x),

or in rectangular coordinates (x + Ax, y + Ay, z + Az). Since the system

of coordinates is orthogonal, the infinitesimal line of length

PQ - vhx T + ay + Az' will be perpendicular to both ellipsoids and will

be the distance required. Since a alone varies

,x= Ag. terms of higher order,

Ay= AG + terms of higher order,

Az - aA + terms of higher order.

Or by differentiating the equations (1), squaring, adding and simplifying

PQ - V/x' + Ay + AZ' c cosec a vT +Tahi 2 W + terms of

higher orderor since PQ is an element of the normal n_

An -• aa - c cosec a Vcotz- + TanhZe PAa + terms of higher (33)

order. Since a decreases outward from the origin, the above expression

WADC rIR 52-151 12



implies that the normal n is directed inward.

For brevity let us put

h - c cosec a Vcot2 a + Tanh , (34)

so that equation (33) is equivalent to

-37a . h
Ba

It will be convenient to have the special value at the ellipsoid

a - ao. If we call a the semi-axis of the ellipsoid,

a - c cosec ao and e - sin ao. Therefore by (8) and (9), equation (32)

gives, after a slight reduction

1 tan o S-MMMP (35)
aV1+ t o sinz u

The subscript o attached to N indicates the value for the

ellipsoid a - ao.

If we introduce the geographic latitude * instead of the reduced

latitude u, we find for ho after some transformation by the help of

equations (7)

ho a cot 2o (36)
i- sin• o sin'*

The value of the intensity of gravity (g) at any point may be

found by dividing the difference in potential between the two ellipsoids

at an infinitesimal distance from one another by that distance, and

dropping the terms of higher order which vanish when the limit is taken.

g - 'a

elf in a(37)
ellc Vc'ot'a + Tanhi P

WJADC HR 52-151 13



awBy differentiating (32) to get y-•, and using (24) we find

[]M zC 2a ccosecag - cac2 cosec2 a cot a Sechep + 3%( q) () P.(Tanh P)j
F sin a 1

"[ sVtaTan j (38)

This is the expression for the intensity of gravity at any point

(a, P, X) outside the ellipsoid a - o. The case when the point is on

this ellipsoid is included as a limiting case, and for this case (38)

can be simplified.

Let us put a -ao and introduce the abbreviation F defined by

qF(ao) sin a.
F 3%(3%) (39)

In the first expression F is indeterminate in form when a =-0, and this

expression is therefore inconvenient for purposes of computation when

%o is small, as in the case of an ellipsoid approximating the figure of

the earth. In this case it is convenient to use the series (19) for

Q,(i cot a), which gives

q(c) - -iQ 2 (i cot a)_2 3t6 5a + tan7 a 2 tan9aq-2 +[tana- tan 7a7 - 33

tan3  4 aa + - tana -8-tanga

37.5 577~ 7.9 9.1-1

and
cli(a) 15 DearL 7na 3_ tan4a +5 ta •g tangu. .

= 2 tan2a 4tan'o 6 tan6a 8 tanea
7 9 11 *

so that 10 5 20
sec ao[l-- tan o+7 tanao -f1 tan6 a + ( 40

t2 + tnao -20 tan6a + (0)

or approximately by division
S~68 tani%_, 4ýi2 tn%+•••] (41)

F - sec ao[l- k tan2a° + 6 an611
7 T77- 11319

"WADC 2R 52-151 14



Putting a - % in (38), introducing F, substituting for P in terms of

u and simplifying gives for go. the value of gravity on the ellipsoid,

go , -X coa cos % cos 2 u + 02a F P 2(ain u) -.(--i2) C

Instead of the constants M and ca let us express the result in

terms of ge, the value of gravity at the equator, and m the ratio of

the centrifugal acceleration at the equator to gravity there, or

m a W2 a/ge.

By pAtting u - o, and 2 a - m ge in (42) and solving for

k M/a2 we find
k M

a2 "ge [Cos ao+ m(1 F+ Cos ao)]. (43)

By using this (42) reduces to

goW - ge [1 + m (j F sec a. + 1) sin2 u). (44)
V1o v+i-aena. sin 2

This is an exact expression for gravity on the surface of the

ellipsoid at a point, the reduced latitude of which is u, sin %o being
equal to e. the eccentricity of the ellipsoid and F being given by

(39), (hO) or (41). This can be expressed directly in terms of the

geographic latitude 4. From (7)

sin 0 cos aoSinU
V1- sin2 %Q s'ini

and after substituting this in (44) and reducing we get

{r- (jFF+ cos ao) sin2  .
go = ge Sjl- sin % sin 2 * 1 + m cos ao 1 sin2 ao sin2 (45)

This expression is exact for an ellipsoid of any eccentricity.
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On the assumptions stated, the expression for go is rigorous.

Moreover it -is in finite terms, for the quantity cos ao(2 F + Cos Co)

is in any given case merely a numerical constant, although the way in

which this quantity involves ao is somewhat complicated.

§4 - Various Deductions from the Formula for Gravity.

Clairaut' s Equation.

By putting 4 = 90' in (45) or u - 90' in (44) we get for gp,

the value of gravity at the pole

gp ý ge COB o {1 + m(2 F sec ao + i)}, (46)

and by forming the expression for the quantity

-g-ge

we find

pm e F+cosa.%) m- (l1 -cos%) (47)
ge 2

Let us introduce the flattening f, which is connected with €o by the

relation

2 .e = s %ins o - 2f- f 2 . (48)

Let us consider m, e2 and f as small quantities of the same order

of magnitude; as a matter of fact m, being equal to about 1/288, is very

nearly equal to f. If in (47) we consider only quantities of the first

order, we get by using (41)

Sgp-ge - f. (49)ge

This is the familiar form of Clairaut' s equation and, though

accurate to the terms of the first order onl3y, is sufficient for many

purposes. It is desirable, however, to include terms of higher order.
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By putting in (41) e ae -Vrl+ ta•n• - +_ 1 tan2 Uo.tan..%

multiplying out this series and the other series in (41) and substituting

tana - 2 f . 2 f + 3 f + 4 f3..

also noting that 1 - cos o = f, we find after reduction

gp-gea .5 ( 5
ge 2 13 ~f - 2 0f#.')..r.. %(f) f (50)

the function X(f) being defined by the series in parentheses.

This is Clairaut's equation extended to terms of even higher

order than are needed in practice.

Equation (50) applies, of course, only when the level surface is

an exact ellipsoid of revolution.

Relation Between the Newtonian Constant k and the Mean Density

of the Earth..

The mean density Pm is defined by the condition that the mass of

a homogeneous ellipsoid of the adopted dimensions shall have the same

mass, that is, that

-• ra2 b Pm 7ra 3 cos QoPms M (51)

Substituting this value of X in (43) and expressing F and aO in terms

of the flattening f we get

kP 3  [gel m (1+g f + 1 fa..). (52)km- 7 [1a 2 7L&.4 a

3/ An equivalent form is given without proof by Cassinis in the
Bulletin Geodesique, No. 26, April-May-June, 1930, p. 40. Cassinis
gives also an additional term for ,X(f) following

- f f., namely - 9f. The correctness of this additional

term has been verified by the writer.
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The Mean Value of Gravity

It is understood that the mean is to be taken with regard to area.

The value of mean gravity, gmn, is therefore given by

SodS

Where dS is an element of area of the ellipsoid and the integration

covers the entire area.

The reduced latitude u is convenient in evaluating these integrals.

In this case we have dS - 2 -rrxds where ds is an element of meridional

arc. Fromx= acos u, y- bsinu

we find

dS - 2 wab cos u V1 + tan2 ao sin2 u du.

As is well known, this may be evaluated in closed form in terms of the

elementary functions but the expression obtained is inconvenient to

calculate when tan ao is small. It is, therefore, simplest for the

purposes of practical computation to expand A + tan2 co sin' u in

powers of sin u and integrate term by term.

In this way we find

S 4 =fi4rab [1 + 1 tan2 a+ 1 tan6 ' (53)

u*2

In calculating go dS it is convenient again to expand

VA + tang ao sin2 u in powers of sin u. In this way by using equation

(44) for go we find
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godS - 27wabge 1[1+m(4 F sec ao + 1) sin2 u] cos u du

- 4%abg, [i + 5 F sec o + 1)]

+ 5 (+ ta' 16 tan "• )]
= 4rabge (1 + m(l + tano - .

Therefore S9 s 16
SgodS ge 1 +j M( + t•ta2 %0tan Go

-S 1 tan 70o tan6ao . . .

"= ge [i 1 tana-o + 0 tan'.- _ 0 tan6 "0 .

315120 0

5 1 (54)
+ ~l tan~a. - -9 tan~cLo

9455+ 5M( +y1 f + - fa ( ).

The value gm of mean gravity is of interest because in practice

it is usually better determined than gravity at the equator. Formulas

based on rather different values of gravity at the &quator and on

rather different flattenings often give nearly the same value for

mean gravity.

WADC TR 52-151 19



5- Other Forms of the Expression for Theoretical Gravity.

The quantity I F Cos ao + cosa Go depends merely on the flatten-

ing of the ellipsoid. For small flattenings its value is approximately

For brevity let us denote this quantity I F cos co + cos2 Q by C.

The value of C is obtained from (40) by multiplying by cos 4o and

dividing the denominator into the numerator. We find in terms of tan a.

F cos % - 1 - tan2 %+ 6 tan4 1-° 62 i131 . . . (56)
7W-1 3  19ft~f 6  O

Since
2sin2 Go •2

tan% - - -_ s" e0 * e 2 + • • • (57)

We find by substitution

F COS o - e2 16 e4 - 608 06 " (58)

7 e W77 11319

We have in terms of the flattening f by means of the relation

e2- 2 f-f 2, (59)
8 23 614 f

Fcos a - 1 f- 8f -+ 21 f2 + . . (60)

The forms (58) and (60) are more convergent than (56).

In terms of e2 and f we have

C 8 - D -e e4 - 37-e (61)

2 7 79 377

5 26 59 f( 32
"7 + 9 f2 3773 (62)

Returning to (45) we write it

go a ge VI-e2 sin2 ; + i - sin, (63)
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This form suggests an expansion in powers of sin 2 t; we, therefore,

assume

go - ge[l + C2 sin 2 . + C4 sin44 + C6 sin 6 * " (64)

By expanding the radicals in (63) and noting that m is a quan-

tity of the same order as e2 we find

Ca . 2mC - e2)

4 -(C - e 2)

(65)

C6 -f(6me - e')

58- e6
c8 l(8mC - e2 )

1(2k-) ek-[2kmC - e 2 3. (66)02k =2.4.6.8• 2k

The numerical coefficient of C2k is that of y~k in the expansion

of %/l 7. The numerical values of the C's will be given in §6.

For actual computation of tables the expansion in multiple angles

is probably as convenient as any. If we put

1

g Bo + B2 cos 20 +B 4 cos4 4 + B 6 cos, 6" (67)

and use the expressions for even powers of the sine in terms of the

cosines of multiple angles, namely,

53..l * - c os 2*6

sin44 . 3.- c os 24 + 1c0S 4#

*Sifl
6 t .- 1 o *+ cs4 - cos 6

16 32 1I

sinS a - cos 2# + cos - 1 cos 60 + cos 8#
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we get by collecting coefficients

1 Bo = ge(l+ 1;C2+ 3C4 + 5C 6+ AC"•"

B2 "-ge( C2 + 1C4 + 5C 6 + C8 (68)

1 3B,-ge('•c + •c c- " "
B4  ge(P9C4+ T6 6  32 S

B6 - -ge(-L C6 + 1 a . ")

321

B8 - ge( -C8  .
1

The coefficients of the expansions of (1-e2sin2*) 2 may be

expressed as hypergeometric series in terms of e2 or

i- V-L ~ t2 a
n 1= tn-f which latter series are even more rapidly con-

vergent than those in e2 . The B's of equations (68) may also be ex-

pressed as elliptic integrals. The functions % and q2 are also

expressible as hypergeometric series, but for the purpose in hand the

elementary treatment here given seems adequate.

Cassinis t/puts the formula for gravity in a form resembling

that previously in use, namely

go - ge(l+ P sinrl2 - sin-n2  -p 2 sinx? sin2 20

-P3 sin4* sin2 . (69)

a form in which all terms after the term in 0 contain the factor

sin22t and thus vanish both at equator and pole. It will be seen that

this P is the same as the P of equations (47) and (50). Helmert's

formula of 1901 stops with the term in A* Y. As a matter of fact in

'_ G. Cassinis. Bulletin G~odgsique, No. 26, April-May-June, 1930, p. 40

f_/ Ber. d. Kdn. Pr. Akad. d. Wiss., XIV 1901, S.328.
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the present instance the succeeding terms are very small. The values

of the A's can be determined in terms of the C's previously used by

means of the relation (68).

By substituting this in equation (69), collecting terms and

comparing coefficients we find

p = C2C+6+C ( .o)P - C + C + C 6 + C 8( 7 0 )
P - )4P,. = C2

or

(C4+C6 + C) ... (71)

4(P - P2) - c4,

or
P = (c + c,3 " . . .

(72)

402 -P3)= C6 ,

or

A3 =(c 8 • • .) (73)

Another form given by Cassinis (l.a.c)

By reducing to a common denominator within the braces and using,

as before, the abbreviation C for 2 F cos a + coS2 a, (45)
2may be

written

ge[1. (toC - e 2 )sin] ()
50 ~ •/ , rle 2 sinz* 74

It can be shown that

mC - e 2 = P-f-fp, (75)

so that (74) may be written in Cassinis's form

go W go[1 + (P-f-fP)sin2 @] ge[l+ (P-f-fp)sin2'k] (76)
go " -e es*l. 4? V_.-f(2-f)sin'@(76
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The quantity W = 1- e 2 sin p is given in the tables for the Inter-

national Ellipsoid of Reference _/ from t- 0' to 4 =45* and of the

quantity V g • e W from t =450 to 4 = 9C)". But if these tables

are to be used for the systematic calculation of go, it is simpler to

use a transformation involving the '"great normal" .1/ N, a transformation

that avoids the discontinuity in tabulation at 4?=- 5' and also the

necessity of passing from W2 to 4i. By using the relation between N and

V or W we may write

Ngo - ge a[1 + (P-f-fP) sin *]

(77)N
Mge l+ (mC- e2 )sin 2f].

The quantity gea is constant and the logarithm of N may be taken

directly from the tables.

A symmetrical formula involving the shape of the ellipsoid and

the values of gravity at Equator and pole, or ge and gp, respectively,

has been given by Somigliana _/. Let I denote the ratio of the semi-

major to the semi-minor axis or a/b - 1/V 5-?e2 then Somigliana finds

g2(j 2 cos 2 4+ sin2$) - (J ge cos 2t + gp sin2 4) 2 . (78)

A similar formula may be written in terms of the reduced latitude u.

It reads

g (j sin 2u+ cos 2 u) - (gecOS 2 U + j gp sin 2 u) 2 . (79)

Tables de l'Ellipsoide de R~ference international -- calculees sous
la direction du Gdndral U. Perrier -- par E. Hasse, Paris, 1928.

/This quantity is also the radius of curvature in the prime vertical.

W C. Somigliana. Atti della Reale Accademia Nazionale dei Lincei,
Anno CCCXXIV (1927), Series 6, Vol. 5, P. 319.

WADC TR 52-151 24



The proof of the first may be taken from Somigliana' s paper, or the

proofs of both may readily be derived by the reader.

§6 - Numerical Values

For the International Ellipsoid the value of the semi-major axis

a is 6 378 388 meters and the value of the flattening f is 1/297. From

these we find

log a - 6.804 71093

log f - 7.527 24355 - 10

The period T of rotation of the earth from star to star is 86164.09890

mean solar seconds. This period is nearly the same as the "sidereal"

day so-called expressed in mean solar seconds but should be used rather

than the so-called sidereal day in computing the centrifugal acceleration.

The so-called sidereal day is really the equinoctial day or interval

between successive transits of the vernal equinox. A more appropriate

name for the so-called sidereal day would be the equinoctial day. From

this value we find

- 27r/T - 0.000 07292 1515

log w- 5.8628 53518- 10

The Association of Geodesy on the recommendation of its Gravity

Committee adopted as the value of ge, or graviV at the Squator at

sea level, 978.049 cm/sec2. This value is based on the work of Heiskanen2/.

With these values of a, y, and ge we find for m -• a/ge

log m - 7.5400 57356 - 10

_/ W. Heiskanen. Ist die Erde ein dreiachsiges Ellipsoid? Gerlands
Beitr"ge zur GeopIjsik, Vol. XhA. 15'd, p. 356.
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With these values as a basis we find for the various quantities for

which formulas have been given

C - 2.487 50763 8

c. - o.oo5 26490 98

C4 - 0.000 02334 64

C6 - 0.000 00012 72

CS 0.o000 00000 07

p - 0.005 28838 41

P3. 0.000 00586 86

P2 0.000 00003 20

(•f) - 0.998 36455 21

2 Bo 980.632 272 cm/sec2

B2  - 2.586 145

B4 -+ 0.002 878

B6 - - 0.000 oo0

log(P-f-fP) - 7.279 5699 - 10
log gea - 6.185 6496 8 - 10

We have, therefores the following working formulas for computing the

acceleration of gravity at sea level in latitude *, the unit being the

gal (cM/secz)

go - 978.04911+0.005 26491 sin2  O. 0000 02335 sin4

+ 0.000 00013 sin6t]. (A)

go - 978.04911+0.005 28838 sin2*-0.000 00587 sin22#

+ 0.000 00003 sin2* si? 21]. (B)

go - 980.632 272 - 2.586145 cos 2(
+ 0.002 878 cos4I - 0.000 004 cos 6t. (C)

g- [6.185 64968- l]N fl{ 17,2795699 - lO]sin2t. (D)
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In conformity with a usual convention among astronomers, the

square brackets in the formula (D) indicate that the number within is

the common logarithm of the coefficient concerned.

17 - The q-functions, Tables and Computation

Expression (32) for the potential and expression (.8) for gravity

at any point in space external to the ellipsoid-and including the

surface of the ellipsoid itself-are exact. At. points sufficiently far

from the surface of the ellipsoid, the concept of a field of force

representing the combined effects of Newtonian attraction and centrifugal

force becomes meaningless, but in practice the points likely to be

considered are far within the limit of applicability.

These equations, (32) and (38), were derived with the aid of

curvilinear coordinates based on three families of mutually orthogonal

surfaces, one family being a set of ellipsoids of rotation. But of all

these ellipsoids the only one that is of special interest to us is the

ellipsoid a %, where sin2 ao - e 2 = square of eccentricity of meridian

ellipse. Th-e condition a <%O corresponds to ellipsoids of the same

family outside the ellipsoid of reference for which a - ao. Unfortunately

these outer ellipsoids do not give us much help in formulating our ideas

about the level surfaces outside of a - ao* The ellipsoids of increasing

axes, corresponding to decreasing values of c, become less and less

flattened as we recede from the center. On the contrary, the actual

level surfaces become more and more flattened under the same conditions.t/

/ This is due to the inclusion of the centrifugal force. The level
surfaces of the Newtonian attraction alone would become more and more

nearly spherical.
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loreover, the level surfaces are not exact ellipsoids but spheroids

depressed in middle latitudes below the ellipsoids having the same

equatorial and polar axes.

It would seem, therefore, that expressions (32) and (38) would

seldom be used, so that the values of q 2 (a) and q2(a), where a = a

could be computed as occasion might require. Thus, it would also seem

that elaborate tables of these functions would be of little use.

But in order to give an idea of the general trend of these

functions, two tables have been prepared. Table I gives the values of

qJ() and q; (ac) for values of ao corresponding to ellipticities

(flattenings) denoted by

f = 2 sin2 - 1 1
2 296.O ' 296.1 " 298.5

This range covers all modern ellipsoids of reference likely to be of

interest. For obvious reasons, figures for three special values outside

this range are given, namely for the ellipsoids of Clarke (1880J),

Clarke (1866), and Bessel.

Table I applies to the ellips~id of reference only, as is

indicated by the subscript zero.

Table II is for the International Ellipsoid only (flattening

equals 1/297 exactly) but applies to a region above (outside) this

ellipsoid. The argument is the altitude of a point above the equator.

The table gives the values of a, q4 (a) , and q, (a) for radii exceeding

the radii of the earth by 10, 20, 30, - 100 kilometers and at three

points, the equator, the pole, and geocentric latitude 45%. At the

equator and pole the excess radii, 10, 20, 30 • kilometers, are
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altitudes, but clearly at latitude 45" the excess radius is not exactly

an altitude, whatever definition we may give to the concept altitude.

If Ar is the excess radius, the difference between Ar and

altitude defined in ary reasonable way is of the order of - Ar at2

latitude 456, the latitude at which ambiguities in the definition of

altitude produce the largest discrepancies. Possible definitions of

altitude will be considered in Part III.

The second of equations (3) is readily transformed into

ta 2ca

A- vr 3 - c73 )3  *i-27+r -ca (3a)

-c 3  
( - (r'- ca)A cr)"+ ýýczý

2z 2

For the equator we may put

x = r, y z M O,

and for the pole

z r, x y O,

whence we find:

at the equator

.2 Csin a -
r

2

(80)
tan2 CL = 2 c

r2 -c2

at the pole

n2 a C2

r
2 + C

3 
a

c2  (81)
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With the usual notation for the semi-axes of the ellipsoid of reference,

c M a 2 e2 . Equations (80) and (81) give for the surface of the ellipsoid

at both equator and pole

sin
2 a 0 = e 2 . a 2 - b

a
2

S 2 ~a 2 _ -
tan Go = r. = ba2 - Yb

b2  '

wnich are merely our adopted definitions, as they should be.

To determine a for a point outside the ellipsoid of reference,

it may often be convenient to expand the radicals in (3) or (3a) in series

after taking r2 + c2 or r2 - c2 outside the radical. Since all meridian

ellipses are alike, we put

y 0

x r cos Y

z= r sin ,

where Y is the geocentric latitude in the expression for sinaa.

For brevity call
c2

si'2 c 2(2sinCap - r 2 + c2  (82)

Then from (3) we find

sinza - sin2 ap + sin4 cp cos'ap cos2Y + 2 sin6 ap cos 4 ap cos4y

(83)

+ 5 singap cos 6 cos 6 ! + 14 sini a cos 8  cosaY + •

From (3a) we find, putting

tan2a% - 2C2(84)
r - C

tlanLaQ tanmae - an4' see sin2y + 2 tan6 .e sec'ce sinY(5 (8S)

- 5 tan ae s ec 4sin
6 Y +lL ta ae secSae sineY+ • • .
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The coefficients 2, t 5, 14, etc. are those of the expansion of

1 2.

-(1+ 14 x) 2

The subscripts p and e, suggesting pole and equator, do not

mean that we are actually computing for the pole or equator, but merely

that the notation is suggested by the similarity in form to sinra in

(81) and tan~a in (80).

Series Expansions of q2 and q;

From

q2(a) 1 [(3 cot 2 a + 1) a - 3 cota)

we find

_" q- - 3 cot 2 C + 2 - 3 a cot a cosecaa.

da

These expressions are very troublesome to compute when a is small.

he use by preference the expansions in series with

tan _C - c

q2 ( c1) .2 t e * + 6 2n. an +

3.5 5.7 7.9 (2n+l)(2n+ 3)

-5-.7 - 7-.; • (2n+l)('2n+3)

If we take out the first term as a factor, we have

q2 2A Cz+ 1 4 _ 0 46(86)
W(a) - T5A1- ? 2 31
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The quantities in square brackets may be expressed as hypergecmetric

series F(a, P y; x) where

F~a P;T;X) a1,. + 41(a +l) +1) x
l1 T 1. 2 T (y+1)

a• ( +1) (a +2) . ( +1) pf + _ X 3 +

1. 2 • 3 • -. (y÷1) (y÷2)

Then
2- F(I, -If ) (88)

15 2 2 )

-'Q F(l, 1; .1 - (89)

Evidently a and P may be interchanged at pleasure.

The introduction of the hypergeometric function enables us to

derive for q2 and q other series that may be useful in checking

numerical computation. The new series involve quantities familiar to

geodesists. In terms of the semi-axes a and b of the meridian ellipse,

4 is evidently the second eccentricity, or

C a "a b2 tan3 a. (90)
b

The ordinary eccentricity e is given by

2  "-b. sina' a (91)aw

The flattening (ellipticity) f is given by

f - a - b = 2 sina 292

a 2. (92)
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There is still another quantity n, which seems to have no

special name; it is given by
n= -~ = tana - (93)

a+b 2 "

A general transformation (A) given in elementary treatments

of the hypergeometric function is

F (a, P; Y; x) = (l-x)-a F (a, Y-P; r; x (A)
x -1

Two rather special transformations are given by Kummer ±/.

1+2VY:-x-)-x 2 - VT --x
F( a, CL + 1. Y; x) - 2I2 F ( 2a, 2a - +1; T,, (B)

2?=x 1t

F (a, a + 1 Y; x) - (1x- x)a F (2a, 2y-2a-l; y; -x_ (C)

Transforms (A), (B), and (C) give us respectively power series
2 1

in e n., and ýf with numerical coefficients as follows:

2z L eaE [l+2- e2 + 25 e+175 e6 + 4725 es +

q2 (cL) =e KI+ a+ 15e4 28 18304

16 n•2- 1 2 +. 2 n - 50 3n + 25 n4 -.
1 7 7 4231 1], (94)

2 e3 + 9  8f 2  200of 600 .+
Y5 7 7 231 1001

B/ E. E. Kummer. "Uber die hypergeometrische Reihe

1 ÷ - a(a÷l) x(+*1) X + .(...) (a+2) P 1) (P+2) 2

ley 1. 2. 1. (y+l) 1. 2. 3 Y (T+1) (y+2)

(Crelle's) Journal fur die reine und angewandte HathmatU 1836. Vol 15,
39-83. Kummer gives a great number of transformations. These used here

are numbers 42 and 47 on page 77.
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q+ 8 6e~ *~ ~ 4 + 64e6 +3643 e6 +21 231 3003

M. 8n 1+.i AIn - a'+ 4 n• 3- 25 n4 +0(5

The series in n are the most advantageous for computation,

since the signs alternate and for small values of a we have roughly

1 1a l2
n7 me TR 94e 5 31 .
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Table I

!%q2(%) q2•(cL)

296.0 40 42' 39.60 .0000741879 .00270858
.1 36.8 1502 767
.2 33.9 1126 675
.3 31.0 0751 584
.4 28.2 0375 492

296.5 25.3 0000 401
.6 22.5 .0000739626 309
.7 19.6 9251 218
.8 16.8 8877 127
.9 13.9 8504 036

297.0 11.0 8130 .00269944
.1 8.2 7757 853
.2 5.3 7384 762
.3 2.5 7012 671
.4 4- 41' 59.7" 6640 581

297.5 56.8 6268 490
.6 54.o 5897 399
.7 51.1 5525 308
.8 48.3 5154 218
.9 45.4 4784 127

298.0 42.6 4414 037
.1 39.8 4044 .00268946
".2 36.9 3674 856
.3 34.1 3305 765
.4 31.3 2936 675

298.5 28.4 2567 585

Table Ia

Spheroid 0o q2(%) q2(%z)

Clarke, 1880 40 43' 52.8" .0000751524 .00273203

Clarke, 1866 40 43' 09.O" 745739 271798

Bessel, 1841 4P 41' 10.0" 730167 267998
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Table II

Values of a

ar 00 45 0 90g

0 4V 42' 11.0" 4° 42' 11.0" 40 42' 11.0"
10 40 41' 44-.5" 40 41' 44.5" 4 41' 44.6"
20 4W 41' 18.0" 4P 41' 18.1" 4 41' 18.2"
30 4V 40' 51.6" 4V 40' 51.7" 40 40' 51.9"
40 40 40' 25.3" 40 40' 25.5" 40 40' 25.6"

50 4' 39' 59.1" 40 39' 59.3" 40 393 5955"
60 40 39' 32.9" 40 39' 33.2" 40 39' 33.4"
70 4V 39' 06.8" 40 39' 07.2" 40 39 07.5"
80 4V 38' 40.9" 4° 38' 41.2" 40 38' 41.6"
90 40 38' 15.0" 40 38' 15.3" 40 38' 15.7"
100 40 371 49.1" 40 37' 49.6" 40 371 50.0"

Values of q 2 ((1)

ArT 00 450 9g0

0 .0000738130 .0000738130 .0000738130
10 4659 4665 4671
20 1210 1222 1233
30 727783 727800 727817
40 4377 4400 4422
50 0992 1020 1048
60 717628 717662 717695
70 4285 4324 4363
80 0963 1007 1051
90 707661 707711 707760

100 4380 4435 4489

Values of q2(cL)

Ary 00 450 90g

0 .00269944 .00269944 .00269944
10 9097 9098 9100
20 8253 8256 8259
30 7413 7418 7422
40 6578 6583 6589
50 5746 5753 5760
60 4918 4926 4934
70 4094 4103 4113
80 3273 3284 3295
90 2457 2469 2481
100 1644 1658 1671

The values of Ar are given in kilometers. Note that at
equator and pole Ar represents an altitude, but at geo-
centric latitude 45e it differs from an altitude, which
incidentally might be variously defined, by a quantity
of the order of lf2Ar"

2
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D31TRBUT IO0• LIST

Cys Activities at W-P AFB Cys Activities

2 DSC-SA 1 Director of Intelligence
1 WCAPP Headquarters, USAF
1 AFOIN - ATISDIB Washington 25, .D.C.

1 WCEFM 1 Director of Plans
Headquarters, USAF

1 VCER Washington 25, D.C.

1 WCE 1 Director of Operations
Headquarters, USAF

2 WCS Washington 25, D.C.

1 WCEG 1 Commanding General
Air Training Command

1 WCRRH Scott Air Force Base, Illinois

1 MCLAEB 1 Commanding General
Air Defense Command

3 WCEOT-I Ent Air Force Base
Colorado Springs, Colorado

Dept. of Defense Agencies Other
Than Those at W-P AFB 2 Commanding General

Strategic Air Qommand
1 Joint Intelligence Group Offutt Air Force Base, Nebraska

ATTN. Photo Survey Section
Pentagon Bldg. 1 Commanding General
Washington 25, D.C. Tactical Air Command

Langley Air Force Base, Virginia
1 Commandant

Armed Forces Staff College 1 Commanding General
Norfolk 11, Virginia Technical Training Air Force

Gulfport, Mississippi
1 Research and Development Board

ATTN: Committee on Geophysics 1 Commanding General
and Geography Air Force Missile Test Center

Pentagon Bldg. Patrick Air Force Base
Washington 25, D.C. Cocoa, Florida

Air Force 1 Commanding General
Air Proving Ground Command

2 Director of Research and Development Eglin Air Force Base, Florida
Headquarters, USAF ATTN: Classified Technical Data
Washington 25, D.C. Branch, D/OI

1 Director of Training Commanding General
Headquarters, USAF Air Research and Dev. Command
Washington 25, D.C. PO. Box 1395

Baltimore 1, Maryland
1 Director of Requirements 1 ATTN: RDR

Headquarters, USAF 1 ATTN: RDL
Washington 25, D.C. 1 A4?lN: RDT
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Cas Activities Cra Activities

5 Commanding General 1 Commanding General
Second Air Force Air Force Cambridge Res., Centey
Barksdale Air Force Base, La. 230 Albany Street

Cambridge 39, Massachusetts
2 Commanding Officer

USAF Aeronautical Chart and 5 Commanding General
Information Service Plant Fifteenth Air Force

710 North 12th Street March Air Force Base
St. Louis 1, Missoiuri California

2 Conmmading Officer 3 Commanding General
USAF aeronautical Chart 5th Air Division

and Information. Service APO 118, C/O Postmaster
514 11th St., N.W. New York, New York
Washington 25, D.C.
ATTN-. Technical Library 3 Commanding General

7th Air Division
1 Commanding General APO 125, 0/0 Postmaster

3415 Technical Training Wing New York, New York
Lowry Air Force Base
Denver, Colorado Am

1 Director 1 Chief of Army Field Forces'
Air University Library Fort Monroe, Virginia
ATTN: Req0 CR-3998
Maxwell Air Force Base, Alabama 1 Commanding Officer

White Sands Proving Ground
5 Commanding General Oro Grande, New Mexico

Eighth Air Force
Carswell Air Force Base 1 Commandant
Fort Worth~, Texas Army War College

Fort Leavenworth, Kansas
1 Air Force Eng. Field Representative

Naval Air Missile Test Center 1 Chief of Engineers
Point Mugu, California ATTN: Res., and Dev. Division

Building T-7, Gravelly Point
1 Commanding General Washington 25, D.C.

Special Weapons Command
Kirtland Air Force Base, New Mexico 1 Commanding Officer

Engineer Res. and Dev. Labs.
1 Commanding Officer The Engineer Center

Holloman AF Base Fort Belvoir, Virginia
ATTN~: 6540th Missile Test Wing
New Mexico 1 Commanding Officer

Army Map Service Library
1 Washington A? Eng. Field Office Corps of Engineers

Room 4949, Main Navy Bldg. 6500 Brooks Lane
Dept. of the Navy Washington 16, D. C.
Washington 25, D.C,

1 Commandant
National War College
Washington 25, D.C.
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Cys Activities Cys Activities

* Navy

1 Director 1 U.S. Geological SurveySSpecial Devices Center 1033 Interior Bldg., N.
Office of Naval Research Washington 25, D.C,
ATTN: Visual Design Branch 940
Sands Point Others
Port Washington, L.I., NY*

10 Ohio State University Research Found.I Hydrographer Napping and Charting Research Lab.
U.S. Navy Hydrographic Office 2593 West Hardin Road
Department of the Navy Columbus 10, Ohio
Washington 25, D.C.

1 North American Aviation, Inc.1 Officer in Charge ATTN: Aerophysics Library
U.S. Naval Photographic 12214 Lakewood Blvd.

Interpretation Center Downey, California
Naval Receiving Station
Washington 25, D.C. 1 Northrop Aircraft, Inc.

ATTN: Mr. John Northrop
Other U.S. Government Agencies Hawthorne, California

1 Central Intelligence Agency 1 RAND Corporation
ATTN: Office of Collector of 1500 4th Street

Documentation, Control Santa Monica, California
* No. CD-A-18831 Thru: WCRR

2430 1, Street, N.Wo
Washington 25, D.C.

1 Director
U.S. Coast and Geodetic Survey
Commerce Department
Washington 25, D.C.
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