NAVENVPREDRSCHFAC TECHNICAL REPORT TR 79-05 AD A U 74809 AIRBORNE EXPENDABLE BATHYTHERMOGRAPH (AXBT) OBSERVATIONS IMMEDIATELY BEFORE AND AFTER PASSAGE OF TYPHOON PHYLLIS IN AUGUST OF 1975 CAPT William G. Schramm, USN Naval Environmental Prediction Research Facility **AUGUST 1979** 38 APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED **79** 10 05 036 NAVAL ENVIRONMENTAL PREDICTION RESEARCH FACILITY MONTEREY, CALIFORNIA 93940 Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service. ## UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) | ſ | Technical Report TR 79-05 TITLE (and Sublitie) Airborne Expendable Bathythermograph (AXBT) Observations Immediately Before and After Passage of Typhoon Phyllis in August of 1975 CAPT W. G. Schramm, USN PERFORMING ORGANIZATION NAME AND ADDRESS Oceanography Department Naval Postgraduate School | | |---|--|---| | | | READ INSTRUCTIONS BEFORE COMPLETING FORM | | | Technical Report TR 79-05 | 3. RECIPIENT'S CATALOG NUMBER | | 1 | | 5. TYPE OF REPORT & PERIOD COVERED | | 0 | Airborne Expendable Bathythermograph (AXBT) | 9 Final rept | | 1 | Passage of Typhoon Phyllis in August of 1975 | 6. PERFORMING ORG. REPORT NUMBER | | 1 | 7. AUTHOR(s) | 8. CONTRACT OR GRANT NUMBER(*) | | | CAPT W. G. Schramm, USN | | | 1 | 9. PERFORMING ORGANIZATION NAME AND ADDRESS | 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS | | | | PE 61153N | | | Monterey, CA 93940 | NR 083-275 | | ŀ | 11. CONTROLLING OFFICE NAME AND ADDRESS | JE REPORT DATE | | 1 | Naval Environmental Prediction Research | 11 August 1979 | | | Facility, Monterey, CA 93940 | 18 HOWBER OF PAGES | | 1 | 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) | 15. SECURITY CLASS. (of this report) | | 1 | Office of Naval Research (Code 480) | UNCLASSIFIED | | | NSTL Station | 15a. DECLASSIFICATION/DOWNGRADING | | | Bay St. Louis, MS 39529 | SCHEDULE | | 1 | 16. DISTRIBUTION STATEMENT (of this Report) | | | | Approved for public release; distribution | | | 1 | 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from | n Report) | | | 16. SUPPLEMENTARY NOTES | | | | | ducted in conjunction | | | The work described in this report was cor | | | | The work described in this report was cor
with the author's doctoral program at the | | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. | Naval Postgraduate | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde II necessary and Identity by block number) | Naval Postgraduate | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde II necessary and Identity by block number) Typhoon Ocean thermal | Naval Postgraduate | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde II necessary and Identity by block number) Typhoon Ocean thermal Air-sea interaction Ocean mixing | e Naval Postgraduate response to typhoons | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde Il necessary and Identity by block number) Typhoon Ocean thermal Air-sea interaction Ocean mixing Ocean thermal structure Tropical cycl | e Naval Postgraduate response to typhoons | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde If necessary and Identify by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Mixed layer | e Naval Postgraduate response to typhoons | | | The work described in this report was corwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde Il necessary and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Tropical cycle Air-ocean heat exchange Air-ocean heat exchange ADSTRACT (Continue on reverse elde Il necessary and Identity by block number) | response to typhoons | | | The work described in this report was corwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde Il necessary and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange 20. ADSTRACT (Continue on reverse elde Il necessary and Identity by block number) Ocean thermal response to a major typhoor | response to typhoons one is analyzed on the | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Continue on reverse elde Il necessary and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Mixed layer 20. ADSTRACT (Continue on reverse elde Il necessary and Identity by block number) Ocean thermal response to a major typhoor basis of data collected during the passage August 1975 in the Philippine Sea. This | response to typhoons one is analyzed on the ge of Typhoon PHYLLIS in unique set of data was | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Centinue on reverse elde Il necessary and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Mixed layer 20. ADSTRACT (Continue on reverse elde Il necessary and Identity by block number) Ocean thermal response to a major typhoor basis of data collected during the passage August 1975 in the Philippine Sea. This is collected using calibrated Airborne Experi | response to typhoons one is analyzed on the ge of Typhoon PHYLLIS in unique set of data was adable Bathythermographs | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Centinue on reverse elde Il necessery and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Mixed layer 20. ADSTRACT (Continue on reverse elde Il necessery and Identity by block number) Ocean thermal response to a major typhoor basis of data collected during the passage August 1975 in the Philippine Sea. This is collected using calibrated Airborne Expendropped from a Navy P-3 aircraft. There is | response to typhoons one is analyzed on the ge of Typhoon PHYLLIS in unique set of data was idable Bathythermographs were three flights: the | | | The work described in this report was conwith the author's doctoral program at the School and is part of the dissertation. 19. KEY WORDS (Centinue on reverse elde Il necessary and Identity by block number) Typhoon Air-sea interaction Ocean thermal Ocean thermal structure Air-ocean heat exchange Mixed layer 20. ADSTRACT (Continue on reverse elde Il necessary and Identity by block number) Ocean thermal response to a major typhoor basis of data collected during the passage August 1975 in the Philippine Sea. This is collected using calibrated Airborne Experi | response to typhoons one is analyzed on the ge of Typhoon PHYLLIS in inique set of data was indable Bathythermographs were three flights: the sage, the second 10 hours | DD , JOHN 1473 EDITION OF ' NOV 65 IS OBSOLFTE 5/N 0102-014-8601 UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (Unen Deta Entered) ## CONTENTS | Fore | word | | | | • | | | • | | • | | | • | | | | | • | iii | |------|------|-----|------|----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|---|---|---|---|-----| | 1. | Intr | 00 | duc | t | ion | | | • | | | | | | • | | • | | | 1 | | 2. | The | E | ере | r | ime | nt | | | | | | | | | | | | | 5 | | | 2.1 | | | | | | | | | | | | | | | | | | 5 | | | 2.2 | | l ns | tı | rum | ent | ati | on | | | | | | | | | | | 5 | | | 2.3 | 1 | 1a | t | for | m | | | | | | | | | | | | | 6 | | | 2.4 | 1 | 1a | nı | nin | g | | | | | | | | | | | | | 6 | | | 2.5 | (|)pe | ra | ati | ons | | | | | | | | | | | • | | 8 | | 3. | The | Dá | ata | | • | • | • | • | | • | • | | | | • | • | • | • | 15 | | 4. | The | Aı | na 1 | y: | sis | | • | | | • | | | | • | | • | | • | 23 | | Appe | ndix | . / | ١ - | _ | AX | вт | 0bs | erv | ati | ons | Pr | odu | ced | | | | | | | | | | | | | Fr | om | Dig | iti | zed | Re | cor | ds | | | | | | | 35 | #### FOREWORD The work described in this technical report was conducted as part of my doctoral studies at the Naval Postgraduate School and the material contained herein is part of the dissertation. This experiment required the interaction of a number of different Navy commands and activities. As such it was a good
example of how the operational experience of a Naval Officer can be a major factor in the successful planning and execution of a scientific study. I would like to acknowledge the support and cooperation I received from the following: Office of Naval Research (ONR Code 480) for the financial support and assistance in obtaining the AXBTs. Commander, U.S. Seventh Fleet, and Commander, Patrol Forces, U.S. Seventh Fleet for providing the P3 aircraft assets. The officers and men of $\underline{Patrol\ Squadron\ Sixty\ Five\ (VP65)}$ for doing such an outstanding and professional job of flying the missions. <u>Fleet Numerical Weather Central</u> for the computer processing of the data. Naval Environmental Prediction Research Facility for the preparation of this technical report. Finally and most importantly of all I would like to thank Dr. Dale Leipper, the chairman of the Oceanography Department at NPS and my doctoral advisor, for both his scientific insight and his patience and understanding. TYPHOON PHYLLIS, 2302Z, 14 AUGUST 1975 #### 1. INTRODUCTION Tropical cyclones, whether typhoons or hurricanes, are creatures of the sea. We know, from years of observations, that these warm-core storms are born over the warm waters of the tropical oceans and rapidly dissipate over land. It is generally accepted that the energy that fuels these storms comes from the heat content of the sea. Little is known, however, of the magnitude of the heat flow from the ocean to the atmosphere, or of the residual effect of this heat loss on the ocean. Because of the large amounts of precipitation associated with a tropical cyclone, it can be assumed that evaporation and the associated latent heat transfer are factors in the air-ocean interaction. Sensible heat transfer is a factor that is dependent on the difference in air and sea temperatures. Heat transfer due to radiation can be assumed to be negligible due to the heavy cloud cover. The net result of these processes, however, is a significant heat loss from the sea surface. At the same time as the surface is being cooled, it may be assumed that the high winds of the tropical cyclone are causing mechanical mixing of the upper layer of the ocean. Both the surface heat loss, with its associated convective overturning, and the mechanical mixing could be expected to deepen the mixed layer. Scattered observations through the years, however, have indicated that this was not always the case. Leipper has pointed out that the additional processes of upwelling may take place under the path of the tropical cyclone, bringing colder water up towards the surface and in fact displacing the thermocline upward. Other researchers, such as Black, have theorized that the upward movement of the thermocline under the path of these storms is due in part to internal waves created by the tropical cyclones themselves. The major problem in identifying the effects of the various air-sea interaction processes and their resultant effects on the oceans has been the sparse, scattered nature of the available observations. This has been the case for a very good reason. Tropical cyclones are very dangerous storms and responsible ship captains stay well clear. Since most oceanographic observations are taken from ships, the result has been that most of the few reports we do have were taken days after the storms had passed and allowed the ships to visit the areas of interest. The study of the effects of Hurricane Hilda by Leipper is generally considered the most authoritative analysis of post-hurricane oceanographic data, and yet these observations were taken several days after the passage of Hilda. There are three possible shortcomings in this type of data: - (1) Air-sea interactions unrelated to the tropical cyclone may take place during the time lag between the passage of the storm and the arrival of a ship on station. - (2) Advection due to major ocean circulations unrelated to the tropical cyclone may shift layers of water into different relationships relative to the storm and to other layers. - (3) Unstable conditions created by the storm will tend to return to a stable condition with the passage of time. Another problem in determining the effects of the various air-sea interaction processes is the lack of reliable data to establish the initial conditions prior to the passage of the tropical cyclone. Previous studies have depended on random observations or climatology to establish the initial conditions. As far as this author could determine, prior to 1975 there had been no planned study of the ocean's response to a major tropical cyclone that had included detailed observations prior to the storm's passage along with near real time post-storm observations at the same locations. #### 2. THE EXPERIMENT Over the past several years, the Office of Naval Research (ONR) has sponsored research projects at the Naval Postgraduate School (NPS) in Monterey, California, in the field of air/sea interaction. One of these projects has been the Oceans and Severe Tropical Cyclones (OSTROC) project. The work described in this report was part of that project and is designated Operation OSTROC 75. The objective of the operation was to obtain detailed oceanographic observations prior to and immediately after the passage of a major tropical cyclone. ## 2.1 LOCATION The Philippine Sea was chosen as the site for the data collection for three reasons: - (1) It is an area with a high incidence rate of tropical cyclones. - (2) Ocean advection is minimal compared to regions like the Gulf of Mexico with its loop current. - (3) It is close to the island of Guam, which is both the site of the Joint Typhoon Warning Center (JTWC) and an operational base for Navy P3 patrol planes. ## 2.2 INSTRUMENTATION The SSQ-36, airborne expendable bathythermograph (AXBT), was chosen to obtain the desired thermal structure measurements. The AXBT is dropped from an aircraft; once it is in the water, a thermistor deploys and measures temperatures down to 1000 ft. As the thermistor descends, the AXBT telemeters the temperature back to the aircraft, where the signal is displayed on a recorder. Depth is determined by elapsed time and the sink rate of the thermistor. #### 2.3 PLATFORM Navy P-3 patrol planes were chosen as the measurement platform. Very early in the planning, it was decided that the measurements would have to be taken from an aircraft in order to obtain the near-real-time observations needed. The P-3 then became the logical choice because they are equipped to use the AXBT as part of their normal ASW mission and the Navy deploys these planes to several bases near the Philippine Sea including Guam. The only question was, would fleet P-3's be available? Preparations started in the spring of 1974. The first action was to obtain a commitment to use Navy P-3 aircraft during the experiment. In May, I traveled to the Western Pacific to present the OSTROC operational plan to the appropriate fleet personnel. The ocean thermal structure has a strong influence on underwater acoustics and thus on the performance of sonars. Because of the possible application of the planned research to ASW tactics and strategy, the Commander, U.S. Seventh Fleet agreed to support the operation. His subordinate commander for Patrol Forces, U.S. Seventh Fleet (CTF-72) in turn tasked the P-3 detachment in Guam to provide three P-3 flights on a not-to-interfere basis relative to operational flights. The initial plan called for the experiment to take place during the 1974 typhoon season, but it had to be postponed one year when a problem with the procurement of AXBTs restricted their use to operational missions. By the spring of 1975, the procurement situation had been corrected and 96 SSQ-36 AXBTs were obtained for OSTROC. Arrangements were made for the instruments to be shipped to the National Oceanographic Instrumentation Center (NOIC) in San Diego, where they were calibrated using the technique developed by Sessions and Barnett for NORPAX experiments. Eleven of the buoys failed the calibration test and the remaining 85 were marked, numbered, and shipped to Guam where they were stockpiled. Arrangements had also been made in 1974 with the Fleet Weather Central/Joint Typhoon Warning Center to provide early warning of a suitable typhoon (defined as a typhoon with sustained winds of over 100 kt) and to coordinate activities with the patrol wing detachment in Guam. With the arrival of the 1975 typhoon season, all the preplanning was complete. The AXBTs were stockpiled and ready, the patrol plane crews had been briefed on the general nature of the experiment, the buoy pattern for the initial flight was prepared and JTWC watchstanders had been briefed on their role. All that remained was for me to wait in Monterey for the "right" storm to occur. #### 2.5 OPERATIONS The 1975 typhoon season got off to a slow start, but finally in mid-August events started to happen. At 0242Z* on the 12th, JTWC issued warning #1 for tropical depression #7, with 30 kt winds located at 12.7°N, 137.9°E. At 0304Z on the 12th, JTWC issued a prognostic reasoning message that stated that TD 07 was expected to reach typhoon intensity within 72 hours. LCDR Ralph Miller, Oceanography Officer at the Fleet Weather Central, was alerted. At 0540 on the 12th, JTWC upgraded TD 07 to Tropical Storm PHYLLIS based on aircraft observations. By 1224Z on the 12th, JTWC had revised their estimate and now stated PHYLLIS would be a typhoon within 48 hours. Movement was expected to the northwest at about 8 kt. At this time, LCDR Miller called me and also alerted the P-3 detachment that this might be the storm to be examined for the experiment. It was determined that there were no conflicts with operational missions. By 0824Z on the 13th, PHYLLIS had increased to 65 kt and was now at 14.5°N, 135.1°E. At 1734Z on the 13th, JTWC upgraded PHYLLIS to a typhoon with sustained winds of 85 kt and predicted further intensification. Based on this
information, I made the decision to go ahead, and VP-65 was alerted for a flight the next morning. At 0040Z on the 14th, I departed Monterey for Guam and at 0200Z the same day, the first OSTROC P-3 took off from NAS Agana, Guam. LCDR Miller was on board with the latest satellite fix ^{*}Because of the time difference between Guam and the mainland, all times are referenced to Greenwich mean time (GMT). on the storm to help orient the buoy pattern to be dropped ahead of the storm. By 0600Z on the 14th, PHYLLIS had increased to 100 kt of sustained wind and was moving north at 15 kt toward the area where, at that time, our P-3 was obtaining the critical observations of initial conditions. By the time the first flight (AA141) had returned at 141330Z, after an 11 1/2 hour flight, PHYLLIS had increased to 110 kt and was located at 21.6°N, 137.0°E and continuing north at 18 kt. The pattern of AXBTs dropped by AA141 consisted of 25 buoys starting at 23°-20°N, 138°-50°E and curving counterclockwise to the southwest. Thirty-four of the SSQ-36's were dropped, and 25 worked properly. I arrived in Guam three hours after the return of AA141, just in time to learn that PHYLLIS had indeed crossed over the pattern with sustained winds of 115 kt and gusts to 140 kt. The radius of the 100 kt winds was 25 n mi; the radius of the 50 kt winds was 125 n mi to the east and northeast, and 75 n mi elsewhere. Sea level pressure was estimated at 920 mb. Later, PHYLLIS continued on to Japan, striking the islands of Honshu and Shikoku and killing 19 persons. Figure 2.1 shows the path of PHYLLIS with each dot equating to a synoptic fix. The area enclosed by the dashed line represents the area covered by the horizontal analyses discussed later in this report. Section A-B represents that line along which the vertical cross-sections, also discussed later, were analyzed. As shown in Figure 2.1, PHYLLIS crossed the AXBT pattern about 780 n mi northwest of Guam. Figure 2.1. Track of Typhoon PHYLLIS. So far, the operation had gone as planned. The JTWC fore-casts for PHYLLIS had been outstanding and the instruments had functioned as well as could be expected. Now came the most critical phase of the operation: the second flight had to revisit the area as soon as possible after PHYLLIS cleared the area. After worrying over all the things that could go wrong, but didn't, the second flight (AA151) took off at 0415Z on the 15th. We headed to that point northwest of Guam where PHYLLIS had crossed our pattern. Enroute, we passed through the major feeder band south of PHYLLIS. The cloud patterns resembled a well-developed mid-latitude cold front. We arrived on station just 10 hours after the eye of the storm had passed by. The timing was close to perfect. The surface wind varied between 45 and 20 kt during the flight and there was a broken layer of cumulus clouds between 2000 and 5000 ft. We dropped 27 AXBTs, including 10 at points measured during the earlier flight. These were the 10 points nearest the track of PHYLLIS. An additional 14 observations were made along the lines both parallel to and perpendicular to the storm track, and there were three failures. This flight was 10.1 hours in duration. Two days later the third flight (AA171) revisited the same area, taking 23 observations. The same 10 points visited on the first flight and revisited on AA151 were visited once again. Three AXBTs were bad on this flight. In total, 85 SSQ-36's had been dropped on the three flights; of these, 72 were good and 13 were failures. Of the 72, 67 were correctly recorded and 5 were lost because of recording problems. All of the data had been recorded on two in-flight recorders and also on tape. The tapes were later processed using a Fast-Time Analyzer at the Tactical Support Center on Guam. All the recording and analysis equipment was of high quality and used by the Navy for frequency analysis purposes. Figure 2.2 shows the area of the investigation. The dots represent the points at which AXBTs were dropped and the numbers 1, 2, and 3 refer to the particular flight on which the drops were made. Additional drops were made to the southwest on flight AA141 (the first flight), but they were too far removed from the typhoon track to be of value. The typhoon was moving due north along 137°E longitude during the time it passed over this area. Figure 2.2. Locations of AXBT observations: 1 - observations on 14th; 2 - observations on 15th; and 3 - observations on 17th. #### 3. THE DATA Without question, the data collected during Operation OSTROC 75 represents a unique data set. Several factors contribute to the unique and valuable nature of this data: - (1) Initial conditions were observed just prior to the passage of the typhoon. - (2) Reaction observations were taken just hours after the passage of the typhoon and just 24 hours after the initial conditions were observed. This factor, combined with the fact that the investigation took place in the Philippine Sea, away from land and major currents, meant that the measured differences were in fact due to the typhoon. - (3) The third set of observations gave some measure of the rate at which the ocean returns towards its normal state after a typhoon passage. - (4) A number of the observations were actually taken at the same points. - (5) The typhoon was intense. - (6) The AXBTs were calibrated. This last factor cannot be overstressed because the AXBT is not factory calibrated as a scientific instrument. As noted in Section 2, the AXBT data were recorded on magnetic tape recorders in the aircraft, later processed through a frequency analyzer, and the results plotted as analog traces. These traces were then digitized at the Fleet Numerical Weather Central using a CALMA 408 digitizer. Appendix A provides a listing of each of the AXBT observations as produced from the file of digitized records. The first line in each observation consists of the appropriate station data. The ship name VO26 was assigned at FLENUMWEACEN to keep these records separate from other AXBT reports. YYMMDD refers to the last two digits of the year, two digits for the month, and two digits for the day. HHMM refers to the hour and minute of the observation. No. Pr is the number of depth-temperature pairs in the particular observation. Surf. Temp is the surface temperature. Max Depth is the maximum depth for the particular observations and Temp is the temperature at that depth. Print Count is the sequential number assigned to each observation in the series. Following the station data line are one or more lines of depth-temperature pairs as determined during the digitization process. In addition to the listings of depth-temperature pairs, each observation was plotted using a Varian plotter. Figures 3.1 through 3.5 are examples of this type of plot. In these particular figures there are three observations overplotted, representing measurements at a given point, made on each of the three flights. Figure 3.1. 110 n mi to right of track of Typhoon PHYLLIS: profiles 1 (14th), 33 (15th), and 66 (17th). Figure 3.2. 60 n mi to right of track of Typhoon PHYLLIS: Profiles 2 (14th), 34 (15th), and 64 (17th). Figure 3.3. 30 n mi to right of track of Typhoon PHYLLIS: Profiles 22 (14th), 32 (15th), and 53 (17th). Figure 3.4. Under eye of track of Typhoon PHYLLIS: Profiles 3 (14th), 35 (15th), and 51 (17th). Figure 3.5. 30 n mi to left of track of Typhoon PHYLLIS: Profiles 4 (14th), 36 (15th), and 60 (17th). #### 4. THE ANALYSIS The first phase in the analysis was to compare individual BATHY traces taken on the before and after flights. To facilitate this comparison those BATHY observations that were made common points on each of the three flights were identified and the traces overplotted. Figures 3.1 through 3.5 represent six such cases. Table 1 shows the relationship of each of these sets of observations to the track of the eye of PHYLLIS. In each of the plots the solid line represents the initial condition, the dotted line the condition right after the typhoon passage, and the dashed line the condition two days later. Table 1. AXBT positions relative to track of PHYLLIS. | Figure | AXBT Seque | ential Numbers | Distance | |--------|------------|----------------|---------------| | 3.1 | 1, | 33, 66 | 110 n mi east | | 3.2 | 2, | 34, 64 | 65 n mi east | | 3.3 | 22, | 32, 53 | 30 n mi east | | 3.4 | 3, | 35, 51 | 0 | | 3.5 | 4, | 36, 60 | 30 n mi west | Observations 3, 35, 51 (Figure 3.4) were taken directly under the track of the eye of the typhoon. As would be expected this was the set of observations that showed the most change. The SST at this point decreased 1.49°C, which was the largest change noted on the second flight. The most surprising change, however, was the upward movement of the thermocline from 40 m to 18 m. This shallowing of the mixed layer took place in the presence of winds over 115 kt. Note also the upward displacement of the isotherms at all depths down to 330 m. This movement appears to be fairly uniform, and on the order of 50 m. Two days later there has been a slight increase in SST and a general return of the profile towards the initial conditions. Thirty n mi to the west of the track of the eye the same pattern of changes took place, but to a lesser degree. The SST decreased 1.28°C and the mixed layer stayed at about 39 m. There was a definite upward displacement of the isotherms, but this time only on the order of 20-30 m. Once again the observation taken on the 17th indicated a warming at the surface and a return of the isotherms to their original levels. Sixty n mi to the west there was relatively little change. Note in Figures 3.4 and 3.5 how well mixed the upper layer is, and how sharp a break exists at the top of the thermocline as observed right after storm passage. East (or right) of the track of PHYLLIS is where the maximum winds would be expected, and here the changes were different from those noted to the west. Thirty n mi to the east the
surface cooled 1.28°C and once again there was a generally upward movement of the isotherm. Sixty n mi to the east there was only a 1.15°C decrease, but by the 17th the decrease in SST had reached 2.04°C. Moving farther away from the storm track a change of just 0.58°C was observed 110 n mi to the east. Table 2 lists the SST changes for each of the points under consideration. Table 2. Sea surface temperatures. | | Positio | n Relati | ve to Ti | rack of | Typhoon | PHYLLIS | |--------------------|---------|----------|----------|---------|---------|---------| | | | East | | | West | | | Distance (n mi) | 110 | 65_ | 30 | 0 | 30 | 60_ | | SST on 14th | 28.09 | 28.22 | 27.64 | 28.18 | 28.20 | 28.00 | | SST on 15th | 27.38 | 27.07 | 26.36 | 26.69 | 27.16 | 28.00 | | Change (15th-14th) | -0.71 | -1.15 | -1.28 | -1.49 | -1.04 | 0.0 | | SST on 17th | 27.51 | 26.18 | 26.44 | 27.48 | 27.76 | 28.04 | | Change (17th-14th) | -0.58 | -2.04 | -1.20 | -0.80 | -0.44 | +0.04 | Of particular note in those profiles obtained east of the track, is the ill-defined nature of the bottom of the mixed layer. This characteristic was common to all those observations taken east of the storm track and is in sharp contrast to the observations taken to the west where the mixed layer was well mixed. Several observations may be made relative to the analysis of the data: - (1) A pronounced upward displacement of the subsurface isotherms took place. This displacement was at a maximum under the track of the eye and decreased both to the left and right of that track. - (2) There was a pronounced decrease of SST between the 14th and 15th with the maximum loss under the path of eye and with a lesser decrease in SST both to the left and right. - (3) By the 17th the SST had started to increase again to the west, but not to the east. (4) After the passage of the typhoon the mixed layer was sharply defined to the left (west) but ill-defined to the right (east). In reflecting on the latter two observations, two characteristics of the typhoon should be considered. First, the winds were stronger to the right (east) and second, the major feeder band for PHYLLIS was to the east and it persisted with winds over 50 kt for several days as PHYLLIS moved north. The second phase of the analysis consisted of preparing analysis charts. Figure 4.1 is the SST as analyzed for the 14th, Figure 4.2 represents the SST on the 15th, and Figure 4.3 is the difference in the previous two. The zone of maximum change was oriented north-south between 137°E and 138°E, while the best track for the eye of the typhoon was due north along 137°E. Vertical cross-sections of temperature were analyzed along section A-B, which was roughly 34°N. Figure 4.4 is the cross-section analysis for the 14th and it is evident that the initial conditions were those that could be considered as normal. Figure 4.5 is the cross-section analysis for the 15th and is probably the most dramatic depiction of the changes caused by PHYLLIS. The most obvious change was the upward bulge in the isotherms under the path of the eye or slightly to the right of that track. At 137°E, for example, the 25° isotherm went from 54 m to about 30 m, but deeper the 20° isotherm went from 144 m to about 97 m and the 17° isotherm went from 295 m up to 248 m. Less obvious is the smaller downward movement of isotherms both to the east and west of the sharp zone of upwelling. Figure 4.1. Sea surface temperature on 14th. Figure 4.2. Sea surface temperature on 15th. Figure 4.3. Changes in sea surface temperature from 14th to 15th. Figure 4.4. West to east vertical cross-section, along 24^oN, perpendicular to track of Typhoon PHYLLIS, on 14 August. (Isotherms in degrees C.) Figure 4.5. West to east vertical cross-section, along $24^{\circ}N$, perpendicular to track of Typhoron PHYLLIS, on 15 August. (Isotherms in degrees C.) Figure 4.6 is the cross-section analysis for the 17th. Two features are noteworthy on this chart. First, the upwelling under the track of the typhoon eye has subsided, i.e., the isotherms have moved downward; second, there appears to be a new zone of upwelling taking place to the east between 138°E and 139°E. Figure 4.7 is a cross-section analysis of the change in temperature between the flights on the 14th and 15th. The maximum was a change in excess of 5°C that took place at a depth of about 40 m and just to the east of 137°E. In conclusion, it is apparent that there was a very dramatic upward movement of isotherms, relative to the sea surface, in a fairly narrow band under the path of Typhoon PHYLLIS. Outward from this zone of upwelling there was a much less pronounced zone of downwelling. Three days after the passage of the typhoon there was a major return towards normal in the zone under the path of the eye; new upwelling, however, was becoming apparent to the east in the vicinity of the major typhoon feeder band. Figure 4.6. West to east vertical cross-section, along $24^{\rm O}{\rm N}$, perpendicular to track of Typhoon PHYLLIS, on 17 August. (Isotherms in degrees C.) Figure 4.7. Vertical cross-section depicting changes in temperatures from the 14th to the 15th. ## APPENDIX A # AXBT OBSERVATIONS PRODUCED FROM DIGITIZED RECORDS Column and line entries on these listings are discussed and defined on p. 16 of this report. LISTING FRCP XOT FILE AT FLEET NUMERICAL MEATHER CENTRAL, MONTEREY, CALIF, 93940 DEPTHS TO NEAREST METER. TEMPERATURES IN MUNDRETHS OF DEGREES CELSIUS | 15 52
15 52 | 7E NP 2027 | TENP
2171
1634 | TEMP
2159 | TENP
21.9.7 | TE NP 2091 | 2278
1663 | 7EHP
2385
1676 | TEMP
2232 | 7E #P 2454 1760 | |--|--|---|--|--|--|--|--|--|---| | 90
90
312 | 0EPT#
108
333 | 0EPTH
97
335 | 96 | 125 | 0EPTH
148 | DEPTH
137
335 | 0EPTH
74
267 | DEPTH
132 | DEPTH
85
269 | | 7ENF
2137
1606 | 7EHP
2074
1665 | 2253
1686 | 7ENP
2238
1624 | 7EHP
2320 | TEMP
2113 | 7547
2347
1769 | 2439
1729 | 7ENP | TEMP
2526
1933 | | 06PTH
77
282 | 0EP TH
102
277 | 83
311 | 05P TH
61
338 | 05P TH
180 | 0EP TH
122 | 0EP TH
125
280 | 0EP TH
64
244 | 0EPTH | DEP TH
75
223 | | 754P
2240
1670 | 1EPF
2157
1675 | 2320
2320
1749 | TENP
2283
1681 | 7EHP | TEMP
2136 | TERP
2425
1862 | 2468
1831 | TENP
2314 | TENP
2581
1968 | | 0E PTH
63
254 | DEPTH
86
256 | DE PTH
73
262 | 0EPTH
77
307 | DEPTH TEHP
75 2474 | DEPTH
113 | DE PTH
109
244 | 0EPTH
61
207 | DE#TH | 0EPTH
70
217 | | 2293
1690 | TEMP
2240
1715 | 7ENP
2380
1774 | 2346
1722 | 7 ENP
2496
1685 | 2169
1651 | 1EHP
2543
1925 | 2542
1857 | TEHP
2401 | 764P | | 0E P TH
58
2 38 | DEP TH
77
232 | 0EPTH
63
254 | 0EP TH
74
291 | 0EPTH
70
135 | 0EPTH
103
335 | DEPTH
90
227 | 06 P TH
57
20 S | DEPTH TEMP
82 2401 | HT # 193 | | 1
1
2327
1728 | 2
TEHP
2350
1771 | 3
2401
1791 | TEMP
2543
1801 | 5
2535
1694 | 6
TEMP
2267
1687 | 7
TEMP
2651
1958 | 7
2726
1959 | 9
76 2437
334 1658 | 10
7EHP
2741
2103 | | NT COUNT
1
0EPTH TEHP
52 2327
221 1728 | 0EPTH
67
206 | 0EPTH
6U
241 | DEPTH
59
237 | 0£PTH
64
325 | 0EPTH
79
318 | DEPTH 76 214 | 0EPTH
50
168 | 9
0EPTH TEHP
76 2437
334 1658 | 10
DEPTH TEHP
61 2741
169 2103 | | 1 80 8 | 595
TENP
2672
1790 | 5 1634
PTH TEMP
57 2443
222 1810 | 8 1624
PTH TEMP
54 2564
196 189J | 5 1685
PTH TEMP
61 2575
295 1748 | 2632
2432
1714 | 15 1663
PPTH TEMP
70 2706
184 2063 | 14 1594
PTH TEMP
44 2845
155 1987 | 14 1658
19TH TEMP
62 2578
302 1711 | 348 1432
0EPTH TEMP
56 2788
157 2152 | | DEFIN TEMP PRINT COUNT
336 1492 1
10 EPTM DEPTM
47 238 7 52 2
172 1808 221 1 | 333 1595
DEPTH TEMP
46 2672
188 1790 | 335 1634
DEPTH TEN
57 244
222 181 | 338 1624
DEPTH TEMP
54 2564
196 1893 | 335 1685
DEPTH TEMP
61 2575
295 1748 | 335 1651
OEPTH TENP
63 2432
298 1714 | 335 1663
DEPTH TEMP
70 2706
184 2063 | 334 1594
DEPTH TEMP
44 2845
155 1987 | 334 1658
DEPTH TEMP
62 2578
302 1711 | 346 14
DEPTH
56
157 | | 852 | 1EMP
2786
1835 | 1ENP
2624
1881 | 1ENP
2763
1908 | 16HP
2793
1630 | 7EHP 2+90 | 15HP
2814
2127 | 1EMP
2863
2082 | 15HP 2779 1901 | 7ENP
2837
2194 | | AC.PR SURF, TENP MAX
21 2809
H TEMF DEPTH TENP
H 2793 41 251
E 1991 152 1652 | 2622
0EPTH TEMP
41 2786
163 1835 | 2818
DEPTH TENP
49 2624
187 1881 | 2820
DEPTH TEMP
48 2763
182 1908 | 2600
CEPTH TEMP
43 2793
237 1630 | 2624
DEPTH TEMP
55 2490
265 1779 | 2906
0EPTH TEMP
60 2814
171 2127 | 2867
0EPTH TEMP
41 2863
126 2082 | 284U
05PTH TEMP
45 2779
222 1901 | 2860
DEPTH TEMP
52 2837
142 2194 | | AC.PR S
21
21 2793
138 1991 | 20
TEMF
2815
1883 | 20
15 15 15 15 15 15 15 15 15 15 15 15 15 1 | 19
7804
1969 | 17
TENF
2802
1893 | 17
TEMP
2798
1834 |
20
1EMF
2894
2143 | 23
2868
2145
1594 | 16
TENP
2829
1958 | 23
2953 | | DEPTH DEPTH DEPTH | F 37 142 | E 43 | 152
152 | E 40 | 5E 40 40 24C | 51
165 | 138
138
138 | 5 38 254 254 | 5 13 127 | | IN 134505 21 1246 136 1991 | 1N 13802F
TEMP OF
2818
1926 | IN 13761E
TEMP DE
2814
1985 | 1N 13632E
TEMP DE
2824
2057 | IN 13552E
TEPP DE
29J5
1954 | N 13505E
TEMP 0
2824
1877 | N 13349E
TEMP 0
2899
2184 | IN 13251E
TEMP DE
2871
2225
1612 | 3N 132345
TEHP OF
2844
2016 | 13237E
15KP 0
2862
2273 | | 2320N
2320N
29 2
26 2
118 1 | CEPTH T
36 2
128 1 | 9 2355N
GEPTH T
+6 2 | 5 2354N
CEPTH TI
38 2 | 3 2350N
DEPTH TO
27 2
191 1 | | | 6 2151N
DEPTH T
27 2
93 2
323 1 | 6 2113N
DEPTH T
34 2
193 2 | • | | 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | .506 | 6750 | 3545 | .553 | 9652 | 3633 | 1716 | 9726 | 273 | | 754814
PTH TENP
J 2849
105 1956 | 75.41+
PTH TEMP
J 2822
117 1974 | 753814
PTH TEMP
2 2818
113 2089 | 753814
PTH TEMP
1 2820
105 2117 | PTF1914
PTH TEMP
3 2503
173 1983 | PTH TEMP
PTH TEMP
2824
157 2046 | EPTH TEMP
J 2963
148 2233 | 75.814 J
PTH TEMP
2367
85 2278
287 1644 | 6 753514 0
EPTH TEMP
0 2843
171 2139 | 6 75-814 J
10 2960
91 2392 | | SHIP VYMNOO HHHM LAPM
VQ26 75481+ 0456 2320
OEPTH TEMP OEPTH
J 2849 28
118
336 1492 | VUZ6 754A1+ U5U6 2340
DEPTH TEMP CEPTH
J 2822 34
117 1974 128 | 0EPTH TEMP CEPTH CEPTH 2 2418 + 60 113 2089 144 | VUZE 753314 3545 2354
DEPTH TEMP CEPTH
' 3 2820 38 | V026 751914 J553 2350
DEPTH TEMP DEPTH
3 2502 27
173 1983 191 | VOZ6 759814 0632 2340
CEPTH TEMP DEPTH
2844 37
257 2446 219 | V.26 75JA14 3633 2259
CEPTH TEMP CEPTH
J 2963 48 | VOZE 75-914 J716 2151
DEPTH TEMP DEPTH
V 2967 27
85 2278 93
267 1644 323 | V026 753914 0726 2113
DEPTH TEMP DEPTH
0 2843 34
171 2139 193 | V026 754814 J736 2451
CEPTH TEMP CEPTH
0 2360 22
91 2392 116 | | SHP VMMAND MHHA LOMHA LO | 7E NP 2276 1501 | 2382
2382
1891 | 7EMP | 22.38
17.64 | 2372
1662 | 2143
1626 | 7EHP
2218
1639 | TENP
2244 | 122 14
17 89 | |--|--|---|---|---|--|------------------------------|---|--|---| | 28 13230E 22 285 195 294 1549 0 2FFH TEMP PRIMT CHANNEL LONNIN LCHANNEL REPROPERTING THE PRIMT CHANNEL REPROPERT CHANNEL REPROPERTING THE PRIMT REP | 388
388 | 0€PTH
99
215 | DEPTH
172 | 90
90
235 | 0EPTH
66
263 | 139
139
331 | 0EPTH
105
315 | 0EPTH
123 | 0EPTH
111
261 | | No. 12.204 No. N | 1586
2305
1623 | 7ENP
2454
1998 | 7ENP
2257 | 2302
1793 | 7EMP
2481
1681 | 2227
1785 | 75MP 234.7 | | 2369
1866 | | National | 107
107
299 | DEP TH
86
281 | 142 | DEP TH
78
222 | 93
247 | 122
287 | 0EP TH
77
299 | 109
109
334 | 0EPTH
100
234 | | 12.236 | 7EHP
2368
1634 | 75 M 2 2 5 4 9 2 8 6 8 | TEMP
2412 | 7EHP
2420
1828 | 2543
1758 | TENP
2409
1775 | 2494
1736 | 7ENP
2419
1786 | 2493
1892 | | The column | 0EPTH
93
298 | 0EPTH
72
190 | 0E PTH
96 | 05P TH | DE#TH | 0EPTH
87
262 | 0EPTH
59
263 | 0EP7H
90
254 | 0EPTH
98
217 | | The common control of the | 7ENP | 2617
2071 | 15496
1587 | 15HP | 2753
1794 | 7EHP
2495
1811 | 2558
1799 | 2508
1869 | | | TEMP COMPHH NC.PR SURF.TEMP MAX DEPTH TEMP PRINTERS 22 893 | | | 069 TH
81
332 | 0EPTH
58
181 | 0EP TH
37
195 | 0EP TH
73 | DEPTH
53
233 | 0EP TH
72
225 | 0EP TH
72
198 | | TEMP COMPHH NC.PR SURF.TEMP MAX DEPTH TEMP PRINTERS 22 893 | 1
1
1
1
2
2
2
3
3
3
4
1
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | 2
2679
2107
1339 | 3
1549
2617
1664 | 154
2514
1956 | .5
2791
1962 | 16
TENP
2559
1861 | 7
TEMP
2657
1826 | .8
2571
1967 | TENP
2626
1989 | | He Comme | 255
234
234 | 0EPTH 60 173 173 335 | 06PTM
56
311 | 0EPTH
55
168 | 33
176 | 0EPTH
61
216 | 0EPTH
45
225 | 0EPTH
63
176 | 0EPTH
67
181 | | TEMP DEPTH TEMP DEPTH TEMP 22 2593 2593 2593 2593 2593 2593 2593 2593 2593 2593 2593 2593 2594 | 186 PR | 2864
2187
1349 | 167
164P
2706
1754 | 2625
2625
1969
1539 | 111
TENP
2800
1902 | 2617
1915 | 13
TEMP
2920
1916 | 2624
1985 | 7EMR
2812
2053 | | TEMP CONTHH NC.PR SUR 13.30 C C C C C C C C C | 338 15
338 15
0EPTH
214 | 335 13
0EPTH
40
40
157
330 | 332 15
0EPTH
57
203 | 335 15
0EPTH
46
161
335 | 333 15
DEPTH
30
30 | 331 16
DEPTH
52
198 | 335 16
DEPTH
37
164 | me | 332 1
06PTH
57
171 | | TEMP CONTHH NC.PR SUR 13.30 C C C C C C C C C | 44X TEMP 2808 | 22889
2290
1436 | 1EHP
2726
1842 | 7EMP
2770
1995
1600 | 15NP
2796
1993 | 2690
1992 | 1EHP
2840
2037 | 1EHP
27 98
2041 | 7EMP
2842
2116
1673 | |
133230
13332
2853
2853
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
286 | URF.TEMP
2893
DEPTH
37
196 | 2904
0EPTH
31
140
313 | 2096
DEPTH
53
251 | 2816
DEPTH
41
154
311 | 2769
DEPTH
12
132 | 2839
DEPTH
43 | 2862
DEPTH
34,
152 | 2633
DEPTH
51
161 | 2811
GEPTH
53
152
332 | | 133230
13332
2853
2853
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
2863
286 | 22
22
1EMP
2885
2001 | 26
2994
2934
2338
1549 | | | 22
TEMP
2787
2109 | | | | | | The same of sa | 06 26 180 180 180 180 180 180 180 180 180 180 | 9E
0EPTH
24
127
294 | 6E
0EPTH
207 | w 0 | 3E
0EPTH
7
108 | 3 | 9EP7+ | 2E
DEP 11- | - | | The same of sa | 1323
1323
649
646
538 | 1322
ENP
9.9
353
766 | 1311
EMP
899
058 | 1312
EMP
805
065
696 | 1314
ENP
766
207
511 | 1321
EMP
809
369 | 1324
EMP
862
156 | 1333
ENP
849
126 | 1343
EPP
1824
227
739 | | SAIP YENNOD HHHH VOED 750814 0745 137 2216 137 2216 137 2216 137 2216 137 2216 137 2216 135 2362 234 1341 VU2C 75.814 0815 CEPTH TEMP TEM | 21 2 2 2 2 2 2 2 2 3 3 8 1 | 1910N
PTH T
18 2
121 2
247 1 | | | 2152N
PTH T
4 2
91 2
333 1 | 2244N
PTH T
29 2 | 2316N
23 2
122 2 | 2354N
23 2
144 2 | 2425n
22 22 22 23 2 23 2 23 2 23 2 23 2 23 2 | | SAIP YEAMUD VOED 750814 | HHHH
17.5 | 0756
0E | 3815
0E | 2833 | 1454 | 0110 | 3932 | 6 76 7 | 1606 | | V026 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 153814
TH TEMP
0 2893
17 22 46 | 753814
10 2934
15 2362
14 1811 | 75.814
TF TE.1P
0 2996
36 2.82 | 75J814
11 TEMP
11 2816
15 2183 | 75.3814
TH TEMP
4 2759
72 2296
39 1599 | 75.914
TH TEMP
3 2339 | 75.91+
TH TEMP
C 2962
15 2164
35 1613 | 75.91+
11 TEMP
J 2933
39 2145 | 753814
TH TEMP
0 2911
16 2256
79 1751 | | | SHIP 7
V026 7
OEPT
13 | V026 7
0EPT | VJ26.7 | V426 7 | V326 7 | V626 | VC26.7 | V026 | V326 | | TENP
2239
1749 | 7EHP
2163 | 2143
1557 | TENP
2636 | 7ENP
2299
1761 | 7E 4P
2291
1917 | 7E4P
2245
1668 | 7E MP | 7EMP
2023
1566 | TENP
1981
1524 | |--|---|---|---|--|---|--|--|---|--| | 0EPTH
105
310 | 0EPTH
96 | 0EPTH
97
334 | DEP TH | 0EPTH
90
257 | DEPTH
126
223 | 0EPTH
82
267 | 0EPTH
165 | 103
335 | 0E.PTH
92
335 | | 1ENP
2296
1766 | 2221
1609 | 7EHP
2266
1642 | 7EHP | 2339
1793 | 2336
1951 | 2291
1715 | 7ENP
2097
1677 | 1620 | 2007
2007 | | 93
93
282 | DE# TH 834 | DEPTH 71 302 | DEPTH TEMP
73 2432 | DEPTH 72 244 | 0EPTH
119
219 | 0EPTH
76
253 | DEP TH
150
332 | 0EP TH
74
310 | 05PTH
86
299 | | Z347 | 7ENP
22 84
1654 | 7ENP
2303
1688 | 63 2480 | 75HP 2363 | 7EHP 2432 2001 | 1EHP
2437
1726 | TENP
2127
1733 | 1ENP
2172
1646 | TENP
2101
1621 | | 0EPTH
85
255 | 0EPTH 73 311 | ЭЕРТН
66
279 | 0E PTH
63 | 0EPTH
68
225 | DEPTH
100
207 | DEPTH
63
243 | 0EPTH
139
303 | 0EPTH
64
295 | DEPTH
72
291 | | TENP
2405
1851 | 7ENP
2344
1699 | 1ENP
2346
1739 | 2543
1675 | TEMP
2433
1841 | 2458
2052 | 2507
1787 | TENP
2307
1778 | TENP
2224
1696 | 7ENP
2202
1698 | | DEPTH
72
226 | 0EP TH
67
275 | 0EPTH
58
244 | 0EPTH
56
333 | 0EP TH
60
210 | 0EP 7H
87
194 | 0EP TH
53
215 | 0EP TH
98
269 | 0EPTH
52
259 | 0EPTH
51
24 | | 17
1904
1904 | 1
2410
1736 | 2
2385
1769 | 23
PTH TEMP
51 2611
286 1764 | 1988 | 25
TEMP
2549
2076 | 26
2556
2556
1916 | 7
1649
2337
1820 | 28
1 TEMP
2288
1722 | 29
TEHP
2252
1729 | | INT COUNT
20
0EPTH TEMP
67
2438
203 1904 | 21
0EPTH TEMP
58 2410
258 1736 | 22
DEPTH TEMP
54 2385
237 1769 | 23
DEPTH TEMP
51 2611
286 1764 | 24
DEPTH TEMP
51 2476
164 1988 | 25
0EPTH TEMP
73 2549
190 2076 | 26
0EPTH TENP
50 2556
196 1916 | 27
DEPTH TEMP
95 2337
250 1820 | 28
42 2288
251 1722 | 29
47 2252
217 1729 | | g 6 0 0 | 89
TEMP
2467
1788 | 57
2485
1799 | 3 1675
PTH TEMP
46 2721
261 1832 | 144
2529
2078 | 80
2624
2143 | 87
2754
1858 | 77
TEMP
2637
1837 | 15 1566
PTH TEMP
37 2344
234 1747 | 2446
2446
1768 | | 0EPTH TEMP
329 1715
0EPTH TEM
56 258
192 193 | 334 1689
DEPTH TEMP
55 2467
242 1788 | 334 1557
DEPTH TEMP
48 2485
210 1799 | 333 | 334 16
0EPTH
43
143 | 333 1680
NEPTH TEMP
59 2624
169 2143 | 330 1497
DEPTH TEMP
45 2754
183 1858 | 332 1677
DEPTH TEMP
86 2637
231 1837 | 33 | 335 19
0EPTH
37
196 | | HAX
1653
2015 | 16 NP 2621 1919 | TEMP
2684
1635 | 1EMP
2770
1939 | 1EMP
2610
2131 | TEMP
2683
2182 | TEMP
2790
1986 | TENP
2688
1992 | TEMP
2676
1753 | TEMP
2650
1802 | | SURF.TEMP
2851
0EPTH T
52 2 | 2764
0EPTH 1
48 2 | 2764
DEPTH TEMP
41 2684
194 1835 | 2804
CEPTH TEMP
42 2770
224 1999 | 2834
DEPTH TEMP
37 2613
134 2131 | 2930
DEPTH TEMP
52 2693
160 2182 | 2813
DEPTH TEMP
42 2790
146 1986 | 2717
DEPTH TEMP
82 2686
206 1992 | 2749
DEPTH TEMP
26 2676
218 1753 | 2678
DEPTH TEMP
25 2650
186 1802 | | 132 2128 | 19
TEMP
2748
1947 | 29
2758
1923 | 17
1EHP
2793
2052 | 23
TEMP
2774
2193
1644 | 23
1EMP
2789
2201
1680 | 23
2802
2028
1487 | 19
7710
2710
1926 | 20
1ENP
2722
1799 | 20
1EMP
2669
1874 | | 132
132 | 38
171 | 6
66PTH
36
170 | E 37 | 28
120
334 | E 42 42 152 333 | 7EPTF
35
128
330 | E 76 198 | DEPTH
26
189 | 76
069TH
21
140 | | ИН LCNРИН
13525E
1 TEPP ОБ
2 2653 | 6N 13627E
1 TEPP DE
1 2768 | 18 13727E
TEMP G
2774
2002 | 0N 137528
TEMP (
2838
2143 | 2N 1370JE
TEMP DE
2860
2240
1732 | 13N 13658
TEMP
2800
238
1734 | 7N 13658
TEMP
2913
2651
1539 | UN 13762
TEMP
4712
1959 | 158N 13702E
TH TEMP DE
15 2744 | 24N 13703
H TEMP
4 2678
12 1898 | | 2443N
2443N
PTH TE
42 28
125 21 | 2446N
PTH TE
34 27 | ~ | 2200N
PTH TE
31 28
161 21 | 2222N
PTH TE
23 28
105 22
335 17 | 6 2243N
DEPTH TE
39 24
146 22
294 17 | | 23 2340N 137
DEPTH TEMP
71 2712
186 1959 | J 2358N
DEPTH TE
15 2
179 10 | 2424N 137
PTH TEMP
14 2678
132 1898 | | 1019 244
1019 244
0EPTH
125 | 1634 244
DEPTH
34
147 | 1352 245
DEPTH
32
132 | 19648 | 1655 222
DEPTH
23
115
335 | 2, | 3713
CE | 0723
CE | 97 50
GE | 3737
0E | | Z6 750814 1
CEPTH TEMP
U 2851
115 2210
329 1715 | 26 750814 1
DEPTH TEMP
J 2764
119 2117 | 26 753814
DEPTH TEMP
J 276+
133 21:56 | 753815 J | 26 75,815 J
CEPTH TEMP
1 2504
97 2278
285 1738 | | 20 75,915 1
0CPTF TEPP
1 2343
115 2093
281 1539 | 20 75J815 0
DEPTH TEMP
2 2717
179 1935 | 26 751915 GEPTH TEMP 1 274° 162 1963 | 51915
H TEPP
2 2679
2 1926 | | SHIP WVMMOD HHMH LAP
V026 750814 1018 244
CEPTH TEMP DEPTH
U 2851 125
115 2210 125 | VOZE 756814 1634 244
CEPTH TEMP CEPTH
3 2764 34
1.9 2117 147 | Vuz6 753814 1352 245
DEPTH T24P DEPTH
J 276+ 32
143 2156 132 | VJ26 75J315 J648 220
OEPTH TEMP CEPTH
J 29U4 31 | VJ26 75-815 J655 222
DEPTH TEMP DEPTH
J 2434 23
97 2274 145
285 1738 335 | V126 753915
CEPTH TEMP
1 2 843
131 226
268 17 9 | VC20 72,915 3713 230
CEPTH TEPP (EPTH
J 2313 123
115 2093 123
281 1639 316 | VSC 75J815 0723 234
DEPTH TEMP DEPTH
C 2717 71
179 1945 186 | V426 75)815 0734 23
DEPTH TEMP GEPT
J 274" 162
162 1963 17 | Vu26 751915 3737 24,
DEPTH TEPP DEPTH 3 2679 11,
112 1946 13 | | | | | | | | | | | | | 1957 | 2217
1601 | 2107
1660 | 7EMP
2078 | 2016 | 1677
1977 | 2094
1595 | 2015 | 2108
1776 | 7E4P | |--|---|---|---|---|--|--|---|---|---| | DEPTH TEMP
63 1957 | DEPTH 62 62 315 | ВЕРТН
69
267 | 106 | DEPTH
119 | 05PTH
160 | 0EPTH
85
277 | DEPTH
129 | 145
259 | 147 | | 15HP | 2370
1624 | 7EMP
2175
1676 | 7EPP
2184
1579 | 75HP
2844 | TEMP
1951 | 7EMP
2126
1736 | 7ENP
2160 | 7EHP
2161
1827 | 7EMP
2209 | | 05P TH | DEP 1H
54
290 | 06° TH
65
253 | 89
83
834 | DEPTH . 112 | DEP TH
121 | 05PTH
79
260 | 0EP TH
117 | DEP TH
119
227 | 0EP TH
132 | | 76MP
2838
1486 | 7EP# 2489 | 7549
2349
1719 | 7EMP
2280
1616 | 7EHP
2131 | DEPTH TENF
82 2050 | TENP
2199
1747 | 7EMP
2216
1664 | 7ENP
2224
1968 | 7EMP
2400
1646 | | DEPTH
53 | 0E PTH
50
237 | 05PTH
57
205 | DEPTH
76
293 | 0EPTH
100 | 05PTH
82 | 0EPTH
69
248 | 95 PTH
110
333 | 0E PTH
97
243 | 0EPTH
89
335 | | 7EHP
2153
1561 | 1ENP
2568
1765 | TENP
2409
1753 | 2378
1647 | 7EMP
2234 | DEPTH TFHP
52 2147 | TEMP
2211
1793 | 7EMP
2356
1676 | 16#P | TENP
2494
1693 | | DEP TH
46
301 | DEPTH
45
213 | 0EPTH
52
186 | 0E P TH
68
277 | 05.974 | DEP TH
52 | 0EPTH
65
226 | DEP TH
66
318 | 0EPTH
70
203 | 0EPTH
80
296 | | 7 COUNT
30
DEPTH TEMP
35 2580
267 1612 | 31
0EPTH TEMP
42 2580
163 1797 | 32
0EPTH TEMP
43 2507
164 1772 | 33
0EPTH TEMP
61 2527
265 1657 | 34
0EPTH TEMP
93 2303
316 1616 | 35
64 2193 | 36
57 2332
208 1919 | 37
0EPTH TEHP
76 2445
347 1701 | 39
0EPTH TEMP
60 2444
198 1900 | 39
0EPTH TEMP
78 2579
283 1732 | | 8 | | | 0EPT | 310 | 050 | ä | | 3
0EPTH
69
198 | | | 333 1486
353 1486
36 26974 TEMP
30 2694
223 1702 | 315 1691
0EPTH TEMP
37 2624
164 1834 | 301 1595
DEPTH TEMP
36 2555
144 1922 | 334 1579
DEPTH TEMP
52 2624
195 1780 | 316 1616
DEPTH TEMP
66 2556
260 1691 | 332 1589
DEPTH TEMP
41 2220
332 1589 | 334 1584
DEPTH TEMP
50 2450
180 1861 | 333 1664
DEPTH TEMP
61 2593
282 1778 | 135 1676
DEPTH TEMP
45 2516
191 1939 | 335 1646
DEPTH 3TEMP
53 2697
241 1806 | | ENP
FAP | 2704
02PTH TEMP
31 2648
133 1902 | 2636
29 2592
111 1883 | 2736
DEPTH TEMP
46 2670
173 1831 | 2707
0EPTH TEMP
57 2613
215 1773 | 2669
CEPTH TEMP
25 2599
257 1682 | 2716
44 2652
175 1878
334 1594 | 2800
DEPTH TEMP
56 2653
263 1783 | 2813
DEPTH TEMP
41 2581
179 1968 | 2969
GEPTH TEMP
51 2723
198 1927 | | AC.PR SURF.TEMP MAX
18 2747
F TEMP DEPTH TEMP
0 2729 23 2715
7 1018 195 1744 | 2704
02PTH
31
133 | 263
DEPTH
29
111 | 2736
0EPTH 1
46 2
173 1 | 2707
0EPTH
57
215 | 2669
CEPTH
25
25
257 | 2716
0EPTH 144
175
334 | 2800
0EPTH
56
263 | 2813
DEPTH
41
179 | 2869
GEPTH
51
198 | | 18 S
18 S
16 S
16 S
16 S | 23
TEMP
26.92
26.61 | 22
TEMP
2614
1918 | 19
1546
2724
1933 | 16
1E4P
2679
1807 | 15
1E4P
2661
1756 | 24
1913
1913 | 16 TEMP 2793 | 22
TEMP
2796
2002 | 18
764
2856
1965 | | 130 | 709E
0EPTF 1
21.8 | 732E
DEP TH
22
97 | 351E
DEPTP
34
145 | 30.9E
0EPTH
40
40
186 | 703E
0EPTH
20
20
20
20 | 63.6
0cPTH
46
150
323 | 60.3F
0EPTH
51
241 | 510E
DEPTH
33
173 | 3495 18
nEPTH TEMP
43 2856
187 1969 | | 4H LCNMHH
9N 13712E
TEMP DE
2746
1843 | 5N 13709E
TERP DE
2702
2120 | 4N 137326
TEMP DE
2631
1950
1595 | 2N 13
75 PP
2741
1980 | 5N 13
TEPP
2707
1838 | 5N 13
TEPP
2669
1764 | 2733
1942
1942 | 3N 13
TEMP
2805
1853 | 16 13
2613
2337
1676 | 9N 13
TEMP
2873
2073 | | 744 245
744 245
06PTH | 910 2535
DEPTH
12
12
73 | 838 2454
CEPTH
10
89
301 | 915 232
DEPTH
28
131 | 321 233
CEPTH
35
169 | 936 235
CEPTH
207
207 | 944 234
DEPTH
37
137
331 | 952 234
CEPTH
49
211 | 335 234 0 DEPTH 31 3159 3359 | u31 224
CEPTH
46 | | SHIP YVHNOO HHHM LAMM
V266 753015 3744 2459
OEPTH TEMP OEPTH
J 2747 101 | V226 754815 4614 25351
DEPTH TTMP DEPTH
3 2714 12
66 2152 73 | VOZE 751915 9838 2454
DEPTH TEMP DEPTH
1 2636 10
91 2495
294 1660 361 | Vu26 753815 3915 2122N 138516
DEPTH TEMP DEPTH TEMP
DEPTH
U 2739 28 2741 34 | V.26 751815 0921 2335N 13609E
DEPTH TEMP CEPTH TEMP D
J 2737 35 2707
141 1913 169 1838 | VOZE 75JULS 3916 2355N 137CJE
CEPTH TEMP GEPTH TEMP · GS
J 2659 18 2669
173 1818 207 1764 | -Vuze 750a15 D944 2348N 13624E
DEPTH TEMP DEPTH TEMP D0
1 2716 37 2733
107 2424 137 1942
291 1679 331 1661 | VOZE 72,415 0952 2343N 13603F
DEPTH TEMP CEPTH TEMP D
1 2806 49 2815
145 2425 211 1853 | VG26 757815 1305 2340N 13513E
CEPTH TEMP DEPTH TEMP DI
J 2813 31 2813
165 2457 169 2317
342 174. 335 1676 | 4920 75J815 1451 2249N 133499
CEPTH TEMP CEPTH TEMP
J 2869 4G 2873
154 21.1 165 2473 | | 1EHP
2438
1791 | 7EMP
2211
1640 | 7EMP
2276
1669 | 2226
1793 | 2332
1831 | 7EMP
2648 | 7EHP 2340 | 7EMP
2196 | 2180 | 7ENP | |---|---|---|---|---|---|---|---|---|---| | 0EPTH
105
286 | 96 P T H 105 | 1 6 6 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 6 8 9 9 9 9 | DEPTH
106
249 | 0EPTH
107
243 | 118 | 139
139 | 0EPTH
153 | 0EPTH
164 | DEPTH
172 | | 1686
1888 | 7EMP
2267
1660 | 2273
1694 | 76HP
2390
1813 | 24.90
184.8 | 2767
1878 | 7EHP
2411 | 1ENP
2243
1652 | 1ENP
2269 | 1ENP
2203 | | 0EPTH
99
251 | 0EP TH
90
324 | 0EPTH
81
285 | 06P TH
77
243 | 0EPTH
82
225 | 97 97 8 334 | 112 | 0EP TH
143 | 0EPTH
144 | 0EP TH
148 | | 154P
2509
1955 | 2329
1760 | 7ENP
2364
1733 | 76 PP 2469 | 15HP
2534
1879 | 754P
2632
1926 | 768F
2453 | 75HP 2368 | 2326
2326 | 7ENP
2311 | | 05PTH
89
227 | 06.91H
80
255 | 0EPTH
65
264 | 0£ PTH 67 238 | 0EPTH
76
211 | 7E 03 317 | 0EPTH
101
334 | 95.04
109
308 | 0ÉPTH
135 | DE PTH
122 | | 7E4P
2610
2026 | 2398
1789 | 1EHP
2468
1796 | 7EMP
2558
1839 | 2611
1917 | 7ENP
2880
1994 | 7ENP
2493
1909 | TENP
2440
1731 | 7ENP
2396
1672 | 2427
1687 | | 06° TH
75
199 | 069 TH
78
246 | 05PTH
55
242 | 06 P TH
61
231 | 0EP7H
67
7 199 | 0EPTH
75
286 | 0EPTH
94
263 | 0E PTH
97
299 | 0EP TH
119
333 | 0EPTH
103
335 | | INT COUNT
40
DEPTH TEMP
68 2649
195 2013 | 41
0EPTH TEMP
61 2497
209 1871 | 42
DEPTH TEMP
48 2549
223 1817 | 43
DEPTH TEMP
56 2594
220 1950 | 55 2635 | 45
DEPTH TEMP
68 2954
235 2158 | 46
DEPTH TEMP
66 2594
245 1973 | 47
DEPTH TEMP
85 2489
251 1832 | 48
DEPTH TEMP
93 2546
298 1748 | 49
DEPTH TEMP
88 2530
322 1710 | | 05PTH TEMP PRI
334 1715
05PTH JIENP
59 2729
173 2108 | 334 1640
0EPTH TENP
53 2611
195 1919 | 323 1664
DEPTH TEMP
42 2664
195 1912 | 333 1653
DEPTH TEMP
55 2693
213 1872
333 1653 | 334 1616
0EPTH TEMP
49 2843
176 2029
334 1616 | 334 1878
DEPTH TEMP
64 2975
210 2248 | 334 1742
DEPTH TEMP
59 2638
227 2022 | 335 1652
DEPTH TENP
67 2604
213 1936 | 333 1672
DEPTH TEMP
75 260 9
272 1832 | 335 1607
DEPTH TENP
71 2615
271 1833 | | SLRF.TEMP MAX
2849
DEPTH TEMP
50 2839
164 2146 | 2016
DEPTH TEMP
48 2737
169 1980 | 2791
0EPTH TEMP
40 2798
182 1934 | 2600
50 2769
192 1946
363 1719 | 2836
05PTH TEMP
47 2852
169 2052
315 1694 | 2956
DEPTH TEMP
54 3013
203 2283 | 2798
CEPTH TEMP
51 2700
206 2153 | 2793
0EPTH TEMP
55 2704
191 2022 | 2809
CEPTH TEMP
72 2636
249 1869 | 2805
DEPTH TEMP
62 2668
230 1915 | | 7 2855
7 2855
5 2284 | 20
1EMP
2799
2056 | 21
TEMP
2809
1980 | 25
164P
2816
2035
1719 | 25
1EMP
285U
2115
1757 | 19
1EMP
3J10
2439 | 18
1EMP
2816
2239 | 19
2769
2046 | 17
1EMP
2789
2004 | 17
TEMP
2803
1988 | | 135E
06PTH
47
47 | 16 42 42 14C | 1536E
0GPTH
17
155 | 535£
0EPTH
45
154
299 | 539E
JEPTH
29
248
248
288 | 153dE 0EPTH 42 | 25N 13538E
H TEPP DEPTH
2 2816 4C
5 2283 188 | N 1376JE
TEMP DEPTH
2793 50
2097 187 | 17 JUE
DEPTH
1 59 | 17uus
0EPTP
49
208 | | 5N 13
5N 13
7EMP
2361
2418 | 4N 13428
TEMP
2822
2114 | 7N 13536
TEMP
2819
2017 | 10 13535
TERP
2921
2076
1745 | 9N 135
TEMP
2835
2146
1777 | ON 1353dE
TEMP 0
2989
2478 | 5N 13
TEPP
2816
2283 | 9 | 5N 137
1EMP
2913
2067 | 4N 137 | | 145 234
145 234
CEPTH | 1359 242
DEPTH
38
129 | 1119 241
06PTH
36
155 | 1125 235
DEPTH
34
141
291 | 1138 231
DEPTH
5 26
26
26
26
275 | 1145 225
06PTH
20
20
164 | 1151 222
DEPTH
32
175 | 1257 2261
3EPTH
46
46
171 | 30* 222
36PTH
36PTH
194 | 0320 224
5EPTH
5EPTH
197 | | SHIP YMMND HHMM LAM
VG26 750815 1445 234
CEPTF TEMP CEPTH
128 2431 122
334 1715 | V026 753815 1359 242
OEPTH TEPP DEPTH
2 2816 38
118 2189 129 | VJ26 750815 1
06 oth TEMP
3 2791
323 1664 | VUZ6 754815 1125 235
CEPTH TEPP DEPTH
J 28JJ 34
127 2122 141
200 1743 291 | Vu2c 751815
EEPTH TEAP
U 2835
133 2220
265 1784 | V026 750915 1145 225
CEPTH TEMP DEPTH
0 2956 20
131 2586 164 | V326 753815 1151 222
CEPTH TEMP DEPTH
J 2798 32
167 2363 175 | V.20 753917 1257 220
GEPTH TEMP JEPTH
U 2793 46
155 2173 171 | Vuzo 759817
CEPTH TEMP
J 2889
171 2131 | VJ26 75,817 0320 224
CFPIH TEMP GEPTH
J 2835 46
191 2360 197 | | 76HP 2013 | 2234
1695 | 28 71 | 2027 | 2159 | 2301
1843 | 75 HP 28 29 | TE NP 2211 | 2126 | Z105 | |---|--|--|---|---|---|--|---|---|---| | DEPTH
16A | 0ЕРТН
76
262 | 0EPTH
115 | DEPTH TEMP
95 2027 | 0EPTH
91 | 0EPTH
203 | 191
191 | 0EPTH
128 | DEPTH
135 | 143 | | 2064 | 16HP | 76HP
2199
1507 | 76HP
2076 | 7ENP
2192
1591 | 7ENP
2356
1869 | 2005 | 2288 | 7ENP
2169
1657 | 2179 | | 0EP TH
154 | DEP TH
71
213 | 0EP TH
91
335 | 0EP TH
91 | 0EP TH
86
335 | 060TH
78
192 | 0EP TH
169 | 0EPTH
111 | DEPTH
125
334 | 0EP TH
120 | | 2136 | 7ENP
2395
1822 | 7ENP
2313
1602 | 7ENP
2207
1524 | 758 222 8 1656 | 1974
1974 | 1ENP | 2396
2396 | 7ENP
2335
1679 | 1ENP
2207 | | 0FPTH
122 | 0E PTH
64
199 | 0E PTH
75
304 | 0E PTH
82
334 | 05PTH
83
307 | 0EPTH
73
151 | DE P TH | 0EPTH
92 | 05 PTH
91
312 | 0EPTH
114 | | 7EH9
2265 | 7EMP
2520
1854 | 7EMP
2411
1612 | 7EMP
2439
1588 | 7EMP
2462
1746 | 7EMP
2412
2024 | 2320 | TENP
2462
1642 | TENP
2470
1752 | 7ENP
2296
1694 | | 0E® TH | 06 P TH
66
189 | 0EP TH
.67
292 | 0EP TH
75
311 | 0EPTH
67
242 | 0£ P TH
62
138 | 0EP TH
118 | 06° TH
82
335 | 0EPTH
69
269 | 97
97
333 | | PRINT COUNT
51
P DEPTH TEMP
76 2432
7 335 1599 | 51
DEPTN TEMP
56 2572
159 1897 | 52
0EPTH TEMP
59 2556
280 1641 | 53
0EPTH TEMP
72 2478
257 1674 | 54
0EPTH TEMP
63 2501
222 1789 | 55
DEPTH TEMP
56 2489
135 2047 | 56
119 2389
333 1685 | 57
0EPTH TEMP
72 2507
293 1713 | 58
0EPTH TEMP
65 2500
255 1788 | 59
0EPTH TEHP
92 2333
324 1702 | | 0EPTH TEMP PR.
335 1588
0EPTH TEMP
61 2560
321 1607 | 335 1578
DEPTH TEMP
53 2595
142 1995 | 335 1507
0EPTH ITEMP
54 2617
267 1656 | 334 1524
DEPTH ITEMP
65 2512
216 1711 | 325 1591
DEPTH TEMP
56 2544
196 1806 | 735 1596
0EPTH 77EMP
45 2731
123 2089
335 1596 | 333 1695
DEPTH TEMP
83 2534
322 1695 | 335 1642
DEPTH TEMP
57 2620
247 1809 | 334 1657
DEPTH TEMP
63 2612
222 1885 | 333 1694
DEPTH TEMP
84 2410
308 1751 | | SLRF. TEMP MAX
2762
0EPTH TEMP
58 2608
306 1674 | 2736
DEPTH TEMP
36 2673
137 2023 | 2733
05PTH TEMP
47 2673
2n5 1803 | 2644
DEPTH TEMP
58 2534
155 1799 | 2640
02PTH TEMP
49 2577
165 1856 | 2822
40 2789
111 2148
302 1676 | 2833
0EPTH TEMP
61 2700
269 1846 | 2811
DCPTH TEMP
53 2659
223 1848 | 2804
CEPTH TEMP
55 2674
210 1999 | 2809
0EPTH TEMP
6+ 2554
297 1766 | | 2747
1687 | 23
2722
2045
2045
1578 | 19
TENF
2704
1039 | 18
45
2593
136 1843 | 19
TENP
2622
1892 | 25
TENP
2814
2156
2156 | 16
7546
2812
1678 | 17
163P
2761
1919 | 19
7EMP
2715
1931 | 17
TEMP
2613
1836 | | HMH LCNMMP AC.PR SI
DBN 13700E 16
H TEPP GEPTH TEMP
B 2767 50 2747
L 1650 296 1687 | 06PTF
30
30
126
335 | 11E
0EPTH
4C
194 | 133E 18
REPTH TEMP
45 2593
138 1843 | 7115
DEPTH
159 | 75PTP
75PTP
33
1.8
285 | 1376
DEPTP
53
242 | 1516
DEPTH
49
193 | 055
0697H
203 | 0.2F TP 59 | | 6 2308N 137
6 2308N 137
6 2307H TEPP
48 2767
294 1690 | 2401N 137615
23 2737
99 2147
313 1690 | 2423N 13761E
PIH YENP DE
34 2731
169 1989 | 34 2616
34 2616
115 1915 | 56 43 25 26 43 19 83 | 3 2425N 13423E
CEPTH TEMP DE
26 2824
34 2218
247 1764 | 2345N 13337F
FTH TEPP 06
48 2935
231 1921 | 9 2249N 13351E
GCPTH TEMP 0
42 2811
176 1977 | 1 2345N 13505E
DEPTH TEMP D
41 2810
175 1954 | 4 2348N 136U2E
DEPTH TSMP 0
51 2848
263 1810 | | 1326 2
1326 2 | 1351 240
CEPTH
23
99
313 | 359 242
36PTH
34
169 | 1429 Z | 36. | 1343 | E 53 0 | 9619 | 36-11
DE | £3 | | SHIP VEINGE HHMM LANI
V.26 753917 326 230
CEPTH TEMP 326TH
J. 2762 448
226 1452 394 | 026 75.917 3551 240
CEPTH TEMP CEPTH
C 2736 23
65 2194 99
294 1654 313 | VG20 75JB17 JB58 242
CLPTH TEMP DEPITH
J 2737 36
143 1963 169 | V125 75.817 1429 245
DEPTH TEMP DEPTH
G 2544 34
1.9 1940 115 | VUZ6 753817 1442 253
OEPTH TENP OEPTH
J 2643 25
146 2.78 128 | VECO 754817 3543 242
CEPTH TC-10 CEPTH
V 2822 26
50 22 66 94
241 1943 247 | U226 75,917 JEG 234
DEPTH TEMP DEFTH
V 2937 48 | VJ26 75.817 J519 224
DEPTH TEJO GEPTH
5 2811 42
150 2091 176 | VJ26 75,817 36+1 234
DEPTH TEHP DEPTH
? 26.4 +1 | V126 755817 J
DEPTH TEAP
223 1535 | | TE # 2237 | 7E # | TENP
1933 | 7E#6 | 7EHP
2214
1722 | TEMP
1992
1622 | 7EMP
2076
1572 | 7E#P 2252 1727 | |--|---|---|---|--|--|---|---| | 103
103 | 0£PTH
146
336 | 135
135 | 0EPTH
116
281 | 05PTH
85
257 | 0EP TH
110
202 | 0EPTP
100
341 | 0EPTH
90
253 | | 7689
2269
1569 | 7EMP
2122
1607 | 7EHP
2067 | 2192
1720 | 15HP
2260
1742 | 76HP
2071
1700 | TEMP
2173
1573 | 2309
1757 | | 0EP TH
87
335 | DEP TH
105
326 | 0EPTH
123 | 05PTH
100
272 | DEP TH
79
234 | 0FP TH
92
234 | 333
333 | DEP TH 84 234 | | 2320
1686 | 7ENF
2199
1678 | 7EMP
2116 | 7EMP
2216
1773 | 2377
1787 | 2116
1742 | 1653
1653 | 76HP 2424 1789 | | 05PTH
80
324 | 0EPTH
89
298 | 0EPTH
105 | DEPTH
103
247 | 0E®TH 72 212 212 | 05 PTH
85
217 | DE PTH
71
293 | DE P TH
77
221 | | 2422
1679 | 7EHP
2251
1700 | 2392
2392
1538 | 7EHP
2256
1831 | TEMP
2444
1962 | 7EMP
2202
1757 | TEMP
2281
1728 | 7E# | | 25 74 294 294 294 294 294 294 294 294 294 29 | DEP 7H
96
203 | 0EP TH
62
335 | 0EPTH
99
207 | 0EPTH
68
196 | 06 P TH
234 | 0EP TH
68
242 | DEPTH TEMP
E9 2689
207 1088 | | 17
17
2511
1709 | 1ENP
2331
1721 | 2339
2339
1622 | 7546
2462
1901 | 76HP
2479
1950 | 2266
1783 | 7EMP
2364
1791 | 7
TENP
2653
1891 | | NT COUNT
61
63 2511
276 1709 | 61
DEPTH TEMP
71 2331
261 1721 | 62
DEPTH TEMP
56 2339
306 1622 | 63
0EPTH TEMP
94 2462
183 1901 | 64
UEPTH TEMP
64 2479
170 1950 | 65
DEPTH TEMP
65 2266
194 1783 | 66
DEPTH TEMP
65 2364
216 1791 | 67
DEPTH TENP
64 2653
185 1891 | | 15 1589 61
15 1589 61
0 CPTH TEMP DEPTH
53 2687 63 28 | 336 1640
DEPTH TEMP
67 2393
242 1763 | 335 1534
0EPTH TEMP
52 2393
258 1734 | 334 1599
DEPTH TEMP
77 2531
167 1928 | 335 1576
DEPTH TEMP
56 2523
149 1908 | 335 1536
DEPTH TENP
51 2562
179 1834 | 341 1572
DEPTH TEMP
52 2539
181 183 | 334 1593
DEPTH TEMP
57 2696
165 1939 | | TEMP 2734 1836 | TEMP
2601
1813 | 754
2503
1759 | 164P
2666
1959 | 7EHP
2586
1946 | 1EMP
2624
1811 | 1EHP
2690
1864 | 7EHP
2749
2041
1593 | | URF.TEMP
2776
0EPTH
45
212 | 2736
DEPTH 53
53 223 | 2682 3
0EPTH TEMP 01
46 2503
241 1759 | 2704
DEPTH TEMP
66 2606
159 1959 | 2618
069TH
39
139 | 2727
05 0 TH
45
167 | 2751
0EPTH
37
167 | 2740
0EPTH TEMP
44 2749
138 2041
334 1593 | | 19 2769 | 29
TEMP
272*
1871 | 17
1EMP
2613
1790 | 23
7674
1996
1599 | 22
TEMF
2600
1982 | 22
15MP
2682
1926 | 23
1ENP
2728
1907 | 24
1EHP
2747
2096
1627 | | ин ссинин кс.рк surf.темр мах
len 136136 19 276
i temp oepth temp
c 273 42 2769 49 2734
1 1976 172 1933 212 1936 | 45N 13659E
H TEMP DEPTH 1
2 273A 44 2
3 1539 194 1 | 13N 13717E
1 TEMP DEPTH
1 2682 37 | 3 2736 124
3 2736 48
0 2625 144
9 1624 334 | 38N 13805E
4 TEMP DEPTH
5 2618 31
9 2644 136 | 44N 13838E
F TEP DEPTH
E 2724 37
7 1893 16C
5 1526 | 24N 13851E
1 TEPP 02PTH
7 2752 32
8 1941 154 | 913F
DEPTH
22
127
367 | | TEN 13 2773 2773 1976 | 5N 13
TEMP
2739
1939 | 3N 13
TEMP
26.02
19.63 | 2625
2625
2625
1624 | 76.89
2618
2644
1574 | 18 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15 | ZN 13 | 6N 13
TEMP
27 36
21 60
1667 | | 770 234
06PTH
37
163 | 1738 234
DEPTH
42
42
169 | 31, 234, 36, 31, 32, 33, 33, 33, 33, 33, 33, 33, 33, 33 | 06PTH
06PTH
43
140
319 | 731 233
CEPTH
15
119
119
335 | 737 2344
DE 0T+
137
335 | 1759 232
JEPTH
27
138 | 03.1 2236N 13910F
CEPTH TEMP OF
11 2736
107 2160
246 1667 | | SHIP VVMMUD HHMM LAN
V426 753817 0746 234
DEPIH TEMP DEPIH
J 2776 37 | VOZ6 754817 J738 234
DEPTH TEMP DEPTH
G 2738 42 | VOZO 751917 G717 234
DEPTH TEMP DEPTH
L 2682 33
152 1944 197 | VOZO 75.617 3724 233
DEPTH TEMP DEPTH
27.4 43
128 2071 140
318 1678 319 | 0026 75,917 0731 233
0 2619 0 2619 119
92 2167 119
319 1632 335 | UCE 751917 C737 234
DEPTH TENP DEPTH
J 2727 26
124 1961 137
314 1594 335 | UJZ6 75:317 U759 232
GEOTH FE4P UEPTH
G 2751 27
121 1993 138 | V926 750917 G541 223
LEPTH TEMP CEPTH
9 2746 137
99 2199 137
262 1722 246 |