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ABSTRACT

NJIth VLSI architecture the chip area is a better measure of

cost than the conventional gate count. We show that addition of n—bit

binary numbers can be performed on a chip in t ime proportional, to

log n and with area proportional to n log n.

Key Words and Phrases

Addition , area—time complexity, carry lookahead , circuit design ,

combinational logic, models of computation , parallel, addition ,

parallel polynomial evaluation, prefix computation , VLSI.
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1.

-
~~~~~ 1. Introduction

We are interested in the design of parallel “carry lookahead”

adders suitable for implementation in VLSI architecture. The addition

problem has been considered by many other authors . Sea, for example,

Winograd [65), Brent [70], Tung [72], Savage [76], and Kuck [781.

Much attention has been paid to the tradeoff between time aud the number

of gates , but littl, attention has been paid to the problem of connecting

the gates in an economical and regular way to ~{nfi,Aze chip area and

design costs . In this paper we show that a simple and regular design

for a parallel adder is poasible .

In Section 2 we briefly describe our computational model.

Section 3 contains a description of the addition problem, and shows

how it reduces to a carry computation problem. The basis of our method ,

the reduction of carry computation to a “prefix” computation, is desc-

ribed in Section 4. Although the same idea was used by Ladner and

Fischer (77],  their results are not directly applicable because they

ignored fanout restrictions, and used the gate count rather than area

as a complexity measure.

In Section 5 we use the results of Section 4 to give a simple

and regular layout for carry computation . Our construction demonstrates

that the addition of n—bit , numbers can be performed in t ime 0(log ii),

using area O(n log it) . The implied constants are sufficiently small

that the method is quite practical , and it is especially suitable for

a pipelined adder. In Section 6 we generalize the result of Section 5,

and show that n—bit numbers can be added in time O(n/w + log v) , using

area 0(w log w + 1), if the input bits from each operand are available

w at a t ime (for ] �  w~~~n) .

-- - 



2.

2 • The computational model

Our model is intended to be general, but at the same time

realistic enough to apply (at least approximately) to current VLSI

technology. We assume the existence of circuit elements or “gates ”

which compute a logical function of two inputs in constant time.

An output signal can be divided (“fanned out”) into two signals in

constant time. Gates have constant area , and the wires connecting

them have constant minimum width (or , equivalently, must be separated

by at least some minimal spacing) . At most two wires can cross at any

point.

we assume that a signal travels along a wire of any length in

constant time. This is realistic as propagation delays are limited by

line capacitances rather than the velocity of. light. A longer wire

will generally have a larger capacitance, and thus require a larger

-

~~ 
~~~

- driver , but we can neglect the driver ‘ area as it need not exceed a
~

fixed percentage of the wire area: see Mead and Conway (79].

The computation is assumed to be performed in a convex planar

region, with inputs and outputs available on the boundary of the region.

Our measure of the cost of a design Is the area rather than the number

of gates required. This is an important difference between our model

and earlier models of Winograd [65], Brent [70 ] and others . For further

details of our model, see Brent and Kung (79).
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3. Outline of the General Approach

Let a a ...a and b b ...b be n—bit binary numbers with
n n—l 1 n it—I. 1

sum 5n+15n”’ l The usual method for addition computes the si’s by

(a~ A b~) v (Cj  
A 

~~~~ 
v (bi A

— a~ €~b~ Gc~_j , i—i ,. • ,n ,

sn+l
_ c

n ,

where ~~ means the sum mod 2 and c~, is the carry from bit position i.

It is well—known that the c1’s can be determined using the

following scheme:

c0 0,

(3.1) Cj  — g1 V 
~~ 

A c~_1)~

where

g~ ~

and

—

for i—l ,2,•~~ ,n. One can view the g~ and p~ as the “carry gensrate”

and “carry propagate” conditions at bit position i. The rela tion (3.1)

corresponds to the fact that the carry Cj  is either generated by s~, and

or propagated from the previous car ry c~, ,1. This is illust rated in

Figure 3.1.
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c0(0)

Figure 3.1: The carry chain

In Section 5 we presen t a layout design for comput ing all

• 

‘ 
the carries in parallel assumin g that the g~ ’s and Pt’s are given.

The design of a parallel adder is then very straightforward,

and is illustrated in Figure 3.2. Note that in Figure 3.2(b) ,

the bottom rectan gle represents a buffer that transforms the ar ’s and

b~ ’s into the g~ ’s and pt ’s. For computing the s~,’s we use the fact

that s~ p~ ®C~~,1 for i—1 ,~ •• ,n.

5n+1 n 8
3 ~2 ~i

~~~ ~~~~ ~~
C

2 ~~
C1 

t_i:
i;lcn_i t1c~~1cl1

i~P
{a~~b~ Ii”11 ”.n)

(a) (b)

Figure 3.2: (a) Abstraction of a paralle l carry chain computation, and
(b) abstrac t ion of a parallel adder based on the

design for the carry chain computation .
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5.

• 4. Reformulation of the Carry Chain Computation

We define an operator “o” as follows:

(g,p) o (ê,~
) d2f (g V (p A j) ,p A

for any Boolean variables g, p, j and ~~. The following two lemeas show

why the operator “o” is useful for carry computation.

Lemea 4.1:

Let

((g 11p1) if i—I,• (G~~P~) — (
o (C~_1~P~.,,1) if 2�iin.

Then ci G~ for i1,2,...,n.

Proof:

We prove the Lemea by induction on I. Since c0 — 0, (3.1)

gives

c1 g1 V (p1 A O )  — g 1 — G 1 ,

so the result holds for isi. If i > 1 and c~_1 — G~..1. then

(G~~P~) • (g~ ,p~) o (G~_1~P~_1)

— (g~ ,p1) o

— (~g~ V (p~ A ~~~~~ p1
A P~, 1)

Thus

— g~ V A Cj ..,1)

and, from (3.1) , we have

G~~~ C1.

Th. resul t now follows by induction . 0

~
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6.

Leasaa 4.2:

The operator “o” is associative .

Proof:

For any (g3,p 3) , (g2,p~) , (g1,p1) we have
• ~~g3,p 3) ° (g2,p 2)] o (g1,p 1) — [g3 v (p 3 A g 2),p 3 A p 2 ) o (g1,p1)

— [83 V (p3 A g2) V (p3 
A p2 A g1), p3 A p2 A p1],

~~3,P3 ° g 2,P 2 ° g l,Pl~~ — (g3,p3) o ( g 2 v (p 2 A g 1),p 2 A p 1)

— (g3 v ( p 3 A ( g 2 V ( p 2 A g 1))) ,p 3 A p2 A P l J.

One can check that the right hand sides of the above two expressions are

equal , using_the diIt ributivity of _ ”~” over “v”. (The dual distributive

law is not required.) • 0

To compute c~ it suffices to compute ~~~~~~~ but, by

Lemmas 4.1_and 4.2,

(Gj,Pi) — (g~ ,p~) o (g~_1,p~_1) 0 ~~~ ~ (g1,p1)

can be evaluated in !~~~ 
order from the given ga ’s and p~ ’s. This is

the motivation for the introduction of the operator “o” . (Intuitively ,

may be regarded as a “block carry generate ” condition , and P~ as a

“block carry propagate ” condition.)

_ _ _  ~~~~~~~ -‘- ~~~~
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• 5. A Layout for the Carry Chain Computation

Recall that for computing the carries it suffices to compute

the (G~~P~) for all ~~~~~~~~ Consider first the simpler problem of

computing only (G~,P~). Since the operator “o” is associative, (G
~
,P
~
)

can be computed in the order defined by a binary tree . This is illus-

trated in Figure 5.1 for the case n l6. In the figure, each black

processor performs the function defined ly da pe~ator “0” and each white

• processor simply transmits data. The white and black processors are

depicted In Figure 5.2. Note chat for Figure 5.1 each processer is

required to produce only one of its two identical outputs, and the

• units of time are such that one computation by a black processor and

propagation of the results takes unit time .

L
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(G16,P16)

4’
T—4

T—3
-

T-2~~

\ I

I \ \ I \ I
T-1~~ Q

\ I ’  ~~\ 
I~~

T 9 * 2 * ~~~~~~~~~~~~~~~~ 2

I I i i  i i I I I I

Figure 5.1: The computation of (G16,P16)
using a tree structure .
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Figure 5.2: (a) The white processor, and (b) the black processor.

• Consider now the general problem of computing all the (G~~P~)

for i—1.•~
.,n. This computation can be performed by using the tree structure

of Figure 51. once more, this time in the reverse ’ order. We ill—

~.tstrate the computation, for the case n—16,in Figure 5.3. It is easy to

check that, at time T— 7 , all the (G~~P~) are computed along the top

boundary of the network. La the final outputs, we only keep the

which are the carries c~. From the layout shown in Figure 5.3, we

• have the following theorem.

Theorem 5.1.: All the carries in an n—bit addition can be computed in

time proportional to log it and in area proport ional to it log it , it � 2.

Corollary 5.1: Addition of two n—bit binary numbers can be performed

in time proportional to Log it and In area proportional to it log it , it ~ 2.

- 4 ~~ ~~~~~~~~~



Pr- 1IT ~T1TT iTT~ ~~~ _ _ _  
_ _ _  _ _

10.

C16 C~3 
C14 C13 C12 C11 C10 C

9 
C

8 C
7 

C
6 

C
5 C4 C3 ~2

A A A A A A A A A A A A A A A A
I i I I I i ‘ ‘ i i i i i 1

T-7 
\O  !\i !~? ~? !\! M !~ tI I \ ~ I \ s  I \ i  i \ ~ s \ i  I \ i  I\ i

T-6 4~ 
1~~~~ô 4 ô k ~~ +~~~~ 4 4 ~~~~~I ~‘\~f ~

“\~I I I I ”\~I I I

T-5 0 6
I t

~~’1._~~I I I I I I

~~~ I ” &.~ $ p i l l
i I I ~“ ‘4.~ i

T 4Ø b
~~~~~~~~~~~Ô Q

’eô 1\4~~~~~~~~~~

I :  
~~~~~~~~~~~~~~~ 

1 : : : j :
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I’.4\~~, I~~~ ‘

~)‘~~~1 II “~4,~~I I I I
I 1 1 l I ” 4,~~ i

I I 
I’

~\~! ~~~~~~ I
”
”s

I I i i i
~~~~~~~~~ 

I i

I I I I I I I I I I

Figure 5.3: The computation of all the carries for n.l6.
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11.

6. A Pipeline Scheme for Addition e f  Long Integers

We define the width v of a parallel adder to be the number of

bits it accepts at one time from each operand. For the par allel adder

corresponding to the network in Figure 5.3, w — 16. We have hitherto

assumed that the width of a network is equal to the number a of bits in

each operand . In this section we consider the case w < it. We show that

this case can be handled efficiently using a pipeline scheme on a network

which is a modification of the one depicted in Figure 5.3.

• For simplicity , assume that it is divisible by w. One can

partition an n—bit integer into n/w segments, each consisting of w

consecutive bits. To illustrate the idea, suppose that w — 16. Then the

carry chain computation corresponding to each segment can be done on the

network in Figure 5.3, and the computations for all the segments can be

pipelined , starting from . the least significant segment . The results coming

out from the top of the network are not the final solutions, though .

Results corresponding to the i—th leas t significant segment (I > 1) have

to be modified by applying (G(i_l)w ~ U—1)~? 
on the right using the

operator “0”. To facilitate this modification, we superimpose another

tree structure on the top half of the network, as shown in Figure 6.1.

Using this additional tree, the contents of the “square” processor

(denoted by “0”) are broadcast to all. the leaves , which are black processors .

The square processor, shown in Figure 6.2, is an accumulator which

• initially has value (g, p) — (0, 1), and successively has values

(1, p) — (C(j l)W , ~(i—l)~~ 
for i — 2 , 3, ... . At the time

L~ ~
1
~II__1TE~~ ~~~
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*4 when a particular (G (1_1 ,P , 1 ~ reaches the leaves, it is combined~. 
)
~,, ~i— ),

with the results Just coming out from the old network there. By this
• pipeline scheme and Theorem 5.1, we hay, the following result :

• Theorem 6.1: Let 1�w� n . Then all the carrie s In an n—bit addition

can be computed in time proportional to n/v + log v and in area

proportional to w log v + 1.

• From Theorem 6.1, the area—ti me product is 0(n log w + w log2 v ‘ it),

which is 0(n 1082 it) when v-n,and 0(n) when v is a constant . When v—i

the method outlined in this section is essentially the usual serial

carry—chain computation.
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A A A F A A A ~ A A fi~ I’. A A ~~ .I I I I 
I I I

T.7 

r

~~~~~~
iiI

~~~~~
9;

/
~~~

fl

T—5

T—4
1

This is the same left-most proces sor at level T4 of the
4 netvork as in Figure 5.3.

Figure 6.1: The additional tree structure to be superimposed on the
top half of the network in Figure 5.3.

(8 ,p )

$out gth v ( p in A i)

] ( j,~5) — p
~~ 

A

—

Figure 6.2: The “square ” processor that accumulates 
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7. S~~~ary and Conclusions

The prelimlm ry and final stages of binary addition with our

• scheme (generation of and computation of (5j —

respectively) are straightforward. Figures 5.2 and 5.3 illustrate that

the intermediate phase (fast carry computation) is conceptuall y simple ,

and the layout illustrated in Figure 5.3 is extremely regular. The

design of the white processor is trivial, and the black processor

is about as complex as a one—bit adder . After these two

basic processors are designed , we can simply replicate them and connect

their copies in the regular way illustrated in Figure 5.3. We

conclude that, using the approach of this paper , parallel adders with

carry lookahead are well—suited for VLSI implementation.

Mead . and Conway [79, Chapter 5] considered several

lookahead schemes , but concluded that “they added a great deal of

complexity to the system without much gain in performance”. To show

that this coimnent does not apply to our scheme, suppose that the operations

‘A 1’ , “V”, and “G” take unit time. Table 7.1 gives the computation

time for our scheme and for a ~ raightforward serial scheme where the

C
1 

are computed from (3.1) for various a. (a is the number of bits

in each operand.) For n_It the general formulae are 4k £nd 2n4l ‘respectively .

Table 7 • 1 Comparison of parallel and serial addition times

it Time (parallel ) Time (serial)

8 12 15

E

• _ _

_____ - -~~ — - - - —
~~~

-—-
~
-

~~ -
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In this paper we assimmia b inary number system and restrict ed

our attention to 2’s complement arithmetic. Only minor modifications

of our results are required to deal with l’s complement arithmetic or
sign and magnitude representations of signed integers .

Brent and Kung [79] consider the problem of mult iplying it—bit

binary integers , and show that the area A and time T for any method

satisfy

AT

and AT2�K~ a
2

for certa in constant s > 0 (assuming the model of Section 2 with some

mild additional, restrictions). For binary addition we can achieve

• AT - O ( n )

• by a trivial serial ietbod, and

AT2 
— O(n log3n)

by the method of Section 5. Thus , binary multiplication is harder

than binary addition if eith er AT or AT2 is used -ae the

complexity measure •

In the proof of L’ es 4.1 and 4.2 we used only one distrib-

utive law. Thus , the layout of Figur e 5.1 could be used to evaluate

arithmetic expressio ns of the form

(7.1) + 
~~~ 

+

where g1, Pj  are numbers and the black processor tn Figure 5.2(b) now

computes g~~ + ~~~~~~ and gout — . Note that the case
• • •.. — p~ — z of (7.1) is the polynomial.

• gn +gn_1 x + • . . + g lxn_1 .

_ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~ _ _ _ _ _ _ _ _
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