7 AD-AO73 997 MARYLAND UNIV COLLEGE PARK COMPUTER SCIENCE CENTER F/6 9/2 -
| THE FLEX SYSTEM: USER AND CARETAKER'S MANUAL.(U)

JUN 79 S A SUTTON AFOSR=77-3181A
UNCLASSIFIED CSC=TR=765

\
‘ I
30097

ol
.' END
' FIMED
_ |0~79
poc

1 28
w122 mo2
e

I

[o0]

E
On
B
E

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

prEseen

P <
=3
O
QN
.1\'
o
=

| e
'709 .14A it i

-

Bt ciun 1 DE PP R TR ot gt - 2 s g

i 7 SRR
Wchnical ep€ty<1‘R-765) Jun-79 / —
k @/ ~ aFd5R-77- 31811/

@ =

b The FLEX System: /

[// User and Caretaker's Manual*“‘j”

m;z>

c

Naval Research Laboratory
Washington, D. C.

*Research supported in part by the Air Force Office of Scientific
Research grant AFOSR-77-3181A/to the University of Maryland.

/

for public releess an J scln i
distributi m g url

/&? /yf

J This documesnt hes beon approved ;

ABSTRACT

The FLEX Design System is a design language and its Processor that
form a tool for use in computer software design activities. This

. report presents a detailed definition of the FLEX language,
directions for using the Processor: and guidelines far installing,
maintaining, and modifying the Processor software.

D FRICT b B30 Mgl

S

Ty

l Accession For

\ NTIS GRA&L
I'>C TAB
Unomnounced

| Justification _

7
-
o)
(S
j
|
!
e R ATV S R U 1 TP A I on

ii

FLEX 1.5

PREFACE

This is one of two current documents that describe the FLEX Design
System developed at the University of Maryland and Naval Research
Laboratory. It contains the detailed rules of the FLEX language.
instructions for using the Processor software. and for maintaining
the Processor software.

Reference (1] is a general presentation of the FLEX system and the
philosophy behind it, and should be used with the current report.

Flexibility is a key feature of the FLEX Design System, and the
user should be aware that rules for the language and Processor may
often change. He should always 1look out for "revision" sheets
documenting any changes to the installation on which he is working.

The current version is FLEX 1.5, and the versions 2. x will contain
Type Space Execution when it becomes available.

The guidance and assistance of Dr. Victor Basili, University of

Maryland Department of Computer Science, in the design of the FLEX
system are greatefully acknowledged by the author.

iii

'CONTENTS

BNF Conventions.

Primitive Concepts

2.1 Identifiers and Blanks .
2.2 Escapes and Comments

Module Structure .

3.1 Programming System and Module.
3.2 Name Scopes. 3
3.3 Module Header Declarations
3.4 SYStem Modvle. s

Data Segments.

4.1 General.

Routines .

5.1 Functions and Procedures

9.2 Generic Routines "{#)}"
9.3 Routine Scope.

5.4 Regular, ACCESS, and ITERation Functions .

3.9 Routine CASEs.
Declarations .

Data Declarations.

RETURNS Type . . . g
The INCLude Access Dcclaration E
The USE Access Declaration .

The Quote Convention . 4
Generic Escape Definitions .
Generic Module Declarations.
Implict USE Access .

Examples .

ey
CONCUDPWN =

Operators.

7.1 Operator Definitions . .

7.2 Allowable Operator Charactors
7.3 Examples . s Ly -
Types.

8.1 General.

iv

FLEX 1.5

CYVVOm 0 N N oo o s W

16
17
17
18

19

The RECORD Type.

The SEQuence Type.

The SCALAR Type.

Defined Types.

UNBOUND Types. -
Rules of Type Psoudo Functioni .
Use of Type Pseudo Functions .
Escape and Wildcard Types

COOODODD
NONOCORIPWR

9. Type Definitions .

9.1 SCALAR Definitions .

9.2 Parameterized Type Hacros
9.3 Type Equivalonco . A
9.4 Examples .

10. Expressions.

10. 1 Operators . .

10.2 Arithmetic Ncgation "
10. 3 FIX/ALT Attribute .
10. 4 Function Invocation .
10. 5 Escape Expression .
10. 6 Examples. .

11. Primitives .

Data Objects. .
Record Member Scloction ;

SELECTn for SEQ Hacros
Constants . : -
String Constants
CHARacter Constant.
Denoted Records .

-
=3
ONOCUDWN =

12. Statements .

12.1 The IF Statement. . .

12. 2 The Procedure Call Stltemont
12. 3 The RETURN Statement.

12. 4 Escape Statement.

Loops and Iterations .

WHILE Clavuse.

UNTIL Clause. .
UNLESS Clause . .
Loop Identifier .
EXIT Statement.

TIMES Clause. . .
New Identifiers .

The Selector "[... 1" Convcntxon :

FLEX 1.5
13. 9 FOR Clavuse. a7
13. 9 USING Clause. . . 38
13. 10 FOREACH Clause —- !toratorl. 38
13. 11 Loop Termination Prioritu 38
13. 12 Escape Clause. 38
13. 13 Ezamples . 39
1 14. Extended Examples. 40
14. 1 Equivalence Module. 40
14.3 LIST Module . 41
14.3 8YBtem Module . 43
13. Common Errors and Pitfalls . 49
16. Reserved Words . 47
References . 49
Appendix 1. USING THE FLEX PROCESSOR . 30
F Appendix 2. THE CARETAKER ‘S8 MANUAL . 58
: Appendix 3. BTATUS AND UNIMPLEMENTED 71

vi

FLEX i.5
THE FLEX SOFTWARE DESIGN SYSTEM

The FLEX Design System [1] is @ design language and processor that
form a tool for use in computer software development activities.
The system combines features originating in earlier Process Design
Languages (PDL’s) with many features found in modern programming
languages. The system is quite flexible, and can be adapted to
different programming environments; the language can in effect be
configured to produce a family of less flexible Process Design
Languages.

Among the features offered by the FLEX language are: a modular
design structure, a form of type abstraction. definable operators,
generic routines, strong type checking, consistency checking of all
functional interfaces, and protection of selected data from
alteration in certain environments.

This Manual contains the rules for the basic FLEX language. In
general, the philosophy and description given in reference [1] are
not repeated, and the user should be familiar with that reference

Appendix 1 describes the use of the Processor,. and 1its various
features and options. Appendix 2 describes the Processor software,
and contains information necessary for the installation,
maintainence, and modifiction of the FLEX Processor. Appendix 3
describes the status of the Processor on various computer systems.

pigc i

FILEX 1 5

1. BNF Conventions

The syntax of the FLEX language is defined in a standard BNF form,
where reduction operators (“::=") geperate the alternates of a
production. A single object in single brackets ("C ..X") is
optional. and a single object in double brackets ("{{. . >}") may be
. repeated any number of times, including O.

- Ubjects delineated by vertical bars within single brackets (" { a !
b ! ¢ ¥ ") show that one of the objects must be chosen for the
reduction. Within double brackets, the delineated objects may be
taken in any caombination, any number of times, including O.

The empty alternate ("e-production”) is given by the 1lower case
"e”, and metalinguistic comments are included in Algnl comment
delimitors, “/# {comment text> #/". Reserved words are shown 1n
capital letters in the BNF definition rules:. but as lower case in
the various examples. When a reserved word is vsed in the text
below, its reserved portion is capitalized, e.g., "INCLude":, or
“CENERic"“.

<id listd
<att id listd>

<attrd

<id>

<id char>
<int>
<new id>
<mod id>
<seg id>
<Escape textd>
<labs>
<rabs>
Ctextd
<comment>
<lcom>

<rcom>

FLEX 1.5

2. Primitive Concepts
<id> (€, <id> »)»
{ <attrd> ¥ <id> {({ , { <attrd> > <id> }»)>

FIX
ALT

<id char> {{ <id chard> | <int> ! _ >»)

/% alphabetic A~Z or a-1 #*/

{€{ 011121314151617:18!9 1))

<id> /% not defined in current scope #/
<id> /# of some Module %/

<id> /% of some Segment #*/

<labs> { <id> } <text> <rabsd>

{

}

/% any text not containing delimitors #*/
<lcom> <textd> <rcom>

<

3>

2.1 Identifiers and Blanks

Identifiers in FLEX

pseudo-space

equivalent to upper

different

consist of wup ¢to 12 alphanumeric or the

character "_".
case; "A_BIG_BLOCK" and
identifiers.

Lower case alphabetics are not
“"A_Big_Block" are
Reserved words are always lower case in

FLEX text, but are shown as upper case in the BNF definitions,

below.

Blanks have the same significance as in many Algol-based languages

They cannot appear within identifiers, reserved words, or
constants,

and real

integer

and must must be used to separate tokens that

page 3

FLEX 1.9

would cause confusion if not separated. The end of a line 1s
syntactically equivalent to a blank.

User defined symbolic operators must be seperated by at least one
blank when appearing in conjunction, (e.g.., "A+ -B").

Statement seperators are not required, but several statements on 3
single line may be seperated by empty comments, if desired

2.2 Escapes and Comments

Escapes may be used in place of expressions, statements, loop
clauses, and types. If the Escape text begins with an identifier
followed by a colon, then it is a Generic Escape, and must have
been declared as such

Comments may appear between any two tokens.

page 4

FLEX 1.5

3. Module Structure

——— . . T 7 .

<prog sys> = {{ <Module>)}

<Module> ;= { 8YS }» MOD <id>
{{ <mod decl> X}
{{ <Segment> >}
DOM
<mod decl> <gener mod decl>
EXPORT <att id list>
<use decl>

Wowou

<Segment> <Data Seg>

<Routine>

[/}

3.1 Programming System and Module

—— —— — - ————————— —— T — - ——— —

A Programming System is a set of uniquely named Modules, and the
Module is a set of Segments which are uniquely named within the
Module.

3.2 Name Scopes

Module names are known globally to the Programming System, but
Segment names are not global unless declared as EXPORTable in the
Module header. Segment names are always visable from within the
same Module, and intra-Module access is not affected by the EXPORT
declarations. EXPORTed Data Segments have the FIX/ALT attribute,
which defaults to FIX if not specified.

In general, Segments are referenced by their Module name followed

by ¢the Segment name (“"MODX : SEGX"). Since this combination is
unique in the Programming System; two Modules may EXPORT two
Segments of the same name with no ambiguity. There are cases where

the Module name is optional (5.2, 6.5, 10.4).

3.3 Module Header Declarations

The declarations in the Module header are used to specify implicit
access for the Segments within the Module (see 6.8). The INCLude
is not allowed here since this easily leads to cyclic or multiple
access paths which are not allowed (x>>c/x. x).

page S

FLEX 1.4

3.4 GYStem Module

R e LT P pup———

There may be one SYStem Module in the Programming System, and
declarations in its header specify implicit access to the named
Segments from all Segments in the Programming System (see &.8)

page 6

e —)
& v

FLEX 1. %

FLEX 1.5

4. Data Segments

<Data Seg> i := DATA <id>
{{ <static decld> !
! Caccess decld> {
<operator decl> !
<Escape defd> {
}

Ctype defd>)

ATAD

4.1 QGeneral

A Data Segment is a collection of Elements (data declarations, type
or operator definitions) that can be accessed from other Data or
Routine Segments with the USE or INCLude access declaration. Each
Element name must be unique within the Data Segment.

page 7

FLEX 1.9

FLEX 1 9 %
|
9. Routines 3
___________ @
: i
1 <Routined 11 <scope>) <Functiond> i
E tia { Cscoped>) <Access Function>]
ira { Cscope>)} <Procedure> ' N
.= ITER <Function> i
Cscoped (:w FIX | ALT | CLOSED |
CAccess Functiond> ::= ACCESS8 <{Function> 3
<Function> trw {#) FUNC <id> { ¢ Cid listd>)) ,4
<body> ,
CNUF F
<Procedure> ti1a {(#) PROC <id> { (<attr id listd>))
<body>
CORP
Cbody> (1= Lcase body>
t1m (L CASE
Ccase body>
ESAC >
<case body> 1w {{ <Routine decl®> })

Y. <atmt listd

CRouvtine decl> tie Cform decld
) <returns decld> /% not for procs #/
tiw Ldynamic decld
tim (atatic decl?>
1w Cuse decl>

9.1 Functions and Procedures

The syntactic definition of the Function and Procedure is shown to
be the same, but there are differences:

1) Functions must contain a single RETURNS type specification:
Procedures cannot contain any.

&) Procedure formal parameter names may each be prefixed by the i
FIX/ALT attridbute, where FIX is assumed if none is given.

Function formal parameters are always FIXed, and the attribute
need not be specified.

3) All RETURN statements within a Function must give an

\
page e -

T — 7
¥

FLEX 1 9

FLEX 1.5

expression; the RETURN statements within a Procedure must not

PP

4) There is an implied RETURN before the CORP ending in 2
Procedures (only), and an explicit RETURN here is optional. :

" 5.2 Generic Routines

Routines that are to be referenced genericly (Segment name alone)
must be declared by preceding their FUNC/PROC header with an
asterisk (#),

5.3 Routine Scope

The FIX/ALT/CLOSED Routine scope restricts the manner in which a
Routine may access its Environment. and defaults to FIX if not
specified. ALT Procedures are allowed, but ALT regular, ACCESS,
and ITER Functions are not.

A FIXed Routine cannot alter data objects, or access wunderlying
type definitions in its External Environment.

CLOSED Routines may not have "own" (STATic) variables:. and may not
attempt to reference data objects in the data bases to which they
have access. They can reference type definitions, operator
definitions, or CONSTants.

These restrictions are checked when actuval references are made
within <the Routine’s ¢text body, and not when the access is
declared. These restrictions do not affect the ¢type of access
declarations that a Routine may contain, only his actions in
accessing those Segments.

FIXed Routines may call only FIXed or CLOSED Routines, and CLOSED
Routines may call only CLOSED Routines.

3. 4 Regular, ACCESS, and ITERation Functions

A regular Function returns a data obgject that is uncoupled from the |
caller’s Environment; a new data object is created that will be |
released when it can is no longer needed. An Access Function |
returns an object that is already a member of the caller’s
environment.

ITER Functions are used for iteration over abstract data types in
conjunction with the FOREACH 1loop clause. ITER Functions are
implicitly CLOSED ACCESS Functions, and may be generic.

page 9

FLEX 1.5

FLEX 1.5

V.5 Routine CASEs

Each CASE in a Routine has its own separate declarations and <case
body>. The names, number, and FIX/ALT attribute of the formal
parameters is the same for all cases, but the ¢type of a formal
parameter may vary between CASEs, as can the Function RETURNS type

The CASE that is invoked by a Routine invocation is the one that
matches the number and type of the actual parameters. The FIX/ALT
attribute of actual and formal parameters are not considered in
selecting the CASE. If more than one CASE satisfies these
conditions, then it is an errvor.

page 10

S Y

FLEX 1.5

é&. Declarations

<dynamic decld : = DECL <id list> {type>

Cstatic decl> 1= §TAT <id listd> <{typed>
»:= CONST <id list> Jtyped

<form decl> ;1= FORM <id listd> <{type>

<returns decl> i@ RETURNS <type>

Caccess decl> 1= Cuse decld>

1= dinclude decl>

Cuse decld> 1= USE <attr seg> ({ , <attr seg>))
<include decl?> o= INCL <attr seg> {({ , <attr seg>)2
Cattr seg> = { <attr>) Cseg 1d>

= { <attrd) "Cseg idO>"

a { <attr> > <mod id> : <Cseg id>

a { <attr> > <mod id> : "<seg idO>"

a { Cattrd>) “<mod id> : <sey idO>"
CEscape defd> 1= ESCAPE <id listd>
{gener mod decl> ;= GENER <mod id> {({ , <mod id>)}

6.1 Data Declarations

The dynamic (DECL) data object may appear only in Routines. It 1is
"stack based" data that is "created" at the entry to a Routine, and
"deleted" at exit

A STATic data object (Algol "own") may appear in Data Segments and
non-CLOSED Routines. It is neither created nor released at run
time, and is shared by all instantiations of a Routine

A CONSTant is a data object whose value can never be changed, and
can be declared in Data Segments or any Routine. Values are
assigned to CONSTants at inspection time only, and must currently
be indicated with comments

The FORMal parameter declaration gives the types o¢ the formal
parameters. This type may be an UNBOUND type or a Type Pseudo
Function.

page 11

FLEX 1.9

FLEX 1.9

6 2 RETURNS Type

- ——

The RETURNS declaration is used in Functions to specify the type of
the data object returned by the Function. Record selectar
identifiers in this type are superfluous (but must be present)
because the selectors are not considered a part of the pure "type"
of a Record This type may be a Type Pseudo Function

& 3 the INCLude Access Declaration

The INCLude and USE access declarations are used to gain access to
the klements of a Data Segment. Access may be nested as deeply as
desired, for example, A may INCLude B who may INCLude C- and so
tovth:

Covm= upstream - - =
A=>B =>C =>0D =E
c == downstream ---->

Note that A is the unly one who may be a Routine

This structure so formed is a tree -~ not a graph: cycles and
multiple access paths ta the same Segment are not allowed. Hence.
1f E (NCLuded B, then a cycle would be formed, or if B had another
access path to E, thon a multiple access path would be formed

Referring to this example, B adds the entire Environment of C

(which 1ncludes D, and E) to its own External Envivronment. I¢£ D
INCLudes C as ALTerable. then B has the same access privileges to
that added Envivonment as did C. If FlXed, then the added

Environment is FIXed with respect to B and also A, no matter which
attribvte is vused by A in adding B.

If the INCLuded Segment is not in the same Module. it must have
been declared as EXPORTable by its own Module, and if it has been
cxported as FIXed cannot be accessed as AlLlerable

4. 4 The USE Access Declaration

———— - _ - - - -~ -~ — = - -

The USE declaration is exactly the same as the INCLude declaration
with respect to the accessing Segment (e.g.. as ¢far as B is

concerned, "USE C" {9 equivalent ¢to "INCL C%). Segments who
USE/ INCLude the declaring Segment, however, do not gain subsequent
access to the USEd Segments, aonly to the INCLuded ones. (I¢ B

INCLuded C, then when A accessed B, it would also gain access to C.
but not if B had USEd C.)

page 12

— ——————

FLEX 1.5

Effectively, INCLude signifies that another Segment is to be
considered a permanent part of the current one for all accessors of
the current one to see. The USE simply gains access to some other
Segment where there is no intent to make it a permanent part of the
current one.

RISV TSI NS

6.3 The Quote Convention

———

The quotation marks in the USE or INCLude declaration determine how
Elements in the referenced Data Segment are to be accessed. In
general, Elements may be accessed by 1) their name only, 2) their
owning Segment followed by the name, or 3) their owning Module
followed by owning Segment and name.

The following table summarizes the rules that apply to this quote
convention. Note that a different rule may apply for each accessor
of a given Data Segment, depending upon how he applies this quote
convention in the USE or INCLude declaration.

ACCESS REQ'D REFERENCE SEQUENCE
EmIuEs= =

<same Segment> <name>

USE <seg id> <name>

USE "<seg id>" <seg id>:<name>

USE <mod id>: <seg id> <name>

USE <mod id>: "<seg id>" <seg id>: <name>

USE "<mod id>: <seg id>" <mod id>:<seg id>:<name>

The example shows USE declarations, but the same rules hold for
INCLude.

The requirement to use the Segment or Module/Segment name prefixes
is an overriding restriction to all "upstream" Segments (&6.5).
When A accesses B (above example), A must use the same access
convention that B uses for the variables downstream of B, unless A
has applied a stronger quoting convention.

This mod/seg/name convention does not apply to identifier operator

definitions and Generic Escapes, which must always be referenced by
their identifier name only.

6.6 Generic Escape Definitions

Escape definitions define OQeneric Escape identifiers that may
appear in the Escape text, as in "{ <id>: <text>)}". Note that
Escape identifiers must be used alone and cannot be preceded by the
Module and/or Segment name.

page 13

FLEX 1.5

FLEX 1.5

6.7 Generic Module Declarations

The GENER declaration is used to add a Module to the Generic
Environment of a Routine CASE. Whenever a generic Routine call is
performed. all accessable generic Routines in the Modules of the
Ceneric Environment are searched for one with a CASE that satisfies
the actual parameter types

It is legal to include the same Module more than one ¢time in the
Ceneric Environment.

6.8 Implict USE Access

Each Data Segment and Routine CASE in the Programming System may
have implicit (i.e., not explicitly declared within the Segment)
USE and/or CENER declarations. When USE or GENER declarations
appear in a Module header, they become implicit to every Segment in
that Module. However., if the Segment contains an explicit USE or
CGENER reference to the same Segment or Module: respectively, then
the reference in the Module header is ignored.

I# the Module is the SYStem Module: then the header declarations
become implicit to every Segment in the Programming System.
However, this implicit reference is overwridden by an explicit
reference in a Module header or Segment.

This allows: for example, certain Segments to have explicit ALT

access to some Segment, while the rest of the Programming System or
Module is implicitly given FIX access.

6.9 Examples

decl XX, YY bool !
stat ZZ, @QQ int
const BB, CC seq (int)

returns record
DUMSEL1: int
DUMSEL2: seq (seq (real))
drocer
vse SEQA, alt SEGB, fix SEGC {{Segs in current Modulel))}
use MODA: SEGX {{access by var name onlyl))}
use alt MODA: "SEGX" {{access by seg:element))

page 14

e e ————————————

} FLEX 1.5

use “MODA: SEGX" {{access by mod: seg: element))

e e T ——

e

FLEX 1.5

7. Operators

<operator decl> INFIX {<priod>) <op spec> = <opr seg>

PREFIX <op spec> = <opr seg>

r

<{opr seg> := {FUNCIPROCY { <{modid> :) <{segid>
<prio> = Lintd>
<op spec> = Lidd>
= ’ <op char> { <op char> }» *
<op char> := /% gpecial op character (7.2) #/

The action taken by the FLEX processor on encountering a defined
operator in a statement or clause as if a named Routine invocation
had been encountered,. where the Module and/or Segment names are
those given in the operator declaration (i.e., <opr seg>). Hence
the two expressions are equivalent given the following operator
definition:

infix 2 "+" = MODX: ADDITION

<exp a> + <exp b>
MODX: ADDITION (<exp a> , <exp b>)

Procedures as well as Functions can be invoked by operators, as
indicated by the FUNC or PROC keyword in the operator definition
(FUNC is the default if none is given). Procedures can only be so
invoked from Procedure call statements, and not ¢from within
expressions. PREFIX PROC operators are not allowed.

The operator is considered generic if only the Segment name is
present in <opr seg>.

INFIX operators are given a priority for expression evaluation,
where priority & is the highest, and the default is 1. The
priority is ignored for Procedure invocations.

PREF1X operators have no priority among themselves but are of
higher priority than all infix operators.

e e O

Identifier operators, once defined in an environment, are
considered reserved words in that environment.

T

FLEX 1.5

7.2 Allowable Dperator Characters

The allowed characters in symbolic operators are:

+-#/&O=! gAV\@" :
However, the colon (":") may oniy be used in double-character
operators.
Syntactic conflicts may arise between infix and prefix oaperatars.
and the rule to be observed is:

If a single character infix symbolic operator exists

and

a double character infix operator exists whose first
character is the same as this single character operator

and
a prefix operator (single or double character) exists
whose first character is the same as the last character
of this double character infix operator

then

an error condition exists

7.3 Examples

infix 1 ‘+’
infix 2 ‘#%’
infix (ke

SYSTEM: PLUS {{arithmetic addition}}
SYSTEM: EXPONENT {{arithmetic exponentiationl}}
proc ASSIGN

I (I

prefix NOT

func SYSTEM: BOOLEAN {{Bool ‘not’}}

prefix ‘-’ = func SYSTEM: MINUS {{arithmetic negationl})

e

<type>

<record>

<seq>

<scalar>

<selector id>
<{Macro ref>
<Macro formal>

<lbr>
<rbr2>

<type pseudo func> ::

<psf part>

<psf sel>

<{Escape type>

<recovd>
<seq.

.= <{scalar>

<Macro ref>
<Macro formal>

UNBOUND

- <type pseudo func>>

<Escape type>

- RECORD

TR0 B8

]

<selector id> : <type>
{{ <selector id> : <type> }}
DROCER

SEQ (<type>)

INT

<int>

REAL

CHAR

BOOL

<id>

<id>

<id> { (<type list>))}
<lbr> <id> <rbr>

<
>

TYPEOF (<id> { <psf part>)})

L <psf sel>) { <psf part>)
<selector id> { <{psf part> }

INT
e

<Escape textd>

e

FLEX 1.9

FLEX 1.5

8.1 General

——— - ——————

All types is FLEX are static; once a data object 1is created of
some type. that type cannot subsequently change during the lifetime
of the data.

The syntactic definitions of the various types must be tempered by
semantic rules governing where certain type specifications may
appear, and these rules are noted in the descriptions below.

8.2 The RECORD Type

The RECORD is @ coilection of data objects of potentially different
types, where each object can be addressed by a named,
non-computable Selector. Selector identifiers need only be unique
within each RECORD, and the objects of the Record are selected
using a DOT convention (11.2).

The selector idontifiers are not considered as part of the type for
type checking purposes, hence ¢the following two types are
equivalent: ;

record
SELA: int
SELB: real
drocer
record
SELC: int
SELD: real
drocer

8.3 The SEQuence Type

A SEQuence .is an ordered set of data ob jects of the same type
There is an implied mapping to the set of integers, but there are
no inherent length restrictions on SEQuences

SELECT1 and SELECT2 are built into FLEX for SEQuences (11.3, 11.4).

8.4 The SCALAR Type

SCALARs are types that have no underlying form; they are defined
in terms of no other types. The following SCALARs are built into
FLEX: INTeger, REAL (floating point), CHAracter, and BOOLean.

page 19

page é

FLEX 1.9

Other SCALARs must be defined by the user (9. 1).

8.5 Defined Types

The <Macro ref> is usad to create an instance of a type defined
elsewhere in the current Environment. The types in parenthesis are
the ACTUAL PARAMETERS. They must match the number of Macro formal
parameters, and their types must conform to any constraints in the
type definition (see <tfrm elem>, 9.).

An integer constant (<int>) can be wused as a Macro formal
parameter, It is treated by the Processor as if it were the type
specification "int" (a reserved word), but can be used in locations
where the user wishes to indicate that a "length" is being used in
the instantiation of of some defined type, for example:

type ARRAY (LEN: int. ARG)
record
LEN: <LEN>
BODY: <ARG>
drocer

decl X ARRAY (32, real) <{{array of 32 reals))

8. 6 UNBOUND Types

The UNBOUND type specification may only appear in the types of
FORMal parameters, for example:

form X unbound
form Y seq (unbound)
form Z record

Z1: int
Z2: seq (unbound) 4
drocer

8.7 Rules of Type Pseudo Functions

Type Pseudo Functions may only appear in Routines, and can appear
in all declarations except STATic and CONSTant declarations. The
<id> argument must be of one of the formal parameters, and the
formal declaration must 1lexocographicly precede the TYPEOF
reference. The type of that formal parameter need not contain

R et

page 20

page 7

FLEX 1.5

UNBOUND types:, but logically it is desirable, and may contain Type
Pseudo Functions

Type Psevdo Functions may be contained within other type
specifications except 1in the RETURNS specification, where if must
be ouvtermost, if present:

form A unbound

form B seq (typeof (A))

returns typeof (A)

returns seq (typeof (A)) ({ illegal)}

The <{psf sel> used to specify a SEQuence selection may only be an
integer expression or empty (i. e.. a call to SELECT]1 with @ single
integer expression, or to SELECTO, 11.3, 11 4). This is an interaim
restriction that will vanish when Type Space Execution 16
implemented

8.8 Use of Type Pseudo Functions

- ———— o ——————— o " - —

This type specification is used to specify a type that, like
unbound types. i is not known until a specific invocation of the
Routine and is bound at that time. That type is actually some
Function of the actual formal parameter types after they are bound

A Type Pseudo Function has a format similar to a <variable> (11 3)
specification 1involving one of the formal parameters. where any
Selector expressions (“C<exp>2™) are replaced by type
specifications. It is as if the series of Record selections and
calls to the SELECT1 Functions were made, except that the only
purpose of these calls is return types, and not values.

. The SELECT1 selection can only be applied to SEQuences, however 1
! Any Routine wusing the pseudo-type must have sufficient access to y
any defined type Macros so that the SELECT1 convention can be ®
b | applied. In essence, the Routine must be able to "see" enough of 3
- the underlying structure of the type of the FORMal parameter to

correctly specify the SEQuence SELECT1 and Record selections it is

requesting. 4

The formal parameter must have enough of its type not—-UNBOUND to
determine the correctness of this addressing.

Consider the following example:

3) All RETURN statements within & Function must give &b

page 8

FLEX 1 D

func FOO (W, X, Y)
form W seq of int

form X recoard
X1: seq of unbound
X2: unbound
drocer

form Y typeof (X)
decl Z typeof (X X1 [intl)
decl A typeof (W [int)) {{error})
returns typeof (X X2)
{body)
cnuf

This specifies that the formal "X" is must have the form indicated
in its type specification, except that the "unbound" type is not
known until this Function is invoked.

The formal "Y" is bound at that time to the actual type of "X" and
then checked against the type of the second actual parameter for
type equivalence. Essentially this requires the second actual
parameter to be the same as the first, regardless of the type of
the first.

The RETURNS type is also bound at invocation time and is bound to
the ¢type of the second selector of the formal "X". Effectively:
the type returned by this Function depends upon the actual formal
parameter types presented by the caller.

The local declarvation "ZI" is also bound when invoked and 1is bound
according to the Type Pseudo Function "X. X1 [(intl", which binds it
to the type of the SEQuence member of the first selector of the
formal "X“

8. 9 Escape and Wildcard Types

——— - ——— - - - - — " -

The "wildcard" type is considered type equivalent to any other
type. Escapes are given the wildcard type when used as type
specifications. The wildcard type can always have a Record or
Selector (11 .3) selection done upon it that will yield the wildcard
type again, The Processor often assigns this type when an error
occurs that precludes the correct type from being identified

page 22

s r—

v

o Ty wmEEEE MAALESS Functions, and may be generic Py

page 9

FLEX 1.5

9. Type Definitions

<type defd> := TYPE <id> = SCALAR { (<id list>))}
c:= TYPE <id> { (<tfrm list>)) = <Jtype>

<tfrm listd> ci= <tfrm elemd> ({ , <tfrm elemd>)

n

<tfrm elem> <id> { : <id list>)

9.1 SCALAR Definitions

The optional identifiers at the end of the scalar definition are
constants for the scalar being defined

9.2 Parameterized Type Macros

Parameterized Type Macros are forms that define new types in terms
of existing ¢types and “"formal parameter types” that are left
unspecified until a data object is declared of this type. The
formal parameters are replaced by "actual parameters”" when a data
object is declared of this Macro type (8.95).

The formal parameter identifiers need only be unique among
themselves: since they are surrounded by brackets ("<...>"), they
will not conflict with other identifiers in the type specification.
An formal parameter identifier may be wused any number of times
within the body of the type definition, and each identifier must be
used at least once.

The actual parameters may be allowed to be of any type (e.g..
"(... A ...)"), or to be one of a set of allowable types (e.g..
*Co. i A int: real ...)").

The underlying structure of a defined type can be "seen" only by
those Routines that have ALT access to the Data Segment in which
the Macro was defined.

Consider the following example of a stack:

type STACK (MBR) =

record
LEN: int {{its current lengthl)}
BODY: seq (<MBR>) <{{the bodyl})>
drocer
stat X STACK (real) {{a stack of reals))

page 23

i
i

T

page 10

FLEX 1.5

The "stack" is defined as a Record whose first member is the
integral current length of the stack, and whose second member is a
SEQuence of members whose types are left unspecified until a data
object is declared.

As a second example, consider the definition of a stack whose
elements are required to be integers., reals, or characters:

type ASTAK (MBR: int, real, char) =

record

LEN: int

BODY: seq (<MBR>)
drocer

stat X ASTAK (real)
stat Y ASTAK (string) {{ error !'!' })}

As a possible point of confusion, data objects can have no
alternate types. In declaring a data object from a Macro
definition, one of ¢the alternate types is instantiated, and this
type cannot change for the life of the data object.

?.3 Type Equivalence

Type equivalence in FLEX is a name equivalence, where defined types
are truly new types, and not simply templates. The following rule
defines type equivalence:

Two Scalar types are type equivalent if and only if they are
instances of the same defined scalar type.

Two SEQuence types are type equivalent if and only if their
ob jects are type equivalent.

Two Record types are type equivalent if and only if their
corresponding selector types are equivalent (but the
corresponding Selector identifiers need not be the same).

Two defined types are type equivalent if and only if they were

created from the same type definition, and the corresponding
actual types used were type equivalent.

9.4 Examples

These are examples of common type definitions. The LIST ¢type
referred to is defined in detail below (14.2). The definition of
STRING is discussed below (11.6), and is a common way of defining
strings in FLEX.

page 24

i

2 el B T e

PN XS0 4 SO it #EA A

M ALL T B AL

page 11

FLEX 1.5

ASSOC_MEM is an associative memory where elements are stored
according to some string. The vuser would presumably create
Routines for accessing and maintaining objects of this type.

type COLOR = scalar (RED, ORANGE: YELLOW. GREEN, BLUE)

type STRING = LIST (char)

type AdRAYS (X) = seq (seq (seq (<X>))) {{a 3-dim array))

type ASSOC_MEM (X) =
LIST (record

TAG: string
VALUE: <X>
drocer)

page 12

s T e—— R———— S -

10.1 Operators

FLEX 1.5
10. Expressions
{expd> 1= Cattrd> <expld> { <opld> <exp>)
{<expild> = Coxpd> { <op2> <expd>)}
lexp2d> ' 1= <axpdd> { <op3> <exp>)
<expldd> 1= Coxpdd (<opsdd> <exp>)
<expdd> 1= LaxpdD { <opB> <exp>)
<expd> 1= Ltermd> { <opbd> <exp>)
{termd> = Lprefix op> <{term>
1= (<expd>)
{ = Cfunc invod
! = primitived>
; = CEscape exp>
{
i <op1d> = <infix op> /% op2, op3,...., Opé& */
I <infix op> (1= <op specd /% above in OPERATORS #/
|
| <prefix op> i:= <op spec /% above in OPERATORS #/
<func invod ::= CRoutine spec> ({ <{parm listd>))
CRoutine spec> ti= { <mod id> :)} <seg id> ';
<parm listd> ci= Lexp> {{ » <expd>)} |
<Escape exp> 1= <{Escape textd> ?
{
g
|

Infix operators are prioritized, left associative, and must be
defined in the current Environment. Prefix operators have a higher
priority ¢than any infix operator, and must also be defined in the
current Environment.

e ma s e

If an operator is available for a particular Routine, then it must
be wused to invoke the Routine; a <func invo> cannot be used if an
operator exists that will do the same ,ob.

Module and/or Segment name.

page 13

FLEX 1.5

10. 2 Arithmetic Negation "-"

- o —— - —

The arithmetic negation operator ("-") is unique in FLEX: it is
the only operator that can be used as both infix and prefix. The
user should define the "-" INFIX operator corresponding to some
negation Function, and the Processor will take special action when
used as a PREFIX operator. The expression "-<e>" will be treated
for type checking purposes as of it were the expression "dd>-<el",
where "<d>" is a dummy wildcard type. Effectively, the INFIX
negation Function is also vused #for type checking of PREFIX
negation.

10. 3 FIX/ALT Attribute

- ———

Each expression may be prefixed by the FIX or ALT protection
attribute (FIX is the default), but the ALT attribute must not
violate any inherent FIX that may be attached to the expression.
These are matched against ¢the FIX/ALT attributes of the formal
parameters of each called Routine

Note the form of the following expression:

PROCX (fix (fix A + fix B))
The second and third FIX's apply to the arguments presented to the
function represented by the "+" operator. The first FIX is then

applied to the result of that Function for the call to the
Procedure PROCX.

10. 4 Function Invocation

If both Module and Segment names are given then the Function
invocation is Specifici if the Segment name only is given, it is
generic. If the Routine is in another Module then it must have
been declared to be EXPORTed, and if generically called, must have
been declared as generic (9. 2).

If an error occurs in a generic Function invocation. for example
when the called Routine is not EXPORTED or declared generic, then a
“NOT FOUND" error will result

The order of evaluation of the actual arguments is not specified
The parenthesis in the explicit Function call ({func invo>) must be

present even if there are no parameters so that the reader can
easily distinguish between a Function call and a variable

page 27

T T O ™w W yvwwvye. WRWVWA

tlaccess by seg:element))

page 14

FLEX 1.5

10. 5 Escape Expression

- -

When Escapes are used as expressions, they assume the wildcard
type. However, this can cause certain problems when used as actual
parameters in a generic Routine call. Suppose their are two
generic Routines "PLUS": ons for integers and one for reals. 1¢
the actual parameters for a call to "PLUS" are wildcard types. then
the system will detect an ambiguous generic call because there are
two CASEs that satisfy the type interface conditions.

10. 6 Examples

LAST (STACKA) := FOO (XX, A+B) — MODA:FUM ()
SOMEVAR := (A+B)-((C*E¥#F)/56.6) {{all vars reall}

e R e s e

<primitived

<variable>
Cvarpartd>
<rec seld>

<bracketd>

<constant>

<real constd>

<decimal>

<bool const>

<char const>
<scalar const>

<string const>
> ¥

<char>
<esc chard>

<denoted record>

page 19

11. Primitives

———— ——— i T o

<variable>
<constant>
<denoted record>

{ { <mod id> :
<id> <varpart>

} <seg id> :)

<rec seld> { <varpartd)
<bracket> { <varpartd)}

<selector id>
L { <exp> {{ , <exp> 2})} 1
<intd>
<real const>
<bool constd>
<char const>
<scalar const>
<string constd>

Cdecimald> { E {(+!-) <int> }
<intd> .

<int> .
<intd>

<int>
TRUE
FALSE
CHAR (’{ <esc char> } <chard>)
<id>
’ {{ <char>i{<{esc char>)}

7

/% any keyboard character #/
e /» tho»“;scapl“ character #/

RECORD (<exp> <€ , <expd> 3})

page 29

FLEX 1.5

/% def’d in scalar def #/

* {{ <string const

FLEX 1.5 :

¥
11. 1 Data Objects

‘l
Data objects are indicated by their identifier names, optionally :
prefixed by the Module and/or Segment name in which they were &
defined (e.g., "MODID: SEGID: VARID" or "“SEGID: VARID" or “VARID"), - ¥
depending on how the Quaote Convention (4. 5) was applied.
A IUbObJ.Ct.Of a data object can be addressed by an Access
Function, a Record selection using the "dot" convention, or the

“Selector" convention.

11. 2 Record Member Selection

If the variable was of type RECORD then one of its objects may be
selected by the decimal point (". ") followed by the selector id to

be selected.

11.3 The Selector "[... 1" Convention

Upon encountering the bracketed expressions in the parse
<variabled:

<var> [<el>, ... ,]

(where "<var>" is the variable subobject selected so far) the
Processor issues a generic call to a Function named SELECTm
(SELECTO, SELECT1, ...+ where "m" 1is the number of expressions

between the brackets), as illustrated by:

T SELECTm (<var>, <el>, ... ,)

The expressions within the brackets may be of any type. so long as
a Selector Function exists that will accept the types, and each

expression may be preceded with the usual FIX/ALT attribute

Selector Functions must be generic: and cannot be called

Functions for SEQuences.

page 30

L N R —

regular Function, as in "SELECT1 (<el>, <e2>)". The wuser may
create Selector Functions as either regular or Access Functions,
[where Access Functions will probably be the more frequent case.

SELECT1 for SEQuences is built into FLEX, and returns the
member of the SEQuence, where N is the integral value of the
expression. SELECT2 is also built in, and returns a contiguous
subsequence of the first through the last integral expression, or
an empty sequence if the first integral value is greater than
last. There are no limits on the integral values accepted by these

of a

as a

N’th

the

FLEX 1.5

Note that there need be no expressions within the brackets. and

SELECTO may be vused. for example, to fetch the last member of some
data object type.

11. 4 SELECTn for SEQG Macras

One rather important point must be made about SEQuences. defined

types, and the Selector convention. Consider the type definition
and instantiation:

type FOO (...) = sequence (...)
stat XX FQQ ¢...)

When a Routine who has access to the internal form of the FOO Macro
type makes a bracket reference to "“XX [...1", then the internal

SELECT1 or SELECT2 for sequences will be invoked to yield a member
of the sequence.

If the Routine does not have type access. however, a generic
Function invocation to SELECTn will be issued whose first argument
will be of type "FOQ".

F In effect, if the Routine has no knowledge of the internal form. it i3
~ must always call upon the user-defined Selector Function to return 5

some subob ject. 1
i

If the Routine does have access, then it immediately ‘“"sees" into v
the definition, and a Selector reference is assumed to apply to the f
SEQuence that forms the body of the type definition. {

|

This also applies to multi-times-removed SEQuence definitions, as
in:

e

type FUM = FOO
type FOO = FUD
type FUD = geq (...)

11.5 Constants

Constants are provided ¢for the scalars built into the FLEX
language, i.e. . integer, real. boolean: and character. A <scalar
constd> must be one of the constant identifiers (9.1) in a scalar
type definition in the current Environment.

= i
S

FLEX 1.5

11. 6 String Constants

— —— o — T ——

Whenever a string constant is encountered in the design text (e.g..
“‘abcd ‘"), the current environment is searched for a defined type
named “STRING" (see for example 9. 4). The type of the definition
s0 found is then assigned to the constant string. If STRING is not
defined an error will result, and its Module and/or Segment name
cannot be required for access.

Although strings (" ‘abcd’ ") may not cross line boundaries. they
can be placed in conjunction with an implied concatenation
Strings that need to span more than one line can be broken apart
with no 1loss of meaning. For example, " ‘abc’ ‘def’ ‘ghi’ " is
equivalent to " ‘abcdefghi’ .

An escape character ("@") is used to indicate the string delimitor
(" * ") when part of the string, where the character following the
escape character is always considered part of ¢the string. Two
successive escape characters can be wused to put the escape
character itself in the string.

11. 7 CHARacter Constant

The character constant is indicated wusing the built-in function
“CHAR", and a string of one character, e. g.. "CHAR (’X‘)" is the
character "X". The escape character may also be used as in string
constants.

11. 8 Denoted Records

The denoted Record is a FIXed Record whose objects are built from
the expressions in ¢the RECORD expression list. For example, if
some Routine "FOO" required a parameter that was a Record whose
first member was an integer and second was a real, then it could be
called by:

...FOO (record (123, 123. 4E-14)). ..

R e

——

e

I»..

P T RN

£
#A
¥

¥

|

A

FLEX 1.5

12. Statements

<stmt listd> i= <stmtd> {{ <stmtd>) -

{ <return stmt> | <exit stmt>)
<stmt> <if stmt>
<loop stmt>
<call stmt>
CEscape stmt>

wnunn

<if stmtd> IF <bool exp> THEN
<stmt list>
{{ ELSEIF <bool exp> THEN
<stmt list> >}
{ ELSE
<stmt list>)
FIl

<call stmt> <Routine spec> ({ <parm list> })

{ <attr> }» <call arg 1> <proc inf op> <expZ

nu

<call arg 1>

"

<{variable>
<func invo>

<proc inf op> ::= <op spec> /% above in OPERATORS %/
<return stmt> ::= RETURN { (<exp>) 1}
é <Escape stmt> ::= {Escape text>

12.1 The IF Statement

The IF statement provides conditional flow control. It may have
3 any number of ELSEIF clauses, and an optional ELSE clause. The
expression in the IF and ELSEIF clauses must be of type Boolean.

12. 2 The Procedure Call Statement

|

]
This statement is used to invoke a Procedure. The actual arguments L
may be altered by the called Procedure unless they are FIXed. The $
parenthesis are required in the Procedure call statement even if
there are no actual parameters. i
Procedures can be invoked by an infix operator, where the operator \
must be in the current Environment, and must have been defined as a y

page 33

FLEX 1.5

“"PROC" operator. This first argument (i.e., the "left hand side",
<call arg 1>) is not a generalized expression, but must be either a
variable or Function invocation. The attribute of this first
argument defaults ¢to ALT if not specified. (The two latter rules
do not apply to Procedure calls not invoked by an infix operator.)

12.3 The RETURN Statement

The RETURN statement causes an immediate return from the Routine
If the Routine is a Function, then an expression must be given and
must be of the same type as declared in the RETURNS declaration.
The parenthesis enclosing this expression is manditory.

If the Function is an Access Function, then the data object
returned must be a subobject of the first formal parameter.

There is an implied RETURN immediately preceding the CORP ending of
a Procedure case. No statement should follow the RETURN statement
in a statement list since it would be unreachable

—— . . s . S . . M. S o i S W ot o @

The Escape statement may be used anywhere a statement may appear.

page 34

FLEX 1.5

13. Loops and Iterations

- -

<loop stmt> ri= { #% <loop idd>)
DO { <times clause>)
{{ <using clause> | <foreach clause>
{ <for clause> 2}}
{ <while clause>)}
{ <unless clause> »
{{ <Escape clause> }}

{ <stmt list>)
{ <until clause>)

oD
<loap id> = £id>
7 <exit stmtd> c1= EXIT € ¢ <loop id>)
f <using clause> ::= USING <new id> = <exp>
<times clause> ::= TIMES <int exp>

8 <{for clause>

FOR <new id> = <for exp> {{ , <for exp> 2}

<for exp> = <int exp>
= <int exp> { BY <int exp> } TO <int exp>
<int exp> = Lexp> /% expression of type integer */
<unless clause> ::= UNLESS <bool exp>]
<foreach clause> ::= FOREACH <new id> IN <exp> f
f <while clause> ::= WHILE <bool exp> .
.; <until clause> .= UNTIL <bool exp> :
f <Escape clause> ::= {Escape text> :

13. 1 WHILE Clause

If the boolean expression in the WHILE clause is FALSE, the the]
loop is exited immediately. There can only be one while expression

in the 1loop header, and it is tested at the beginning of each
iteration.

page 35

FLEX 1.5

13. 2 UNTIL Clause

——— - —

If the boolean expression in the UNTIL clause is TRUE, then the
loop is immediately exited. 13534¢ can only be one UNTIL clause at
the end of the loop, and it is tested at the end of each iteration.

13.3 UNLESS.Clauso

" —————— - — -

If the boolean expression in the UNLESS clause is TRUE, then the
current iteration is skipped, but the loop is not terminated. This
is placed after the optional WHILE clause

13. 4 Loop ldentifier

——— . - = -

The LOOP ID attaches an identifier to ¢the loop, and must not
conflict with any of the loop names for any loop enclosing the new
loop (there may be two loops of same name so long &#s one does not
contain the other). The loop id in the EXIT statement may be used
for the exiting of several loops at once. A loop id should not be
thought of as a label since nothing ever "branches" to it; it is
simply the name of the loop.

13. 95 EXIT Statement

The EXIT statement provides an immediate exit from some enclosing
loop. If a loop id is specified then the enclosing loop with that
name is exited. If no loop id is given than the closest (most
recently-entered) 1loop is exited. Note that the loop identifier
must be enclosed in parenthesis, and that no statement should
follow the EXIT statement in a statement list because it would be
unreachable.

13. 6 TIMES Clause

————— —— - ——— - - - -

The TIMES clause simply defines the maximum number of iterations to
be done in the loop. It is placed first in the header because it
is evalvated only once before the first iteration. The FLEX
semantics consider a negative or zero value to cause the loop to be
skipped. Since this restriction is not checkable by by the FLEX
processor, it may be altered by user agreement.

ot conr

FLEX 1.5

13. 7 New ldentifiers

This new identifier will be bound to some data object by a USING,
FOREACH, or FOR clause for use within the loop. It is added to the
current internal environment when it is lexocographically declared
and must not conflict with any other identifier in the current
environment. It is released from the environment at the
lexocographic end of the loop.

For the USING and FOREACH clauses, this new identifier is actually
bound to some data structure (in effect, a system—controlled
pointer) and that data structure can be changed through this
identifier unless the identifier is FIXed. The identifier is FIXed
if the USING or FOREACH expressions are inherently FIXED, or are
preceded by the FIX attribdbute.

The identifier is available for use by USING and FOREACH clauses
that appear lexocographically afterward in the loop header.

13.8 FOR Clause

———— o ———————

A standard FOR clause 1is provided where a new FIXed integer
identifier is created to be iterated from one expression to another
by the increment of a ¢third, optional expression. The exact
semantics of the FOR clause involve "run time" restrictions that
cannot be checked or implemented by the processor. FLEX assumes
certain conventions below but these can be changed by user
agreement.

The expressions are evaluated only once at loop entry. The
iteration proceeds according to the following rules:

A positive increment expression implies that the iteration is
terminated as soon as, at the beginning of an iteration., the
indexed variable is greater than the final expression. A negative
increment expression implies that the iteration is terminated as
soon as the indexed variable is less than the limit expression.

If the initial expression is less than the limit expression and the
increment is negative, then no iteration will occur and the denoted
list is empty. Likewise, if the initial expression is greater than
the limit expression and the increment expression is positive, then
no iterations occur.

page 37

;
i
|
1
:
¢

FLEX 1.5

13. 9 USING Clause

The USING clause binds a new identifier to an expression (not €
necessarily a variable) during each iteration. The FIX/ALT &
attribute may precede the expression to indicate whether access
through the newly-bound idensifier is to allow alteration of the
expression., (Note that in order for the expression to ALTerable.
it must be a variable or the result of an Access Function reference
whose first actual parameter was alterable.) For example:

do using X = A. SELX
X C14] := <{exp>

is functionally equivalent to:

A.SELX (141 := <exp>

13. 10 FOREACH Clause —- Iterators

The FOREACH clause is used in conjunction with ITERation Functions
to provide iteration over data objects of user-defined types. The
Function referenced in the FOREACH clause must have been declared
an ITER Function. and may be generic.

13.11 Loop Termination Priority

The FOR, FOREACH, and TIMES clauses may specify different maximum
loop iterations, and this is considered an error in the language
semantics. However, this is a “run time" restriction and can be
altered by vuser agreement (e.g., terminate on shortest maximum
iteration).

The WHILE and UNTIL clauses and the EXIT statement cause immediate
termination regardless of the state of the other clauses.

13. 12 Escape Clavuse

The Escape clause is used to simulate any loop constructs that are
not included in the FLEX syntax, and must appear after all other
clauses in the loop head.

The versatility of these clauses should not be overlooked in
designing with the FLEX system, for they can be used to emulate

i page 38 _

FLEX 1.5

many iterative schemes found in programming languages.

13.13 Examples

do times 14
while {A not equal to 0)

{body: iterated while A is not = O, but 14 times, max)
od

do foreach X in INORDER (LISTX)
unless X = 0

{body)
aod

do for X = 1, 2, 3 by 2 to 9, X+Y, FUNCX (Q)
{body)
od

#% L.OOPA
do
##L00PB
do {forever)
it {...) then
EXIT {{exit LOOPB))>
elseif {...) then
EXIT (LOOPA)
fi
{more in LOOPB)
od
{maore in LOOPA)
od

. Be ee ee Te e e fe ce e S e Ce e e we Se Ce Se T ew S- Oe Se e e e ee e "= oe o= o=

FLEX 1.5

14, Extended Examples

— o

These examples will define part of a Programming System, and are
similar to those that the Administrator would define.

———— -

We want to specify that equivalence and non—-equivalence can be
invoked by the ¢familiar "=" and “<>“ operators: and are valid
operations on any two data objects that are type equivalent.

We are assuming that equivalence is a fundamental operation of the
Programming System, and there is no need to provide an explicit
algorithmic description. This illustrates a wmajor difference
between a Design Language and a Programming Language.

mod EQUIV

data EQULIV
infix ‘=’ = EQUIV: EQUAL
intix <>’ = EGQUIV: NOTEGQUAL
atad

func EQUAL (X, Y)

form X unbound {({allow any typed)
form Y typeof (X) {{require to be same
type as X2}

returns bool
use alt EQUIV

if <X is equal to Y} then
return (TRUE)
else
return (FALSE)
fi
cnut

func NOTEGQUAL (X, Y)
{{similar to EQUAL))
cnut

S B Gh e Sw fe SE PE e S GE S Be Ae Aa e WA e BE B BE Se fe Se Ye S Se a6 Gn e e

FLEX 1.5

14. 2 LIST Module

We wish to define a fundamental data type "LIST" to be an ordered
sequence of data objects that has some “current valid (nonnegative)
length". The generic function "S1ZE" will evaluate to this length
(but not change it), the generic Procedure "CLEAR" is used to set
the 1length to O, and the generic Procedure "PUSH" appends a new
member to a LIST using the infix Procedure operator "~". “LAST" is
an access Function used to access the last member of a LIST, and
"SELECT1" provides access to the "N‘’th" member of @ LIST, where "N"
is greater than 0. "CONCAT" concatenates two lists

"ASSICN" follows the philosophy of encorporating a Procedure to
explicitly define assignment for each type in the Programming
System. Each type, defined or built in. should have a generic
"ASSIGN" Procedure defined for it, and will be invoked by the infix
operator ":.=", ;

Most of these Routines are generic because the operation they
describe has application to other defined data types (e.g.., stacks,
queues, sets, arrays, etc.). Likewise, the PUSH and CONCAT
operators (“~" and "&") are defined in an implicitly accessable
Data Segment (SYSTEM:COMMON) becauvse they are generic to several
data types.

returns int

return (X. LEN)
cnuf

{ mod LIST

' vse alt LIST {{give all segs ALT access)}
! data LIST {{define the type LIST})}

H type LIST (A) =

H record

' LEN: int

H BODY: seq (<A>)

' drocer

{ atad

H

! #func SIZE (X) {{get current length of listl}}
H form X list (unbound) {{accept LIST of any typel}
H

H

paye 41

. e SE e e Se SC ce e S e e SE SE e SE S e S" e S- e SF B6 S0 SE *e Se Se ee e

FLEX 1.5

#func CLEAR (X) {{clear/initial a list))
form X list (unbound)
X.LEN := 0 {{set length to 0})
cnut

access #func SELECT1 (X, N) {{Selector Function for LISTS))}
form X list (unbound)
form N int

if? (N is less then O then
{call a system error, & abort)
else
return (X. BODY [N1])
fi
cnuf

access #func LAST (X) {{return ref to last mbr of LIST X})
form X list (unbound)
returns typeof (X. BODY [1])

if X. LEN=0 then
{call a system error routine & abort)

else
return (X. BODY (X.LEN1)
fi
cnuf
#proc PUSH (X, MBR) - {{append MBR onto LIST X}

form X list (unbaound)
form MBR typeof (LIST.BODY (1)

X.LEN := X.LEN + 1
LAST (X) := MBR
corp

iter #func INORDER (X) {{in-order iteration for LISTs))
form X list (unbound)

do for I =1 by 1 to SIZE (X)
return (X CI11)

od
cnuf

page 42

R T . . . el oo ol T W A LA T < TN T e

FLEX 1.9

#proc ASSIGN (DST., SRC) {{assignment for LISTs))}
form DST list (unbound)
form SRC typeof (DST) {{require types to be samel))

SRC. LEN : = DST. LEN
do far I = 1 by 1 to SRC.LEN
DST (1) := SRC (1]
od
corp

#func CONCAT (X, Y)
form X list (unbound)
form Y typeof (X)
decl Z typeof (X)

CLEAR (2)
do foreach X1 in INORDER (X)
F S P {{same as PUSH (Z,X1))})
od
do foreach Y1 in INORDER (X)
Z ™YY
od
return (Z)
cnut

. ®e S Se e ce co oo Sw G ee Se S0 e e w2 e ee Se e T e e e S e S == " e

14. 3 SYStem Module

The purpose of the SYStem Module is to make certaiii concepts
globally available to the Programming System.

!
! sys mod SYSTEM

! use LIST: LIST, EQUIV: EQUIV, COMMON
H gener LIST, EQUIV

{ dom

page 43

FLEX 1.5

data COMMON
infix 1 ‘&’ = func CONCAT
infix 1 ‘~‘ = proc PUSH
infix ‘:=’ = proc ASSION
atad

FLEX 1.5

15. Common Errors and Pitfalls

There are several points in the FLEX language which may easily be a
source for programmer error, often because the FLEX processor has
difficulty in detecting the error. Listed below are a variety of
miscellaneous errors and pitfalls that may befall the unwary FLEX
user.

1) The RETURN (<exp> .) and EXIT (<loop id>) statements must
have their arguments enclosed in parenthesis. This 1is a
syntactic parsing requirement caused by the exclusion of
statement separators. The Procedure RETURN with no expression
requires no parenthesis.

2) Statements directly after a RETURN or EXIT statement in a
statement list are unreachable and not allowed

3) Routine invocations require the parenthesis present if no
_ parameters are passed. This was done so that code readers and
the FLEX processor could distinguish a Routine call from a

simple variable

4) The omission of the Functional case or Data Segment
terminator words (i.e., “cnuf", “esac", "corp", "atad") can
cause the omission of large parts of the source code (the
parser skips over large bodies of code looking for these words
as stopping flags).

S) The symbolic operator "-" is unique in the FLEX processor
because it is considered both a prefix and an infix operator.
The user should use this symbol for the common infix arithmetic
operation of negation. The PREFIX, "+" operator is not built
into FLEX and cannot be defined as both an INFIX and a PREFIX
operator.

6) Id operators may not be referenced by the
Module: Segment: Identifier sequence as can variables and type
definitions. The simplicity and convenience of these shorthand
Routine call operators is lost if the Module and Segment name
precedes the identifier.

7) Loop Escapes must appear after all other 1loop introduction
clauses and just before the loop body

8) The default FIX/ALT attribute for the first actual parameter
expression for Procedures invoked using an infix or prefix
operator is ALT. This is done in deference to the assignment
Procedure so that the first argument would not have to be

page 45

D Ea

L sl e

e ——
PRV .

FLEX 1.5

always prefixed by an ALT. This is the only instance in the
language where the FIX/ALT attribute defaults to ALT.

9) The data type "STRING" must be defined if string constants
("“‘abcd ‘") appear in the text (e.g.. 9. 4). The string
definition cannot require the MOD: SEG names to precede it. A
CHAR is not the same type as a STRING of one character, just as
an INTeger type is not the same type as a SEQuence of INTegers.

10) A space should appear between an infix and a following
prefix operator (e.g., “(A+ -B)").

b

S o

16. Reserved Words

——————— — = ——————

FLEX 1.5

The following is @ list of the reserved words of the FLEX language.
User-defined identifier operators in the current Environm

considered reserved words

ACCESS

ALT erable
ATAD

BOOL ean
BY

CASE

CHAR acter
CLOSED
CNUF

CONST ant
CORP

DATA

FOREACH
FORM al
FUNC tion
GENER ic
1F

IN

INCL vude
INFIX

INT eger
MOD ule
oD
PREFIX
PROC edure
REAL
RECORD
RETURN
RETURNS

Function
FIX/ALT attribute
end of DATA

Routine scope

end of FUNC

data declaration

end of PROC

Data Segment

dynamic data declaration
loop statement

end of MODule

end of RECORD

in IF statement

in IF statement

end of CASE

Generic Escape declaration
a loop

some Segments

boolean falsity

end of IF statement
FIX/ALT attribute, scope limit
loop clause

loop clause

FORMal parameter type spec

declaration

statement

FOREACH ... IN ...
add environment
operator

end of DO loop
operator

type

type

statement
RETURN type spec

page 47

ent are

B
&
I3
__’
f?
l'
&
&
.A

e

FLEX 1.5

type

type

data object declaration
global Module

in IF statement

loop clause

boolean truth

type definition

type psevdo func

unbound formal parameter, Form formal
loop clause

loop clause

use environment

loop clause

loop clause

page 48

S o o 3,20 S ™ e T T~

FLEX 1.5

REFERENCES

Automated Process Design
Thesis, College Park,

“"FLEX: A Flexible,
Sutton, CODE 8433,

1. Sutton, S. A,
System", University of Maryland M. S
Maryland, May 1979. (Copy available from S.
Naval Research Lab, Washington, D.C. 2037%.)

49

FLEX 1.5

Appendix 1

USE OF THE FLEX PROCESSOR

This appendix contains general instructions for wusing the FLEX
processor. The other appendices should be consulted for current
status of the Processor, or restrictions imposed by particular
installations.

1. General

—————— o —————— - - - -

The user creates his design text in named files, where the
definition of a "“file" may depend on the particular computer
system. Although file boundaries can occur between any two tokens
in the text, it is good practice to keep each Module on a separate
file.

The FLEX processor runs as an interactive program. It first asks
for a list of file names to be processed, and will process these in
the order entered. File names are terminated by entering a blank
line or an asterisk ("#"),

After the low and high pass numbers are requested, options can then
be entered one at @ time, and terminated by a blank line or an
asterisk ("#"),

All information input from the terminal should have no preceding
blanks, and no blanks should appear within identifiers.

There is a special HELP printout that prints a summary of
acceptable input information any time the word "'HELP" is entered
as a file name or option.

1.2 Passes

The FLEX processor has three passes that can be run independently,

assuming that earlier passes have been run at least once. In

general, one pass should be made error-free before continuing to
..the next, or phantom errors may result. L

Pass 1 looks only at Module headers, Data Segments, and Routine

declarations (except for local declarations DECL, STAT, and CONST).
Pass 1 need only be run if a change is made to these structures, or

page 30

L —

b o i’ 4 s

i

FLEX 1.5

a new Module or Segment is added.

Pass 2 looks at the same parts of the text as Pass 1, and must be
Tun between passes 1 and 3.

Pass 3 looks at everything not looked at by the two previous
passes, i.e., local Routine declarations, and the Routine text |
body.

Passes 1 and 2 will be run mainly in the early stages of a topdown
design when the upper level structure is being defined, and pass 3
in later design phases when the algorithmic body of the Routines in
being added.

1.3 IL.LOCKed Modules

————— -+ 2 S 2 o ——— —

A subset of the total Module set can be submitted to the Processor.
and the rules for forming this subset can be cast in a rigorous
form.

Consider "ALL" to be the set of all Modules currently in the
Programming System, “LOCKED" to be the subset of ALL that have the
property of being "locked", and "RUN (i)" as the subset ¢to bte
presented to the FLEX processor for pass "i" (i=1, 2, or 3).

The Processor stores information from one pass in an IMAGE for wuse
by the next, and creates IMAGEn files for this purpose (1.5).
Consider "IMAGE (n)" (n =0, 1, 2, 3) to be a subset of ALL +for
pass "n". IMAGE (O0) is the image present before pass 1 and is
always equivalent to LOCKED.

Each pass "i" produces an IMAGE (i) consisting of the wunion af
LOCKED and RUN (i), and Modules presented to subsequent passes must
be present in this IMAGE (i). Hence, RUN ()) must be a subset of
IMAGE (y~1), for y = 2,3. However, for passes 1 and 2, Modules
cannot be present in RUN if they are locked, hence the intersection
of RUN (i) and LOCKED must be null, for i = 1,2.

The "NEW" option has the effect of clearing IMAGE (0) and LOCKED
before pass 1. The option “LOCK" has the effect of adding RUN (2)
to LOCKED.

Note that pass 3 can always be run alone, so long as RUN (3) is a |
subset of IMAGE (2). i

Any Modules or Segments referenced but not defined will be
considered an error, unless the STUB option is in effect.

page 51

FLEX 1.5

1. 4 Rerunning A Programming System

When changes are made to the program text, some minimal earlier
pass has to be run. The following table should be consulted for
types of changes and the minimal pass to be rerun:

Change Pass

anything in a CASE body, or
Routine local decl (DECL,STAT,etc.) 3

FORM or RETURNS type spec, or
type spec in DATA Seg 2

new FORM. or
type or oper definition,or
anything else 1

1.9 File Names

——————— ——— ———— —

The FLEX Processor keeps a current image of the Programming System
on binary files namad "IMAGEn", where n is 1, 2, or 3 for the pass
number. (The IMAGE (0O) referred to above is kept on file IMAGELl.)
Pass 2 uses the image file produced by pass 1, and pass 3 that of
pass 2. The user should not have to access these files, except to
save or restore them if the computer system so requires.

I# the "MAP" option is enabled, the Processor will produce map file
named "MAPn" (n = 1,2,3) after each pass. Most of the internal
Processor tables are printed on this file, and this can be of great
help to the Caretaker when debugging the Processor. The general
user should have little use for the MAP file since much the same
information is displayed using the STATistic option. These MAP
files need not be saved or restored.

FLEX 1.5

2. Options

There are several options in the FLEX Processor, where each is
known as an identifier (e.g., "ABCD") that may be preceded by an
“X" to turn it off (e.g.. "XABCD"), and only the first 4 characters
of the option are significant. The "'HELP" command (1.1) will list
the current options and their defaults.

'HELP

Invokes the HELP printout to inform the user of the rest of the
options and their current defaults

INTCheck

Enables type and FIX/ALT attribute checking for Routine calls
¥ disabled, called Routines are assumed ¢to exist. and
Functions evaluvate to the wildcard type. .

TYPE

Enables the type checking mechanism in the FLEX processor which
is manifest almost entirely in Routine interface type checking.
"XTYPE" implies "XINTC" regardless of the state of the "INTC“
aption.

STuUB

Routines that are referenced but not defined will be considered
as stubs, and will not considered an error. Stubs are
summarized on the cross reference listing.

SYNTax

This option can be used only in passes 1 or 2, and disables all
semantic processing; the portion of the design text looked at
during passes 1 and 2 is simply parsed.

MULFunc

Check for the existence of more than one CASE that will satisfy
. a generic Routine call.

MULDeclaration

Check for the existence of more than one Element that can be
referenced by the same identifier sequence in a given
Environment.

page 33

FLEX 1.5

LOCK

| Locking is intended so that Modules that are effectively
I completed and correct need no longer be processed with the
| other Modules. Modules can only be unlocked by running the
‘ FLEX processor with the "NEW" option. . ‘|

! Locking occurs at the end of pass 2, so that passes 1 and 2
must be run if the "LOCK" option is used (pass 3 is optional),
and locking will not occur if any errors or undefined
references occur during pass 1 or 2. Hence the group currently
being locked cannot reference (USE or INCLude) any Modules
outside themselves.

NEW

Initializes (clears) the locked subset (LOCK (i) in 1.3) before
pass 1. "NEW" is vsvally used in conjunction with “LOCK" to
clear the image before a completely new set of Modules are
locked.

PAUSe

Causes the FLEX processor to pause after each error message.

QUIK

Causes the scanner to operate in "quick scan" mode which speeds
up the FLEX processor, and cures other troublesome problems.

If certain reserved words (ie. “corp", "cnuf#", "atad", "esac",
or "mod") are omitted or misplaced in the FLEX code, large
chunks of code may be skipped in parsing. The GQGUIK option

should always be used.

STATistics

The statistic option causes a variety of statistical
information and a cross reference listing to be printed at the f
end of pass 3, and requires that all three passes are run. |

BUG1

Of use to only the FLEX caretaker, and causes a variety of
information to be printed during processing that aids in : z“
debugging the FLEX processor’s source code.

MAP

Prints a system map of the image +file after each pass (see
"FILE USAGE" above). (1. 9).

UPPEr case

FLEX 1.9

Converts all lower case in the program text to wupper case
before processing, but does not alter the ariginal program text
files. In effect, the text is seen through "upper case
glasses". This option may be restricted for certain
installatione of the Processor, and the other Appendices should
be consulted for more information.

3. Using the Optians

—— o — —— —— -~

The user can always use the default options and all three passes
However., Judicious use of the options can decrease processor time.
An environment employing a librarian is an excellent one in which
ta use the FLEX processor since that 1librarian can become
proficient in applying the options. Hapefully., the design
environment, with its emphasis aon code reading. walk-thraughs. and
other software validation techniques will result in fewer
invocations of the FLEX processor than a compilation environment
where frequent compilations during debugging and testing are
required.

B The largest time savings comes from running some subset of the
F three passes, (1.2).

Another significant savings comes from LOCKing completed Modules
i early in the design process (1.3). Although locked Modules can
contain no external references outside the locked set, the Routines
need have no code body. and can be simply stubs with their
interface conditions defined.

r The SYNTax option can be used for passes 1 and 2 and will detect

syntax errors without the overhead of the semantic processing. To
produce a syntax-only parse for pass 3. disable all options except
QUIK. and possibly PAUSE.

The MULfunction and INTCheck options can vusvally be run only on
occasion, and need not be Tun unless new Routine invocations are
added to the system. Likewise the MULDeclaration option can be
used occasionally. and need not be used unless a new Element or
access declaration is added

STATistics and LOCK should only be run on error—free Modules.
Before a Module can be declared as ervor—-free it should have the
following options run in all passes: INTC, TYPE. MULD:, MULF, and
) XSTUB.

page S8 !

e -

FLEX 1.5
4. Errvrors
4.1 Errors, Warnings, and Notes
There are three classes of messages in the FLEX processor: ERRORS

inform of situations that are definitely in error, WARNINGS inform
of situations that are not in error, but may readily lead to errors
if not attended to, and NOTES refer to the quality of the
programming practice or design.

These messages may contain the user identifiers associated with the
error, and a code number that reveals the source of the message in
the FLEX Processor. The offending line will usvally be printed.
and: below that, a flag line where a single pointer indicates the
token last scanned. The error will either be at or before this
location. Some error messages may give only the first 8 characters
of an offending identifier.

4.2 Error Recovery

The FLEX processor implements error recovery (not error correction)
techniques. Semantic error recovery vusuvally involves assigning
some dummy value (e.g.., the wildcard type).

Syntax error recovery tries to Jump over the remainder of the
offending statement or clause before continuing. This will usvally
recover successfully without phantom error messages, and is
enhanced if the user is using "good" (i.e., readable, nice-looking)
faoarmatting techniques in his programs.

4.3 Special Errors

There are a variety of special error detections in the FLEX
processor.

The "BAD IMAGE" error usuvally results when the user changes a part
of the text but does not rerun a low enough pass. If this error is
encountered during an otherwise error-free run through all passes,
contact the FLEX caretaker.

A "FLEX PROCESSOR ERROR" will be 1logged if the FLEX processor
detects flaws in its internal tables. This is (hopefully) a rare
error and requires the immediate attention of the FLEX caretaker.
OVERFLOW errors oaccur when the internal tables of the FLEX

processor fill wup. This particular error message will give the
name of a source code "PARAMETER" that should be increased, after

page 36

PR SR 1

A i i B o O i Do

i Ml llin ot i s’

R — .
o St i b S e R T R L T e N S ey

FLEX 1.9
:

which the FLEX processor can simply recompiled and run. This is a
relatively simple job for the FLEX caretaker.

There are a number of special error Routines that print out more

extensive error messages to the user and most of these are self
explanatory.

i page 97

FLEX 1.5

Appendix 2

THE CARETAKER ‘'S MANUAL

The "Caretaker" is the person responsible for in charge of the FLEX
Processor software: and this manual contains the information
necessary for the Caretaker to install, maintain, and maodify this
software.

1. Processor Design

The design of FLEX processor is similar to that of a language
compiler except that no code is generated. The internal tables of
the Processor are kept between passes in the IMAGEn files:, and
contain information on all of the Modules currently in the
Praogramming System.

1.1 Parser

The parsing algorithm is a flexible, table-~driven, stack-based LL
(1) parser whose tables are automatically generated from a Symbolic
Syntax Definition (SSD, S.1). Syntactic error recovery is an
integral part of parsing, and is defined by special markers of the
S8D.

1.2 Scanner

The scanner is ordinary except that some of its tables are
maintained and manipulated by the semantic routines (e.g., for user
defined operators, which behave as reserved words and symbol
strings of the syntax).

1.3 Semantic Routines

Most processing is done by the semantic routines. These are
parameterless subroutines whose calling order in the parsing
sequence is defined by the SSD. Flags that indicate calls to the
various semantic routines are deposited on the LL (1) parsing stack
along with nonterminal, tokens, and other markers. A particular
semantic routine is called from the parser when it appears on the
top of the main LL (1) parsing stack.

Since the semantic routines are parameterless: they communicate

page 58

s s e e

T i s

FLEX 1.5

through data bases that keep the current state of the semantic
processing.

1.4 Service Routines

———

Service routines maintain the various data bases, and may be called
by many semantic routines to access the information in the data
bases. For example. the symbol table has various routines for
making new entries and performing searched on its entries.

1.9 Cache Memories

—— - ——— — —————— T —

A small “"cache memory" is kept to speed up access to the symbol
table. The previous "n" successful symbol table locations are kept

in a small cache table:. and always checked before a symbol table
search.

page 59

FLEX 1.5

2. System Map

The Processor Fortran source code is organized in the following
modules, which appear as separate files on most computers. The
code is self-documenting, and should be consulted ¢for detailed
information.

All files with the suffix ". DATA" (which have been shortened to 6
characters for wuse on certain computers) are data common blocks,
and are referenced through the source insertion (inclusion)
features of the host computer. When a subroutine in the source
code is referred to, it is often cited as the module name followed
by its subroutine name (e.g.. "MODNAME: FUNCNAME").

Parsing & Control

SYSCOM. DATA (SYSCDT)

System-wide common, referenced by all routines in the system
containing pass number, options, etc.

PDL
The main program: responsible for operator interaction,
querying of file names, and option processing. Calls on
"PASSES" to process the user’s files.

PASSES
Global control of the three passes of the FLEX processor. and
the manipulation of image files and map files.

ERRORS

The error handling routines.

PARSER. DATA (PARSDT)
Data for the parser, i.e., LL1 tables and main parsing stack.
Block data (BNF.DATA) for this data base is automatically
generated by the BNFGEN system.

PARSER

Main LL1 parsing algorithm, and quick scan routines.

FLEX 1.5
DIRECT

Called by the Parser and in turn
routine, The

specific semantjc
by the

omaticallg created

Y scanning Toutines
TOKEN. DATA (TOKEDT)

Contains in

formation on
thanged onj}

Current token. Read by many routines,
¥ by ScCAN routines.
SCAN

The scanner and errop
Toutines reference

Tecovery ("RECOVR")
and symbols,

Toutines.
OPRTAB. pATA for distinguished identi

10. DATA (10DT)

I/0 information (file Names,

logical units, etc.).
10
General 1,0 routines gor operations o¢n files (opening;
tlosing, etc.), angd dependent upon the host ¢
FILER

omputer.

Reads ang

writes the ¢
Piles:

relying on “Ig»
STATS. paTA (STATDT)

uUrrent FLEX image to ang from the
for host-de

image
Pendent file operations

Statistical data.

Many Toutines ip the FLEX system make
entries into these tables.
STATS

General Toutines

for the
disposition of the

Mmanipulation,
data in

processing, and
"STATS. DATA".

Page 61

a

5 W LY

3

e SRR Y
B AT e e —

FLEX 1.9

Semantic Routines

MODULE

Semantic routines for the upper level parsing of modules
Mainly set up the various module tables in “MODSEG. DATA",

NEWSEG. DATA (NEWSDT)
Data vused mainly by "SEOMEN" during the upper level parsing of
segments. This data is mainly temporary and not as permanent
as that in MODSEQ. DATA.

SEGMEN

Semantic routines for the upper level parsing of Segments
Mainly, set up the segment tables in "“MODSEC. DATA".

NEWDCL. DATA (NEWDDT)
Data used mainly by "DECL" during the parse of declarations.

This data is mainly temporary and not as permanent as the main
symbol table ("SYMBTB").

DECL
Semantic routines for processing declarations, and setting up
the symbol table ("SYMBTB").

TYPDEF
Semantic routines for processing type definitions. The
routines for manipulating completed types are contained in
“TYPTAB".

GENSTMT

Semantic routines for parsing and processing of general
statements (IF-qstatement, assignment, RETURN-statement, etc.).

L.OOP. DATA (LLOOPDT)

Data used by "LOOP", mainly the loop stack where information
describing the current loops is kept

LOOP

Routines to process loops (iterations: "“DO") including the
loop clauses and EXIT statements.

FLEX 1.5

EXPSTK. DATA (EXPSDT)

Data stacks for the keeping of expression. function call, and
side effect data. Used by “"EXTSEG" for functional interface
and side effect checks.

EXP

Semantic routines for the parsing and processing of general
expressions.

Table Access & Service Routines

o ———————— " - -

MODSEG. DATA (MODSDT)

Tables for information concerning current modules and segments
in the processing system.

MODSEG

Routines for accessing the "MODSEG. DATA", including search and
insertion routines

TYPETB. DATA (TYPEDT)

All type information is kept in this table
TYPETB

Routines for manipulating the type table, including type
equivalence checking, the resolution of forward type
references, etc.

PSTYPE

Routines for manipulation of psuedo types

SYMBTB. DATA (SYMBDT)

The main symbol table, including all data base declarations,
routine interface information, and the access (USE/INCLude)
structure of the Programming System.

SYMTAB ; co

Routines for manipulation the symbol table.

U —— ~—

FLEX 1.5

OPRTAB. DATA (OPERDT)

Table for operator definitions, including the functions they
represent. and the distinguished identifiers and symbols used
by the scanner.

OPERS

Routines for the manipulation of the operator tables
(Parsing of operator definitions done in “DECL"“.)

TRECHK

Routines for checking conflicting Element names.

EXTSEG
Routines for Routine intevface checking.
SCAFFOLD

Rouvtines for debugging the FLEX processor that print the
various internal Processor tables

DATA
Compile time data for all data bases
BNF. DATA (BNFDAT)

Compile~time data for the various scanner/parser tables (see
PARSER. DATA). This source is mechanically produced by BNFGEN.

The user-supplied symbolic source ¢fram which the syntax
generator "BNFGEN" creates the parser and scanner tables
This file contains the SSD: and is not a part of the FLEX
Fortran source code

FLEX 1 5

3. Fortran Programming Conventions

The FLEX processor was coded into ANSII-66 Fortran so that it could
be easily implemented on & wide range of camputer systems. Certain
conventions have been followed in writing the Fortran code and
these are documented below.

The Fortran code does not assume that variables are initialized by
the compiler:, nor that locally declared data objects in subprograms
remain intact between calls to that subroutine. It does assume
that common block data objects are static, and are never refreshed
or changed except by the user’s code. The Fortran code does not
change the value of DO indices during the execution of a loop since
this is restricted on many systems.

Array locations are always addressed by the "(<var> + <Jdconst>)"
format, although actual parameters in subroutine calls may be
generalized expressions

Tables in the FLEX processor are wusually arrays that behave as
lists. They have some current length, where all entries from the
first array location through the current length are ‘“valid", and
the rest of the array is "empty" (not used). The current length of
the 1list is kept in a variable whose name is formed by an "X"
preceding the name of the array (truncated to & characters). The
maximum size of the array is kept in a PARAMETER variable whose
name is the same as that of the array except prefixed with a "Q".
The array is dimensioned using this parameter. and its size can be
increased by changing the size of this "QG" parameter.

All table and array lengths are checked by the FLEX processor
itself so the Fortran compiler need not generate array bound
checking.

The locked portion of each table is that from the #first location
through a "V" variable (whose name is formed similarly to the "X"
or "Q" variables).

Two-dimensional arrays used as tables use the convention that each
column is an entry, and the different rows in a column are the
various parts of the entry.

Identifiers are kept in packed character format. four characters to
each integer array location, with rightmost characters blanked.
Three array locations are needed for the 12-character identifiers
used in the FLEX language. When identifiers are stored in
two-dimensional arrays, they are stored column-by-column (ie.
"ARRAY (i,), i=1,3" is ¢the J’th id in the array) so that
subroutines may receive the identifier as a singly dimensioned
array. Note that this requires the host Fortran compiler to store

page 65

PRSI

FLEX 1.5

two-dimensional arrays column—-by-column.

Flags are often packed character formats with 4 characters per
integer array location (left Justified, blanked right). This
provides for more readable and faster code, although space is
sacrificed over a bit—-encoded scheme.

The "unpacked" character format referred to in the FLEX source
simply means that characters are stored one per word (left
Justified, blanked right).

Fortran standard READ and WRITE statements are vused in several
locations in the FLEX source code where formats are always provided
and logical units are integer variables or PARAMETER constants.

All variables are explicitly declared, and most are followed by a
short end-of-line comment describing their use. The variables "I,

"J, "K", etc., are vused mainly as DO-loop indices or temporary
variables.

All code that is likely to vary from one host computer to another
is flagged by the end-of-line comment containing "-HOST-". If this
tag follows the subroutine/function declaration statement then the
whole subroutine is likely to be host-dependent.

1/0 is likely to be the most host dependent portion of the FLEX
processor. The routines for common file operations, such as
opening for reading/writing, closing, or rewinding, are kept in the
1/0 module. The modules PASSES, SCAN, and FILER are the main
modules that make I1/0 calls.

The FLEX processor assumes that there is a user terminal logical
unit from which it receives high level information and prints
various status messages. Error messages are logged on a separate
logical unit (which may be the same as the terminal unit).

9. Debugging Tools

The module "SCAFFOLD" cantains a variety of debugging subroutines
for displaying ¢the contents of the vaerious tables within the FLEX
processor. The "MAP" option produces a separate map file at the
end of each pass that displays the various tables kept in the
"IMAGE" files and can be of use to the caretaker. In addition, a
call to "SCAFFOLD:SHOWXX" will dump this map image to a file name

page 66

e

ey

G Bt e ol

R

FLEX 1.5

specified in the calling sequence

The run option "BUGL1" will cause a variety of debugging information
to be printed to the user terminal, include the printing of calls
to the semantic routines.

There are vestiges of useful debugging aids within the FLEX source
code that have been turned off in some manner, usvally by making
them comments, and these locations are noted with the end-of-line
comment containing the string “DEBUG".

6. BNFGEN & SSD

All internal parsing tables are generated by a separate system
named "BNFGEN". BNFGEN accepts a SSD file, and outputs tables as
Block Data Fortran subroutine source programs to be included in the
compilation of FLEX processor. In addition, BNFGEN creates the
source code for the "DIRECT" subroutine.

6.1 Symbolic Syntax Definition (SSD)

The Symbolic Syntax Definition is created as a text file (using
perhaps the computer system editor), and processed by BNFGEN.

The format of the SSD can itself be specified in a simply BNF form.
Blanks are significant characters in this definition, and are
indicated below with the "_" character. Each line must have at

least 12 characters, filled out with blanks, if necessary. Lines
not beginning with the character string "C<>_" are ignored by
BNFGEN and may contain comments. Comments can also be place

in-line starting in column 25 or further. All identifier lengths
mentioned below are maximum lengths.

<input file> ::= {{ <proaod> 2>}

<prod> ::= PROD_<prod name>
{{ <alts> 3}

<alt> ci=

o s
{{ <alt part> >}
<alt part> NONT_<prod name>
FUNC_<func name>
MARK_<mark name>
TOKE_<tokend>
TKMK_<token marker>
RSWD_<reswd name>

B0 uua

e ——

VT SRS, g P P SN AN VR TSI S LT AR e 3

FLEX 1.5

<prod name> 1= /% 12-character id #/
<func name> 1:= /% b-character semantic function #/

<reswd name> /% 8-character reserved word */

EROR
P1ON
P10OF
P20N
P20F
P30ON
P30F

<mark name>

TN n

L

<token> /% 4-char token, see "SCAN. DATA" #/

(o)
1
2

<token marker>

L}

An existing SSD (e.g., "BNF") is probably the best example of this
format, and should be studied carefully. An additional example of
this format is given below, where there is no particular meaning
attached to this production.

C<> PROD FOOPROD
C<O 0=

C<> NONT FUMPROD

C<> RSWD MODULE

C<> FUNC FOOPO1

C<> TKMK 1

C<> TOKE 1ID

C<> TOKE ¢«

C<> MARK EROR

C<> MARK P10ON THIS 1S A COMMENT
C<D> =

C<> NONT FIEPROD

C<O =

C<> E

The PROD line defines the beginning of a new production, and two
productions cannot have the same name.

The NONT line names a nonterminal that must be defined elsewhere as
a PRODuction.

The FUNC line names a semantic function. A parameterless call to

FLEX 1.9

this subroutine name will be generated during the parse of the FLEX
program when this symbol is encountered in the parse. Semantic
routines are usually named for the first 4 characters in the
production name in which they are contained. suffixed with a number
(e.g.., "O1", "02", etc.).

The MARK line indicates a special parsing marker. The MARK EROR 1is
a LL (1) stack error marker used during error recovery (see
"SCAN: RECOVR" in FLEX source). The MARK P10ON, etc. lines are used
to turn OFf or ON all semantic routines during certain passes (see
"PARSER: PASSON").

The TKMK line must be followed by the TOKE 1line and assigns the
“token marker value" to that token to be used in error recovery
(see "SCAN: RECOVR" in saource code). If no TKMK 1line precedes a
TOKE line, then that token gets a token marker value of O.

The TOKE line defines the 4-character token and the value of the
token may be anything allowable in "TOKEN" in “TOKEN. DATA". A
given token may be used in more than one place in the syntax.
After the parse of a token, the scanner deposits the information
concerning the token into the data base "TOKEN.DATA", and this
information is not changed during contiguous: subsequent semantic
routine calls following the token in the syntax definition. This
means that these contiguous, subsequent semantic routines have full
access to the preceding token.

The RSWD line defines a reserved word, and a particular reserved
word may be used in more than one place in the BNF definition.

The E line denotes an empty alternation ("e-production"). It can
appear only once per production, and must be the last alternate

6.2 Error Recovery

Error recovery is implemented by the MARK EROR and TKMK 0/1/2 lines
in the SSD (above). These constructs must be placed in the BNF
definition with a knowledge of how error recovery is accomplished,
which is explained in the FLEX source code in "SCAN: RECOVR".

6.3 Pass ON/OFF Flags

The PnON and PnOF ("Pass n ON/OFf", where n = 1, 2, or 3) are used
to shut off all semantic routines during portions of a pass. PnON
will increment the "“SEMFLG" during pass "n", while PnOF will
decrement it (where "n" is 1, 2, or 3 for the pass number). No
semantic routines will be called if "SEMFLG" is less than or equal
to O.

page &9

FLEX 1.5

6.4 Listing

BNFGEN produces a detailed (but not very “pretty") listing of the
8SD: including the names of all tokens, productions, semantic
functions, and all LL (1) token tables.

6.5 Pretty ?rinting

The independent program "BNFLST" will scan the SSD file, and create
a nicely formatted version which is considerably more readable than
the original SSD.

7. Statistics of the Source Code

The current version of FLEX has
statistics. These reflect only
various support software.
definition file, BNF.

the following

such as BNFOGEN or

modules: 2%
subprograms: 231
databases: 15
total source lines: 14, 000
executable Fortran stmts: 3, 000
comment lines: 7. 700
of these, non-blank: 3, 600
subprog local variable id's: 800
common var id’‘s: 250
man hours: 600 (approx)
feet of printout: 200

70

approximate
the FLEX processor and not the
the symbolic

Ny Y R R T T LT 17 -

;;
e‘
¥
;

FLLEX 1.5

%
E Appendix 3
E STATUS AND UNIMPLEMENTED FEATURES

1. Status

The current version of the FLEX Processor (FLEX 1.4) has been
installed on the PRIME 400 system at the Naval Research Laboratory,
and is being installed in the Univac 11XX system at the University
of Maryland.

2. Unimplemented

The following features have not yet been implemented, although
implementation is in progress unless otherwise noted.

1. Alternation within Parameterized Type Macro formal parameters
is accepted correctly, but not checked when instantiated (9.1).

2. Type Space Execution [1) is not implemented, and the following
interim rules apply.

Unbound types (including pseudo—-type functions) in Routines work
fine for interface checking to that Routine. However, when used in
the code body of that Routine, any unbound types are considered as
wildcard types, and a degree of type checking is lost. Segments in 3
i which such type checking is lost are specially flagged to notify '
the user that special caution is required.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
. REPO NUMBER 4 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (end Subtitle) S. TYPE OF REPORT & PERIOD COVERED
The FLEX System: User and Caretaker's Manual Technical Report
g 6. PERFORMING ORG. REPORT NUMBER
TR-765 il
7. AUTHOR(a) 8. CONTRACT OR GRANT NUMBER(s)
Stephen A. Sutton AFOSR-77-3181A
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::gi!:A:OERLKESS:CYT.NPL:‘OBJEESST. TASK
Department of Computer Science 1
University of Maryland /
College Park, Maryland 20742
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Math. & Info. Sciences, AFOSR June 1979
Bolling AFB 13. NUMBER OF PAGES
Washington, D. C. 20332 71
. MONITORING AGENCY NAME & ADDRESS(iIf dilferent from Controlling Olfice) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED
1Se. DECLASSIFICATION DOWNGRADING
SCHEDULE

DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

7.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if difterent from Report)

8.

SUPPLEMENTARY NOTES %

19

20 EDSTQACT (Continue on reverse side If necessary and identily by block number)

KEY WORDS (Continue on reverae side if neceasary and identify by block number)

Process Design Language, design notation, automated processor,
user's manual, software design tool

The FLEX Design System is a design language and its Processor that

form a tool for use in computer software design activities. This
report presents a detailed definition of the FLEX language, directions
for using the Processor, and guidelines for installing, maintaining, and
modifying the Processor software.

DD ,5n's 1473 UNCLASSIFIED

SECUR|TY CLASSIFICATION OF THIS PAGE (ﬁ.ﬂ Data Enteredd)

