
./ AO—A073 997 MARYLAIC UNIV COLLEGE PARK Co.eUTER SCIENCE CENTER F/S 9/2

I UNCLASSIFIEQ
’11M

~~~~~ 
AtC CARETAKER ’S MAMJAL • (U) 

AFOSR—77—3181*

IP
I

I t .,I I

• 

__ 

END



I .0 ~
_ _  

L 

~~~L i ~I~ 2.0I.I L
IllhI~11111’ .25 IHll~

•4 I1III~
MI CROC OPY RISOLUTI ON TE ST CHART

NA ’ ~ONAL A U REAU 01 SAA NDARD S 196J A

--- -

~ .

I H

I~C~I’C~

1
_ _ _ j

S

• UNWERSITY OF MARYLAND
I

COMPUTER SCIENCE CENTER
COLLEGE PARK, MARYLAND

20742

• ~Z 9 09 14 067 ~~ I

~~ITT

7r ~/ /
(Z)I~~~hnEa1 $e

~~~
t <Ta

~
765 ) j u ~~~~~~~~~79 1

‘— The FLEX System:

/ User and Caretaker’s Manual*—~- -~~~/ 
_ _ _ _ _ _ _ _ _ _

.‘~~~~~~ Ste~hen A./Sutton

Naval Research Laboratory /

Washington, D. C.

~~~j~ fl’fM fir 
~1ii1SEP I9 1~~

UUi~~~u ul~~J

*gesearch supported in part by the Air Force Office of Scientific

Research grant AFOSR—77—3181A to the University of Maryland.

/

for pu!’:~ ~~~~~~~ - - - ~
~
- -

~~~ ~~~~~~~~~~±L~~~~~ 

~T/ 1~~_ _ LI



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

_ _ _ _  -- _ _ _ _

T • 

. ~~~~~~~~

- _ _ _-

~~

- -

~~ ~-Th

ABSTRAC T

The FLEX Desi g n System is a d esi g n langua g e an d i t s Proces sor that
form a tool for use in computer software design activities. Th is
report presents a detailed definition of the FLEX lan guage
directions for using the Processor . and guidelines for installi ng .
maintaining , and modifying the Processor software.

I
Accc~~,ion Fcr F

E- -L~ TAB [III[J 

~~
_

•-‘ • 
‘ - ~~$_ •  

~~~~~~~
— -
~~

_
;

‘•~~~~~~~~~~~
- - J c ~

L1~I~111LT ~
ii

L~~i —~ ~~~~~~ - ---~~•-~~~~~~ - • -~~~

‘..... r-

FLEX 1.5

PREFACE

Th is is one of two current documents that d escr ibe th e FLEX Desi gn
System developed at the University of Maryland and Naval Re search
Laboratory. It contains th. detailed rules of the FLEX language.
instructioni for using the Processor software and for maintaining
the Processor software.

Reference Ci] is a general presentation of the FLEX sy stem and the
philosophy behind it, and should be used with the current report.

Flex ibility i. a key featur, of the FLEX Design System . and the
user should be aware that rules for the language and Processor may
often chan g e. He sho uld always look out for “revision ” sheets
documenting any changes to the installation on which he is working.

The cu rrent v.rsi~n is FLEX 1.5, and the versions 2. x will contain
Ty pe Space Execution when it becomes available.

The gui dance and assist ance of Dr. Victor Ras ili , University of
Maryland Department of Computer Science . in the design of the FLEX
system ar e greatefu lly acknowledged by the author.

—--- -

~~~~~~ 

__

FLEX 1.5

CONTENTS

page

1. BNF Conventions 2

2. Primitive Concepts 3

2. 1 Identifiers arid Blank 3
2. 2 Escapes and Comments 4

3. Module Structure 5 P
3. 1 Programming System and Module 5
3.2 Name Scopes 5
3.3 Module Header Declarations 5
3. 4 SYStem Modi~le 6

4. Data Segments 7

4. 1 General 7

5. Routines B

5. 1 Functions and Procedures 8
52 Generic Routines “ CC>” 9
5.3 Routine Scope 9
5.4 Regular. ACCESS, and ITERation Functions 9
5.5 Routine CASEs 10

6. Declarations 11

6. 1 Data Declarations 11
6. 2 RETURNS Type 12
6.3 The INCLude Access Declaration 12
6.4 The USE Access Declaration 12
6. 5 The Guote Convention 13
6.6 Generic Escape Definitions 13
6.7 Generic Module Declarations 14
6.8 Implict USE Access 14
6.9 Examples 14

7. Operators 16

7. 1 Operator Definitions 16
7.2 Allowable Operator Characters 17
7.3 Examples 17

8. Types 18

8. 1 General 19

iv



FLEX 1.5

8.2 The RECORD Type 19
8. 3 The SEQuence Type 19
8.4 The SCALAR Type 19
8. 5 Defined Types 20
8.6 UNBOUND Types  20
8. 7 Rules of Type Pseudo Functions 20
8.8 Use of Type Pseudo Func tions 21 p
8.9 Escape and W il dcard Types 22

9. Type Definitions 23

9. 1 SCALAR Definitions  23
9.2 Parameterized Type Macros 23
9.3 Ty p e Equiva lence 24
9.4 Examples 24

10. Expressions 26

10. 1 Operators 26
10. 2 Arithmetic Negation a-.” 27
10.3 FIX/ALT Attribute 27
10.4 Function Invocation 27
10. 5 Escape Expression 28
10.6 Examples 28

11. Primitives 29

11. 1 Data Objects 30
11.2 Record Member Select ion 30
11.3 The Selector “C... ]“ Convention 30
11.4 SELECTn for SEQ Macros 31
11.5 Constants 31
11.6 String Constants 32
11.7 CHARacter Constant 32
11.8 Denoted Records 32

12. Statements 33

12. 1 The IF Statement 33
12.2 The Procedure Call Statement 33
12. 3 The RETURN Statement 34
12.4 Escape Statement 34

13. Loops and Iterations 35

13. 1 WHILE Clause 35
13.2 UNTIL Claus 36
13. 3 UNLESS Clause 36
13.4 Loop Identifier 36
13. 5 EXIT Statement 36
13.6 TIMES Clause 36
13.7 New Identifiers 37

v

• _ -

— ____________________________________ ~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. -

FLEX 1•5

13.I FON C1au.e 37
13.9 USINO Claus 30
13. 10 PDNEACH Clause —— Iterators 38
13. 11 Loop Termination Priorit y 30
13. *2 Escape Clause 38
13. 13 Ex•sples 39

14. Extended Example . 40

14. 1 Equivalence Module 40
14.3 LIII Module 41
14.3 lYltem Module 43

15. Common Errors and Pitf•lli 45

16. Reserved Words 47

Ref•rences 49

Appendix 1. USINO THE FLEX PROCESSOR 50

Append ix 2. THE CARETAKER’S MANUAL 58

Appendix 3. STATUS AND UNIMPLEMENTED 71

-

__T__ _~• _ .~
_ _ _
~ -~~

_

Pu-.-- ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~~~~~~~~

—-.--

FLEX 1.5

THE FLEX SOFTWARE DESIGN SYSTEM H

The FLEX Design System Cl] is a design language and processor that
form a tool for use in computer software development activities.
The system combines features originating in earlier Process Design
Languages (PDL ’s) with many features found in modern programming
languages. The system is quite flexible , and can be adapted to
different programming environmentsa th. language can in effect be
configured to produce a family of less flexible Process Design
Languages.

r
Among the features offere d by the FLEX la ng ua ge are : a mo du lar
design structure a form of type abstraction, definable operators
generic routines, strong type checking , consistency checking of all
funct ional interfaces , an d protect ion of selecte d data from -r
alteration in certain environments.

This Manual contains the rules for the basic FLEX language. In
general the philosoph y and description given in reference U] are - •

not repeated and the user should be familiar with that reference.

Appendix 1 describes the use of the Processors and its various
features and options. Appendix 2 describes the Processor software,
and contains information necessary for the installation ,
maintainence and modifiction of the FLEX Processor. Appendix 3
describes the status of the Processor on various computer systems.

page 1
.

;
- -

____ ________________________ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r L E X I5

1. BNF Conventions

The syntax of the FLEX language is defined in a standard BNF form,
where reduct ion operators (“ :: “) seperate the alt.rnates of a

-
production. A single object in single brackets (“C ...)“) is

-

- optional, and a single object in double brackets (“C(. • . }>“) may be
repeated any number of times~ including 0.

- Objects delineated by vertical bars within single brack.t’~ C” (a
b c) “) show that one of the objects must be chosen for the

- reduction. Within double brackets . the delineated ob jects may be
taken in any comb ination, any number of times, including 0

- The empty alternate (“c—pro duction ”) is given by the lower rase
‘c”. and metalingut-stic comments are included in Algol comment
delimitors . “1* <comment text) */“ . Reserved words are shown in
capital letters in the BNF definition rules. but as lower caso in
the various examples. When a reserved word is used in the text
below 1 its reserved portion is capitalized. .. g. • “INCLude ”. or
“CENF R IC

p

page 2

IIIII_ _I~~•_ P~
FLEX 1.5

2. Primitive Concepts

<id list) ::~ <id> ((, <Id) 3’)

(att Id list) ::— C (attr) 3’ <Id) (1 • ((attr> 3’ (id> 3’)

Cattr) : : = FIX
ALT

<Id) : <Id char> (-C <Id char> (int>
— 3’>

(Id c har> : : ~ /5 alphabetic A—Z or a—i 5/

(int> ::~ ({ OF1 2 3 I4 I 5 I 6 7 B 9 >3’

<new id> : : <id) /5 not defined in current scope 5/

(mod id> : ~ (id> Is of some Module 5/

(seg id> : <id) /* of some Segment 5/

<Escape text> ::~~ (labs> ~C (id> : 3’ (text) (rabs>

<labs> :: (

(rabs> : : = >

(text) : := Is any text not containing delimitors 5/

<comment> : : = <icom) (text> <rcom)

(Icom> ::~~ (C

<rcom) ::~ >3’

2. 1 Identifiers and Blanks

Identifiers in FLEX consist of up to 12 alphanumeric or the
pseudo—space character “

_
“. Lower case aiphabetics are not

equivalent to up per case ; “A_BIG_BLOCK” and “A_Big_Block” are
different identifiers. Reserved words are alwa y s l ower cas e in
FLEX text , but are shown as upper case in the BNF definitions
below.

Blanks have the same significance as in many Algol—based languages.
They cannot appear within identifiers, reserved words, or integer
an d real constant s, an d must must be use d to se p arate token s th at

-
page 3 - -

-

I i
- --

- - . — ——-—.-
~

-.--— .—- -.-—-- — - ‘_,n.- ——--.-——----—- .W.r—- -. .—.-;-- .- - •

FLEX l~~

would cause confusion i-f not separated. The end of a line i-’~
syntactically equivalent to a blank.

User defined symbol ic operators must be seperated by at least one-
blank when appearing in conjunction • Ce. g . • “A+ —B”).

Statement seperators are not required . but several statements on ~single line may be seperated by empty comments, if desired.

2. 2 Escapes and Comments

Escapes may be used in place of expressions , statements. loop
clauses and types . If the Escape text begins with an ident ifi e i
Followed by a colon, then it is a Generic Escape . and must have - •been declared as such.

Comments may app ear between any two tokens.

I -page 4

_______ ~~~~~~~~~~
~ I

—~—-—-—-- ---— --. --- —--- ——--— - ‘----—— -— -~~~~--—--.----~ ---.-~

FLEX 1.5

3. Module Structure

(prog sys> : CC (Module> 3’>

<Module> ::— C SYS 3 MOD (id>
CC (mod dccl> 3’)
CC <Segment> 3’>

DON

<mod dccl) ::~~ (gener mod dccl>
— :: EXPORT <att id list>

<use dccl)

<Segment) : : (Data Seg>
: = <Routine>

3. 1 Programming System and Module

A Programming System is a set of uniquely named Module s. and the
Module is a set of Segments which are uniquely named within the
Module.

3.2 Name Scopes .

Module names are known globally to the Programming System. but
Segment names are not global unless declared as EXPORTable in the
Module header. Segment names are always visable from within the
same Module, and intra—Modu le access is not affected by the EXPORT
declarations. EXPORTed Data Segment-s have the FIX/ALT attribute.
which defaults to FIX if not specified. - -

-

In general. Segments are referenced by their Module name followed
b y the Segment name (“MODX : SEGX”). Since this combination is
unique in the Programming System. two Modules may EXPORT two
Segments of the same name with no ambiguity. There are cases where
the Module name is optional (5.2. 6.5. 10.4).

3.3 Module Header Declarations

The declarations in the Module header are used to specify implicit
acce ss for the Segments within the Module (-see 6.8). The INCLude
is not allowed here since this easily leads to cyclic or multiple
ac cess paths which are not allowed (x))c/x. x).

page 5

L
______ ___________

F LEX I ~.‘

3. 4 ~iYStem Module

ihere may be one SThtem Module in the Programming Sy’~tem. ari d
declarations in its header specify implicit access to the ndmed ,Segments from all Segments in the Programming System (see 6.5)

V

I

I

page 6

FLEX 1.?,

____ - - ---~~~~~~~--.-.- -— - —--,-- -—-—~---- - _ _ _ _ _ _ _ _ _

FLEX 1.5

4. Data Segments

<Data Beg> : : — DATA (Id>
CC (static dccl)

(access dccl) I
(operator dccl> I
(Esca pe def)
(type def) 3’)

ATAD

4. 1 General

A Data Segment is a co llection of Elements (data declarations , type
or operator definitions) that can be accessed from other Data or
Rout ine Segments with the USE or INCLude access declaration. Each
Element name must be unique within the Data Segment.

page 7

F L E X I ,

I -.,—,_,_.__.__._____’_
~

__ — — —
~~~~~ 

—

~~~

F L E X I S

S. R o u t i n e s

<Rout ine) : : ‘ ‘C <scope> 3’ (Function)
A C (scope> 3’ (Access Function>

C <scope) 3’ <Procedure)
a ITER (Function>

~.scop.) :: FIX I ALT I CLOSED

<Access Funct ion> : : - ACCESS (Function>

<:Funt:t~ on) ‘ (*3’ FUNC <Id) C C (id list>) 3’
(body)

CNUF

‘CProredur.) : ‘ (*3’ PROC <Id) ‘C C <attr Id lt~ t>)) 4
(body)

CORP

<body) : : — <case body>
-* (C CASE

(case body)
ESAC 3’)

<case body > : - ‘ CC <Routine dec 1) 3)
(~tmt list)

(Rout ine dccl) : a (form dccl>
a <returns dccl) /5 net for procs 5/

<dynam ic dccl)
<static dccl>

::.‘ (Use dccl)

5. 1 Functions and Procedu res

The syntactic def inition of the Function and Proce d ure is shown to
be th. same. but there are d i f ferences :

I) Funct ions must contain a single RETURNS type specification ;
Procedures cannot contain any.

2) Procedure forma l parameter names may each be prefixed by the

~ IX/ALT attr ibute, wh ere FIX is assumed i none is given.

~unct ion formal parameter. are a lwa ys FIXed. and the attribute
nee d not be specified.

3) All RETURN statements within a Function must give an

page B

- ~~~~~~~~~~~~ —.---- - - .—.-..

FLEX I

r —-- - --~--~-
~~~~~~~~

FLEX 1.5 .1
expression ; the RETURN statements within a Proce du re mu st not.

4) There is an implied RETURN before the CORP ending in
Procedures (only). and an explicit RETURN here i. optional.

5.2 Generic Routines

Routines that are to be referenced gen.ricly (Segment name alone )
must be declared by preceding their FUNC/PROC header with an
ast e r i sk  (5) .

5.3 Routine Scope

The FIX/ALT/CLOSED Routine scope restricts the manner in which a
Routine may access its Environment, and defaults to FIX if not
specified. ALT Procedures are allowed, but ALT regular . ACCESS .
and h E R  Functions are not.

A FiXed Routine cannot alter data objects or access underlying
type definitions in its External Environment.

CLOSED Rout ines may not  ha ve “own ” (STATI c) variables, and may not
attemp t to reference d ata objects in the data b ases to which they
have access. They can reference type definitions, operator
definitions, or CONSTants.

These restr ict ions a re c h e c k e d whe n act ual refe rences  are made
within the Routine ’s text body. and not when the access is
declared. These restrictions do not affect the type of access
declarations that a Routine may contain, only his actions in
accessing those Segments.

FIXe d Rout ines may call only FIXed or CLOSED Rout ines, an d CLOSED
Rout ines may call only CLOSED Routines.

5.4 Regular, ACCESS~ an d ITERat ion Funct ions

A regular Funct ion returns a data object that is uncoupled fr om the
caller ’. Environment; a new data object is created that will be
rel .ased when it can is no longer needed. An Access Funct ion
returns an object that is already a member of the caller ’s
environment.

h E R  Functions are used for iteration over abstract data ty p es in
conjunct ion with the FOREACH loop clause. h E R  Functions are
implicitly CLOSED ACCESS Functions. and nay be gener i c .

page 9

- - .--- -~~~~~~.-.--~~~~~~~~~~ _ _ _  _

FLEX 1. 5



FLEX 1.5

~
,. 5 Rout ine CASEs

Each CASE in a Routine has its own separate declarations and <case
body>. The names. number . and FIX/ALT attribute of the formal
parameters is the same for all cases. but the type of a forma )
parameter may vary between CASE5. as can th e F u n c t ion RETURNS type.

The CASE that is invoked by a Routin e invocation ii the one that
matches the number and type of the actu al parameters. The FIX/AL T - -

attribute of actual and formal parameters are not considered in
selecting the CASE. If more than on, CASE satisf3es these
conditions. then it Is an error.

S

p age 10



FLEX 1 . 5

6. Declarations

<dynamic dccl) ::a DECL <id list> (type>

<static dcc l)  ::  STAT (id list) (type>
CONST (id list) (type> H

<form dccl> : : FORM (id list> <type>

<returns dccl) : :  RETURNS <type>

<acc ess dccl> : :  (use dccl>
: : - ~ (include dccl>

<u se dccl> : : USE <attr se g > C C  • <attr seg> 3’)

<Include dccl> : : -‘ INCL (attr seg> (C • <attr seg> })

<attr seg> : : ~ C <attr> 3’ (seg Ad>
C (attr) 3’ “<seg id)”

a C (attr> 3’ (mod Id> : (seg id>
: : -

~ C (attr> 3’ (mod id) : ‘<leg id>’
: : C (attr> 3’ ‘(mod Id> : < seq id>”

<Escape def) ::a ESCAPE <id list>

<gener mod dccl) : :A  OENER <mod id> (‘C • <mod Id> 3)

6. 1 Data Declaration s

The dynamic (DECL) data object may appear only in Routines. It i
“st a c k  based” data t h a t  is “create d” at the entry to a Routine , and
“deleted” at exit.

A STATic d ata object (Algol “own ”) may appe ar in Data Segme n ts an d
non—CLOSED Routines , It is neither created nor released at run
t ime , and i s share d b y all instant iat ion s of a Routine.

A CONSTant is a data object whose value can never be chang ed . and .
- -

can be declared in Data Segments or any Routine. Values are
assigned to CONSTants at inspection time only . and must currently
be indicated with comments.

The FORMa l parameter de claration gives the types of the forma l
parameters. Th is type may be an UNBOUND ty p e or a Type Pseudo
Iunc t ion.

page 11

I

___________-~~ -- - -~~~~~~~~~ --~~~~- -.- ~.r .

Pa.—.- -. — - -

FLEX 1.!’



- — _— ~~
—

~~~~~~
-

~~~~~~~~~~

---

~

FLEX I ~‘

h 2 HE IUR NS Type

ihe Hfr~rURNS declaration is used in Functions to specify the type oi
the data object returned by the Function. Record selector
ident ifiers in this type are superfluous (but must be present )
becau ’ie the selector~ an, not considered a part of the pure “t’jpe ’
of  a Record This type ma y b e a Type Pseudo fun tion

6 3 (ho INCLude Ac~.ess D e c l a r a t i on

( he  INCLude and USE J*~cess declarations are used to gain a c c e s s  tu
the  ~.l.ments o~ a Dita Segment. Access may be nested as deeply as
desir .;d for example. A may INCLude B who may INCLude C- ~nd ~u
for th :

- - upstream -.

A -~> B -> C -‘> 0 ‘) E
downstream ~~~

Note that A is the onl y one who may be a Routine.

r h t s  it ructure so formed is a t ree -.-- not a graph~ c ij c les  ~nd
multiple access paths to the same Segment are not allowed . Hence.
if I INCLuded B. then a c y c l e  would b e formed• or if 13 had another
~cces’~ path to E• then a multiple access path would be formed.

Referr ing to this example. U adds the entire Environment of C
(which includes 0. and E) to its own External Environment. If 0
INCLud es C as ALTerable. then B has the same access privileges to
that .idded Environment as did C. If FIXed, then the added
Environment is FiXed with respect to 13 and also A. no matter wh ich

— dttrib ’Jte is used bsj A in adding B.

If the INCLuded Segment 1 not in the same Module. it must h ave
been declared as IXPORTab1e by it own Modul e. and if it has been
exported as FIX ed can ;~ot be accessed as ALrersble.

6.4 ihe USE Access Declaration

The USE declaration is exactly the same as the INCLude declarat ion
wi th  respect to the acces sing Segment (e. g. • as fa r as S is
conce rned “USE C” Ii equiva lent to “!NCL C”). Segments who
USE/INCLude the declaring Segment. however, do not gain subsequent
acc ess to the USEd Segments. only to the INCLuded ones. (If B
INCLuded C. then when A accessed B. it would also gain access to C.
but not If B had USL~d C.

page



_ _ _ _ _ _ _ _ _ _  P

Effectively. INCLu d e sig ni fies th at anot her Segment is to b e
considered a permanent part of the current one for all ac c essor s of
the current one to see. The USE simp ly ga ins access to some oth er
Segment where there is no inten t  to ma ke it a permanent part of the
current one.

6. 5 The Quote Convention

The qu o t a t i o n  mark s in t h e USE or INCLude declaration determine how
Elements in the referenced Data Segment are to be accessed. In
general , Elements may be accessed by 1) their name only. 2) their
owning Segment followed by the name. or 3) their owning Module
foll owed by owning Segmen t and name.

The following table summarizes the rules that appl y to t h i s quote
convention. Note t~.at— a different rule may apply for each accessor
of a given Data Segment. depending upon how he applies this quote
convent ion in the USE or INCLude declaration .

ACCESS REG ’D REFERENCE SEQUENCE

<same Segment> (name>
USE <se g id) (name)
USE “(seq Id>” <seq id>: <name>
USE (mo d id): <seq id) <name>
USE (mod id):”<seq id>’ (seq id>:<name>
USE “<mod id>: <seq id)” <mod id):-<seg id):<name>

The exam p le shows USE declar at ions, b ut th e same rules ho ld for
INCLude. 

. 

. 

-

The requ i r e m ent  to use the Segment or Module/Segment name prefixes
is an overr idi ng restr ict ion to all “u p stream ” Segments (6.5).
When A accesse s B (above example ) A must use the same access
c onvention that B uses for the va riables downstream of B. unless A
has applied a stronger quoting convention.

This mod/seq/name convention does not apply to identifier operator
definitions and Generic Escapes. which must always be referenced by
their identifier name only.

6.6 Generic Escape Definitions

Escape definitions define Generic Escape identifiers that may
appear in the Escape text . as in “C <id>: <text>)” . Note tha t
Escape identifiers must be used alone and cannot be preceded by the
Module and/or Segment name.

page 13

- - -

~

.- -

~

- 
- -~,- . -:-H -

~. 
-
~~~ 

- - - ;. . -

_ _ _ _ _ -

FLEX 1.5

FLEX 1.~~

6.7 Generic Module Declarations

The QENER declaration is used to add a Module to the Generic
Environment of a Routine CASE. Whenever a generic Routine call is
performed . all accessable generic Routines in the Modules of the ‘

Gener ic Environment are sea r c h e d for one with a CASE that satisfies
the actual parameter types.

It is legal to include the same Module more than one time in the
Gener ic Environment.

6.8 Iip li ct USE Access

Each Data Segment an d Rout ine CASE in the Pro gra mmi n g System may - ‘
h av e imp l i c i t (i. e. , not explicitly d ec lared within the Segment)
USE and/or QENER declarations. When USE or GENER declarations
appear in a Module header . they become implicit to every Segment in
that Module. However. if the Segment contains an explicit USE or
QENER ref er ence to th. same Segment or Module. respectively, then
the reference in the Module header is ignored.

I-f the Module ii the SYStem Module . then the header declarations
b ec ome implicit to every Segment in the Programming System.
However, this implicit reference is overwridd .n by an explicit
reference in a Module header or Segment. -

Th is allows for example . certain Segments to have explicit ALT
access to some Segment. while the rest of the Programming System or
Module is implicitly given FIX access.

6.9 Examples

d ccl XX. VY bool ~~~ - -~~~~~~ \

stat ZZ. GO m t
conet BR. CC se q C m t)
return s recor d

DUMSEL 1: m t
DUMSEL2: seq (seq (real))

droc el

use SEGA. alt SEOB. fix SEGC ((Begs in current Module))

use MODA: SE.GX ((access by var name only))
use alt MODA :”SEQX” ((acce ss by seg :element })

page 14

- ~~.. .
- - _______________

p
—•-- .---— - ---.-.-.

~

-. .—- ..-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~ ‘1

FLEX 1.5

use HpjO~~~~gEQXw ((acce ss by mod:se g:element)} -

‘-I

pa g e 15

_ _ _

~~~~~

-

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~- -
-
-~~~—--~~~~~ - ~~~~~~~~~~~~~~~~~~~~ ~~

.
-

- -

~~~~~~ , ~~
- -

j



FLEX 1.5

7. Operators

(operator dccl> : :=  INFIX ((prio>) <op spec> = <opr seg)
::~~- PREFIX (op spec> = <opr seg> L

<apr seg> ::  (FUNC $ PROC) C <modid> : } (segid>

(prio> :: (int)

<op spec) :: <id>
<op char> C (op char> }

<op char> :: /* special op character (7.2) */

7. 1 Operator Definitions 

The action taken by the FLEX processor on encountering a defined
operator in a statement or clause as if a named Routine invocation
had been encountered. where the Module and/or Segment names are
those given in the operator declaration (i.e. . <opr seg>). Hence
the two expressions are equiva lent given the following operator
definition:

infix 2 “+“ = MODX:ADDITXON

<exp a> + < e xp b)
MODX: ADDITION C (exp a> (exp b>)

Procedures as we l l as F u n c t i o n s  can b e invoked by operators . as
indicated by the FUNC or PROC keyword in the operator definition
(FUNC is the default if none is given). Procedures can only be so
invoked from Procedure call statements. and not from wi th in
expressions. PREFIX PROC operators are not allowed.

The operator is con sidered generic if only the Segment name is
present in <apr seg>.

INFIX operators are given a priority for expression evaluation .
— where priority 6 is the highest. and the default is 1. The

priority is ignored For Procedure invocations.

-; PREF i X operators have no pr ior ity amon g them selves b ut are of
higher priority than all infix operators.

- 
- Ident ifier operators. once defined in an snvironment, are

cons idered reserved words in that environment.

page 16

- - - - - -
- 

. 

- - - - - - - -
~~

-. _ _ _ _ _ _ _ _ _



~
- - —

~~
- 

-

~~~~~

- -—.

~~~~~~~~~~~~~ 

--— - - -

~~~~~~~~ 

- - .
~~
- .-.---

FLEX 1.5

7.2 Allowable Operator Characters

The allowed characters in symbolic operators are:

+—*/ & ()— ! $X~’\~~’:

However, the colon C” : “) may onl y be used in double—character
operators.

Syntactic conflicts may arise b itween infix and prefix operators.
and the rule to be observed is:

if a single character infix symbolic operator exists

and

a double character infix operator exists whose first
character is the same as this single character operator

and

a prefix operator (single or double character) exists
whose first character is the same as the last character
of this double character infix operator

then

an error condition exists

7. 3 Exam p les

infix I ‘+ ‘ -= SYSTEM: PLUS CCarithmet ic addition))
infix 2 ‘cc’ = SYSTEM: EXPONENT ((arithmetic expoflentiation))
infix ‘: ‘ proc ASSIGN

prefix NOT = func SYSTEM:BOOLEAN C{Bool ‘not ’))
prefix ‘— ‘ func SYSTEM:MINUS ((arithmetic negation))

page 17

—

FLEX 1

8. Types

<type) ::‘ <reco rd>
r <s.~q>

- -scalar>

<Macro ref>
::~ (Macro formal>

UNBOUND
<type pseudo func>

<Escape type>

<record> :;~~ - RECORD H
(selector id> : (type> F ~{((selector id) <type) }}

DROCER

< s e q) SEQ C (type>)

<scalar) :: INT
<int>
REAL

: :~~- CHAR
SOOL

I .

<id)

(selector id> ::~ <id)

<Macro ref) ::~~ Kid> C C (type list>))

<Macro formal) ::~~ (lbr) <Id) (rbr>

<ibi) : ::~ <

<rbr) ::~~ >

(type pseudo func> :: TYPEOF C <id> < <psf part> }

(psf part) ::~~ C (psf sd) 1 C Cpsf part> }
- <selector id) C <ps-f part))

(psf sel) ::~~ INT
::~~~e

<Escape type) : : (Escape text)

page 18

~~~~~~~~~~~~~ 
-
~~~~: 

-j
--

- .

I
FLEX 1.5

8. 1 General

A l l types is FLEX are statics once a data object is created of —
some type . that type cannot subsequently change during the lifetime
of the data.

The syntactic definitions of the various types must be tempered by
semantic rules governing where certain type specifications mag
appear . and these rules are noted in the descriptions below.

8.2 The RECORD Type

1-he RECORD is a coLlection of data objects of potentially different
types. where each object can be addressed by a named.
non—computable Selector. Selector identifiers need only be unique
within each RECORD. and the objects of the Record are selected
using a DOT convention (11.2).

The selector identifiers are not considered as part of the type for
type checking purposes. hence the following two types are
equivalent:

record
SELA : m t
SELB: real

drocer

record
SELC: m t
SELD: real

:- drocer -

8.3 The SEQuence Type

A SEQuence .is an ordered set of data objects of the same type.
There is an implied mapping to the set of integers, but there are
no inherent length restrictions on SEQuences.

SELECT1 and SELECT2 are built into FLEX for SEQuences (11.3, 11.4).

8. 4 The SCALAR Type

SCALARs are types that have no underlying Form. they ar e defined
in terms of no other ty pes. Th e follow ing SCALARs are b u i lt in to
FLEX: INTeger. REAL (floating point). CHAracter . and BOOLean.

page 19

~~~~

- - -



page 6

___

~~~~~~~~~~~~~ —~~~~~~
- -

~~~~~~-~~~~— — -  - — -
~~

- - - ~~~~~
F- - - -

FLEX 1.5

Other SCALARs must be defined by the user (9. 1)

0. 5 Defined Types

The <Macro ref) is used to create an instance of a type defined
elsewhere in the current Environment. The types in parenthesis are
the ACTUAL PARAMETERS. They must match the number of Macro forma l
parameters , and their types must conform to any constraints in the
type definition (see (tfrm elem>, 9. ).

An integer constant (<int)) can be used as a Macro forma l
parameter. It is treated by the Processor as if it were the type

I 
specification “int” (a reserved word). but can be used in locations
where the user wishes to indicate that a “length” is being used in
the instantiation of of some defined type . for example:

type ARRAY (LEN: m t .  ARC )
record
LEN: <LEN>
BODY: <ARC>

drocer

dccl X ARRAY (32, real) ((array of 32 reals))

8.6 UNBOUND Types

.1
The UNBOUND type specification may only appear in the types of
FORMa l parameters . for example:

form X unbound
form V seq C unbound
form 2 record

21: m t
Z2: seq C unbound

drocer

8. 7 Rules of Type Pseudo Functions

Type Pseudo Functions may only appear in Routines , and can appear
in all declarations except STATic and CONSTant declarations. The
<id) argument must be of one of the forma l p arameters , and the
formal d ec larat ion must lexocogra ph ic ly prec ede the TYPEOF
reference. The type of that forma l parameter need not contain

page 20

- -

IL. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



p age 7 
. 

.

-
- 

- -~~~~~~~~~~~~:~~~- --

FLEX 1 5

UNBOUND types . but logica l ly it is d e s i rab le. and may contain Type
Pseudo Functions.

Type Pseudo Functions may be contained within other t yp t
speci Fications except in the RETURNS specification , where iF mu st
be outermost. if present:

Form A unbound
f o r m  B seq (typeo f (A))
returns typeo f (A)
returns seq (typeof (A)) (C illega l )}

The (psf sd ) used to specify a SEQuence selection may only be av~
Integer express ion or empty (i.e. • a call to SELECTI with a single
integer expression , or to SELECTO. 11 3. 11 . 4). This is an interim
restriction that w ill vanish when Type Space Execut ion i~~
implemented.

8.8 Use of Type Pseudo Function.

This type specificat ion is used to specify a type that, l ik e
unbound types. i is not known until a specif ic invocation of the
Routine and Is bound at that time. That type Is actually some
Function of the actual forma l parameter types after they are bound

A Type Pseudo Func t i on has a format similar to a <variable> (11. 3)
specification involving one of the forma l parameters . where any
Selector expressions (“t (exp>)”) are replaced by type
specifications , it is as If the series of Record selections and
calls to the SELECT1 t-unctions were made. except that the only
purpos. of these calls is return types. and not values.

The SELECT1 selection can onl y be applied to SEQuences, however
Any Routine using the pseudo—type must have sufficient access to
any defined type Macros so that the SELECT1 convention can be
applied. In essen ce. the Routine must be able to “ see ” enough of
the underlying structure of the type of the FORMa l parameter to
correctly specify the SEQuence 8ELECT1 and Record select ions it is
requesting.

The forma l parameter must have enough of its type not—UNBOUND to
determine the correctness of this addressing.

Consider the following example:



j~~ ~~~~ i RETURN statem ents wtiiu fl a runc~~ Iun ~~~~~~ p.~~~~- — ’ -

page 8

FLEX 1~~

func FOG (W,X .Y>
form W seq of m t

fo rm X record
Xl: seq of unbound
X2: un bound

drocer

-form V typ eof CX )

dud Z typ eof CX Xl tint))

d cci A typeo f (W tint)) ((error))

returns typeof CX X2)

<body )

c n u f

rhi s specifies that the forma l “X” is must have the form indic3ted
in its type sp ecification. except that the “u n b o u n d ”  typ e is nut
known until this Function Is invoked.

Ta. forma l “Y” I. bound at that time to the actual typ . of “X” ~nd
then checked against the type of the second actual parameter f o r
type equivalence. Essentially this requires the second actual
parameter to be th, some as the first , regardless of the type of
the first.

The RETURNS type is also bound at invocation time and ig bound to
the type of the second selector of the formal “X” . Effectively.
the type returned by th is  Function depends upon the actual forma l
parameter types presented by the caller.

The local declaration “Z” is also bound when invoked and is b o u n d
accord ing to the Type Pseudo Func t i on ‘X. Xl t int]” , wh ich binds it

to the type of the SEQuence member of the first selector of the
f o r m ~il “X” .

8.9 Escape and W ildcard Types 
-

The “wildcard” type is considered type eq.u ivalent to any other
type. Escapes are given the wildcard type when used as type
specifications. The wild card typ . can always have a Record or
Selector (11.3) selection done upon it that will yield the wildcard
type again . The Processor often assigns this type when an error
occurs that precludes the correct type from being identified

page 22 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 


• ~~~~ ~~~~~~~~~ .na may ~e generic.

page 9

_ I
- -~~~~

FLEX 1.5

9. Type Definitions

(type def) ::~ TYPE <id> SCALAR C C <id list>) 3
::~ TYPE <Id) C C <tfrm list>) 3 ~ (type>

<tfrm list) :: (tfrm elem) (C . <tfrm .1cm> 3)

<tarm .1cm> : :r (id> ‘C : (Id list> 3

9. 1 SCALAR Definitionb

The optional identifiers at the end of the scalar definition are
constants for the scalar being defined.

9.2 Parameterlzed Type Macros

Paramete rized Type Macros are forms that define new types in terms
of existing types and “forma l parameter types ” that are left
unspecified until a data object ii declared of this type. The
forma l parameters are replaced by “actual parameters ” when a data
object is declared of thi . Macro type (8. 5).

The forma l parameter identifiers need only be unique among
themselvesa since they are surrounded by brackets (“<. . .)“). they
will not conflict with other identifiers in the type specification.
An forma l parameter identifier may be used any number of times
within the body of the type definition, and each identifier must be
used at least once.

The actual parameters may- be allowed to be of any type (e. g.
“(. . . A. . . .)“). or to be one of a set of allowable types (e.g.

A: m t . real . . .)“).

The underlying structure of a defined type can be “seen” only by
those Routines that have ALT a c c e s s to the Data Segment in which
the Macro was defined.

Consider the following example of a stack:

type STAC~IC (MBR)
record
LEN: m t <<its current length))
BODY: seq C (MER>) (<the body))

droc er

stat X STACK (real) ((a stack of reals))

page 23 -:

-~~~~~~~~~~~ -~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~

I

—

page 10

—____

FLEX 1.5

The “ stack” is defined as a Record whose first member is the
integral current length of the stack. and whose second member is a
SEQuence of members whose types are lift unspecified until a data
ob jec t is declared.

As a second example , consider the definition of a stack whose
elements are required to be integers , reals or characters:

type ASTAK (MBR : m t . real, char)
record
LEN: m t
BODY: seq C <IIBR>

drocer

stat X ASTA K (rea l)
stat Y ASTAK (string) (C error H 3>

As a possible point of confusion, data objects can have no
alternate types. In declaring a data object from a Macro
definition , one of the alternate types is instantiated , and this
t ype cannot change for the life of the data object.

9.3 Type Equivalence

Type equiva lence in FLEX is a name equivalence , where defined types
are truly new types. and not simply templates. The following rule
defines type equivalence:

Two Scalar types are t ype equivalent if and only if they are
instances of the same defined scalar type.

Two SEQuence types ate type equivalent if and onl y if their
objects are type equivalent.

Two Record types are type equivalent if and only if their
corresponding selector types are equivalent (but the
corresponding Selector identifiers need not be the same).

Two defined types are type equivalent if and only if they were
created from the same type definition, and the corresponding
actual t ypes used were type equivalent.

9.4 Examples

These are examples of common type def ini t ions. The LIST type
referred to is defined in detail below (14.2). The definition of
STRINO is discussed below (11.6), and is a common way of defining
strings in FLEX.

page 24 :-.:

page 11

— ~ -- - - - - ~~~--
— —— ~~~~~~~— -——— - -——-

FLEX l.~~

ASSOCJIEM is an associat iv e memory where elemen ts are stored
according to some string. The user would presumably create
Rout in es for access ing and maintaining objects of this type.

type COLOR scalar (RED. ORANQE. YELLOW, OREEN, BLUE)

ty p e STRINO — LIST (cha r)

type ARRAY3 CX) seq (seq (seq C (X>))) ((a 3—dim array)>

ty p e A6SOC_MEM CX) a
LIST (record

TAO: string
VALUE: <X)

drocer)

p age 25

pag e 12

- 1’I
-

FLEX 1.5

10. Ex p ressi ons

(ex p) :: (attr> (ex pi > ‘C Cop l> Cex p > 3

(ezpl) : : — (exp2> ‘C (op2> (exp> 3

(ex p2> : : — (ezp3) ‘C (op3> (exp >

<ezp3) :: <exp4) ‘C (op4) (exp> 3

(ezp4> ::— (.xp5> ‘C CopS) Cexp) 3

r <e xp b) : : <term) ‘C Cop6> <exp > 3

<term) :: <prefix op> <term)
::a C <exp))

<func invo>
::a <primitive>

-
: : — (Esca pe exp)

(opi) ::~ (infix op) 1* op2. op3... . . opó *1

(infix op> ::= <op spec) /C above in OPERATORS .,

(prefix op> (op spec) IC above in OPERATORS Cl

<func invo> : : — <Routine spec> C ‘C (parm list> 3)

<Routine spec) ::— ‘C (mod Id> : 3 (seg id>

<parm list> : : = (exp> (‘C • <exp> 3)

<Escape exp > : : (Escape text>

10. 1 Operators

Inf ix operators are pr ior i t ized , left associat ive , and must be
d efined in the current Environment. Pref ix operators have a higher
pri o rity than any inf i x operator , and must also be defined in the
current Environment.

If an operator is available for a particular Routine, then it must
be used to invoke the Routine i a (func invo) cannot be used if on
op erator e x i s t s t hat will do the same job.

page 26

L ,~~~~~ , ~~~~~~~
___ -

n u t u r o.giecn~ name.

page 13

- -

_

- - - - - -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ..-

- -

~~

~~ .;

~~
“. -
~~-

_______ ~—.—— - .- - — -1

F L E X 1 S

10.2 Arithmetic Negation “— “

The arithmetic negation operator C” — ”) Is unique in FLEX: it is
the only operator that can be used as both infix and prefix. The
user should define the “— “ INFIX operator corresponding to some
negation Function, and the Processor wil l take special action when
used as a PREFIX operator. The express ion “-(c>” will be treated
for type checking purposes as of it were the expression “Cd>-<e> ” ,
where “Cd)” is a d ummy wildcard type. Effectively , the INFIX
negation Function is also used for type checking of PREFIX
negation.

10. 3 FIX/ALT Attribute

Each expression may be prefixed by the FIX or ALT protection
attribute (FIX i~ the default) . but the ALT attribute must not
violate any inherent FIX that may be attached to the expression.
These are matched against the FIX/ALT attributes of the forma l
param eters of each called Routine.

Note the form of th. following expression:

PROCX (fix (fix A + fix 9))

Th, second and third FIX’s apply to the arguments presented to the
function represented by the “+“ operator. The f i rst FIX is then
appl ied to the result of that Function for the call to the
Procedure PROCX.

10. 4 Function Invocation

If both Module and Segment names are given then the Function
invocation is Specif ic~ i f the Segment name only is given, it is
generic. If the Routine is in another Modu le then it must have
been declared to be EXPORTed, and if generically called . must have
been declared as generic (5.2).

If an error occurs in a generic Function invocation , for example
wh en t h e cal led R o u t i ne i s not EXPORTED or declared generic , then a
“NOT FOUND ” error will result.

The order of evaluation of the actua l arguments is not specified.

Th e p arent h esis in the explicit Function call (<func invo)) must be
p resent even if ther e are no p arameters so th at the rea de r c an
easily distinguish between a Fun ct ion call and a variable.

page 27

~~~~~~~~~~~~~~~ .~~~~.. ~~~~~~~~~~ ~~~~~~~~ ..~~~~~~~



oy seg: element)>

page 14

-; Irr - _______________

FLEX 1.5

10. 5 Escape Expression

When Escapes are used as expr essions. they assume the w ildca rd
type. However, this can cause certain problems when used as actual
parameters in a generic Routine call. Suppose their are two
generic Routines “PLUS” : on~ for integers and one for reals. I f
the ac tua l  p arameters for a call to “PLUS” are wildcard types . then
th. sy stem will d etect  an ambiguous generic call because there are
two CASEs that satisfy the ty pe inter face conditions .

10.6 Examples -

LAST (8TACKA ) : FOO (XX, A+B ) - MODA:FUM C )
SOMEVAR : —  CA+B)— ((C*E*F)/56.6) (‘Call vars real))

I.

11 page 28



page 15

____ ~rr~~ - - 

~~~~~~~~~~~~~~~~~~~~~ 
;.:--

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~

FLEX 1.5

11. Primitives

(primitive> :: <var ia bl e>
a (constant>
— (denoted record>

(variable> :: C C (mod id) : 3 <seg id) : 3
<id>  <varpart>

<varpart> :: (icc sd )  ‘C (varpart> 3 
- 

-

::a (bracket> ‘C (varpart> 3

<i cc sd )  ::a . <selector id)
<bracket ) ::~~ C C Cexp> CC • <exp ) 3> 3 3

<constant) :: <int)
:: <real const>
: :  <bool const>

a (char const>
: :  (scalar const>
:: (string const)

(real const) :: <decimal> ‘C E <+~~—) <int> 3

<decimal> : : . a  (int>
::~ (int) . <int>
: :a  . <int>

<bool const) ::a TRUE
:: FALSE

<char const> : : —  CHAR (“C (eec char> 3 <char> ‘)

<scalar const> ::= <id> 1* def’d in scalar def */

(string const> ::a ‘ (‘C <cha r>I< esc char> 3) ‘ ‘CC (string const
> 3)

<char ) ::— I* any keyboard character Cl

<ccc char> : : ~ • /C the  ~~.sca pe ” character C/
/

<denoted record> :: RECORD C (exp> CC , <e xp > 3)

/ ‘N

page 29

--

~ 



~1

page 16

FLEX 1.5

ii. 1 Data Objects

Data objects are indicated by their identifier names. optionally
prefixed by the Module and/or Segment name in which they were
defined (e. g. . “MODID:SEQID:VARID” or “SEGID:VARID” or “VARID”).
depending on how the Quote Convention (6. 5) was applied.

A subobject of a data object can be addressed by an Access
Function, a Record select ion using the “dot” convention , or the
“Selector ” convention.

11.2 Record Member Selection 

If the variable was of type RECORD then one of its objects may be
selected by the decima l point C” . “) followed by the selector id to
be selected.

11.3 The Selector “C . ..]” Convention

Upon encountering the bracketed expressions in the parse of a
(variable>:

(var> C <e l> . . .  ,(em> 3

(where “<var>” is the variable subobject selected so far) the
Processor issues a generic call to a Function named SELECIm
(SELECTO. SELECTI, . . . , where “m ” is the number of expressions
between the brackets ), as illustrated by:

SELECTm C <var>, (ci>. . . .  . <em)

The expressions within the brackets may be of any type. so long as
a Selector Function exists that will accept the types. and each
expression may be preceded with the usual FIX/ALT attribute.

Selector Functions must be generic , and cannot be called as a
r,gular Function . as in “SELECTI (<.1>, <e2>)”. The user may
create Selector Functions as either regular or Access Functions.
where Access Functions will probably be the more frequent case.

SELECT1 for SEQuences is built into FLEX, and returns the N’th
member of the SEQuence. where N is the integral value  of the
expression. SELECT2 is also built in, and returns a contiguous
subsequence of the first through the last integral expression . or
an empty sequence if the first integral value is greater than the
last. There are no limits on the integral values accepted by these
Functions for SEQuences.

L page 30



page 17 . -

~ _-
—--—=—-—. ——.-

~~‘ 
,_

FLEX 1.5

Note that there need be no expressions withi n the brackets . and
SELECTO may be used . for examp le. to fetch the last member of some
data object type.

11.4 SELECTn far SEQ Macros

One rather important point must be made about SEQuences, defined
types, and the Selector convention. Consider the type definition
and Instantiation:

type FOO C. . . ) a sequence (. . . )

stat XX F~~O C. ..

When a Routine who has access to the internal form of the FOO Macro
type makes a bracket reference to “XX C. . . ]“. then the internal
SELECT1 or SELECT2 for sequences will be invoked to yield a member
of the sequence.

If the Routine does not have type access ,  however, a generic
Function invocation to SELECTn will be issued whose first argument
w i l l  be of type “FOO” .

In effect , if  the Routine has no knowledge of the internal form, it
must always call upon the user—defined Selector Function to return
some subabject.

If the Routine does have access, then i t  immediatel y “sees ” i n t o
the definition, and a Selector reference is assumed to apply to the P
SEQuence that forms the body of the type definit ion.

This also applies to multi—times—removed SEQuenci definitions , as

type FUM FOP
type F0O — FliP
type FUD a seq C ... )

11.5 Constants

Constants are provided for the scalars built into the FLEX
language. I. e. • integer, real. boolean and character. A <scalar
const> must be one of the constant identifiers (9. 1) in a scalar
t y p e d e f i n i t i on in the current Environment.

page 31

- 

.-_
~~~~~~~~~~~~~.~. .~~~~~~~~~~~.


I page 18

FLEX 1 5

11.6 String Constants

Whenever a string constant is encounter ed in the design text Ce. g.
“‘a b c d ’ ”) . the current environment is searched for a defined type
named “STRING” (see for example 9.4). The type of the defin ition
so found is then assigned to the constant string. If STRING is n o t
defined an qrror will result, and its Module and/or Segment name
cannot be required for access.

Although strings C” ‘abcd ’ “) may not cross line boundarie s, they
can be placed in conjunction with an implied concatenation.
Strings that need to span more than one line can be broken apart
with no loss of meaning. For example. “ ‘abc ’ ‘def ’ ‘ghi ’ “

equivalent to “ ‘abcd .fghi’ “.
.
•

An escape character (“t”) is used to indicate the string del im itor
C ” ‘ “) when part of the string , where the character following the
escap e character is always considered part of the string. Two
successive escape characters can be used to put the escape
character itself in the string.

11.7 CHARacter Constant k
The character constant is indicated using the built—in function
“CHAR ”, and a string of one character, e. g. , “CHAR C ‘X’)” is the
character “X” . The escape character may also be used as in string
constants.

11. 8 Denoted Records

The denoted Record is a FIXed Record whose objects are built from
the expressions in the RECORD expression list. For example . i-P
some Routine “FOO” required a parameter that was a Record whose
first member was an integer and second was a real, then it could be
called by:

- . . FOO (record (123, 123.4E—14)). .

page 32_

—~
..J—nv Y S~ — -‘——.-

FLEX 1.5

12. Stat emen ts

(stmt list) :: = (stmt> CC <stmt) 3> -
C (return stmt) I (exit stmt) 3

(stmt> . : = <if stmt)
= <loop stmt>

::= <call stmt)
:: (Escape stmt>

<if stmt) : : = IF <bool exp> THEN
<stmt list>

CC ELSEIF <boal exp> THEN
(stmt list) >3

(EL SE
<stmt list> 3

Fl

<call stmt) :: = <Routine spec> (C <parm list) 3)
C <attr> 3 (call arg 1> <proc inf op > < ex p>

<call arg 1> : : = (variable)
: := <func invo>

<proc inf op> :: (op spec> 1* above in OPERATORS *1

(return stmt) : : = RETURN ‘C C (exp>) 3

(Escape stmt> : : = (Escape text>

12. 1 The IF Statement

The IF statement provides conditional flow control. It may have
any number of ELSEIF clauses, and an optiona l ELSE clause. The
ex pression in the IF and ELSEIF clauses must be of type Boolean.

12.2 The Procedure Call Statement

This statement is used to Invoke a Procedure. The actual arguments
may be altered by the called Procedure unless they are FIXed. The
parenthesis are required in the Procedure call statement even i-F
there are no actual parameters.

Procedures can be invoked by an infix operator, where the operator
must be in the current Environment, and must have been defined as a

page 33

-~ -

____ ________ ~~~~~~ — .—.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~ ~~~~~~~~~~~ 

-

FLEX 1.5

“PROC ” operator. This f i r s t argument (i . e . the “left hand side ’ .
<call arg 1)) is not a generalized expression . but must be either a
variable or Function invocation. The attribute of this first
argument defaults to ALT if not specified. (The two latter rules
do not apply to Procedure calls not invoked by an in f ix ope ra tor .

12. 3 The RETURN Statement

The RErURN statement causes an immediate return from the Routine.
If the Routine is a ~unction~ then an expression must be given and
must be of the same type as declared in the RETURNS declaration.
The parenthesis enclosing this expression i-s manditory .

If the Function is an Access Function, then the data object
returned must be a subobject of the first -Formal parameter.

There is an implied RETURN immediately preceding the CORP ending of
a Procedure case. No statement should follow the RETURN statement
in a statement list since it would be unreachable.

12. 4 Escape Statement

The Escape statement may be used anywhere a statement may appear.

page 34


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

- -

FLEX 1.5

13. Loops and Iterations

<loo p stmt) : C ** <loop Id> }
DO ‘C <times clause) >

CC <using clause> 1 <foreach clause>
. I (for clause> >>

‘C <while clause) >
‘C <unless clause> }
CC <Escape clause> 3>

C Cstmt list) 3
C (until clause> 3

OD
1:1(loop id> :: <id>

<exit stmt) ::~ EXIT C ( <loop id) ) 3

<using clause> :: USING <new id> = < exp >

<times clause> TIMES < m t  exp>

(for clause> :: FOR (new id> = <for ex p >  C C  , <for exp > 33

(for exp > ::= (m t  exp)
::  < m t  exp) C BY < m t  exp> 3 TO (m t  exp)

(mt exp ) ::= (exp> 1* expression of type integer *1

(unle ss clause> ::~~ UNLESS (bool exp >

(foreach clause) :: FOREACH <new id) IN (exp>

(wh ile clause> : : WHILE (bool exp>

<until clause> :: UNTIL <bool exp>

(Escape clause> :: <Escape text>

13. 1 WHILE Clause

If the boolean express ion in the WHILE clau se is FALSE, the th e
loop is exited immediately. There can only b e one while expression
in the loop header . and it is tested at the beginning of each
iteration.

page 35



--~ --~ --

FLE X 1 - 5

13.2 UNTIL Clause

If th e b oo lea n expr ess io n in the UNTIL clause is TRUE, then th e
loop is imme diatel y exited. 1534e can only be one UNTIL clause at 

- 
-

the end of the loop, and it is tested at the end of each iteration -

13.3 UNLESS Clause

I-f the boolean expression in the UNLESS clause is TRUE, then the
current iteration is skipped . but the loop is not terminated. This
is placed after the optional WHILE clause.

13.4 Loop Identifier

The LOOP ID a t t a c h e s an identifier to the loop, and must not
conflict with any of the loop names Par any loop enclosing the new
icop (there may be two loops of same name so long as one does not
conta in the other). The loop Id in the EXIT statement may be used
for the exiting of several loops at once. A loop Id should not be
thought of as a label since nothing ever “branches ” to it. it is
simply the name of the loop.

~113. 5 EXIT Statement 

the EXIT statement provides an immediate exit from some enclosing
loop. If a loop Id is specified then the enclosing 1oop with that
name is exited. If no loop id is given than the closest (most
recently-entered ) loop is exited. Note that the loop identif ier
must b e enclose d in parenthes is an d that no statemen t sh oul d — 

-

follow th e EXIT statem ent in a statement li st b ec ause i t  would be
unreachab le.

13.6 TIMES Clause

The TIMES clause simply d e f ines the maximum number of iterations to
be don. in the loop. It is placed first in the header becau s. i t
is eva l uated only once before the first iteration. The FLEX
semantics consi der a negative or zero value to cause the loop to be
skipped. Since this restriction is not checkable by by the FLEX
processor . it may be altered by user agreement.

~~ -~::.i ifl :: .~~~~- ~~~~~~~~~~~~~~~~~~~~ ~~~~~



—~--~ -,—.—- - .,-,-~~~~~~~~~~----~~--~-. ~—.~—~~~~~——.——-.-- —.-- - -- .- — —.--..-~. ~~~~ —- -  — .-..-.-- - -- -

FLEX 1. 5

13.7 New Identifiers

This new identifier will be bound to some data object b y a USIN G ,
FOREACH. or FOR clause for use within the loop. It is added to the
current interna l environment when it is lexocographica llsj declared
and must not conflict with any other identifier in the current
env ironment. It Is released from the environment at the
lexoco graphic end of the loop.

For the USING and FOREACH clauses, this new identifier is actually
bound to some data structure (in effect, a system—controlled
pointer ) and that data structure can be changed through this
identifier unless the identifier is FIXed. The identifier is F iXed k~j
if the USING or 1-OREACH expressions are inherently FIXED~ or are
preceded by the FIX attribute.

The identifier is available for use by USING and FOREACH clauses
t h a t  app ear l ex o c o gra ph l c a l ly  af terwar d in th e ioop heade r .

13.8 FOR Claus e

A standard FOR clause is provided where a new FIXed integer
identifier is created to be iterated from one expression to another
by the increment of a third , optional expression. The exact
semantic s of t h e  FOR clause involve  “run t ime ” restrictions that
cannot be checked or implemente d by the processor. FLEX assumes
certain conventions below but these can be changed by user
agreement.

Th. express ions are evaluated onl y once at loop entry. The
iteration proceeds according to the following rules:

A positive increment expression implies that the iteration is
terminated as soon as. at the beginning of an iteration, the
indexed variable is greater than the final expression. A negative
increment expression implies that the iteration is terminated as
soon as th e in d exe d varia b le is less th an the limit expression.

If th e in it ial ex press ion is le ss than th e limit expression an d the
increment is negative, then no iteration will occur and the denoted
l ist is empty. Likewise, if the initial expression is greater than
the limit expression and the increment expression is positive , then
no iterations occur.

U

page 37

___
_ __ _  Li



FLEX 1.5

13.9 USING Clause

The USING clause binds a new identifier to an expr ession (not
necessa rily a variabl e) during each iteration. The FIX/ALT
attribute may precede the expression to indicate whether access
through the newly—bound identifier is to allow a l t e r a t ion of t h e
expression.. (Note that in order for the expression to ALTerable.
it must be a variable or the result of an A c c e s s  Function reference
whose first actual parameter was alterable. ) For exam p le :

do using X A. SELX
X £142 : <ex p >

od

is functionally equivalent to:

A. SELX £143 : <.xp>

13. 10 FOREACH Clause —— Iterators

The FOREACH clause is use d in conjunction with ITERation Functions 
- 

-

to prov ide iteration over data objects of user—defined types. The
Funct ion reference d in the FOREACH clau se must have be en de clar ed
an ITER Funct ion, and may b e gener i c .

13. 11 Loop Termination Priority

The FOR , FOREACH , and TIMES clauses may spec i fy di fferent max imum
loop iterations and this is considered an error in the language
semantics. However , this is a “run t ime ” restr ict ion and can b e
altered by user agreement (e. g. . terminate on shortest max imum
iteration).

The WHILE and UNTIL cla uses and the EXIT statement cause immediate
termination regardless of the state of the other clauses.

13. 12 Escap e Claus e

The Escape clause is used to simulate any loop constructs that are
not included in the FLEX syntax, and must ap pear after all ot he r
clauses  in the  loo p h ea d .

The versatility of these clauses shoul d not be overlooked in
designing with the FLEX system . for they can be used to emulate -. 

-

page 38 
- 

-



~~1~~~~~
— - 

.— --..--.- - - .—~~-,-— .,w,———”~.----..—-~--- .~~~~.—~
---—. - 

Tr r - - .

FLEX 1.5

many ite rative schemes f o u n d in programm ing languages.

13. 13 Examples

1 do times 14
1 while (A not equal to 0)

I (body. iterated while A is not 0. but 14 times, max>
I ad

do oreach X in INORDER (LISTX)
un l ess X 0

(body)
ad

I do for X 1. 2. 3 by 2 to 9, X+Y, FUNCX (0) 
—

I (body)
1 od

I ** LOOPA 
-

~~~~~~

I do
I **LOOPB

do (forever>
I if C. . . 3 then

EXIT ((ex it LOOPB>}
I elseif C.. .) then

EXIT (LOOPA) -

I f t
(mo re in LOOPS>

I od
I (mo re in LOOPA)
I ad
I

—

page 39 i S .

L... . ~~ ~~

FLEX 1.5

14. Extended Examples

These examples will de fine part of a Programm ing System and ar e
similar to those that the Administrator would define.

14. 1 Equivalence Module

We want to specify that equivalenc , and non— equiva lence can be
invoked by the familiar “&‘ and “<>“ operators . and are valid
operations on any two data objects that are type equivalent.

We are assuming that equiva lence is a fundamental operation of the
Programm ing System. and there is no n•ed to provide an expl icit
algor ithmic description. This illustrates a major difference
between a Design Language and a Programming Language.

I mod EGUIV

I data EGUIV
I infix ‘.‘ EOUIV :EOUAL
I infix ‘<)‘ EGUIV :NDTEGUAL
I sta d

1 func EGUAL (X Y)
I form X unbound ((allow any type))

farm V typeof (X) ((requ ir, to b e same
I type as X)}

returns boo l
I use alt EGUIV

if CX is equal to V) then
return (TRUE)

I else
I return (FALSE)

f t
I cnuf

I func NOTEOUAL (X~ Y)
I ((similar to EQUAL))
I cnuf

I dam

FLEX 1.5

14.2 LIST Module

We wish to define a fu nd amental data ty pe “LIST ” to b e an or dere d
se q uence of data objects -that has some “current valid (nonnegative)
length” . The gener i c function “SIZE” will evaluate to this length
(but not change it). the generic Procedure “CLEAR ” is used to set
the length. to 0. and the generic Procedure “PUSH” appends a new
mem b er to a LIST us ing the inf i x Proce d ure op erator “

~~~~
“. “LAST ’ is

an acces s Function used to access t he last member of a LIST. and
“SELECT i” prov ide s acc ess to the “N’th ” member of a LIST. where “N”
is greater than 0. “CONCAr” conca tenates two l ists.

“ASSIGN” follows the philosophy of encorporating a Procedure to
explicitly define assignment for each type in the Programming
System. Each type. defined or built in. should have a generic
“ASSIGN” Procedure defined for it, and will be invoked by the infix
operator “: “.

Most of these Routines are generic because the operation they
describe has app lication to other defined data types (e.g. . stacks,
queues. sets, arrays, etc. ). Likewise, the PUSH and CONCA1
operator, (“~~“ and “&“) are defined in an implicitly accessable
Data Segment (SVSTEM:COMMON) because they are generic to several

\L 

data types.

, 
-S

I mod LIST
use alt LIS1 < (give all segs ALT access)} j

data LIST ((define the type LIST))
ty pe LIST (A) -

I record
LEN: m t
BODY: seq ((A> )

I dr o c er
1 ata d

I *func SIZE CX ) ((get current length of list))
form X list (unbound ) ((accept LIST of any type))
returns m t
return (X. LEN~

1 cnu?

p aye 41

- — - - - 
- .-.--- 

~~
- --~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



7
FLEX 1.5

*func CLEAR CX ) ((clear /initial a list>)
form X list (unbound )

I X.LEN : 0 ((set length to 0))
1 cnuf
_______________________________________________________________________________________________ 

—— H
I access •func SELECT1 CX .  N) ((Selector Function for LISTS)>
I form X list (unbound )
I form N int

I if (N ii less then 0 then p

(call a system error , Ii abort>
else

return (X. BOOY (N))
I fi
I cnuf

1 access afunc LAST CX ) ((return ref to last mbr of LIST Xi)
I form X list (unbound )

return s typeof CX . BODY C])

if X. LEN O then
(call a system error rout ine & abort>

else
return CX. BODY CX . LEN])

I fi
1 cnuf

I *proc PUSH CX . MAR ) ((append MAR onto LIST X)
form X list (unbound )
form MBR ty peof (LIST. BODY C])-

I X. LEN : X. LEN + 1
= LAST CX ) : MAR

I carp
I _______________________________________

I iter *func INORDER CX ) ((in—order iteration -For LISTs)>
I - form X list (unbound )

I do for I ~ 1 by 1 to SIZE CX )
I return CX CI))
I *4
I cnuf

pa ge 42 

- -- .~~~~- .i~. 
: - .~:i~-T 

- - --- -
~~~~~-— . .


—~~~~~~~ ~~~“F’~~ ~
- --- ----—--- _

— —-w—-.-~
__.

.- —
~~~~

FLEX 1.5

*proc ASSIGN (DAT, SRC) ((assignment for LISTs)>
I form DAT list (unbound )

form SRC ty peof (DST) ((require types to be same))

I ARC . LEN :~~ DAT. LEN
do fQr I — I by 1 to ARC. LEN

I DAT CI] : ARC [13
I ad
I carp

I *func CONCAT CX , V)
I form X list (unbound ) i~

1
I form V typeof CX )

dccl 2 typeof CX )

I CLEAR (Z)
do foreach Xl in INORDER CX )

I 1 ~ X l  ((same as PUSH (Z.-X1)>>
od

I do foreach VI in INORDER (X)
I Z~~~ Y1
I od

return (Z)
1 cnuf

dam

- -
- 

14.3 SYStem Module

The purpose of the  SYStem Mo d ule  is to ma ke certa i~. concepts
globally available to the Programming System.

- - 

I sys mo d SYSTEM
$ use LIST:LIST, EQUIV:EQUIV, COMMON
I gene r LIST, EGUIV
I dam

H page 43



~~~--~~~~~~~~~~~~~~~~- - ---- -—--- - -.-~~~~- ---- - - -- -—~~~~- --- --~~~ ---

FLEX 1.5

I data COMMON
I inf i x I ‘&‘ — func CONCAT
I infix I ‘~~~~‘ — proc PUSH

infix ‘: — ‘ — proc ASSIGN
I atad

I dos

page

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~i  _l.S~ - .  -



________________________________________________

- FLEX 1.5

15. Common Errors and Pitfalls

There are several points in the FLEX language wh ich may ea sil y be a
source for programmer error, often because the FLEX processor has
di fficult y in detecting the error. Listed below are a variet y of
miscellaneous errors and pitfalls that may befall the unwary FLEX
user.

1) The RETURN ( <exp> .) and EXIT ( (loop id> ) statements must
have their arguments enclosed in parenthesis. This is a
syntactic parsing requirement caused by the exclusion of
statement separators. The Procedure RETURN with no expression
requires no parenthesis.

2) Statements directly after a RETURN or E X I T  statement in a
statement list are unreachable and not allowed.

3) Routine invocations require the parenthesis present if no
parameters are passed. This was done so that code readers and
the FLEX processor could distinguish a Routine call from a
si mple variable.

4) The omission of the Functional case or Data Segment
terminator words (i.e. • “cnuf” , “esac ”. “corp ”. “atad”) can
cause the omission of large parts of the source code (the
parser skips over large bodies of code looking for these words
as stopping flags).

5) The symbolic operator “— “ is unique in the FLEX processor
because i t  is considered both a prefix and an infix operator .
The user should use this symbol for the common infix arithmetic
operation of negation. The PREFIX, “+“ operator  is not b ui l t
into FLEX and cannot be defined as both an INFIX and a PREFIX
operator.

6) Id operators may not be referenced b y  the
Mo dule :Segment : l d ent if ier sequence as ca n var iable s an d ty pe
definitions. The simplicit y and convenience of these shorthand
Rout ine cal l  operators is lo st i f  th e Modu le and Segment name
p rece d es th e identifier. - -

7) Loop Esca p es must a pp ear a f t e r al l other loop introduction
clauses and just before the loop body.

8) The default FIX/ALT attribute for the -First actual parameter
express ion for Procedures invoked using an infix or prefix
operator is ALT. This is done in deference to the assignment
Proce dure so that the f irst ar gument wou ld not have to be

page 45



ii

FLEX 1.5

always prefixed by an ALT. Thu is the only instance in the
language where the FIX/ALT attribute defau1t~ to ALT.

9) The data type IISTR INON must be defined if  string constants
(Ns ab cdsN ) appear in the text (e.g. . 9.4). The string
definition cannot require the MOD: SEQ names to precede it. A
CHAR is not the same type as a STRING of one characte r just as -3
an INTeger type is not the same type as a SEGuence of INTegers.

10) A space should appear between an infix and a following
pref ix operator (e.g. . “(A+ _B)N).

i

pa g e 46



~~
----— ~~~~~~~~~~~~ 

- -- - —~~- -~~ 
_ _

- - 

FLEX 1 5

16. Reserved Words 

The following is a list of the reserved words of the FLEX language.
User—defined identifier operators in the current Environment are
considered reserved words.

ACCESS Function
ALT erable FIX/ALT attribute t
ATAD end of DATA
BOOL eon
BY
CASE
CHAR acter
CLOSED Routine scope
CNUF end of FUNC
CONST ant data declaration
CORP en d of PROC
DATA Data Segm ent
DECL are dynamic data declaration
DO loop statement
DOM end of MODule
DROCER end of RECORD r -

ELSE in IF statement
ELSEIF in IF statement
ESAC end of CASE
ESCAPE Ceneric Escape declaration
EXIT a loop
EXPORT some Segments
FALSE boolean falsity
Fl  end of IF statement
FIX FIX/ALT attribute , scope limit
FOR loop clause
FOREACH loop clause
FORM al FORMa l parameter type spec
FUNC tion —

CENER ic declaration
IF statement
IN FOREACH . . .  IN . . .
INCL ude add environment
I N F I X  operator
INT eger
MOD ule
OD end of DO loop
PREFIX op erat or
PROC edure

- - . REAL type
RECORD ty p e
RETURN statement
RETURNS RETURN type spec

page 47 

illIl



FLEX 1.5

SCALAR type
SEQ uence ty pe
STAT ic date object declaration
SYS te. global Module
THEN in IF statement
TIMES loop clause
TO
TRUE bo o lean truth
TYPE type def inition
TYPEOF type pseudo func
UNBOUND unbound forma l p ara meter , Form forma l
UNLESS loop clause
UNTIL loop clause
USE use environment
USING loo p clause
WHILE loop clause

fr

page 4B

-- - — U -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ :~~~. ~~~r~~
- -

~~~—~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


-
FLEX 1 S

- REFERENCES —

1. Sutton . S. A. , “FLEX : A Flexible , Automated Process Design
- Sys tem ”. University of Maryland P1. 8. Thesis, College Park.

Maryland, May 1979. (Copy available from S. Sutton, CODE 8433
Naval Research Lab, Washington. D.C. 20375.)

-

I

page 49

- - -- ~~~- - -~~~~~-~~~~~ -

FLEX 1.5

Appendix 1

USE OF THE FLEX PROCESSOR

This appendix contains gen eral instructions for using the FLEX
processor. The other appendices should be consulted for current
status of the Processor. or restrictions imposed by particular
installations.

1. General

1. 1 Terminal Interaction
I

The user creates his design text in named files, where the
definition of a “file ” may depend on the particular computer
system. Although file boundaries can occur between any two tokens
in the text, i t is good practice to keep each Module on a separate
file.

The FLEX processor runs as an interactive program. It first asks
for a list of file names to be processed and will process these in
the order entered. File names are term inat ed b y entering a blank
line or an asterisk (“*“)~

After the low and high pass numbers are requested. options can then
be entered one at a time. and terminated by a blank line or an
asterisk (“*“)~

All informat ion input from the term inal s hou ld have no p r ec edi ng
blanks and no blanks should appear within identifiers.

There is a special HELP printout that prints a summary of
accepta ble input information any time the word “‘HELP” is entered
as a file name or option.

1.2 Passes

The FLEX processor has three passes that can be run independently.
assuming that ea r l i e r passes h ave b een run at least once. In
general. one pass shoul d be made error—free before continuing to
the next . or phantom errors may result.

Pass I looks only at Module headers, Data Segments . and Routine
declarations (except for local declarations DECL. STAT.- nd CON8T).
Pass I need only be run if a change is made to these structures or

page 50

—I-- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

______________ - — .- -. ..—----—..-----— — —‘- —-.-.. —.-—~~~
.—--.-——.-—-- -.— -.---.-.— - ———.—r—. —.-—-— -!-- Pr.- ——- - .- - - —.-. .---.——

FLEX 1.5

a new Module or Segment is added.

Pass 2 looks at the same parts of the text as Pass 1. and must be
run between passes 1 and 3.

Pass 3 looks at everything not looked at b y the two previous
passes. i.e. . local Routine declarations , and the Routine text
body.

Passes 1 and 2 will be run mainly in the early stages of a topdown
desi gn when the upper level structure is being defined , and pass 3
i n later design phases when the algorithmic body of the Routines in
being added.

1.3 LOCKed Modules

A subset of the total Module set can be submitted to the Processor.
and the rules for forming this subset can be cast in a rigorous
form.

Consider “ALL” to be the set of all Modules currently in the
Programming System. “ LOCKED” to be the subset of ALL that have the
property of being “locked” , and “RUN Ci)” as the subset to be
pr esen te d to t h e FLEX p roces sor fo r pass “i” (i 1, 2. or 3).

The Processor stores information from one pass in an IMAGE for use
by the next. and creates IMAQEn files for this purpose (1.5).
Consider “IMAGE (n)” (n = 0. 1. 2. 3) to be a subset of ALL for
pass “n ”. IMAGE (0) is the image present before pass 1 and is
always equivalent to LOCKED.

Each pass “i” produces an IMAGE (ii consisting of the union of
LOCKED and RUN Ci). and Modules presented to subsequent passes must
be present in this IMAGE Ci). Hence, RUN (j) must be a subset of
IMAGE (j—1) . for j = 2.3. However, for passes 1 and 2. Modules
cannot be present in RUN if they are locked~ hence the intersection
of RUN Ci) and LOCKED must be null . for i = 1,2.

The “ NEW” opt ion has the effect of clearing IMAGE (0) and LOCKED
before pass 1. The option “LOCK” has the effect of adding RUN (2)
to LOCKED.

Note that pass 3 can always be run alone, so long as RUN (3) is a
subset of IMAGE (2).

Any Mo dules or Se gments reference d but not def ined w i ll be
cons idered an error. unless the STUB option is in effect.

page 51

FLEX 1.5

1.4 Rerunning A Programming System

When changes are made to the program text . some minima l earlier
p ass has to b e run. The following ta b le should be consulted for
t yp es of changes and t h e mi n ima l p ass to b e rerun:

Change Pass

anything in a CASE bod y. or
Routine local dccl (DECL.STAT, etc.) 3

FORM or RETURNS ty pe spec. or
ty p e sp ec in DATA Seq 2

0
new FORM. or
type or oper definit ion or
anything else 1

1.5 File Names

The FLEX Processor keeps a current image of the Programming System
on binary files namad “IMAGEn ”. where n is 1~ 2, or 3 for the pass
number. (The IMAGE (0) referred to above is kept on file IMAQE1.)
Pass 2 uses the image file produced by pass 1. and pass 3 that of
p ass 2. The user shoul d not have to access t h ese f i les , exc ep t to
save or restore them if the computer system so requires.

If t he “ MAP ” option is enabled, the Processor will produce map file
name d “MAPn” (n — 1,2,3) after each pass. Most of the internal
Processor ta b les ar e printed on this file. and this can b e of great
help to the Caretaker when debugging the Processor. The general
user shoul d have little use for the MAP file since much the same
information is displayed using the STATistic option. These MAP
files need not b e save d or restored.

pa g e 52 H

--~~~~~~~~~ ---- ~~~~-~~~~~~~~~~~~~~ ——---— -
~~

--- -

_

2. Options

There are several options in the FLEX Processor, where each is
known as an ident ifier (e. g. , “ABCD”) that may be preceded by an
“X” to turn it off Ce. g. , “XABCD”), and only the first 4 characters
of the option are si gnificant. The “‘HELP ” command (1. 1) will list
the current options and their defaults.

‘ HELP

Invokes the HELP printout to inform the user of the rest of the
options and their current defaults.

INTChec k

Enables type and FIX/ALT attribute checking for Routine calls.
If disabled , called Routines are assumed to exist, and
Functions evaluate to the wildcard type.

TYPE

Enables the type checking mechanism in the FLEX processor which
is manifest almost entirely in Routine interface type checking.
“XTYPE” implies “XINTC ” regardless of the state of the “ INTC ”
option.

STUB

Routines that are referenced but not defined will be considered
as stubs. and wi ll not considered an error. Stubs a re
summarized on the cross reference listing.

SYNTa x

This op tion can be used only in passes 1 or 2. and disables all
semantic processing ; the port ion of the design text looked at

I during passes 1 and 2 is simply parsed.

MULFunc

Che ck for the existence of more than one CASE that will satisfy
- a generic Routine call.

MULDecla rat ion
~I.Check for the ex istence of more than one Element that can be

reference d by the same id entifier se quence in a given
Environment.

page 53

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-]

FLEX 1. 5

LOCK

Locking is inten d ed so that Mo dul es t ha t are e f fec t iv ely
completed and correct need no longer be processed with the
other Modules. Modules can only be unlocked by running the
FLEX processor w i t h the “NEW” option.

Lock ing occurs at the end of pass 2. so that passe , 1 and 2
must be run if t h e “ LOCK ” option is used (pass 3 i, optional).
and locking will not occur i f any errors or undefined
references occur during pass 1 or 2. Hence the group currently
being locked cannot reference (USE or INCLude) any Modules
outside themselves.

NEW

Initializes (clears) the locked subset (LOCK (i) in 1.3) before
pass 1. “NEW” is usually used in conjunction with “LOCK” to
clear the image before a completely new set of Modules are
locke d.

PAUSe

Causes the FLEX proces sor to pause after each error message.

QUIK

Causes the sca nner to operate in “quick scan ” mode which speeds
up the FLEX pr~ocessor. and cures other troublesome problems.
If cer ta in reserved wor d s (i e . “cor p ”. “cnuf”. “atad ”. “esac ”.
or “mod”) are omitted or misplaced in the FLEX code. large
chunks of code may b e skipped in parsing. The SUlK option
should always be used.

STAT ist ics

The stat ist ic op t ion causes a v a r i e t y of s tat ist ic al
information and a cross reference listing to be printed at the
end of p ass 3~ and requires that all three p asses are run.

BUO 1

Of use to on ly th e FLEX caretaker . and causes a variety of
information to be printed during processing that aids in
debugg ing the FLEX processor ’s source code.

MAP

Prints a system map of the image file after each pass (see
“ FILE USAGE” above). (1. 5).

UPPEr case

page 54

‘
:4

- - -..- - .—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ._~~~~ -_~~~“,_ ----.—p----— --..-- -

FLEX 1 5

Converts all lower case in the program text to upper case
before processing , but does not alter the original program te n t
files. In effect , the text is seen through “upper case
g lasses ’ . This option may be restricted for certain
installations of the Processor. and th. other Appendices should
be consulted for more information.

3. Using the Options r
The user can always use the default opt ions and all three passes
However judicious use of the options can decrease processor time .
An environment employing a librarian is an excellent one in which
to use the FLEX processor since that librarian can become
proficient in applying the options. Hopefully , the design
environment, with its emphasis on code reading , walk—throughs. and
other software validation techniques will result in fewer
invocations of the FLEX processor than a compilation environment
where frequent compilations during debugging and testing are
required.

Tb. largest time savings comes from running some subset of the
three passes, (1.2).

Another significant savings comes from LOCKing completed Modules
ea r ly in the design process (1.3). Although locked Modules can
conta in no external references outside the locked set. the Routines
need have no code body . and can be simply stubs with their —

-
interface conditions defined ,

The SYNTax option can b e u sed for passes 1 and 2 and will detect
syntax errors without the overhead of th. semantic processing. To
produce a syntax—onl y parse for pass 3. disable all options except
SUlK, and possibly PAUSE.

Th e MULfun ct ion and lNTC h ec k o p t ions can usuall y be run on ly on
occa sion, and need not be run unless new Routine invocations are
added to the system. Likewise the MULDeclaration option can be
used occasionally. and need not be used unless a new Element or
acce ss declaration is added.

STATistics and LOCK should only be run on error—free Modules.
Before a Mo dule can be declared as error—free it should have the
following options run in all passes: INTC , TYPE, MULD. PIULF. and
XS1UB.

page 55

— .—~~~~ — -.~~~~~~ —- .*--. — — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

— -~~
_

FLEX 1.5

4. Errors

4. 1 Errors, Warnings, and Notes

There are three cl as s e s of messa g es in the FLEX processor: ERRORS
inform of s i tuat ions that are def ini tely in error , WARNINGS inf orm
of s i tuat ions that are not in erro r, but may rea di ly lea d to err ors
if not attended to. an d NOTES refer to th e qual i t y of t h e
programming practice or design.

The se messa g es ma y contain the user identif iers associate d with the
error. an d a code number that reveals the source of the message in
the FLEX Processor. The offending lin, will usually be printed.
and . below that~ a flag line where a single pointer indicates the
token last scanned. The error will ei t h er be at or before this
locat ion. Some error messages may give only the first 8 characters
of an offending identifier.

4. 2 Error Recovery

The FLEX processor implements error recovery (not error correction)
techn iques. Semantic error recovery usually involves assigning
some dummy value Ce. q. , the wildcard type). k

Syntax error recovery tries to jump over the remainder of the
offending statement or clause before continuing. This will usually
recover successfully without phantom error messages. and is
enhanced if the user is using “good” (i.e. . readable nice—looking)
formatting techniques in his programs.

4.3 Special Errors

There are a variety of special error detections in the FLEX
processor.

The “ BAD IMAGE ” error usually results when the user changes a part
of the text but does not rerun a low enough pass. If this error is
encountered during an otherwise error—free run through all passes.
contact the FLEX caretaker.

A “ FLEX PROCESSOR ERROR ” will be logged if the FLEX processor
detects flaws in its internal tables. This is (hopefully) a rare
error an d requires the immediate attention of the FLEX caretaker.

OVERFLOW errors occur when the internal tables of the FLEX
processor fill up. This particular error message will give the
name of a source code “PARAMETER” that sho u ld be increased , after - - -

-

-
_ _ _ _ _

liii
- ~~~~~~~~~ .. - - ~~~~~~~~~~~~~~~~~~~

- -~ ~~~~~~~~~ ~~~

FLEX 1.5

wh ich the FLEX processor can simply recompiled and run. This is a
relat ively simple job for the FLEX caretaker.

There are a num b er of spec ial error Routines that print out more
extensive error messa ges to the user and most of these are self
explanatory.

t.

k-

Ftl

page 57

~~~~~-~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ -- -~~~~~~~~~~~ - - --



—

FLEX 1.5

Appen di x 2

THE CARETAKER ’S MANUAL

The “Caretaker ” is the person responsible for in charge of the FLEX
Processor software. and this manual contains the information
necessary for the Caretaker to install. maintain, and modify this
software.

1. Processor Design 

The design of FLEX processor is similar to that of a language
compiler e x c e p t tha t  no code is generated. The internal tables of
the Processor are kept between passes in the IMAGEn files, and
conta in information on all of the Modules currently in the
Programming System.

1. 1 Parser 

The parsing algorithm is a flexible. table—driven , stack—based LL
(1) parser whose tables are automatically generated from a Symbolic
Syntax Definition (SSD, 5. 1). Syntactic error recovery is an
integral part of parsing . and is defined by spec ial ma rk ers of the
SSD.

1.2 Scanner

The scanner is ordinary except that some of its tables are
maintained and manipul ated by the semantic routines Ce. g. , for user
defined operators. which behave as reserve d wor ds and symbol
str ings of the syntax).

1.3 Semantic Routines

Most process ing is done by the semantic routines. These are
parameterless subrout ines whose calling order in the parsing
sequence is defined by the SSD. Flags that indicate calls to the
various semantic routines are deposited on the LL (1) parsing stack
along with nonterminal, tokens, and other markers. A particular
semant ic routine is called from the parser when it appears on t he
top of the main LL (1) parsing stack.

Since the semant ic rout ines are parameterless. they communicate

page 50 4*



- -
- .-.- - .— -.,

~
---

~ 

I
.

FLEX 1.5

through data bases that keep th. current state of the semantic
processing.

F . 1.4 Service Routines

Service routines maintain the various data bases. and may be called
by many semant ic rout ines to access t h e informat ion in th e da ta
bases. For example the symbol table has various routines for
making new entries and performing searched on its entries.

1 . 5 Cache Memori es

A small “cache memory ” is kept to speed up access to the symbol
table. The previous “n” successful symbol table locations are kept
in a small  ca c h e table . and always checked before a symbol table
search.



FLEX 1.5

2. Sy stem Map

The Processor Fortran source code is organized in the following
modules, wh ich appear as separate files on most computers. The
cede is self—documenting, and should be consulted for detailed
information.

A l l  files with the suffix ‘. DATA ” (which have been shortened to 6
ch aracte rs for u se on certain computers ) ar e data common blocks ,
an d are r e f e rence d through t he  source insertion (inclusion)
features of the host computer. When a subroutine in the source
code is ref erre d to. it is often cited as t he module name fo l l ow ed
b y its subroutine name (e.g. . “MODNAME:FUNCNAME”).

Pars ing & Control

- : SYSCOM. DATA (SYSCDT)

System—wide common. referenced by a l l  r ou t i nes in th. system
containing pass number, options, etc.

PDL

The main program . responsible for operator interaction.
querying of file names . and option processing. Calls on
“PASSES” to process the user ’s files.

PASSES

Global contro l of the three passes of the FLEX processor. and
the man ipulat ion of image f i les and map fi les.

ERRORS

The error handling routines.

PARSER . DATA (PARSOT )

Data for the parser. i. e. . LL1 tables and main parsing stack.
Block data ( BNF. DATA) for this data base is automatically
generated by the BNFOEN system.

PARSER

Main LLI parsin g algorithm, and quick scan routines.

page 60



FLEX 1.5

DIRECT

Called by the parser and in turn calls a Specific semantic
routine Tb, source code for DIRECT is automatically created
b y th e BNF processor

SCAN. DATA (SCANDT)

Scanner data for internal Use by scannj~ g routinesTOKEN DA T4 (TO~(EDT )

Contains information on current token. Read b y many routines,
changed only b y SCAN routInes

SCAN

The scanner and error recovery (“RECOVR~’) routines These
routines reference OPRTAB DATA for distA n gu~ 5~~~ identif iers
and symbo~ 5

IO. DATA (IODr)

I/O information (file names, logical units, etc. ).10

General I/Q routines for operations on files (opening,
Clos ing, etc. ), and dependent Upon the host computer,FILER

Reads and Wr i tes  the current FLEX image to an~ from the image
Piles, rel ying on “ZQ” for host_dependent file operationsSTATS. DATA (STATDT)

Statisticai data. Many routines in the FLEX system make
entries into these tables.

STATS

Oeneral rout ines for the man ip ulat ion Processing, and
disposjti0~ of th, data in “STATS DATA”

page 61

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~r 
. , - 

. ,.. 
-
, . - .-

L 

_t 
- 

- 
~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

..

~~

-—

~ -----~ -- - -— ---,— .--
~~~~~

FLEX 1.5

Semantic Routines

MODULE

Semantic routines for the upper level parsing of modules -
Mainly set up the various module ta b les in “MODSEG. DATA” .

NEWSEO. DATA (NEWSDT)

Da ta u se d m a i n l y  by “SEGNEN” dur ing the up per level parsing of
segments. This data is mainly temporary and not as permanent
as that in MODSEO. DATA.

SEGPIEN

Semant ic routines for the upper level parsing of Segments.
Mainly , set up the segment tables in “MODSEG. DATA” .

NEWDCL. DATA (NEWDDI)

Data used mainly by “DECL” during the parse of declarations.
This data is mainly temporary and not as permanent as the main
symbol table (“SYMBTB”).

1’
DECL fr

Semantic routines for processing declarations , and setting up
the symbol table (“SYMBTB”).

TYPDEF

Semantic routines for processing type definitions. The j
routines for manipulating completed types are contained in
“TYPTAB ” . - I

OENSTMT

Semantic routines for parsing and processing of general
statements (IF—statement. assignment. RETURN—statement. etc. ) .

LOOP. DATA (LOOPDT)

Data used by “LOOP”. mainly the loop stack where information
describing the current loops is kept.

LOOP

Rout ines to process loop. (iterations, “DO”) including the
loop clauses and EXIT statements.

_ _  -



C ~~~~~~~~~~~~~~~~ ~

‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FLEX 1.5

EXPSTK. DATA (EXPSDT) —

Data stack s for the keeping of ex press ion . function call , and
side effect data. Used by “EXTSEO” for functional interface
and side effect checks.

EXP

Semantic routines for the parsing and process ing of general
expressions.

Table Access & Service Routines

MODSEC. DATA (MODSDT)

Ta b les for information concerning current modules and segments
In the processing system.

MODSEC

Routines for accessing the “MODSEO.DATA” , including search and
insertion routines.

TYPETS. DATA (TYPEDT)

A ll type information is kept in this table.

TYPETS

Routines for manipulating the type table, including type
equivalence chec king. the resolution of forward type
references, etc .

PSTYPE

Routines for manipu lation of psuedo types.

SYMBTB. DATA (SYMBDT)

The main symbol table, including all data base declarations.
routine interface information, and the acc e ss (USE/INCLude)
structure of the Programm ing System.

8YMTAB .. - .

Routines for manipulation th, symbol table.

page 63

1 ~~~~~~

- -

~~~~~~

---

~~~~~~~~~

-

FLEX 1.5

OPRTAR. DATA (OPERDT)

Table for operator definitions , including the functions they
represent. and the distinguished identifiers and symbols used
by the scanner.

OPERS

Routines for the man ipulation of the operator tables
(Parsing of operator definitions done in “DECL” .)

TRECHK

Routines for checking conflicting Element names.

EXTOEG

Routines for Routine interface checking.

SCAFFOLD

Routines for debugging the FLEX processor that print the
various internal Processor tables.

DATA

Compile time data for all data bases.

BNF. DAM (BNFDAT)

Compile—time data for the various scanner/parser tables (see
PARSER.DATA). ~h is source is mec han ical ly p roduce d b y ONFOEN.

HNF

The user—su pplied symbolic source from which the syn tax
generator “BNFQEN ” creates the parser and scanner tables. -

-

Th is file contains the SSD - and is not a part of the FLEX
Fortran source code.

page 64

FLEX 1 5

3. Fortran Programming Conventions

The FLEX processor was coded into ANSII—66 Fortran so that it could
b e easil y imp lemente d on a wide range of computer systems. Certain
conventions have been followed in writing the Fortran code and
these are documented below.

The Fortran code does not assume tha t vari a b les are initialized by
the compiler , nor that locally declared data objects in subprograms
remain intact between cal ls to that subroutine. It does assume
that common block data objects are static. and are never refreshed
or change d exce p t b y the user ’s code. The Fortran code does not
change the value of DO indices during the execution of a loop since -

-

this is restricted on many systems.

Array locations are always addressed by the “(<var) 4 <const >)”
format. although actual parameters in subroutine calls may be
generalized expressions.

Table s in the FLEX processor are usually arrays that behave as
lists. They have some current length . where all entries from the
first array location through the current leng th are “valid’ . and
the rest of the array is “empty ” (not used). The current length of
the list is kept in a variable whose name i-s formed by an “X”
preceding the name of the array (truncated to 6 characters). The
maximum size of the array is kept in a PARAMETER variable whose
name is the same as that of the array except prefixed with a “Q” .

— The array is dimensioned using this parameter. and its size can be
increased by changing the size of this “0” parameter.

All table and array lengths are checked by the FLEX processor
itself so the Fortran compiler need not generate array bound
checking.

The locked portion of each table i~ that from the first location
t h r o u gh a “V” variable (whose name is formed similarly to the “X”
or “0” var iables).

Two—d imensional arrays used as ta b les u se the convention that each
column is an entry. and the different rows in a column are the
various parts of the entry.

Identifiers are kept in packed character format. four characters to
each integer array location, with rightmost characters blanked.
Three array locations are nee d e d for the 12—character identifiers
used in the FLEX language. When identifiers are stored in
two—dimensional arrays , the y are stored column—by—column (ie.
“ARRAY (i. j) . i—1,3” ii the j’th id in the array) so that

— subroutines may receive the identifier as a singly dimensioned
array. Note that th is re qui res t h e host Fortran com pi ler to store

page 65

-L
_ _ _ _

-- ~~~

P

two—dimensional arrays column—by—column.

Flags are often packed character formats with 4 charac ter s per
integer array location (left justified. blanked right). This
provides for more readable and faster codes although space is
sacr ificed over a bi t—encoded scheme.

The “unpacked” character format referred to in the FLEX source
simply means that characters are stored one per word (left
justified, blanked right).

Fortran standard READ and WR ITE statements are used in several
locations in the FLEX source code where formats are always provided
and log ical units are integer variables or PARAMETER constants.

All var iables are ex p l ic i t l y declared and most are f o l l o w e d b y a
short end—of—l ine comment describing their use. The variables “I”.
“J”a “K”. etc. , are used mainly as DO—loop indices or temporary
variables.

All code that it likely to vary from one host computer to another
is flagged by th. end—of—line comment containing “—HOST— ”. If this
tag follows the subroutine/function declaration statement then the
whole subroutine is likely to be host—dependent.

4. I/O

I/O is likely to be the most host dependent portion of the FLEX
processor. The routines for common file operations. such as
opening for reading/writing. closing, or rewinding. are kept in the
I/O module. The modules PASSES, SCAN. and FILER are the main
modules that make I/O calls.

The FLEX p rocessor assumes that there is a user terminal log ical
un it from wh ich i t receives h igh leve l information and pr ints
various status messages. Error messages are logged on a separate
logical unit (which may be the same as the terminal unit).

5. Debugging Tools

The module “SCAFFOLD” contains a variety of debugging subroutines
for d isplaying the contents of the various tables within the FLEX

H proce ssor. T h e “MAP” option produces a separate map file at the
end of each pass that displays the various tables kept in the
“IMAGE” files and can be of use to the caretaker. In addition, a
call to “SCAFFOLD:SHOWXX” will dump this map image to a file name

page 66


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -~ 

~~~~. .5.- ~~~~~~ .

FLEX 1.5

specified in the calling sequence.

Th e run opt ion “01)01” will cause a variety of debugging information
to be printed to the user terminal, include the printing of calls
to the semantic routines.

There are vestiges of useful debugging aids within the FLEX source
code that have been turned off in some manner, usually by making
them comments, and these locations are noted with the end—of—line
comment containing the string “DEBUG”.

6. BNFOEN & SSD

All internal parsing tables are generated by a separate system
named “ONFOEN”. BNFGEN accepts a SSD file, and outputs tables as
Block Data Fortran subroutine source programs to be included in the
com pilation of FLEX processor. In addition, ONFOEN creates the
source code for th e “DIRECT” subrout ine.

6. 1 Symbolic Syntax Definition (SSD)

The Sym bol ic S y n t a x Def ini t ion is cr eate d as a t e x t fi le (using
perhaps the computer system editor), and processed by BNFOEN.

The for mat of the SSD can itself b e sp ec ified in a simply BNF form.
Blanks are significant characters in this definition , and are
indicated below with the “ “ character. Each line must have at —

least 12 characters~ filled out with blanks~ if necessary. Lines
not beginning with the character string “C<>_” are ignored by
BNFOEN and may contain comments. Comments can also be place
in—line starting in column 25 or further. All identifier lengths
ment ioned below are maximum lengths.

(input file) ::~~ -CC <prod> }}

<prod> ::~~ PROD (prod name)
-(‘C <alts) I)

(alt> ::~~ ::
CC (alt part> ~~

(alt part) ::~~ NONT (pro d name>
~ FUNC_<func name>
~ MARK_<mark name>
~ TORE (token)::~~ TKMR_<token marker>
~ RSWD_<regwd name>

::~~ E

page 67 ~~

- -
- -

~~~~~~~~~~~~~~~~~~~~~~~~



~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

FLEX 1.5

(prod name> :: /* 12—character id */

(func name) : : —  /* 6—character semantic function *1

<reswd name) ::~ /* 8—character reserved word *1 1- U.
(mar k name) ::~ EROR

::~~~P1ON
::~~~PlOF
: : =  P2ON
: : -  P2OF
::=P3ON
: :~- P3OF

(tok en) : : =  1* 4—char token. see “SCAN. DATA” */

<token marker> :: 0
: : =  1
: :~~ 2

An existing SSD (e. g. . “BNF”) is probably the best example of this
formats and should be studied carefully. An addi t ional example of
this format is given below , where there is no particular meaning
attach ed to this production.

CC) PROD FOOPROD
CC> ::=
CC> MONT FUMPROD
CC> RSWD MODULE
CC> FUNC FOOPOI
CC> TRMR I
C(> TORE ID
CC> TORE (
CC> MARK EROR
CC> MARK P1ON THIS IS A COMMENT
CC> ::=
CC) MONT FIEPROD
C (>;:
CC> E

The PROD line defines the beginning of a new production. and two
product ions cannot have the same name.

The NONT line names a nonterminal that must b e d ef ined elsewhere as
a PRODuction.

The FUNC line names a semantic funct ion. A parameterles s call to

page 68

~



FLEX 1.5

this subroutine name will be generated during the parse of the I~LEXprogram when this symbol is encountered in the parse. Semantic
rout ines are usually name d fo r t h e f irst 4 ch ara c te rs in t he
production name in which they are contained , suffixed with a number
( e . g .  • “01” . “02”, etc. ).

The MARK line indicates a special parsing marker. The MARK EROR is
a LL (1) stack error marker used during error recovery (-see H
“SCAN:RECOVR ” in FLEX source). The MARK P 1ON , etc. lines are used
to turn OFf or ON all semantic routines during certain passes (see
“PARSER: PASSON”).

The TKMK line must be followed by the TORE line and assigns the 14
“token marker value ” to that token to be used in error recovery
(se e “SCAN:RECOVR” in source code). If no TKMI’. line precedes a
TORE line, then that token gets a token marker value of 0.

The TORE line defines the 4—character token and the value of the
token may b e a n y t h i n g a l l owa b l e in “TOKEN” in “TOKEN. DATA” . A
g iven token may be used in more than one place in the syntax.
After the p arse of a token. the scanner deposits the information
concern ing t he t o k e n into  t h e  data base “TOREN.DATA”, and t h i s
information is not changed during contiguous . subsequent semantic
rout ine ca l ls fo llow ing the token in t he syntax definition. Th is
means tha t  these  contiguous . subsequent semantic routines have full
access  to the preceding token.

rhe RSWD line defines a reserved word, and a particular reserved
word may be used in more than one place in the BNF definition.

The E l ine denotes an empty alternation (“ c—production ”). It can
appear only once per production . and must be the last alternate.

6.2 Error Recovery

Erro r recovery is imp leme n te d b y th e MARK EROR and TKI~I& 0/1/2 linesin the SSD (above). These constructs must be placed in the SNF
definition with a knowledge of how error recovery is accomplished.
wh ich is ex pl a ine d in t he FLEX so urce co d e in “SCAN:RECOVR” .

6.3 Pass ON/OFF Flags —

The PnON and PnOF ( “Pass n ON/OFf”, where n 1. 2, or 3) are used
to shut off all semantic routines during portions of a pass. PnON
w i ll increment the “SEMFLG” dur ing pass “n”. while PnOF will
decrement it (where “n” is 1. 2. or 3 for the pass number). No
semantic rout ine s will b e calle d if “SEMPLO” is less than or equal
to O.

pa ge 69



- - ~~~~~~~.• . .  ~~~~~~~~~~~~~ - -~~~~~~~~~~~~~~~~~~ __._
~,.

-..5
~~

.-_
~

_-— _—-..—-,-_ ~~~~~~~~~~~~~~~~~~~~~~ -. ~~~~~ -.~—.-——..—-.-- .— ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ 
- -

FLEX 1- 5

6.4 Listing

UNFOEN produces a detailed (but not very “p r e t t y ”) l isting of the
SSD. includ ing the names of all tokens. productions~ semant i c
funct ions, and all IL (I) token tables.

6. 5 Pretty ‘rinting

The indepen dent program “BNFLST” will scan the SSD file, and create
a nicely fo rmatted version which is considerably more readable than
the original BSD.

7. Statistics of the Source Code

The current version of FLEX has the following approximate
statistics. These reflect only the FLEX processor and not the
various support software . such as DNFGEN or the symbolic syntax
definition file. BNF.

modules: 25
subprograms: 231
data bases: is
total source lInes: 14,000
executable Fortran stmts: 3.000

comment lines: 7,700
of these , non—blank: 3.600

subprog local variable id ’s: 800
c ommon var id ’s: 250

man hours: 600 (approx)

feet of pr intout : 200



— -5~—--~~~~ - ,-~~—.- --- —~-——~~~~~~~ 
-—- .-~5 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

FLEX 1.5

Appen d ix 3

STATUS AND UNIMPLEMENTED FEATURES

1. Status

The current version of the FLEX Processor (FLEX 1.4) has been
installed on the PRIME 400 system at the Nava l Research Laboratory.
and is being installed in the Un ivac 1IXX system at the University
of Maryland.

4
2. Unimp lemented

The fol low ing features have not yet been - implemented . although
imp lementation is in progress unless otherwise noted.

1. Alternation within Parameterized Type Macro forma l parameters
is acce pted correct ly. but not checked when instantiated (9. 1).

2. Type Space Execution Ci] is not imp lemented . and the following
interim rules apply.

Unbound types (including pseudo—type functions) in Routines work
fine for interface checking to that Routine. However, when used in
the code bod y of that Rout ine, any unbound ty p es are co nsid ere d as
wildcard types and a degree of type checking is lost. Segments in
which such type checking is lost are specially flagge d to no t i f y
the user that sp ecial caution is required.

H
H

page 71

_____________ ______ ——

SECURITY CLASSIFICATION 01 TH IS RAGE (*1i.n D.,. in..,.d)

— ~~ ~~~~~~~
A ~~ I ~ A READ INSTRUCTIONS

— is ruis I uus..um Ii I ~ I iv” ‘~
‘
~~~“ BEFORE COMPLET INC) FORM

I. REPORT NUMBER 
- 

2. GOVT ACCESSION NO 2. RECIPIENVS C A T A L O G  NUMBER

4 TITLE (and Sub*iit.) 5 TYPE OF REPORT 3 PERIOD COVERED

The FLEX System: User and Caretaker ’s Manual Technical Report
6 PERFORMING ORG. REPORT NUMBER

____________________________________________________ TR—765 —
‘

I AUTHOR(s) I- CONTRAC T OR GRANT NUNBER(.J

Stephen A. Sutton AFOSR—77—3181A

B PERFORMING ORGANIZATION NAME AND ADDRESS 
- 10 PROGRAM ELEMENT, PROJECT . T A S K

AR EA A BORIC UNIT NUMBERS
Department of Computer Science
University of Maryland /
College Park, Maryland 20742 ____________________________ 4

II CONTROLLING OFFICE NAME AND ADDRESS 12 REPORT DATE
Math. 6 Info. Sciences, AFOSR June 1979
Boiling AFB I S N U M B E R  OF PAGES
Washington, D. C. 20332 71

IA. MONITORING AGENCY NAME S AODRESS (II dIll .,.,, ’ 1,0., Cont,otlIng O1f.~~.) IS SECURITY CLASS . (of Ibis I.po.f)

UNCLASSIF IED
IS. DECLASSIFICATION DOWNGRADING

SCHEDULE

13 DISTRI BUTION STATEMENT (of Ibis R.po,t)

- Approved for public release; distribution unlimited.

I? DISTRIBUTION STATEMENT (of lb. •b.ftact .nI., .d Sn BlocS, 20 . ii diSh ,..,,, Ito,,, R.pofl) r

IS. SUPPLEMENTARY NOTES 
—— -

19 KEY WORDS (Continu. on •.t. ,I. aid. If n.caa.a,y and Id•nIIIy by block n,,mb,,)

Process Design Language, design notation, automated processor,
user ’s manual , sof tware design tool

20 USTRACT (CnnIInus an r•v~ra. aids if n•c~.~ s.y and ldsn Ufy by block numbs,)
The FLEX Design System is a design language and its Processor that
form a tool for use in computer software design activities. This
report presents a detailed definition of the FLEX language, directions
for using the Processor, and guidelines for installing, maintaining, and

- 
modifying the Processor software.

I%~~ FORM ~~~~~
~~U I JA M fl ~~~ — 

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE ($5, .,, 0.1. Eflto,•,II

- ~~~~~~~~~~~~~~~ - .5- — -  — - - --- -- 


