

MA073975

FILE

NSWC/DL TR-3724

LEVERY

PERTURBATIONS IN PERIGEE AND ECCENTRICITY AT THE CRITICAL INCLINATION

by CLAUS OESTERWINTER Strategic Systems Department

DECEMBER 1978

SEP 19 1975

Approved for public release; distribution unlimited.

A CAR THE STATE STATE STATE STATE STATE STATE AND A STATE AND A

NAVAL SURFACE WEAPONS CENTER

DAHLGREN LABORATORY Dahlgren, Virginia 22448

WHITE OAK LABORATORY Silver Spring, Maryland 20910

79 09 19 014

NAVAL SURFACE WEAPONS CENTER Dahlgren, Virginia 22448

Paul L. Anderson, Capt., USN Commander

E.

ECONT NUMBER Supplementation Supp	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
NSWC/DL-TR-3724 TITLE (and Salution) EFTURBATIONS IN PERIGEE AND ECCENTRICITY AT THE CRITICAL INCLINATION AUTHOR(2) Claus Oesterwinter PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-10) Dahlgren, Luboratory Dahlgren, Luboratory	REPORT NUMBER	NO. 3. RECIPIENT'S CATALOG NUMBER
TTLE find Samme) PERTURBATIONS IN PERIGEE AND ECCENTRICITY AT THE CRITICAL INCLINATION AUTHOR(*) Clauy Oesterwinter ************************************	NSWC/DL_TR-3724	(9)
EFERTURBATIONS IN PERIGEE AND ECCENTRICITY AT THE CRITICAL INCLINATION E PERFORMING ORC. REPORT NUMBER AUTHOR(#) Claus Obsterwinter PERFORMING ORCANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-10) Dahlgren Lobaratory Dahlgren Lo	. TITLE (and Subtitle)	STYPE OF REPORT & PERIOD COVERED
AUTHE CRITICAL INCLINATION AUTHOR(a) Claus Oesterwinter AUTHOR(b) Claus Oesterwinter AUTHOR(c) Au	PERTURBATIONS IN PERIGEE AND ECCENTRICITY	EINAL reptor
A UTHOR(s) Claus Oesterwinter PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-10) Dahigren, Laboratory Dah	AT THE CRITICAL INCLINATION	6. PERFORMING ORG. REPORT NUMBER
Claus Oesterwinter PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-10) Dahigren, Laboratory Dahigren, Labora	AUTHOR(s)	8. CONTRACT OR GRANT NUMBER(*)
PERFORMING ORGANIZATION NAME AND ADDRESS Naval Surface Weapons Center (DK-10) Dahlgren Laboratory Dahlgren, Virginia 22448 I. CONTROLLING OFFICE NAME AND ADDRESS I. CONTROLLING OFFICE NAME A ADDRESS I. CONTROLUNG AGENCY NAME A ADDRESS I. CONTROLUNG AGENCY NAME A ADDRESS I. CONTROLUNG OFFICE NAME A ADDRESS I. CONTROLUNG AGENCY NAME A ADDRESS I. CONTROLUNG OFFICE NAME A ADDRESS I. CONTROLUNG AGENCY MAME A ADDRESS I. CONTROLUNG AGENCY MAME A ADDRESS I. CONTROL OF THE SACE A DODRESSIT different from Controlling Office I. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) Approved for public release; distribution unlimited. I. CONTROLUNG AGENCY MAME A ADDRESS I. CEY WORDS (Continue on reverse aids If necessary and Identify by block number) Satellite Orbit Perturbations Critical Inclination MASSTRACT (Continue on reverse aids If necessary and Identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. I. TONY, 14	Claus Oesterwinter	(12)29R.
Naval Surface Weapons Center (DK-10) SPACETASK Dahlgren Laboratory SPACETASK Dahlgren, Virginia 22448 SPACETASK N. CONTROLLING OFFICE NAME AND ADDRESS December 1978 I. CONTROLLING OFFICE NAME AND ADDRESS December 1978 I. CONTROLLING OFFICE NAME AND ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report) I. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report) I. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report) I. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of this report) Approved for public release; distribution unlimited. Is. SUPPLEMENTARY NOTES I. KEY WORDS (Continue on reverse side if necessary and identify by block number) Satellite Orbit Perturbations Satellite Orbit Perturbations Critical Inclination Actistra of three satellites showed large, unpredicted orbital perturbations shortly after launch. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. 1 'J	PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Dahlgren Laboratory Dahlgren Virginia 22448 PME-106-43-009C-4X4519 Image: Controlling of Frice NAME AND ADDRESS Image: Commerce Total Statement (of the approximate the commerce Total Statement (of the approx) A MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Image: Commerce Total Statement (of the approx) A MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) Image: Commerce Total Statement (of the approx) A DISTRIBUTION STATEMENT (of the Approx) Image: Commerce Total Statement (of the abstract entered in Block 20, II different from Report) B SUPPLEMENTARY NOTES Image: Commerce Total Inclination A Cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. 1 '100'''''''''''''''''''''''''''''''''	Naval Surface Weapons Center (DK-10)	SPACETASK
	Dahlgren, Virginia 22448	PME-106-43-009C-4X4519
	1. CONTROLLING OFFICE NAME AND ADDRESS	11 December 1978
MONITORING AGENCY NAME & ADDRESS(// different from Controlling Office) Is. SECURITY CLASS. (of this report) UNCLASSIFIED Is. DESTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the obstract entered in Block 20, // different from Report) Schedoule SupplementAry NOTES SupplementAry NOTES Actuster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations. and the mission appears safe.	(.	13. NUMBER OF PAGES
UNCLASSIFIED 15. DECLASSIFICATION/DOWNGRADING 6. DISTRIBUTION STATEMENT (of the Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 1. KEY WORDS (Continue on reverse aids if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination Actuster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations after. D 1 JAN 73 1473 EDITION OF 1 NOV 55 15 0050LETE SUMPLANE STRIENT CLASSIFIED SECURITY SECURI	4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Offi	ce) 15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
6. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse aide if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 EDITION OF 1 NOV 65 IS DESOLETE Security CLASSIFICATION OF THIS PAGE (Then Date Enter		15. DECLASSIFICATION / DOWNGRADING SCHEDULE
Approved for public release; distribution unlimited. T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) B. SUPPLEMENTARY NOTES A. KEY WORDS (Continue on reverse elde if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 S 9 1 5 9 K	6. DISTRIBUTION STATEMENT (of this Report)	
7. DISTRIBUTION STATEMENT (of the ebstreet entered in Block 20, 11 different from Report) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination MESTRACT (Continue on reverse side if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause from June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 85 IS OBSOLETE SIGN 1122-014-6601 SIGN 1 598	Approved for public release: distribution unlimited.	
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse aide if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination MESTRACT (Continue on reverse aide if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations, subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6001 39 1 59 K	•••	
7. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report) 8. SUPPLEMENTARY NOTES 4. KEY WORDS (Continue on reverse aids if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination MBSTRACT (Continue on reverse aids if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6001 391598		
SUPPLEMENTARY NOTES SupplementARY NOTES KEY WORDS (Continue on reverse eide if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination MBSTRACT (Continue on reverse eide if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 S9 1 5 9 6	7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different	nt from Report)
A KEY WORDS (Continue on reverse eide if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse eide if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 39 1 5986		
A KEY WORDS (Continue on reverse eide if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination Asstract (Continue on reverse eide if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 S/N 0102-014-6601 S/N 0102-014-6601 S/N 0102-014-6601	8. SUPPLEMENTARY NOTES	
 KEY WORDS (Continue on reverse elde if necessary and identify by block number) Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse elde if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D form 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 Sq 1 5 9 6 Security CLASSIFICATION OF THIS PAGE (When Date Enter Security CLASSIFIED Security CLASSIFIED	8. SUPPLEMENTARY NOTES	
Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse side it necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter S/N 0102-014-6601	8. SUPPLEMENTARY NOTES	
ABSTRACT (Continue on reverse side if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 Security CLASSIFICATION OF THIS PAGE (When Date Enter SOM 1 598	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block nu	mber)
ABSTRACT (Continue on reverse eide if necessary and identify by block number) A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 391596 Security CLASSIFICATION OF THIS PAGE (When Date Enter	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block nu Satellite Orbit Perturbations Critical Inclination	mber)
A cluster of three satellites showed large, unpredicted orbital perturbations shortly after launch. There was immediate concern for the success of its mission which depends on the stability of the cluster geometry. The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 S/N 0102-014-6601 S/N 0102-014-6601 S/N 0102-014-6601	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block nu Satellite Orbit Perturbations Critical Inclination	mber)
The Naval Surface Weapons Center found the zonal harmonics of degree five and seven to cause most of the observed perturbations. Subsequently, the three orbits were computed for the time frame June 1976 to July 1984. It was also shown that the cluster configuration remains unaffected by the large orbital perturbations, and the mission appears safe. D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 391596 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse aide if necessary and identify by block nu Satellite Orbit Perturbations Critical Inclination	mber)
D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 39 1 59 6	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse eide if necessary and identify by block nu Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse eide if necessary and identify by block num A cluster of three satellites showed large, unpredicted o There was immediate concern for the success of its mission cluster geometry.	mber) rbital perturbations shortly after launch. n which depends on the stability of the
D 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 391598 SECURITY CLASSIFICATION OF THIS PAGE (When Data Enter	8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if necessary and identify by block nu Satellite Orbit Perturbations Critical Inclination 0. ABSTRACT (Continue on reverse elde if necessary and identify by block num A cluster of three satellites showed large, unpredicted o There was immediate concern for the success of its mission cluster geometry. The Nevel Surface Wassace Contact found the goal has	mber) rber) rbital perturbations shortly after launch. n which depends on the stability of the
S/N 0102-014-6601 391 598 SECURITY CLASSIFICATION OF THIS PAGE (When Data Brite)	 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if necessary and identify by block nue Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse elde if necessary and identify by block nue A cluster of three satellites showed large, unpredicted o There was immediate concern for the success of its mission cluster geometry. The Naval Surface Weapons Center found the zonal har most of the observed perturbations. Subsequently, the th frame June 1976 to July 1984. It was also shown that the by the large orbital perturbations, and the mission appears s 	mber) rbital perturbations shortly after launch. n which depends on the stability of the monics of degree five and seven to cause ree orbits were computed for the time cluster configuration remains unaffected afe.
391 598	 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side if necessary and identify by block nue Satellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse side if necessary and identify by block nue A cluster of three satellites showed large, unpredicted of There was immediate concern for the success of its mission cluster geometry. The Naval Surface Weapons Center found the zonal har most of the observed perturbations. Subsequently, the th frame June 1976 to July 1984. It was also shown that the by the large orbital perturbations, and the mission appears s 	mber) rbital perturbations shortly after launch. n which depends on the stability of the monics of degree five and seven to cause ree orbits were computed for the time cluster configuration remains unaffected afe. UNCLASSIFIED
	 8. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse elde if necessary and identify by block nuessatellite Orbit Perturbations Critical Inclination ABSTRACT (Continue on reverse elde if necessary and identify by block nues A cluster of three satellites showed large, unpredicted o There was immediate concern for the success of its mission cluster geometry. The Naval Surface Weapons Center found the zonal har most of the observed perturbations. Subsequently, the th frame June 1976 to July 1984. It was also shown that the by the large orbital perturbations, and the mission appears s D FORM 1473 EDITION OF 1 NOV 65 IS OBSOLETE S/N 0102-014-6601 	mber) rbital perturbations shortly after launch. n which depends on the stability of the monics of degree five and seven to cause ree orbits were computed for the time cluster configuration remains unaffected afe. UNCLASSIFIED CLASSIFICATION OF THIS PAGE (When Data Enter

FOREWORD

The work described in this report was performed in the Astronautics and Geodesy Division, Warfare Analysis Department.

Dr. T. J. Sherrill of the Lockheed Missile and Space Company also studied the behavior of this satellite system. The principal features of the motion were obtained for 20 years by analytical techniques. Conclusions and numerical results of both investigations agree very well over the eight years covered by our numerical integration.

Released by:

Josh a nemann

R. A. NIEMANN, Head Warfare Analysis Department

Accession For	
NTIS GRA&I DUC TAB	1
Unannounced Justification	8
By	
Aveilabilia	
Dist Availand/o	ies r
A special	

TABLE OF CONTENTS

FOREWORD
LIST OF ILLUSTRATIONS vii
LIST OF TABLES vii
INTRODUCTION 1
ORBIT COMPUTATION
ANALYTICAL THEORIES
NUMERICAL INTEGRATION
ZONAL HARMONICS
ZONAL HARMONIC COEFFICIENTS
TESSERAL HARMONICS
RELATIVE COORDINATES
ORBIT ERRORS
INITIAL CONDITIONS
DIFFERENTIAL CORRECTIONS 8
THE COMPUTER RUNS
RESULTS 11
CAUSE OF PERTURBATIONS
EVOLUTION OF PERIGEES AND ECCENTRICITIES
CLUSTER GEOMETRY
SUMMARY 20
REFERENCES 20
DISTRIBUTION

Page

LIST OF ILLUSTRATIONS

Figure		Page
1	The Relative Motion of Satellite No. 183 with Respect to	
2	The Motion of the DB-14 Satellites in Their Orbits	1
	Around the Earth	2
3	Effect of Adding Zonal Harmonics on the Perigee of No. 182	12
4	Arguments of Perigee for Nos. 181 and 182 from 1976 June 10 to 1984 July 4	13
5	Argument of Perigee for No. 183 from 1976 June 10 to	
6		13
0	Eccentricities from 1976 June 10 to 1984 July 4	14
7	Relative Positions on 1976 June 10	16
8	Relative Positions on 1978 June 20.	16
9	Relative Positions on 1981 June 24 Before Differential	
10		17
10	Relative Positions on 1981 June 24 After Differential Correction	17
11	Relative Positions on 1982 June 24.	18
12	Relative Positions on 1984 July 4	18
13	Relative Positions on 1976 June 10.	19
14	Relative Positions on 1984 July 4	19

LIST OF TABLES

Table

Table		Page
1	Zonal Harmonic Coefficients	 . 5
2	Initial Conditions	 . 7
3	Corrected Initial Conditions	 . 9
4	Computer Runs	 . 10
5	Zonal Harmonic Contributions to Perigee Motion	12

vii

INTRODUCTION

The Doppler Beacon 14 (DB-14), a Navy satellite system, was launched into orbit in April 1976. The orbits for this cluster of three satellites were designed such that the relative configuration and motion shown in Figure 1 could be maintained for a number of years. In a coordinate frame centered at Satellite No. 182, No. 181 remains stationary along the tangential axis, leading No. 182 by about 150 km. In the orbital plane, No. 183 describes the roughly elliptical path shown in the side view. The period of this relative motion is identical to the orbital periods of the three satellites, namely 107.5 min.

Figure 1. The Relative Motion of Satellite No. 183 with Respect to No. 181 and 182. R, T, and N are the Radial, Tangential, and Normal Components Defined by the Position, Velocity, and Angular Momentum Vectors of No. 182

1

The geometry depicted in Figure 1 is achieved as follows. All three satellites are placed in orbits with eccentricities of about 0.003. However, the perigee of No. 183 is 180° away from the perigee position for No. 181 while the other orbital elements are approximately identical. Of course, the true anomaly of No. 183 also differs by about 180°. Using Figure 2 and recalling that the angular motion varies from a minimum at apogee to a maximum at perigee, the reader will be able to verify the side view in Figure 1. The relative geometry shown in the top view is achieved by a small separation in the longitudes of the node.

Figure 2. The Motion of the DB-14 Satellites in Their Orbits Around the Earth

The above explanation suggests that the perigee separation of 180° is crucial in maintaining the relative cluster configuration. Since all three satellites are at the critical inclination, I = 63°.43, for which the secular perigee motion is known to vanish, the perigees were expected to remain stationary.

However, within a few months after launch, significant drifts of both perigees away from their initial values were noticed. The argument of perigee of No. 183

appeared to be increasing and the other decreasing in a seemingly secular fashion at roughly 50° per year. This behavior was unexpected and raised the question whether the relative cluster configuration, necessary to the mission objective, would eventually decay.

At this point, NSWC was requested to investigate the phenomenon. The questions to be answered were as follows:

1. What causes the perturbations observed in the arguments of perigee?

2. How will the perigees and eccentricities evolve over a period of eight years from launch?

3. Will the relative cluster geometry remain stable?

ORBIT COMPUTATION

ANALYTICAL THEORIES

NSWC briefly surveyed the literature for applicable analytical solutions, and none were found. Existing theories for the critical inclination do not allow eccentricities smaller than 0.1. They are also restricted to the first few zonal harmonics.

NUMERICAL INTEGRATION

Consequently, orbits were computed by numerical integration. A fast, suitable program was available. Originally designed for the integration of five planetary orbits around the sun (Reference 1), the program was later successfully used for the NRL solar radiation (SOLRAD) orbits. The routine will, in fact, be called SOLRAD Program in the remainder of this report. Programming details may be found in References 2 and 3 while the integration routine is described in Reference 4. Basically, it is a Cowell algorithm of order 12 using backward accelerations rather than their differences.

The original program was developed for five-point masses orbiting a sixth. They represent sun, moon, and three artificial satellites with the earth at the center. This model was more than adequate for the high-altitude SOLRAD satellites. The DB-14 system, however, is at a low altitude, and gravitational perturbations must be added.

ZONAL HARMONICS

The contribution of the zonal harmonics are initialized by computing

$$U_{2,x} = \frac{3}{2}\mu \frac{R^2}{r^5} \left(5\frac{z^2}{r^2} - 1\right) x$$

$$U_{2,y} = \frac{3}{2}\mu \frac{R^2}{r^5} \left(5\frac{z^2}{r^2} - 1\right) y$$

$$U_{2,z} = \frac{3}{2}\mu \frac{R^2}{r^5} \left(5\frac{z^2}{r^2} - 3\right) z$$

$$U_{3,x} = \frac{1}{2}\mu \frac{R^3}{r^6} \left(35\frac{z^3}{r} - 15\frac{z}{r}\right)$$

$$U_{3,x} = \frac{1}{2} \mu \frac{R^3}{r^6} \left(35 \frac{z^3}{r} - 15 \frac{z}{r} \right) x$$

$$U_{3,y} = \frac{1}{2} \mu \frac{R^3}{r^6} \left(35 \frac{z^3}{r^3} - 15 \frac{z}{r} \right) y$$

$$U_{3,z} = \frac{1}{2} \mu \frac{R^3}{r^6} \left(35 \frac{z^3}{r^3} - 30 \frac{z}{r} + 3 \frac{r}{z} \right) z$$

where we use R = 6378.15 km and = 3.98602×10^5 km³/sec² throughout the project. Additional terms are obtained by the recurrence relations

$$U_{n,x} = \frac{2n+1}{n} \frac{R}{r} \frac{z}{r} U_{n-1,x} - \frac{n+1}{n} \frac{R^2}{r^2} U_{n-2,x}$$
$$U_{n,y} = \frac{2n+1}{n} \frac{R}{r} \frac{z}{r} U_{n-1,y} - \frac{n+1}{n} \frac{R^2}{r^2} U_{n-2,y}$$
$$U_{n,z} = \frac{2n+1}{n} \frac{R}{r} \frac{z}{r} U_{n-1,z} - \frac{n}{n-1} \frac{R^2}{r^2} U_{n-2,z}$$

n

Finally, the additions to the equations of motion are

$$\Delta \vec{r} = \sum_{n=2}^{\infty} J_n \begin{pmatrix} U_{n,x} \\ U_{n,y} \\ U_{n,z} \end{pmatrix}$$

ZONAL HARMONIC COEFFICIENTS

In selecting a set of numerical coefficients, J_n , we examined solutions made by Kozai and others, which are based on observations spanning long periods of time. They were inadquate. The NSWC set listed in Table 1 was found to match early DB-14 observations quite well. It was therefore used in all subsequent computations.

Table	1.	Zonal	Harmonic	Coefficients

<u>n</u>	J_n	
2	+1092 (24	EOC
2	+1082.034	E-00
3	-0.2536	E-05
4	-0.1664	E-05
5	-0.2195	E-06
6	+0.6355	E-06
7	~0.3720	E-06
8	-0.3508	E-06
9	-0.8733	E-07
10	-0.5730	E-07
11	+0.1686	E-06
12	-0.3809	E-06

TESSERAL HARMONICS

Addition of the above zonal harmonics to the SOLRAD program produced satisfactory agreement between observed and computed orbits. Hence, no tesseral harmonics or any other forces were examined. It is believed that tesserals do not produce any perturbations that would be of significance in this study.

RELATIVE COORDINATES

One minor program addition was made in order to compute and plot the relative cluster geometry shown later in this report. First, calculate

$$\Delta \bar{r}_i = \bar{r}_i - \bar{r}_{182}$$
, $i = 181, 183$

Let

$$\hat{\mathbf{r}} = \frac{\overline{\mathbf{r}}_{1\,8\,2}}{|\overline{\mathbf{r}}_{1\,8\,2}|}$$

$$\dot{\vec{r}} = \frac{\dot{\vec{r}}_{182}}{|\dot{\vec{r}}_{182}|}$$

 $\mathbf{\hat{h}} = \mathbf{\hat{r}} \times \mathbf{\hat{v}}$

Then the relative tangential, radial, and normal components are given by

$$T_{i} = \Delta \overline{r}_{i} \cdot \hat{v}$$

$$R_{i} = \Delta \overline{r}_{i} \cdot \hat{r}$$

$$N_{i} = \Delta \overline{r}_{i} \cdot \hat{h}, \quad i = 181, 183$$

ORBIT ERRORS

As will be seen below, the DB-14 orbits were numerically integrated over eight years. At a step size of 60 sec, this represents over 4,200,000 integration steps. It is difficult to obtain a realistic estimate of the total accumulated errors. Nevertheless, it is known that the principal error in such an integration results from

the truncation of the integration formula, but such truncation errors are mostly along-track and affect neighboring orbits in a similar fashion. Hence, our three satellites could be off by several degrees in orbital longitude, but they would have been displaced by almost identical amounts. However, our best estimate for the total truncation error is on the order of 250 m.

Roundoff errors are believed to be much smaller, even after 4 million steps, since the crucial calculations are done in double precision on our CDC 6700. In this mode, the binary mantissa has 96 bits. It is estimated that the total roundoff error is on the order of 50 cm along-track.

INITIAL CONDITIONS

The state vectors for sun and moon were taken from an earlier NSWC solution. Great accuracy is not required for these bodies. The coordinates are listed in Table 2.

	Table 2. Initial Co	nditions
	ř _o	
SUN	2.93 049 446 E + 07 1.36 729 435 E + 08 5.92 876 673 E + 07	-2.87 322 846 E + 0 5.36 204 583 E + 0 2.32 655 692 E + 0
MOON	-2.37 734 502 E + 05 -2.54 045 685 E + 05 -1.05 515 879 E + 05	8.14 086 131 E - 0 -6.86 699 432 E - 0 -1.91 766 484 E - 0
No. 181	-0.763 215 752 E + 02 0.496 713 487 E + 04 -0.562 991 695 E + 04	-0.497 922 233 E + 0 0.393 500 353 E + 0 0.355 628 009 E + 0
No. 182	0.183 933 509 E + 02 0.489 143 089 E + 04 -0.569 670 929 E + 04	-0.497 972 796 E + 01 0.402 290 333 E + 01 0.345 488 903 E + 01
No. 183	-0.393 440 660 E + 02 0.494 473 620 E + 04 -0.560 147 416 E + 04	-0.497 281 590 E + 01 0.400 936 925 E + 01 0.355 475 489 E + 01

The masses for sun and moon were already in the SOLRAD program from previous users. Given to many more significant figures than necessary, the following values were left unchanged

$$m_s = 332,945.5619 2544 m_E$$

 $m_{M} = 0.0122 \ 999 \ 7171 \ m_{E}$

Initial conditions for the three satellites were based on a Naval Space Surveillance (NAVSPASUR) solution done with an NSWC CELEST program using two days of Doppler data. An independent four-day solution performed by NSWC for No. 182 differed by only a few units in the sixth significant figures. The coordinates listed in Table 2 are for 1976 June 0^h.0 UT(Day 162).

DIFFERENTIAL CORRECTIONS

A test run using above coordinates showed that the satellites diverged at a rapid rate which would result in several thousand kilometers after a year. Obviously, initial conditions from fits over two days are inadequate to predict for hundreds of days. Fortunately, the errors proved to be almost entirely tangential, so that a simple adjustment in the mean motion, n, was sufficient. The increment, Δn , was translated into corrections to the state vector by

$$\Delta \bar{\mathbf{r}} = -\frac{2}{3} \frac{\Delta \mathbf{n}}{\mathbf{n}} \bar{\mathbf{r}}$$
$$\Delta \dot{\bar{\mathbf{r}}} = \frac{1}{3} \frac{\Delta \mathbf{n}}{\mathbf{n}} \dot{\bar{\mathbf{r}}}$$

This simple device reduced the errors by three orders of magnitude. After applying such corrections to Nos. 181 and 183, the improved coordinates are listed in Table 3. Coordinates for the other bodies were taken from Table 2.

Table 3. Corrected Initial Conditions

			140	ř			9.5. jak	and the second		ŕ		1	
No	181	-0.763	212	351	668	73	E + 02	-0.497	923	342	188	51	E + 01
140.	101	0.496	711	274	007	93	E + 04	0.393	501	229	574	80	E+01
		-0.562	989	186	720	54	E + 04	0.355	628	801	209	00	E + 01
No	183	-0.393	447	165	106	69	E + 02	-0.497	277	478	998	94	E + 01
		0.494	481	795	575	11	E + 04	0.400	933	610	475	27	E+01
		-0.560	156	677	418	88	E + 04	0.355	472	550	302	60	E + 01

Examination of the relative cluster plots, given in a later part of this report, show the initial conditions in Table 3 to be good enough to permit a forward integration for five years. At that time, 1981, the relative ellipse of No. 183 is seen to have shifted somewhat to the left, indicating a mean motion that is slightly too large. It was decided to perform a second differential correction. This adjustment is different from the previous one since not only the mean motion is to be corrected but also, in order to center the ellipse again, the mean anomaly ℓ_0 . The state vector corrections become

$$\Delta \mathbf{r} = \frac{\partial \bar{\mathbf{r}}}{\partial n} \Delta n + \frac{\partial \bar{\mathbf{r}}}{\partial \ell} \Delta \ell$$
$$\Delta \dot{\bar{\mathbf{r}}} = \frac{\partial \dot{\bar{\mathbf{r}}}}{\partial n} \Delta n + \frac{\partial \dot{\bar{\mathbf{r}}}}{\partial \ell} \Delta \ell$$

However, determination of n must take into account the short-periodic effect on n due to changing ℓ . Hence,

$$\Delta n(\ell_0 + \Delta \ell) = \Delta n(\ell_0) + \left(\frac{\partial n}{\partial \ell}\right)_{\ell_0} \Delta \ell$$

In practice, the state vector correction was obtained by an alternate but less desirable procedure which will not be recorded.

THE COMPUTER RUNS

As mentioned earlier, the behavior of the satellite cluster was studied over a period of eight years, from 1976 to 1984. To this end, all three orbits were obtained by numerical integration through a series of computer runs which are listed in Table 4. The long runs, one to three years, serve to study the evolution of the orbital elements. The short 170-min runs were used to obtain the relative cluster configuration around one revolution.

Table	4.	Comput	ter	Runs
-------	----	--------	-----	------

Run No.	t	t _{end}	Initial Conditions
18	1976 Jun 10.0000	t ₀ + 170 ^m	From Table 3
11	1976 Jun 10.0000	1978 Jun 20.8125	Same as No. 18
13	1978 Jun 20.8125	t ₀ + 170 ^m	End point No. 11
16	1978 Jun 20.8125	1981 Jun 24.3875	Same as No. 13
17	1981 Jun 24.3875	t ₀ + 170 ^m	End point No. 16
26	1981 Jun 24.3875	t ₀ + 170 ^m	From differential correction
27	1981 Jun 24.3875	1982 Jun 24.4500	Same as No. 26
28	1982 Jun 24.4500	t ₀ + 170 ^m	End point No. 27
29	1982 Jun 24.4500	1984 Jul 4.2625	Same as No. 28
30	1984 Jul 4.2625	t ₀ + 170 ^m	End point No. 29

RESULTS

CAUSE OF PERTURBATIONS

An analytical first-order expression for the secular rate of perigee shows that $\overline{\omega} = f(a, e, I)$. Hence, all three of these parameters must be consistent in order for $\overline{\omega}$ to remain zero. Accordingly, it occurred to us to examine the deviations of a, e, and I from their nominal values to see if any of these might be sufficiently large to cause a nonzero $\overline{\omega}$. All three effects were found to be orders of magnitude too small to yield the observed motion in ω .

It was clear that the cause for the unexpected large perturbations had to be found elsewhere. By that time we had reason to believe that some zonal harmonics were involved. Consequently, a series of test runs were made designed to isolate the term or terms in question. The first of these runs included J_2 , J_3 , and J_4 only. For each subsequent run one more J_n was added, through J_9 . Finally, J_{10} through J_{12} were added simultaneously in the last run.

Figure 3 shows the outcome in graphical form. Obviously, J_5 and J_7 are the principal contributors to the unexpected perigee motion. They account for about 87% of observed perturbations.

Points plotted in Figure 3 are averages of 400 osculating values. This large number of points was necessitated by the 15° short-periodic noise in the argument of perigee.

Table 5 shows the numerical data used in Figure 3 as well as the results of this experiment.

Once the zonals through J_{12} were included, our computed ω and e matched the observed values quite well. Any remaining differences can be reduced by improving the numerical values of J_5 and J_7 .

EVOLUTION OF PERIGEES AND ECCENTRICITIES

The development of the arguments of perigee and the eccentricities as function of time are shown in Figures 4 to 6. All points are averages of eight osculating values.

Coeffi- cient	$\overline{t} = 3^d$	$\frac{\overline{\omega}_{182}}{t = 5^d}$	t = 28 ^d	Δω (25 ^d)	$\Delta \omega$ over previous	motion	Δω (deg/day)
	83.99	83.91	83.79	-0.20	0.20	4.7%	0.008
J ₅	83.85	83.07	82.20	-1.65	1.45	34.0	0.058
J ₆	83.86	83.13	82.31	-1.55	-0.10	-2.3	-0.004
J ₇	83.64	81.81	79.81	-3.83	2.28	53.4	0.091
J ₈	83.63	81.79	79.77	-3.86	0.03	0.7	0.001
J ₉	83.62	81.71	79.63	-3.99	0.13	3.0	0.005
J ₁₀ - J ₁₂	83.58	-	79.31	-4.27	0.28	6.6	0.011
						100.1	0.170

Figure 3. Effect of Adding Zonal Harmonics on the Perigee of No. 182. J_5 and J_7 Are Seen to Contribute Most to the Unpredicted Perigee Motion

Figure 6. Eccentricities from 1976 June 10 to 1984 July 4

The surprising development is the asymptotic character of the arguments of perigee. Initially about 180° apart, both tend to the apparently stable condition of $\omega \approx 0^{\circ}$. Although asymptotic motion of the perigee is known from theoretical studies, it has probably not been observed in the motion of artificial satellites.

Figure 6 shows a slow increase in e for the first 400 days or so. After that, e remains constant so that e increases linearly to almost 0.03 at the end of eight years. We are probably looking at a small portion of a periodic perturbation of long period and large amplitude since a truly secular motion in e does not occur in a conservative force field.

We are presently trying to capture the principal features of these perturbations by analytical means. Results should appear in print in the near future (Reference 5).

CLUSTER GEOMETRY

The coordinates of Nos. 181 and 183 relative to No. 182 for the eight-year period are shown in Figures 7 to 14. The side view at the beginning of the numerical integration is depicted in Figure 7. Subsequent diagrams show the relative configuration to remain absolutely stable. The slow drift of the No. 183 ellipse to the left is due to a minute error in the initial mean motion. In the real world, any such along-track deviations are corrected by a small thrust along the velocity vector. In our computer simulation, this can be done a bit easier by an instantaneous adjustment of the mean motion. As explained in an earlier chapter, this correction was made on 1981 June 24, between Figures 9 and 10.

The remaining side views show that the cluster preserves its geometry throughout the eight-year period. The mean motion correction applied in 1981 appears to have been too small as another, but smaller, drift of the ellipse can be seen.

Throughout this period, the relative path of No. 181 seems to grow into a circle of 8 km diameter. This is of no consequence to our study. A proper adjustment of the No. 181 state vector at epoch would eliminate this blemish.

Finally, Figures 13 and 14 illustate that the desired spatial separation in the plane perpendicular to the radius vector is also preserved. Since only plots for 1976 and 1984 are given, it should be added that the pattern was carefully monitored throughout the integration.

SUMMARY

The questions raised by the unexpected large perturbations exhibited by the DB-14 system were answered through a computer simulation of the orbit. The following was found:

1. The perturbations in the arguments of perigee and eccentricities are caused primarily by the zonal coefficients of degree five and seven.

2. The arguments of perigee, initially at 90° for Nos. 181 and 182 and at 270° for No. 183, approach zero in an asymptotic fashion. They are within 5 to 10° of zero at the end of the eight-year period. Eccentricities increase linearly to about 0.03.

3. The motions of Nos. 181 and 183 with respect to No. 182 remain unchanged. The configuration is quite stable.

REFERENCES

- 1. C. J. Cohen, E. C. Hubbard, and Claus Oesterwinter, "Elements of the Outer Planets for One Million Years," *Astronomical Papers of the American Ephemeris* and Nautical Almanac, Vol. XXII, Part I, 1973.
- Steven W. Broadwater, Numerical Integration of a System of Second Order Differential Equations, Naval Surface Weapons Center, Dahlgren Laboratory formerly Naval Weapons Laboratory Technical Note TN-K-6/68, Dahlgren, Virginia, February 1968.
- Steven W. Broadwater, N-Body Program, Naval Surface Weapons Center, Dahlgren Laboratory formerly Naval Weapons Laboratory Technical Note TN-K-59/69, Dahlgren, Virginia, February 1969.
- 4. Claus Oesterwinter and Charles J. Cohen, "New Orbital Elements for Moon and Planets," Celestial Mechanics, Vol. 5, pp. 317-395, 1972.
- 5. R. H. Lyddane and C. J. Cohen, "The Low-Eccentricity Earth Satellite Orbit at the Critical Inclination," *Celestial Mechanics*, in press.

DISTRIBUTION

Library of Congress Washington, DC 20540 ATTN: Gift and Exchange Division

Defense Documentation Center Cameron Station Alexandria, VA 22314

Defense Printing Service Washington Navy Yard Washington, DC 20374

Naval Research Laboratory Building 59, Code 7040 Washington, DC 20374 ATTN: Fred Raymond

Commanding Officer Naval Space Surveillance System Dahlgren, VA 22448 ATTN: Dick Smith

Pacific Missile Range Point Mugu, CA 93041

U. S. Naval Observatory Washington, DC 20390 ATTN: Dr. P. K. Seidelmann Director, Nautical Almanac Office

Superintendent Naval Postgraduate School Monterey, CA 93940 ATTN: Library

Commander Naval Weapons Center China Lake, CA 93555 (12)

(4)

(5)

National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, MD 20771 ATTN: Dr. Joseph Siry

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, CA 91103 ATTN: Dr. C. F. Peters

Yale University Astronomy Department New Haven, CT 06500 ATTN: Professor Boris Garfinkel

Director, Cincinnati Observatory Cincinnati, Ohio 45200 ATTN: Professor Paul Herget

University of Texas Aerospace Engineering Austin, TX 78712 ATTN: Dr. Paul Nacozy

Johns Hopkins University Applied Physics Laboratory Johns Hopkins Road Laurel, MD 20810

North Carolina State University Dept. of Mathematics, Bldg. 1 Raleigh, NC 27607 ATTN: Dr. J. M. Anthony Danby

University of North Carolina at Chapel Hill Dept. of Physics & Astronomy, 284 Phillips Hall Chapel Hill, NC 27514 ATTN: Dr. Morris Davis Ebeling Associates Scotia, NY 12302 ATTN: Dr. Russell H. Lyddane

Lockheed Missile & Space Co. Sunnyvale, CA 94087 ATTN: Dr. T. J. Sherrill

Geophysical Institute University of Tokyo Tokyo, Japan ATŢN: Dr. Gen-Ichiro Hori

University of Liverpool Liverpool, England ATTN: Dr. Alan H. Jupp

Ministry of Aviation Space Department Royal Aircraft Establishment Farnborough, Hants, England ATTN: Dr. Desmond G. King-Hele

Tokyo Astronomical Observatory Minaka Tokyo, Japan 181 ATTN: Dr. Yoshihide Kozai

Local:

D

E41	
E411 (Sullivan)	
K	
K01	
K10	(50)
X210	(2)
X2101 (GIDEP)	