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FOREWORD

The Operations Research Center at the Massachusetts Institute of

Technology is an interdepartmental activity devoted to graduate educa—

tiofl and research in the field of operations research. The work of the

Center is supported by government contracts and grants. The work re-

ported herein was supported by the Office of Naval Research under

Contract N000l4—75—C—0556.

Richard C. Larson
Jeremy F. Shapiro

Co—Directors

ABSTRACT

In this paper we,~considerj~1inear multiple objective programs with

coefficients of the criteria given by intervals. This class of problems

is of practical interest since in many instances it is difficult to deter-

mine precisely the coefficients of the objective functions. A subproblem

to test if a feasible extreme point is efficient in the problem considered

is obtained. A branch and bound algorithm to solve the subproblem as

well as computational results are provided. Extensions are discussed.
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LINEAR MULTIPLE 0BJECTI’~E PROBLEMS WITH INTERVAL COEFFICIENTS

1. Introduction

The linear multiple objective problem (LMOP) consists in choosing alter-

natives from a polyhedral set considering simultaneously conflicting linear

criteria. The LMOP is written, as

(LMOP): Max{Cx:xcF)

where F {xCR~ Axalb, x>0}, C and A are p by n and in by n matrices respec-

tively, and bCRm. A point x°cF is said to be eff icient in (LMOP) , or equiva-

lently with respect to C, if there is no x~F such that Cx > Cx° with at least

one strict inequality. The set of efficient points is denoted by EF(C) and is

considered , in this paper, to be the solution set to (LMOP).

The criteria as given by C can be seen either as the linear utilities of

p decision makers or as the p object.ve functions of a single decision maker.

Several real and potential applications of multiple criteria problems have been

recently reported in areas such as water resource planning and facility location

[8] , scheduling of nursing resources [9 1, zero defects program [2], evaluation

of urban policy [1], investment decision making [181, resources allocation

[21], energy planning 1381 , macroeconomic policy (34], forest management

[33], location of public facilities [28], activity planning [26], and

corporate financial management (24].

Different approaches have been suggested to solve decision problems when

more than one objective is considered. Survey articles by Roy [291, MacCr immon

[25], Kornbluth [23], Gal [15], Starr and Zeleny (31], Fishburn [14], Farquhar

(13] and recent books by Keeney and Raiffa [22], Cohon 18], Cochrane and

Zeleny [7 ] ,  Zionts [371, Starr and Zeleny [30], and fiwang and Masud 119]

..—~~~~~
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present an extensive coverage of the methods proposed . In this paper we con—

centrate on the approach that defines the set of efficient points as the solu-

tion set of the multiple criteria problem. In particular, we are interested

in the set of efficient extreme points of F that we denote by EFe
(C)

~

Algorithms devised by Charnes and Cooper [6], Ecker and Kouada [11], Evans

and Steuer [12], Isermann [201, Gal [161, and Yu and Zeleny (361 can be used

to obtain EF (C).cx
In practical applications it is usually difficult to determine the coeffi-

cients of the criteria matrix C because they are either specified subjectively

by the decision maker(s) or they are obtained through procedures requiring

subjective answers to questions posed by the analyst. In other instances,

the criteria are obtained by least square minimization or by linear regression.

An important example where imprecision of coefficients is known to exist and

where the consideration of multiple criteria is vital , is public sector

decision making. It is very difficult to estimate premiums applied

to market prices to obtain social costs, shadow price of investment and rates

of saving of different segments of the society ([5] and [10]). The effect

of the inaccuracy in the elements of C is usually hard to evaluate and no

coutputationally effective method is available to perform a full parametric

analysis in (LMOP) .

In this paper we propose the use of interval estimates for the elements cjj
t s

of C instead of the Current practice of point estimates. In most instances

decision makers may feel more comfortable In specifying intervals than

points; furthermore, Information available from a statistical analysis

for determining the eriteria may be better utilized by giving the coefficients

in the form of intervals. These c~n be seen ~s confidence intervals

for the c
ii

’s. In fact, situations where the proposed approach is of parti-

cular interest is when the elements of ~ are known to be stochastic.

__. ,-_,...~_ —
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The discussion above suggests the consideration of the following linear

multiple objective problem with interval coefficients:

(P): Max{Cx xtF, Cc~}

where F is as previously defined and ~ is the set of p by n matrices with

elements c~1 
in the interval 

~~~~~~~~~~ 
iall,2,...,p and jall,2,... ,n. The

lower and upper bounds 9.~~ and are given real numbers. Problem (F) represents

a family of (LMOP) ’s , with one problem for each C in . The solution set to

(P) is defined as the set of points in F efficient with respect to every Cc~

and is denoted by EF. We also refer to it as the set of efficient points in

(P) . The definition of EF implies that EF = fl EF(C) .
Cc’T~

The plan of the paper is as follows. In section 2 properties of (P),

including connectedness of EF and the existence of efficient points, ~1’e

discussed. In section 3 the case where all lower bounds 9..~~ are nonnegative

is considered. An algorithm to determine EF is obtained in section 4. Itex

is shown that to determine the set of efficient extreme points in (P) it suffices

to use any of the algorithms to solve (LMOP) , for a fixed C , in conjunction with

a subroutine that solves a test problem at each extreme point. Although the

test problem is nonlinear, an effective implicit enumeration scheme that only

considers linear programs has been developed to solve it. Computational

results, extensions, and topics for further research are discussed in section 5.

Straightforward proofs are omitted for the benefit of compactness of the paper.

The following notation is given for future references. Lower case

letters are used to denote vectors. Superscripts differentiate vectors

and subscripts indicate the components of a vector. The partial ordering

relation x ~ Y means 
~ Yy 

for all i’ with at least one strict

‘~ ~~ . u, Mr~~~~~~’ ’ r  
~~~ 
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inequality. Matrices are denoted by capital letters. The ith row and

~th column of a matrix C are written as C~. and C
1~~
, respectively. Given

two matrices C’ = [c~1
], C2 = [c~1

) the notation C’ ~ C ~ C
2 indicates that

the matrix C Eci1
) has each element c

11 
satisfying c~1 

< < c~~ .

Given a set S, we denote the subset of Its extreme points by S .

Max{. .. . } (max{...)) represents a multiple (a single) objective maximization
problem. Consider the problem Max{Cx : A xb , x>0} and let x° be an extreme

point of the constraint set. Without loss of generality the basis B,

corresponding to x°, is assumed to be composed by the first columns of A , x°

is written as x° = (x 0B ,x0
~5, A and C are accordingly partitioned as

A (B,AN) and C = (CB, c~
) and the linear system multiplied by B ’ becomes

+ ANx~~ ~ where A
N B 1AN and b = B 1b .

2. Properties of (P)

The set • is contained in the vector space of p by n matrices and is

characterized as follows.

Proposition 2.1: ~ is a convex set with extreme points having each element

at its upper or lower bound.

For each Cc~ let K(C) = {pcR~ : Cp>0} and let K($) = Li K(C). K(C) and
Cc$

K(~) are called the preferer.ce cones associated with matrix C and problem (P),

respectively . Note that the elements of K(C) are the directions of preference ,

i.e., if y p+x for some ptP(C) then Cy > Cx. Preference cones play an

important role in general multiple criteria optimization (see [35 ] and [4]).

They provide an insightful geometrical interpretation and are intimately related

to the connectedness and existence of efficient points. Denote by M the subset

of “etrices of ~ having all elements of each column at the upper bound or at

- - . V.— — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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the lower bound. Hence , if CeM , for j l , 2,. . . ,n either C,1 = U~1 
or C

1 
L~1

where U [pu] and L = [9.~~ J. The maximum number of elements in M is 2”.

Proposition 2.2: K(~) U ((C) ~~K(M).CcM
Proof: Assume pcK(~ ) .  Thus , there is Cc’~ such that Cp > 0. Consider the

matrix C’ = [c~1
] defined for jl ,2,...,n as C~~ L,1 if Pj 

< 0 and C~~ =

othe rwise. Then , C~ > Cp > 0 and ptK( C ’) .  Since by definition C’cM it follows

that K(~ ) C K(M) . The reverse inclusion relation is a direct consequence of

the definitions of K(4) and K(M).

Proposition 2.2  shows that from the infinite family of problems represented

by (P) we just have to consider the finite family of (LMOP) ’s having C in M.

Corollary 2 .3 :  EF = fl EF(C) t. EF(M) .

CCM
Proof: By definition EF ñ EF(C) . Since MCI’ , EFCEF(M) . Assume xcF and

Cc~ 
— —

xt~EF. Thus , [(x} ÷ K (4 ) ] C~F # {x) . By Proposition 2.2 it follows that

({x) + K(M)]flF ~ {x} and therefore x~EF(C) for some CcM. Consequently

EF(M) C EF and hence EF = EF(M) .

Proposition 2.2 and Corollary 2.3 imply that determining the efficient

points in (P) is equivalent to solve

(P’): Max{Cx : xcF, CcM}.

This last problem represents a finite but large family of (LMOP)’s. The

algorithm developed in section 4 solves (P’) using an efficient implicit

enumeration scheme.

The linear mul tiple objective 1’roblem, LMOP, has been extensively studied ,

(e.g., [l2],[27],[16],[36],[39], and [11]). It is well known that EF (C)

is closed and connected , the existence of an efficient point implies the

existence of an ef f icient extreme point, the preference cone ((C) is convex

-- - — 
~~~~~~~~~~~~~~ “

-~~. - - ~~~~~~~~~~~~~~~~~~ --~~~w--. 
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and whenever a point in the relative interior of a face is efficient the whole

face also is. The following proposition establishes the corresponding results

i~ problem (P).

Proposition 2.4: a) EF is closed,

b) If a point in the relative interior of a face of  F is

efficient, the whole face also is,

c) If EF # •~ there is an extreme point of F efficient in
(P) ,

d) ((4’) is not necessarily convex and ,

e) EF is not necessarily connected.

Proof: a), b ),  and c) follow trivially from the properties of (LMOP) and

Corollary 2.3. d) and e) are illustrated with examples. Let 4’ be in the

space of 1 by 2 matrices and let p11 ~ = .5, I~ and £12 .5.

Consider p’ = (.6,—l), C’ = [l,.5]c4’, p2 = (—1.8,1), and C2 = [.5,l]c4’.

Then , Cap’ > 0, C2p2 > 0 but p p + p 2 = (—l.2 ,0)~ K(4). It is not difficult

to construct examples where EF is not connected when the closure of ( (4 ’)  contains

a non—trivial si’bspace as is shown , for general multiple objective optimiza-

tion problems, in [4]. However in (P), even when this is not the case, EF nay

be not connected. For example , consider the case where 4’ is in the space of

4 by 3 matrices and £11 
= 1, p~1 

2, £12 
= P12 

= £13 P13 £23 = 

~
‘23 = £

32 
=

1, £43 p43 “ £21 P21 = £22 = p22 
= 2, and £31 

= U31 £33 P33
£41 

= 

~41 
= £42 = P42 0. Hence the subset H of 4’ is composed by the two

matrices

1 1  1 2 1 1

2 2 1 2 2  1
C~ and C’ =

0 1 0  Ô 1 0

0 0 — 1  0 0 — 1 .

, I;_ . _M’ ~4 V~~ V ~‘ =_ V _% . ‘ - V *_ ,  ——— V — -.~~

~~



Let F be defined as the convex hull of A, B, C, and D where A = (0 ,0,0),

B (3,—3,0), C = (- 4, 0, ~), and D = (5, — 
~~~~, 1). Point P is in the plane.

defined by A, B, and C. It can be shown that no point in the relative

interior of ABCD is in EF(C’) or In EF(C 2) ,  EF(C’) ACUCD and EF(C~~ = ABUBD.

Therefore EF = EF(C)C~EF(C 2) = {A ,D}, i.e., EF has two elements, the points A
V V

and P. Moreover , the vertices A and P are not adjacent in F.

Consider problem (LMOP). It is well known [17] that x°cEF(C) if and only V

if x° solves max{ACx:xeF} for some X > 0, AcR~. It is therefore natural to

consider systems (I) and (II) , below , In order to obtain conditions for EF

to be non-empty. -

A
i
C
I — qI = 0 for all i such that C1cM

Ai > 0 (I)

A~cR~’, qcR”

and

X1C1 — qI = 0 for all i such that C1cM
n 

(II)

A
icap qcRT~

Clearly , if (I) has a solution q° ~nd if the problem (Pq°): max{q°x : xcF} has

an optimal solution then EF 
~ •. 

When F is bounded the condition on (Pq°) is

always satisfied and can be deleted. Also, if for some CcM (or 4’),

K(C)(~ {rcR
m : A r 0 , r>0} ~ c~, EF has no elements since EF(C) = 4. Whenever

system I has no solution it follows from Proposition A.l in [4] that the

closure of the convex hull of ((4’) contains a non—trivial subspace. If in

addition , system II has the unique solution q°=0 then, the subspace in the

closure of the convex hull of K(4’) is R~. When q° ~ 0 Is feasible in system II

and the problem (Pq°) : tnax{qox xEF) has a unique optimal solution x°, EF is

- —-- .- -

#~~ 

V “T
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non—empty since x°cEF(C) for all CcM . The two following examples illustrate

the necessity of the condition of (Pq°) to have a unique solution and that F.F

need not be empty when the subspace in the closure of the convex hull of K(4’)

is R”. Let C~ and C
2 be the only two elements of M where,

11 ol 1-1 0
C’ 1 I and C2 =

~~~~L o lJ L o  .i.

and let F be the segment AB where A (—1 ,0) and B = (1,0). We have that

AcEF(C2) ,  BcEF(C’) ,  and EF(N) = ~~. Note that in this case system I has no

solution, system II has solution q° (0,1) and the segmen t AB is opt imal

in (Pq°). If instead of the segment AB , F is defined as the triangle ABD

with P (0,1) then, D becomes the unique solution of (Pq°) and DCEF. The

next example illustrates the situation where FCR 2 , closure of the convex hull

of ((4’) is R2 but EF ~ 4 .  Let C’ = [1,0] and C2 = [—1 ,0] be the only two

elements in M and let F be the line defined by the two points A = (0,1) and

B = (0,—l). Thus, ((C’) = (pcR 2 : p
1
>0}, K (C 2) {pcR2 : p

1
<0}; closure of

the convex hull of K(4’) is R2, but all points In F are in EF(C’) and EF(C2)

and therefore F = EF.

3. Nonnegative Criteria

In this section we concentrate on the case where 9... > 0 for all (i,j) .

Without loss of generality we assume that for each j = (1,2,... ,n} there is

a C in 4’ with the elements in column n not all zeros. The next two proposi-

tions suggest a simple algorithm to determine EFex when the criteria are non-

negative.

Proposition 3.1: Let EF(I ) be the set of efficidnt points in problem

P( I~) : Max{I~x : xcF}. Then, EFCEF(15).

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ .-~~~~M~~~~~~”- ~~~~~~~~~~~ 
————-.-

~~~~
-.
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Proposition 3.2: Assume x°cEF(I ) and x°~EF. Then, there is y°cEF(I ) such

that Cy° > Cx° for some C in 4’.

Proof: x°~EF implies that there is a matrix Cc4’ such that x°tEF(C). Let

e(l,l,. . . ,l)cR~ and consider the problem

(p): max (eCx : Cx>Cx°, A x b , x>0}.

If (P) is unbounded there is rcR” satisfying Cr>0, Ar=0, r>0, eCr>0

consequently , Cr>0 and r>0. Thus, r+x°CF and r+x° > x° contradicting the

assumption x°cEF(I). Therefore, (P) is bounded . Furthermore y° solves (~)

implies that y°tEF(I ) since otherwise, there would be a z~F, z~y° , Cz>Cy ° V

and eCz>eCy°. Hence, any y° optimal In (~) is in EF(I ) and satisf ies

Cy° > ~~~~ ° 

~~~

Propositions 3.1 and 3.2 show that EF is contained in the set EF(I )

and for each x° efficient in P(I ) and not efficient in (P) there is an

element y°cEF(I) and a matrix C in 4’ that can be used to eliminate x° from

EF(I ) ,  i.e., such that Cy° > Cx°. The two propositions suggest the following

algorithm to obtain the set of efficient extreme points in (P).

Algorithm

Step 1: Using any algorithm for linear multiple objective problems, determine

EF (I ).
ex fl

Step 2: For each X°CEF (I) and each xtEF x
(I
n)~ 

x#x*, def ine the matrix

C = 
~~~~~~~~~~ 

as follows:

C
1 

— U
1 

if X —x°
1 

> 0 and

C
1 

L
1 

if x
1
—x°

1 
< 0 for j 1 ,2,.. . ,n.

Note that CCM. If ~~(X_X 0)  > 0, x°
~

EFex and x° can be discarded from EFex(I
n)~

Othe rwise, choose another x from the set of efficient points in P(I ) and

repeat the procedure. If X e is not discarded after being compared with the

elements of EF0~
(I
~
) it follows from Proposition 3.2 that it is efficient in

- ~~~~‘ ‘ ‘.  — ‘ ‘ - * .~ fl~e tI*_.....* S ,_ LtSS~~LV.._ V . , .-~~ -. -

- 
‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ ~~~L —~~~~~- - ---~~~~~~ 
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(P). Proposition 3.1 ensures that all elements of EF can be obtained by

this algorithm. It. is Interesting to note that Proposition 3.1 is valid when-

ever the criteria are non—negative. Therefore if for sensitivity analysis

purposes we change the upper or lower bound on any c~1 
we can restart the

problem with the same EFex
(I
n
) as long as £~~~O for all (i,j) and the columns

with all components equal to zero in all matrices in 4’ remain unchanged.

Related results were developed by the author 131 for the zero—one linear

multiple objective problem with nonnegative criteria.

4. The General Linear Case

Basically, the existing algorithms to determine the efficient extreme

points of (LMOP) move from one element of EF (C) to an adjacent one. The

new extreme point is chosen by a test rule. The solution procedure, that

we propose, to obtain EFex differs from the one described in that we solve an

additional subproblem to check If the extreme point Is In EFex~ 
To simplify

the not~tion we assume that all extreme points of F, under consideration ,

correspond to non—degenerate primal basis. At the end of the section it is

mentioned how this assumption can be easily relaxed.

Initially we consider the problem of how to determine if a given extreme

point of F is or is not efficient in (P).

Proposition 4.1: Let x° = (x0B ,x0N ) be a non—degenerate extreme point of F.

Then , x’EEFex if -td only if the system

(CN — C 3A
15p > 0

(4.1)
p > 0, C = (CB, C~d)cM

has no solution .

$ 1
~~~ _4~~ ~~~~~~~~~~~ ~~~~~~~~~ 
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Proof: Follows from the definitions of EF, H, and lemma 2.1 in [12]. r7~’T~i

Proposition 4.1 can be written in an operational form as: ‘x°cEF
~~ ~

f

and only if the optimal value of P(x°): z=max{es: (CBA
N_C

N
)p + I~,s 0,

~~~ s>0, CCM) is zero where, e (1,1,... ,l)cR~”. The best choice of

C = (C~,C~) is such that CN = UN 
where U = (UBPUN

) ,  i.e., every element of

CN should be chosen at its upper limit. Hence,

Coro11a~y 4.2: There is always an optimal solution (C*,p*,s
*) of P(Xe) with

* ______

• U~.

The reader should note that P(x e) is not a linear programming problem

since besides p and s, matrix CE is also unknown. CB is p by a if A has full

row rank , and does not depend on n. The next propositions play an important

role in the algorithm developed to solve P(x°).

Let N denote the set of indices corresponding to the non—basic components

of ~~
e
. For each JCN let CB (j ) be the p by a matrix with columns CB(i).k

defined as follows :

= (L
B)k 

if ~ 0 and

CB(j),k N
— (U

B
).k if < 0

where L = (LB, L.d) and U = (U
B,UN

). We refer to CB(j) as the ideal matrix

corresponding to index j. It is the p by m matrix in (L
B U8
) that when multi—

-Nplied by A
1 

gives the p vector with the lowest component values. Hence,

Proposition 4.3: a) C
B(j)k 

A~~~~ < (C
B
)
k 

A~ JCN ; k—l,2,...,a and

b) C
8(1) 

A~~~~ ~ C3A~1 for all JEN and L1 ~ 
C~ ~ U~.

Corollary 4.4: If P(x°) has a feasible solution — (C ,UN) ,  5* 14
* with

es* > 0 then P(x°,m1) defined as

_
~~~~

_r
~~

_ -.-.V---
~~~ 

V
~~~
V__

~~ - V -  ~~~~~~ V ’  ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V~~~

V ~~~~~~~ ~~
..
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v = max es

~~i=l 
(C
B).i Ii 

+ 
k m

1
+l 

— (U
N
)
.J( ~~1 

+ I s  —

p ~ 0, s > 0, (LB)
1 

< (C
8)~ 1 

< (U
8)~ 1 

i 1 ,... ,m
1
.

has a feasible solution with es > 0 for all 0 ~ ni
~ 

~ m [ for m
1 

0 (m
1
=m) the

first (second) summation vanishes and P(x°,mf~m) = P(x°)].

Proof: By Proposition 4.3a) C
B
(j)

k 
A~~ ~~ , 

(C
B
).k 

~~~~~~ 

Hence,

- 

~~~ 
~~~~~~•~~~ A

3
+ 

kT
!
+1 

C
B

t
~1~

1 .k “kj~~~~~
’N~~J

jCN 1=1 1 1 j

Therefore es > ~~~~ > 0. 
_ _ _ _ _

If x° is not efficient in (P) it follows from Proposition 2.2 and

Corollary 4.2 that there is a matrix C = (CB,CN UN
)cM and an xcF such that

C(x—x°) > 0. Thus, a naive method is to solve P(x°) for all matrices C8
with each column having all elements at the upper or lower bound. Since

there can be 2” of such matrices this procedure would require a significant

amount of computer time. Instead, we perform the following implicit enumera-

tion which considers a sequence of linear programs in order to solve the

non—linear problem P(xe).

Implicit Enumeration Algorithm

Description: Start by solving P(x°, m1 0). If v’O stop, x° is efficient in (P).

If v > 0 let m
1
—l and generate the following two problems

IV
,. 

~~~~~~~~~~~~ ~~~~~~~ - -—- .-_-_-._.-- -_=.~.- 

- 
V ~~~~~~~~~~~ ~~~~~

- 

, r I~ —.- ______
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P(x°, m1’l ,l): max es

~~~ E 
~
[(UB
)
l ~~ + 

k?2 
CB(l).k ~~~ 

— (U
N
).j 

~
I1j  + I~s — 0

‘a > 0, S > 0

- and

P(x°, m1 l,0). max es 
V

JEN ~
[(L

B).l 
A~ + 

k—2 
CB (1) .k ~~~~~ 

— (U
N).J~ ‘aJ 

+ I~,s — 0

‘a ~ 0, 8 ~~ 0.

Where in the notation P(x °, m1 l,t), t”l (t~0) indic ates that the column, in

C8, 
corresponding to m

1
=l has all its elements at the upper (lower) bound.

If the optimal value of P(x°, m1
.1,l) is zero , by Corollary 4.4, there is no

optimal matrix CB in P(x °) ,  with z > 0 and having the first column equal to

(U
B).l. 

In this case we do not need to consider any descendent of P(x°, m1
1,1)

and the branch is fathomed. If the optimal value of P(x°, m1
l,l) is positive

we generate two new problems P(Xe
, a1”2 ,1,1) and P(x°, m1=2,l,0). These two

problems are obtained by substituting C8
(j)2, in P(x°, m1 l,l), respectively

by (U
8)•2 

and (L8)~ 2. We proceed in the same way, i.e., branching on problems

with optimal value positive and fathoming those with optimal value zero until,

we either conclude that x° is efficient in (P) or obtain a C8 
such that

LB ~ ~ 
UB 

and z > 0. Ai~ example of a tree generated by the implicit

enumeration algorithm is given in Vigure 1. In that figure, P(x°, na1 3,l,O,l)

is the problem

max es

‘i 
s.t. 

jcN ~~~ + L•2 A~~
1 

+ U~ 3 
A~1 + 

k~4 
8 k  

- (U N
) .j P1 

+ I~S -

u~~~0, a >0. 
-

‘ii’

_ _ _  
_ _  

• 1

I V ~~~ ~~~~~~~ - . 

~~~~~~~~~~~~~~~~ ~~~~~~~~~

~~
‘ 

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ .- . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~ 
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P(x°, mf’O) optimal value > 0

- 

/
/
/N

\
P(x°, m1 l,l) P(x°, m1 l,0)

optimal value > 0 optimal value > 0

P(x°, m1=2,l,l) P(x°, m1 2,l,0) P(x°, m1—2,0,l) P(x°, m1 2,0,0)
optimal value 0 optimal value > 0 optimal value = 0 optimal value — 0

(fa thom brancn) (fathom branch) (fathom branch)

P(x°, m1 3,l,0,l) ~ (x°, ul 3,l,0,0)
optimal value = 0 optluial value — 0
(fathom branch) (fathom branch)

Figure 1: Example of a Tree Generated by the Implicit Enumeration Algorithm.

In this case x° is efficient in (P).

— ~~~~~~~~~~~~~ ——--—. V- —-——.———.—

— •_
~

—
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The convergence of the algorithm, after solving a finite number of linear

programs, follows from Corollary 4.4 and the fact that the number of matrices

C3 
that can possibly be enumerated is finite.

In (LMOP) the set of efficient points is connected and the algorithms to

determine EFex(C) move f rom one efficient extreme point to another by using
- 

only efficient edges. In (P), the set of efficient points is not necessarily

connected, as illustrated in section 2. However, whenever it is of interest

to identify the connected subsets of EF the following problem can be solved

‘~o t~eteraine if an adjacent edge to the efficient point x° is eff icient or not :

max es

s.t. — C
NhI 

— [C~~~J 
— (C

N).J Jw + I~s — 0

‘a ~ 0, s > 0

where x
1 
is a non—basic variable, in the feasible solution associated with x°

V which when introduced into the basis generates an adjacent extreme point that

we denote by x1. The edge of F defined by the pair (x ’,x1) is the segment

— [x°,x~ J .

Proposition 4.5: Let x° be an efficient extreme point in F. Then, the edge

— [x e,xu ] is efficient in (F) if and only if the optimal value of ~(x’,j)

is zero.

Proof: Follows by the definitions of EF, N, and lemma 2.3 in [121.

Corrolary 4.6: Let x° be an efficient extreme point in F. Then, the edge

r1 — [x°,x11 is efficient in (F) if and only if the optimal value of the problem

problem -

“ ‘

~~~~~~~~~ 

W
~~~~~~~~~~ . V i ’

~~~~ i~’T i  ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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max es

s.t. (C
BA
N 

— UN)u — [C
~
(i)A.j — (L

N
).j]w

~ 
+ [CB(1)A~j 

— (U
N
).J ]w + I~s 0

s~~~O

is zero where, CB(1) is the p by a matrix with columns CB(1).k defined as

= (U
B).k 

if A~~ > 0 and
CB(j).k 

= 

N
= (L

B
).k if < 0

Proof: Follows from the fact that the optimal values of Q(x°,j) and ~ (x°,j) are

equal.

Clearly, Q(x°,j) c~n also be solved by the implicit enumeration algorithm.

To obtain EFex we can choose a matrix C, for example C — ~ (L+U) , apply

any of the existing algorithms to solve (LMOP) and at each of its efficient

extreme points x° solve P(x°) to determine if it is or not in EFex~ 
This

procedure will generate the whole set EFex since it is contained in EF
~~
(C).

Therefore, the method consists in using the connected graph formed by efficient

extreme points and edges of (LMOP) to determine the corresponding non—connected

subgraph of (P). It is worthwhile to point out that the algorithms developed

by Vu and Zeleny [36], Ecker and Kouada [111, and Gal (161 to obtain efficient

faces of F can also be conveniently adapted to determine the efficient faces of

P in problem (P). Similarly the implicit enumeration algorithm can be applied

in conjunction with Steuer ’s interval weights method (32]. To conclude this

section, we consider the non—degeneracy assumption made earlier. Whenever x°

is a degenerate basic feasible solution it is necessary to add to problems P(x °)

and P(x ,m1
) the constraints A1~p ~ 0 for all I such that the corresponding

basic components of x° have value zero.

_ _ _  - — jr~ up~i~~~uiuw. ~~~~~~~~ . -  -.-~~-
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5. ComputatIonal Results and Conclusions

The implicit enumeration algorithm was tested by solving four hundred

problems of the form of P(X e) .  The matrices A were randomly generated in

the interval [0,20] with 20% of n2gative elements and the value of the

right—hand—side vector b was fixed with all components equal to 100. The

criteria matrices were constructed as follows. For each problem a matrix

C — [cjjl was randomly generated in the interval [0,99] and the matrices

U and L were defined as U = BC and L = (2—B)C with B = 1.05 or B = 1.10.

For each problem an efficient point with respect to C was generated by

solving the linear program max{ACx : Ax=b, x>0} with C as defined above ~rd

A — (1,1,1) or (1,1,8) when p 3 and A = (1,1,1,1,1) or (1,1,1,1,6) when

p — 5. The computer program was written in Fortran and was processed on the

mini—computer Prime 400. Several branching rules were tested in the

algorithm and are not reported here due to space limitations. The use of

different values for A is an attempt to identify a distinct behavior between

points that tend to be in the center of the efficient set, I.e. those

corresonding to A ’s with all components equal, and those that tend to be

in the frontier of the efficient set. The computational results are given

in Table 5.1. Each row of the table summarizes the results of a sample of

25 problems P(x°). a, n, p,A , B, ‘a, and 0 denote respectively the number

of constraints, number of var iables, number of criteria, vector of wei~hrs,

the number that multiply the randomly generated matrix C to determine U — (p
~~~ J ,

the nean c.p.u. t ime to solve 25 problems P(x°) using the implicit enumeration

alrorithm (this time does not include the determination of the point x°, i.e.,

the c.p.u. time to solve max{XCx : Ax—b , x~0}) and the standard deviation

of the time to solve each problem P(xe). The last column in Table 5.1 m di—

V 

cates the total number of points that were found efficient after solving the
t

25 problems P(x°). The computational results show that for B 1.05 and

t

4..

_ _ _ _ _  
__________  _ _ _ _ _ _  

V
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Table 5.].

1~ 0 No. of
a n p A B —2 —2 efficient

V 10 sec 10 sec points

l~ 20 3 (1,1,1) 1,05 .17 .05 20
l~ 20 3 (1,1,8) 1.05 .42 .20 18
10 20 3 (1,1,1) 1.10 .68 .29 15
10 20 3 (1,1,8) 1.10 .32 .11 10
i f l  20 5 (1,1,1,1,1) 1.05 1.04 .61 2/
10 20 5 (1,1,1,1,6) 1.05 2.55 2.00 25
1(1 20 5 (1,1,1,1,1) 1.10 4.16 2.01 20

~~ 20 5 (1,1,1,1,6) 1.10 2.58 1.19 15
] .f l  50 3 (1,1,1) 1.05 2.96 1.81 18
10 50 3 (1,1,8) 1.05 2.77 1.21 l(~
10 50 3 (1,1,1) 1.10 4.31 2.35 15
i~ .50 3 (1,1,8) 1.10 2.47 .98 10
25 50 3 (1,1,1) 1.05 19.90 14.22 3
.5 50 3 (1,1,8) 1.05 22.67 14.89 3
25 50 3 (1,1,1) 1.10 8.01 5.16 1
25 50 3 (1,1,8) 1.10 5.93 6.70 0

a, n, and p fixed the mean computation time is usually lower for equal weights

than for unequal weights, the opposite is true for B — 1.10. This fact

suggests that for small perturbations in the matrix C, i.e., for small values

o~ B, problems P(x°) for x° obtained with equal weights are easier to solve

or equivalently, the algorithm needs to explore fewer nodes of the tree

than for the case of unequal weights of the type considered. It is also

interesting to note that for vectors A with equal components the number of

points found efficient tends to be larger than for the other weights cons I—

dered. For the ranges of n, m, and p tested , the mean computational t ime

seems to be equally sensitive to individual increases in these parameters.

However , the variance is apparently more sensitive to an increase in the

number of con8traints for B — 1.05 than for B — 1.10.

Conclusions and Topics for Further ~esearch

We have considered in this paper the linear multiple objective problem

with interval coefficients , denoted by (P). Properties of (P) were presented

.‘. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- . V ~ •V V ~~~~~~~~~~~~~~~~~~~~~~~~~ — .—.—,--——- V -. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .— .- 
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together with a problem to test if a feasible extreme point is or not

efficient. This problem can be used in conjunction with known algorithms

to determine the set of efficient extreme points in (F) . A branch and bound

algorithm and computational results were given and discussed.

Potential extensions and topics for further research are the determina-

tion of “an easy to check” necessary and sufficient condition for the exis-

tence of an eff icient point in (P) and the consideration of situations where

the coefficients of the objective functions are not independent random

variables. For the sane practical reasons pointed out in the introduction

of the paper, it is of interest to develop algorithms to solve the interval.

coefficient versions of zero—one linear multiple objective programs, the

problem of f inding eff icient points when the set of discrete alternatives

is given explicitly [3] and several other discrete programs suggested in [393.
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