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ABSTRACT

A technique for the use of semi-infinite planes to
approximate the log magnitude versus log frequency charac-
teristics of two-dimensional filters is presented (Extended
Bode approach). This technique is applied to quarter plane
filters and works well for separable transfer functions.
Other non-separable canonic (basic) transfer functions are
also studied in terms of their planar approximation. The
general technique is shown to be useful for the insight it
provides as well as being a simple approach to design. The
double bilinear z-transform is studied for use with the

two-dimensional analog transfer functions to convert them

to the digital domain.
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I. INTRODUCTION

A. DIGITAL SIGNAL PROCESSING

Digital signal processing has its roots in 16th century
mathematics, especially in the fields of astronomy and the
compilation of mathematical tables. Today it has become
a powerful tool in a multitude of diverse fields of science
and technology. The applications of digital signal pro-
cessing varies from low-frequency spectrum seismology
through spectral analysis of speech and sonar into the
video spectrum of radar systems [1l].

In their book, Theory and Applications of Digital

Signal Processing [2], Rabiner and Gold have combined digi-

tal signal processing theory, with a variety of applications
ranging from sonar, radar, communication, music, seismic

and medical signal processing, with digital component
technology. This technology is the main driving force for
progress in this field as well as the general area of com-
puter design. It was also observed by them, that, although
the formulation of engineering problems is often as vague

as those of the "softer" sciences (such as anthropology,
psychology, etc.), the execution of these problems appears
to depend on greater and greater accuracy and reproducibility.
The capability of digital systems to achieve a guaranteed

accuracy and essentially perfect reproducibility is very

appealing to engineers.
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A digital filter is defined in [3] to be a computa-
tional process in which a sequence of numbers acting as
input, is transformed into a second sequence of numbers,
or output digital signal; where the term "digital" implies
that both time (the independent variable) and amplitude are
qguantized.

The field of one-dimensional digital filtering, which
is outlined in figure 1.1, encompasses recursive, non-
recursive and Fast-Fourier Transform processing. The terms
recursive and nonrecursive, instead of IIR (Infinite Impulse
Response) and FIR (Finite Impulse Response) are preferred
in this thesis. It is shown that recursive processing is
much more efficient than nonrecursive processing. Stockham's
method [4] to perform fast convolution, which later became
known as the FFT method, improved the efficiency of non-
recursive techniques, so that comparisons in one-dimension
are no longer strongly biased toward recursive methods ([2].

One-dimensional recursive digital filter design depends
strongly on the effective and well developed continuous
filter design theory. Moreover, the stability analysis of
higher order one-dimensional recursive realizations can be
solved by investigation of the root distribution of its
factored form representation. It is important to realize
that continuous domain design techniques and factorization
property (the fundamental theorem of algebra) exists only

in one-dimension.

& T G o i e e T R S e g

- T




SWILSAS TVLIDIA TYNOISNAWIA-ANO A0 MIIAJYIAO

*T°T MNOIA

YUNOS
Yvavyd

RJOEHL SWALSAS
ANV SAHLIIOOTV NOLIVZIWILJO
KHOHHL TOHINOO
AOOTOWSTIS
ONISSIOONd HOUAdS
NOLIVOINIWAOO

SNOTLINOITddY

AV1dSIA aNY NOILYNIWASSIA
NOLLOZTIOD ‘NOLLWRIOANI IWEi00

TOSINOO IA
HONWAIND OdIPIOL
HONVOIND dTIISSIN
TRLINOD WIHONNVT

TYAYN

%’

SYAZATUYNY HMRILOIdS
LIVINGNA TN

RINLOALIHMY

WRIDOYd TIVMMRIVH

JALNdWOO

lﬂ

e

SISXTYNVY WMLLOAdS K
TYOILSILVLS A9 ONINAELITA
L )
|
Ldd F

|

SASATUNY WRLLOIS

[ )

| NOLLVZLINYIO

XMOHHL

AL TIA AATSHNORA
40 NOTIVININT I

STALTLA ATSINODNON
J0_NOLIYINAHTIWI

ﬂv

3

MALTII FATSHOOEY

JO SI

WALTId JATSNDDA
-NON JO_SISAHINAS

i

AT SNONNIINOO

JO NOISdd

YAUTIId JATSMOO
J0 NOISId

VALTIA JATSYNORT
-tON 40 NOTSHd

LJ

L

1
RINLIMILS ‘SISATYNY ALVILS

—%

SIWALSAS TYLIOId JO XJOHHL

(LA ‘IRIOJISNWRIL-Z)

10

N—

e ——— -

a2

>

W W g
T PSS .




Areas of application of one-dimensional digital signal
processing are listed in figure 1.1. There are important
military and specifically naval applications in addition
to those listed, such as missile and torpedo guidance,
launcher control system, fire control, combat information
collection, dissemination and display.

Digital filtering in several dimensions, which is over-
viewed in figure 1.2, has gained considerable importance,
especially for the two-dimensional case. Figure 1.3 presents
an example of two-dimensional low-pass and high-pass filtering.
Until 1966, two-dimensional digital filtering was implemented
by nonrecursive or convolutional techniques. In this method
the output is the weighted sum of unit sample responses of
all past input values. The serious disadvantage of the
convolutional method is the requirements of a very large

number of arithmetic operations.

The development of the Fast Fourier Transform (FFT) in
1966, reduced the number of arithmetic operations consider-
ably and is used extensively today. Filtering via FFT is
accomplished by computing the transform of the input func-
tion, multiplying by the frequency response of the filter,
and inverse transforming the result. The recursive
algorithm, which has in general an infinite impulse response
[3], constitutes another technique for the realization of
two-dimensional digital filters.

Hall [5] compares the amount of computation required for
the three filtering techniques. He shows that, in general,

the FFT and recursive algorithms are preferable to the
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Fig. l1.3.a. An example of two-dimensional filtering
(An original photograph) [2]
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Fig. l.3.b. An example of two-dimensional filtering
(Low pass filtered version of Fig. 1.3a)

(2]
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(High pass filtered version of Fig. 1l.3a)

(2]

An example of two-dimensional filtering

1.3¢.

Fig.
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nonrecursive one in number of computations and storage
requirements. Hall demonstrates that the recursive filter
algorithm constitutes the best method for large data, i.e.,
it is the fastest and cheapest.

When processing two-dimensional data by recursive filters
a fundamental problem exists due to inherent feedback, namely,
the problem of numerical stability. Since, in general, two
variable polynomials cannot be factored into a product of
first and second order real coefficient polynomials in each
of the variables, it is difficult to solve the stability
problem for two-dimensional recursive filtering. Conse-
quently, the majority of papers published in two-dimensional
digital filtering deal with the design of nonrecursive
filters which are inherently stable [6-10].

There are several papers discussing two-dimensional
recursive digital filters. For example [l11l] and [12]
formulate two-dimensional recursive filters by the z-
transform and linear difference equations, and although
they investigate problem areas related to stability and
realization, the majority of problems remain to be solved.

The most important applications of two-dimensional
digital filtering of digital data are in picture processing
and geophysical data analysis. Picture processing can be
categorized into:

a) Digital image restoration and enhancement,

b) Computer pictorial pattern recognition.

16




The methods of image restoration and enhancement are
applied to invert degradations, such as aberrations,
atmospheric effect, scanning, motion, and to manipulate
images to improve viewing phenomena experienced by the human
eye. Image restoration and enhancement has been used with
great success in biomedicine, i.e., in extraction of quan-
titative information from x-ray films, chromosome counting,
measuring the extent of arteriosclerosis from arteriograms,
in forensic sciences application, i.e., fingerprint image
enhancement for automatic classification, and in astronomy,
i.e., removal of turbulence from astronomical photography
[13).

Pictoral pattern recognition by digital computer has
gained great importance in satellite surveillance and mili-
tary reconnaissance. The application of two-dimensional
digital filters permits the separation of different horizontal
scans on magnetic and gravity maps in geophysics and can
be used equally well for structural and topographic maps
or for any other type of factor which is available in the
format of a planar grid [14]. Although digital filtering
in several dimensions is gaining importance in medicine,
i.e., heart volume measurements, in fire control problems,
and to analyze complex electronic circuitry, there exists
no general theory concerning structures, analysis and
design.

These considerations can be summarized as follows.

Since one-dimensional recursive digital analysis and design

17
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techniques depend strongly on the fundamental theorem of
algebra and on extensive utilization of continuous design
theory, it represents a special, i.e., a non-generalizable
field in the area of N-dimensional recursive digital filtering.
Multi-dimensional digital filtering is well developed in two-
dimensions but is based, due to the absence of recursive theory
analysis and design tools, predominantly on nonrecursive
filtering schemes. Because of their inherent advantages, much
of the current research is directed towards recursive filtering

algorithms and techniques.

B. AREA OF INVESTIGATION AND OBJECTIVES

One area ¢f investigation of this thesis is to see how the
semi-infinite straight line approximation technique of one-
dimensional filters (based upon the log modulus/log frequency
or decibel vs. log-frequency plots) can be extended to two
(or higher) dimensional recursive filters. The advantages of
log-modulus approach is that a transfer function in factored
form becomes a linear sum of terms when the logarithm of its
magnitude is taken, and each of these terms can be approxi-
mated by semi-infinite straight line segments in the one-
dimensional case, and semi-infinite planes in the multi-
dimensional case, when expressed in terms of log-frequency.

The following are specific objectives:

1. To postulate typical (canonic) factors for

two-dimensional filters and to investigate their properties

in the log-modulus/log frequency domain.

18




2. To develop an approximation technique for the
design of two-dimensional recursive filters to meet given
specifications in the frequency domain.

The frequency response of two dimensional filters is
inherently a volume in the space of magnitude, log wy and
log Wy This volume is the given or desired specification
of the filter, which in the separable case can be approxi-
mated by the combination of semi-infinite planes.

In this thesis we investigate how we can approximate
this volume by semi-infinite planes as an extension of
the approximation used in one dimension, i.e., by semi-
infinite lines. After determining the planar equations

which perform the given specification of the filter, we

investigate ways to get a transfer function; first, in the

continuous frequency domain and second for two-dimensional
recursive equations in the discrete variable domain.

The results of this study will classify those charac-
teristics that can be achieved by cascading simple canonic
factors, and indicate limitations that are imposed by
trying to achieve a particular frequency characteristic
(such as the fan filter) in as simple form as possible.

The approach taken here is to investigate the problem
in the continuous domain first, and then study the trans-
formation from continuous frequency (differential equation)

domain to discrete time (sampled data) domain.

19




C. PREVIEW OF RESULTS

We have proposed a geometric method to design two-
dimensional recursive digital filters. This is a new
method which is relatively simple and easy with respect to
other design methods. We have investigated properties of
some typical (canonic) factors and considered their stability
properties. In Chapter II we go through the basic properties
of two-dimensional filtering. 1In Chapter IIT we provide
background in terms of planar geometry for tﬁe discussion
in subsequent chapters. In Chapter IV we investigate the
properties of typical factors and their stability in continu-
ous variable domain. The new design technique, including
stability considerations, starting with the continuous
" frequency domain and extending to two-dimensional recursive
filters in the discrete domain, is presented in Chapter V.
The results are summarized and some comments for further
study are made in Chapter VI. It should be noted that the
results presented apply to guarter plane filters, as defined

in Chapter V.

20
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II. FUNDAMENTALS OF TWO-DIMENSIONAL RECURSIVE FILTERING

A. INTRODUCTION

There are many signals that are inherently two-dimensional
for which two-dimensional signal processing techniques are
required. The most common examples are, of course, images
in which the two variables are the spatial coordinates.
Image processing [15], [16] plays an important role in many
areas of scientific and technical research. Some examples
are satellite imagery radiography, radar, and biomedical
images such as acoustical holograms, medical x-rays, and
electron micrographs [2]. Not all two-dimensional data
come from an image. In prospecting for gas and oil, a
common procedure is to monitor the seismic signals produced
by detonating an explosive charge [17]. An array of geo-
phones situated along a line radiating in a vertical or
horizontal direction from the point of explosion is used
to record these signals. 1In this case, the two variables
are distance (from the point of explosion measured along
the line) and time (the time at which the seismic signal
reaches a given geophone or, equivalently, a given distance
from the explosion).

Although two-dimensional signals may be processed by
one-dimensional systems, it is generally preferable to con-
sider using two-dimensional systems.  Many of the basic

ideas of one-dimensional signal processing may be readily

21
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extended to the two-dimensional case. There are some

very important concepts of one-dimensional systems, however,
that are not directly extentable to two dimensions. It

is the goal of this chapter to discuss the basic ideas and
techniques of two-dimensional signal processing and to
illustrate them into the context of two-dimensional filter
design. A more detailed discussion of this theory plus

an overview of recent work in two-dimensional filtering is
contained in the excellent survey paper by Mersereau and
Dudgeon [18], and H. Chang and J.K. Aggarwal [19]. Other
useful references are the first few chapters of [l] and

chapter 7 of [2].

B. DEFINITIONS

1. Two-Dimensional Signals

One-dimensional signals are functions of a single
variable and two-dimensional signals are functions of two
integer variables. Consider the two-dimensional sequence
x(m,n) where m and n are integer variables, shown in figure
2.1. As in the one-dimensional case, tﬁe notation x(m,n)
is often shgrt hand for a sampled version of a continuous
two-dimensional signal x(s,t): 1i.e.,

x(m,n) = x(mTl,nTz) = x(s,t) (2.1)

s=mTl,t=nT2

One interpretation of x is a function which assigns a

(generally complex) number to each integer ordered pair

22




Fig. 2.1. Pictorial representation for two-
dimensional discrete arra Y
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(m,n). The function x is not defined when either or both

of its arguments (m,n) is not an integer. Such a signal

will be interchangeably referred to as either a two-dimensional

array, a two-dimensional sequence or simply as a two-dimensional

signal.

Some useful two-dimensional sequences are defined

below and shown in figures 2.2 to 2.4. These include:

1. Digital Impulse or Unit Sample

1 m=n=20
uo(m,n) = (2.2)
0 elsewhere
2. Digital Step
| 1 m,n > 0
u_, (m,n) (2.3)
4] elsewhere
3. Exponential
’ m n
a m,n > 0
L (2.4)

x(m,n)

]
.
o o

otherwise

4. Sinusoid (Complex)

3 (wlm+w2n)

x(m,n) = e - < m,n < +o (2.5)

As seen above, the two-dimensional step is related to the

two-dimensional impulse by

24




Fig. 2.2

Digital Impulse
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m
u_; (m,n) = ) ) u (my,ny) (2.5a)

2. Two-Dimensional Systems

A two-dimensional discrete system is defined as
the unique transformation T that maps an input sequence
{x(m,n)} and the initial condition sequence {s(m,n)} into

an output sequence {y(m,n)}

y(m,n) = T[{x(m,n)},{s(m,n)}] (2.6)

In signal processing applications, we assume zero initial
conditions. With this assumption, the above relation may

be shortened to

y(m,n) = T[{x(m,n)}] (2.7}

The system characterized by T is

(a) 1linear if

T[{axl(m,n) +bx2(m.n)}] = aT[{xl(m,n)}]+bT[{x2(m,n)}]

(2.8)
for arbitrary constants a and b.
(b) shift invariant if

y(m-m;,n-n,) = T[{x(m=-m,,n=n,) }] (2.9)

for all my and n,-

28
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A hardware and software system which is equivalent to the
transformation T of (2.6) is called a digital filter. The
class of complex-valued sequences which are square summable
will play the role of input and output signals of the
digital filter. Linearity and shift-invariance are indepen-
dent properties of a system in that neither property implies

the other. Thus the system

T(x(m,n)] = h(m,n) x(m,n)
is linear but not shift invariant and the system

£l 2

T[x(m,n)] = x"(m,n)

is shift invariant but not linear
For two-dimensional discrete linear systems, the

impulse response is defined as the response of the system
at (m,n) to a two-dimensional digital impulse input at
(ml,nl) with zero initial conditions, i.e.,

h(m,n;m;,n;) = T[{uo(m-ml,n-nl)}] (2.10)
where uo(m,n) denotes the digital impulse. In particular,

the impulse response of a two-dimensional discrete LSI

(Linear Shift Invariant) system is

29




h(m,n;ml,nl) = h(m-ml,n-nl)
or

h(m,n) = T[{u,(m,n)}] (2.11)
The response of a two-dimensional LSI*system with zero

initial conditions is completely characterized by its

impulse response. In fact using the identity

<o

x(m,n) = 2 x(my ,n;)ug (m-m;,n-n;)
ml,nl="°°
= i x (m-m; ,n-n,)u_(my,n,)
ml,nl=-°°
we get
y(m,n) = T[{ ]} x(m,,n;)u_(m-m, ,n-n.) }]
; S el ™ 1 1
= ) x(my ,ny) T({u, (m-my,n=n;)}]
ml'nl=-m
- -]
= ) x(my ,ny) h(m=m, ,n=n,)
ml’nl=-¢!

*1SI = Linear Shift Invariance

30




o]

y(m,n) = ) x (m-m; ,n-n, ) h(m; ,n;)
o it
= x(m,n) * h(m,n) (2.12)

where "*" denotes two-dimensional convolution. In other words,
for LSI systems the basic convolution theorem is valid.

3. Causality, Separability, Stability

In discussing various features of two-dimensional
discrete systems, it is convenient to have spectral nota-
tion (19] to represent certain regions of the spatial domain.

l. Let S(a,B) denote a sector with the angular

interval (a,B8). In polar form S(e,B) may be described by
S(a,8) = {(r,8)]|r>0,a<6<8} (2.13)
where (a,B8) are measured in radians. In particular, we

give the following notation for the sectors frequently

encountered:

s++ = §s[0,m/2]; S-+ = S[r/2,m]
§=-- = §[-m,-m/2]; S+- = §S[-m/2,0] (2.14)
S*+ = §S[0,m); S*- = S[-H,O)

where "[" and "]" imply including the boundary and ")" implies

not including the boundary.
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Notice that S++, S-+, S--, and S+- represent first, second,
third, and fourth gquadrants, respectively, and S*+ and Sx-
represent half-planes which are symmetric to each other with
respect to the origin. (See fig. 2.5.)

2. For a two-dimensional sequence {x(m,n)}, the

set

E = {(m,n) |[x(m,n) # 0} (2.15)
is called the support of {x(m,n)}.

3. Let {h(m,n)} be the impulse response of a two-
dimensional discrete LSI system, and let Ey be the support
of {h(m,n)}.

Then, a two-dimensional LSI system is said to be

causal ifE, is the set S++, and semi-causal if Eh is the

h
set Sx+. They are shown in Fig. 2.5.

A two-dimensional discrete LSI system is said
to be separable if its impulse response can be factored into

a product of one-dimensional responses (Fig. 2.6); i.e.,
h(m,n) = hl(m) hz(n) : (2.16)

If the equation (2.16) is not satisfied, the filter is said
to be nonseparable. The advantages of separaﬁle filters is
that two dimensional convolution (2.12) maf be carried out
as a sequence of one-dimensional convolutions. This can be

seen by rewriting (2.16) as follows.
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Fig. 2.5.
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> Hz(zz) e

H(z)

= Hl(zl)Hz(zz)

Fig. 2.6. Separable Digital Systems
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y(m,n) hl(ml)hz(nl)x(m-ml,n—nl) (2.17a)

hy(m) [ ] hy(n))x(m-my,n-n;)] (2.17b)

- nl=-q,

"
Il o~ 8

[
~

hl(ml) a(m-ml,n) (2.17¢)

where a(m—ml,n) is a sequence of one-dimensional convolutions
(obtained by evaluating the terms inside the bracket of
(2.17b) for each fixed value of ml). Equation (2.17c) shows
that y(m,n) may be obtained by a second sequence one-dimensional
convolution.

If both the input sequence x(m,n) and the filter
impulse response h(m,n) are separable, then it is readily
seen that the output sequence y(m,n) is also separable.

In this case we obtain the result [using (2.12) and (2.16)]

y(mmn) = [ ][ hy(m)bm-m)Il ] h,(n;)cin-n;)] (2.18a)

a(m) g (n) (2.18b)

where

x(m,n) = b(m) c(n)
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A two-dimensional LSI system is said to be (BIBO)
stable if every bounded input sequence produces a bounded
output sequence. This condition is satisfied if and only
if the two-dimensional impulse response of the system is

absolutely summable, i.e.,

) |lh(m,n)| < = (2.19)

m, n==o

As in tne one-dimensional case, (2.19) can be shown to be a <«
necessary and sufficient condition for stability [20]. One
problem with (2.19) is that it can be gquite difficult to
evaluate for an arbitrary h(m,n).

4. Two-dimensional Difference Equations

As iﬁ the one-dimensional case, two-dimensional LSI
systems can often be described by a two-dimensional linear
constant-coefficient difference equation relating the output
y(m,n) of the filter to its input x(m,n). The most general

form for such a difference equation is shown by

) a(kysk,) x(m-k;,n-k,) - ) b(Lid,)y (m=2,,n=2,)
(kyrky) eRy (29 ,%,) €Ry

(2.20)

where Ra and Rb are finite sets of spatial grid points,
called the input and output mask, respectively, and {a(kl,kz)}

and {b(ll,lz)} are the set of constant coefficients that
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characterize the particular filter. Generally, a difference

equation has a family of solutions as is the case with a

differential equation. The difference equation is said to

be recursive if there exists a sequence of computations which

yields the output sequence serially from the input sequence

and that portion of the output sequence which is already 1
computed, including the initial condition. An implicit

ordering of grid points in the spatial domain is assumed for

P

the serial computation of the output sequence. A
There are two cases of (2.20):
S Ra’ Rb in the S++ (first quadrant), b(0,0) # 0

and y(m,n) = 0 for outside of S++ (zero initial conditions),

then (2.20) represents a ‘causal system.

2. If Ra’ Rb in S*+, b(0,0) # 0 and y(m,n) = 0 for

outside of S*+ (zero initial conditions), then (2.20)
represents a semi-causal system.
In both cases we may assume b(0,0) = 1 without loss of

generality and write (2.20) as

y(m,n) = ) a(kqy,k,)x(m=k; ,n=k,)
(klr kz) ERa

- ) b(L;,2,)¥(m=2,,n=2,)
(2.1, 12)€Rb‘(010)

(2.21) 1

It is clear that (2.21) is a recursive equation, and the

implicit ordering, for example may be given as
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{140:0)5€1,0),10:1),02,1)3€2,00,12,1):00,2),00,2)3(2,2) 3444}
for a causal system, and

{(O,O)l(oll)l(Olz)l"';(-lll)l(oll)l(lll);"';°"

wwe €=L 28 ;l0,2Y 0 (Le2) jonsd sunl

for a semi-causal system.
If {b(2,2,)} = {u (2;,%,)} the equation (2.21)

becomes

y(m,n) = ] a(kq /ky) x (m-k, ,n-k,) {2.22)
(kl,kz)eRa

so that the output sequence is a weighted moving average of
the input sequence. The impulse response of (2.22) is
unique and is obviously {a(kl,kz)}. Such filters are called
finite extent impulse filters (FIR) because the impulse
response has only finitely many nonzero terms. FIR filters
obviously are always BIBO stable because a(kl,kz) is always
absolutely summable. (It has only.finitely many nonzerc
terms.)

If, on the other hand, the sequence {b(ll,lz)}
has several»nonzero terms, then the impulse response will
generally hgve infinitely many terms. We will say that such

filters are‘infinite-extent impulse response filters (IIR).
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Such filters may be BIBO unstable, and so it is necessary
to devise a stability test for such filters.

FIR filters have the advantages that they are
easier to design, that controlling the phase response is
easier (in particular, it is easy to produce filters which
have a linear phase response), and that since the input-
output relationship is a finite-extent convolution, Fast
Fourier Transform (FFT) techniquescan be used to speed the .
computation of the output sequence. On the other hand,
recursive (IIR) filters generally require less high speed
storage and usually require less computation time than FIR
filters. Comparison of FIR and IIR filters is contained ¥
in [S1-

5. Two-dimensional z-tranform

A useful mathematical tool for representation of a
sequence x(m,n) is its two-dimensional z-transform. Given
a sequence x(m,n), the z-transform of this sequer: = is

defined to be:

<« o

o -m

2[{xmmn)}] 4 X(zy,2,) & [ [ =xmnazz (2.23)

m==x nN==-=x

where z, and z, are independent complex variables. The most
useful property of the z-transform is the fact that the z-
transform of the convolution of two sequences is the product

of their z-transforms, i.e.:

39

B i T e — B




2[{x(m,n) }*{h(m,n)}] = X(zl,zz)H(zl,zz) (2.24)

Therefore, the input-output relationship of an LSI filter

may be expressed in the z-transform domain as:
Y(zl,zz) = H(zl,zz)X(zl,zz) (2.25)

where H(zl,zz), the z-transform of the impulse response
is called the transfer function.

A two-dimensional transfer function evaluated on
the unit circle is called the frequency response of the
system, i.e.,

*

e ’

Y( e ) = H(e r€ )X (e 1€ ) (2.26)

when a two-dimensional LSI system is describable by the

difference equation of (2.20), and we take a z-transform

of this, it follows that

!
~

S MR
[ J a(ky/ky)zy Tz, T1X(z2,)
(kysky) eRy
=y
- [ ¥ b(2yr2,)2

(llplz)eRb

1 =

40

2 e
z, ]Y(zl,zz) = 0

W



or

H(zl,zz) Y(zl,zz)/x(zl.zz)

(leZZ)ERb

A(zl’ZZ)/B(zl'ZZ) (2.27)

where A and B are the z-transforms of {a(kl,kz)} and
{b(ll,lz)} respectively. In particular when (2.27) repre-
sents a causal or semi-causal system, i.e., (2.27) is the
z-transform of (2.21), we can give explicit descriptions for
Ry and Rb in each case. For the causal case we define

(Fig. 2.5a)

R, = ((kj/ky)[0<ky <M, 0<ky <My}
(2.28)
Ry = ((23s25)[0<8) <Ny, 022,y <N}
For the semi-causal case we define (Fig. 2.5b)
(2.29)
Ry = {(R3/85)]0<2) SNgsly=0;=N <2y <N ,0<2y<Ny}

41 .
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and in both cases b(0,0) = 1 is assumed. The inverse

z-transform is defined as

x(m,n) = ———A;i-f f X(zl,zz)zl:lt_lnl zg-l dz

dz, (2.30)
A
1 2

where c1 and c, are suitable closed contours in the z, and
z, planes.

The two-dimensional Fourier transform of a sequence
is defined as

jml jwz
e ’

X ( e ) = Fl[x(m,n)]

= X(z v 2 )
& (zl,zz)erz

i -3 (wym+w,n)
- .} mtmme T 2 (2.32)

m, n=-o

For any given sequence the set of (zl,zz) for which the
z-transform converges is called the region of convergence.
Uniform convergence of the z-transform requires that the

sequence be absolutely summable, i.e.

I Ixmmn)|]zg| "z, < = (2.32a)

m, n==x
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Similarly, the Fourier transform X(e ,€ ) converges

uniformly to a continuous function of wy and w, if

) |x(m,n)| < = . (2.32)

A power series of the form of (2.23) is known as a two-
dimensional Laurent series in the theory of complex functions

in two variables.

6. Two-dimensional DFT

Let {x(m,n)} be a finite support sequence of the
size MxN. Then the two-dimensional discrete Fourier

transform (DFT) of {x(m,n)} is defined as

M-1 N-1 : m n
j2m (Ekl + ﬁkZ)

X(kl,kz) = Z Z X(m,n)e (2.33)
m=0 n=0

for 0 < kl < M-1 and 0 < k2 < N-1. Similarly, the inverse

discrete Fourier transform (IDFT) is given by
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k k
W Gl +32m (gt m+ =2 n)
X(m,n) = = 1 ) x(ky,ky)e (2.34)

k1=0 k2=0

Note that the DFT corresponds to sampling the Fourier trans-

form of MxN points, i.e.,

s

jwl jwz
X(kllkz) = x(e 1 © ) kl kz
w1=2“TT’w2=2"TT (2.35)
jml jwz
More generally, if X(e e ) is the Fourier transform

of {x(m,n)} whose size is greater than Mx N, then the
IDFT of {x(kl,kz)} will result in aliasing. In other words,
the IDFT of {X(kl'kz)} will yield one period of {x(m,n)}

where

x(m,n) x (m+m M, n+n, N) (2.36)

I
- ~ 8
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C. STRUCTURES OF TWO-DIMENSIONAL FILTERS

1. One-dimensional Digital Filter Realization

One-dimensional digital filters, in general, can

be shown in the z-transform domain as follows:

L
-2
I by oz
2=0 i
H(zl) = o = m (2.37)
-m
1= ] B, %
m=1

or, in the time domain

M k
y(n) = ] a y(n-m) + ! b, x(n-2) (2.38)
m=1 =0

The realization implementing equation (2.38) directly, is
known as the direct form 1 and shown in Figure 2.7.

Equation (2.37) can be rewritten in a slightly
different form by introduciﬂg a new variable, W(zl), such
that

W(zl) Y(zl)

Sl T Sy T ey S

The corresponding set of difference equations consists of:
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M

x(n) + 7} a_ w(n-m) (2.40)

w(n)
m=1

and

y (n) bl w(n=-2) (2.41)

"
I o~ B

2=0

Equations (2.40) and (2.4l1) are realized in the
direct form 2 as shown in Figure 2.8 which can be visualized
as a cascade realization of two digital filters, realizing
the denominator and numerator polynomials, respectively.
Figure 2.8 can be redrawn as shown in Figure 2.9. The
resulting realization is called direct form 3 or canonic
form, since it represents a structure with the number of
delays equal to the order.

At this point, an additional realization will be
introduced, the direct form 4, which combines the charac-
teristics of the direct forms 1 and 2 having only two
entries in each summer, which cérresponds directly to
hardware implementation and by realizing the numerator and
denominator polynomials separately in cascaded form
(Figure 2.10).

There are several other methods to realize a one-
dimensional Mth order digital filter. For example, the
cascade form of first and second order sections H(zl), as

shown in Figure 2.11, where
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X(n)

L
[ by 21-2
H(z1) = — M
Low A zIm
m=1 -
Wn Lo
. (n) $I :
-l -||
a jZl ZH
“ l b,

Nie
N

N
U
r

Fig. 2.8. Direct Form 2
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H(zl)

b, z.
P L =1
M
-m
1 - ) an %
m=0

Fig.

2.

9.

Direct Form 3
(Canonic)
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k
H(zl) = a i

A Hi(zl), k = = (2.42)

i=1

Each component Hi(zl) can be realized in one of the above
outlined forms.

Partial fraction expansion methods applied to
equation (2.37) lead to a parallel form realization of

first and second order sections (Figure 2.12), i.e.,

k
B{z;) = e+ ]
i=1

LM
Hi(zl), k = [—7—] (2.43)

Other forms of realization include hybrid structures,
i.e., parallel-cascade forms, the transpose configuration,
which can be obtained for all previously outlined structures
by reversing the direction of signal flow and by interchanging
all branch and summing modes, wave-digital and continued
fraction expansion filters.

The direct forms discussed above and the series/parallel
arrangement of lower order sections are by far the most
often used ones in computer simulation and in digital
hardware.

2. Two-dimensional Digital Filter Realization

Two-dimensional quarter plane digital filters, in

general form, can be shown as
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X () {Hz(zl) Y ()

K
H(z) = ¢+ I H;(Z)

Fig. 2.12. Parallel Form
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H(zlrzz)

1 2 i
) ) bzlzz 2 7 %,
2,=0 2,=0
(2.44)
N, %
-ml "mz
1- 1 Sam, 'L 2
ml=0 m2=0

The numerator of the two-dimensional transfer function (2.44)

can be written as a one-variable polynomial in Zyy weighted

by coefficients which are functions in zqs e T

L L % i
2 1 2y =,
N(zy,2,) = I 6 I By 2 2 (2.45)
L,=0 B,=0 T2
1
By 1
= 1 (N (z,))z, > (2.46)
Liks 172
2,=0

The same reasoning applied to the denominator polynomials

leads to

M, M) ' ¥
S TN
D(zy,2) = 1- ) (] %am, B2 %
m2=0 ml=0
(2.47)
M,
-m
= ]« 3 (Dy . (21))2, (2.48)
3 1™2
m2—0
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To obtain the direct form 3 representation, a new function,
W(zlzz) is introduced:

W(zl,zz) Y(zl,zz)

X(zl,22) : W(zl,zz) (2.49)

H(zlzz)

where each factor can be written using equation (2.46) as

L2 e
£ 2
W(zy,2z,) = ) (Nlizz(zl))zz X(z),2,)
2,=0
2
(2.50)
and equation (2.48) as
M2 -
ke 2
Y(zy,2,) = W(zyezy) + ] (DMl'mz(zl))z2 Y(z,2,)
m2=0
(2.51)

The realization of equations (2.50) and (2.51) is shown in
Figure 2.13 using compact notation, and Figure 2.14 where
NLllz(zl) and DMlmz(zl) are implemented for each (Lllz)
and (mlmz) by one-dimensional direct form 4 realizations.

The general form of two-dimensional causal digital
filter (2.44) can be rewritten by introducing a new variable,
W(zlzz) or in the previous function, then,

e TP L Sk ot

(2.52)
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Each factor can be written as:

1 2
~4y "%y
Y(z,,2,) I I by o 277 2z, © W(z;,2,)
2,=0 2.,=0 L 2
1 2
A (2.53)
and
Ml M /
-m,  -m,
W(zyr2,) =- X(27,2,) + )) Loap m Zp oz W(zy.zy)
m,=0 m,=0 172
1 2
o e (2.54)

The equations (2.53) and (2.54) can be written as a differ-

‘ence equation as follows,

1 2
y(m,n) = ) I by, Wm=2,,n=2,) (2.55)
2,=0 2,=0 12
y i 2
and
i NG
w(m,n) = x(m,n) + ] ) a o W(m-m,,n-m,) (2.56)
m,=0 m,=0 L
1 2
m M,y # 0 |
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Without loss of generality, Li is chosen equal to Mi for
all i. The structure realizing equation (2.55) and (2.56)
is shown in Figure 2.15. It is noted that the number of
delays in Figure 2.15 equals the order of H(zl,zz). The
structure is, therefore, by definition, canonic.

The direct form 4 (Fig. 2.10) realization of H(zlzz)
is shown in Figures 2.16 and 2.17, using compact notation and
one-dimensional direct form 4 (Fig. 2.10) implementation of

each N and D , respectively.
o 1,5,

D. STABILITY

Two major problems in the design of a recursive filter
are approximation and stability. Since the output wvalues
are used through feedback by the recursive algorithm, it is
possible for the output values to become arbitrarily large
independent of the input. A filter of this kind is said to
be unstable, which is an undesirable condition. Thus we
need to know what constraints to put on the recursive filter
coefficients, so 'that the filtering operation will be stable.
This problem is similar to the stability problem for the one-
dimensional case, except that the added dimension inherently
increases the complexity of the analysis. The major diffi-
culty is that the concept of zeros and poles does not hold
in multi-dimensional systems so that simple algebraic systems
extrapolation of one-dimensional results is not obvious.

. Stability Theorems:

Theorem 1 (Shank's theorem): A causal recursive filter

with the z-transform H(zl,zz) - A(zl,zz)/B(zl,zz), where A
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and B are polynomials in z, and Z,ys is stable if and only

if there are no values of z, and z., such that B(zl,zz) =0

2
for all z; > 1 and 2z, > 1. (In general we assume

ki ol 51 Sl
B(z),2,) = bgg + byg2) © + byy2, 1121 %3 e

that is an expression in increasing powers of zy and 22.)

In other words, the theorem says that if there are any

+ b

values (real or complex) of z, and z, for which B(zl,zz)

2
is zero for zq and z, simultaneously greater than or equal
to unity in magnitude, then the filter will be unstable.

It is much more difficult to determine the stability of
two-dimensional filters than of one-dimensional filters.
In the one-dimensional case, it is only necessary to locate
finite set of roots in the z-plane. In order to mechanize

the theorem, we must, in general, find the wvalues of z., and

d
z, for which B(zl,zz) = 0. There is no technique for locating
the zeros of a general two-dimensional polynomial in (21’22)'
Shanks, Tretial and Justice, in their paper [l1] proposed a
technique to apply theorem 1 to determine the stabiiity of

a two-dimensional recursive filter, H(zl,zz), by which the
unit disk in the z, plane must be mapped into the z, plane

by solving the implicit two-variable denominator polynomial

of H(zl,zz). A necessary and sufficientAcondition for
stability is determined if the map of the unit disk

d; = (21,22 > 1) does not overlap the unit disk

d

2 (z,,2, > 1) in the z, plane. This method requires an
infinite number of mappings and, therefore, can not be

applied exactly.
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Huang [20] simplified Shank's stability theorem
considerably by stating the stability theorem as follows:

Theorem 2: A causal filter with a z-transform

B2 r2,)
H(z,,2,.) = 1 2
e BZzl,zz)

where A and B are two-variable polynomials in Zy125, is
stable if and only if:
1) the map of the unit circle éd; = (zl,lzl|=l),

according to B(z ) = 0, lies outside of the unit disk

1473
4, = (22:|22131) in the z,-plane, and
2) no point in the unit disk 4, = (zl,lzllzl)
maps into the point z, = 0 by the relation B(zl,zz) = 0.
In order to apply this theorem as a stability test, we
have to map the unit disk 6d; = (zl,lzl|=l) into the z,

plane according to B(zl,zz) =0 or z, = f(z and

2 l)lizl|=l
to see whether the contour in the z, plane lies inside the
unit disk d2 = (zz,lzzlil). Also, it is necessary to solve
B(zl,O) = 0 to see whether there are any roots with magnitude
greater than 1.

Although theorem 2 is much simpler than using Shank's
original theorem, the procedure is still infinite in the
sense that, in principle, we have to map the unit circle
ddl into the zz-plane.

Ansell [21], whose main contribution is to couple the use

of a Hermite test for checking stability with a series of

66



Sturm tests checking positivity, has reduced theorem 2.
Although Ansell's results enable us to test stabilty in a
finite number of steps, it still is, unfortunately, very
tedious.

Make the change of variables:

Lt
1 1 + z1
and,
-z
Py = + 2z
and let
E(p,/P,)
ol 1y =2

where E and F are polynomials in P1 and Py- We can restate
Theorem 2 as follows.
Theorem 3 (Ansell's theorem): The causal recursive
filter H(zl,zz) is stable if and only if:
1) for all real finite w, the complex polynomial
in Py F(jm,pz) has no zeros in Rep, > 0, and
2) the real polynomial in Py F(pl,l) has no
zeros in Rep; > 0.
This theorem is essentially the same as Theorem 2, but
an advantage of Theorem 3 is that condition 1) can be

tested using standard techniques of circuit theory.
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Anderson and Jury [22] modified Huang's method by out-
lining a procedure which replaces the bilinear transforma-
tions by the construction of a Schur-Cohn matrix and checking
for positivity of a set of self-inversive polynomials. It
also replaces the Hermite test by a Schur-Cohn matrix test
and requires a series of Sturm tests or equivalently, a
system of tests establishing the roots distribution of a
polynomial. These modifications represent a substantial
reduction in computations as compared to Huang's method. We
will discuss stability considerations which are related to
our design technique in Chapter IV and Chapter V in detail.

In this chapter, basic properties of two—diﬁensional
digital filters have been reviewed and summarized includiné
semi-causality to establish a fundamental theory of two-

dimensional digital filters.
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ITI. MATHEMATICAL BACKGROUND FROM ANALYTIC PLANAR GEOMETRY

In this study, we propose using semi-infinite planes to
approximate a given frequency response of a two-dimensional
analog filters by extending one-dimensional semi-infinite
straight line approximation to two-~dimensional cases. For
example, as we will see, the frequency response (dB vs. log-

frequency) of the separable canonic factor

1
(l+jwlrl)(l+jm2T2)

H(jmlpjwz)

can be approximated by a collection of planes. This is
discussed in Chapter IV in detail.
To prepare for the discussions in the next chapters,
it is worthwhile to review and develop useful equations
from analytic planar geometry which are going to be used
throughout this study with some examples of how to use them.
The properties of the analytic planar geometry can be
summarized as-follows:

1. The general equations for a plane are given by
Ax + By + Cz2 + D = (3=d)
where A, B and C are the direction numbers of the normal
to the plane. The equation of a plane passing through the

point (xl.yl,zl) and perpendicular to the line which has

direction numbers of A, B and C is given by:
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A(x—xl) + B(y-yl) + C(z—zl) = 0 (3.2)

2. The direction cosines of the normal to the plane

are given by

5 A

cos a = (3.3a)
(AZ +Bz+c2)l77
B
cos B = (3.3b)
(A2 * BZ ~ C2) 1/2
C
cos Y =
(Az +B2+C2)1/2

where o, B8, and y are the angles that the normal makes with
the x, y, z axes respectively.
The relationship between direction cosines is given by

Cosza + C0528 + Coszy = 1 (3.34)

3. For a line joining points (xl,yl,zl) and (x2'Y2'22)

the equation is given by

Cos a = Cos 8 = Cos y (3.4)
S| Y=Y, o Wi

4. The equation of a straight line with the direction
numbers a, b, ¢ and passing through the point (xl,yl,zl) is

given by
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x.-%l ) Y-y, z-2z;

a i b . c (3.5)

5. The angle 6, between two intersecting lines with

direction numbers a, b, ¢ and a', b', ¢' respectively is

given by:
Cos 8 = Cos a Cos a' + Cos B Cos R' + Cos y Cos '
(3.6a)
or
Cos 8 = g8 _tEh o (3.6b)
\/a2+b2+c2 \/a'2+b'2+c'2
6. For parallel lines, the relationship between
direction numbers is given by
- B c
& B e i
7. For perpendicular lines:
aa' + bb' + cc' = 0 (3.8)

8. The direction numbers of the line of the intersection

between two given intersecting planes, with direction numbers

A, B, C and A', B', C' respectively, is given by




B c

a = (3.9a)
Bl Cl
C A

b = (3.9b)
(s Al
A B

(e (3.9¢c)
A' B'

The angle 6 between these two planes is given by

1 ] ]
Cos 8 = L (3.10)

VA2+BZ+CZ V&'2+B'Z+C'2

9. The equation for a plane in terms of its slope can
be calculated as follows:
As seen from Fig. 3.1, the slope, m, of the normal

line is given by

m = tan § = 8. = (3.11)
» 2t
A" +B
'm = slope of the plane
= - = -9 = —L
M tan(90° - 8) i = (3.12)
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Fig.

normal to plane

normal

3.1. A General Plane Configuration
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The equation of the plane is given by one of the

following:
A(x-x;) +By + Cz = 0 (3.13a)
Ax + B(y-y,) +Cz = 0 (3.13b) |
Ax + By + C(z-2)) = 0 (3.13¢) |
/
and
Ax, = By; = Cz; = -D (3.13d)

The intersection of the plane with the z-x plane

is given by

A(x -xl) +Cz = 0 (3.14)
and the slope, my, of this line is
% (3.14a)

Similarly, the intersection of the plane with the

z-y plane is given by

B(y-y;) +Cz = 0 (3.15)
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and the slope of this line, my, is
G R TR R

Substituting (3.15a) and (3.l4a) into (3.13)

yields the following alternate equations for the plane.

-m(x-—xl) - myy + 2z = 0 (3.16a)

I
o

-m X - mz(y-yz) + z (3.16Db)

“myX - m,y + (z'-zl) = 0 (3.16c)

The direction cosines of the normal in terms of

ml, m2 are

Cos o = (3.17a)
2
\/ml +m," + 1
Cos B = (3.17b)
2 2
\/m:L +my” + 1
e 1
Cos vy = (3.17¢c)

2 2
VG& -+m2 +1

Substituting (3.14a) and (3.15a) into (3.11) and

(3.12) yields

m = _— (3.18a)

S e




and
M = - m1 -sz (3.18b)

The angle, 6, between two intersecting planes from

(3.10), (3.14a) and (3.15a), is given by

1 ]
e e W 5 (3.19)

2 2 12 '2
\/ml +m, +1\/m1 +my,” +1

Cos 68 =

The direction numbers of the line of intersection,

from (3.9), (3.14a) and (3.15a) are given by

a = (mé - mz) ec" (3.20a)
b = (mi - ml) cct (3.20b)
c = (m]'_m2 - méml) ce? (3.20¢)

The direction cosines of this intersection line

are given by

m! -m
Cos ¢ = 2 2 (3.21a)
\/(mé -mz)2 + (mi -ml)z + (m]'_m2 -méml) $
o B
Cos B = (3.21b)

\/(mé -mz)2 + (m]'_ --rnl)2 + (mim2 -méml)2
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Cos y = (3.21c)

\[(m - m,) +(m - ) +(m12—mzml)

10. When two planes are added in one dimension to form

a new plane, the following results. Given two planes

"My X - Moy +2 -z, = 0
-mix - myy + 2 = zi = 0
Their sum in the z-direction with 2" = z' + z is
given by
-(ml-rm')x - (mz-kmz’)y + z" - (zl-+zi) = 0

The slopes of the intercepts with the zx and zy planes

3
[
=
]

-(ml + mi)

=
N—
"

Tty Wy )
The slope of the normal is given by

m' = [m +nD? + (my+my 2172 (3.22)
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To aid in comprehension, two examples follow:

Example (l): Given my (slope in z,x plane), my

(slope in x,y plane), and X (the point at which x-axis goes
through the plane). Find the equation of the plane.

The general plane equation (3.1) is given by

Ax + By +Cz+D = 0
When z = 0
- B oD
o L aY¥ "z
RO - - (RRRRTES :
my = Fy - Y (given)
and
D ;
R (given)
When y = 0
. Ry al
o - A
= 49z _ _A i
R —E C (given)
and
- R
“1 c
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P

If we substitute these into the general equation, the result is

A N
Ax - Am3y ﬁ;z - Axl = 0
or
X -~ My = -Lﬂ -%, = 0
3 my 1
or
zZ = mX - MM,y = X;my (3.23)

As shown here, we can derive the plane equation easily
from the given specification. After finding this equation,

we can find the canonic factor by simply letting

x = log wy
Yy = 1log w,

2
g = 10 log |T|

Alternately, we can go from the canonic factor to equations.

Thus equation (3.23) can be written as

10 log IT(jwl,jwz)lz = m log wy = MM, log wy = 10 log K
| (3.24)

where

10 log K = m, Xy

i




|

= - ; ’ -

C ho e " i e e e T e T =T
;S .

This result assumes that

P
Vit Aok 1P, (3.24a)
J lIJ 2 K q .
e
Taking the logarithm of (3.24a) yields
10 1og |T|?® = 10 p log w; - 10 g log w, - 10 log K
(3.25)
By equating (3.25) and (3.24), we get
10 p = my (3.26a)
10 g = mym, (3.26b)

It follows from (3.26a) and (3.26b) that

my = q/p -

Thus the transfer function of (3.24a) has a logarithmic
characteristic as sketched in Fig. 3.2.
The previous result can be extended to the following

transfer function

(1 + Juy)P/2

(3.27)
K21 + ju,)V?

T(Juyriuy) =

By substituting (3.26a) and (3.26c) into (3.27), then
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[ i o ‘A;’w
.

—

2=120 longl

Fig. 3.2

: . 24
IT(]wl,jw2)|

20 log |T| = m

mzwwwmy‘mv- I e e —
P - - . -

The logarithmic characteristic of

2
it

szq

4
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m, /20
( ) 1+ jwl)
T jw ij = (3.28)
1 2 1/2 : m,/20
K (1 + sz)
When wy << 1 and wy << 1l , region I
!
T(jwl'jwz) = K-l/2 ‘
and
{
A
20 log |[T| = - 10 log K
When wy << 1 and wy >> 1, region II
T(jugrJuy) - m./20
/2 s 2
K (jwz)
and
20 log |T| = =- 10 log K - m, log w,
when ‘5 1 and wy >> 1, region III
20
(Fu )ml/
1

T(jr.ul:jwz) = 72—

* =
i

e o L W L YT ——— T —

- 10 log K + my log wy

.




When By P> 1l and wy >> 1, region 1V

_ ml/20
le
T(jwqrJws) =
1772 1/2,, Ba/20
K (sz)
and
20 log |T|] = = 10 logk *mlog w; - m, 1log w,.

The resulting planar approximation for the logarithmic
‘transfer function is shown in Figure 3.3
Example 2:
In this example, we derive planar equations from the
given transfer function.

Given a separable two-dimensional transfer function:

T(juyrduy) = B ‘ (3.29)

(143wt Pl +juyr,)

The magnitude square of the transfer function (3.29) is

given by

K2

; i 2
T(JwqrJws,) = (3.30)
I 1 2 | (l+wlzrlf)p(l+w22122)q

Take the logarithm of both sides of (3.30),
10 log |T|? = -10p log(l+w,?t;%) -10 q log(l+w,?t,%) +20 log K

(3.31)

when Wy Ty << 1l and WyTy << 1, the equation (3.31) becomes
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4¢»a=zoh‘rrl

=|=&u,

4
| -
L ]
= ]
L ] \
d=lorw, | =
| 5 i
—p 1:’08““
I I
hi J\'4
Fig. 3.3. The logarithmic character%stic of

(1 + ju)M1/
T(jw rjw ) =
L i v e jmz)Mz/zo

20 log |T| = =10 log K + m;log w; = m, log w,
84
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10 log [T]z = 20 1log K = C

where C is some constant.

or

and we

Z

or

When wyTy >> 1 and WweTy > 1,

10 log |T|2 = =20p log wyTy T 20g log WyTy
+ 20 log K
10 log |le = =20p log wy < 20g log wy = 20p log Ty
-20q log T, * 20 log K
2
z = 10 log |T|
x = log wy
y = log wy

get the planar equation,

-20px - 20gqy - 20p log By 20gq log T, + 20 log K
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Tqu
1 "2
(=20p)x + (-20Q)y - 2 = 20 log ("__E__-)
or
m; x + myy -2z = Kl
where
m = slope of the line (x,z) plane
= =20 p db/decade.
m, = slope of the line (y,z) plane
= =-20gq db/decade.
In a similar manner the regions (wlrl << 1;
wyTy >> 1) and (mlrl >> 1; WwyTy << 1) can be investigated.

The planar approximation for the logarithmic transfer function
is sketched in Fig. 4.1 where q = p = 1.

In this chapter we have developed some useful planar
geometry formulas and shown how they can be used tc determine
a planar approximation for the two-dimensional logarithmic
transfer function for separable cases. Some non-separable i
factors are discussed in the next chapter in which experimental

verification of this approximation technique is also presented.
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IV. CANONIC FACTORS IN CONTINUOUS FREQUENCY DOMAIN

In Chapter III, we discussed some equations of planar geo-
metry and showed how to use them for approximating separable two-
dimensional transfer functions. 1In order to improve the scope
of the proposed design technique, we now consider the behavior
of other separable and non-separable factors insofar as
their planar geometry approximation is concerned. This will
provide insight into the frequency response characteristics
of two-dimensional systems and indicate what can be expected
by cascading these canonic factors, knowing their individual
behavior. The logarithmic characteristic of cascaded factor
is simply the sum of their individual logarithmic character-
istics. This approach parallels the semi-infinite line
approximation (dB vs. log w) technique which has been used

so successfully in one-dimensional design.

A. SEPARABLE FACTORS
The following several separable canonic factors are now

considered.

(1) R+ Jegtg IFWL + Jrgug)® (4.a)
(2) (1 + oyt P+ oyt ) V(L + Juyr )Y (4b)
(3) [+ (Jugry)?1® - (4.c)

where p, g and a are integers.
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(1) First, as an example of the technique, consider
the following analog separable transfer function, the first

separable canonic factor with p = g = -1;

1
(l-Fjwltl)(l-+jm212)

H(jwlrjwz) (4.1)
The logarithm of magnitude-square of this function
is given by

2

10 log lH(wl,wz)Iz = =10 log(l +uw, 112) - 10 log(l-+m22122)

(4.2)

Let us define the following for simplicity of notation.

z = 10 log |H(uj,wy)|? = 20 log |H(w,u,)| (4B)
(4.3a)

x = 20 log w; (4.3Db)

y = 20 log w, (4.3c)

Consider the regions in the (ml,wz) plane (as seen
in Figure 4.2) as follows:
Region I, when w;7; < 1 and w,Ty < 1,

then 2z = 0 db (4.4a)

Region II, when wyTy > 1 and WyTy < 1

~

z -20 log (wlrl) db " (4.4b)
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Region III, when wyTy < 1 and w > 1

a%s
z = —20'1og(w212) db (4.4c)

and

Region 1V, when wyTy 2 1l and o >k

3T
z = -20 log (wyTy) - 20 log (w,t,) (4.4d)

The above equations (4.4a), (4.4b), (4.4c) and (4.44)

can be expressed as

Region I, z =0 (4.5a)
Region 1II, z = =x - 20 log Ty (4.5b)
Region III, 2z = -y - 20 log T, (4.5¢c)

Region 1V, zZ ==-x -y - 20 log Ty = 20 log Ty
(4.54)

These equations describe four intersecting planes in
X,Y,2 space as shown in Figure 4.1.

Plane I is the horizontal plane at zero db. Plane II
and Plane III have slopes of -20 db/decade passing through
the corner lines as indicated in Figure 4.1. These lines

are analogous to the break point frequencies of one-dimensional
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42:20l0g|H(w, w,]|

WaWeL 20 ’fﬁ X=lag w,
- >

slope ==20d8

slope == 2048

Fig. 4.1. Planar Approximation for

H(w, ,w,) - 1 .
172 (l+3wltl)(l+jw2T2Y
20 log |H(w,,w,)| = =10 log (l+w,2t.2)
9 1'% B
=10 log (l+w22122)
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? Y=log w,

i1

Wzs"
x:l°9V’|
—p
Wy = n,
[
Fig. 4.2. The regions of
H(jw, rjws,) 3
Uy rddg (TFw, 1) (TFJu,T,)
20 log |H(w,,w,)| = =10 log (l+w 4. 3
1793 g ik
25 2

-10 log (l+w2 T, )

in (log wl,log wz) plane
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log-modulus plots. Several properties of this plane are
summarized. Pertinent equations from analytic geometry are
given in Chapter III.

The actual frequency response of this separable
canonic factor with Ty T W 1l is shown in Figure 4.3a
(dB vs. log wyr log wz) which fits the planar approximation.
In Fig. 4.3b, the contour plot of the frequency response is
given, which verifies the regions in log wy e log Wy plane
shown in Fig. 4.2. The logarithmic plots versus linear
frequency are given in Fig. 4.3c and Fig. 4.3d. It is

apparent that the approximation regions are well defined

‘'when logarithmic frequency is used.

The frequency response of this separable canonic

factor with Ty & 1 D 2 is given in Figures 4.4. These

results again confirm the logarithmic approximation.

(2) Next consider the canonic form

1

H(jwl,jwz)

where we have two separable factors of woe The frequency
response of this factor with L Y L Ty 2 and T4 = 4 is
shown in Figures 4.5. As seen from this figure, we have
-40 dB/decade slope in the direction of wyrs as expected

from the one-dimensional case. The regions are shown in

the contour plot with dotted line (Fig. 4.5c¢).




In a similar manner we can analyze these regions as
follows: The logarithm of magnitude square of this function
is given by

2 2.2 2 2
10 log [H(ujrup) |© = = 10 log(l+w;“t;%) - 10 log(l+uy?r,?)

2 2

= 10 log(1l + wy T4 ) .

Consider the following regions in (wl,mz) plane (as
seen in Fig. 4.5a) as follows:

Region I, when wyTy << 1l and o << 1

2°% = *2%a
then z = 0 dB.
Region II, when wyty > 1 and WyTy < wyTg << 1
z = - 20 log (wyt;) dB

Region II, when wyTy << 1 and WyTy < wgaTgy << 1

dB

N
0

-20 log (wzrz) - 20 log(wzr3)

Region IV, when wy Ty >> 1, >s> 1

w2T3 > (D-2T2

z = =20 log wyTy = 20 log wyt, = 20 log w

2'3 *
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Region V, when wyTy << 1, wyTqg > 1, WoTgy >>wyTy >> 1
zZ = =20 log(m213) - 20 log(wzr2
Region VI, when By Ty ¥ L WoTg > Toug >> 1

Z = = 20 log w - 20 log WoTy = 20 log W4Ty

17¢
where
z = 20 log |H(uwjr7,)|
(3) Consider the separable canonic factor now,

H(wlrwz) = [1 + (jwlTl)p]a

We can show that the following regions occur by

using the notation of (4.3a) and (4.3b) for simplicity:
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1
(1+jwl)(1+jm2)

Fig. 4.3b. The contour plot of H(wl,wz) =

z = 20 log |H| = =10 log (1+w12) - 10 log (l+m22)
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Fig. 4.3c. The frequency response of
1

z = 20 log|H| = -10 log(l+w ) -10 log (L+u,?)

(dB vs. wl,mz) (linear frequency)
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Fig. 4.3d. The contour plot of H(wl,wz) = (1+jwiTTl¥3&;T
z = 20 log|H| = =10 log(l+w;?) - 10 log(l+w,?)

(linear frequency)
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(dB vs. log wl,log wz)
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Fig. 4.4b. The contour plot of the frequency response of

1

H(wjwy) = TFay) (1+32%a

2)
z = 20 log|H| = -10 log(1+w12) - 10 log(l+4w,?)

in (log wl,log “2) plane
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Fig. 4.4c. The frequency response of

H(juy ,Ju,) = 1
Jug rJuy (THja;) (1+326,)

- PPN

z = 10 log|H| = -10 log(l+w12) - 10 log(l+dw,?)
(dB vs. wl,mz) (linear frequency ccale) 1
|
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Fig. 4.4d. The contour plot of the frequency response of
1
2 ;
(l+ml )(1+4.u2

i L A z;

z = 20 log|H| = -10 log(l+w;?) = 10 log (1+4u,?)

(dB vs. “1'“2) (linear frequency scale)
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1
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in (log wl,log wz) plane
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Fig. 4.5b. The frequency response of

H(jwq 0 Ju,) = x
s R (l+jwi§(l+j2w2)(l+j4w27

z = 20 log|H| = -10 log(l+w;?) - 10 log (1+4u,?)
-10 log(1+16w,?)

(dB vs. log wl,log mz)
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.5c. The contour plot of the frequency response of

Byl % 1
H(Juw;,jw,) = (T+3wy) (T+320,) (I+34w,)

>

Fig.

z = 20 log|H| = -10 log(l+w;%) - 10 log (1+4u,?)
-10 log(l+l6w,?)

(log wy VS. log wz)

105

S o




Fig. 4.5d4. The frequency response of

1
(l+jm1)(l+j2w2)(1+j4m2)

H(jml,jwz) =

z = 20 log|H| = -10 log(l+w %) - 10 log (1+2u,°)
-10 log(l+16w22)
(dB vs. wl,wz) (linear frequency scale)
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Fig. 4.5e.

z = 20 log|H| = -10 log (1+w12) - 10 log(l+4uw %)

The contour plot of the frequency response of

oG 1
H(Jwy  Jwy) (T+36,) (324, (T#34u,)

2

-10 log (1+16w,?)

(linear frequency scale)
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Region I, when wy > 1/11,

z = apx + 20ap log Ty dB

Region II, when wy < l/rl

z = 0 dB

These separable canonic factors are identical to

the canonic factors of a one-dimensional transfer function.

They are just an extension to the two-dimensional case.

Therefore, they need not be discussed further.

B. NON-SEPARABLE FACTORS

The following non-separable canonic factors are now

considered.
1) 4 (Fug® desnd T (4.
(2 R G ® Juarsl Tl (4.e)

where p, g and o are integers.
(1) First, consider the non-separable canonic

factor of the form:

H(uprwy) = [1+ (Guyt)PGu,t )4
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Region I, when

~—-

Z = apxXx + agy + 20ap log Ty ¥ 20 ay log T, dB

: The cornerline between the two regions is given by the

equation

u)l mzq Tlp Tz
or

px + gy + 20p log t; + 20q log 1, = 0

The cornerline is sketched in Figure 4.6.
The slope of the plane in region II is given by
-anz + q2 . Direction numbers of the normal are given

by =-ap, -ag and -1l.
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wy=w,= 1 / _’leog-”

Fig. 4.6.

" .
= P

The regions of non-separable case in
log Wy log wy plane
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Depending upon the sign of p and g and the magnitude of
T and T, several different orientations of the cornerline
are possible.

Example (1)

Discuss this canonic form in the special case with
pP=9g=1, a =+l, t; = 0.5, and v, = 1. The transfer

function gets the following form:
: : +1
H(wyrwy) = (1 + (-Sjwl)(sz)]
Take the logarithm of the magnitude square.
2 +2
|H(m1:w2)‘ = |1 - O-Swlmzl

z = +20 log|l - .5wlw2l

In region I, wyTy << 1l and wyTy << 1

e

In region 1I, wyTy > 1 and WwaTy >> 1
zZ=x + y + 20 log (0.3)
where
x = 201log w3, Yy = 201log w, and z = 20 log |H(wyruy) |

The actual frequency response of this factor is shown in

Fig. 4.7 including a contour plot.
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X

jwy) (30.5w,)

1

z = 20 log|H| = 20 log (1 - 0. 5w w,)

The frequency response of
1 sz) =1 + (jw

H(jw +J

Fig. 4.7a.

(dB vs. log ml,log wz)
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Fig. 4.7b. The contour plot of the frequency response of
H(jml.jwz) =1 + (jwl)(jO.Swz)
z = 20 log|H| = 20 log (1 = 0.5w w,)

in (log wl,log wz) plane
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When o = -1 we have a stability problem in this example.
The denominator of this transfer function becomes zero

when

1 = O.Smlmz = 0

or

wlmz =2

This is the singularity of the transfer function in (wlrwz)
plane. It can be called a singular line of the system. It
is a curve in the (ml,wz) plane to be compared with a pole

in a one-dimensional transfer function.

Example #2:

In this example, we discuss the same canonic form

with different coefficients, i.e.,

= 0.5 , = 1

3 *2

Then the transfer gets the form of

.Swl)
2

Hwprug) = (1 + s

TR

I T o NP




Taking the logarithm of its magnitude squared

Suw
2 1,2
Bl |® = 1+ L
.Swl
z = +20 log |1 + |
w
2
.Swl
In Region I when << 1
“2
z = 0 dB.
.Swl
In Region II, when = >> 1
2
2 = 20x - 20y + 20 log (.5)

. The

where x = log w;, ¥ = log w, and z = 20 log |H(m1,m2)

boundary between these regions is given by the equation
.5wl = uy

We also have a stability problem for this canonic factor when
wy = 0. This is also a singularity in (ml,wz) plane in the
form of a straight line. This type of factor is unstable.

(2) Now, consider the non-separable canonic factor
H(wl:wz) = [1 + (jmlml + jmzmz)p]a

We have two regions again, as follows:

Region I, when w3ty * WyTy < 1

z = 0 dB
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Region II, when wyTy tw,T, 1

z = ap log (wlrl-+w2r2) :

The separation line between the two regions is

given by the equation:

or

The locus of points of (4.6) is shown in Figure 4.8.

“43%1

log

+ WyTy = 1l

(mlrl-bwzrz) = 0 .

(4.6)

For region II, we have to think of two conditions,

as follows:

a) When w

g

b) When wyTy

Thus, region II is split into two areas with the

line given by

B |

= opx + ap20 log T

A

wae

aqy + ap20 log Ty -
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4.8. Locus points of log(mlrl + wztz)
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Frequency response of this non-separable transfer function

is shown in Fig. 4.9 withp =1, a = -1, =T, = 1.

C. CONCLUSIONS

In this chapter, we discussed the properties of the
separable and non-separable two-dimensional properties of
canonic factors in the analog domain (ml,w2 plane). We can
conclude that these canonic factors can be approximated by
planes in the log magnitude versus log wy and log w, space.
As a design technique we can obtain any given frequency
specification by proper combinations of planar approximation
of canonic factors. It is obvious that only certain special
cases and symmetries can be obtained using the factors dis-
cussed in this thesis. For example, a wedge-shaped character-
istic in frequency domain could not be synthesized by means
of the factors we have considered.

The other result of this study is the stability problem
which arises in certain transfer functions, that is, the
singularity curve or line. For a separable case, we don't
have a stability problem; but in non-separable cases we may

have stability problems.
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Fig. 4.9b. The contour plot of the frequency response of

1

BiJw) nig) =2 T 0, * 3u,

z = 20 log|H| = 10 log |1 + (w +u,)?|

in (log Wy log wz) plane
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Fig. 4.9c. The frequency response of

AR 1
H(]ml,sz) DR jwl + jwz

2 = 20 log|B| = 10 log |1 + (u +uw,)?|

(dB vs. wl,mz) (linear frequency scale)
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