
A0 A073 9M NASSACMJSCTTS INST OF TECH CAeR!OIC LAS P0* CO~~U1’E—tTC “S WE
LMO*ATO*T FOR COIWUTER SCIENCE PROORESS REPORT IS. (UP
At 75 N I. OCATOUZOS N000fl—75—C-056I

LJICLAUIFIED LCS-~~—* S it

2 _—_ _
I

I - 111 L 1

_____1L=]IJflfl WN9D
[U l~CI1fl~~—sill
_E __

‘ O ~ IE8 II 2.5
I. L

____ 2.2

I. ’
L OOI~0

IIIlI~11111’ .25
~ ~

MICROCOPY RESOLUTION TEST CHART
NMIONAL BURLAU OF STA NDAR DS- 963 -A

- .

LABORATORY FOR ~~~~~~~~TS

• COMPUTER SCIENCE TECHNOLOGY

Progress Report 15
July 1977 - June 1978

CII~~

~~~~~~~~~~~~~ 
f t ~

H
545 TECHNOLOGY SQUARE, CAMBRIDGE , MASSACHUSETTS 02139

79 09 17 064
-~~ 

-
~~-~~~~~ -~~~-~~~~~

~~~~~~ ) 
W~~~~~~~~~~~~~~~~~~~~~~~~~~~~ r~~~~~~~~~~~ l, -~~~~~~~~~~ -

— —
~~~~ — -

CUR ITY CL A SS IFIC ATION OF THIS PAGE (WPe n 0.1. Enf.r.d)SE 

REPORT DOCUMENTATION PAGE READ INSTR UCT ION S
__________________________________________________ 

BEFORE_COMPLETING _FORM
I. REPORT NUMBER

LCS Progress Report 15 
oov r ACCESSION No. 3. RECIPIENrS CATALOG NUMBER

Laboratory for Computer ScIence / &AF~~~ .~~~ÔE5IEPORT & PERIOO COVERED

~~
i 1

~-u. JJ~~~~~~ Progress Report 7/77-6/78
Proaress Report 15 __!

TtIiT 1977 - June 1978 
~~~ 

tC~~ y~~II ORG. REPORT NUMB ER

7. AUTHOR(.) S. COtITRACT OR GRANT NUMBER(.)

ILaboratq~y
~~~~~~~ 

Computer Science Participants 
~~~~L (~J I~~~~ -~!9.~1 Di rector 

_ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~~~~~~~~~~~~~~ ~ 94Re~
55 ‘0. PROGRAM ELEMENT , PROJECT . TASK

¼ AREA 6 WORK UNIT NUMBERS

(fo rmerly Project MAC )
Massachusetts Institute of Technology
54~ 

Tochnnlnny cgIJirP , rambridg~ , MA 02139 __________________________

I I .  CONTROL LING OFFICE NAME AND ADDRESS 12

Advanced Research Projects Agency 
~~~~~~~~Department of Defense

1400 Wilson Blvd., Arlington , VA 22209 _________________________
¶4. ~ QI~ IT ORIN,~ AGENQf NAME & AOQRESS(II dlff.r.n t from Controffing OHS ci) IS. SECURITY CLASS. (of SAl. r.pore)
0tt~ce or Nava i i~esearcn
Department of the Navy Unclassified
Information Systems Program

~~.. DECLASSIFICATION/ DOWNGRADING
—

Arlington , VA 22217 SCHEDULE

16. DI STRIBUTION STATEMENT (of SAl. R.port)

Approved for public release; distribution unl imi ted

~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~ 
~~‘ /

17. 4TRIBUTION STATE MENT (of A. .bitr.cS .nt.r .d In Block 20. II *lff.,.n l from R.porf)

/ / ,,, 
~,,‘i/...

I _ _  
~~~~~~~~~~~~~~~~~~~~~~~ 

I

16. SUPPLEMENTARY NOTE~Geographically Distributed Systems Semantics of Distri buted Systems
Local Network Planning Systems
Si ngle-user Computer Data Intensive Planning
Distributed Operating Systems

IS. KEY WORDS (Conllnu. on n v.,.. .Sd. H n.c...m ’y med ld.nUty by block numb.r)

Real-time computers Computer Languages Automata Theory
On-l ine Computers Computer Networks Morse-Code
Mul ti-access Computers Information Systems Knowledge-Based Systems
Dynamic Modeling Progranining Languages Complexity
Computer Systems Computation Structures Personal Computers

20. ABSTRACT (Conllnu. on r•vira • old. If n.c....Iy aid ld.ntlfy by block n,aib.r)

Annua l sumary report of progress made at the Laboratory for Computer
Science under this contract during the period July 1977 - June 1978.

ac

DD
~~~~~~~~~~ 

1473 EDITION OP I NOV 65 IS OU5OL~~TE

S/N 0 102 014 660 1 
~~

— /SECURITY CLAS$IFICATION 0’ THIS PAGE (mime Die.

_ _ _  _ _ _ _ _  

//~~ / ‘/
‘

..~~, ~~~~~~~~~~~~ ,
~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~

H” ‘II~~~~~~ 

~~~~~~~~~~~~~~~~ 
,- -. —--—w y-~- - —

~
-—

Work reported herein was carried out within the Laboratory for Computer Science
(formerly Project MAC), an M.I.T. interdepartmental laboratory. During 1977—1978 the
principal financial support (657.) of the Laboratory has come from the Defense
Advanced Research Projects Agency (DARPA), under Office of Naval Research Contract
N000 14- 75-C-066 I. DARPA has been instrumental in supporting most of our research
during the last 1 5 years and is gratefully acknowledged here.

Reproduction of this report, in whole or in part, is permitted for any purpose of the
United States Government. Distribution of this report in unlimited.

- —
. - ~ * -~~~~~~~

- ‘I ’ ,. - , -

..‘
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ 

— .- -.—-



LABORATORY FOR COMPUTER SCIENCE
PROGRESS REPORT 15

JULY 1977 - JUNE 1978

LABORATORY FOR COMPUTER SCIENCE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

CAMBRIDGE, MASSACHUSETTS 02139

Acce~~5~~C’ : ;•r~ 
—

D~ O TA~
L~~~~;r~:-U . C .

~

• ~f j c ~~ ~~~~~~~~~~~~~~

- .- ._ . -~ ‘. ,4  i~
,— /

- 

~~~~~~~~~~~~~ ~~~-~~~~-~
‘

r-~~~~c r ~~.

--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - .—•—._a_J. _,_.-._~_4__

- ~~~~ - -

-~~ ~~~~~~~~~~ _~~~
, -,

- ________
-

-—.--—---.—---—-—-------- ----—---- -—--------— -—--~--—~———- - - - --— - - -- -

TABLE OF CONTENTS

INTRODUCT ION I

COMPUTER SYSTEMS RESEARCH GROUP 5

A. Introduction 7
B. Distributed Update Management 7
C. Systems Issues in Communications 7
0. Issues in Object-Oriented System 8

DATA BASE SYSTEMS GROUP 13

A. Introduction 15
B. Automatic Data Base Design 1 5
C. Query Optimization 18
D. Transaction Cost Estimation 21
E. Automatic Data Error Detection 23
F’. Automatic Data Error Correction - 24
G. Data Base Modeling 26
H. Office Automation . 29

DISTRIBUTED_SYSTEM SEMANTICS WORKING GROUP 37

A. Introduction 39
B. Study of Applications 41
C. The Target of the Project 43
0. Entities . 46
E. Reliability Issues 50
F. Language Constructs f or Sending and Receiving Messages 54
G. Protection Issues 58

DOMAIN sPEcIFIc SYSTEMS RESEARCH GROUP 67

A. Introduction 69
B. CONSORT: Compile-Time Technology 69
C. MuNet: Object-Time Technology 70

KNOWLEDGE BASED-SYSTEMS GROUP 75

A. Research Summary 77
B. Knowledge Representation and Natural Language Processing 77
C. Natural Language Query to an On-Line Data Dictionary 78
0. Automatic Programming 78
E. Scope of Our Current Work 78
F. Very High Level Language Design and Implementation 79
G. Data Processing System Design 80
H. Automatic Code Generation 81

.‘ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~. - - - - ~~~~~~~~~~~~~~~~~~ -

LOCAL AREA NETWORK WORKING GROUP 85

A. Introduction 87
B. Hardware 87
C. Software 89

PROGRAMMING METHODOLOGY GROUP 93

A. Introduction
B. CLU Definitions 95
C. CLU Implementation 96
D. Specification and Verification of Data Abstractions 103
E. Incorporating Abstract Data Types in Stack-Based Languages 101
F. Synthesis of Synchronization Code - 105

PROGRAMMING TECHNOLOGY GROUP
-

121

A. Introduction 123
B. Morse-Code 123
C. interpersonal Communication 131
D. Other Projects 134

TECHNICAL SERVICES GROUP 145

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS 149

~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~ 

-
~~~

-
~~~~

-
~~~~~~~~

--— -.--
~~~~~ 

- — -~~~~~ 
-
~~~~

- - -

ADMINSTRATION

Academic Staff

~t L Dertouzos (~r.ctor
J. Moses - Assoclats DIr.ctor

Administrative Staff

M. E. Baker AdministraUve AssIstant
P. G. Heinmiller Ubrarlan
H. S. Hughes A&ninistraUve Services
E I. Ka,npits Administrative Officer
C. P. Kent Assistant Fiscal Officer
T. L Lightburn FiSCal Officer
G. W. Oro Fiscal Consdtant
G L Wallace Purchasing Agent

~~~~~Staff

G. W. Brown D. Kontrinsis
L S. Cavallaro E. Profiro
It J. Cummings T. Ramos
S. Geitz T. S.My
J. Jones P. Vanclid

____— -~~~-—— -  _ _ _

• _ ? f ~~~~~~~-. - - 
-

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~‘.r q~~ ~~
- —

.

-
-—

INTRODUCTION

- INTRODUCTION

This annual repor t to the Defense Advanced Research Projects agency (DARPA)
describes research performed at the M.I.T. Laboratory for Computer Science (formerly
Project MAC), funded by that agency and monitored by the Office of Naval Research
during the period July 1, 197 7--June 30, 1978. The gap between our previous
January-based reports and this July-based report is bridged by Interim Progress
Report 14/ 15 which covers the period January 1, 1977--June 30, 1977. Starting with
this Progress Report 1 5, as mutually agreed, we will descr ibe research act ivities
through consecutive annual progress reports coincident with the M.I.T. fiscal year and
ICS annual report cycles.

The Laboratory for Computer Science is an M.I.T. interdepartmental laboratory
whose principal goal is research in computer science and engineering. Founded in
1 963 as Project MAC (for Multiple Access Computer and Machine Aided Cognition), the
Laboratory developed the Compatible Time-Sharing System (CTSS), one of the first
time-shared systems in the world, and Multics--an improved time-shared system that
introduced several new concepts. These two major developments stimulated research
activities in the application of on-line computing to such diverse disciplines as
engineering, architecture , ma thema tics, biology, medicine, library science, and
management. Since that time, the Laboratory’s objectives expanded, leading to
research across a broad front of activities that now span four principal areas:

The first such area involves the study and synthesis of intelligent programs by
capturing, representing, and using knowledge which is specific to the problem domain.
DARPA funded research in this area includes the use of knowledge in programs that
comprehend typed natural-language (English) queries and the use of Morse-code
knowledge by programs that can detect Morse-code signals in extremely noisy
environments.

The second research area has as its purpose the achievement of sizable
improvements in the ease of uti lization and cost effectiveness of machines1
programming] ~~~~~~~~~~~ It is this research that is predominantly
supported by DARPA. In this area the Programming Methodology research group
strives to ~chi-eve this broad goal through a top-down approach for the development of
programs subjec t to certain constraints that are imposed upon the programmer.
Toward the same goal, the Domain Specific Systems research group is exploring the
programming of real-time sys tems from higher-level, domain-specific languages for the
control of physical processes. Other research in this area includes the study of very
large data bases , the architecture of individual “p rsonal” machines , and the
organization of geographically distributed systems of computers. The latter research
program is carried out by the Computer Systems and Programming Methodology
research groups from the points of view of achieving cohesive applicat~ons on
interconnected autonomous systems, exploiting the decreasing costs of processors and
memories, improving overall performance and reliabdity, protecting information, and
ensuring privacy.

The Laboratory’s third principal area of researc h involves exploration and
development of theoretical foundations in computer science and is sponsored primarily
by the National Science Foundation.

- -

INTRODUCTION 2

The fourth area of Laboratory research is entitled Computers and People and
entails societal as well as technical aspects of the interrelationships between people
and machines. This area is sponsored primarily by industrial organizations.

During the past year, the Laboratory consisted of 221 members--36 faculty, 11
visitors, 56 professional and support staff, 85 graduate and 33 undergraduate
students--organized into 14 research groups. The academic affiliation of most of the
faculty and students is with the Department of Electrical Engineering and Computer
Science . Other departments represented in the Laboratory membership are
Mathematics, Arc hitecture, Humanities, The Sloan School of Management, and the
Division for Study and Research in Education.

Technical results were disseminated through the publications of the Laboratory
members, ICS Technical Reports (TR183-TR2O1), LCS Technical Memoranda (TM87-
TM 105), as well as through articles in the technical literature.

Since 1 977, geographically distributed systems have evolved into a major
Laboratory focus, involving about half of our Laboratory presonnel. Research in this
area strives to make possible geographically distributed systems consisting of a large
number of processors . The central theme of our research involves local autonomy of
each processor, as well as application cohesiveness of the overall system. The theme
is pursued at the various levels of representation that characterize this research. In
particular , at the hardware level, the Domain Specific Systems research group is
developing a single-user computer that will be manufactured for us by the Heath
Company; while the Technical Services group is pursuing the network that will link at
least 100 of these machines within our Laboratory. At the operating system level, the
Domain Specific Systems research group is pursuing research in and development of a
distributed operating system that will reside on those machines. The Computer
Systems research and Programming Methodology groups are pursuing a general—
purpose language especially suited to the semantics of distributed systems. At the
applications level our Programming Technology group is researching the structure of a
system that makes possible planning in the presence of large amounts of data in the
context of energy policy planning.

Michael 1. Dertouzos
Director

Assembly and compilation of this DARPA report was done by Paulyn C Heinniiller under
the overall responsiblilty of Dr. Eva I. Kainpits

•• ~~
~~~~~ -w- .j ~-~ --- - - -  - - - - - .-



5 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCH

Academic Staff

0. 0. Clark, J. H. Saltzer,
Acting Group Leader Group Leaders

F. J. Corbato L Svobodova

Research Staff

K. T. Pogren 0. Wells

Undergraduate Students

R. Baldwin 1. McMahon
H. Carter K. Nyberg
N. Chiappa R. Planaip
C. Davis S. Ratliff
C. Hornig C. Schieck
J. Maloney - A. Urbina

Graduate Students

A. Benjamin A. Mendelsohn
E. Ciccarelli W. Montgomery
S. Kent 0. Reed
A. Luniewski K. Sollins
A. Mason

Support Staff

V. Newcomb M. Webber

Visitors

0. Morgan A. Takagi

* on leave September 1977 - August 1978

3 ~~~
. ~~~

- - .—— ---—---- — - - - -  - 
~~~~~~~~~~~~~~~~~~~~~~

.- ~~~~~~~~~~~~
‘

‘~~~
‘

~~~~~
‘

~~~‘°‘~~~~~ i~~~~~”~~ 
“

~~~~~~~

‘

~~~~~ 

- _ _ _ _ _ -

~

- - . ‘c-

7 C. S. R. GROUP

COMPUTER SYSTEMS RESEARCH

A. INTRODUCTION

During this year, the Computer Systems Research Group was engaged in a
variety of projects related to the development of a distributed computing system. The
two most important of these projects, the development of a high-speed local network
and a preliminary study of the semantics of distributed computing, were performed
jointly with other research groups in the Laboratory, and are described unfier the
Distributed System Semantics and Local Area Network working groups. This section
describes a number of smaller activities, generally related to distributed systems.

B. DISTRIBUTED UPDATE_MANAGEMENT

Work was largely completed on two Ph.D. theses on this area. 0. Reed
proposed an algorithm for coordinating the update of information items at several
physical sites, by creating a single coordinator for any given update. The approach
explicitly takes into account the various failures that may occur, and also makes it
possible to create new collec tions of items to be updated in a coordinated manner
without changing previous users of those items. W. Montgomery has developed an
alternate coordination scheme in which messages requesting updates are properly
ordered at several si tes by defining a logical communication net through which the
messages are sequenced. Finally, A. Takagi, a visiting scientist from Nippon Te~epraph
and Telephone Corp. (Tokyo , Japan), developed a coordination scheme in which
transactions are allowed to use new, yet uncommitted values produced by other
transactions. If a transaction aborts, all transactions that used values produced by such
an aborted transaction have to be backed out. Mechanisms were devel0ped to handle
the back out problem cleanly and efficiently. This scheme increases the effective
degree of concurrency in accessing the database while it presents consistency
constraints as dictated by a particular application.

C. SYSTEMS ISSUES IN COMMUNICATIONS

S. Kent worked on problems of computer and communication security as part of
our distributed systems research effort. One aspect of this work involves the
determination of security requirements associated with a class of broadcast
communication scenarios which are expected to be employed in distributed systems,
and the development and analysis of protocols necessary to achieve these
requirements. Another aspect of the work involves development and evaluation of
mechanisms to support protected subsystems in “hostile” distributed system sites.

E. Ciccarelli completed his research on the design ot network control programs
(NCPs). The thesis presenting this research discusses the design of NCPs for operating
systems structured around a “security kernel.” The design seeks to minimize and
simplify the kernel-residor~t parts of the NCP, so that the dependence of the operating
systems’s security on the operation of the NCP is reduced and better understood. The
thesis presents a general model for an NCP and analyzes sources of network
dependence, complexity, and potential security problems: An implementation design for
the kernel-resident part of the NCP is presented, primarily network-independent and
structured by P. Jenson’s type-extension discipline, Implementation of the user-domain

fit -PREC EDING PAGE NOT FILMED

- 1
BLANK

-

.-.‘

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~ ~~~~~~~~~ i— - - - .-



r - -- -- --- ---- -- - - -  —

C. S. R. GROUP 8

parts of the NCP is discussed, demonstrating the network-independence of the kernel,
and considering problems of effic iency. In particular, for systems where the general
user process cannot provide adequately fas t response to incoming messages , two
techniques are available: one uses separate, “streamlined” processes to handle
frequent simple responses; the other involves a special-purpose “buffer processor”
network host, designed to provide the quick response. A very simple protocol f or such
buffer processors is presented, which interfaces to end-to-end reliable or secure
communication protocols in a modular fashion, and which allows buffer processors to
remain insecure.

0. ISSUES IN OBJECT-ORIENTED SYSTEM

A. Luniewski is developing an abstract architecture for computers suited for
supporting an “objec t-oriented” language such as CLU. The architecture supports the
efficient use of small objects , and permits the uniform use of base-level and user-
defined object types. In addition to considering the issue of data abstractions,
“objects ,” the architecture addresses the issues of flow contro l and control
abstractions and attempts to provide a uniform mechanism for the implementation of
control abstractions.

K. Sollins is studying certain specific issues that arise in a distributed system
supporting object-oriented addressing, in particular the problem of copying objects
from one machine to another. When copying an object into a new naming context, it is
necessary to insure that names of other objects stored in that object are resolved
correctly.

,#~
. 

~-r 
~
r

~~::~

-__ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~~ ~~~~~
-

‘:-
- - - - - -

.

— -

~~~~~ 

- -



9 C. S. R. GROUP

Publications

1. d’Oliveira, Cecilia. A Conjecture About Compute? Decentralization. B.S. thesis,
M.I.T., Laboratory for Computer Science, LCS/TM-90. Cambridge, Ma., October
197 7.

2. Kent, Stephen. “Network Security: A Top Down Approach Shows Problems.”
Data Communications. June 1 978.

3. Kent, Stephen. “Encryption-Based Protection for Interactive User/Computer
Communication. ” IEEE Proceedings 5th Data Communication Symposium.
Snowbird, Ut., September 1 977.

4. Saltze-r, Jerome. “Naming and Binding of Objects.” Operating Systems. Lecture
Notes in Computer Science, Vol. 60. Edited by R. Bayer. New York: Springer-
Verlag, 1 978.

5. Svobodova, Liba. “Performance Problems in Distributed Systems.” Conference
of the Canadian Information Processing Society. Edmonton, Alberta. May 1978.

6. Svobodova , Liba. “Performance Evaluation in View of Changing System
Structures.” Performance of Computer Installations. Amsterdam: North-Holland
(To be Published).

Theses Completed

1. Bradford, Richard. “Linking a Datatro l Credit Management System to an IBM
S/370.” unpublished as. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, January 3 978.

2. Ciccarelli, Eugene. “Multiplexed Communication for Secure Operating Systems.”
unpublished MS. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, January 1978.

3. Kauffman, James. “A Design of a One-Pass Interactive Text Formatter.”
unpublished B.S. Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, May 1 978.

4. Krizan, Brock. “A Minicomputer Network Simulation System.” unpublished MS.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
September 1 977.

5. Levine, Paul. Facilitating lnterprocess Communication in a Heterogeneous
Network Environment.” unpublished MS. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, July 1977.

6. McMaster, James. “A Profile System for the Data General Nova.” unpublished
B.S. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,

- 

July 1977.

.*
. .-

~~~~,‘~~~~~~~
-—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



C. S. R. GROUP 10

7. Selinger, Robert. “Operating System Support for a Data Base Management
System.” unpublished B.S. thesis. M.I.T., Department of Electrical Engineering
and Computer Science. May 1978.

Theses in Progress

1. Montgomery, Warren. “Robust Synchronization of Access to Shared Information
in a Distributed System. ” Ph.D. Thesis , M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, January 1979.

2. Nevins, Russell. “An Efficient Logic Simulator for the Trident Guidance
Computer.” MS. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, expected date of completion, September 1978.

3. Reed, David. “Naming and Synchronization in a Decentralized Computer System.”
Ph.D. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, September 1978.

4. Sollins, Karen. “Copying in a Distributed System.” MS. Thesis, M.I.T., Department
of Electrical Engineering and Computer Science, expected date of completion,
January 1979.

5. Strazdas, Richard. “A Network Traffic Generator for DECNET.” M.S. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion, June 1978.

6. Woltman, George. “Controlling Terminals with High-Level Protocols.” M.S.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, August 1978.

7. Wy leczuk , Rosanne. “Timesta mps and Capability-Based Protection in a
Distributed Data Base System.” M.S. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected data of completion, January 1979.

Talks and Presentations

1. Clark, David. “The Multics Kernel Design Project.” ACI.1 Sixth Symposium on
Operating Systems Principles. Purdue University, Lafayette, In., November 1977.

2. Clark, David. Session Chairman “Distributed Data Base Implementation.” 16th
Annual Lake Arrowhead Workshop, Lake Arrowhead, Ca., August 1977.

3. Kent, Stephen. “Encryption-Based Protection for Interactive User/Computer
Communication.” IEEE 5th Data Communications Symposju~ ,, Snowbird, Ut.,
September 1977.

4. Kent, Stephen. Panelist “Requirements, Theory, and Problems of Network
Security.” National Telecommunications Conference 7?, Los Angeles, Ce.,
December 1977.

.

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~

-

~~

-

~~~~ 

—---‘
~~

--

~~~ 

-- - - - - _

~~~~~~~~~~~~~~~~~
~ .

II C. S. R. GROUP

5. Kent, Stephen. “Network and Communication Security.” Invited Lecturer North
Carolina State University, Raleigh, NC., April 1978.

6. Montgomery, W arren. “Measurements of Sharing in Multics.” ACM Sixth
Symposium on Qperating Systems Princ~p.~~ Purdue University, Lafayette, In.,
November 1977.

7. Reed, David. “Synchronization with Eventcounts and Sequencers.” ACM Sixth

~ymi~~ium on Qperat~g Sjstems Principles. Purdue University, Lafayette, In.,
November 1 977. (To be published in Communications of the ACM.)

8. Reed, David. “Naming and Synchronization in a Distributed Computer System.”
Xerox Palo Alto Research Center, Palo Alto, Ca., February I 978; University of
Southern California, Los Angeles, Ca., February 1978; IBM San Jose Research
Center, San Jose, Ca., February) 978; IBM Thomas J. Watson Research Center,
Yorktown Heights, NY., March 1978.

9. Reed, David. “Naming of Objects in Distributed Autonomous Computer Systems.”
University of Minnesota, Minneapolis, Mn., January 1978.

10. Saltzer, Jerome. Panelist “The Role of Performance Modeling in System Design.”
ACM Skth Syrnposium on Operating Systems Principles, Purdue University,
Lafayette, In., November 1 977.

11. Saltzer, Jerome. Lecturer “Naming and Binding of Objects.” Technical University
of Munich, Germany, July 28 to August 5, 1977, Technical University of Munich,
Germany, March 30 to April 6, 1978.

12. Svobodova, Liba. Panel Session Chairman “Performance Evaluation in View of
Changing System Structures.” International Conference on Performance of
Computer lnstalIation,~ Gardone Riviera, Lake Garda, Italy, June 1 978.

13. Svobodova, Liba. Chairman “Computer Performance Evaluation Applications:
Anal ysis of Distributed Systems.” ACM SIGMETRICS/CMG VIII Conferenç,~Washington, D.C., December 1 977.

14. Svobodova, Liba. Lecturer, Summer School on Computer Systems Performance
Evaluation, Sogesta, Italy, 1978.

Committee Memberships

Clark, David. DARPA IPTO TCP Working Group

Reed, David. DARPA IPTO TCP Working Group

Saltzer, Jerome. DARPA IPTO Working Group

—, - , -a- -- - --

- --~~~ -

-
‘
~~

-

-‘
~~~~~~~~ 

,--.- _ 
_ _ _ _ _ _



13

DATA BASE SYSTEMS

Academic Staff

N. Hammer, Group Leader

Graduate Students

E. Cardoza 
- D. McLeod

A. Chan B. Niamir
S. Danberg S. Sarin
J. Kunin S. Zdonik

Undergraduate Students

B. Berkowitz H. Shao
J. DeHaquilla D. Slutz
S. Karkula M. Tuceryan
J. Koschella L. Wang
R. Leong C. Woltman

Support Staff

N. Nieuwkerk

.f~ 
_ _~~~~.‘_._ ..*.

1 
~PREc~~ ING PAGE NOT FILMED

BLANK

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - ..— .
~

-
~

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.———.- .- - —-- - ----—-.-—-—----- — - — - —

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
___________



15 OATA BASE SYSTEMS GROUP

DATA BASE SYSTEMS

A. INTRODUCTI ON

Our research efforts this year had two principal themes: data base performanc e
and data base semantics. The former area includes such issues as automatic data base
design, query optimization, and transac tion cost estimation; the latter encompasses our
efforts in the automatic detection and correction of data errors, user interface design,
and data base modeling. In addition, we initiated this year a project in the area of
office automation; we believe this to be a natural outgrowth of our other activities,
since most office applications are data intensive.

B. AUTOMATIC DATA BASE DESIGN

Our work in automatic data base design has had three foci: testing and
extending earlier work in attribute partitioning; automating the physical design process
by utilizing a conceptual schema of the data base; and developing an approach to
distributed data base design.

B. Niamir has completed his work on the problem of attribute partitioning in a
self-adaptive relational database system. The objective of attribute partitioning is to
minimize the volume of information transferred between a random access secondary
storage device and primary memory. Partitioning the attributes of a file means storing
a subset of the attributes (columns) of a file (relation) ~together, separate from other
subsets of attributes. In a partitioned file environment, when a query requests a
group of attributes that have been stored together in the same subtile, only that
subtile need be accessed. Attribute partitioning is a viable database design
optimization strategy because of the following two reasons:

1 The great majority of queries made to a database request only a subset of the
- attributes of a fire;

2. Most queries made to a database require that more than one tuple be retrieved
- 

from the file. Attribute partitioning may be defined as the task of assigning the
attributes of a file to the same subfile whenever they are consistently retrieved
together. The consequence of attribute partitioning is the localization in the
same physical area of information that is predominantly requested together.

The approach we have taken to finding a near-optimal at(ribute partition of a file,
in the context of a given query pattern, is a heuristic one. We use a stepwise
minimization state-space heuristic search strategy to determine a locally optimal
attribute partition. We have identified a group of such heuristics that have
consistently found the optimal partition for example problems (where the optimal
partition was known to us).

We have devoted considerable effort to experimentally verifying the desirability
of our attribute partitioning heuristics. We have conducted a series of more than 100
experiments. In each experiment we specified the following file and query pattern
parameters: the number of attributes in the file (we have considered files with 5, 6,
7, 8, 15, 22, and 30 attributes), the leng th and selectivity of each attribute, the set of

-?~ ?CEDING PAGE NOT FILMED 
- - 

- 

BLANK

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.,-
-

~~

DATA BASE SYSTEMS GROUP 16

attributes that are indexed by a secondary index, the number of queries in the query
pattern, the frequency of each query, the predicate of each query, and the attributes
to be selected and projected by each query. The space of all possible file parameters
and query pattern parame ters is much larger than what can be fully covered.
However , we did range parameter values over a wide spectrum; and the results
obtained from our series of experiments have been sufficiently consistent to make us
believe that the same results will hold for almost any reasonable specification of the
above parameters.

The conclusion we have reached as a result of this program of experimentation
may be summarized as follows. For experiments with files of 8 attributes or less (in
which we knew the optimal partition of the file by running an exhaustive enumeration
procedure that evaluated all possible partitions), the two main heuristics we developed
(the fast pairwise grouping heuristic and the single attribute degrouping-regrouping
heuristic), when used in conjunction with one another, always found the optimal
partition. For experiments with files of more than 8 attributes, it was observed that
the above two heuristics found a partition which was significantly superior to the
unpartitioned file, and which was superior to partitions found by other heuristic search
techniques. This result, and the rapid convergence of the two heuristics in finding the
optimal partition, have led us to believe that these two heuristics will consistently find
at least a near optimal partition.

The improvement in database performance as a result of attribute partitioning
can be significant. The number of page accesses made to an opt imal ly par ti tioned file
is between 407. and 701. of the number of page accesses made when the file is left
unpartitioned. For files with a large number of attributes, the improvement in
performance is even greater.

Our two attribute partitioning heuristics also operate in modest time, on the
order of the number of attributes in the file.

We may also conclude, from the rapid convergence of our heuristics, that most
of the advantage of attribute partitioning may be realized by degrouping a few of the
most active attributes of the unpartitioned file and storing it separately in its own
subtile. If searching for the optimal partition is not computationally practical, then it
should be possible to separate the most active attributes of the file and still realize a
significant reduction in the database performance cost.

1. Wang has been extending previous results on attribute partitioning and index
selection. In our earlier work on attribute partitioning, it was assumed that the set of
attributes that were indexed would remain constant during the course of searching for
the optimal partition; in our index selection studies, it was assumed that all attributes
of the files were stored together in a single file. By simultaneously considering the
problems of finding the optimal attribute partitioning and finding the optimal index set
for a file, it is hoped that the resulting partition (and its accompanying set of indices)
will have a still lower performance cost, compared to when the attribute partitioning
and the index selection are considered as two independent problems. A new heuristic
based on the attribute partitioning heuristic has been developed and will be
experimentally verified

~~~ 

-

- - .- -



17 DATA BASE SYSTEMS GROUP

A. Chan has been working on the problem of optimizing the performance of
integrated databases. An integrated database is a collection of data used for a variety
of application functions in an enterprise. To cope with the evolution of applicat ions,
the physical organization of an integrated database must be optimized for the
prevailing access requirements. By providing a non-procedural interface between the
app lication programs and the database, it is possible to tune the performance of the
database, by adjusting its physical representation, and still have only minimal impac t on
the logic of t he application programs. Among the conventional (hierarchical, network
and relational) data models, the relational approach comes closest to providing users
with a lo gical view that is independent of the actual storage structures used to
represent the data, and that facilitates the reorganization of data bases and
reoptimization of queries against them. However, the implementations of relations in
current relational systems have not been supportive of performance levels competitive
with databases based on the network or hierarchical data models. We believe this is
partly due to the failure of current relational systems to use more complex storage
structures, such as partitioning a relation vertically or horizontally in its physical
representation , or using physical pointers to provide rapid access paths between
relations. A more important reason may be the failure to introduce certain kinds of
redundancy at the physical level in order to eliminate or reduce the cost of cross—
referencing between relations. For example, it may be desirable to replace th e
representation of two third normal form relations by their join at the physical level.
However, to do so requires the semantic knowledge that the two relations are non-
loss joinable.

It is our objective to investigate a wide range of implementation alternatives for
relational databases and to automate the physical design process for them. Because of
the vast design space that modern file organization techniques provide, the use of
formal mathematical programming techniques to search for the optimal organization ~is
not a feasible approach. Instead, we are developing heuristics for the synthesis of a
good, stable physical organization for the prevailing access requirements. Our approach
is it erative and goal directed. From the knowledge of the semantic concepts
represented by the relations, an initial tentative implementation is selected. This is
then successively modified and refined by examining the performance bottlenecks it
presents in the processing of the transactions that constitute the data base usage
pattern. The automatic designer will be provided with knowledge regarding the types
of perturbations of a physical organization that may relieve a given type of processing
bot tleneck.

We feel that a logical sc hema described purely in relational terms does not
provide enough semantic information for this design process, information which is
usually avai lable to, and used by, a human designer. Our approach, therefore, is to
provide input to the automatic designer of the conceptual schema of the database,
which contains information about the semantics of the database. The designer will then
generate (algorithmically) a relational schema for the database; this will be the schema
with which application programs will interact. At the same time, semantic information
that might be useful to the physical design process will be extracted. For example,
this will allow the automatic designer to decide whether derived information as
expressed in the conceptual schema should be recomputed when required, or should
be represented via controlled phys ical redundancy .

#



DATA BASE SYSTEMS GROUP 18

An important objective for database integration is improved consistency in the
stored data. Therefore, we intend to include in the conceptual schema the
specification of some basic validity constraints on the database, ones which will be
automatically maintained by the database system during database modifications. We
believe that certain types of constraints are more fundamental than others (in the
sense that they are application independent), and that these should be directly
embedded in the data model to simplify the specification of the usage pattern and to
guide the physical database design process.

The descriptions of the conceptual schema used by the automatic designer is
couched in terms of the Semantic Data Model, which was developed by our group and
is described in a subsequent section.

I
E. Cardoza is studying the data base design problem for distributed relational

database management systems. The major aim of this work is to allocate the data base
among the different sites of the network so as to minimize such costs as response
time, storage charges, and updating costs. Although a great deal of literature has
appeared on the file allocation problem for networks, this earlier work has ignored a
number of important factors in modern distributed data base management.

1. For example, user accesses have typically been modeled simply as accesses to a
single file from a given node; queries involving two different relations (or files)
are not directly modeled. Thus the cost advantage of a single site having two
different relations which are often used together is not taken into account.

2. The cost effects of synchronization mechanisms for performing updates of files
with multiple copies is not modeled in earlier work

3. Earlier models assume that a complete file is the unit of assignment to the
various sites. The possibility of reducing costs by allowing vertical and/or
horizontal partitioning of files in the assignment of the data base has not been
considered.

We are engaged in the preliminary design of a ~ystem to select near-optimal
distributions for a distributed data base , taking into account the above factors. A
crucial part of this system is an evaluator that assesses the cost of any proposed
distribution in the context of a given usage pattern. The focus of our initial effort is
on a design system for the SDD- I distributed data base system.

C. QUERY OPTIMIZATION

We have been engaged in a number of efforts relating to the optimization of
queries made against a data base. The first relates to determining which of several
processing techniques for a given~high-hevel query is most effective, in the context of
a par ticular data base organization. James Koschella and Edward Cardoza have
considered this problem in the context of the Datalanguage data access language of the
Datacomputer. The specific problem that has been addressed is the following. For
purposes of the study, a query in Datalanguege is considered as having the form

For XI in RI with B1(X1)

_ _ _ _



19 DATA BA SE SYST EMS GROUP

For X2 in R2 with 82(X), X2)

For Xn in Rn with Bn(XI, X2, ..., Xn)

where XI , X2, . . . ,  Xn are tuple variables which range over (respectively) the relations
RI , R2, ...,  Rn of the data base, and where Bj(X1, X2, .. ., Xj), for each j is a Boolean
predicate on the tuple variables Xl , ..., Xj.
The problem is to find a reordering (Xi 1, Xi 2, ..., Xi n) of X l , ..., Xn such that the query
expressed in the form

For Xi 1 in Ri 1 with Bi 1 ’(Xi 1)
For X i 2 in Ri2 w i th 6i2’(Xi 2)

For Xi,~ in Rin with Bin’(Xin)

would entail the minimal amount of cost (of all reorderings) using the query processing
strategy of the Datacomputer.

A number of heuristics, similar in spirit to the Decomposition Method of Wong
and Youseffi, have been proposed which find a “good” if not an optimal reordering in an
efficient manner. A study and validation of these heuristics is currently being
conducted.

In a similar vein, S. Danberg has been developing techniques for concurrently
evaluating multiple queries against a single data base, overlapping their processing
requirements.

S. Zdonik has been studying the LISO of data base semantics for the optimization
of data base queries. Contemporary data base languages enable users to express
queries in .terms of predicates that the selected data must satisfy. Conventional query
optimization techniques seek only to find the most efficacious way of using available
access structures to answer the given query; our approach attempts to exploit the
semantics of the query, either in processing it or in transforming it into an alternative
form , semantically but not syntactically equivalent to the original, which can be
processed in a way more efficient than any means of answering the original. Obviously,
such transformations must preserve (he meaning of the query and they must take into
account the available access structures that can be used in answering queries.

Consider the following examples.

1. Get the names of all employees whose job type is pilot.
If al l pilots work in the flight department, then the query could become:
Get the names of all employees of the flight department whose job type is pilot.
This is a desirable transformation if determining the members of the flight
department is a relatively inexpensive operation, and if  the number of
employees in the fl ight department is much less than the total number of
employees. -

~ ~~~~
_
~‘ ~~ 

~~~~~~~~~~~~~~~~~~


DATA BASE SYSTEMS GROUP 20

2. Get all the ships whose maximum speed is greater than 25 knots. Suppose that
a ship is either a tanker , a merchantman, or a naval ship, and that the maximum
speed of a tanker is 1 5 knots and of a merchantman 20 knots. Then the original
query can be rephrased as “get all naval ships whose maximum speed is greater
than 25 knots.” This transformation may improve query processing if there is
some file structure (such as an inversion) that makes finding naval ships an
efficient operation.

The main features of our approach to semantic query optimization are the
following:

I. These techniques are not concerned with processing strategies based on
properties of Bootean connectives or operations on data structures. That is the
province of conventional optimization techniques.

2. Semant ic query optimization will usually produce a new query that is a
transformation of the original (ext. The new text may involve conditions on
different semantic structures than those used in the original query, but it must
be semantically equivalent to the original in the sense of producing the same
output set.

3. In semantic query optimization, we will utilize domain specific knowledge to
perform transformations. This knowledge is expressed in the form of predicate
calculus constraints , sta tements of conditions that must be met by all legal
configurations of the data base. These constraint expressions are related to the
semantic integrity predicates used for data error detection.

4. In order to make use of some rich semantic information, we employ an effec tive
data model that is higher level than the relational model, but that can easily be
supported by a relational system. This model is based on the notions of entities
and associations and is closely akin to the Semantic Data Model developed in our
group and described in this report.

We have identified several different kinds of optimizations. Some of these
transformations are:

1. Term Rep~ç~rnent

Here, the goal is to substitute for one or more terms in the original query a
collection of terms that are equivalent to the originals but are less costly to
evaluate. To achieve these replacements, one needs to use const rain ts of the
form: Pt <=‘ P2, where P1 and P2 are predicates on entities in the data base
schema.

2. Term Addition

Here, one adds terms to the original query, with the goal of having these new
(and inexpensive) terms evaluated before evaluating existing expensive terms in
the query; this should reduce the scope of application of the expensive term.
The cost of evalua t ing these new terms must, of course, be less than the savings

T ~~Ei~ ~~~~~~~~~~~~~~~~~~~ .. - -- —-----~~~~~-- —--- - -.--—

21 DATA BASE SYSTEMS GROUP

achieved in the processing of the old expensive terms. The kind of constraint
that is useful here is of the form: => P2. In this case, if a query contains P 1
as a subexpression , then adding P2 to it as a conjunct does not change its
meaning.

3. Term Modification

This optimization transforms an existing term in the query into an alternate form,
one that involves revised conditions on the same entities. The new form might
be more efficiently evaluated or might be amenable to further semantic
optimization.

4. Processing Strategies
A

This class of optimizations does not entail source level transformation, but is
based on passing additional information to the search engine that actually
retrieves records of interest . For example, if we know an upper bound on the
number of records that satisfy a condition, then we can instruct the search
engine not to at tempt to find more than that number, enabling it to terminate
some searches early.

We are engaged in devising an architecture for a system that, given a query, will
decide what optimizations might be desirable to apply to it, searc h for relevant
constraints, and effec t cost-improving transformations.

0. TRANSACTION COST ESTIMATION

Underlying all of our work in database system performance is the notion of a
transaction cost estimator, a system that can predict the cost that a DBMS will incur in
the processing of a transaction. We have developed the underlying technology for
such a system, and have sought to test its applicability to operational data base
systems. To that end, Brian Berkowitz has been working on a transaction cost
estimator for the Datacomputer, an operational DBMS that supports a relational data
model and allows for the construction and maintenance of large databases. The goal of
this work is to produce an estimator that will examine a Datacomputer transaction and
produce an estimate of the amount of time needed to process it. The transaction cost
estimator will use a statistical description of the contents of the data base as well as
parameters describing system load in order to produce an estimate of the amount of
time that will elapse between the time when the transaction is issued and the time
when the Datacomputer has completed processing the transaction. A transaction cost
estimator could be used to provide the user of the Datacomputer with an estimate of
how long it would take the Datacomputer to process a proposed transaction; it would
also be useful in an automatic database design system .

Our efforts so far have been directed towards estimating the amount of time
necessary to process retrieval transactions. These are transactions that examine
records in a database but do not add or delete records or change the contents of any
records. We have identified three basic components of the processing of a retrieval
transaction. These are the number of page accesses needed to read pages containing
data utilized by the transaction, the amount of cpu time necessary to process the

DATA BASE SYSTE MS GROUP 22

transaction, and the page faults that occur when code or data accessed in processing
the transac tion is swapped out because of high demand for memory in the
Oatacomputer’s multiprogramming environment. These page faults do not count the
page accesses necessary to read in records used by the transaction. The first two
parameters are dependent only on the translation and the contents of the database.
The number of page faults is dependent on the transaction , the contents of the
database , and also the total demand for pages by all current users of the
Datacomputer. The three parameters can be combined with a statistical description of
system load to produce an estimate of the to tal time needed to process the
transac tion.

We have developed cost estimators to estimate the number of pages read in
retrieving data and also the amount of cpu time ~equired to process a transaction. We
have considered two cases in estimating the number of pages read by a transaction.
The first case is where the records to be retrieved are randomly distributed
throughout the file. Modifying a previously developed page accessing function we have
developed a formula wh ich predicts the number of pages read in this case. The
formula is derived using combinatorial techniques, and produces its estimate based on
the number of records in a file, the number of records on a page, and the number of
records to be retrieved.

The second type of file that we have considered ,is a clustered file. If a file is
clustered on a field F, then all records with the same F value are located near each
other. If we retrieve records with field F equal to some value k, only a small portion
of the file will have to be read. It is also possible for a file to be clustered on several
levels. The primary example of this is a multi-level sorted file. If a file is sorted using
key MONTH, DAY , and TIME , then the file is clustered on MONTH, clustered on
MONTH ,OAY (i.e. all records with the same MONTH and DAY values are near each
other) and clustered on MONTH,OAY,TIME. We have developed an estimator which
predicts the number of pages read in reading records that satisfy a particular predicate
from a multi-level clustered file. The estimator converts the predicate into a more
convenient form for processing (a disjunction of conjuncts such that no record in the
fil e satisfies more than one conjunct). The converted predicate is then used to
produce an estimate using a hierarchical model of the file and utilizing a statistical
description of the file’s contents.

This estimator was implemented and experiments were conducted to test its
validity. A database was constructed and over 800 transactions were considered. The
estimated number of pages retrieved -was compared to the actual number of pages
retrieved in processing each transaction. The average error was small (about 7%)

An estimator was also built to predict the cpu time required to process a
transacti on. The Datacomputer processes a transaction by first compiling the
transaction into machine code, which is then run. The cpu time used to process a
transaction is therefore the sum of the cpu time used to compile the transaction and
the cpu time used in running the compiled code. An estimate of the cpu time required
to compile the transaction is generated by an estimator using some measures of the
complexi ty of the code (e.g., number of lines of code). This estimator was developed
using an empirical study of the cpu time required to compile many different types of
transactions. The cpu time required to run the compiled code is estimated by using a

..-. ‘

~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~ 4 I~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~ ~~~~~~ ~~

..- .
~~~~ - - -



23 DATA BASE SYSTEMS GROUP

“shadow compiler”. The estimator we have built simulates the compiler. It parses the
transaction , just as the Datacomputer compiler does, and uses the parsed transaction in
a “code generator” phase. Where the code g~’nerator in the Datacornputer generates a
code fragment , the estimator we have built generates estimates of the amount of time
necessary to run that particular code fragment. The estimator uses knowledge about
how the Datacornputer compiles a transaction, and also statistical descriptions of the
contents of files , in order to produce an estimate of the total cpu time required to run
the machine code generated for a transaction.

E. AUTOMATIC DATA ERROR DETECTION

We have continued our work in the area of database error-detection; our
principal focus here is on building an assertion -based error-detection system. In our
approach, the possible error states of a database are described, by the DBA or some
other authority, in terms of semantic integrity assertions. The database system will
then assume responsibility for detecting any violations of these assert ions that are
caused by updates to the database . When compared with existing ad-hoc techniques
(where “edit-routines” are written by hand for each of the update transactions on the
database), this assertion -based approach to integrity checking has the advantages of
increased reliability and modifiability.

The main problem with this declarative approach to integrity checking is one of
performance. The obvious way to monitor a set of integrity assertions is to reevaluate
each assertion every time the database is updated, and this can be prohibitively
expensive.

Our approach to the performance problem in assertion-based integrity checking
is to “comp ile” assertion-monitoring procedures based on an analysis of the effects of
anticipated update transaction types on the given set of assertions . We assume that
the update transactions on a database belong to a limited set of frequently-performed
operation types. For each such operation type, a detailed analysis is performed that
results in the generation of an efficient procedure that can be used to precisely
identify the assertions that may be violated whenever an operation of the given type
is invoked by a user of the database. The procedures generated have the following
features that contribute to efficient error-detection:

1. They are comparable in efficiency with integrity-checking procedures that an
intelligent application programmer might write for the given operations and
assertions .

2. When a user attempts to perform an update operation, the associated integrity-
checking procedure can be run before the database is modified. Thus, if
asser tions are violated and it is found necessary to reject the update, there is
no need for the database system to perform expensive backing out of the
update.

We have been working on the design and implementation of an assertion
processing qvstem that performs the above generation of efficient integrity-checking
procedures. In our design, this synthesis proceeds in two stages:

*~~e*i~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
- 

~~~~
- ,... . - - -- ~~~. - - - .-

DATA BASE SYSTEMS GROUP 24

1. A logical analysis phase, which generates a set of alternative test procedures
for each operation type.

2. An optimization and selection phase, where for each operation type a single tes t
procedure is selected from the associated set of alternatives , based on its
expected cost of execution in the context of the underlying physical
representation of the database.

The first s tage above, referred to as “per turbation analysis,” was discussed in a
previous Progress Report. S. Sarin has recentl y completed the design of an algorithm
that performs this analysis. The algorithm takes as input a database schema definition,
a set of update operations, and a set of integrity assertions, all expressed in high-level
terms that are independent of the physical representation of the database. For each
update operation, the algorithm generates “perturbation information” for the component
expressions of the various asser tions , which describes how the values of these
expressions are affected by the given database update. This information is then used
to construc t a set of alternative tests (expressed in the same high-level nonprocedural
language as the assertions) for the assertions under the operation. The main thrust in
this algorithm is the identification of conditions under which it can be proved that the
operation will not violate a given assertion; the conditions identified are such that
they can be efficientl y tes ted when the update operation is invoked, and thus lead to
effic ient tests of the assertions.

This perturbation analysis algorithm has been implemented by 0. Slutz, using the
language MDL (an extended LISP) on a PDP-10 computer. The procedure was tested
on some example database definitions (including descriptions of update operations and
integrity assertions), and produced the desired results. Testing of this system will
continue.

For the second phase of the assertion processing system, R. Leong has been
working on the development of a “tes t selection” procedure. The input to this
procedure consists of the output of the perturbation analysis phase (namely, the sets
of alternative tests associated with the update operations), plus a description of how
the database is represented in terms of file structures and access methods. For each
update operation, the procedure then selects a test that has the lowest (or close to
the lowest) expected cost of execution among all the tests in the set of alternatives
associated with the operation. The selection procedure translates the high-level
descriptions of the tests into database interactions expressed in the data manipulation
language of the underlying database management system; it then uses a transaction
cost es timator to determine the expected costs of performing these interactions
whenever an operation of the given type is invoked. (For the initial design of the test
selec tion procedure, we have assumed that the database is implemented on the
Datacomputer. However , we expec t that the techniques we have developed will be
applicable to other database management systems as well.)

F. AUTOMATIC DATA ERROR CORRECTION

S. Zdonik has been involved in the design and implementation of a front-end
processor (called Data Doctor) tha t does automatic error correction of database
transactions. This type of system is particularly useful in an environment in which

‘~ ‘w..~ -..-..
-. —

25 DATA BASE SYSTEMS GROUP

large volumes of data are being keyed by hand into a database , and where manual
correction of detected errors is impractical.

Our goal is to build a system that can automatically detect and correct many of
the errors that occur when a transac tion against a data base is keyed into the system.
Af ter detecting that an error exists in a transaction , the system will attempt to identif y
the precise location and nature of the error , and then seek to correct it, based on an
analysis of the erroneous value and of the (presumably correct) contents of the data
base. (Of course , the feasibility of this step is limited by the amount of redundancy in
the transaction and in the data base.) We draw heavily on a semantic model of the
data base to detect erroneous data values and to guide the correction process. Our
approach to error correc tion is heavily based on the premise that erroneous data
va lues are caused by a set of “error mechanisms,” a (relatively) small and knowable
se t of events that can cause the transformation of a correct value into an incorrect
one. Typical error mechan isms might include character duplication, character
transposition, confusion of visually similar charac ters, and so on. Once the locus of an
error has been established , we employ an analysis of the various mechanisms to
determine which is most likely to have been the cause of this particular error. Then
the effects of that mechanism can be “undone” in order to reconstruct the original
uncorrupted value.

Data Doctor detects errors by means of constraints, predicates that express
condi tions on the data base that must hold after every trans~c tion with it. When a
transaction is submitted to Data Doctor , it evaluates these constraints that are relevant
to the transaction; the failure of any of these indicates the possibility of an error in
the transaction. In our system, each constraint evaluates to a value between 0 and 1,
O representing certain data error ~~ I indicating perfect data correctness; an error
condition is signalled by a number of constraint evaluations returning values below a
given threshold. In this situation, the system analyzes the “symptoms” of the faulty
transaction and attempts to “diagnose” the nature of its error.

The major system modules are summarized in the following list.

I. Constraints Checker

The constraints checker is responsible for evaluating those constraints relevant
to the submitted transaction.

2. Likelihood Evaluator

The likelihood evaluator decides whether or not the scores returned by the
previous module indicate a situation that requires error correction or whether
the report represents a real but unlikely situation.

3. Locus Finder

The locus finder applies certain heuristics to the evolving pattern of constraint
failures . to establish a list of possibly erroneous fields in the transac tion. An
example of a heuristic that might be used by this module is that if all fields after
field n are involved in constraint violations but none of the fields before and

.- .~J.k~ - - ---

~~4&3~
,Q’

~
p;,

-

~~~ 
‘.

~

.
- -

~
.‘

: 
- -, - -

~ 

- 

— 

- -

~

- 

~~~

- - -

DATA BASE SYSTEMS GROUP 26

including field n are, then we should suspect field 2n+I as the site of a missing
field or a missing separator.

4. Mechanism Chooser

The mechanism chooser selects the most likely error mechanism and the most
likely place to apply it, in order to produce a new set of transaction values that

L can be re -entered into the constraints checker.

The above modules are listed in the order in which they are invoked during the
operation of the Data Doctor System. The system continues to call these modules until
a set of data values that satisfies the Likelihood Evaluator has been found or until the
known set of mechanisms has been exhausted. In the latter case, the set of values
that produced the best score will be selected as the best guess. In practice, Data
Doctor s corrected values would be reviewed by a human authority before being
installed.

We have completed an initial implementation of the system that assumes that
there is at most one error in a transac tion. G. Woltman, M . Tuceryan, and S. Zdonik
have also been investigating the design of an error correction system able to handle
mul t i ple errors in a given report. We have investigated two special cases of this
problem in some detail.

1. Two errors in the same field (i.e., two error mechanisms applied at the same
locus) .

2. Two errors in semantically related fields

In the f irst case, the brute-force method of applying all the possible mechanisms
to alt possible positions was immediately discarded as impractical. Instead, a set of
heuristics was developed to eliminate certain combinations of mechanisms based on
observations of the suspicious value, Furthermore , a method of using predicated
values for the erroneous field was designed.

In the second case , we considered errors in two fields that are related with
respect to some set of constraints. It is possible for the two errors to occur in such a
way that the constraints that check their consistency do not notice that anything is
amiss. Here, a procedure for determining the possible f ield combinations that could be
in error was developed.

G. DATA BASE MODELING

The conven tional approache s to the structuring of data provided by
contemporary data base management systems are in many ways unsatisfactory for
modeling data base application environments. The features they provide are too low-
level, computer-oriented, and representational to allow the semantics of a data base to
be directly expressed in its structure. 0. McLeod has designed the sonanrk defa m ’drl
(S l I M) as a natural application modeling mechanism that can capture and express
the structure of an application environment . The design of the SON is specifically
based on a detailed analysis of the most important semantic problems of

4
~ —i: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

27 DATA BASE SYSTEMS GROUP

conventional data base struc t uring mechanisms.

It is intended that the features of the SON correspond to the principal
intentional structures naturally occurring in contemporary data base applications.
The SON provides a rich but limited vocabulary of dat a structure types and
primitive operations , striking a balance between semantic expressibility and
controlled comp lexity . Furthermore, facilities for expressing derived (conceptually
redundant) information are an ~ssentiaI part of the SON; derived information is as
prominent , in an SOM data base as is primitive data.

In brief, an SDM d i a ~icr is a collection of classes. A thus is a collection of
ent i t ie s . The structure of an SOM data base is defined by an 5DM s (h ma , which
describes the classes tha t constitute it. Classes are collections of entities that
are meaningful in the application environment. (Examples here are selected from
a data base used to suppor t the monitoring of ships with potentially hazardous
cargoes entering U.S. coastal waters .) Classes are used to model collections of
objects (SHIPS), even ts (OIL _SPILLS), “t ype” abstractions (SHIP_TYPES) ,
aggregates of other ent i t ies (CONVOYS), and “values ” (S HIP_NAMES ,
HULL _NUMBERS).

Each class has a collection of auri~ute~ associated with it, whose purpose is
to describe the members of that class or the class as a whole. There are three
types of attributes:

1. Al nil ’c; au ’il ’uus describe aspects of each member of a class, by linking the
member to one or more related entities in the same or another class. For
example, the members of class SHIPS have attributes Name, Home_port, and
Engines, which give the ship’s name, its home port, and link it to its engines
(respec tively). -

2. An attribute of each member of a class that has the same value for all
members of that class is a (

~~ss~deter mined atit ihut , . Such an attribute is a
member at tribute, but it is associated with the class as a whole because the
attribute has the same value for all class members. For example, to capture
the fact that no oil tanker can sail faster than some top speed, the class—
determined attribute Absolute_top_speed of class OIL_TANKERS would be
defined.

3. A cltrss at’i’ r ibu~ descr ibes a property of a class taken as a whole. For
example, the class PORTS has the attribute Number_of _por ts, which gives
the number of ports currently in the class.

Der ived, as well as primitive classes are prominent in typical SDM data
bases. Not only is the class SHIPS defined in the example data base, but so is
OIL_TANKERS (a subclass of SHIPS). Analogously, derived attributes can be
defined in terms of primitive ones. For example, one might define the attribut e
Inspections of OIL_TANKERS as the inversion of the attribute Tanker_inspected of
INSPECTIONS. A comprehensive vocabulary of types of class and attribute
derivation specifications which are directly useful in supporting the easy definition
of derived information in an SOM data base has been developed. The principal

~

~~~~~~~~~~~~~~~~~~~~ ~
. . . .

TT~ ~~~~~~~~~~~~ 
,4,,s~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~- — — —



DATA BASE SYSTEMS GROUP 28

subclass definition primitive is “restrict ,” and is used to define OIL_TANKEI~S in
the example above. Similarly, “invert” is used to define the derived attri~ ute
Inspections of OIL_TA NKERS. These are only examples of the fult spectrum of
definitional primitives provided by the SOM.

The SOM is designed to enhance the effectiveness and usability of data base
systems in the following ways:

1. SON data bases are to a large extent self-documenting, in the sense that
the description and structure of a data base is expressed in terms which
are close to those used by users in describing the application environment.

2. The SDM can support powerful user interface facilities, and can improve the
user interface effectiveness for a variety of types of users (who have
varying needs and abi lities). Significantly, SON data bases capture
information in a form accessible to its users, and allow derived information
helpful in new data base uses to be defined in the data base structure.

3. The SOM can be used as a tool in the data base design process. The SOM
aids in the identification of relevant information in a data base application
environment, as well as in organizing that information and relating it to its
possible uses. This can greatly improve the design of lower- level ,
conventional data bases.

One focus of our research has been on data base user interface facilities
based on the SOM. First , a powerful semantics-based data base query and update
language ~or the SOM (called the in f r r ac r ion formal ism ) has been designed. This
language provides a rich but limited set of built-in data base operations, and
allows user-defined transactions to be defined in terms of these primitives. The
combination rules are simple, but the vocabulary of primitives allows a good deal
of flexibility in describing data base retrievals and modifications.

The SON also supports an incremental, interactive interface for the “naive”
nonprogrammer, called the in iciaction formu la tion advisor (I rA) . The IFA guides a user
through the data base in the process of formulating a query or update request
against it. The IFA assumes that the user is largely naive of the dat a base
content and structure, and that the user has limited experience with computerized
data bases . The operation of the h A  relies heavily on the SOM data base
description and structuring primitives, e.g., derived class and derived attribute
specifications. In addition, the algorithm used by the IFA embodies a specific
structured, stepwise methodology for expressing data base queries. It is by
means of this methodology that the IFA can provide effective support of users
naive of a data base’s detailed content and structure. A prototype IFA is
current ly running, and is being extended to handle a wider spectrum of user
needs.

In addition, to this application, the SDM has been used by a number of other
projects in our group as a means of describing the semantics of a data base. We
anticipate that the need for such a semantic description mechanism will grow as
ever more powerful capabilities are demanded of data base systems.

a L.,~ ..42 ‘St ’ - - ‘~



29 DATA BASE SYSTEMS GROUP

H. Oft A O 1 DN

We have begun a research effort involving several significant issues in the
application of computer sys tems to the office domain. The term “office automation” has
recently become so pervasive as to lose any precise meaning; we interpret it to mean
the application of com puter-based systems to enhance the productivity of office
personnel and (he efficiency of office operations. Current commercial entries in the
office automation field include such tools as word processing and electronic mail
systems. It is our contention, however, that computer scientists must look beyond
products of this sort to gain the understanding of the underlying nature and purpose of
offices that is necessary to have the greatest impact on office operation.

The major activities in offices include information processing, communication,
record keeping and decision making. General-purpose devices such as calculators and
copying machines, as well as the more recent developments mentioned above, suppor t
workers in performing a variety of tasks necessary to accomplish these activities.
Such tools mechanize tasks; they do not automate function. We feel that major
enhancements in office productivity will derive not from task mechanization, but from
the study, and subsequent automation, of office functions.

In order to bring computer technology most effectively to bear upon offices , i t is
necessary to develop an understanding of the nature of office activities. A crucial
dimension in the analysis of this domain is task structure. A structured task is one that
is amenable to algorithmic specification and description. Unstructured tasks are those
which cannot be so described because they inherently require human intelligence and
judgment. Most office procedures consist of a mixture of both kinds of functions. For
example, the processing of a purchase requisition might first involve some highly
structured processing to assure that the requisition is valid. This would be followed
again by an unstructured decision by a buyer to determine how and where the goods
should be purchased, based upon complex criteria involving past experience and
personal contac t with vendors, outs tanding or anticipated orders, etc. This decision is
followed by further struc tured activities which produce a purchase order, send copies
to various offices, and maintain appropriate records.

It is our thesis that the greatest gains in office productivity can be achieved by
systems which both automate the structured, routine activities in an office procedure,
and provide office workers wi th an integrated working environment and a powert~tl set
of tools so that activi ties which cannot be automated can be carr ie~l out more
effectivelyt The goal of an office automation system should not be merely to eliminate
paper from existing tasks , but rather to implement as effectively as possible the
essential purpose and function of the office. We believe that the analysis and
specifica tion of office procedures, the design of support tools, and the organization of
the office system as a whole, should be based upon this underlying perception of the
role of computer systems in the office.

Therefore the goals o.f our research are twofold: to develop powerful
computer-based tools for the integrated electronic office environment, in order to
provide support for office workers performing intelligent decision-making functions;
and to investigate tools and techniques for the analysis of office function and the

#.- .. .‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~

-

~~~~~~

•- -—----

~~~~~~

---- - ---— - - - -.-



DATA BASE SYSTEMS GROUP 30

design of computer systems to implement those functions. We also plan to construct a
tes tbed environment in which to test , analyze and assess these developments in a
realistic environment.

A major component of our work is the study of a large number of office
situations, in order to develap an understanding of office functions, to identify
applications where our efforts can provide high impact, and to build up a case file for
subsequent development work . J. Kunin has completed an initial set of office case
studies, which give detailed procedure descriptions of about fifteen offices at MIT. In
addition, S. Karkula has completed an undergraduate thesis describing the
administrative operations of a television station.

As we have noted, while (he current state-of-the-art in office systems consists
of independent tools which mechanize individual tasks, future technology will involve an
integrated electronic office environment. We are developing the design for an
interface to this system, a work station which we have termed the “electronic desk.”
The major issues involved in this work are the human engineering of the interface, and
the development of active support tools.

A primary use of the electronic desk will be as an interface to advanced
operational decision-support tools. Our development of support tools is predicated
upon the design of active rather than passive aids. If a system is provided with limited
knowledge about an office ’s organization and activities, including the specific identity of
types of decisions to be made and their information requirements, i t can exhibi t
“intelligent” behavior in support of the office worker. Its capabilities may include
mana gement of complex communications processes and other activities extended over
time; generation of reminders, aler ts and warnings; provision of unsolicited but
relevant information; and detection of errors and anomalies. Bookkeeping suppor t,
convenient access to information, and active assistance will enable decisions to be
made in a more timely, informed, and organized manner.

The second major area of our research uses the environment provided by the
integrated system as a context in which to automate office procedures. We are
engaged in the development of methodologies and tools for the construction of
automated office systems, based on knowledge about the organization and function of
an office. We feel that this knowledge can best be expressed in terms of a non-
procedural problem-oriented specification language. A language of this type provides a
user with both a conceptual framework for approaching the analysis of office functions,
and a set of high-level structures natural to the problem domain in which to specify
them. J. Kunin has begun work on the design of this facility, known as the Of f ice
Specification Language (OSL).

The design of OSL is based on the premise that there is a high degree of
commonality of structure among the various procedures performed by a wide variety
of offices, operating in seemingly disparate application environments. By identifying
major types of activities carr ied out in offices, we have begun to abstract a set of
semantic constructs which will evolve into the primitives of the language.

The specification of office procedures involves knowledge of three types: data,
organization, and func tion. OSL provides constructs for describing the form and

. - .
~~~‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
,

~~ 

.—

~ 

-

~~~~~~~~~~~~~~ 

. 1

31 DATA BASE SYSTEMS GROUP

structure of data used in the office , the inter- and intra-of lice organizational structure,
and the specific functions for which the office is responsible. In the functional
specifica t ion, the processing requirements are described in terms of a set of activities
we have identified as canonical. These activi ties include structured processes, (such
as management of communications, data management, logging and account reconciliation) ,
as well as unstructured activities , or decisions, (such as scheduling, allocation, selection
and verifica tion). We are continuing the development of OSI, which we expect will be
used as a framework and tool for formal analysis and communication of off ice
procedures, and as an input language to an automation system.

Upon completion of the preliminary version of OSL, we anticipate building a
prototype automation system. This will consis t of several components. One will be a
translator , which accep ts OSL as input and transforms the specification into an internal
representation suitable I or expressing knowledge about the procedures and the data
and organizational context in which to execute them. Another will be the program that
interprets the internal representation. This system will keep track of when activities
should be executed, au toma tical ly implement the structured activities as specified, and,
maintain all bookkeeping needed to support human decision making.

—

~-‘ ~,: ..-. .

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ 
—-.-. -----

~~~~~~~~~~~~


DATA BASE SYSTEMS GROUP 32

Publications

1. Hammer, M. and McLeod, 0, “The Semantic Data Model: A Modelling Mechanism
for Data Base Applications .” Proceedings of ACM SIGMOD International
Conference on the Management of Data. Austin, Tx. June 1978.

2. Hammer , M. and Sarin S.K. “Efficient Monitoring of Database Assertions.” to
appear in ACM Transactions_on Databa~~~y~tems.

3. Hammer, M. “Very High Level Programming Languages.” Proceeding~~of the
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Conference. Washington,
D.C., Navy Laboratory Computing Committee and Office of Naval Research, April
1 978.

4. Hammer , N. and Shipman, 0. “An Overview of Reliability Mechanisms for a
Distributed Data Base System.” Proceeding~ of the 1978 Spring IEEE COMPCON
Conference. San Francisco, Ca, March 1 978.

5. Hammer, M. “The Impact of Data Management Research.” !nfotech State of the
Art Report on Database Technotqg London: Infotech, 1978.

6. Hammer, N. “The Impact of Automatic Programming Research.” Proceedings_ of
the 1 978 National Computer Conference. Anaheim, Ca., June 1 978.

7 Hammer, M., “Research Directions in Data Base Management.” Proceediflgs of the
Conference on Research Directions in Software Technology. Providence, R.l., Air
Force Office of Scientific Research, Army Research Office, and Office of Naval
Research. October 1 977.

8. McLeod, 0. “A Framework for Data Base Protection and Its Application to the
INGRES and System R Data Base Management Systems.” Proceedings of the
1 977 IEEE COMPSAC Conference, Chicago II., 1 977.

9. Niamir, B. Attribute Partitioning in A Self-adaptive Relational Database System.
M.I.T., Laboratory for Computer Science, LCS/TR- 1 92. Cambridge, Ma., January
1978.

Theses Completed

1. Berkowitz , B. “Cost Models for the Datacomputer.” unpublished S.B. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, May 1 978.

2. Chuang, KM. “On Representing the Distribution of Values in Data Bases.”
unpublished S.B. Thesis, M.I.T., Department Electrical Engineering and Computer
Science, September 1 977.

3. Oanberg, S.A. “Evaluating Queries Concurrently in a Shared Database System.”
unpublished SM. Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, June I 978.



33 DATA BASE SYSTEMS GROUP

4. Karkula, S. “Information flow in an Organization with Implications for Off ice
Automation.” unpublished S.B. Thesis, M.I.T., Department of Electrical Engineering
and Computer Science, June, I 978.

5. Niamir, B. Attribute Partitioning m a  Self-Adaptive_Relational Database System
S M. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
January 1 978.

6. Sarin, S. K. “Automatic Synthesis of Efficient Procedures for Database Integrity
Checking.” unpublished S.M. thesis, M.I.T., Department of Electrical Engineering
and Compute r Science, August 1 977.

7. Shao , H. “Verif ication of the Structural integrity of DBTG Databases. ”
unpublished SB. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, May 1 978.

8. Slutz, 0. “Analysis of the Effects of Updates on Database Integrity.” unpublished
S.B. thesis, M.I.T., Department of Electrical Engineering and Computer Science,
May 1978. .

9. Tuceryan, N., “Detection and Correction of Semantically Related Errors in
Database Updates.” unpublished S.B. thesis. M.I.T., Department of Electrical
Engineering and Computer Science, June 1 978.

10. Woltman, G., “Detection and Correction of Multiple Common-Site Errors in
Database Updates.” unpublished S.B. thesis, M.I.T., Department of Electrical
Engineerinç and Computer Science, June 1 978.

Theses ~t~_Progress

1. Chan, A. “A Methodology f or Automating the Physical Design of Integrated Data
Bases.” Ph.D. Thesis, M.I.T. Department of Electrical Engineering and Computer
Science, expected date of completion, August 1 978.

2.- Oell’Aquila, J.B. “Error Detection and Correction in Database Updates Using
Imprecise Constraint Predicates.” SB. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expected date of completion, August 1 978.

3. Koschella, J., “Some Optimizations of Nested Data Base Queries.” S.B. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected da te
of completion, May I 979.

4. Kunin, J. “An alysis and Specification of Office Procedures.” Ph.D. Thesis, M.I.T.
Department of Electrical Engineering and Computer Science, expected date of
completion, December I 979.

5. Leong, R. “Cost Minimization in Database Validity Checking.” SB. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion, August 1 978.

-~~~~~ .~,-.. -~ -

-

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _

DATA BASE SYSTEMS GROU~’ 34

6. McLeod, 0. “The Semantic Data Base Model and Its Associated Structured User
Interface. ” Ph.D. Thesis, M.I.T., Depar tment of Electrical Engineering and
Computer Science, expected date of completion, August 1978.

7. Wang, L. “Simultaneous File Partitioning and Index Selection in a Self-Adaptive
Data Base Management System.” S B. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, expec ted date of completion, August 1 978.

8. Zdonik, S. “Semantic Query Optimization in Data Base Systems.” SM. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expec ted da te
of completion, May 1 979.

Talks

1. Hammer, N. “Application Oriented Software Research.” Conference on Research
Directions in Sof (ware Technology, Providence, RI. October I 977.

2. Hammer, N., “Research Directions in Data Base Management.” Conference on
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Providence, RI. October 1977.

3. McLeod, D. “A Framework for Data Base Protection and Its Application to the
INGRES and System R Data Base Management Systems. ” IEEE COMPSAC
Conference, November 1 977.

4. McLeod, D. “Relational Data Base Management.” California State University,
Nor thridge, Ca. November 1977.

5. Hammer, N. “Model’-Based Error Detection and Correction.” NRL Workshop on
Issues in Data Base Error Detection~ Washington, D.C. January 1978.

6. McLeod, 0. “The Semantic Data Base Model and Its Associated Structured User
Interface .” Presented at California State University, San Luis Obispo, CA,
October 1 977; University of California, Davis, CA, - November 1 977; California
State University, Northridge, CA, November I 977; Rand Corporation, January
1 978; Lawrence Berkeley Laboratory, Berkeley, Ca. January 1978; University
of Southern California, Los Angeles, Ca. February 1978.

7. Hammer, N., “Very High Level Programming Languages.” Software Specification
and Testing Technology Transf er Conf ere~~!, Washington, D.C. April 1978.

8. Hammer, M. “App lications Programming Methodology.” Burroughs Corporation
Computer Science and Technology Semina’, Nassau, Bahamas. April 1978.

9. McLeod, 0. “Language Issues in Relational Data Base Systems.” Boston Area ACM
SIGPLAN Meeting, Boston, Ma. May I 978. -

10. McL,eod, 0. “The Semantic Data Model: A Modeling Mechanism for Data Base
Applications.” ~~ I 1_~~~~Q~ International Conference on the Manag~~ en t of
0ata~ Austin, Tx. May 1 978.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

--

35 DATA BASE SYSTEMS GROUP

11. Hammer, M. “The Architecture of the Automated Office.” M.I.T. Industrial Liason
Program Sympo,~~~ Cambridge, Ma. May 25, 1978.

12. Sarin, S. K. “Efficient Monitoring of Database Assertions.” 1978 ACM SIGMOD
International Conference on Management of Data, Austin, Tx. May 1 978.

A

~

.
‘
— - -1 M. ~~~~~~~~

37

DISTRIBUTED SYSTEM SEMANTICS
WORKING GROUP

Academic Staff

B. H. Liskov, I. Greif
Acting Group Leader L Svobodova

0. 0. Clark

Graduate Students

A. Luniewski E. Moss
0. Reed C. Schaffert
E. Stark

Support Staff

V. Chambers - A. Rubin

~~ø,P’ ;~~

- -PKECEDING PAGE NOT FIUiED

j
ELANK

______ _ _ _ _
~~~_ 1



39 D. S. S. WORKING GROUP

DISTRIBUTED SYSTEM SEMANTICS
WORKI NG GROUP

A. INTRODUCTION

Preliminary work on the structure of distributed systems, repor ted in last year’s
progress report in the section on the Computer Systems Research Group, resulted in
the formation of a working group, composed largely of people from the Computer
Systems Research Group and the Programming Methodology Group. This is the report
of that working group.

Computer systems should reflect the struc ture and needs of the problems to
which they are being applied. For many applications, a distributed computer system
represents a natural realization. For both technical and economic reasons, it is likely
that for many existing applications , distributed computer systems will replace
conventional computer systems built around a large central processor, and that new
applications will emerge based on distributed information processing. However , before
such systems are feasible , a better understanding of how to construct them is needed.
Our project is aimed at providing this understanding.

The move towards distributed processing has become feasible ma nly because of
the rapidly dropping cost of compu ter hardware and the increasing power . and
flexibility of mini and microcomputers. The move toward distributed systems will be
dictated, however, by their “naturalness,” and by the many technical advantages they
offer over centralized systems. These advantages include the following:

1. 
~~~!~~~~

tY

Availability of information can be increased by replicating it at several nodes.
This arrangement not only increases the access bandwidth to the information, but
in case of a failure of one of the nodes or a failure of some communication link,
the information remains accessible.

2. Protection

Distributed systems provide a better environment for protecting information
stored in the system and for coping with run-time errors resulting from
hardware failures or residual design and implementation errors. These
advantages arise from the actual physical separation of independent or loosely
coupled computations and information that belongs to different users. The
physical boundaries of individual nodes provide “firewalls” that (if properly
designed) will prevent spreading of errors originating in a particular node to the
rest of the system . Such boundaries can also be utilized to protect information
stored at individual nodes from unauthorized access or modification by other
nodes. As the most severe protection measure, a self-contained node can be
guaranteed privacy during some sensitive operation by physically detaching it
from the rest of the system.

— ~ -. . -

0. S. S. WORKING GROUP 40

3. Reduced Software Cornploxit y

The physical separation of computations arid information may lead to a reduction
in sof tware complexity. A lso , dis tribution reduces the level of hardware
resource sharing, and, consequently, will reduce the complexity of software for
resource allocation, scheduling, and protec tion. Lower software complexity
makes verification of design and implementation more feasible.

4. Ex~andabiIity

As more users join the sys tem or new services are added, it is not necessary to
make any physical replacements in a distributed system. Rather, one or more
new nodes need to be added to the system. Distributed systems can grow more
gradually than systems with a large central processor.

Thus, there are many sound reasons why applications should be implemented as
distributed systems . However , there are a host of unsolved technical problems in
building arid programming a network of minicomputers to give the appearance of a
coherent system. The project discussed in this report is to develop an integrated
programming language and operating system to support a well-structured design and
implementation of distributed applications.

1. Distribu ed~~y~tems of lnterest

The area of “distributed sys tems” has become a popular source of systems
research projects . It has also become an important term in marketing computer
equipment. Unfor tunately, because of this popularity, the terms “distributed systems”
and “dis tributed processing ” are frequently misused, of ten referring to such
conventional concepts as remote job entry, use of term inal concen t r a to r s, or
multiprocessor organizations.

The distributed systems considered in our projec t can be described loosely as
organizations of highly autonomous information processing modules, called node!, which
cooperate in a manner that produces an image of a coherent system on a certain
defined level. Autonomy is the key characteristic that eliminates most multiprocessor
organizations from this class of distributed systems. Certainly, a distributed system has
more than one processor , since it has at least one processor in each node. However,
in a distributed system, the nodes are highly independent, each having its own primary
memory, possibly even some secondary storage, and its own interface through which it
communicates wit h its environment (e.g. user terminals, sensors). The individual nodes
are connected by a communication network; the communication delay may be highly
variable and unpredictable. The communication network might be a long-haul network
such as the ARPANET [1 51, a local area network [2], or a suitable combination of these
two types. Each node has access to its own memory only; that is, inter—node
communication is possible only by explicitly exchanging messages, not through shared
memory. Final ly, physical (geographical) reorganization of the nodes and the
cornmunciation network is assumed not to impair the system’s functionality; the only
change might be in the system’s performance .

—~~~ ~‘
,
~~.7- ----— - -- - . . -

~~~~~~~~~~ *~~~~ ~~ ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ “. - .



41 0. S. S. WORKING GROUP

2. Cornparison of Our A pproach with Related Wor k

The assumption of autonomy of the nodes that compose a distributed system is
the most important ingredient that distinguishes our work . However , once autonomy is
assumed, the next issue that arises is to devise techniques that permit the programs
running on the autonomous nodes to communicate in a coherent fashion. We are aiming
at a high level of coherence th~it is application-independent but permits communication
among the nodes in application-oriented terms. This high level of application -
independent coherence distinguis hes our approach from other work that is based on
the assumption of autonomous nodes. Most work has either provided a very low level
of coherence (e .g. the ARPANET ) or has provided coherence within a spec if ic
application (e.g. the NSW works manager [12]) . There is some work related to ours in
progress at Xerox PARC , but again this work is focusing on a very specific
application- -office automation.

The problem of simultaneous update, making an identical or a logically rel ated
change at several sites , has received considerable study [5,10,13,14,16,18, 21].
However, we remain unconvinced that a solution to this particular problem is crucial to
our research. Rather , we view our system as providing an environment in which any
one of several simultaneous update algorithms can be implemented as needed. This
point distinguishes our work from SOD-I [16], for example, since that projec t assumes
a very particular technique for implementing simultaneous update. SOD-I also makes
very restrictive assumptions about the autonomy of the nodes of the system.

Distributed systems have only lately become a focus of programming language
research. In the past, programming languages have mostly not addressed concurrent
programs. More recent languages (e.g. Concurrent Pascal [1]) Modula [22]) have had
features for concurrency, but within the context of a single processor: these
languages are based on the assumption that programs interact through shared memory,
which is not consistent with the concept of autonomous nodes with private memory.
There is related work at Oxford [9], the University of Rochester [6] and at MIT [4,7],
but this work does not place strong emphasis on integrating the language and operating
system features.

Indeed, we feel that our emphasis on the integration of language and system is a
key factor that distinguishes our work from other related work. Much of what
distributed programs do, falls into what is usually considered to be the systems area,
including such topics as synchronization of access to shared information and protection.
However, programs are written in a programming language, and proper primitives in
that language can greatly influence the structure of programs. By integrating the two

4 areas we expect to achieve a greater impact on the construction of distributed
systems th an could be accomplish ed in eith er area separately .

B. STUDY OF APPLICATIONS

It is essential that the mechanisms we develop to suppor t construction of
distributed applications will cover the real distributed processing problems. To this
end, we have studied a number of applications, both by direct observation [19,20] and
by surveying related work as discussed earlier. This study was hampered by the lack
of existing distributed systems; for example, banking systems are not yet distributed,

.
~ ~.. , . ,  . - - - ..



0. S. S. WORKING GROUP 42

although a distributed system is being planned. Therefore, we had to supplement our
study by sketching designs for future systems.

Several different classes of distributed activities have been identified:

1. Invotation of Remote Servers

A message is sent to a remo te node instructing some server at the node to
perform a certain opera tion; a rep ly (requested informa tion or an
acknowledgement if no data is to be returned) confirms that the operation has
been performed. The mail sys tem in the ARPANET is an example of this type of
application.

2. Atomic Transactions on Distributed Databases

To preserve the integrity of a database, it may be necessary to provide a
mechanism that guarantees that either all updates specified by a transaction will
be performed, or none, no matter how the transaction fails.

3. 0~ tributed Data Processing

If large quantities of data residing at different nodes are processed, a problem
may arise even if no updates are performed, which is to minimize the data
moved between nodes in order to perform the desired operation. An example is
query processing in a distributed database system.

4. Distributed Problem Solving

This describes systems where the cost (overhead) of maintaining a centralized
global view of the system state and control is prohibitive. In such systems, each
node knows only a partial state of the system and has to make intelligent
guesses about the rest of the system. An example of such an application is a
dynamic routing algorithm for store-and-forward networks.

5. Distributed Programming System

This is a distributed version of a general purpose time sharing system. The
assumption is that it is not possible to restrict in advance the modes of sharing
among users . It is necessary to communicate both data and programs, but from
the point of view of the mechanics of the actual exchange of information this
type of system could be included in the first category.

The distribution can take place along two main lines, based on functional
separability or on the non-uniform distribution of the use of databases. Functional
distribution means that different nodes support different services. Such systems seem
natural for control of industrial processes, where different nodes control different parts
of a process, or in such systems as aircraft, where different nodes process information
from different sensors . However , this approach seems to be also advantageous in
service sectors such as banking~ [1 9].

4 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~# ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ -

-

~~~~~--. - . - - - 

-



43 0. S. S. WORKING GROUP

Another category of distributed systems is a system where an individual
processor supports the same services but on a different part of a database. A typical
example is a bank with many branch offices. Each branch has its local accounts, but it
should be able to serve a bank’s customer whose account is at another branch. Since
such remote requests are much less frequent than manipulation of the local accounts,
partitioning of the bank ’s accounts database (that is, maintaining accounts on a
computer at their local branch) is a natural approach.

It must be said that the division between functional distribution and database
distribution is not clean; in most cases , a distributed system will to some ex tent
include both. The latter case, however, implies an integrated database, while in the
former case (functional distribution) the databases used by individual servers are much
more independent. In some ways , the functional distribution is a more general case. A
distributed database represents a special problem, the need to enforce consistency
constraints that span several nodes. It is not clear how often this problem actually
arises, but it cannot be ignored.

it can be concluded tha t the basic paradigm in the class of distributed systems
that our project is addressing is the invocation of remote servers. This can be viewed
as a communication protocol of much higher level than, for example, the host—to-host
communication protocols currently employed in the ARPANET. The implementation of
such high level protocols, however , may need to differ , depending on the type of
applica tion, and possibl y on the efficiency and reliabili ty requirements of the
application. Therefore , we should not aim to design such high level protocols , but
instead develop a set of tools that facilitate design and implementation of such
protocols.

Finally, an appl icat ion study by d’Oliveira [3] revealed an important result that
there are strong pressures toward decentralization f or sociological and political rather
than technical reasons. These non-technical pressures imply to us that decisions about
the distribution of information among the- various nodes will be made for external
reasons that only the application itself can specify. Thus, the application builder must
have control over and understand the placement of information.

C. TH~~~~~~~~

As was mentioned earlier , we view a distributed system as a collection of
autonomous nodes that onl y communica te by information exchange over the
communication network that connec ts them. In such a system, at leas t two levels of
coherence must be enforced. One level is the application level itself. The second
level is the set of internode communication protocols that facilitate the physical
exc hange of information (packets of bits). But there is a large gap between the
application and the low level communication protocols. Usually, this gap results in a
rather ad hoc implementation of the application.

Our target is an intermediate level, called the programming system, which will
suppor t a well-structured design, imp lemen t a t ion, maintenance and control of
distributed applications. This level is more than a programming language in a tradition&
sense. Rather, this level is envisioned as a set of tools that include primitives found in
conventional higher level languages such as Pascal or PL/ J , but also primitives normally

# T 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.

~~~~~~~~~~~~~~~ ~~~ 

- .- _ _ _  
- -



0. S. S. WORKING GROUP 44

assumed to be a part of an operating system, for example, long-term storage and
cataloging of information or control of protection safeguards. Thus, this programming
level will integrate the programming language and the operating system. More strongly,
this level will integrate a programming language and a distributed operating system.
The design goals for the programming system include:

a. Aim for as high a level as possible, but application independent. Our system is
intended to be used to implement many diverse applications, for example, both
command and control systems and administrative systems like inventory control
systems. To adequately support such a class of applications, the language should
be as high level as possible but general purpose. One need that all applications
share is the ability to exchange potentially quite sophisticated messages.

b. Support well-structured programming. Since our primary motivation is to ease
the task of the application programmer, we feel that the embedded language
should borrow from existing language work, in particular building on languages
such as CLU [11] and Alphard [23], which aid in the production of well-
structured programs by providing powerful abstraction mechanisms. Of particular
importance is the data abstraction, which consists of a set of objects together
wi th a set of operations that provide the only means for manipulating those
objects. Data abstractions have so far been investigated mainly in the context
of centralized processing. We believe that they will be even more useful in
distributed systems , because they provide a powerful tool in organizing a
coherent structure for distributed systems by permitting the data of the
application and the aHowed distributed sharing to be described in application-
oriented terms.

Since we are dealing with a distributed environment where an operation defined
on the application level may require the assistance of several nodes, the
language must support concurrent activities (process abstractions). Extensions
of sequential languages will be necessary to achieve this. To enhance ease of
use, we will keep the language as conventional and conservative as is consistent
with our other goals. -

c. Support communication in terms of abstract objects. Automonous program units
need to communicate in terms of the kinds of high level objects they manipulate.
For example, the ARPANET supports one sort of “high level object,” the ASCII
file, but any other form of data must be transmitted as a sequence of bits and
explici tly transformed from one representation to another by a user written
program. The language should support communication via messages composed of
abstrac t objects. Two advantages arise from this approach. First , a cle -ar
statement can be made about the properties of data that the units depend on.
Second, the approach clarifies the processing that is needed to translate an
object in memory into a message transportable by the communication network
and vice versa: the translation is accomplished using special operations of the
objec t’s type. Note that this translation is always needed; a language that
requires messages to be composed of low level objects simply obscures this
fact.

~~~ _ _


—

45 0. S. S. WORKING GROUP

d. Allow explicit control of the application distribution. Conceptually, the target
level can be viewed as an abstract network of processes where application-
defined processes communicate via messages that contain high level commands ,
data and responses. In an ideal situation, this is all that would need to be seen
by the application programmer . However, underneath this abstract network is
the set of physical nodes and the communication lines that connect them. Our
study of applications has indicated that the mapping of the objects used by an
applica tion into the physical set of nodes has to be made visible to the
applica tion programmer. We are also assuming that objects do not move
dynamica lly from node to node, depending on the degree of demand (such
dynamic migration is of ten assumed in the “distributed” systems consisting of
many, rela tively tightly coupled, mini or microprocessors). Rather, when a
specific node is chosen to be the (new) home of a particular object , an
installation of the object has to be explicitly requested, using commands
provided by the programming system. This assumption is based on the belief,
discussed earlier , that such placement decisions will often be based on non-
tec hnical factors external to the system [3].

e. Support sharing. The programming level must support sharing of objects that
reside at different nodes and belong to differen t users, where what objects can
be shared is defined by the application. An important aspect of sharing is to
provide controls that regulate the patterns of sharing so that protection and
synchronization constraints are properly met. It is also necessary to solve
problems of naming across nodes.

f. Support reliable (robust) operations. Reliability is one of the most important
goals of our projec t. A distributed system, by its very nature, provides a
p~tentiai for enhanced reliability. However, to exploit this

-
potential, the system

and the application have to be properly designed. An arriving message must be
tested for integrity and authenticity, using a combination of automatic system
features and application dependent procedures, and there must be control over
timeouts and the number of retries for messages sent but for which a reply has
not been received. It is also desirable to have a means of specifying that an
online backup copy is requested for an object.

g. Support changing patterns of use. We cannot expect an application to be
written once and never modified. First, the system will grow by the addition of
new nodes. Second, new pat terns of use will arise involving existing or new
pieces of information . Thus, we can expec t synchronization and protection
constraints to change with time. This change must not cause upheaval in the
design of existing parts of the application.

We wan t to emphasize that the envisioned programming system is not intended
for the end user, but I or the applica tion builder (programmer), alt hough in some
environments (such as LCS) there is often little distinction between the two classes of
users. A lso, it should not be necessary for all nodes in the distributed system to
suppor t the full language; each node need only support the appropriate (high level)
internode communication protocol.

~

.— ---~~~~~ ~~~~~~~ . .

D. S. S. WORKING GROUP 46

0. ENTITIES

In this section we discuss the universe of entities (e.g. programs, data) that take
par t in a distributed computation. We are not concerned with all aspects of the
behavior of the entities, but rather limit our attention to questions concerning the
locations of entities within the network and the possible relationships among the

L entities. We assume that each entity has an identity that is permanent; an entity can
be referred to by giving its name. -

1. Location of Entities

The universe of entities is spread across the physical nodes that make up the
network. One question that arises concerns the location of entities: is an entity
permanently located at a par ticular node, or can it move from node to node’

To make a decision here, we must consider several issues:

a. Earlier we discussed our conclusion, based on an analysis of applications, that the
application programmers must be able to control the location of entities. Note
tha t, at the least, this conclusion precludes automatic relocation of entities by
the system, although relocation under program control would still be possible.

b. We are assuming that nodes are autonomous and possibly heterogeneous. Even
under program control it is possible to move an entity to an autonomous node
only if that node is willing to accept it. Furthermore, if that node is different
from the current home node of the entity, considerable translation may be
needed to effectively move the entity.

Therefore, we believe that entities should have a permanent location at some
node in the network. An entity comes into existence at some node (when it is created)
and remains at that node until it is destroyed. Moving an entity can be accomplished
by having a program create a- new entity and letting it “take over” from the old one;
however, the relationship between the two entities is not recognized by the system,
and represents a higher level concept of identity than that introduced above.

One consequence of this decision is that it will be easy for the system to create
unique names for entities and to interpret entity names, since the node of residence
can be par t of the name.

2. Typ es of Entities

One of the fundamental decisions in developing a model of computation is to
determine whether the entities used in the model are all uniform or to determine
whether there are different classes of entities. Basically, the uniformity concerns the
ways in which the entities may be used (and may use other entities). An example of a
system in which all entities are uniform is the Actor System [7] here every entity is
an actor, and an actor is used by sending it a message (which is also an actor).

We have chosen to have different kinds of entities in our model. At this level of
discussion, we are interested in distinguishing only two kinds of entities: processes

~ ~~ -~~~ ~~
-g”~ ~

—.----—-.,, - — ----.- -.- .-_-- .-~~~~~ ~~~~.. -- -

47 0. S. S. WORKING GROUP

and everything else. A process is active , and is thought of as being the execution of a
sequential program. Non-process entities , which we will call ~~~~~ are passive , i.e.,
they do not originate any activity . Examples of objects are integers, arrays, stacks,
procedures , etc. Objects have a state (value) that may change. If the state can
change during the object’s lifetime, then the object is mutable.

A process can communicate with another process by sending it a message. We
assume that the syntax and semantics of message passing is independent of the nodes
of residence of the two communicating processes (alt hough certain optimizations can be
performed by the system if both processes reside at the same node). A process can
use an objec t by performing (invoking) an operation on it (or by invoking it if it is a
procedure); again, the semantics of invocation is the same regardless of the nodes of
residence. ’

We have just described a model in which there are two basic primitives:
invocation and message passing. We intend that the semantics of invocation is distinct
from message passing: the primitives are really different . (We expect that these two
primitives will also be distinguished syntactically, but that is a separate decision.)

If an actor -like view is taken, there is only one basic primitive, message passing,
so our model seems more complicated. However, we believe that it is more natural
than the actor model and will therefore be easier for programmers to understand. If
programs built out of actors are examined, it is clear that there are “data-like” actors,
“procedure-like” actors and “process-like” actors. We believe these differences are
fundamental and should be reflected in the language and its semantics.

3. Restrictions on Ref erring to Entities

Now we address the subject of entities referring to entities. An entity may
refer to another entity by using or containing its name. For example, a process will
have local variables that may contain the names of other entities (both processes and
objec ts); as the process executes , it can use these names. A data object is
represented by some storage (at its node of residence), and some of this storage may
contain names of entities (again both processes and objec ts).

One possibility is to place no restrictions on what entities can refer to other
entities. Thus, a process could perform an operation on an object whether that object
resided at the same node or not. Invocation of an operation on a remote object can be
made to work, but has a disadvantage in that what appears to be a simple invocation
will involve internode communication, and therefore can take a long time (although the
semantics is still that of invocation). (The invocation must take place at the object’s
node, since the object cannot move to the invoker’s node.)

We have chosen to restrict the objects that a process can refer to such that:

a. All these objects are at the same node as the process.

b. These objects are p!j~’ate to the process: no other process can refer to them.

- ~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

-



0. S. S. WORKING GROUP 48

There are no restrictions on the processes to which a process can refer. It is easy to
enforce the above restriction as follows: messages can contain the names of
processes but not the names of objects . A model obeying this restriction is illustrated
in Figure 1. The nodes labeled Pi are processes, while nodes labeled Oi are objects.
Two kinds of directed arcs are shown. A solid arc from entity x to entity y means y is
a process and x names y, while a dashed arc means y is an object and x names y. Note
that objects can name both processes and objects.

A process may ultimately refer to an object in the course of its execution if
there is a path from the process to the object consisting entirely of dashed arcs. We
will call the set of objects that a process may refer to its local address space.

Note that in this model, processes are analogous to nodes of the network: each
process has a private memory and can communicate with other processes only by
sending messages. Thus the universe of entities represents an abstract network. (The
Abstract network model is possible because we distinguish processes from other
entities. We believe this is another reason why it is worthwhile to make the
distinction.)

The abstrac t network model has several advantages:

a. The programmer organizes the locations of entities by considering where to
locate the abstract nodes (e.g., each process with its local memory). This seems
easier than worrying about each entity individually.

b. Operations are always invoked locally. This is simpler to implement than remote
invocation, and also avoids some arbitrary time delays. (Of course, the operation
invocation itself might send a message, e.g., to some process whose name was
contained in the object.)

c. Management of storage for objects (e.g., garbage collection) can be done locally
on each node. -

Although two processes cannot refer to the same object, they can share an
object if they both name the process that can refer to the object. Such a process is
called a gjjardi an~ it may guard one or several objects. The job of a guardian is to
synchronize possibly concurrent reques ts to perform operations on th~ guarded
objects. In Figure 1, P3 is a guardian for 07, which is shared by P1 and P2.

A guardian should not be assumed to know ~ pr i or i about all processes that
may request operations on the guarded objects. Furthermore, if a process requests an
operation on data that are available only through the guardian, such a request may fail,
since the guardian may refuse to release requested data, or in some cases may even
destroy the data at its own discretion.

The abstract network model requires two extensions to be useful. First, the
requirement that local address spaces of processes are disjoint may need to be
relaxed. To obtain sufficient parallelism, it will probably be necessary to support
complicated guardians consisting of several processes that share objects. This could
be 

.

- --u.- 
~~~~~~~~~ 

.
~~——--~- --.__ .. - ——~~ -- -

49 0. S. S. WORKING GROUP

07~~~~

\

P3

P2

/1
V

/ 02,,~ 06

o1~~~ x
-, I.4,

(

‘

~~ o3~~~ 04
‘

S.. 1\

~~~~~~05

Figure 1. Example of Possible Relationship of Processes and Objects

____________ ‘~~~~~~~~~~~~~~~~~~~~ .‘.

‘~~~~ o~~~ _ _  ~~~~~~~~~~~~~~~~~~~~~ 
.-~~~

— - - - 
I’- 

- -



0. S. S. WORKING GROUP 50

accomplished by a special syntac tic construct , something like a serializer [8], tha t
defines the processes making up the guardian and their intercommunication; all the
processes in the guardian would reside at the same node.

Second, in the case of a guardian that guards several objects, some efficient
mechanism is needed that permits a user process to specify to the guardian the
par ticular object of interest , and for the guardian to determine that the object so
specified is one it guards. The system provides no guarantee, however, that such an
object continues to exist as long as the user can specify it.

E. RELIABILITY ISSUES

Re l iab i l i ty  is and will be one of the major issues in information processing
systems. As discussed earlier, distributed systems provide a potential for enhanced
reliability; however, this potential needs to be exploited through proper design. This
section discusses the reliability problems in distributed systems and the mechanisms
needed to achieve reliable operation of a distributed application.

For the purpose of the discussion of reliability issues, the implementation of the
abstrac t network introduced in the preceeding section is divided into two levels: the
poo l i ca t i on  te~e1 and the ~ys tem leve l. The system level is all the mechanisms
needed to support the view presented to the application programmer (that is, the run-
time support of the programming system). The application level is built using the tool~provided by the programming system.

Reliability mechanisms are those mechanisms that assist in detection of , repor ting
and recovery from errors and failures. An error is an internal state of an entity that, if
no special recovery steps are taken, will result in a failure of the entity (or, in case of
data objects , fa ilure of an operation on the entity). Some errors can be handled
entirely by the entity itself , and thus remain invisible to the entities that are in some
way dependent on tha t entity (users of that entity); such errors are said to be
mas ked. Detected errors that cannot be handled internally should be reported to the
users, by signalling a fa i I u..~~ Undetected errors turn into failures; it is possible
that a user of such an entity can detect this kind of failure, but the problem is much
more complex than with the reported failures.

To achieve reliable operations from the application point of view, both the
system level and the application level have to include mechanisms for detection and
handling of errors and failures. For simplicity, the following discussion uses the term
failure to indicate reported and unreported failures as well as errors. For each type
of fai lure, it is necessary to decide where it can be detected and how it should be
handled. Some classes of failures, detec ted within the system level, can be masked,
but for others a failure has to be reported to the application level. Some failures,
however, are application dependent and therefore, their detection and handling has to
be left to the application level. (In the class of system level failures, there is a gray
area where a decision has to be made as to whether these failures will be masked by
the system level or reported to the application level.) Thus, the system ought to
provide suff icient mechanisms for masking certain classes of failures arising from the
operation of the hardware and the software that supports the application programs.
However, the system also has to provide suitable language constructs for the



I
51 0. S. S. WORKING GROUP

application programmer to facili tate handling of the application specific failures and
communication of the system detected failures to the application programs.

I. Communication Protocols

The abstract ne twork is supported by a physical network of nodes and
communication lines. Figure 2 shows the abs tract network mapped into the physical
network and the communication processes that control the physical delivery of
messages among the nodes. The application processes exchange messages that ,
logically, contain values of abstract objects meaningful at that level. The values of
these objects have to be translated or encoded into a string of bits for delivery to
another node and decoded to the proper abstract objects at the receiving node. At
the system level, messages, now in the form of a string of bits, may have to be
partitioned into packets . The messages are checksumed, so that transmission errors
can be detected. It is difficult to corr ec t transmission errors at the receiving node,
since transmission errors are bursty (affect not just a single bit, but several bits).
Checksum facilitates detection of errors, where the number of detectable simultaneous
errors is determined by the size of the checksum field. Correction is performed
through retransmission. In general, once a message has been translated into a string of
bits , the communication pro tocols should take care of the correct transmission.
However, the primary responsibility for checking that a message has been acte d on,
that is, ensuring that a process that sent a message will not wait indefinitely, and also
that the message contains values acceptable from the application standpoint, must rest
with the application.

Section F discusses the language constructs needed to permit an application
process to deal with failures of another application process with which it is

- communicating or attempting to communicate, to defend itself from improper use, and to
deal with the failures in the system level. This section concentrates on the system
level.

A truly reliable system level should be prepared to deal not just with
communication errors that result in a loss or garbling of messages sent across a
physical communication link. A reliable system level should not lose messages that
have been presented to it by the application processes and aueued for delivery. That
is, the message queues should be re~o~

j
~.bj~ in case of a physical fai lure of a node.

This requirement becomes very important if translation from an abstrac t data object to
the corresponding bit representation is a costly operation, or if the input to such a
translation step is not automatically repeated (e.g. message typed by a user). This
argument can be extended to the requirement that the system should ~uit~ni~~de l i very  of all messages it has accepted from the application processes. That means
that in addition to providing recoverable queues for messages that have not been sent
yet, the system must continue trying to send the queued messages until it eventually
succeeds. At the receiving node, the messages have to be stored again in recoverable
queues, until they are picked up by the target application process.

Note that the recoverable queues and persistent retransmission could be pushed
onto the application level. Putting it in the system level frees the programmer from
some of the work needed to satisf y the reliability requirements and hopefully increases
eff iciency. However, the reliability mechanisms do represent potentially large

~~~~~~~~~~ ~~~~~

‘I

~~~~~ 
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~— -~~~ ~~~~ - - -- - - - - . .

- -

0. S. S. WORKING GROUP 52

Ni ~~~~~~~ N2
P 1 3(p3)

‘S.

P2
_

c om i nu nic a ti o~~
— J Iniediu ia ~ L

- —

I I

Pi application processes
Ni nodes
Ci communication processes
Solid lines: possible communications on the application level
Dashed lines:, flow of information between processes

Figure 2. The Abstract Network: Communication on the Application
Level and on the System Level

-

-

.

-

- - ~~~~~~~~~~~~~~~

~:
.
~

~
__w•

~ I —

53 0. S. S. WORKING GROUP

overhead, and their use should not be imposed on all communications . The basic
communication scheme should be simple, fast , and inexpensive. We will investi gate
whe ther it is possible to vary the degree of reliability provided by the system by
let ting the application programmer choose from several different protocols; such
protocols would be implemented as extensions (abstrac tions) built from the basic
protocol.

2. IndividuaL Objects: Correctness and Availabilit

In addition to the problem of communication, it is necessary to address the
problem of reliability for individual objects in the system. This problem has three
aspects:

a. no information should be accidentally lost or damaged

b. operations on objects should perform correc tly (conform to the specification)

c. objects should always be available to qualified users (subject to protection
cons traints).

Redundancy is ii’nportant for all three aspects . Two or more copies of an object stored
and controlled in an independent way decrease the probability that the object will be
lost or damaged as a result of a failure of the storage device or the processor
mani pulating the information . Also , if an operation on an objec t fails , it may be
necessary to undo the effects of the operation (for example, an operation may have to
be aborted because of a detected deadlock or because of a failure of some entity it
uses) . Redundant copies m ake it possible to restore the current state or to backup
some earlier state of an object .

The issues regarding the reliability of individual objects are not specific to a
distributed system;

~~~~~~~ 
information processing system should support backup and

recovery of stored objects . Distributed systems, however, can increase the availability
of information and services . “Availability” can be interpreted as the delay experienced
when accessing a particular object. This definition has two connotations: one is the
eff iciency of the system , that is, the ac tual physical delay and queuing time in the
abs tract network (case E); the other source of delays are the failures in the abstract
network, that is, the reliability aspects (case R). Redundancy is used for both of these
subcases:

Case R: If some particular node or communication with a particular node fails,
it should be possible for the other nodes to continue their work. Since the
failed (or inaccessible) node may contain objects needed by the other nodes,
to increase availability means to maintain several copies of shared
( shareable) objects on differen t nodes.

Case E: Even if the system never fails , a single copy may not provide
sufficien t availability. A single copy of information or service may become a
bottleneck; also , the communica tion delays, especia lly in a long-haul
network , may be substantial , and it thus may be desirable to have a local
copy (and, consequently, support multiple copies).

- ~~~~~~~~~~~~ . - .

.~~~~~~~~
‘

~
‘+j’ ‘~~#‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ —



0. S. S. WORKING GROUP 54

The question that needs to be answered is to what extent the individual copies
have to be mutually consistent . It is important to distinguish between the two cases
since the right solutions to the problem of mutual consistency are significantly different.
In case R, only one copy needs to be actively used, that is, an object has a master
copy and one or more bac kup copies. The changes made to the master copy must be
propagated to the backup copies, immediately if every state of the objec t must be
recoverable, or periodically upon special command if in a case of a failure it is
sufficient to back out to some consistent state, not necessarily the .L~ 1 consistent
state. In case E, all copies must be available for active use. It is often assumed that
all copies must always be the same, but this requirement may defeat the very purpose
for which the multiple copies were introduced: reduction of delays. The delay caused
by synchronization of updates with other updates and accesses of multiple copies may
exceed the delay that wo.ild result if only one copy were maintained. In case £ it
seems much more realistic to allow for mult iple versions of an object; the local copy
may not always be the most current version, but the most current version is known
and a local copy of it can be obtained upon request.

The system level ought to support, in a selec tive way, the kind of redundancy
required for case R. However, as discussed for case E, maintaining several equivalent
copies of an object at different nodes can be expcnsive. One possible solution is to
make individual nodes ultra reliable and use redundant communication paths between
any pair of nodes. Selected objects then ought to be suitably replicated within a
single node. For many applications, this may be the right approach. Case E is more
complex and more applica tion dependent. The appl ica t ion user, as wel l as the
application programmer , may need to be aware that several versions of an object
exist. Thus, case E should be left to the application level. A possible scenario is a
system that on the application level supports multiple versions of selected objects,
where the most current version is backed up on the system level.

- 

F. LANGUAGE CONSTRUCTS FOR SENDING AND RECEIVING MESSAGES

An important issue in designing a language for distributed systems is how the
language recognizes pairing of messages. The basic scenario in the abstract network is
one process sending a message to another process requesting some action; later there
should be another message, flowing in the other direction, indica t ing the result of the
action. It must be possible to express in the language that the two messages are
related. In addition, it is necessary to address the problem that the reply may never
arrive, or that the request message cannot be sent. Several approaches are possible
that differ in how long (f or what event) the sending process must wait before it can
proceed. Closely related to this degree of waiting is what kind of failures are
detectable as part of the send command.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ,
~ - - - - - -

55 0. S. S. WORKING GROUP

1. The Waiting Approach

In this approach, the sending process is forced to wait until the response comes
back from the receiver , or some timeout or failure results. A possible syntax might be:

send C(args) to A timeout time:

Rl(formals) do SI;

R2(formals) do SI;

failure (formals) do Sf ailure;

timeout do Stimeout;

Here A is a process and C(args) is the message, consisting of a command, C, and some
arguments . The remainder of the construct lists the various possible responses,
together with the appropriate action to be taken by the sending process. RI , R2, etc .,
are responses for A; some might be normal, and some abnormal . “Failure” covers
various failures that are detected either by the system or by the receiving process A.
The arguments of “failure” specify the type of failure. Some examples of a detected
failure are:

a. the message as specified cannot be constructed

b. the specified process (A) no longer exists

c. the target node is inaccessible

d. congestion (the target node or the target process (A) does not have enough
buffer space)

e. the message cannot be decoded (the abstract objects contained in a message
cannot be reconstructed).

Which of these failures are visible at the application level depends on the design of
the system level. As discussed in Section E, the system level might be designed in
such a way that message delivery is guaranteed. This wou~ eliminate the need to
cope with the fa ilure s of the type c and d at the application level.

The timeout action is taken if “time” is exceeded. If the system is designed for
guaranteed delivery, the timeout action that terminates the send command should
release the buffers in which the system keeps the message for delivery to the target
application process. It should be understood that this timeout is for the pair of
messages to be exchanged between processes in the abstract network; a different
timeout value is used in the underlying system to govern retransmission of packets.

0’~
’
~~

~~~~~~ i~~~~~~~~~~~~~~

’

~~~~~ j~~~~~~~
’”

~~~~~~~~~~~~~~~~~~~~ ‘~~~ ri4~4L~.~~, 5”. 
-
~~~~ #~~~~

.‘

,

— --

~~~~ 

~T~~I -



0. S. S. WORKING GROUP 56

A different kind of “send” command is needed in the receiving process, since the
receiving process must be able to respond to the command without waiting for the
ori ginal sender process to respond back. To receive messages , A might use a
construct:

command case

C(formals) do...r~p!y R(args);...;

end;

Here, A is waiting for one of a number of messages; if several are available, one is
selec ted in a fair way. The message is then decoded, the contained data assigned to
the formats, and the statements associated with the selected message are executed.
The j~~pj~ command sends a message back to the process 1hat sent the message.
Another form of reply:

repiy R( args) to B

which explicitly names the process to reply to will probably also be needed. (This
would permit a third process to be the replier to the original sender.)

The approach ske tched above has the obvious advantage of pairing sends and
receives. It also has some obvious disadvantages. For one thing, there are two send
commands. More important , however, is the loss of parallelism. If the sending process
had other tasks to do while its request was being processed, it must either not do
them, thus reduc ing eff iciency, or it must spawn another process to do these tasks.
Thus a language suppor ting this approach must provide rich facilities for parallelism.
(Note: this is not the only reason for which such facilities for parallelism might be
needed. See the discussion of guardians in Section 0.)

2. The No-Wait Approach -

This approach is the opposite of the waiting approa:h: the sending process does
not wait at all but continues running, performing actions on the local objects, or
possibly even sending more messages . When it needs a response that is not ready, it
waits for it. The language now has to provide additional constructs that allow the
programmer to distinguish which response goes with which request and to specify that
the process wishes to wait for the reply to a specific message, rather than a reply to
any message that may have been previously sent.

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ) 

_ _ _ _ _ _ _ _ _ _ _ _ _ _

57 0. S. S. WORKING GROUP

There are various ways in which these problems might be solved. For example,
send commands might be labelled:

SI: send CI(args) to Al;

S2: send C2(args) to A2;

g~t SI replies:...;

In this approach, each ~ej~ command has a continuation (as in Actors (7J) that can be
named to identify the responses of interest in reol i es. Following reDI I es would be
the list of alternative responses, as shown in the preceding section, to the message
sent by statement SI. Note that the errors arising in turning Ci(args) into a message
would be exception s (abnormal terminations) of the ~~~ command; failures such as
(c), (d) and (e) described earlier would have to be reported outside of the ~~nd
command (in reol ies).

Another possible approach is to use ports:

send C(args) to A ~ ply-to P

where P is a por t that can be named by more than one ~~~ command. Ports offer
flexibility in expressing different patterns of requests and replies, both between a
single pair of processes and in cases where a process communicates with several other
processes. The port scheme could be further extended to allow the programmer to
use a special port for replies indicating a failure:

send C(args) to A reply-to P failure-to F

The port F could be viewed as an entry to the “comp laint department” of the
respec tive application process.

The no-wait approach permits parallelism and is more flexible, espec ially in
connection with ports. However , the linguistic mechanisms needed to enable the
programmer to do the matching introduce extra complexity; how much flexibility is
gained and how much complexity is added requires fur ther study. The no-wait
approach does not eliminate the need for supporting timeout, but now the timeout is
specified at the point where the process must wait for the reply.

3. The In-Between Approach

This approach again makes the sender wait, but instead of waiting for the reply
from the target process , the sender must wait only for some indication about the
progress in the delivery of the message . For example, in Hoare’s language [9], the
sender waits until the replier receives the message.

The first question to ask is: does this approach offer the programmer any
advantages over the other two approaches’ Since sends and replies are not explicitly

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ ~~~~~~~~~~ .. - — -—-~~~~~ -. -.----- -_ -- - - - - -~~~~~~ -~~~~~ -



0. S. S. WORKING GROUP 58

paired, from this point of view the in-between approach offers similar advantages and
disadvantages as the no-wait approach. What is gained over the no-wait approach is
that certain failures, for example, (c) and (d), or possibly even (e) can be treated as
exceptions of the send command. More importantly, the comp letion of the send
command indicates that a meaningful message (to some extent) has been received, and,
if the buffer into which the message has been placed is recoverable, it can be
guaranteed that the message eventually will be processed. It is not clear, however,
whether the guaranteed receipt and eventual processing of the message are really that
important, or more precisely, whether it is important to know this right after the send
command, instead of later when waiting for the results. It should be noted that there
is a substantial loss of parallelism over the no-wait approach.

The in-between approach is often advocated on implementation grounds, as a
means to prevent flooding of the receiver. Flooding means that messages are
delivered fas ter than the receiver can process them. Since the buffer space of the
receiver is always limited, either some control must be provided to stop the flow of
messages or some messages must be discarded. In a system with shared memory, a
very efficient implementation is possible, namely, each process has one send buffer,
and the message is held there until the receiver wants it. In a system without shared
memory such as our distributed system, this approach is clearly impractical, since ex tra
messages would be needed to inform the communicating parties that a message is

- ready (sender to receiver) and that it can be transferred (receiver to sender). In a
distributed system, the messages that cannot be processed immediately must be held
not in the buffers of the sender but in the buffers of the receiver. Still, af ter a
message from a particular sender has been discarded by the receiver for the lack of
buffer space, the in-between approach can prevent the sender from sending additional
messages. However, the flooding problem will be more appropriately handled on a
lower level, especially in connection with the guaranteed delivery scheme.

G. PROTECTION ISSUES

In a distributed system, the protection problem can be simplified if we
distinguish between inter -node and intra-node protection mechanisms. In the class of
distributed systems considered in our project , a likely case is that a particular node is
utilized by one user or at most by a set of cooperating and mutually trusting users. In
this case, intra-node mechanisms are not required to have power sufficient to protect
against subversion and malice. This is in strong contrast to a system such as Multics
[I 7], and many other time-shared and multiprogrammed systems that were designed to
operate properly with a set of mutually hostile users. The protection mechanism
required in a single node is that which protects adequately against error and
forgetfulness. This latter problem, while less severe than the problem that results
from fully suspic ious cooperat ion, is still not trivial. Presumably, the programmer must
be provided a means of partitioning his computations, so that certain objects are
accessible only in certain computations. This mechanism will allow him to debug new
versions of software without running the risk of destroying existing objects.

We propose that a capability mechanism be the mechanism to provide this intra—
node protection. By capability we mean an unforgeable identifier for an object, which
identifies the type of the object. (“Capability” is often used to mean more than an
unforgeable identifier; a capability may also include a specification of the access

- 
_i 1’~ 

4”~~T~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~I~~’TTTT~ 
- -

~~~~

- - -

-

. .

~~~~~~~ 

-



59 0. S. S. WORKING GROUP

ri ghts, that is, a specification of which of the operations defined for the type of the
object in question are actually allowed on that specific object. However , access
control can also be achieved by making the object appear to be of the type that
imposes the desired restrictions.) It must be presented as part of addressing an
object. By constraining a procedure to execute with a limited collection of capabilities,
it is easy to guarantee that the procedure will not do arbitrary damage to stored
information.

Capabilities have certain disadvantages as a protection mechanism, but they are
not apparent in this context. For example , inside a single node it should not be
necessary to ask the question “Who are all the people who can get to this object”
This is a question that capabilities cannot easily answer. A properly designed
cataloging mechanism will provide all the functionality in this direction that is required.
Most importantly, the efficiency of capabilities becomes very important in this context
in comparison to an alternative mechanism such as access control lists. Since we
assume a world with a large number of small objects, it is clearly impossible to imagine
that every object comes complete with an access control list; the overhead of an
access control list for each object might be substantially larger than the object itself.
Capabilities, on the other hand, need be no more than slightly enlarged addresses. We
thus propose that the intra-node protection mechanism is based on capabilities, with
some sort of capability cataloging mechanism playing the role now associated with the
traditional file system.

Let us begin the discussion of inter-node protection by considering a point of
policy rather than mechanism: the claim that protection between nodes should be
based on an access control list mechanism rather than a capability mechanism. This
clpim is not based on difficulty of implementation; either mechanism can be imagined.
Rather, it is based on our perception of the high level needs of distributed applications.
A fundamental way to characterize the difference between capabilities and acces•s
control lists i~ that capabilities do not provide any easy answer to the question “Who
are all the people who can get to this object?” while access control lists make it very
difficult to ask the question “What are all the objects that I can get to?” If one
considers real world protection problems, including those drawn from domains other
than the computer domain, the more workable model of protection generally turns out
to be that based on access control lists. While capabilities are often used in the real-
world, the most obvious example being keys, the drawbacks are well known. Keys are
subject to unauthorized duplication, loss, theft, etc. More relevantly, capabilities (or
keys) do not provide a means to support accountability.

Both inter-node and intra-node protection requires partitioning of computations
into non-overlapping access domains. The abstract network derived in Section 0
already provides such partitioning: each “node” in this abstract network has its own
local address space inaccessible to other nodes. The decisions about intra-node and
inter-node protection mechanisms -can be extended to the abstract network:
specifically, capability mechanisms will be used inside an abstract node, while access
control lists will be employed for inter-node communication.

One of the basic goals of our project is to allow the application programmer to
work with application-oriented entities. The same concern applies in the area of
protection. That is, protection constraints should be expressible in application-oriented

‘I — --- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .“. ..


D. S. S. WORKING GROUP 60

terms . Powerful abstraction mechanisms and the concept of abstract nodes both
contribute towards this goal.

Let us look now at the inter-node protection problem in the abstract network
from a slightly different viewpoint. It will be a rare case where a request occurring
between nodes consis ts of nothing more than the reading or writing of a single
primitive object. In most cases , we can expec t the request to be composed of an
aggregate of reads and writes on various objects, which the requesting node views as
atomic. This is generally referred to as an atomic transaction. The thing that must be
protec ted from outside is the right to execute this atomic transaction. It is quite
possible that the isolated reads and writes that are required as part of this transaction
are no t legitimate for the outside user except as a part of this or some other
transaction. The classic example is where we are willing to release the average of a
set of numbers, but not the numbers themselves.

Thus, we are faced w ith the problem of concisely expressing higher level
protection constraints. One possibility, which we propose to reject quickly, is that the
inter-node message may consist of an arbitrary algorithm, expre - 3d in terms of
primitive read and write operations, and this algorithm will be examined and confirmed
at the receiving node before execution to ensure that it conforms to the higher level
security constraints. The construction of a verification algorithm that ensures that an
arbitrary program conforms to one of the number of high level protection constraints
would be a challenge to the most optimistic of the program verification researchers.
Thus, we are led to the conclusion that the language in which an inter-node request is
expressed must have primitives whose functionality closely matches the expressed
protection constraints, so that it is easy to confirm that a proposed transaction does or
does not f all within the bounds of the outstanding protection constraints.

We postulate the idea, common in data management systems, that different users
of a data base have different views of the data base, of ten called different data
models. From the outside, the data model appears to describe physically stored
information and the acceptable operations on it. However , internally, the data model
may have little correspondence to the information actually stored. Rather, it may be
realized as algorithms that derive the modeled data from the information actually
stored. Thus, we firs t see users being divided into large groups, based on which data
model they use, and then being further divided within those groups according to which
operations they can perform on the data model provided. For example, some users
may be able to read cer tain records, others to read and write them. Each data model
implies the existence of an algorithm to translate between that data model and the
actually stored information. It is these algorithms that must be provided in advance,
one set for each data model. The programming system must provide facilities f or
crea ting such data models, mapping them into the actual stored information, and
synchronizing read and write operations originating from different data models.

We have stated this paradigm in terms of the traditional vocabulary of data
management. Let us state it again in a different vocabulary, that of typed objects. An
abstract type, which allows only certain well defined operations on the objects of that
type , while in reality it may perform arbitrary computation on a possibly large number
of objects that constitute its representation, is very close to the idea of a data model.
The traditional view of data models permits a low-level information entity to be shared

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~‘

-

‘~~~
-
-‘

- -- --
~~~~-. - —-.-I 
-

~~~~~ 

-



61 0. S. S. WORKING GROUP

by different users through a variety of data models. To support this view via abstrac t
types, it must be possible to manipulate a single low level object as part of a number
of different abstract data objects, depending on the rights of the different users. The
idea of data models is that different users have different views of the world, but,
fundamentally, they do turn out to be views of the same world. Thus, in some sense,
they must ultimately rest on the same physical data.

The inter -node protection can be enforced as follows. Any outside user
(process) perceives the information in a par ticular (abstract) node as a number of
objects that can be manipulated independently, and a set of permissible operations on
those objects. These externally visible objects are arranged in such a way that there
are no explicit pro tection constraints that tie one object to another. A message
arriving at a node to manipulate one of these objec ts must be processed by some
active entity (e.g. a process), which confirms that the requestor of the action has the
right to perform it , and then implements the operation at the node by invoking
operations on other objec ts, not direc tly accessible from outside. We will refer to this
entity as a protect i oji a.g~.nj. The protection agent could be the same entity as the
guardian discussed in Section 0. The guardian, however, presents only a single view of
the guarded objects. The protection requirements described above lead to a model
outlined in Figure 3. In this model, the protec tion function is separated from the
synchronization function . The protection agents represent different views of the
guarded objects . The guardian controls the actual physical access to the guarded
objects; it imposes synchronization constraints on requests passed to it from the
protection agents.

While there are an infinite number of protection checks that the protection agent
may wish to perform in a particular case, there are three checks that can normally be
expected to occur. First, the protection agent will wish to confirm that the origina tor
of the message has the right to invoke the protection agent at all. Second, the
protec tion agent may wish to confirm that the particular object or objects involved in
the operation requested are indeed accessible to the requestor, and th ird, that the
particular operation to be performed on the objec t is permitted for the requestor. For
example, a data base manager may wish to confirm that the requestor can invoke it,
then it may wish to confirm that the particular record being manipulated is accessible
to the requestor, and then it may wish to determine whether or not updates or just
reads are permissible for that requestor. In any particular case, one or more of these
steps may be omitted. Thus, for example, provided that a user has a right to invoke a
protection agent at all, he may have the right to manipulate any object normally made
accessible through that agent. The user may also be permitted to perform any of the
operations defined on the objects. In that case, only the first of the three tests need
be performed.

We should now pause and consider how this representation of protection
meshes with the conclusion drawn earlier that inter-node protection should be
expressed in terms of access control lists. Clearly, the use of access control lists
implies that the protection agent must be able to reliably determine the originator of
every message. Using the terminology developed for characterization of protection
mechanisms in a centralized system, we will assume that every message, at its origin,
has associated with it a pxjn.c.ig.&L identi h e r ,  which identifies the entity to be
held accountable for the request in the message. Some techniques such as encryption

4 - - - —-I ~~~~ .-.-* —

~- 
..‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -.~~~ - - 
‘~~

_
#

_.. . .. - - .
~~~~ 

.
~~~
. . . - - - - - —



D. S. S. WORKING GROUP 62

N2

A B C

G

01 /

~~~~J
)

A, B, C: protection agents
G: guardian

Figure 3. Inter-node Protection Mechanism in Abstrac t Network; the Process
P (Abstract Node N2) Can Reach the Objects Guarded by G
(Abstrac t Node NI) Only Through the Protection Agent a

.‘ ~~~~~~ w uuI
~ i1IjIuIsIP!I.ø.snuIiIl1r **lrjsuurlJI~ I .

-

63 0. S. S. WORKING GROUP

will be used to ensure the believability of the principal id by the recipien t of the
message, if the message has originated from a different physical node than the
recipient; however, we will not describe such a technique here. Using this principal id,
the first protection check described above is easy to implement. We can associate
wi th every protection agent an access control list , and insist that the principal
identifier associated with the message be on that list before the protection agent be
invoked at all. The second test , that of ensuring that this principal is allowed to
manipulate the particular objects in question, can be handled in a variety of ways. One
obvious technique is to associate with each entry in the access control list, a list of all
the objects that the particular principal is allowed to use. The protection agent can
then refer to the list to determine the access privileges of the requestor. If the third
type of protection check is required, it can be implemented as part of this same list, by
associating with the entry for each object a notation describing the particular
operations that this principal is permitted to perform on that object.

~~~~~~~~~~~ ~~~~~~~~~~~~~ - - 
~~~~~~~~~~~~~~~~ ~~~

-

~-

~~~~~~~~~~~~~~~~~~~~~~ 
W~~~~~~~~~

_— -  ~~~~~~~~~~~~~~~~~~~~~~



0. S. S. WORKING GROUP 64

REFERENCES

I. Brinch Hansen, P. “The Programming Language Concurrent Pascal.” IEEE
Transactions on Software Engine~~~g, Vol. SE-i No. 2 (1 977), 3 99-207.

2. Clark, 0.0. et al. “An Introduction to Local Area Networks.” M.I.T., Labora tory
for Computer Science, Computer Systems Research Division, RFC- 163. April
1 978. DRAFT

3. d’Oliveira, CR. An Analysis of Computer Decentralization. MiT., Laboratory f or
Computer Science, LCS/TM -90. Cambridge, Ma., 1977.

4. Dennis, J.B. First Version of a Data Flow Procedure Language. M.I.T., Laboratory
for Computer Science, LCSITM-61. Cambridge, Ma., 1975.

5. Eswaran, K.P. et al. “The Notions of Consistency and Predicate Locks in a
Database System.” Communications of the ACM, Vol. 19 No. 11 (November
1977), 624-633.

6. Feldman, J.A. A Programming Methodology for Distributed Computing. University
of Rochester, Department of Computer Science, TR-9. Rochester, N.Y., 1977.

7. Hewitt, C. ~~~ i!~g Control Structures as Patterns of Passing Messag~~ M.I.T.,
Artificial Intelligence Laboratory, A.I.M.410. December 1976.

8. Hewitt, C. et al. “Parallelism and Synchronization in Actor Systems.” ACM
Conference on Principles of Programming Languages. Los Angeles, Ca., January
1977.

9. Hoare, CAR. “Communicating Sequential Processes.” Oxford University,
Universi ty Computing Laboratory, Programming Research Group. Oxford, England.
1 977, DRAFT. -

10. Lampson, B., and Sturgis, H. “Crash Recovery in a Distributed Data Storage
System.” 1 976. (To appear in Communications of ACM.

11 . Liskov, B. et al. “Abstr action Mechanisms in CLU.” Communications of !~ M, Vol.
20 No. 8 ‘August 1977), 564-576.

12. Millstein, R.E. “The National Software Works : A Distributed Processing System.”
Proceedings of the ACM Annual Conference. Seattle, Wa., October 1977.

13. Montgomery, W. “Robust Synchronization in a Distributed Information System.”
M.I.T., Department of Electrical Engineering and Computer Science, Ph.D. Thesis
(in progress).

14. Reed, OP. Naming and Synchronization in a Decentralized Computer System.
M.I.T., Labora tory for Compu ter Science, LCS/TR-205. Cambridge, Ma., 1978.

- 
_ _ _



65 0. S. S. WORKING GROUP

3 5. Roberts, L.G., and Wessler, B.D. “Computer Network Development to Achieve
Resource Sharing.” AFIP S Conference Proceedings. Vol. 36, 1 970.

16. Rothnie, J.B. et al. The Redundant Update Methodology of SOD-I; A System for
Distributed Databases . Computer Corporation of America, Report CCA-77-02.
Cambrid ge, Ma., February 1 977 .

1 7. Saltzer , J.H. “Protection and the Control of Information Sharing in Multics.”
Communications of the ACM, Vol. 1 7 No. 7 (July 1974), 388-402.

18. Stearns , R.E. et al. “Concurrency Control For Database Systems. ” IEEE
~yrnposiurn on Foundations of Computer Science. Houston, Tx,, October 1 976.

1 9. Svobodova , 1. “Distributed Computer System in a Bank; Notes on the First
National City Bank.” M.I.T., Laboratory for Computer Science, Computer Systems
Research Division, RFC- 155. Cambridge, Ma., January 1978.

20. Svobodova, 1. “Distributed Computing in the Bank of America.” M.I.T., Laboratory
for Computer Science , Computer Systems Research Division, RFC-J 57.
Cambridge, Ma., February 1978.

21. Thomas, R.H. A Solution to the Update Problem for Multipie Copy Data Bases
which Use Distributed ‘ontrol. Bolt, Beranek & Newman, Inc., Report No. 3340.
Cambridge, Ma., July 1

22. Wirth, N. “Modula: A Language for Modular Multiprogramming.” Software
• Practice and Ex erience, Vol. 7 No. 1 (January 1 977).

23. Wul f, W .A. et al. “An Introduction to the Construction and Verification of Alphard
Programs.” IEEE Transactions on Software Engineering, Vol. SE-2 No. 4
(December 1976).

- - - - --
~~--. , -

~~ ‘d.~~~~~1~~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - - - -~~~~ -~~~~~ -~~~~~ s---— -.~~ ~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

-

67

DOMAIN SPECIFIC SYSTEMS RESEARCH

- Academic Staff

S. A. Ward, Group Leader P. Jessel
M. L. Dertouzos

Research Staff
-

P. Houpt

Graduate Students

R. Archer A. Reuveni
C. Baker B. Schunck
C. Cesar E. Strovink
J. Gula - T. Teixeira
R. Halstead C. Terman
A. Mok J. Wahid
J. Pershing

Undergraduate Students

V. Gilbert J. Sieber
T. Hayes S. Tomlinson
R. McLellan

Support Staff

C. Eliot J. Pinella
It MacKenzie

L

:pk~CEnIN G PAGE NOT FI~~ ED - -

,

- -

BLANK

.

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -w 

~~~~~~~~~~~ - ~~~
~‘


~~~~~~~~~~~~~~~~~~~~~D~ .S.R. GROUP

DOMAIN SPECIFIC SYSTEMS RESEARCH

A. INTRODUCTION

Research of the D.S.S.R group during the past year has been directed toward the
L general problem of real time computation, with two major projects (CONSORT and the
P MuNet) emerging as foci for parallel research efforts which are expected to converge

in the next year or so. Each of these projects has been described in previous
progress reports; the following paragraphs serve to illuminate their respective current
status and goals.

B. CONSORT: COMPlL~~~M~_TECHNOLOGY

CONSORT is a tool for the design of programs for a limited but important class of
applications involving hard real-time constraints (e.g. control of physical processes or
signal processing). During the past year an initial implementation of CONSORT has been
completed by T. Teixeira, J. Pershing and A. Mok, and has been demonstrated in a “toy”
application (balancing an inverted pendulum) by J. Wahid. A brief film of the
demonstration is in preparation.

The current implementation translates a source program consisting of a block
diagram (which may be input graphically) and produces an object program which runs
on a single 8080 microprocessor. Static control structures are devised by CONSORT to
meet real time performance criteria specified (in the source diagram) as latency
constraints which dictate minimum rates at which data values must propagate through
the diagram. A source program may consist of multiple pages, each corresponding to a
particular control strategy . For example, object- time linkage mechanism provides for
orderly transition between pages (passing state information to maintain continuity) as
the target system passes from one phase of its operation to the next.

Experience with the current CONSORT implementation has been both encouraging
and suggestive . Although many aspects of this initial effort are tentative and
unpolished, the general approach it illustrates seems well suited as a basis for the
construction of powerful engineer ing tools. In addition, the simple, very high level
semantics of CONSORT programs together with specification of concrete performance
criteria provide a nearly ideal context for the development of a variety of radical
program transformation and optimization techniques. Current research by C. Terman
and Teixeira explores such techniques and compiler organizations which exploit them,
pursuant to a CONSORT reimplementation effort to begin in the next few months.
Goals for the new implementation include; -

1. Use of radical optimizations--e.g. substitution of table Iookup for expression
evaluation--to meet otherwise intractable real-time specifications.

2. Exploitation of more sophisticated (e.g. dynamic) control structures and
multiprocessor target systems (ultimately, the MuNet). Relevent scheduling and
partitioning problems are currently under study by Mok.

3. A variety of improvements in the human interface aspects of the system.

~~~~~~~~~~~

-:

~

‘

~~~~~

--
~~~

‘ -

- -PRE cEDI NG pA&~ NOT FILMED
BLANK

.~~,,-._-—-.- ~~~~~~~~~~~ - - -

- ~—------

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-- 

~~ ~~~~
- 
,

~~
•.- .‘ _—. 

~~~
.

- -

0.S.S.R. GROUP 70

C. MUNET: OBJECT-TIME TECHNOLOGY

Our interest in multiprocessor systems is the potential they provide for a single,
uniform target environment covering a wide range of the cost/performance spectrum.
Such graceful scaling characteristics are particularly attractive in real time applicat ions,
where sli ght changes in a system ’s performance requirements may necessitate

L. complete abandonment of a previous implementation in favor of a reimplementation on
incompatible higher performanc e hardware. In addition, many “soft” real- time systems
(e.g. for patient monitoring or industrial control) explicitly require extensibility over a
wide range; as a result, such systems are typically over engineered so as to provide
sufficient computation resources for the largest anticipated expansion.

Previously reported work by R. Haistead and S. Ward has led to a design for the
MuNet , a multiprocessor architecture designed to address these issues. It consists of a
sparsely connec ted network of small processors which support a message-passing
protocol similar to (and inspired by) Hewitt’s Ac tors, Noteworthy characteristics of the
MuNet include:

1. At the lowest level , it supports a universe of data and code objects, each
represented as a block of storage whose size may not exceed a system-wide
constant . Thus higher level aggregate data must be represented as composites
e.g. arrays of arbitrary size are represented as trees.

2. Neither objects nor object references imply absolute locality; thus in general,
objects may be freely moved about the network (e.g. on the basis of dynamuc
load considerations) .

3. The basic computation step (called an event) is time-bounded by a system-wide
constant.

4. Each processor maintains an event list consisting of a FIFO queue of pending
computations steps. The size of a processor’s event list provides a first-order
measure of the load on that processor, in particular, it provides a bound on the
amount of time which may elapse before that processor will attend to a new
event added to the bottom of the queue. This characteristic leads to interesting
fairness and real-time properties.

5. Events may be moved between neighboring processors based on run-time load
(e.g. to equalize event list sizes).

Implementation of a small (ten processor) prototype system is currently in
progress. Major components of this effort include object management and scheduling
(Halstead), compiler design and implementation (E. Strovink), operating system (J.
GuI a), and reliability measures (C. Baker).

- -‘
~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ %J~~,4 ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ‘~~ “ - -  

-



71 O.S.S.R. GROUP

A primitive version of the MuNet is expected to be operational during the Fall
term , 1 978, at which time various improvements and modifications will doubtless
immediately suggest themselves. After a period of fine tuning, a variety of benchmark
tests will be run to determine how various performance aspects scale with network
size; we hope to find a nearl y linear relationship over an interesting class of
computations.

The absolute performance characteristics of this system will be of secondary
import ance, and may be less th an impressive for several reasons. First, the generality
and power of the MuNet environment sterns in part from its heavy dependence on
garbage-collected heap storage. Secondly, the partitioning of programs and data
dictated by the system imposed time and space bounds introduce a certain amount of
run-tim e overhead. Thirdly, litt le emphasis will be placed on the optimization of
compiled code, at leas t initially. These factors may degrade performance by a factor of
as much as ten or twenty in typical applications; thus the initial ten-node network may
be outperformed in many cases by high-quality conventionally compiled code running on
a single processor of comparab le performance , This effect will be balanced by a
compensatory increase in the flexibility and capacity of the multiprocessor system, and
eventually should be largely mitigated by technical improvements.

~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~

-

~~

. -- - 
~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ 

- --

D.S.S.R. GROUP 72

Publications

1. Halstead, R . Mu~ pIe-processor Implementations of Message-Passing Systems.
M.I.T., Laboratory for Computer Science LCS/TR- 198. Cambridge, Ma, January
1978.

2. Teixeira, T. Real-Time Control Structures for Block Diagram Schemata. M.I.T.,
Laboratory for Computer Science LCS/TR-204. Cambridge, Ma, January 1978.

3. Terman, C. The Specification of Code Generation Algorithms. M.I.T., Laboratory
for Computer Science LCS/TR- I 99. Cambridge, Ma, January 1978.

4. Ward, S. “Domain Specific Languages for Microprocessor-based Systems.”
Control Engineering, Vol. No. 24 (November 1977) 115.

5 Ward, S. “Approximate Contour Maps in Real Time. ” to appear in The
Communications of the ACM, Vol. 21 No. 9 (September 1978).

Theses Completed

1. Gilbert, V. “An Error Reporting Scheme for LR Parsers.” unpublished S. B. Thesis
M.I.T., Department of Electrical Engineering and Computer Science, June 1978

2. Mok, A. “A Frontend for a Morse Code Recognizer by Context.” unpublished S.
B. Thesis, M.I.T., Departmen t of Electrical Engineering and Computer Science,
June 1977.

3. Mok, A. “Task Scheduling in the Control Robotics Environment.” S. M. Thesis
M.I.T., Department of Electrical Engineering and Computer Science, June 1977
(also, Laboratory for Computer Science, LCS/TM-77 Cambridge, Ma., 1976)

4. Pershing, J. “Design of A Domain Specific Metacompiler f or Systems Using
Graphical Input as a Source Language.” unpublished S.M. Thesis M.I.T.,
Department of Electrical Engineering and Computer Science, January 1978.

5. Sieber, J. “A Packetized Communications Protocol for Remote File Access in the
Laboratory. ” unpublished S. B. Thesis , M.I.T., Departmen t of Elec t rica l
Engineering and Computer Science, June 1978.

6. Wahid, J., “Implementation of Linear Quadratic Gaussian Compensators on
Microprocessors.” unpublished S. M. Thesis, M.I.T., Department of Electrical
Engineering and Computer Science, June 1978.

.. -..
~ ~~~~

- ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ -

73 D.S.S.R. GROUP

Theses in Progress

1. Archer, R. “Representation and Analysis of Real-Time Control Structures.” S. M.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, September 1978.

2. Baker, C. “Reliable Distributed Object Management Schemes.” S. M. Thesis,
M.I.T., Department of Electrical Engineering and Computer Science, expected date
of completion, May 19 .8.

3. Cesar, C. “Real Time Simulation Random Logic.” Ph.D. Thesis, M.I.T., Depar tmen t
of Electrical Engineering and Computer Science, expected date of completion,
May 1978. -

4. Gula, J. “A Distributed Operating System for an Object Based Network.” SM.
Thesis, M.I.T., Departmen t of Electrical Engineering and Computer Science,
expected date of completion, September 1978.

5. Schunck, B. “Analysis of the Effect of LOG Control on Computer Structures.” SM.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, June 1 978.

6. Tomlinson, S. “A Renaissance Machine Architecture. ” S. B. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
completion, December 1 978.

Talks

1. Ward, S. “An Invitation to DELPHI.” M.I.T. Alumni Seminar, Cambridge, Ma. July
1977.

2. Ward, S. “Towards a Renaissance Computer Architecture.” MIOCON 77 Chicago,
II. November 1977.

* ..‘ -~~~ ~~~~- ,. - ---. ~~~~~~~~ — .

75

KNOWLEDGE-BASED SYSTEMS

Academic Staff

W. A. Martin, Group Leader G. R. Ruth
1. B. Hawkinson P. Szolovitv

- Research Staff

G. P. Brown G. S. Burke

Graduate Students

R. Baron R. Bruccoleri

Undergraduate Students

J. H. Thompson -

Support Staff

B. Demps R. E. Wagner
V. E. Lewis

- -~PRrCEDING PAGE NOT FILMED _____

BLANK _ _ _ _

- _ .
~

__
~~~~~ —L-~~. ~~~~~~~~~~~~~~~~~

i_
T 

.~~~~~~~~~~~ 

_ _ _



77 KNOWLEDGE-BASED SYSTEMS GROUP

KNOWLEDGE-BASED SYSTEMS

A. RESEARCH SUMMARY

During the past year, our research was organized around three projects:

1. Knowledge Representation and Natural Language Processing--W. A. Martin, P.
Szolovits, 1. 9. Hawkinson, R. Bruccoleri, J. H. Thompson

2. Natural Language Query to an On-line Dictionary--W. A. Martin, G. P. Brown

3. Very High Level Language Research--G. R. Ruth, G. S. Burke

B. KNOWLEDGE REPRESENTATION AND NATURAL LANGI AGE PROCESSING

The goal of this project is to create a programming sys err ‘flW L II) which will
fac ilitate the creation of knowledge based application system s ie programming
sys tem is to include a general purpose natural language ‘ fron t end.” The major
implemented components of this system are:

1. The Linguistic Memory System (LMS). This reads, prints, and manages a special
data structure- -Hawkinson.

2. A set of knowledge representation conventions and a grammar of English——
Martin.

3. A parser--Szolovits and Martin.

IMS maintains a semantic net. Each node of this net is named by an expression
formed by the binary combination of symbols and expressions naming other nodes.
Each node has a reference (property) list. A decision was made to break this list into
zones and this is being implemented. Simultaneously, LMS is being transfered to the
MIT A.l. Laboratory LISP machine.

The grammar now covers about half the material in a typical English Handbook.
We hope to cover all of such a handbook within the next year, making ours the most
complete system. The grammar is specified using semantic net’s and ATN networks, but
differs from other systems in that production rules are used in the disambiguation of
word and phrase senses. For example, for any transitive verb, v, if we can say “I v’ed
the x,” we can also say “x’s v easily” e.g. “I killed the bug,” “hugs ~iII easily.” The
forma tion of this latter sense from the former is specified in our system by a
production rule. The rule is invoked by the parser whenever it is faced with an
intransitive use of a transitive verb.

The parser is completely implemented with the exception of facilities for
handling conjunction. The implementation emphasized clarity and flexibility rather than
speed wit h the resul t that the average sentence takes roughly 10 cpu seconds to
parse. Our current goal, for example, is to reduce this by an order of magnitude using

k-PRECEDING PAGE NO.~ FILMED __________

BLANK

- - V
I”- ~ 

- - - 

.. :c~~



KNOWLEDGE-BASED SYSTEMS GROUP 78

compilation. W. A. Woods achieved this sort of speed reduction on his system, but he
had to reduce the coverage of grammar to do it. We hope to avoid this.

C. NATURAL LANGUAGE QUERY TO AN ON-UNE DATA DICTIONARY

This project is intended to apply the general facilities just described. In a large
organization, people of ten have questions as to what data is available in computer
analyzable form. This program will enter into a dialogue with a data base administrator
in order to acquire a semantic level description of the organization’s data bases. The
system will drive the dialogue by menu selection. The system will then stand ready to
answer users’ questions about what data is available

D. AUTOMATIC PROGRAMMING

The general aim of automatic programming is to make the computer directly
available to an end user with a problem to solve. The traditional method of system
development proceeds roughly as follows:

~~~~~ The user’s desires and business are explained to a consultant.

Step 2: The consultant situation specifies the user’s requirements for data
processing.

Step 3: A software system analyst studies the specifications and fills in the
-

remaining details.

Step 4: A programmer takes the completed design and writes a program that
imp lements the design.

Step 5: A compiler processes the program and produces machine level code.

Obviously in this scenario the manager is far removed from the final result and the
programmer is not generally cognizant of the real problem being solved. Every step
adds to the time required to go from thought to action. Every step communicates
Imperfectly with its neighbors.

E. SCOPE OF OUR CURRENT_WORK

The current ProtoSystem I project is concerned with the automation of steps 3
and 4. At step 3, one enters the realm of programming-language-like facilities. A
specification is provided which, when fleshed out, serves as input for step 4. An
analyst selects data structures, data access methods, and algorithms. The analyst gets
size and access data and knows the performance requirements, then chooses an
efficient design. The analyst does not, in general, create new data organizations, etc,
but rather selects from those he already knows. Given the alternatives available to an
analys t, choice criteria, and basic data about the system behavior, it is possible to
automate the analyst function. An automated analyst should be more thorough and
conscientious than a human one and much faster.

Step 4, from design to code, is the (relatively) strpightforward process of

#
- -

-- . .
~~~~~~~~~~~~~~~~~ 

•
~~~~~~~~~~~~~~~~~


79 KNOWLEOGE-BASEO SYSTEMS GROUP

determining I/ O and flow of control details and generating high-level code and JCL.

F. VERY HIGH LEVEL LANGUAGE DESIGN AND IMPLEMENTATION

Seeking entry into the software development process at step 3, and given the
above view of that process, the ProtoSystem I project has evolved into the study of a
Very High Level Language, HIBOL IHIgh level Business Oriented Language, also known as
SSL (System Specification Language)], and an under lying automatic design and

- implementation system for it. [Needless to say, there have been a number of Very
High Level Languages designed for business data processing, (e.g. the work of Hammer
et al. at IBM Yorktown Heights, Prywes at the University of Pennsylvania, and
Nunamaker). They vary in the detail and programming expertise that is expected of a
user. The Very High Level Language systems also differ to the extent that automated
design and code generation are performed. In fac t, few systems provide these final
steps or do so efficientl y. The development of a Very High Level Language begins with
a particular data processing domain and creates a language that captures and simplifies
the important aspects of it so that its common data processing requirements are easy
to describe. The language should allow only the functional specification of applications
in the domain; ideally, the design and implementation is completed automatically. It is
important that the language not allow too detailed a specification of processing and
data. This would hamper the flexibility of the later design process.

The HIBOL language serves the business data processing domain. The language
is non-procedural, “gotoless ,” and is not universal. It provides a sty lized way of
specifying file- oriented batch-processing systems.

A major concern of the VHLLs at the internal level is modelling of and proper
handling of data sets with missing records. HIBOL provides a concise and powerful way
of dealing wi th data aggregates. The language has a single data type, the flow . This
construct is a conceptual data aggregate and represents a collection of uniform records
that are individually and uniquely indexed by a multicomponent key. Each record has a
single data field in addition to the key information. Scalar operators, ~~~~

“
*,
“ etc. can

be applied between flows . This causes the operation to be successively applied to all
corresponding records (those with the same indices) of the argument flows. The result
is a new flow which can be named or used as an intermediate value. There is a
conditional value operator (similar to a “CASE” statement) which applies its tests and
then performs the selected value expression as the individual records are processed.
The primitive predicates allowed are the algebraic ordering predicates, s

>,” “=,
“ and

“ c • ” The usual composition of these primitive predicates is allowed.

There is a class of reduction operators permitted on flows and flow expressions.
Each (n-element) key is considered as a point in an n-dimensional space. A flow with
keys in a smaller dimensional space is produced. All records of the input flows which
projec t onto a single output record are “folded” into an accumulator so that the
maximum, minimum, coun t, or sum of the projected records can be taken.

KNOWLEDGE-BASED SYSTEMS GROUP 80

The restriction of a single datum per flow record allows the flows to be treated
much like arrays in some programming languages. In particular, the treatment of
operations on flows is similar to those operations on arrays in APL, although there is no
explicit control of iteration details accessible to the designer in HISOL (There is also a
mechanism for describing report contents and formatting in HIBOI.)

A major accomplishment of our research this year was the formalization by R.
Baron of the semantics of HIBOL in his master’s thesis. He begins by defining the
BASBOL (Basic business Oriented Language), a semantically clean and explicit language
for defining the semantics of a class of languages that manipulate data files in a batch
processing environment. The language has a single data type, the f/ ow, which is an
aggregate of several data, each with identical structure. Each datum contains a value
field and an index which uniquely identifies the datum. The single executable
statement in BASBOL is the assignment statement, which specifies how to generate a

- single flow from other flows. Arithmetic, logical and various reduction, injection and
projection operators provide the basis for the processing of the indexed data in flows.

For reasons of simplicity in reading and writing, the HIBOI. language includes a
number of defaults concerning the treatment of missing data. Although every attempt
was made to make the resultant semantics natural, the potential for ambiguity existed.
Baron was able to use BASE3OL to resolve all potential ambiguities in a satisfactory
way and to define the semantics of HIBOL cleanly and rigorously. This not only proves
the integrity of the language, but provides the basis for experimentation in the
development of extended and/or alternative semantics, as well.

G. DATA PROCESSING SYSTEM DESIGN

ProtoSystem I consists of four major modules. [A more detailed and
comprehensive overview of the system is given in the 1976 Progress Report and in
TM-70 (Ruth).] Control passes successively through three; the fourth is a utility. A
Parser accepts 1-IIBOL statements and produces “first cut” computations and “first cut”
data sets. The Structural Analyzer (a utility component) models the properties of
these primitive entities. The Optimizing Designer arranges and combines computations
into programs and data sets into multi-field data sets. It also determines data set
organization, blocking factors , key sort order, and access technique. These are chosen
to provide minimal overall run-time cost. The Structural Analyzer is continuously used
by the Designer to model the properties of the proposed computations and data sets.
Lastly, the.finished design of computations and data sets is passed to a P1/I Code and
JCL Statement Generator.

The greater part of our research effort over the last few years has been
addressed to the optimization of data processing system designs. Designer programs
employing varying strategies and techniques have been written by Kornfeld, Alter, and
Morgenstern, all aimed at minimizing the costs of programs produced from HIBOL
descriptions. Program cost is dominated by read/write costs. The optimizers
reorganize the programs within the confines of the generalized computation and data
set formats. As indicated in the previous paragraph, these designers deal with gross
program and data organization, not with such traditional issues as common
subexpression elimination or strength reduction. The savings produced by the latter

~~~~ ~~~

- . - - -

~~~~

-- --

81 KNOWLEDGE-BASED SYSTEMS GROUP

techniques are insignificant compared to I/O costs. [For an amplified view of the
issues and techniques involved in design and optimization see TM-72 (Ruth).]

Two questions immediately arise concerning any optimizing designer: (1) does it
produce correct designs (i.e. does it preserve the semantics of the HIBOL program) and
(2) how well does it optimize? We have taken great pains to ensure and verify the
accuracy of - our Designer, but assessing the quality of its optimization has been a more
difficult problem. To be sure, we have verified that it performs the more obvious
efficiency enhancements, but further investigation was deemed necessary.

To this end we have developed a “manual Designer” this year that allows the
user en t ry to the software development somewhere between steps 3 and 4. This
designer provides an Implementation Specification Language (ISL) for specify ing all the
details of an implementation that have been mentioned above. Using this tool and a
transla tor that transforms Desi gner output to lSL we can now easily vary the
automatically produced designs for experimental purposes. As an aid to the human
user the manual Designer checks the consistency and completeness of the ISL design.
This has also proven useful in further verification of the automated Designer’s
accuracy.

The data driven nature of computations provides an important opportunity for
optimization. A computation’s iteration through its input data sets is performed for
some cr itical set of keys. Through structural analysis each collection of input data sets
that encompasses this set of keys is calculated. The optimizer must choose the
collection that minimizes auxiliary data set reads and that can be organized as a
sequential and sorted data set. Through the use of Baron’s semantic analysis of HIBOL
and experimentation with the manual Designer it was found that the automatic Designer
was too conservative in some cases, selecting an unnecessarily large number of driving
data sets , and thus producing suboptimal designs. We have been able to make
significant improvements to the optimizing Designer using the results of this
investigation.

H. AUTOMATIC CODE GENERATION

Step 4 of the software production process is automated by the PL/l and JCL
Code Generator. This module adds the implied I/O access routines and loop iteration
control to the assignment statement expansion dictated by HIBOL to produce a number
of finished programs. In the code expansion, it is imperative not to cause “READ”
operations for data that might not be needed. I/O is a bit tricky because for some
access routines, the support code may be in different places or even distributed
across several places. The data driven character of the loops introduces some
sequencing problems. The main one is ensuring that records in a data set not having
all possible key tuples are not read in the wrong order. -

Extensive manual verification of the PL/l and JCL Code Generator had been
performed and the time came for machine verification. This year we tested the code
produced for syntactic correctness through compilation on the UCLA 360/91 OS-MVT
system. We have also begun further testing by running the compiled code on that
system with sample input f iles.

KNOWLEDGE-BASED SYSTEMS GROUP 82

Publications

1. Brown, G. P. “Failure Handling in a Dialogue System.” Proceedings of the Fifth
~~~~~~~~~~~~~~~~~~~~~~~ Ar tificial Intelligence-Vol. 1. M.I.T., Cambridge,
Ma., August 1 977. Pittsburgh, Pa.: Carnegie-Mellon University, 1977.

2. Mark, W. “The Reformulation Approach to Building Expert Systems.” Proceedings
of the Fifth International Joint Conference on Artificial Intelligence-Vol. 1. M.I.T.,
Cambridge, Ma., August 1 977. Pittsburgh, Pa.: Carnegie-Mellon University, 1977.

3. Martin, W. A. “Comment following article by Schank and Lehnert.” Research
Directions in Software Technology. Edited by Peter Wegner. Cambridge, Ma.:
M.I.T. Press. To appear.

4. Martin, W. A. “Descriptions and the Specialization of Concepts.” Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, Vol. 2. M.I.T.,
Cambridge, Ma., August 1977. Pittsburgh, Pa.: Carnegie-Mellon University, 1 977.
Also available as M.I.T., Laboratory for Computer Science, M.l.T./LCS/TM- 101,
Cambridge, Ma., March 1 978.

5. Martin, W. A. “Remarks on Knowledge-Based Programs.” Proceedings of the
Fifth InternationaL Joint Conf erence on Artificial Intelligence, Vol. 2. M.I.T.,
Cambridge, Ma., August 1 977. Pittsburgh, Pa.: Carnegie-Mellon University, 1 977.

6. Ruth, G. R. “Automat ic Programming: Automat ing the Software System
Development Process.” Research Directions in Software Technology. Edited by
Peter Wegner. Cambridge, Ma.: MET. Press, 1 978.

7. Ruth, G. R. “Automatic Programming, A Survey.” Proceedings of the Annual
Conference of the Association for Computing Machinery. Seattle, Wash., October
1977.

8. Ruth, G. R. “Protosystem I: An Automatic Programming System Prototype.”
Proceedings of the National Computer Conference, 1978. Anaheim, Ca. Montvale,
N.J.: AFIPS Press, June 1978.

9. Swartout, W. R. “A Digitalis Therapy Advisor with Explanations.” Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, Vol. 2. M.I.T.,
Cambridge, Ma., August 1 977. Pittsburgh, Pa: Carnegie-Mellon University, 1 977.
Also available as M.I.T., Laboratory for Computer Science, M.I.T./ICS/TR- 176.
Cambridge, Ma, February 1977.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ‘

,

- --a- - - - -~~--~~ - -

83 KNOWLEDGE-BASED SYSTEMS GROUP

Theses Completed

1. Baron, R. B. “Structural Analysis in a Very High Level Language.” unpublished
MS. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
September 1 977.

Theses in Progress

1. Bruccoleri, R. E. “English Conversational Error Correction in a Natural Language
Parser.” MS. Thesis, M.I.T., Department of Electrical Engineerin g and Computer
Science, expec ted date of completion, September 1978.

i
-

,
~~~- 3 _~_ -~. ~~~~~~~~ 

- ~~~~~~~~~~~
- __

~~~~
-:

-
_ _ _ _ _ -

‘
~~~-



85

LOCAL AREA NETWORK
WORKING GROUP

Academic Staff

0. 0. Clark, Acting Group Leader

Research Staff

K. T. Pogran

- 
Graduate Students

S. Kent A. Mendelsohn
A. H. Mason 0. Reed

Undergraduate Students

R. Baldwin T. McMahon
H. Carter S. Ratliff
N. Chiappa C. Schieck
C. Hornig A. Urbino
J. Maloney

Support Staff

P. Baskin J. D. Ricchio
0. Feingold M. Webber
V. Newcomb

- 

- 

~~~~~~~~ PAGE NOT FILMED
BLANK

‘ .- - .—-—~~~~—~~
-.

~~~~~~~~~~~~
-

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 

- 
~~~ 

- _________

87 1 A. N. WORKING GROUP

LOCAL AR EA NETWOR K
WORKING _GROUP

A. INTRODUCTiON

The LCS Local Area Network project is a joint effort of the Computer
Systems Research group and the Technical Services group. To those who have
observed progress on the ICS Network only through these annual reports and
other written communications from the Laboratory, it may seem that little progress
has been made in 1 97 7-78. In our previous annual report, for example, we stated
that “the first three nodes on the net are expected to be operational within the
next two months,” and this most certainly did not happen. One year later , we
state again that we expect to have a small, initial network in operation within a
few months.

The appearance of little progress during the past year is deceiving, for as
will be detailed below, it has been a year of great activity, from which we have
learned a lot. Perhaps the most significant lesson learned, which we commend to
anyone interested in implementing a local area network in the near future, is this:
the technology of local area networks is not “off -the-shelf ,” neither the hardware
nor the software for a high-bandwidth general purpose local area data
communication network is available in a form in which it can be procured, installed,
and be immediately operational. Organizations interested in installing local area
networks should realize that today, at least , implementation of a local area
network entails development efforts in both the hardware and software domains.

Lest this sound like too dire a prediction for the field of local area
networking, let us add some rays of hope: interest in the field is growing, and
expertise in it is following close behind, not only at the Laboratory for Computer
Science, but at other centers as well. Most importantly, development efforts, both
here and elsewhere, are gaining momentum. It is our goal to bring the design of
the Local Network Interface, the hardware base for the LCS Network discussed
below, to a point where it can be manufactured as a product. Whether or not it
becomes available as a commercial product, its design will be in the public domain.

The effort that has gone into the development of the ICS Network falls into
two broad categories , hardware development and software development. We
shall now examine the progress that has been made in each of these two areas
during the past year.

B. HARDWARE

As was mentioned in the CSR section of our last annual report, the primary
hardware component of the LCS Network is a device cal led the Local Network
Interface, or LNI. The LNI was designed by a group at the University of California
at Irvine headed by 0. Farber, under contract to DARPA. Use of the LNI as the
hardware base for the LCS Network was attractive to us for several reasons.
First, althov~h it was specifically designed to control a ring network patterned
after t he Distributed Computing System ring network previously developed by 0.
Farber at UC-Irvine, its internal structure was general enough that it could be

-

-

- PRECEDING PAGE NOT FILMED ~~
.

- - BLANK

-~~~~ -‘
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ ~ ‘,~ I-’. -. - - - - - -- - - - .

~~
- - --

L~~i I



1. A. N. WORKING GROUP 88

modified to control a cable packet broadcast contention network, exemplified by
the Ethernet developed at the Xerox Palo Alto Research Center. This flexibility
would enable us to easily implement subnetworks of each type as par t of the
overall LCS Network, and would further our goal of comparing the two networks
under operational conditions. Second, development of both the LNI and the ICS
Network was funded by DARPA; it thus made a good deal of sense to join in the
development of one hardware device, rather than have two devices produced
through separate e f fo r ts .  Third, the Laboratory for Computer Science,
traditionally a software-oriented laboratory, wished to avoid the major hardware
development effort that would be necessary to implement our own network
hardware.

The estimat e made in last year’s annual report that the first few network
nodes would become operational early in the 1 977-78 year did not pan out. The
first Local Network Interface arrived in October, rather than in mid-summer as had
been anticipated. More significantly, it arrived essentially undebugged; K. Pogran
tackled what turned out to be a major hardware debugging effort in conjunction
with M. Lyle of the University of California at Irvine. Laboratory involvement in
INI development led to the creation, in January, 1978, of a new Technical
Services group within the Laboratory, headed by K. Pogran, and the investment in
a hardware development capability which the Laboratory had hoped to avoid, had,
instead, been made.

The first two Local Network Interfaces were essentially operational by the
end of May, connected as peripherals to the same PDP-11/40 for checkout
purposes, communicating over what amounted to a two-host ring network, and
proper ly performing hardware- level  network communication functions.
Communication between two POP-I l’s using the same two LNI’s is to be
demonstrated during June, with delivery of a third up-to-date LNI expected at the
end of the month.

Further hardware projects outlined in last year’s annual report still remain
to be done. These include development of a version of the LNI to interface to the
Laboratory’s POP- t O’s and DECSYSTEM-20, and addition of “packet buffers” to
the LNI to facilitate use of much higher network transmission rates than the 1Mb/s
currently employed, and to faci litate interfacing of the LNI to lower-speed
computers such as microprocessor-based syrtems. Also, a major redesign of the
INI is contemplated, which will include: design improvement in all aspects of the
LNI; “modularization” to enable interchange of major components of the LNI, such
as the host interface (POP-Il DMA, POP-lO I/O Bus, etc.), Name Table associative
address store, and packet buffers; modification for control of an Ethernet-like
network, to be implemented as another module of the LNI.

.#. -.‘ .~‘i-~--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ %~G~ 4~ ~~~~~~~~~~~~~~~~~~~~~ 4’•~ ~~~~ - ~~ “. •• .  

— 

- 



89 1. A. N. WORKING GROUP

A few words should be said about the complexity of the current LNI. In its
present form, the LNI comprises approximately 350 TTL SSI and MSI integrated
circuits, apportioned as follows:

LNI “proper ” 120

POP-Il full-duplex DMA 100

Name Table Controller 25

Name Table Cells (8) 90

Test and diagnostic

Total 
- 

350

Assembled, the cost of each interface is approximately S2,500:

Wired backpanel, chassis, etc. SI,700

Integrated Circuits 450

Miscellaneous parts 50

Final assembly, checkout, etc. 30Q

Total ~2,500

The LNI is of a complexity tha t, once its design is stable, it could reasonably be
implemented as a single LSI “chip,” or perhaps, at most, two chips. This could be
done either -via a funded research projec t , or at the initiative of an LSI
manufacturer who sees a market for it. Certainly, the potential is there; the
basic design concepts of the LNI are sound, and the day of local area networks is
just dawning. -

C. SOFTWARE

The delay in the availability of working Local Network Interfaces for the ICS
Network has had both positive and negative impacts upon the implementation of
sof tware for the Network. Primarily, the software involved is the low-level or
end-to-end communications protocol software which must be implemented on all
LCS Network hosts. The delayed arrival of the LNI’s has had a negative impact in
that there has been no hardware for which to write and debug device drivers and
similar software for the various machines and systems which will be part of the
Network; it has had a positive impact in that it has given us more time to pursue
the convergence of the Data Stream Protocol (DSP) initially designed for the ICS
Network with the Transmission Control Protocol (TCP), the internetworking
pro~ocot

4 . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—~ .r.~ ~~ . - - .~~~~ -. - --


1. A. N. WORKING GROUP 90

We reported in last year ’s annual report that DSP was the end-to-end
protocol of choice for the LCS Network, but that we were “involved in an effort to
bring DSP and TCP together again, since ICR is the ARPANET standard for end-to-
end communication in the 9nternet’ environment.” This effort placed us squarely
in the fray of internetwork protocol development; 0. Clark and D. Reed have
attended TCP Working group meetings, and 0. Clark has become involved in other
activities of the Internetwork Working group.

The Dat a Stream Protocol had its roots in TCP I, the original internet
protocol. DSP was a “leaner” protocol than TCP I, providing the same functionality
with a simpler struc ture. It was intended to be less cumbersome, and better
suited to the high bandwidth environment of a local area network. However,
because the LCS Network will not exist by itself in a vacuum, but will instead be
interconnected to the ARPANET and, through it, to other networks, its protocols
must be aware of and be capable of dealing with the internet environment. Thus,
TCP and the LCS Network protocol must somehow mesh.

The result of a year ’s work by the TCP Working group is TCP III, an
improved protocol for internetworking which was strongly influenced by DSP.
Though TCP Ill is not the ideal protocol f or a local area network, it is a reasonable
protocol, and in the interests of compatibility with the internet environment, we
have adopted it for use with the LCS Network. DSP, then, has served as a “st raw
man” that has helped TCP to evolve.

Implementation of TCP Ill has begun at LCS, as well as at uther internet
locations. By May of 1978, implementation of TCP III was underway for both the
UNIX and Multics systems. There are two UNIX systems at LCS. One, on a POP-
11/40, will serve as the prototype of the LCS Net-A RPANET gateway; the other,
operated by the Domain Specific Systems Research group, is a PDP-1I/70 which
will be a major host on the LCS Network. The ICR implementation for UNIX is
based on an ARPANET NOP implementation for UNIX done at the University of
Illinois and the Rand Corporation. The Multics system run by M.I.T.’s lnformatiàn
Processing Services will initially not be on the ICS Network , but with its TCP
Implementation, it will be able to communicat e with ICS Network hosts via the
ARPANET and the LCS -Net-ARPANET gateway.

~~ ‘— ‘, , - -

- ~~~~

- -

91 1 A. N. WORKING GROUP

Theses Completed

1. Rat h f I, Steven. “A Dynamic Routing Algorithm for a Local Packet Network.”
unpublished S.B. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, February 1978.

2. Urb ina, Alejandro. “Performance of a Terminal Concentrator Under a Data
Stream Protocol.” unpublished S.B. Thesis, M.I.T., Department of Electrical
Engineering and computer Science, December 1977.

_—w -

~~

__
_l

~

_- -.-___
~~

—..- -

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~~~

- -.

93

PROGRAMMING METHODOLOGY

Academic Staff

B. H. Liskov, Group Leader I. Greif

Research Staff

R. W. Scheifler

Graduate Students

R. R. Atkinson J. E. Moss
V. A. Berzins R. N. Principato
T. Bloom J. C. Schaffert
D. Kapur R. W. Scheifler
V. Ketelboeter L. A. Snyder
N. S. Laventhal M. K. Srivas

E. W. Stark

Undergraduate Students

S. C. Garrard E. R. Schienbrood
P. Leach C. M. Tan

~~pport Staff

S. Barefoot A. L. Rubin

Visitors

R. Bergeron A.- Merey

~~R~cED1NG PAGE NOT FILMED

~~~~~~~~~ BLANK 

- ~~- -- - —-~~~-- — —~ - — -~~~~~~
- - - ______  - 

j

_ _ _ _ _ _  

- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ----.


95 PROGRAMMING METHODOLOGY GROUP

PROGRAMP~NG METHODOLOGY

A. INTRODUCTION

The research ef for ts of this group are direc ted at developing tools and
techniques for simplifying the production of software that is not only reliable, but easy

L to understand and maintain as well. At the center of our work is a programming
methodology we have developed, whereby programs are constructed through a top
down decomposi tion process driven by the recognition of abstractions (I]. A major
focus of our researc h in previous years has been the design of a programming
language -sys tem, CLU, which supports this methodology; CLU provides powerful
abstraction mechanisms that we believe are well matched to the task of building
quality software.

This pas t year we have concentrated on writing both formal and informal
defini tions of CLU, to ensure that all features of the language and their interactions are
well understood; we also worked on the implementation of CLU. We have continued
our study of specification and verification techniques for programs based on data
abstractions. In addition, we have explored the semantics and implementation of a
CLU-like language that does not require a heap and garbage collection, and we have
developed a method for automatically synthesizing synchronization code from
specifications.

B. CLU DEFINITIONS

With the design of CLU essentially complete, we have turned to the task of
writing complete definitions, bot h formal and informal. A description of the CLU
exception handling mechanism, which supports the construction of fault tolerant
programs, is given in [2], along with a discussion of the many design issues involved. In
addition, a new version of the CLU Reference Manual is now nearly complete [3].

Two formal definitions of CLU have been made. J. C. Schaftert [4] has given an
operational semantics using a new semantic method that he has developed, and R.
Scheifler (5] has finished a denotational semantics using the Scott-Strachey approach
to language definition. This research has provided us with the opportunity to evaluate
various fea tures of CLU from a new viewpoint. Although our understanding of the
meaning of CLU programs has not really changed, several places were discovered
where our understanding of what constitutes a legal program was faulty or incomplete,
and changes were made to CLU as a result. Schaffert’s work has demonstrated the
usefulness of his technique for a non-trivial language, and Scheif her’s definition is being
used on an informal basis to verify the correctness of the legality-checking portion of
the current CLU compiler.

- PRECEDING PAGE NOT FILMED

j
BLANK

,‘

~

...—-
~~~~~ g~~~~~~ • -

4 4 1~~~~~~~~~.., ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .‘.. - - - - ________



PROGRAMMING METHODOLOGY GROUP 96

C. CLU IMPLEMENTATION

As reported in last year’s progress report [6], we are currently engaged in a
second implementation of the CLU compiler and system, motivated chiefly by the desire
for a relatively efficient and transportable implementation. The new implementation
runs on a DEC PDP- 10 under the ITS operating system, and we are in the midst of

L bringing up a version to run under TOPS-20.

At present there are three majo~ components to the CLU system. The CLU
compiler translates source text into a machine independent macro language called
CLUMAC. The CLUMAC assembler, run automatically under control of the compiler,
turns this intermediate text into binary code. A third program, CLUSYS, is used as the
execution environment for CLU programs , and contains a loader, suppor t routines,
debugging facilities, and a simple expression evaluator.

Both the compiler and the assembler are written almost entirely in CLU itself.
Most of CLUSYS is written in a mixture of CLUMAC and POP-i 0 assembly language,
and at present must be assembled using the standard ITS assembler, MIDAS. However ,
we are upgrading the CLUMAC assembler to handle “hand coded” as well as compiler
generated text, so that our dependence on MIDAS can be eliminated.

An important differenc e between the new implementation and the previous one,
in which the intermediate language was MDL (a high level, LISP-like language), is the
way in which parameterized modules are implemented. Below, we f irst briefly describe
parameterized modules, and then turn to their implementation.

1. Parameterized_Modules

In CLU , procedures, iterators , and clusters can all be parameterized.
Parameterization provides the ability to define a class of related abstractions by means
of a single module. Parameters are limited to just a few types, including integers,
strings, and types. The most interesting and useful of these are the type parameters:
objects in CLU can grow and shrink dynamically, so size parameters are not needed.

When a module is parameterized by a type parameter , this implies that the
module was written without knowledge of what the actual parameter type would be.
Nevertheless , if the module is to do anything with objects of the parameter type,
certain operations must be provided by an actual type. Information about required
opera tions is described in a where clause, which is part of the heading of a
parameterized module. For example,

set = cluster [I: type] is create, insert, delete, elements
where t has equal: proctype (t, t) returns (bool)

is the heading of a parameterized cluster defining a generalized set abstraction. Sets
of many different element types can be obtained from this cluster, but the where
clause states that the element type is constrained to provide an equal operation.

As a second example, the parameterized procedure in Figure 1 defines a class of
summing functions for collections (such as sets and arrays) of integers. 

- - - - -  - - -



97 PROGRAMMING METHODOLOGY GROUP

sum = proc [struc: type] (s: struc) returns (int)
where struc has elements: itertype (struc) yields (int)
x: tnt := 0
for elt: m t  in strucgelements(s) do

x := x + elt
end

re t urn (x)
end sum

Figure 1. Example of a parameterized procedure.

The where clause constrains the legal actual type parameters to those having an
elemen ts iterator of the appropriate type.

To use a parameter ized module, ac tual values for the parameters must be
pro vided, using the general form

module_name [ parameter _values ]

Parameter values must be computable at compile-time. Providing actual parameters
selects one abstraction out of the class of related abstractions defined by the
parameterized module; since the values are known at compile-time, the compiler can
do the selection and can check that the where clause restrictions are satisfied. The
result of the se’ection, in the case of a parameterized cluster, is a type, which can then
be used in declarations and operation names; in the case of parameterized procedures
or iterators, a procedure or iterator is obtained, which is then available for invocation.
For example, surn[sez{IntJl is a use of the two abstractions shown above, and is legal
because m t  provides an equal operation and ser[int] provides an eleme?~s iterator.

2. Implementation

There are a number of basic schemes for implementing parameterized modules.
These schemes can be characterized by the t i me at which the binding of actual
parameter values takes place. The possible times include compile time, load time
(after compilation but prior to execution), and run time (either at the first use of each
distinct set of parameter values, or at every use). The result of binding parameters is
called an zn s anr iat ion.

In a compile-time binding scheme, the compiler produces a distinct object module
for each distinct set of parameter values; each use of a formal parameter in the
source text is replaced by the corresponding actual parameter, and then the resulting
text is compiled to obtain the instantiation. In the load-time and run-time schemes, a
pa~ameterized abstraction is compiled into a single, parameterized object module; this
module is later instantiated by supplying actual values for the parameters.

The compile-time scheme i~ similar to macro processing, and has many of the
assoc iated advantages and disadvantages. Its primary advantage results from the
greater context that is available to the compiler when compiling any particular
instantiation of a parameterized abstraction. This increased context allows the
generation of more time-efficient object modules, both because of the greater



PROGRAMMING METHODOLOGY GROUP 98

opportunities for optimization and because run-time binding is avoided. The primary
disadvantages of this scheme are the increased number of compilations performed and
the increased amount of space needed to store the object modules.

In the load-time and run-time schemes, binding is performed on object modules.
The binding does not require that a new copy of an object module be created for each
set of parameter values; rather, the code of the module and most of its local data can
be made independent of the particular parameter values, and thus can be shared by
the various instantiations.

There are two possible run-time schemes. In the first , the binding of parameters
takes place each time a parameterized object module is invoked. The parameter
values are passed to the object module as extra, hidden arguments, and are referred
to by the object module just like the normal, explicit arguments. This was the scheme
used in our previous implementation of CLU. In the second scheme, which is the one
used in the current CLU implementation, a new object module is created once for each
distinct set of parameter values; the binding occurs at the first use during execution.
(Alternatively, one could run through storage looking for uses of parameterized
modules and force binding to take place before execution.) The new object module is
created by building a new structure containing the parameter-dependent data; the
code of the module and its parameter-independent data are shared by the various
instantiations.

Compile-time and load-time schemes all require that every possible set of
parameter values supplied to an abstraction be determined before execution begins.
In CLU, the possible parameter values are restricted to “compile-time computableN
cons tants. However , despite this res triction, it is possible to implement recursive
parameterized abstractions that use an unbounded number of distinct parameter values,
as the following perfectly legal module (inspired by [7]) demonstrates:

agen = proc [L: type] (n: int) returns (any)
if n <= 0

then return (array[t)Snew 0)
else return (agen[erray[t)) (n - 3))
end

end agen

An invocation açr n [ T](n) ,  where T is an arbitrary type, eventually produces a
new array. The important characteristic of a gen , however, is that a gen calls it self
recursively with a parameter array[t] that is distinct from the original parameter t; in
fact, it is distinct from any previous parameter to agen within a single recursive chain
of calls. For any positive n, an invocation of one instantiation of agen will use n distinct
additional instantiations of agen. For example, the invocation agcnint ](3) will result in 3
recursive instantiations of ngrn :

agen [array [int]] (2) -

agen [array (array lint]]] (1)
agen [array [array [array [int]]}] (0)

..‘ 
- 

~‘0 ~~~~~~~~~ ‘~~ ~
-- 

~
--

~~~~
- —-

99 PROGRAMMING METHODOLOGY GROUP

Thus there exist finite CLU programs that use at run-time an unbounded number
of instantiations of parameterized abstractions. To handle such programs, it is
therefore necessary to support the dynamic instantiation of parameterized abstractions
at run-time. For a compile-time scheme to be correct , one must recognize modules
such as a~~n and either consider them to be illegal, or provide some means for
implementing them that avoids compiling an infinite number of object modules.

As was mentioned above, the current CLU implementation utilizes a run-time
scheme wherein a new object module is crea ted once for each distinct set of
parameter values, Since in the implementation there is no single object module for a
cluster as a whole, but rather individual object modules for each cluster operation, the
following (somewhat simplistic) description focuses on the representation of routines.
Types are represented, by objects called type descriptors; however, type descriptors
are used primarily in various forms of identification, and their internal format is not of
particular importance here.

The implementation makes use of two types of objects, call blocks and entry blocks.
A call block is a description of a routine to be invoked, and contains the routine name,
the actual parameters for the routine and a type descriptor for the data type, if the
routine is a cluster operation. An entry block represents an invocable entity (i.e., a
non-parameterized routine or an instantia tion of a parameterized routine); it contains
references to consti tuent objects containing the code for the routine, the parameter-
independent data, and the parame ter-dependent data. The parameter-independent
data consists of literal values, such as real numbers and strings, and call blocks for
invoked routines that are not dependent on the parameters. There is parameter-
dependent data only in entry blocks for instantiations; this data consists of the actual
parameters and call blocks for invoked routines that depend on those parameters.

For example, Figure 2 shows the entry block for the instantiation su~n[set[in t]] .
This entry block refers to one parameter-independent call block, for intSadd, and one
parameter -dependent call block, for s t [i n t] ~elemen vs. Notice that in the call block for
s et [in t] Sd ments there are no routine parameters; this is because ekments has no

- parameters besides those of its containing cluster. A call block for su m[sc: [i nt]] is
shown in Figure 3. Note that here there is a routine parameter , but no type
descriptor, since sum is not an operation of a cluster.

The uninstantiated form of a parameterized routine is also represented by an
entry block, to be used as a template when building instantiations. In the parameter-
dependent data of this entry block, each would-be reference to the i tb actual
parameter is instead a reference to a dummy descriptor for “the Ltb parameter.” For
example, the templa te for sum looks like Figure 2, except that references to se:[int)
are replaced by references to “the first parameter.”

Whenever an attempt is made to invoke a routine through a call block, a dynamic
linker intervenes. It the entry block for the specified routine already exists, the call
block is replaced by that entry block, thus snappi ng the link. If the entry block does
no t ye t exis t, i.e., a parameterized routine is being instantiated with a new set of
parame ters, a new entry block must first be created from the template entry block for
the routine. The new entry block shares the code and the parameter-Independent data
with the template (and all other instantiations), but has a completely new copy of the

~~~_ _ _ _ _ _  

_ _ _ _ _ _ _ _ _  

.

~~~


PROGRAMMING METHODOLOGY GROUP 100

parameter-dependent data in which every reference to a dummy descriptor for “the it~~

parameter ” is replaced by a reference to the corresponding actual parameter.

It is important to realize that instantiation merely involves substituting actual
parameters into the parameter-dependent data template; no attempt is made to
simultaneously snap the call blocks in the resulting data. One reason for this is that
attempts to instantiate certain routines (such as agen above) would cause an infinite
number of subsidiary instantiations. A second reason is that some (possibly many) of
the call blocks may never be used, so snapping them is a waste of time. For example,
code to handle potential, but unexpected, exceptions may never be executed.

code: type:
______________ i nt

parameter - / call blocks:
indc pendc n ,1 name:

parameter-
dependent ..—~~~ parameters:

data: .‘ set[int] type:

set[int]

other info:
~

call blocks./
I / name:
/ / “elements”

Figure 2. Entry block for sum[set[in t]].

name:
“sum”

parameters:
set[int]

Figure 3. Call block for sum[set[int]].
-

#- - _‘~~~~~~~~~~,. _
~~~~~~~ -~~~~_-- ~~~~~~~— -



101 PROGRAMMING METHODOLOGY GROUP

The above descri ption omits a number of details that are largely related to
aspects of performance . For example, the parameter -dependent data in an entry block
is actually separated into two parts: data dependent solely on cluster parameters, and
data dependent on routine parameters (and perhaps also on cluster parameters); in
this way, all operations of a parameterized type can share that data dependent on just
the cluster parameters , while those (rare) operations that are additionally
parameterized have separate , additional data dependent on those parameters .
Although these details are important to the actual implementation, they do not
fundamentally alter the description jus t given, and so will not be pursued here.

0. SPECIFICATION AND VERIFICATION OF DATA ABSTRACTIONS

We have continued our work on specification techniques for data abstractions.
R. Principato has completed a formalization of the state machine technique [8], which is
based on the wor k of Parnas [91 but makes use of hidden functions to define delayed
effec ts of operations [10, 11 , 1 2]. V. Bërzins [13] is completing a formalization of the
abstract model specifica tion technique [14, 15]; his technique is powerful enough to
permit the specification of mutable data abstractions and operations that raise
exceptions. 0. Kapur [16] is completing a formalization of the algebraic technique,
using a model theoretic approach that permits the relationships between existing
methods [1 7, 18] to be elucidated.

E. INCORPORATING ABSTRACT DATA TYPES IN STACK-BASED LANGUAGES

E. Moss has investi gated how abstrac t data types might be included in a
programming language based on stack ra ther than heap implementation [19~. The
decision to use a heap is fundamental to CLU, and we felt that it contributed greatly to
the simplicity of the language. However, there is a demand for languages supporting
abstract data types w4thout requiring ga~oage collection (e.g., the DOD/ i language
[20]). Our goal was tb investigate a possible design for such a language. CLU was
used as the base for the alternative design, not only because it is a complete language,
but also because it serves as a basis for comparison and evaluation of the resulting
design.

In the sections below, we discuss the major decisions in the alternative design.

1. Basic Semantics

The semantics of CLU rests upon the fundamental notion of an obj!c~., and thesecondary concepts of va ri abies and assig~nment. Objects are abstractions of memory.
Objects reside in a universe of objects; they may be created freely, and continue to
exist as long as they are accessible. Objects may refer to other objects, and general
sharing and cycles of references are permitted. Some types of objects (e.g., arrays)
may grow and shr ink dynamically. A heap implementation with some form of garbage
collection is required to support the full semantics of CLU.

CLU variables merely refer to objects. In most cases variables are implemented
as pointers to the storage representing the object to which they refer. Assignment
copies only the reference , not the objec t, and hence affects no objects. Argument
passing to procedures is defined in terms of assignment: the formal arguments are

~~~~
7 ~~~*a~~~~~~~~~~~4~~~j ~ _~ - - - -.

- .

PROGRAMMING METHODOLOGY GROUP 102

assigned (references to) the actual argument objects. Thus, the new procedure
activation shares objects with its caller. (This is not the same as passing a reference
to a variable, which is never done.) We call this argument passing technique call-by-

~~rj~g.

L These basic notions of object, variable, assignment, and argument passing need
T to be changed to permit stack implementation. First, variables are changed to be cells

physically containing the objects to which they refer. This ties the storage and lifetime
of objects to that of variables, which are allocated on the stack. Next, componen t s of
aggregates (such as arrays and records) are changed to be physically contained in the
aggregate object, rather than merely pointed to. However, objec ts continue to play an
importan t role in the s~rnantics. For example , an array variable contains an array
objec t, and is not a collection of scalar variables. (We will come back to this point in
Section E.3.) Thus there is no notion of sub-variables: either one assigns entire
objects, or one uses operations of the type to manipulate and update objects of that
type.

In the new design, assi gnment and argument passing are not defined as they are
in CLU. Procedure invocation becomes the semantic base. Procedures take all
arguments by reference, but there are two classes of arguments: input arguments and
output (or result) arguments. Result arguments are variables that the procedure must
write but cannot read (since they may be uninitialized). The two classes of arguments
are separated in the procedure header:

p proc (a, b, C: int) returns (m, fl: int)

They are also separated in invocations, with the result arguments appearing to the left
of the assignment symbol, e.g.:

x, y :-
~ p(t, U, v)

Thus, assi gnment is defined by procedures that write into their result arguments. The
built-in types provide operations to copy an input object into any given variable, and
all other assignments are built up from these operations. This definition of assignment
avoids much unnecessary copying.

In addition to the form

‘list of result variables> := <procedure invocation>

defined above, a def inition is needed for forms such as

X := y

where y is a variable. For convenience, we define such forms to be equ,valent to

x := t~copy(y)

where i is the type of y.

.

~~~~ T~~IiI ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
-



suer m e  uistrioutea i..ompuiing sysmem ring ne~woric prevuousiy oeveiopeo D~ U.

Farber at UC-Irvine, its internal structure was general enough that it could be
4.~
. .li~

. ——-’ -

- - PR ECEDING PAGE NOT FILME D
- BLANK

#‘ - .
~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~ “‘ w- 

~~
- .

~ 
- - .— -- - 

~~~
. - - - - -

103 PROGRAMMING METHODOLOGY GROUP

As in CLU, the semantics of expressions are defined in terms of procedure calls.
Here, however , anonymous temporary variables must be created to receive the results
of the expressions and pass them on. The process of creating temporaries can be
viewed as a syntactic transformation , and so we can think of expressions as a
convenient shorthand for a series of procedure calls. For example,

x 2 * z + 5

is equivalent to

ti: m t := intllmul(2, z)
intSadd(tl , 5)

2. Size Parameters

Since variables, and hence objects , are to be allocated on the stac k, the size of
objects now becomes impor tant. For example, in CLU a string variable may refer to
strings of any length. This is because strings are allocated in the heap and variables
merely point to them. In the new language, the length of strings becomes important,
since variables must physically contain them, The obvious solution is to add
appropriate parameters to each type, to specify the size information. However , since
to many programs the exact size does not matter , it is desirable to have the ability to
write modules that handle all sizes of objects of a par ticular type. Indeed, using the
CLU parameterization features , this is entirely possible. However , CLU’s parameter
mechanism is oriented towards sta tically (compile-time) known parameters, and it is
often desirable to put off size choices until run-time. Furthermore, objec ts of different
sizes will be ol different types.

Distinguishing types based on object size leads to some problems. One difficulty
is that each type in CLU has a distinct set of operations. Consider the string~fe tch
operation, w hich returns the ith character of a string given the string and- i as
arguments. There will now be a different stringSfetch for each size string, wri tten
string[n]Sfetch where n is the size of the string. Even worse are binary operations,
for examp le, string~lt (which compares two strings and returns true if the first
lexicographicatly precedes the second); these operations now take two parameters-—
one for the size of each argument. It becomes very tedious and error prone to keep
track of such parameters.

To solve these problems, we devised a size paramelerization mechanism where
size parameters did not determine type, and where size parameters could be specified
at run-time. Some other considerations also influenced the design of the mechanism. It
was clear that size informa tion had to be associated with variables in order to
determine storage requirements. However , the compiler introduces temporary
variables for expression evaluat ion, as explained above. How is the size of a
temporary determined?

The solution chosen was to have procedure headings specify their result sizes
as a function of their input sizes. For example, the header of string~concat wouldspecify that the size of its result string is the sum of the sizes of its two input strings.
This works tine if the result argument is a temporary created by the compiler, but

.#. .
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ~ ~~ ~~~~- - -- -

PROGRAMMING METHODOLOGY GROUP 104

what if the result argument is an already declared variable supplied by the user’ It is
undesirable to require an exact match in size; for example, in invoking stringflconcat,
any variable big enough to hold the result should be acceptable. The solution here is
to decouple the sizes of objects and variables by requiring only that the object fit in
the variable. In the general case this requires a run-time check since the sizes of both
objects and variables may not be known until run-time.

One mi ght suppose that comparisons of size parameters would be the basis for
run-time size checks. However , user -defined types lead to a problem: the user is
allowed to define the concrete size parame ters in terms of the abstract size
parameters using arbi trary expressions. Thus the concre e and abstract size
information may not be rela ted in any simple way, and storage requirements may not
even increase monotonically with the abstract size. We decided that a comparison of
the size of the object and variable in terms of storage units (e.g., words) be
performed. This is not an entirely satisfac tory solution, although it is simple and
efficient; this problem needs more work .

The syntax we chose for size parameters was the following:

<type-name> [‘regular parameters>;<size parameters>]

in those contexts where a type is needed but no size information is required (e.g., as
inputs to procedures), the size injormation is ignored and may be omitted. Means are
provided for accessing the size parameters of input arguments, etc.

3. Access to Components of Objects

The design as described so far is sufficient for most purposes, but has a
limitation. The semantics of procedure invocation imply that the objects returned in
result argument variables are always newly created. Thus there is no way to pass a
component of an aggregate object to a procedure; only a copy of it may be passed,
since fetching the component is done with a procedure call, which necessarily creates a
copy.

It would be possible to define access to record and array components specially
to avoid this problem. However, such a solution would not generalize to user-written
aggregate types (e.g., sets, lists). Therefore, we added a new kind of module, called a
selector , for returning a component of an aggregate by sharing. Record and array
component access is defined by built-in selectors, and users may define selec tors for
their own types in terms of these built-in selectors.

It should be noted that restrictions on user-written selectors need more
investigation. For example, rules are needed that simplify aliasing prevention. Also,
we imposed syntactic res trictions on the use of selectors to prevent dangling
references (selec tors effectively return a reference), but our solution is not as clean
as we would like.

4. Areas and Pointers

To compensate for the lack of a heap, we extended our original design, adding

-‘ - w”~~~ ~~~~~~~~~~ ~~~~~~~~ ~~~~~~~ - ~~~~~~~~~~~~ - ..
~‘.‘ ~~~~~~ ~~ -

LAS .:n. NASSACi&JSCTYS
LAIO*ATCRY FOR

U I
I

.
1

~

ii
_ _ _

In
_____uu____ENDOAThFILNE

0— 79

I73Y5

O ~ 1128 ~I 2.5
I. L

_ _ _ ‘~~I~ 1 2.2

I I~

IHH~I .25 UID~ ~
MICROCOPY RESOLUTION TEST CHART

NAIIONA L BURLAU OF SIANOARDS 963 A

105 PROGRAMMING METHODOLOGY GROUP

areas and pointers. An area is a block of storage set aside for dynamic allocation. The
entire block may be allocated in a stack frame, in a manner similar to declaring a large
array. Objects may be created in an area at will (so long as the storage set aside is
not exhausted). Areas are similar to the collections of Euclid [21], but may contain
objects of differing sizes and types. Objects allocated in an area are referred to by
using pointers. A pointer is restricted to refer either to nothing (a null pointer) or to
objects of one particular type in one particular area. Note that pointers do not refer
to variables, in keeping with our object-oriented view.

An object allocated in an area may be modified (by operations of its type), but
cannot be assigned to or explicitly destroyed. Instead, an area can be garbage
collected, using an implementation provided by the programmer. The area mechanism is
designed to permit a wide variety of implementations, allowing the irnplementer
freedom to adjust time-space efficiency trade-of fs.

Because every pointer into an area, and indeed every var iable that might
directly or indirectly contain a pointer into an area, must contain the name of the area
in its type, when the scope of an area is exited there can be no dangling references
into the area. Hence the storage associated with the area may be safely reclaimed.
Enforcement of the above rule is done by the normal type-checking func tion of the
compiler.

5. Conclusion

We have designed a language that supports abstract data types without
requiring a heap. This involved adjusting the basic semantics of CLU to allow stack
implementat ion, and then solving some problems that derived from this change. it is
interesting to note that features similar to those described above have appeared in
designs having the same goal. For example, Alphard [22] has a mechanism very similar
to our selectors, and the 000/ 1 specification [20] leads to mechanisms similar to our
size parameters.

The resulting language is definitely more complex than CLU. Furthermore, it
appears that the added complexity is inherent, since A iphard and the DOD/ I designs
have the same sorts of complex features. The only reason for pursuing designs such
as ours is the efficiency gained by omitting heap management and garbage collection.
As more efficien t garbage collection methods become available, whic h recen t
developments in parallel and incremental garbage collections indicate may happen in the
near future, languages such as CLU will have less efficiency penalty. Hence we hope
that our design will become obsolete and simpler languages will be acceptably efficient
for almost all purposes.

F. SYNTHESIS OF SYNCHRONIZATION CODE

When dealing with abstract data objects that are shared among different
concurren t processes, some form of control over the ordering of accesses to objects is
required. N. Laventhal has developed a method for automatically synthesizing source
language synchronization code, given a synchronization constraint expressed in a
problem specification language [23J The following sections describe the specification
language and the synthesis method.

.~~a ~~~~~

PROGRAMMING METHODOLOGY GROUP 106

1. The Sp~cif ication La~~u~ge

The data objects with which this research is concerned are the sort provided in
programming languages supporting the notion of abstract data types, such as CLU [1],
ALPHARO [15], or Simula [24]. In these languages, associated with an abstract data
type there is a set of basic procedures, or operatio,~~ and only these operations are
allowed to manipulate the lower-level representation of the abstract objects. Higher—
level procedures can access the objects only by invoking the operations.

A basic assumption is tha t the units upon which synchronization should be
performed are the basic operations of the abstract data type. Only these operations
are allowed to access and manipulate the data representation of the abstract objects,
and so it is here that detisions can be made as to what pattern of accesses is
necessary to maintain internal consistency. The centralization of these operations in
one module (such as a CLU cluster) permits a single expression of constraints to cover
all accesses of the objects. Since the programming language ensures that all accesses
are made through (he basic operations, the discipline required I or synchronization can
be enforced universally; this would not necessarily be true if higher-level procedures
were chosen I or synchronization. On the other hand, to the user of an abstraction the
exact implementation of the basic operations is unknown (and may change without
warning). Synchronization constraints at any lower level, i.e., involving code internal to
these operations, therefore would not be meaningful to the user. It is exactly at the
level of the basic operations of a data type that the two viewpoints of the
implementer and the user can and should be resolved in a smooth interface. This is
true for the synchronization component of the interface just as much as for the data
component.

A strict division is assumed between the synchronization and data manipulation
functions involved in accessing a shared data object. This is based on the philosophy
that the task of synchronization belongs in a separate language construct, whose sole
function is synchronization. The operations of the abstract data type do not .contain
synchronization code, but are written assuming synchronization exists that is sufficient
to prevent any conflicts between concurrent operation activations. Synchronszation is
taken to be uniform across all objects of the same type, reflecting the belief that a
type consists not only of data manipulation operations but their synchronization as well.
That is, all objec ts of a given type are synchronized in the same way.

The model of synchronization used assumes there is an abstract protection
mechanism that conceptually surrounds each data object on which accesses must be
synchronized (see Figure 4). This mechanism, cal led the guardian of the data
abstraction, monitors all manipulations of the object , in a manner similar to the
“secretary” concept proposed in [25]. Through this monitoring, the guardian is able to
main tain the ~ynchroniza Lion_state of the resource, an abstract representation of the
history of accesses to the object. (This is to be contrasted with the “data state” of
the object, which is the state explicitly manipulated by the basic operations.) The
guardian uses the synchronization state information to temporarily block any process
attempting an access that is unsafe in the current synchronization state. The blocked
process is allowed to proceed when the synchronization state has changed in such a
way that the access can safely occur.

~,‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



107 PROGRAMMING METHODOLOGY GROUP

guardian

object

j
~~~~~~~~~~xi~~

J
~

Figure 4. The Guardian Model.

Accessing an abstract data object consists of invoking one of the operations of
the type to which the object belongs. The distinguishing features of the approach
concern the structure imposed on synchronized accesses of the object. As indicated in
Figure 4, every access involves a fixed sequence of events. The process wishing to
make an access first communicates this desire to the guardian; this is called the
“request” event I or the access. When the guardian permits the initiation of the access
on the actual data object , the “en ter” event occurs. The termination of the access is
communicated to the guardian in the “exit” event.

The guardian model assumes that the set of all events concerning a particular
data object is totally ordered. That is to say, while many proce~ire activations can be
executing concurrently, only one request, enter, or exit event ~~sociated with a given
object can occur at a time. This total ordering property is com~~rable to the fact that
the “arrival ordering” for any particular actor in [26] is total, ~“d relies ultimately on
some sor t of arbitration mechanism for each data object.

The guardian model paradigm of request-enter-procedure body execution-exit
forms the basis of the specification language. A synchronization specification is written
for an abstract data type, and is intended to apply independently to every object of
that type. The specification expresses a constraint on the ordering of accesses to an
object , and represen ts the only such constraint . This means that any ordering of
events consistent with the specification is valid, and in particular that procedure
activations are allowed to execute in parallel unless constrained otherwise by the
specification.

Specifications for synchronization problems can be written in a language based
or, this model. An access of an object is denoted by the operation being performed
and the activation number of the access using that operation within the history of
accesses of the object. For example, p~ represents the i-th activation of operation p
on an objec t. One of the events associated with this access is denoted by adding the
event name as a superscript, e.g., ~1

request being the “request” for the p1 access. The
total ordering of all events associated with a given data object is defined by a relation
denoted ==>.

Specifications in the language are written as predicate calculus formulas that
constrain the time ordering relation ==>. For example, a specification for a readers-
writers database with priority given to writers [27) is expressed as:

~~~~~~

. 

~~~~~~~~~~~~~~~~~~~~~~~~ I - - 
I—

PROGRAMMING METHODOLOGY GROUP 108

((wr i tei~~
1ter == write~

e
~~~) ~ (write1

e
~~ ~~=> writejet

~
tet )) A

((writei~
t
~
t .... > rea~~~~~ ) V (read~~ ’~ ==> writei

e
~

1tet)) A
((wr ite~te~I~~ t == read~

ent&) D ~~~~~~~~ ==> read~e1~te~))

The first clause states that activations of operation “write” must take place one at a
time and in the order requested. (Free variables such as I and j are universally
quantif ied, so this constraint applies to all values of i and j, and therefore to all
activations of “write.”) The second clause requires activations of operations “wri te”
and “read” to be mutually exc lusive, in that one must exit before the other can enter.
The third clause gives priori ty to activations of “write” over those of “read,” by stating
that any activation of “wri te” that is requested before an activation of “read” has
actually entered must enter first .

2. ~y t h f t h S l t S V t

The problem specif ication is a non-pr6cedura l representation of a
synchronization property at the level of events. In synthesizing an implementation for
a specified proper ty, it is necessary to derive a procedural representation of the same
property. The synthesis is accomplished in two steps. The first stage is a
transformation from non-procedural to procedural form. The intermediate form is called
the solution specification. It can be described without reference to the exact details
of par ticular source language constructs. The second stage constructs an actual
implementation.

In the solution specification, the form chosen to represent the synchronization
state of an object is the number of events of each class that have occurred in the
history of the object. This quantity is denoted by the term ‘count(ec),” where cc is
the class of events to which the quantity refers. An event class exists for each event
(request, en ter, exit) f or each operation. For example, ~0I,,1~ re~uest) represen ts the
total number of “request” events for operation p.

Of the three types of events, “request” and “exit” events are generated from
outside the synchronization mechanism, while “en ter” events are generated by the
synchronization mechanism itself (see Figure 4 above). For this reason, “enter” events
are the only ones whose timing can be controlled by the synchronization code. The
abstract solution to a synchronization problem can be represented by the condition on
the synchronization state that must be true for each kind of “enter” event to be
allowed.

Applying the method to the example specification above for the readers-writers
database with writer s’ priority, the following conditions are derived for the “enter”
event classes. For read~~

t
~~:

— count(write~~t)

For wrlte MCI:

count(writeante
~) count wr iteCxi t ) A count(readantel) = count(read~~

1t)

The condition under which an activation of rea€ may enter is that the number of

p
~
. 

.r r* 
_ _ _ _ _ _ _ _ _ _ _ _ _ _

~

I T

~

T

~~

TTT



109 PROGRAMMING METHODOLOGY GROUP

“request” and “exit ” events for operation “write” be equal, so that there are no
unfulfilled requests or active executions of “write.” The condition under which an
activation of “write” may enter is that (1) the number of “enter” and “exit” events f or
operation “write” be equal, so that there are no other active executions of “wri te,”
and (2) the number of “enter ” and “exit” events for operation “read” be equal, so that
there are no active executions of “read” as well.

A synchronization state expressed in terms of the number of events of each
class lacks sufficient power to represent solutions to many synchronization properties
of interest. For this reason, solution specifica tion conditions must sometimes refer not
only to the current state but also to synchronization states associated with previous
events in the computation. When a condition derived for the solution specification
involving the current state is insufficient, the synthesis algorithm uses previous state
information to correct the condition. It is also possible to specify properties in which
the synchronization behavior depends on the arguments to the procedure activations
that constitute the accesses of interest. This is reflected by the presence in the
solution specification of argument-dependent conditions.

Besides serving as a convenient intermediate form for the synthesis algorithm,
the solution specification also can be used to test the soundness of the original
problem specification. In particular, a potential for deadlock or starva tion within a
synchronization constraint can be determined by testing the conditions under which
different kinds of accesses are blocked.

3. Synthesis of the ~~p!ementation

Once the solution specification is derived, it is fairly straightforward to
implement it in terms of a suitable source language synchronization mechanism. Each
quantity of the form count(ec) must be represented by an integer variable. This
variable is initialized to 0, and incremented by 1 at the appropriate point in the access.
Before the “en t er ” even t may occur , the corresponding condition from the solution
specification must be tested. If the condition is not true, then the process must wa it
until it becomes satisfied. To protect the integrity of the synchronization data, the
Incrementing and testing must be done within critical sections of code that are
guaranteed to be indivisible. A convenient construc t with which to implement the
synchronization code is the monitor [28), since the procedures of a monitor are
Implemented as critical sections and the monitor “wait” and “signal” mechanisms are
suitable for controlling the blocking and unbiocking of processes.

The monitor for a data type contains three procedures for each operation p of
the type. These procedures represent the three event classes associated with p, and
are named p_request, p_enter, and p_exit. The form that operation p must take is
illustrated in Figure 5. The identifier “m” is the name of the constructed monitor, and v
is the vector of arguments to operation p.

.4. &~~ _k_,, .

- .-~~ 

4~~e1&~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ —


PROGRAMMING METHODOLOGY GROUP 110

p=proc ...
call m.p_requeat(v);
call m.p_enter(v);

(body of p)

call m.p_exit(v);
end p;

~request. increment ~0Uflt(~request) by I
penter: wait until entry condition is satisfied,

then increment ~~~~~~~~~ by I
execute body of operation p
pexit: increment COUflt (Pextt) by 1

Figure 5. Monitor calls within operation p.

Figure 6 shows the monitor derived for the writer’s priority specification shown
above. In this monitor , the integer variables wr, wn, wx, rn, and rx , represent
~~~~~~~~~~~~~~ count(write~~

t&), count(write~~
1t), count(reade

~
te

~), and
count(reade~d1t ), respectively. There are also condition variables writeentry and
readentry, corresponding to the conditions in the solution specification ; their
associated Boolean predicates are

readentry: wr wx
writeentry: wn = wx A rn rx

Notice that ~~~~~~~~~~~~ does not appear in the solution specification, so that no
variable is needed for it, and thus a procedure read_request is not required.

The choose statement used in Figure 6 is a variation of Dijkstra’s guarded
command [29]. The meaning of this statement is the following: The “guards” B1 are
simply Boolean expressions. If one or more of these guards is true, then one of the
true guards B~ is selected (non-determinately, but the choice must be fair) and the
corresponding statement s

~ 
is executed. If none of the guards is true, then the

statement terminates.

4. Evaluation

The specification language has proved to be quite convenient for writing
synchronization specifications. Since all of the standard logical operators of predicate
calculus can be used, and formulas of arbitrary complexity constructed, any constraint
on time ordering can be expressed. The specifications are relatively easy to write and
to understand, since each logical operator has a naturaj interpretation. The
extensibility of the language permits a complex Ipecification involving many constre,nts
to be expressed as a conjunction of individual clauses, each one specifying a single
constraint. This feature, Illustrated in 123] enhances both constructablilty and
comprehensibility.

.-.
~~ ~~~ %i.4P~~~~j4’r~~~~~i~~miIii c, ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



ill PROGRAMMING METHODOLOGY GROUP

wpdb = monitor;
wr, wn, wx, rn, rx: integer;
readentry, writeentry: condition;

write_request = procedure;
wr := wr + 1;
choose

conditionSqueue(readentry) A wr = wx:
conditionSsignal(readentry);

conditionl queue(writeentry) A wn = wx A rn = rx:
conditionSsignal(writeentry);

end;
end write_request;

wri te_enter = procedure;
if wn wx v rn ~ rx then conditionSwait(writeentry) end;
wn := wn + 1;
choose

conditionSqueue(readentry) A wr = wx:
conditionSsignal(readentry);

conditionSqueue(writeentry) A wn = wx A rn rx:
conditionSsignal(writeentry);

end;
end write_enter;

write_exit = procedure;
WX := WX + 1;
choose

conditionSqueue(readentry) A Wr WX :
conditionSsignal(readentry);

conditionSqueue(writeentry) A wn = wx A rn rx:
condition$signal(writeentry);

end;
end write_exit;

read_enter procedure;
if wr 

~ 
wn V wn wx then condition$wait(readentry); end;

rn := rn + 1;
choose

condition8queue(readentry) A wr = Wx:
conditionSsignal(readentry);

conditionSqueue(writeentry) A wn = wx A r1 rx:
conditionSsignal(writeentry);

end;
end read_enter;

T ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~ --5---. .~~~~~._ -



PROGRAMMING METHODOLOGY GROUP 112

read_exit procedure;
rx = rx + 1;
choose

conditionSqueue(readentry) A wr = wx:
conditionSsignaKreadentry);

conditionsqueue(writeentry) A wri = wx A rn rx:
conditionSsignal(writeentry);

end;
end read_exit;

wr, wn, wx, rn, rx := 0, 0, 0, 0, 0~end wpdb;

Figure 6. Monitor for writers’ priority database.

The efficiency of synthesized implementations is reasonable for a large class of
problems, assuming fair ly simple code optimization techniques are employed. The fact
that all synchronization code manipulates only integer-valued quantities, and that entry
conditions always consist of linear equalities or inequalities of such quantities, keeps
the implementations efficient . The efficiency can be enhanced if obvious optirnhzations
are applied to the results of the straightforward synthesis. For example, by a simple
analysis one can prove that, in the monitor in Figure 6, the choose statements in
write_request, write _enter , and read_enter can all be eliminated, as can the first
clause of the choose statement in read_exit.

There are some limitations in the synthesis method. Due to the relatively rigid
structure of the solution specification, cer tain interesting synchronization properties
cannot be captured. For example, the commonly used first-come-first-ser ved
specification cannot be expressed in the solution specification. Further, the monitor
implementation may be extremely complex and inefficient for certain classes of
specifica t ions, such as those that depend on procedure arguments whose range of
values is unknown; it is not known, however, if such specifications are really useful in
practice.

Another serious problem with the synthesis method is its practicality. The
algorithm as it stands c~n be used manually by a person to implement a synchronization
constraint ~~pi essed in the specification language, or to informally check a hand-coded
implementation. However , further work is needed to automate the algorithm. The
synthesis method described here can only be viewed as a starting point I or pursuing
this general approach.

V .  --

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



113 PROGRAMMING METHODOLOGY GROUP

REFERENCES

1. Liskov, Barbara H.; Snyder, L. Alan; Atkinson, Russell R.; and Schaffert , J. Craig.
“Abstraction Mechanisms in CLU.” Communications of the ACM, Vol. 20 No. 8
(Augus t I 977), 564-576.

2. Liskov , Barbara H., and Snyder, L. Alan. Structured Exception Handling. M.I.T.,
Laboratory for Computer Science, Computation Structures Group, Memo 1 55-1.
Cambridge, Ma., September 1 978.

3. Liskov , Barbara H.; Moss, J. Eliot; Schaffert , J. Craig; Scheifler, Rober t W.; and
Snyder, 1. Alan. CLU Reference Manual. M.I.T., Laboratory for Computer Science,
Computation Structures Group, Memo 161. Cambridge, Ma., July 1978.

4. Schaffert , J. Craig. A Formal Definition of CLU. M.I.T., Labora tory for Compu ter
Science, LCS/TR- 1 93. Cambridge, Ma., January 1 978.

5. Scheifler , Robert W. A Denotational Semantics of CLU. M.I.T., Laboratory for
Computer Science, LCS/TR-201. Cambridge, Ma., June 1978.

6. “Programming Methodology Group.” Progress Report July 1976 - July 1 977.
M.I.T., Laboratory for Computer Science, LCS/PR-XIV. Cambridge, Ma , 135-161.

7. Gries, David, and Gehani, N. “Some Ideas on Data Types in High-Level Languages.”
Communications of the ACM1 Vol. 20 No. 6 (June 1977), 414-420.

8. Principato, Robert N., Jr. A Formalization of the State Machine Specification.
M.I.T., Laboratory for Computer Science, LCS/TR-202. Cambridge, Ma., July 1 978.

9. Parnas, David L. “A Technique for the Specification of Software Modules, With
Examples.” Communications of the ACM, Vol. 15 No. 5 (May 1972), 330-336.

10. Price, W. L. “Implications of a Virtual Memory Mechanism for Implementing
Protection in a Family of Operating Systems.” Ph.D Thesis, Carneg ie-Mellon
University, Pittsburgh, Pa., June 1 973.

11. Robinson, Lawrence, and Levitt , Karl. “Proof Techniques for Hierarchically
Structured Programs.” Communications of the ACM, Vol. 20 No. 4 (April 1 977),
271-283.

12. Roubine, 0., and Robinson, Lawrence. SPECIAL Reference Manual. Stanford
Research Institute, Technical Report, CSG-45. Stanford, Ca, August 1 976.

13. Berzins, Valdis A. Abstract Mode Specifications for Data Abstractions. Ph.D
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
forthcoming.

14. Hoare, C. A. R. “Proofs of Correctness of Data Representations.” Act a
lnforma~jç,~ Vol. 1 No. 4( 1972), 271-281.

- .5’ 

~
.
~
!•;-;

---- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


PROGRAMMING METHODOLOGY GROUP 114

15. Wulf , William A.; London, Ralph; and Shaw, Mary. “An Introduction to the
Construction and Verification of Alphard Programs.” IEEE Transactions on
Software Engineering, Vol. SE-2 No. 4 (December 1 976), 253-265.

16. Kapur, Deepak. Towards a Theory of Data Abstractions. Ph.D Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, forthcoming.

1 7. Goguen, Joseph A.; Thatcher, James W.; Wagner, Eric G.; and Wright, Jesse B.
“Abstract Data Types as Initial Algebras and the Correctness of Data
Representations.” Proceeding~~of Conference on Computer Graphics, Pattern
Rec~gnition and Data Structu~~, IEEE, Los Angeles, Ca, 1975, 89-93.

18. Guttag, John V. The Specification and Application to Programming of Abstract
Dat~jy~es. University of Toronto, Computer Systems Research Group, CSRG-
59. Toronto, Canada, I 975.

1 9. Moss, J. Eliot. Abstract Data Types in Stack Based Langua.~~~ M.I.T., Laboratory
f or Computer Science, LCS/TR- 190. Cambridge, Ma., February 1978.

20. Stee~man. Departmen t of Defense , Requirments for High Order Computer
Programming Languages, June 1 978.

21. Lampson, Butler W.; Horning, James J.; London, Ralph L.; Mitchell, James G.;
and Popek, Gerald L. “Report on the Programming Language Euclid.” SIGPLAN
Notices, Vol. 1 2 No. 2 (February 1977) .

22. WuIf, William A., et. al. An Informal Definition of Alphard (Preliminary).
Carnegie-Mellon University, Computer Science Department, Report CMU-CS-78-
105. Pittsburgh, Pa, February 1 978.

23. Laventhal, Mark S. Synthesis of Synchronization Code for Data Abstractions.
M.I.T., Laboratory for Computer Science, LCS/TR-203. Cambridge, Ma., July
1978.

24. Oahl, OIe-Johan, and Hoare , C. A. R. “Hierarc hical Program Structures.”
Structured Program~~ g. New York: Academic Press, 1972, 1 75- 220.

25. Dijkstra , Edsger W. “Hierarchical Ordering of Sequential Processes.” Operating
~~ems Techn~ques, Edited by C. A. R. Hoare and R. Perrott. New York:

Academic Press, 1 972, 72-93.

26. Hewitt, Carl; Bishop, Peter; arid Steiger, Richard. “A Universal Modular Actor
Formalism for Artificial Intelligence.” Proceedings of Third International Joint
Conference on Artifica l_Intelligence, Stanford, Ca., 1973, 235-245.

27. Courtois, P. J.; Heymans, F.; and Parnas, David L. “Concurrent Control with
‘Readers’ and ‘Writers’.” Communications of the ACM, Vol. 14 No. 10 (October
1971), 667-668.

V

‘

~~~~~~~

-- ---,

~~~ 

- - —---- -- - - .
~~

115 PROGRAMMING METHODOLOGY GROUP

28. Hoare , C. A. R. “Monitors: An Operating System Structuring Concept.”
Communications of the ACM~, Vol. 17 No. 10 (October 1974), 549-557.

29. Dijkstra , Edsger W. “Guarded Commands, Nondeterminacy and Formal Derivation
of Programs.” Communications of the ACM, Vol. 18 No. 8 (August 1 975), 453-
457.

~~~~~
*_,_

~~~~
_—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— 5- -—--. — —

~~: 
_ _  

.~~~~~~~ 
_ _  

_ _  _ _ _  
_ _ _



PROGRAMMING METHODOLOGY GROUP 116

Publications

1. Berzins, Valdis, and Kapur, Deepak. Denotational and Axiomatic Definitions for
Path Expressions. M.I.T., Labora tory for Compu t er Science , Computation
Structures Group, Memo 153-1. Cambridge, Ma, November I 977.

2. Greif , Irene G. “A Language for Formal Problem Specification.” Communications of
the AC~4,~ Vol. 20 No. 12 (December 1977), 931-935.

3. Liskov, Barbara H. “Practical Benefits of Research in Programming Methodology.”
AFIPS Conference_Pr oceedings, Vol. 47, Anaheim, Ca., June 1978, 666-66 7.

4. Liskov, Barbara H., and Jones, Anita K. “A Language Extension for Expressing
Constraints on Data Access.” Communications of the ACM, Vol. 21 No. 5 (May
1 978), 358-36 7.

5. Liskov, Barbara H., and Snyder, L. Alan. Structured Exception Handling. M.I.T.,
Laboratory for Computer Science, Computation Structures Group, Memo I 55.
Cambridge, Ma., December 1 977.

6. Liskov, Barbara H.; Snyder, L. Alan; Atkinson, Russell R; and Schaffert J. Craig.
“Abstrac tion Mechanisms in CLU.” Communications of the ACM Vol. 20 No. 8
(August 1 977), 564-576.

7. Moss, J. Eliot. ~~~~~~~~~~~~~~~~~~~~ Based Languages. M.I.T., Laboratory
f or Computer Science, LCS/TR- 1 90. Cambridge, Ma., February 1978.

8. Schaffert , J. Craig. A Formal Definition of CLU. M.I.T., Laboratory for Computer
Science, LCS/TR- 1 93. Cambridge, Ma., January 1978.

9. Scheifler , Robert W. “An Anal ysis of Inline Substitution for a Structured
Programming Language.” Communication of the A~M, Vol. 20 No. 9 (September
1977), 647-654.

10. Scheifler, Rober t W. A Denotational Semantics of CLU. M.I.T., Laboratory for
Computer Science, LCS/TR-201. Cambridge, Ma., June 1978.

11. Scheif ler , Rober t W., and Snyder , L. Alan. CLIJ Information Package. M.I.T.,
Laboratory for Computer Science, Computation Structures Group, Memo 154.
Cambridge, Ma., November 1 977.

Accepted I or Publication

1. Liskov , Barbara H. “Remarks on the Construction of Large Programs.” To be
published in J~ pa~~_oj~~esearc h on Software Technology. Edited by P.
Wegner. Cambridge, Ma.; M.I.T. Press.

2. Liskov, Barbara H., and Berzins, V aldis . “An Appraisal uf Program Specifications.”
To be published in The Impact of Research on Software Technology. Edited by
P. Wegner. Cambridge, Ma.: M.I.T. Press.

P 
~~~ 

.~~~~~~~~ r ~~ ~~~~~~~
,, -

~~ ~~
-— .-

~~~~~
. - . . .



117 PROGRAMMING METHODOLOGY GROUP

Theses Completed

1. Garrard, Stephen C. “An Arithmetic Compiler for the Digital Acoustic Signal
Simulator (DASS). ” unpublished S B. Thesis , M.I.T., Department of Electrical
Engineering and Computer Science, May 1 978.

2. Laventhal, Mark S. Synthesis of Synchronization Code for Data Abstractions. Ph.D
Thesis, M.I.T., Department of Electrical Engineering and Computer Science,. June
1978.

3. Moss, Eliot. LD~ a_]:yp~s in Stack Based Languages. SM. Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, November 1 977.

4. Principato, Robert N., Jr. A Formalization of the State Machine Specification
Technique. S.M. and E.E. Thesis, M.I.T., Department of Electrical Engineering and
Computer Science, May I 978.

5. Schaffert , J. Craig. A Formal Definition of CLU. S.M. Thesis, M.I.T., Department of
Electrical Engineering and Computer Science, January 1 978.

6. Sc heifler , Robert. A Denotational Semantics of CLU. S.M. Thesis , M.I.T.,
Department of Electrical Engineering and Computer Science, May 1978.

7. Shienbrood, Eric R. “A Translator for the Language CLUMAC.” unpublished SB.
Thesis, M.I.T., Department of Electrical Engineering and Computer Science, May
1978.

Theses in Progr~ss

1. Berzins, Valdis. “Abstract Model Specification for Data Abstractions. ” Ph.D.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, January 1 979.

2. Bloom, Toby. An Analysis of Synchronization Methods for Modular Programs.”
S.M. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expec ted date of completion, January 1 979.

3. Kapur, Deepak . “Towards a Theory of Data Abstractions.” Ph.D Thesis, M.I.T.,
Department of Electrical Engineering and Computer Science, expected date of
comple tion, June I 979.

4. Leach, Paul. “Designing a Garbage Collector in a Strongly Typed Language.” S.B.
Thesis , M.I.T., Department of Electrical Engineering and Computer Science,
expec ted date of completion, January I 979.

5. Snyder, 1. Alan. “A Struc tured, Verifiable Machine Architecture to Support an
Object-Oriented Language.” Ph.D Thesis, M.I.T., Department of Electrical
Engineering end Computer Science, expected date of completion, January 1 979.

-
~~~‘ 

. ~~~~~~~~ . .~~~~~~~~~ - . .

PROGRAMMING METHODOLOGY GROUP 118

6. Zilles, Stephen N. “Data Algebra: A Specification Technique for Data Structures.”
Ph.D Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
expected date of completion, June 1979.

Talks

1. Liskov , Barbara H. Chairman of Panel Session on Program Specification
Techniques, lFlP Co~g~~.~s1 Toronto, Canada, August 1977.

2. Liskov , Barbara H. “An Appraisal of Program Specifications.” Conference on
Research Pirections in Software Technology, Providence, R. I., October t 977.

3. Liskov , Barbara H. “CLU Abs traction Mechanisms and Their Implementation.”
SIGPLAN Meeting, Boston, Ma., November 1977; Cornell University, Ithaca, N. V.,
December 1 977.

4. Liskov, Barbara H. “Abstrac tion Mechanisms in CLU.” University of Waterloo,
Wa ter loo, Canada, November 1 977; Bell Laboratory, Indian Hill, II., November
1977.

5. Liskov , Barbara H. Session Chairman, History of Programming Languages
Conference, Los Angeles, Ca., June 1 978.

~ ~~~~~~~~~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~

__~~~~~~
• .~~~~~~~ ~~~~~. -



121

PROGRAMMING TECHNOLOGY

Academic Staff

A. Vezza, Group Leader J. C. R. Licklider

Research Staff

E. R. Banks . S. W. Galley
J. M. Berez 0. S. Gerson
P4. S. Blank P. 0. Lebling
M. F. Brescia . C. 1. Reeve
P4. S. Broos 0. Sherry

Graduate Students

T. A. Anderson

Undergraduate Students

S. H. Berez s. C. Phillips
B. T. Berkowitz T. J. Platt
N. P4. Butt B. J. Roberts
0. L Dill W. A. Seltzer
1. K. Johnson S. H. Soto
G. E. Kaiser W. W. St. Clair
P. C. urn

~~pport Staff

S. P. Briggs

~~~~~ II~ ~~~~ L3LP&~c

-— —5-- - -. -

123 PROGRAMMING TECHNOLOGY GROUP

PROGRAMMING TECHNOLOGY

A. INTRODUCTION

The Programming Technology group is engaged in two distinct research and
development programs. The program in Morse code has as its main goals the
development of the conceptual insight necessary to develop a computerized Morse
code operator and the design and implementation of a prototype of such a computer
system (COMCO-l)[1]. The Morse code program covers four areas: signal processing,
Morse code transcription, sender recogni tion, and understanding of the network
conversations among operators that are carried on in a special language consisting of
“Q—s igns,” “Pro—signs,” and “Call-signs.” The other research program is concerned with
the facilitation of interpersonal communication through the use of computer message
systems[1]. The work on interpersonal communication has involved the design and
implementation of a computer message system that embodies in it a model, as yet very
simp le, of an organization. The model is used to track action status and to aid the
communication process.

B. MORSE CODE

COMCO-l, the pro totype computerized Morse code operator , is composed of
three major subsystems.

1. A signal acquisition and processing module produces a file of mark (dot and dash)
and space durations based on analysis of a signal.

2. A transcription module converts the mark and space durations into a lattice of
possible transcriptions of the message, where each branch of the lattice is a
vocabulary element from a large but finite vocabulary. This module begins by
performing a MAUDE-like [1] assignment of each code element to its apparent
type, and then passes that result to COMDEC (COmputerized Morse DECoder),
which builds the lattice of transcriptions.

3. Finally, the transcriptions suggested by COMDEC are evaluated by CATNIP, a
parser based on augmented transition networks, which attempts to derive
coherent, “grammatical” transmissions from them.

1. Domain Models

It is clear that good Morse operators have conceptual models of the Morse code
environment that they use to help them perform their task. They have models of
Morse “sotinds”- -sequences of dots and dashes with rhythm and timing information--
and map these sounds into the letters and words. They have models of the language
constructs that are used, be they English, another natural language, or the chatter
language. Operators form models of other operators’ mannerisms and use these models
in the translation and understanding processes and in identifying other operators.
Operators also have models of the Morse code and radio domains. It is common
knowledge that “TH” is often sent with a short space between the letters, so that a
machine often interprets it as “6” (thus “6E” is really “THE”). Similarly, “AN” Is often
Interpreted as “P” (thus “PD” Is really “AND”). In the radio domain, knowledge about

1r
‘-PRECEDING PAGE NOT FILMED I ~~ ~

BLANK

_________ _ _

PROGRAMMING TECHNOLOGY GROUP 124

CATN IP
Chat ter &

Heoder Model of
th e s ituationUnder st andin g

System

— Models of
lo ngu oge

CO MD EC

Transc ript ion

~~
System

I Models of
L Senders

Figure 1. The Three Major Modules of the Morse Code System
and the Domain Models They Use.

the spectral frequency to which relevant operators’ transmitters are tuned, what a
particular transmitter sounds like, how a signal fades and returns--all these form the
models that help operators identify, track, transcribe and understand one another. It is
the human being’s ability to interpret Morse sounds in the context of such mental
models that allows her or him to perform so well.

At this point a slight digression is in order. Listening to a Morse code
conversation among a group of operators, one notices three distinct aspects of the
conversation. These correspond to (I) network chatter, (ii) message headers, and (iii)
message bodies. The chatter section is often very poorly sent. Characteristically,
many letters and words are slurred or separated end corrupted by other opera tor
lapses. Yet receiving operators have little difficulty understanding chatter, because
they have a model of the global situation: what question was asked by whom, who Is
currently waiting on the network, who has message traffic for whom, end so forth This
model end the ability to understand the conversatIon I. vitally Important to transletioft

fr ~
~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~—

.
~~~~~~~~~~~~~~~~~~~ -.-~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



125 PROGRAMMING TECHNOLOGY GROUP

Headers of messages are structured but, unfortunately, not rigidly. Again, to
translate them correctly one must have some understanding of what headers are about.
For ins tance, dates may be sent as “8 Dec 78” or “8 12 78” or “81278” and times may
be sent as “IOOOZ” or “1000”. We have written the dates and times in an ideal
manner , but, in fac t, they might be--as a result of operator lapses--segmented quite
differently, so that parts of numbers are run together or a number is split apart, and
one or more numbers might contain a mark-error. One other aspect of numbers is very
important. All numbers in Morse code are five marks long--see [2) under Morse
code--yet they are often abbreviated and sent as what are called cut-numbers. Again,
context is often required to perform translation correctly.

The body of amMeur radio message traffic is typically English wi th some
abbreviations. To attempt to understand all of the English language would be far
beyond the scope of this research. We have built into the system just enough
knowledge to let it perform in a creditable fashion. Our experience indicates that a
vocabulary, some rules about where numerals can occur in text, rules about how to
handle error signs, and a measure of closeness in a Hamming-like space (for correcting
operator induced irregularities) are absolutely essential to the correct translation of
plain text. Our experience suggests that knowledge about idiosyncratic and irregular
behavior of individual operators facilitates translation.

Military message traffic differs sligh t ly because the body may consist either of
plain text or of cipher groups. A message sent in cipher has no language context, but
knowledge about the number of groups in a message, the number of characters in a
group, and whether groups are alphabetic, numeric, or mixed is necessary to translate
such a message.

Figure 1 shows a block diagram of the three major modules of the Morse code
system COMCO-I. Also shown are the necessary domain models required by each
module in order for it to ~erfori~ its task properly. The wavy line in the diagram
indicates that the signal processing system, which is composed of special hardware and
a POP-il computer , is not inkgrated with the other major modules which are
COMOEC, the transcription (or translation) module, and CATNIP, the chatter and header
understanding module. The last two are software modules written in MDL (a LISP-like
language) [3J and running under TOPS-20 (4] and ITS [5]. Experiments are conducted
independently for the signal processing system, and human intervention is required to
transfer the results to the other two modules. COMDEC and CATNIP are well
integrated, with appropriate feedback, and externally they appear to behave as one
system.

A few phrases about each domain model may prove helpful:

a. Model of the radio domain situation--how the individual transmitters of interest
sound, i.e., whether a transmitter has any characteristic envelope or carrier
distortions, and if so what kind and a measure of the amounts.

b. Model of the Network situation--which operators are logged into the network,
which are off control frequency, which are on control frequency and where each
operator ’s transmitter is tuned relative to those of the other operators on his
frequency. This last bit of information turns out to be quite important, as we



PROGRAMMING TECHNOLOGY GROUP 126

will show later, even though all the operators are working in a thirty to fifty
Hertz band.

c. Models of senders--the irregularities a particular sender may introduce, such as
his or her idiosyncrasies of language, a proclivity to introduce extraneous dots
or omit dots, etc.

d. Models of language--the full gamut of possibilities are required for parsing and
understanding chatter, but we have rather simple models for handling message
bodies such as a vocabulary and some simple rules for handling some special
constructs and numbers.

e. Models of the situation--the system must know when a question is asked end
the possible range of expected answers; it must know that a frequency change
has been ordered or negotiated and how to respond appropriately; and so forth

2. Morse Code Transcription

The capabilities of COMDEC, the Morse code transcription module, were
expanded and improved during the past year (Lebling, Sherry). The major thrust of
development during the year has been to augment COMOEC’s abilities in transcribing
Morse code into plain text sent in an environment more closely approximating
conditions of live communication between operators. There were two areas in which
this effort concentrated, each of which will be discussed in turn:

a. Improving the transcriber’s performance on transmissions composed primarily of
“network chatter,” the specialized language of the Pro-signs, Q-signs and Call—
signs used by Morse code operators

b. Design and implementation of an interface between the COMDEC transcriber and
CATNIP, a parser f or Morse traffic network interactions.

2.1 Network Chatter

The par t of Morse code known familiarly as “network chatter ” has several
characteristics which set it apart from transmissions in English. Specifically, because
the vocabulary is limited (typically under 1000 common words, Pro-signs, 0-signs end
Call-signs), and the con tex t of the t ransmission is of ten rigi dly prescri bed, the quality
of the code sent is considerably lower than for English transmissions. The code is
likely to contain many more space-errors end mark-errors than a message in plain
English.

The most common type of error in “network chatter” Is that of running words
together. There are two main reasons why this is true. First, certain sequences are
perceived by the sender as single words, such as a Q-sign followed by a question
mark. Second, certain sequences, through repetition, have become so easy to send
that the operator sends them mechanically, tending to compress them into one burst of
code.

~~~ 
.
~~~‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1~L’~~ T~~~~ 1 -


127 PROGRAMMING TECHNOLOGY GROUP

In “network chatter ,” the many numbers involved are often sent as “cut
numbers.” A cut number is a standard Morse code number in which the leading or
trailing dash sequence has been replaced by one (usually longer than average) dash.
For example , a cut “0” (normally five dashes) consists of a single long dash, of ten
indistinguishable from a Morse “1”. A cut “1” looks like an “A”, and a “9” like an “N”.
To correctly transcribe these transmissions , cut numbers must be correctly
distinguished from the letters they resemble.

Another common problem in “chatter ” is that, in cer tain contexts, numbers are so
common that the receiving operator expects them, and can compensate for a high level
of errors in sending. It is common for a sender to transmit single cut numbers if the
context demands a number (this is rare in English transmissions), or to transmit a “5”
(normally five dots, and the only di git composed only of dots) as any non-zero number
of dots.

COMDEC has been modified to deal with these and other problems that have
arisen in the transcription of “chat ter .” Some of the specific modifications that have
been made include the following.

I. The heuristics have been improved that decide when a letter-space or mark-
space is a possible word-space. Specifically, a simple routine to recognize
punctuation marks and other commonly run-together code elements was written.
Additionally, cer tain code sequences commonly run together because of their
“rhy thm” (such as dot-dash-dot-dash) are now recognized.

2. A module was added to the standard transcription sequence which recognizes
and transcribes sequences of V’s, which are commonly sent as an aid in receiver
tuning.

3. The number-transcription module has been expanded to deal with cut numbers
on the same basis as standard five-mark numbers.

4. Words are now checked as they are placed in the transcription lattice to see if
they in troduce a “number context.” If they do, the number-transcription routine
is called and informed that such a context exists (which makes it more tolerant
of errors and cut numbers).

5. The format in which code samples are stored has been expanded to allow
miscellaneous information about the code -most importantly, the locations of
sender changes--to be stored with the code sample.

These, and other changes not mentioned specifically, have improved COMDEC’s
performance on “chatter” considerably, as will be seen later.

2.2 CATNIP Interface

The second area of COMOEC development (Lebling, Sherry) has been the design
and implementation of an interface between COMDEC and CATNIP (see below). This
development included a redesign of the top-level transcriber of COMDEC. Previously,
COMOEC transcribed an entire “message,” which could include several sender changes,

- .~~~~~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.
~~~~

. -~~--~~~~~~~~~

-

- -~~~
-
~~

PROGRAMMING TECHNOLOGY GROUP 128

as one unit. It now treats a transmission by a sender as the basic unit, running all
transcription modules on that transmission before even running MAUDE on the next
transmission.

The interface with CATNIP was designed to allow the two to pass information
back and forth without requiring each to know the data structures of the other, or to
view the other as anything more than a “black box.” The interface module is thus very
simple. CATNIP calls it with a pointer into the code, and COMOEC returns the
transcriptions at that point in the lattice, sorted by quality (best transcription first).
With each transcription is a simple evaluation of it (“good,” “indifferent,” “bad”) and a
pointer to where the next transcription comes from if this one is correct.

What goes on “behind CATNIP’s back” is that the interface module has a record
of which parts of the message have been transcribed, and, if necessary, it transcribes
more of the message before returning to CATNIP. If the area in which CATNIP is
working has already been transcribed, the information it wants is already there.
Consequently, COMOEC and CATNIP operate more or less in parallel and, given the
simplicity of their interface, could even be in different processes.

2.3 An Example

Here is an example of a transcription of “chatter,” in.which two senders, code-
named ROCK and SALT, are trying to establish contact. The special abbreviations used
in this example are as follows:

“Previous portion of code is erroneous; ignore it.”
ANS answer
DE “This is ...“
K Over
PSE please
R Roger
QRK “What is my intelligibility?” or “Your intelligibility is ...“
QRO “Shall I increase transmit ter power?” or “Increase transmitter power.”
QRQ “Shall I send faster? ” or “Send faster.”
QSA “What is my signal strength?” or “Your signal strength is ...”
QSV “Shall I send V’s?” or “Send V’s.”
QTC “How many messages do you have?” or “I have ... messages.”
V (aid in receiver tuning]

MAUDE’s transcription: (Curly brackets (1 surround a sequence of marks sent as one
letter.)

SALT: {VVV} V~VV HVVV}R0C K ROCK RO CK DE SAL T SAL T QSA? K

{WV } ~VVV I V{W} ROCKROCKROCK OE SALT SALT QSI.-..--.. } QRK’ T A

{VVV) {VW} ~VVV}ROCK{.-.--- }CKROCKROCKOE SI ~ S AL T SAL T SAL T
QSA? QRTA’ QSANONO QRKNONTM QSV QSV K

,
~~ ~~~~~~ - —-—-b,

129 PROGRAMMING TECHNOLOGY GROUP

~VVVVV }VVVIAIAV ROCK ROCKROCKROCKRMTCKROCKROCKROCKDE SALT
QSA’ QRK? QSANONOQRKNONOWEST ANS PSE ANS QRQ QRQ QTC QTC
QTC K

ROCK: {VV~V SAL T DE ROCKQSA2 QSA2QRK~!E QRK~ QS A? QR K? K

SALT; ROCKTIE SALTQSAH QRKH TTAAETTT ? K A .

ROCK: DE ROCKRRR QROQROQSVQSVK

SALT: DE SALT R {VV}VV ~VVV VVV HVVVVVV}V {VV}V E

COMDEC’s transcription; (Curly brackets } enclose an untranscribed mark. Pointed
brackets <> enclose a word obtained by correcting a mark-error. Square brackets (1

enclose an error sign and the error to be ignored. COMDEC’s errors are underlined.)

SALT; VVV VVV VVV ROCK ROCK ROCK DE SALT SALT QSA ’ K

VVV VVV VVV ROCK ROCK ROCK DE SALT SALT QSA ? QRK ’ <
~~~~

WV VVV VVV ROCK ROCK ROCK ROCK DE (xxxxx ~} SALT SALT SALT QSA
? QRK ? QSA NO NO QRK NO NO QSV QSV K

VVV ROCK ROCK ROCK ROCK ROCK ROCK ROCK ROCK DE SALT QSA ’ QRK
‘ QSA NO NO QRK NO NO <PSE> ANS PSE ANS QRQ QRQ QTC QTC QIC K

ROCK; WV SALT DE ROCK QSA 2 QSA 2 QRK 5 QRK [~ J QSA ? QRK ? K

SALT: ROCK DE SALT QSA <5> QRK ‘5> QRO ? <K’ ffl
ROCK: DE ROCK <NR> R QRO QRO QSV QSV K

SALT: DE SALT R VVV ...

COMOEC made four errors in selecting the best transcription, but CATNIP, with
its superior “knowledge,” was able to correct all of them. In each case the correct
transcription was available in the lattice, but COMOEC did not select it as the best.
CATNIP was able to reject the incorrect transcriptions and select the correct ones in
each case: “K” instead of “‘M’”, “5” instead of “[

~
]“, nothing instead of “~T}”, and “R

R” instead of “<NR’”.

3. CATNIP Chatter and Header Understanding System

CATNIP is a semantic-syntactic augmented-transition-network (ATN) parser
(Sherry, Kaiser, Vezza) that chooses a path through the lattice of possible translations
created by COMDEC.

CATNIP uses ATN diagrams to choose the correct word from a lattice of possible
translations. It starts in a certain state of the transition network, and progresses from
one state to another, depending on the next word or words In the lattice. With each

- - _______



PROGRAMMING TECHNOLOGY GROUP 130

state is associated a list of words, and with each word a new state. CATNIP matches
the list of words from the state with the list of words possible at that point in the
translation lattice; matches yield valid new states.

If that were all, the network would simply be an unaugmented transition network.
However, CAT NIP re tains a context , which it changes (usually with every word) and
which can be tested when it is trying to match the words. The context includes such
things as who is the sender of the current transmission, who is the receiver, who is the
net controller , and so on. AINs, as opposed to unaugmented transition networks, are
good for parsing grammars that are dependent on the context and on past occurrences
(61

Naturally, ambiguities creep in. Sometimes more than one match is possible; )
CATNIP allows for this by processing one of the new valid states and saving all the
others. The context at that point is saved with the states that were saved. CATNIP
has the ability to return to the saved states and try those alternate paths.

Finally, CA TNIP also has a limited understanding of the events on the net.
Understanding these events is important in understanding the state of the net at any
point (how many operators are working, who they are, who is talking, etc.) and it is
important in choosing the correct word at a particular point in the translation.

The context is used as the “understanding” pert of CATNIP. Take the following
transmission as an example:

ROCK ROCK ROCK DE SALT SALT QSA ‘QRK ? K.

Upon completion of the parse, the parser would retain a context that contained the
information that the receiver was ROCK, the sender was SALT, and SALT had asked
ROCK two questions: “What is my signal strength?” and “What is my in telligibility”

Retaining this kind of context helps find the right translation and decide later
ambiguities (such as who is the receiver at a certain point, if he or she was not
explicitly named). The successive contexts also furnish a synopsis of the entire
session af ter the parser is finished.

CATNIP is a recursive procedure that allows one to name ATN diagrams of
simple structures (such as Q-signs that are often used), and to use those as parts of
other diagrams without actually duplicating the simple diagrams. Thus a more
structured “grammar ” can be created without over complicating the data base.

Figure 2 shows a typical ATN diagram. The circles with either an “S” or a
number in them indicate the states of the transition network. A diagram is always
entered in the start , “S”, state and a return from a diagram is always achieved from
one of the states allowing a return. A state allowing a return to a caller is indicated
by partial shading of the circle. Each italicized ARC label such as Header indicates a
call to another diagram; in tower case are labels such as “location”, which indicate that
the labeled input that will parse is a location (such as “BOSTON” or “BOS”); arcs
labeled with a number sign “a” mean that a number is acceptable as input (with the
parenthesized statement Indicating the meaning of the number, e.g., (nr-gr) means

- ..‘ 

~~~~~~~~~~~~~~~~~~~~~ 
:r~

I
~ “4&~~~~~~~~~~~~ ’ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ - ~~~~~~~~~~ ~~ . ..

131 PROGRAMMING TECHNOLOGY GROUP

\ ~~~~~~~ ~~

(I
I I

. 1
.4...

ARC- S ,s
*

S 3
C).

F

‘C

~~~_ g r )  4

8

A RC - S ,S HR NW
K B T  OK BK

R RR
BT

ARC — 1 ,1 TFC K
NR NW
BT

Figure 2. Augmented Transition Network Diagram Called “Traffic Header.”

number of groups); and arcs labeled in upper case mean that literal input of one of the
specified labels is acceptable. The system currently contains about 25 diagrams with
an average complexity of the one shown in Figure 2.

C. INTERPERSONAL COMMUNICATION

The research in interpersonal communication has continued at a low level with
further design and implementation of the Data-based Message Service (DMS) (1] as
described below (Broos, Berez, Brescia, Galley, Vezza). DMS is “data-based” because
the messages it manages are data in a number of similar on-line relational data bases,
which may contain thousands or even tens or hundreds of thousands of messages.

The general model on which DMS is designed is that of a typical office. The
Interf ace at an intelligent terminal between DMS and a user is designed to be

- ..‘ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~ ~~ :. -



PROGRAMMING TECHNOLOGY GROLIP 132

comfor table and familiar to people not used to working with computers. Concepts and
terminology from typical office methods of managing paper-based messages (letters,
memos, and so on) are used wherever possible, rather than computer terminology.

1. Roles

A person is registered as a OMS user in a special table in the data base
containing a unique name for the person and a unique password. As part of its simple
model of an office , OMS recognizes that a person can “wear different hats,” that is,
assume different organizational roIe~, at different times. Thus roles are also registered
in the data base, along with a list of which people are allowed to assume each role. A
person can assume a role (if desired) either at the beginning of an operating session
with OMS or during a session, and DMS will refer to that role’s data base instead of
her or his personal data base. Records of acts performed by a person assuming a role
include the name of the person that performed the act.

One example of a role is that of shift supervisor in a plant which operates
around the clock. During each shift , a different person normally assumes the role of
shif t supervisor. Messages concerning the operation of the plant are normally sent to
the shift supervisor, to be acted upon by whoever is currently assuming that role. A
message sent to the actual person expec ted to be assuming the role may not be acted
upon if that person is sick and being replaced, or if the shift terminates before the
message reaches her or him.

As stated above, each role is registered in the OMS data base, along with a list
of which people are allowed to assume each role. Associated with each person in this
list are two things. First is a list of which commands the person is authorized to enter
(execute) while assuming that role; actually other “authorizations” are listed here too,
such as whether the person ac ting in the role can be assigned action on a message.
Second is an indication of which aspects of the data base are shared in common with all
people assuming the role, and which aspects are personal, that is, independent of other
people assuming the same role. These “aspects” include everything about the data
base except the messages and data-base indexes themselves, which are always shared
by everyone that assumes the role, to prevent confusion. (Since the “desk-top bins”
and “file cabinet” are in effec t mutually exclusive parts of an office’s storage, they are
always either all personal or all common.)

The utility of authorizing certain people, but not others, to perform certain
commands while assuming a role should be clear; for example, an administrative
ass is t an t mi ght be authorized to assume the supervisor’s ro le to read and file all
messages except those marked personal.

To see the utility of common versus personal aspects of a role’s data base,
consider the above examples. A shift-supervisor role could be registered with all
aspects common to all users of that role, if that were the desired mode of operation,
so that, for example, a message seen by one person would appear to have been seen
by the other people assuming the role also. Thus, each person assuming the role has
complete authority (and responsibility) for changing the role’s data base in any way.
On the other hand, when an administrative assistant uses DMS and assumes the
supervisor’s role, the role data might say that seeing a message would remove a “not—

p 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ -

~~~~~~~~~~~ 

_
~~

_ i .. 
‘-

~~~~ 

-

133 PROGRAMMI NG TECHNOLOGY GROUP

seen” tag from the message only for the assistant and not for the supervisor, whi le
sending a message would add a “sent” tag for both of them. Thus, the assistant may
have authority to send messages (presumably routine ones) for the supervisor (as a
role) but the system must be clever and not change the supervisor’s “seen” tags when
the assistant is acting the supervisor’s roIt~.

This role mechanism provides a useful way to construct a public “bulletin board.”
A bulletin board is a role that can be assumed by any person at all, but no variable
aspec ts of the bulletin board data base are shared in common: each person can keep
track , with the “text -not-seen” tag, of which messages she or he has not read each
person can note, with the “pending” bin, which messages he or she ought to talc, ;ome
action on; each person can display or print messages in personalized formats , each
person can forward a message to any user to obtain a copy (really just a ci tation) in a
personal data base; and so forth.

The notion of treating a bulletin board as a role is quite natural, though perhaps
surprising when one first encounters it. In a typical paper-wo ki office environment,
one must go to a particular place (desk , wor k s tat ion, etc.) to assume a functional role.
Similarly, one must go to a particular public place to scan and read messages posted on
a public bulletin board. It is relatively difficult to act as a person or role while reading
messages on a bulletin board, simply because one is not physically in the place where
one has the facilities and tools for tak ing action. If one wants a copy of a bulletin
board message, one has to use the nearby copying machine and then carry the copy
back to one’s work station. A DMS bulletin board is thus a close analog of one in the
paper world, with the additional abilities to personalize it a great deal.

2. Other Cha~g~~
To supplement the many ways that OMS aids formal communication, both wit hin

an organization and between it and the outside world, there is now a way for a user to
send transient messages, called aler ts. An ate~t is not stored in the data base; it is
just displayed on the recipient’s terminal. There are two kinds of alerts: “must-see”
alerts are guaranteed to be seen by the user, either immediately or at the beginning of
his or her next session; “see-if -here” aler ts are either seen immediately by the user
(if he or she is currently using DMS) or thrown away. Alerts are also sent by OMS
itself , to inform users of changes in the data base of which they should be aware. For
example, when OMS delivers a new message to a user, it sends a “see-if- here” alert:
if the user is curren tly using OMS , she or he may wan t to see the message
immediately; otherwise , he or she will no doubt see the message during the next
session anyway.

The top line of a DMS terminal’s disp lay is now used as a status line. (The top
line was previously used to “flash” shor t responses to the user’s commands. Command
responses are now put right next to the displayed command on the screen.) On the
status line, the “virtual terminal” module displays current status information, including
the user ’s name and curren t role , operating-sys tem load, the amount of central-
computer processing time used so far, and the date and time.

A OMS folder (the analog of a manila file folder in a conventional office) now has
a kind of audit trail stored with it: a “log” that simply lists all changes made to the

p.
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~- ~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~ .-



PROGRAMMING TECHNOLOGY GROUP 134

folder , namel y adding and removing messages and changing the folder itself (for
example, access to it). To complement this unstructured log, the “virtual terminal”
module of DMS now has the capability to search the text currently displayed in the
terminal’s “information window,” both visible text and that which is scrolled out of
view; thus a user can find references to a given message in a fo lder log by f irst
displaying the log on the terminal and then searching in the terminal for the message’s
identifying number. A OMS folder now can have annotations stored with it, in analogy
to written annotations on the outside or inside of a manila folder; a user with any
access at all to the folder can see all its annotations.

Fixed sequences of commands can now be “canned” and put in the data base by
a privileged user, and thereafter other users can activate a command sequence and
then copy the commands in order, one at a time, from the data base to the active
(bottom) line of the terminal’s “command window.” each command can in turn be
entered as it is or modified ‘in the terminal first. “Canned” command sequences are
useful both for demonstrating or teaching the fea tures of the message service and for
entering frequently-used but (mostly) unchanging command sequences.

A search-cost estimator was added, which estimates how many messages must
be examined (ra ther than found through indexes) in an imminent search and, if the
number exceeds a threshold, requires the user to confirm the need for the lengthy
searc h before proceeding. The estimate is the best one available for the
implementation that is both conservative and not itself time-consuming.

Soon after the new TOPS-20 system (see below) was installed, OMS was easily
converted to run under it as well as under the Tenex operating system. A standard
script of commands ran about three times as fast as on a PDP-1O KA processor.

0. OTHER PROJECTS

1. New Mainframe

In January 1 978 the Laboratory took delivery of a DECsystem-2050T. Design
work began on modifications to the TOPS-20 operating system to support device-
independent display-terminal use by user programs (Gerson).

The hardware configuration of the new system includes:

a. 512 x 1024 x 36 bits of core storage (two MB2O units)

b. 2 x 1024 x 36 bits of semiconductor cache storage

c. 1 20 million x 36 bits of disk storage (three RPO6 units on one RH2O channel),
divided by the operating system into two units of “public structure” and one unit
of demountable structure

d. two nine-track tape drives (TU45 units on one RH2O channel)

e. 32 terminal fines (two OHI I units)

..
~
. .‘..‘ ~~~~~~~~~~~~~~~~ ‘~‘ 

~
,.- 

-
‘-, - 

~~~~~~~
-.

‘.. -

—

~
‘ .-

I’-’

135 PROGRAMMING TECHNOLOGY GROUP

f . an ARPA network interface, but with no available connection to the network as
yet (one is on order).

2. Keyword Extraction and Document Classification

Work continued this year at a relatively low level on the keyword extractor and
the document classifier which is based on it (Dill) [1]. Most of the effort was devoted
to testing the document classifier in order to determine its possible usefulness for
several applications, and to gain insight on the most desirable course its development
should follow in the future. As a consequence , the document classifier is in the
process of.being extensively modified at this time,

The ability of the document classifier to identify the topic area of an English
paragraph would suggest at least two obvious general applications: the automatic
classification of documents (such as the preparation of a newspaper index), and the
detection and identification of the mention of a given topic area or areas. The current
emphasis is on the latter application.

The document classifier is automatic , and it takes advantage of information
provided by EPARSE (an English parser) [1] and the keyword extractor. EPARSE
parses an English sentence, providing syntactic information such as the parts of speech
of the words in the sentence and their functions , in addition to morphological
information and information stored directly in the dictionary. It also provides limited
semantic information both by specifying the position of the various words in a hierarchy
of all the words in its dictionary--in which objects are specified as parts or types of
other objects (the “kind” relation)--and by specifying a context for many nouns, verbs,
and adjectives. A context is the “topic of discussion” in which a word is likely to occur
(for example, “calculus” would probably be mentioned in the context MATHEMATICS).
From this information, the keyword extractor selects what it believes to be the most
useful keywords in the document.

The document classifier attempts to match these keywords against words which
have been previously determined to represent certain categories. The information
about categories is contained in a structure called a model. When a keyword in any of
the categories matches a keyword from a document, the weight (a real number)
immediately following it is added to a cumulative total which is used as an indicator of
how well that par ticular document fits the model of categories in which the particular
keyword appears. If, when the keywords are exhausted, the total is greater than a
model’s threshold, the document is classified with the name of the model and the
accumulated weight.

A typical model looks like this:

Name of model: TAXATION
Threshold; 1.7

Classifiers: “tax credit” (1.0), “gasoline tax” (1.0), “luxury tax” (1.0), “automobile
tax” (1.0), “import duty” (1.0), “tax administration” (1.0), “excise tax ” (1.0),
“social security” (0.6), “value-added tax” (1.0), “property tax” (1.0), “sales tax”
(1.0), “income tax” (1.0)

p. ...,
~~~~~~ —‘---— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



PROGRAMMING TECHNOLOGY GROUP 136

Key nouns: “tax” (0.8), “crop” (0.8)
Key-noun meanings: TAX (1.0)
Key proper names: “internal revenue service” (1.0)
Key verbs: “tax” (0.6)
Key-verb meanings; [none]
Verb-object combinations: “deduct tax” (1.0), “evade tax” (1.0), “pay tax” (1.0),

“collect tax” (1.0)
Subject-verb combinations: [none]
Transformations: [none]
Generalizations: [none]
Contexts: PUBLIC-ADMINISTRATION (0.2), ECONOMICS (0.2), GOVERNMENT (0.2),

MONEY (0.2)
Unknowns: “revenue” (0.4), “treasury” (0.4)

Tes ting of the keyword extractor and document classifier against extracts from
newspapers has indicated that the most useful information for classification is the
limited semantic information provided by the parser , particularly the contextual
information. This is not particularly surprising, since we want to classify most of the
documents on the basis of their topic areas, which are exac tly the contexts in which
they are likely to occur. This information cannot be provided in any detail without
some sor t of syntactic analysis, because it depends on the parser’s ability to provide
syntactic constraints on word meanings in the sentence. Thus, the contextual
information is derived from entire sentences and paragraphs; not from single words.
For example, a document on the subject of calculus would probably be in the topic
area of MATHEMATICS, and we might want to classify it accordingly. However, the
word “calculus” also occurs in the domain of medicine, for an abnormal deposit, such as
a kidney s tone. In order to distinguish between these two meanings, we would
probably have to use contextual information derived from other parts of the sentence,
paragraph and article, which may be constrained by the syntax of the sentences -in
which they occur.

3. Experimental_English Parser

A simple but powerful parser for a restricted subset of the English language for
use as the human interface in a restricted domain was developed (Anderson, Blank,
Lebling). The parser handles nouns, verbs, direct objects, indirect objects, adjectives
and incomplete specification, the last by responding with a question. The parser was
tested in a game situation called “Dungeon.” The capability of the parser to handle a
larger domain such as that of the OMS world of office automation was also investigated
(Anderson, Broos, Lebling).

The Dungeon world consists mainly of objects (nouns) and actions (verbs). The
parser handles mainly imperative sentences, plus a few simple interrogatives (“What is
a grue’”). The relationship between nouns and verbs in the parser is divided between
the verbs and the objects being acted upon. For example, in Dungeon, the user’s
sentence “Give bomb to thief” is evaluated by allowing the “thief” (an object) to have
the first crack at the parsed sentence. The thief’s “give” component (a function or
“handler”) checks to see if a bomb Is being given and, if so, refuses to accept it,
printing an appropriate message and terminating the evaluation. The “troll,” however,
Is not so smart. If one attempted to give the bomb to the troll, which has no “give”

p. 
~ _ _ _ _ _  ______ — - ---



- -

137 PROGRAMMING TECHNOLOGY GROUP

handler, the “bomb” would be given a chance to handle the sentence. If the bomb had
no “give” handler, or if its “give” handler saw nothing interesting about the sentence,
the sentence would eventually be handled by the global “give” handler by default.

A parallel example exists in office management scenarios. If a shipping clerk told
the system to “Ship fuel on United *564”, it would recognize “United *564” as a
commercial air f light (a class of objects ) and would further recognize that it is a
passenger fli ght as opposed to freight. The passenger flight handler could examine the
object of the sentence “fuel,” see that pne of its attributes was “dangerous,” tell the
clerk that dangerous cargo cannot be shipped on commercial passenger flights, and
terminate the evaluation. If it were a freight flight, there would be no reason to check
the attributes of the cargo, so the indirect object handler would let the parse continue.
The direct object , “fuel”, would get next crack at the sentence. It may look at the
indirect object and test its own attributes to see if the pressure and temperature
changes encountered in air freight render that mode of transportation unsuitable.

At first glance, parcelling the decisions out to so many different units of the
model appears to be a mistake , invi ting confusion. However, it makes a lot of sense to
localize the decisions in the units most directly affec ted. In the above example, the air
freight handler doesn’t need to know anything about fuel except that it is dangerous.
It has its own small set of rules, one of which is that you can’t carry dangerous cargo
on a passenger flight. Presumably, the rules were defined by some exper t in the air
freight business, who knows nothing about the effec ts of temperature and pressure
changes on different types of fuel. Such checks are properly made by the fuel module,
whose rules are defined by a fuel expert. If the evaluation managed to get by both
modules, it would be handled by the “ship” function, which would simply check to see it
the types of the object and indirect object were legal for the action being performed,
i.e., it would make sure that the direct object was a physical object and that the
indirect objec t was a mode of transportation. Checks about the availability of the
flight in question and whether the proposed cargo will fit would properly be the
province of the air freight module.

Incomplete instructions would also be handled by the different modules. “Ship
fuel” would elicit the response “By what means of transportation” from the “ship”
handler, which would notice the absence of any indirect object. If the user had been
“talking” about fuel, however, “Ship on United *564” could easily supply the direct
object. It would of course, have to inform the user of what assumptions it made, such
as “Fuel shipped on United airlines freight flight *564, departing National airport at
1 2:02 p.m.” Similarly, “Ship fuel by air” might cause the “air” handler to query the user
as to what airline, what flight , etc., or it mi ght be able to schedule the shipment on the
f irst available flight with enough space to handle it, if it had access to that type of
information.

A mechanism such as this would provide a way to make the system “smar ter”
incrementally. For example, the “air” handler mentioned above could be implemented in
the simple way at first , and upgraded later when the air freight reservation data
became available.

One of the extensions of the parser which would have to be made would be to
enable it to understand and handle more than one object with the same name.

p.. 
~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~ - - .i

~~~
- -

~
.-



PROGRAMMING TECHNOLOGY GROUP 138

Currently, there is only one thief, one troll, etc., although there are objects of the same
type that are distinguished by color. The parser would have to be able to handle
similar objects as an aggregate (“ships”), as the subset of an aggregate (“container
ships”), as a dynamic subset (“container ships on the East coast with cargoes of
machine parts”), and as individuals (“The Mara Maru”). Some actions may be applied
only to individuals of a class , some only to aggregates, and some to either. The
extended parser would have to understand set operators. Also, the mechanisms for
resolving “it” would have to be extended to “them.”

The illusion of English understanding created by the current parser in the game
Dungeon is due in large part to the fact that the user is unknowingly using a very
restricted set of nouns and verbs. The restricted nature of this set is not normally
apparent to the user because the nature of the game itself dictates what operations
and objects are appropriate. Thus users restrict their own choices naturally. Whether
this could be carried over into an office situation where the range of actions and
objec ts is finite , but much larger than the range in the Dungeon, is still an open
question.

4. Recognition of Cursive ScriL~
A computer recognition procedure can be defined as one in which the input is

some representation of an object and the output is another representation of the same
object. In the case of computer recognition of cursive script, the input consists of the
cursive stroke(s) used to represent some word, and the output is the coded character-
string representation of the same word.

Cursive-script recognizers can be separated into two categories: character—
oriented ~nd word-oriented. A character-oriented recognizer attempts to separate
those parts of a script stroke that correspond to the individual letters in the word.
The cursive representation of each segment identified as a character is then replaced
with its coded character representation.

There are two difficulties with character-oriented systems. The first is that the
probability of correctly recognizing a script sample goes down exponentially as the
length of the word represented by the script goes up. For a word of length N, the
probability of correctly recognizing it is the NIh power of the probability of recognizing
a single character. Character-oriented recogn zers also have a disadvantage in that
they can produce a character string that is not a legal word [8,9].

Word-oriented recognizers operate by translating the cursive script of an entire
word into the character representation of an entire word. This is done by determining
general attributes of the script sample, such as the number of loops. The recognizer
then uses the attributes that have been determined from a sample to refer to a data
base. This data base contains the information about attributes for all the words the
recognizer is expected to recognize. Only the attributes for legal words are stored in
the data base, so only legal words can result, no matter what the script sample looks
like. The disadvantage of this type of recognizer is that a mistake Is global to the
word and not localized to a character. Thus the recognizer in making a mistake could
produce a word which in no obvious way resembles the intended word [7,101

p- - •--
~ 4.4”— ---- 

1 I_ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.
~~

- 
~~~

-.Iv~~-- — -~~.--.
~— -~—- .-.-

139 PROGRAMMING TECHNOLOGY GROUP

In an undergradua te thesis this year , Platt reported on a word-oriented
recogniz ing system called SCRAP (SCRipt Attribute Processor)[1 1]. SCRAP was
designed to produce more than one result for each sample, with information on the
degree of f it of the sample to the at tributes in the data base. Some of the operating
characteris tics of the SCRAP program were determined by experimentation using over
a thousand samples of words recorded from nine subjects.

SCRAP takes as input the coordinate data from a script sample and produces as
output a string which is the ASCII representation of a word corresponding to the
unknown sample. Actually SCRAP produces a list of strings, and thus SCRAP could be
useful as a front-end processor for a more advanced system, such as a text -editing or
interpersonal message system (see above). This list of strings is ordered in terms of
how well each word matches the unknown sample as a possible result, with the first
words being the better matches. If , because of the writer ’s style, the sample does not
fit ideal script form, then SCRAP may not produce the intended word as the best
possible match, but the intended word may be one of the other strings produced. This
would allow a program that can use additional information, such as context, to process
the list produced by SCRAP. Such a system could produce a more reliable recognition
of a sample than could a recognizer alone, either a word- or a c;haracter-oriented
recognizer.

The data base used by SCRAP is formed with data taken from real samples of
script. Thus another function of SCRAP is to store information concerning attributes as
welt as to retrieve them. In addition SCRAP can be used to describe the distribution
of word objects in the data space imposed by the partitioning of the data space by the
attributes being used. The seven attributes used by SCRAP are the number of
strokes, the number of ascending characters, the number of descending characters, the
number of local vertical maxima, the total amount of curvature, the total amount of
positive (counter-clockwise) curvature, and the number of times the curvature changes
sign.

5. An Urdu/English Text Edit or

An undergraduate thesis [1 21 by Butt describes the design and implementation
of a bi-lingual text entry and editing system for Urdu and English. It is an interactive
character-oriented system and uses variable width characters displayed on a raster-
scan bit-map display monitor. The graphic representations used for the Urdu
characters are standardized so as to bring out the similarities between the different
forms of each character. The system is implemented in LISP and, in addition to the
standard editing features, allows mixing English and Urdu.

Urdu is one of the most widely used languages in the Indian subcontinent.
Besides being the second official language of the people of Pakistan, Urdu is also used
in many parts of India.

Urdu is similar in script to Arabic and Persian. It is written from right to left and
the characters have a number of different graphical representations although there are
only thirty seven (37) characters in the alphabet. The graphic symbol used for a
character depends on the position of the character in the word and Its right and left
neighbors. The symbols are standardized and would not appear exactly as they would

PROGRAMMING TECHNOLOGY GROUP 140

in cursive script. When writing lirdu by hand, one has a greater degree of freedom
and as a result the script is highly embellished.

The keyboard presents only 37 characters to the user and the appropriate form
of the character is automatically chosen by the editor. Furthermore the editor chooses
proper alternate forms as -necessary when characters are inserted or deleted during an
edit operation. The different graphical representations of the characters have
differen t widths, in order to make the words readable, and the editor takes the
variable widths into account to display the text in its proper connected form.

p
~
.

~~~~ 

~~~~~~ ~~~~~~~ . 
-

~~~
~ .



141 PROGRAMMING TECHNOlOGY GROUP

REFERENCES

Note: The form XXX.nn.nn denotes a Programming Technology Group document.

1. M.I.T. Laboratory for Computer Science. Progress Report XIV. Cambridge, Ma.
1978.

2. ~~~~~ ~~~~~~~~~~~~~~~~~~~~ Springfield, Na.: G. & C. Merriam
Company, 1 974.

3. Galley, S.W. and Pfister , Greg. M~~_Primer and Manual. Cambridge, Ma.: M.I.T.
Laboratory for Computer Science, 1 977.

4. DECSYSTEM-20 User’s Guide. Maynard, Ma: Digital Equipment Corporation,
1978.

5. Eastlake , 0.; Greenblatt , J.; Holloway, J.; Knight, T.; and Nelson, S. ITS 1.5
Reference_Manual. Cambridge, Ma.: M.I.T. Laboratory for Computer Science,
1969.

6. Woods, William A. “Transition Network Grammars for Natural Language Analysis.”
Communica tions of the Association for Computing Machinery, Vol 13 No 10,
(1970).

7. Kolers, Paul A. and Eden, Murray, eds. Recognizing Patterns. Cambridge, Ma.:
M.i.T. Press, 1 968,

8. Sayre, Kenneth M. Machine Recog~itiQn of Handwritten Words; A Project Report.
Notre Dame, In.: Philosophic Institute for Artificial Intelligence, University of
Notre Dame, 1973.

9. Frishkopf and Harmon, “Machine Reading of Cursive Script.” Information Theory.
Edited by Coh n Cherry. Washington D.C.: Butterworths, 1961.

10. Earnest, 1.0. “Machine Recognition of Cursive Writing.” Information Processing.
1962.

11. Platt , Timothy J. “A Preprocessor for a Script Recognition System.” unpublished
S.B. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
May 1978.

12. -Butt, Nayyar. “A Bi-lingual Text Entry and Editing System for Urdu/English.”
unpublished 5.8. Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, May 1 978.

- .

~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
‘

~~
‘ 

~~~~~~~~ 
— —

~~~~~~~~~



PROGRAMMING TECHNOLOGY GROUP 142

Publications

1. Licklider, J.C.R. “Future Directions in Computer Networking Applications.”
Computer Networking in the University : Success and Potential, Proceedings
EOUCO~~f ç _~~~~ençe 1976. Chapter 4, 27-39. Princeton, N.J.:
Interuniversity Communications Council, 1977.

2. Licklider, J.C.R. “Library Network: Should They Deal with Containers or Contents
of Knowledge?” Co~puter Networking in the University; Success and Potent~~Proceeding~s EDUCOM Fall Conference 1976. Chapter 15, 113-117. Princeton,
N.J.: Interuniversity Communications Council, 1977.

3. Louis 1. Rader et al. Review of a New Data Management System for the Social
Security Administration. Panel on Social Security Administration Data Management
System, Committee on Telecommunications--Computer Applications, Assembly of
Engineering, National Research Council, National Academy of Sciences, Washington
D.C., 1978.

4. Louis T. Rader et at. Review of Requirements Definition and Systems
Architecture of a New Data Mana&ement System for the Social Security
Administration Panel on Social Security Administration Data Management System,
Commi ttee on Telecommunications- -Computer Applications, A ssembly of
Engineering, National Research Council, National Academy of Sciences, Washington
D.C., 1978.

Theses Compiet ed

1. Butt, Nayyar. “A Bi-lingual Text Entry and Editing System for Urdu/English.”
unpublished S.B. Thesis , M.I.T., Department of Electrical Engineering and
Computer Science, May 1978.

2. Platt, Timothy J. “A Preprocessor for a Script Recognition System.” unpublished
S.B. Thesis, M.I.T., Department of Electrical Engineering and Computer Science,
May 1978.

Talks

1. Vezza, Albert. “Computers as a Communication Tool for Office and Home.” M.I.T.
Alumni Summer College, Cambridge, Ma July 10-16, 1977.

2. Licklider, i.C.R. “Human Factors in Message Systems.” Session on Electronic Mail
I: Design. IFIP Congress 77. Toronto, Ontario, Canada. August 11, 1977.

3. Vezza, Albert. “Design of an Electronic Message System.” Session on Electronic
Mail I: Message System Designers. IFIP Congress 77. Toronto, Ontario, Canada.
August 11, 1977. -

4. Licklider, i.C.R. “Communication Between Systems Scientists and Human Factors
Engineers.” NATO Meeting. Brussels, Belgium. October 25-27, 1977.

‘
~
“ 

~~~~~ 1 e 1&~~~~~ 4 ~~~~~~~~~~~~~ —~~ ——--——~~~~~~~


143 PROGRAMMING TECHNOLOGY GROUP

5. Licklider, i.C.R “Libraries arid Information Networks.” Conference on Library

~y~tems. Pittsburgh, Pennsylvania. November 15, 1977.

6. Licklider , J.C.R. “Televis tas Revisited: Technology-Based Opportunities for
Public Television.” Carnegie Commission on the Future of Public Broadcasting.
Columbia, S.C. March 16, 1978.

7. Vezza, Albert. “Electronic Message Systems.” Industrial Liaison Symposium on
Office Automat ion, M.I.T., Cambridge, Ma. May 1978.

~~~~~~ ~~~~~~~~~~~~~~~~~ — - - -.-- — — -  — I r - ~ -~~~ - .

.
~~f4

I
i~~~ ~~~

.

-~~~-‘. I--

— — .w~~~~ .-.—— ‘—

,
~ ~~~~ —~~~~~~

,--. -. w,— ‘—‘--- 

—



145

TECHNICAL SERVICES

Research Staff

K. T. Pogran, Group Leader

Undergraduate Students

C. Schieck

~~pport Staff

P. Baskin J. D. Ricchio
0. Feingold

Pt!CEDING PAGE NOT FILIED
BL~~K

____________ 
______________________

1~~
—
~
-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~
-“
~~~~~~~ 

---- b- -
~~

-
~~~~~



TECHNICAL SERVICES GROUP 147 TECHNICAL SERVICES GROUP

TECHNICAL SERVICES

The Technical Services group was formed on January 1, 1978 to fill a variety of
Laboratory wide needs that have arisen as a result of our growing computational
resources and expected future activities. The functions performed by the group
include:

I. Completion and maintenance of hardware for the LCS Network

2. Development and maintenance of standards for intra-Laboratory communications,
terminals and related equipment.

3. Liaison for the Laboratory’s ARPANET IMP and TIP.

4. Partial maintenance of LCS computers , terminals, and other peripherals; in
particular, maintenance of the Laboratory’s collection of approximately 75 Digital
Equipment Corporation VT-52 CR1 terminals.

5. Development, construction within the Laboratory, and sub-contracting to outside
organizations of special equipment, e.g. interfaces, as required by new equipment
acquisitions and LCS research group needs.

6. Development and maintenance of an LCS electronics laboratory facility for the
construction and maintenance of equipment outlined above.

From January through July of 1978, the bulk of the work of the group centered
around the development and debugging of the Local Network Interface (LNI) for the LCS
Network. This work is described in the “Local Area Network Working Group” section
of this report.

-PRECEDING PAGE NOT FILMED

- 

BlANK



149

LABORATORY FOR COMPUTER SCIENCE PUBLICATIONS

i-PREC EDING PACE NOT FILMED

BLANK

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~
~1 ~~~~~~~~~~~~~

~~~~~ —.—- -. ~~~ . 
~~~~~~~~~~~~~~~~~ 

-
~ ~~~~

- — —

15) PUBLICATIONS

TECHNICAL MEMORANDA

TM-1O Jackson, James N.
Interactive Design Coordination

for the Building Industry
June 1970

AD 708-400

*TM- 11 Ward, Philip W.
Description and Flow Chart of the
PDP-7/9 Communications Package

July 1970
AD 711-379

*TM-1 2 Graham, Rober t M.
File Management and Related Topics
(Formerly Programming Linguistics
Group Memo No. 6, June 12, 1970)

September 1 970
AD 712-068

tTM— 13 Graham, Rober t M.
Use of High Level Languages

for Systems Programming
(Formerly Programming Linguistics
Group Memo No. 2, November 20, 1969)

September 1970
AD 711-965

*TM—14 Vogt, Carla M.
Suspension of Processes in a Multi-

processing Computer System
(Based on M.S. Thesis, EE Dept.,

February 1970)
September 1 970

AD 713-989

*TM-15 Zilles, Stephen N.
An Expansion of the Data Structuring

Capabilities of PAL
(Based on M.S. Thesis, EE Dept.,
June 1970)

October 1970
AD 720-761

TMs 1-9 were never issued.

~PR~~~~~ING PAGE NOT FILMED
BLANK

p -‘ ~~~ ~~~~~~~~~ ‘~~~~~4r44~l~ ~~~~~ ~ ~~~~~

•1

153 PUBLICATIONS

sTM-24 Goldstein, Robert C., and Alois J. Strnad
The MacAIMS Data Management System
April 197)

AD 721-620

TM-25 Goldstein, Robert C.
Helping People Think
April 1971

AD 721-998

TM-26 lazeolla, Giuseppe G.
Modeling and Decomposition of

Information Systems for Performance
Evaluation -

June 197 1
AD 733-965

sTM-27 Bagchi, Amitava
Economy of Descriptions and

Minimal Indices
January 1972

AD 736-960

TM-28 Wong, Richard
Construction Heuristics for Geometry

and a Vector Algebra Representation
of Geometry

June 1972
AD 743-487

sTM-29 Hossley, Robert and Charles Rackoff
The Emptiness Problem for Automata

on Infinite Trees
Spring 1972

AD 747-250

*TM-30 McCray, William A.
SIM36O; A S/360 Simulator
(Based on B.S. Thesis, ME Dept., May 1972)
October 1 972

AD 749-365

TM-31 Bonneau, Richard J.
A Class of Finite Computation Structures

Supporting the Fast Fourier Transform
March 1 973

AD 757-787

ptp
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. - ---- --- -~ - -~ - — -~~- — - 

-



PUBLICATIONS 154

TM-32 MoII, Robert
An Operator Embedding Theorem for Complexity

Classes of Recursive Functions
May 1973

AD 759-999

sTM-33 Ferrante, Jeanne and Charles Rackoff
A Decision Procedure for the First Order

Theory of Real Addition with Order
May 1973

- AD 760-000

*TM-34 Bonneau, Richard J.
Polynomial Exponentiation: The Fast
Fourier Transform Revisited

June 1973
PB 221-742

TM-35 Bonneau, Richard J.
An Interactive Implementation of the Todd-

Coxeter Algorithm
December 1973

AD 770-565

TM-36 Geiger, Steven P.
A User’s Guide to the Macro Control Language
December 1973

AD 771-435

*TM-37 Schoenhage, A.
Real-Time Simulation of Multidimensional

Turing Machines by Storage Modification
Machines

December 1973
PB 226-103/AS

*TM-38 Meyer, Albert R.
Weak Monadic Second Order Theory of

Succesor is not Elementary-Recursive
December 1973

PB 226-514/AS

TM-39 Meyer, Albert R.
Discrete Computation: Theory and Open

Problems
January 1 974

PB 226-836/AS

~ 
_T
~ :I- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~ ~~~~~~~ 
-



155 PUBLICATIONS

TM—40 Paterson, Michael S., Michael J. Fischer
and Albert R. Meyer

An Improved Overlap Argument for On-Line
Multiplication

January 1974
AD 773-137

TM-41 Fischer, Michael J., and Michael S. Paterson
String-Matching and Other Products
January 1974

- 
AD 773- 138

*TM-42 Rackoff , Charles
On the Complexity of the Theories of Weak

Direct Products
January 1974

PB 228-459/AS

TM-43 Fischer, Michael J., and Michael 0. Rabin
Super-Exponential Complexity of Presburger

Arithmetic
February 1974

AD 775-004

TM-44 Pless, Vera
Symmetry Codes and their Invariant Subcodes
May 1974

AD 780-243

*TM-45 Fischer, Michael J., and Larry J. Stockmeyer
Fast On-Line Integer Multiplication
May 1974

AD 779-889

sTM-46 Kedem, Zvi M.
Combining Dimensionality and Rate of Growth

Arguments for Establishing Lower Bounds
on the Number of Multiplications

June 1974
PB 232-969/AS

TM-47 Pless, Vera
Mathematical Foundations of Flip-Flops
June 1974

AD 780-901



PUBLICATIONS 156

TM-48 Kedern, Zvi M.
The Reduction Method for Establishing

Lower Bounds on the Number of Additions
June 1974

PB 233-538/AS

TM-49 Pless, Vera
Complete Classification of (24,12) and (22,11)

Self-Dual Codes
June 1974

AD 781-335

TM-50 Benedict, G. Gordon
An Enciphering Module for Multics
B.S. Thesis, EE Dept.
July 1974

AD 782-658

aT M-Si Alello, Jack M.
An Investigation of Current Language Support for

the Data Requirements of Structured Programming
MS. 8 E.E. Theses, EE Dept.
September 1974

PB 236-815/AS

TM-52 Lind, John C. -

Computing in Logarithmic Space
September 1974

PB 236-167/AS

TM-53 Bengelloun, Satwan A.
MDC-Programmer; A Muddle-to Datalanguage

Translator for Information Retrieval
B.S. Thesis, EE Dept.
October 1974

AD 786-754

*TM-54 Meyer, Albert. R. - 
-

The Inherent Computation Complexity of Theories
of Ordered Sets: A Brief Survey

October 1974
PB 237-200/AS

TM-55 Hsieh, Wen N., Larry H. Harper and John E. Savage
A Class of Boolean Functions with Linear

Combinatorial Complexity
October 1974

PB 237-206/AS

~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —,-—i

~~~ 
_ _

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
_ _ _ _ _ _ _ ____

151 PUBLICATIONS

TM-56 Gorry, G. Anthony
Research on Expert Systems
December 1974

TM-57 Levin, Michael
On Bateson’s Logical Levels of Learning
February 1975

TM-58 Qualitz, Joseph E.
Decidability of Equivalence for a Class

of Data Flow. Schemas
March 1 975

PB 237-033/AS

sTM-59 Hack, Michel
Decision Problems for Petri Nets and Vector

Addition Systems
March 1975

PB 231-916/AS

TM-60 Weiss, Randell B.
CAMAC: Group Manipulation System
March 1975

PB 240-495/AS

TM-61 Dennis, Jack B.
First Version of a Data Flow Procedure Language
May 1975

TM-62 Patil, Suhas S.
An Asynchronous Logic Array -

May 1975

TM-63 Pless, Vera
Encryption Schemes for Computer Confidentiality
May 1975

AD AO1O-217

sTM-64 Weiss, Randell B.
Finding lsomorph Classes for Combinatorial Structures
M.S. Thesis, EE Dept.
June 1 975

TM-65 Fischer, Michael J.
The Complexity Negation-Limited Networks -

A Brief Survey
June 1975

—
S

-
~~~~~~ ---‘~~~~~~~~~~~~~~W~~,uw



PUBLICATIONS 158

sTM-66 Leung, Clement
Formal Properties of Well-Formed Data

Flow Schemas
B.S., M.S. 8 E.E. Theses, EE Dept.
June 1975

sTM-67 Cardoza, Edward E.
Computational Complexity of the Word Problem

for Commutative Semigroups
MS. Thesis, EE 8- CS Dept.
October 1975

TM-68 Weng, Kung-Song
Stream-Oriented Computation in Recursive Data Flow Schemes
M.S. Thesis, EE 8 CS Dept.
October 1975

sTM-69 Bayer, Paul J.
Improved Bounds on the Costs of Optimal and

Balanced Binary Search Trees
MS. Thesis, EE & CS Dept.
November 1975

TM-70 Ruth, Gregory R.
Automatic Design of Data Processing Systems
February 1976

AD A023-451

sTM-71 Rivest, Ronald
On the Worst-Case of Behavior of String-Searching Algorithms
April 1976

*TM-72 Ruth, Gregory R.
Protosystem I: An Automatic Programming System Prototype
July 1976

AD AO26-912

TM-73 Rivest, Ronald
Optimal Arrangement of Keys In a Hash Table
July 1976

TM-74 Malvania, Nikhil
The Design of a Modular Laboratory for Control Robotics
M.S. Thesis, EE 8 C~ Dept.
September 1976 . 

-

AD A030-418

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


159 PUBLICATIONS

TM- 75 Yao, Andrew C., and Ronald I. Rivest
K,.1 Heads are Better than K

-
September 1 976

AD A030-0O8

*TM-76 Bloniaz, Peter A., Michael J. Fischer and Albert R. Meyer
A Note on the Average Time to Compute Transitive Closures
September 1976

TN-77 Mok, Aloysius K.
Task Scheduling in the Control Robotics Environment
MS. Thesis, EE & CS Dept.
September 1976

AD A030-402

sTM-78 Benjamin, Arthur J.
Improving Information Storage Reliability

Using a Data Network
MS. Thesis, EE 8 CS Dept.
October 1 976

AD A033-394

TM-79 Brow; Gretchen P.
A System to Process Dialogue: A Progress Report
October 1 976

AD A033-276

TM-80 Even, Shimon
The Max Flow Algorithm of Dinic and Karzanov:

An Exposition
December 1 976

TM-81 Gifford, David K.
Hardware Estimation of a Process’ Primary
Memory Requirements

B.S. Thesis, EE 8 CS Dept.
January 1977

TM-82 Rfvest , Ronald 1., Adi Sharnir and Len Adleman
A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems

(formerly On Digital Signatures and Public-Key Cryptosystems)
April 1977

AD A039-036

- -— ~~~~~~~~~~~~~~~
- --*-- - — --——. - . - - -. — —

“,4•
~~ ir4.~~

-

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



PUBLICATIONS 160

sTM-83 Baratz, Alan E.
Construction and Analysis of Network Flow Problem

which Forces Karzanov Algorithm to 0(n3) Running
Time

April 1977

sTM-84 Rivest, Ronald L., and Vaughan R. Pratt
The Mutual Exclusion Problem for Unreliable Processes
April 1977

sTM-85 Shamir, Adi
Finding Minimum Cutsets in Reducible Graphs
June 1977

AD AO4O-698

TM-86 Szolovits, Peter, Lowell B. Hawkinson and William A. Martin
An Overview of OWL, A Language for

Knowledge Representation
June 1977

AD A041 -372

TM-87 Clark, David., editor
Ancillary Reports; Kernel Design Project
June 1977

TM-88 Lloyd, Errol 1.
On Triangulations of a Set of Points in the Plane
MS. Thesis, EE ~ CS Dept.July 1977

TM-89 Rodriguez, Humberto Jr.
Measuring User Characteristics on the Miitics System
B.S. Thesis, EE 8 CS Dept.
August 1977

TM-90 d’Oliveira, Cecilia R.
An Analysis of Computer Decentralization
B.S. Thesis, EE & CS Dept.
October 1977

AD A045-526

TM-91 Shamir, Adi
Factoring Numbers in 0 (log ii) Arithmetic Steps
November 1977

AD A047-709



161 PUBLICATIONS

TM-92 Misunas, David P.
Report on the Workshop on Data Flow

Computer and Program Organization
November 1977

TM-93 Amikura, Katsuhiko
A Logic Design for the Cell Block of

a Data-Flow Processor
MS. Thesis, EE 8 CS Dept.
December 1977

*TM-94 Berez, Joel M. 
-

A Dynamic Debugging System for MDI
B.S. Thesis, EE 8 CS Dept.
January 1978

AD AO5O-i91

TM-95 Harel, David
Characterizing Second Order Logic

with First Order Quantifiers
February 1978

TM-96 Hard , David, Amir Pnueli and Jonathan Stavi
A Complete Axiomatic System for Proving

Deductions about Recursive Programs
February 1 978

sTM-97 Harel, David, Albert R. Meyer and Vaughan R. Pratt
Computability and Completeness in

Logics of Programs
February 1978

TM- 38 Hard , David and Vaughan R. Pratt
Nondeterminism in Logics of Programs
February 1978

TM-99 LaPaugh, Andrea S.
The Subgraph Homeomorphism Problem
MS. Thesis, EE 8 CS Dept.
February 1978

TM-100 Misunas, David P.
A Computer Architectu re for Data-Flow Computation
M.S. Thesis, EE 8 CS Dept.
March 1978

AD A052-538

- -—- —~ - -———--—--- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
1
~~~~~T: -----

~

-..- - -



PUBLICATIONS 162

TM-lOt Martin, William A.
Descriptions and the Specialization of Concepts
March 1 978

AD A052-773

TM-I 02 Abelson, Harold
Lower Bounds on Information Transfer

in Distributed Computations
April 1978

TM—103 Harel, David 
-Arithmetical Completeness in Logics of Programs

April 1 978

TM- 104 Jaffe , Jeffrey
The Use of Queues in the Parallel Data

Flow Evaluation of if_Then_While w Programs
May 1978

TM-105 Masek, William J., and Michael S. Paterson
A Faster Algorithm Computing String

Edit Distances
May 1978

— -
,

~~~~~~~~~~~~~~~ 
. -w~~~~

.._.--
~ —— -~~ .~~~~ _—

—

163 PUBLICATIONS

TECHNICAL REPORTS

*TR- 1 Bobrow, Daniel G.
Natural Language Inpu t for a Computer

Problem Solving System,
Ph.D. Thesis, Math. Dept.
September 1 964

AD 604-730

STR-2 Raphael, Bertram
SIR: A Computer Program for Semantic

Information Retrieval,
Ph.D. Thesis, Math Dept.
June 1964

AD 608-499

sTR-3 Corbato, Fernando J.
System Requirements for Multiple-Access,

Time-Shared Computers
May 1 964

AD 608-501

sTR-4 Ross, Douglas 1., and Clarence G. Feldman
Verbal and Graphical Language for the

AED System: A Progress Report
May 1964

AD 604-6 78

*TR-6 Biggs, John N., and Robert D. Logcher
STRESS: A Problem-Oriented Language

for Structural Engineering
May 1 964

AD 604-679

aTR-7 Weizenbaum, Joseph
OPI- 1; An Open Ended Programming
System within CTSS

April 1 964
4

AD 604-680

*TR-8 Greenberger, Martin
The OPS- I Manual
May 1 964

AD 604-681

TRs 5, 9, 10, 15 were never issued

— — ~-- - - -— - —- --

,

:~~~~~~~~~~~~~~~~~
‘

~~~~~~~~~
‘
~~~~~

- L.~j J - -
~~~~~~~~~~~ - -  - - --



PUBLICATIONS 164

sTR- 1 1 Dennis, Jack B.
Program Structure in a Multi-Access -
Computer

May 1964
AD 608-500

sTR- 12 Fano, Robert N.
The MAC System: A Progress Report
October 1964

AD 609-296

sTR- 13 Greenberger, Martin
A New Methodology for Computer Simt~ation
October 1964

AD 609-288

sTR-14 Roos, Daniel
Use of CISS in a Teaching Environment
November 1 964

- AD 661-807

sTR-16 Seltzer, Jerome Ft
CTSS Technical Notes
March 1965

AD 612-702

*TR- 17 Samuel, Arthur I.
Time-Sharing on a Multiconsole Computer
March 1965

AD 462-158

sTR- 18 Scherr, Allan Lee
An Analysis of Time-Shared Computer Systems,
Ph.D. Thesis, EE Dept
June 1965

AD 470-715

sIR-I 9 Russo, Francis John
A Heuristic Approach to Alternate Routing in a Job Shop,
B.S. & MS. Theses, Sloan School
June 1965

AD 474-018

sIR- 20 Wantman, Mayer Elihu
CALC(LAID~ An On-Line System for

Algebraic Computation and Analysis,
MS. Thesis, Sloan School
September 1965

AD 474-019

~~‘C 4J’~~ 
_ - W 

‘
~~ - —- - - -- .  — —--.—•



165 PUBLICATIONS

*TR-21 Denning, Peter James
Queueing Models for File Memory Operation,
M.S. Thesis, EE Dept.
October I 965

AD 624-943

*TR-22 Greenberger, Martin
The Priority Problem
November 1965

AD 625-728

sTR-23 Dennis, Jack B., and Earl C. Van Horn
Programming Semantics for Multi-

programmed Computations
December I 965

AD 627-537

*TR-24 Kaplow, Roy, Stephen Strong and John Brackett
MAP; A System for On-Line Mathematical

Analysis
January 1 966

AD 476-443

sTR-25 Stratton, William David
Investigation of an Analog Technique

to Decrease Pen-Tracking Time in
Computer Displays,

M.S. Thesis, EE Dept.
March 1965

AD 631 -396

sTR-26 Cheek, Thomas Burrell
Design of a Low-Cost Character

Generator for Remote Computer Displays,
MS. Thesis, EE Dept.
March 1 966

AD 631-269

sTR-27 Edwards, Daniel James
OCAS - On-Line Cryptanalytic Aid

system,
MS. Thesis, EE Dept.
May 1966

AD 633-678

~~



PUBLICATIONS 
- 

166

sTR-28 Smith, Arthur Anshel
Input/Output in Time-Shared, Segmented,

Multiprocessor Systems,
M.S. Thesis, EE Dept
June 1966

AD 637-215

*TR-29 lvie, Evan Leon
Search Procedures Based on Measures

of Relatedness between Documents,
Ph.D. Thesis, EE Dept.
June 1966

AD 636-275

*TR-30 Seltzer, Jerome Howard
Traffic Control in a Multiplexed

Computer System,
Sc.D. Thesis, EE Dept.
July 1966

AD 635-966

*TR-31 Smith, Donald 1.
Models and Data Structures for Digital

Logic Simulation,
M.S. Thesis, EE Dept
August 1966

AD 637- 192

sTR-32 Teitelman, Warren
PILOT: A Step Toward Man-Computer

Symbiosis,
Ph.D. Thesis, Math. Dept
September 1966

AD 638-446

sTR-33 Norton, Lewis M.
ADEPT - A Heuristic Program for

Proving Theorems of Group Theory,
Ph.D. Thesis, Math. Dept.
October 1966

AD 645-660

*TR-34 Van Horn, Earl C., Jr.
Computer Design for Asynchronously

Reproducible Multiprocessing.
Ph.D. Thesis, EE Dept.
November 1966

AD 650-407

~~~~~~~~~~ ~: ~~~
:- ‘

— —

~~~~~~~~~~~

-—-- 

- 

.



167 PUBLICATIONS

sTR—35 Fenichel, Robert R.
An On-Line System for Algebraic Manipulation,Ph.D. Thesis, Appi. Math. (Harvard)
December 1 966

AD 657-282
*TR-36 Martin, Will iam A.

Symbolic Mathematical Laboratory,
Ph.D. Thesis, EE Dept.
January 1 967

- AD 657-283
sTR—37 Guzman-Arenas, Adolf o -

Some Aspects of Pattern Recognition
by Computer,

MS. Thesis, ~E Dept.
February 1 967

AD 656-041
sTR-38 Rosenberg, Ronald C , Daniel W. Kennedy

and Roger A. Humphrey
A Low-Cost Output Terminal For Time-

Shared Computers
March 1 967

AD 662-027
sTR-39 Forte, Alien

Syntax-Based Analytic Reading of
Musical Scores

A pril 1967

AD 66 1-806
*TR-40 Miller, James R.

On-Line Analysis for Social Scientists
May 1967

AD 668-009
sTR-41 Coons, Steven A.

Surfaces for Computer-Aided Designof Space Forms
June 1967

AD 663-504
sTR-42 Liu, Chung 1., Gabriel D. Chang

and Richard E. Marks
Design and Implementation of a Table-

Driven Compiler System
July 1967

AD 668-960

-.
~‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ ~~~~~~~~~~~ 
,— ——.‘ - - —--- --- - -

~~~

- -



PUBLICATIONS 168

sTR-43 Wilde, Daniel U. -

Program Analysis by Digital Computer,
Ph.D. Thesis, EE Dept
August 1967

AD 662-224

sTR-44 Gorry, G. Anthony
A System for Computer-Aided Diagnosis,
Ph.D. Thesis, Sloan School
September 1 967

- 
AD 662-665

sTR-45 Leal-Cantu, Nestor
On the Simulation of Dynamic Systems

with Lumped Parameters and Time Delays,
M.S. Thesis, ME Dept.
October 1967

AD 663-502

sTR-46 Alsop, Joseph W.
A Canonic Translator,
B.S. Thesis, EE Dept.
November 1967

AD 663-503

*TR-47 Moses, Joel
Symbolic Integration,
Ph.D. Thesis, Math. Dept.
December 1967

AD 662-666

sTR-48 Jones, Malcolm M.
Incremental Simulation on a Time-

Shared Computer,
Ph.D. Thesis, Sloan School
January 1968

AD 662-225

sTR-49 Luconi, Fred L.
Asynchronous Computational Structures,
Ph.D Thesis, EE Dept
February 1968

AD 667-602

sTR-50 Denning, Peter J.
Resource Allocation in Multiprocess

Computer Systems,
Ph.D. Thesis, EE Dept.
May 1968

AD 675-554

~~~~

..

~~~~~~~~~~~~~~~~ 

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-

~~~~~~~~~~~~~~

-- 

~~~

• --—-.

~~

- .-

169 PUBLICATIONS

sTR-5 I Charniak, Eugene
CARPS, A Program which Solves

Calculus Word Problems,
M.S. Thesis, EE Dept.
July 1968

AD 673-6 70

sTR-52 Deitel, Harvey N.
Absentee Computations in a Multiple-Access

Computer System,
M.S. Thesis, EE Dept.
August 1968

AD 684-738

sTR-53 Slutz, Donald R.
The Flow Graph Schemata Model of

Parallel Computation,
Ph.D. Thesis, EE Dept.
September 1968

AD 683-3 93

*TR-54 Grochow, Jerrold M.
The Graphic Display as an Aid in the

Monitoring of a Time-Shared Computer
System,

M.S. Thesis, EE Dept.
October 1 968

AD 689-468

sTR-55 Rappaport, Robert 1.
Implementing Multi-Process Primitives

in a Multiplexed Computer System,
MS. Thesis, EE Dept.
November 1 968

AD 689-46 9

sTR-56 Thornhill, Daniel E., Robert H. Stotz, Douglas T. Ross
and John E. Ward (ESL-R-356)
An Integrated Hardware-Software System

for Computer Graphics in Time-Sharing
December 1968

AD 685-202

sTR-57 Morris, James H.
Lambda-Calculus Models of Programming
Languages,

Ph.D. Thesis, Sloan School
December 1 968

AD 683-394

~i?1 ~~~~~~~~~~~~~~~~~~ ~~ ~~~ ____________

PUBLICATIONS 170

sTR-58 Greenbaum, Howard J.
A Simulator of Multiple Interactive

Users to Drive a Time-Shared
Computer System,

MS. Thesis, EE Dept.
January 1969

AD 686-988

sTR-59 Guzman, Adolfo
Computer Recognition of Three-

Dimensional Objects in a Visual
Scene,

PItO. Thesis, EE Dept.
December 1968

AD 692-200

*TR-60 Ledgard, Henry F.
A Formal System for Defining the

Syntax and Semantics of Computer
Languages,

- Ph.D. Thesis, EE Dept
April 1969

AD 689-305

sTR-61 Baecker, Ronald M.
Interactive Computer-Mediated Animation,
Ph.D. Thesis, EE Dept.
June 1969

AD 690-887

sTR-62 Tiltman, Coyt C., Jr. (ESL-R-395)• EPS: An Interactive System for
Solving Elliptic Boundary-Value
Problems with Facilities for Data
Manipulation and General-Pia-pose
Compu tation

June 1969
AD 692-462

sTR-63 Brackett, John W., Michael Hammer and Daniel
E. Thornhill
Case Study in Interactive Graphics

Programming: A Circuit Drawing
and Editing Program for Use with
a Storage-Tube Display Terminal

October 1969
AD 699-930

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -:-— -

~

- -

~~
~-



171 PUBLICATIONS

sTR-64 Rodriguez, Jorge E. (ESL-R-398)
A Graph Model for Parallel Computations,
Sc.D. Thesis, EE Dept.
September 1969

AD 697-759

sTR-65 DeRemer, Franklin L.
Practical Translators for LR(k)

Languages,
Ph.D. Thesis, EE Dept.
October 1 969

AD 699-501

*TR-66 Beyer, Wendell T.
Recognition of Topological lnvariants

by Iterative Arrays,
Ph.D. Thesis, Math. Dept.
October 1 969

AD 699-502

*TR-67 Vanderbilt, Dean H•
Controlled Information Sharing in

a Computer Utility,
Ph.D. Thesis, EE Dept.
October 1969

AD 6 99-503

*TR-68 Selwyn, Lee L.
Economies of Scale in Computer Use:

Initial Tests and Implications for
The Computer Utility,

Ph.D. Thesis, Sloan School
June 1970

AD 710-011

sTR-69 Gertz, Jeffrey L.
Hierarchical Associative Memories

for Parallel Computation,
Ph.D. Thesis, EE Dept.
June 1970

AD 711-091

sTR—70 FilIaL, Andrew I., and Leslie A. Kraning
Generalized Organization of Large

Data-Bases: A Set-Theoretic
Approach to Relations,

B.S. & M.S. Theses, EE Dept.
June 1970

AD 711-060

• -~ ‘ ‘—-
~~~~~ —-~~~~~ ~~~~~~~~~~~~ ~~~ 

. TT ~~~~~~

- - -‘•
~~~~~~~~~~~~

-
• - 

w_~~~~~~~~~~~~~~~~~~~~~ _ _  ~~~~~~~~~~~~~ ~~~~~~~~~ _ _  

- 
~~~- 

-

PUBLICATIONS 172

.TR-71 Fiasconaro, James C.
A Computer-Controlled Graphical

Display Processor, -

M.S. Thesis , EE Dept.
June 1970

AD 710-479

TR-72 Patil, Suhas S.
Coordination of Asynchronous Events,
Sc.D. Thesis, EE Dept.
June 1970

AD 71 1-763

sTR-73 Griffith, Arnold K.
Computer Recognition of Prismatic

Solids,
PhD. Thesis, Math. Dept.
August 1970

AD 712-069

TR-74 Edelberg, Murray
Integral Convex Polyhedra and an

Approach to Integralization,
Ph.D. Thesis, EE Dept.
August 1970

AD 712-070

sTR- 75 Hebalkar, Prakash G.
Deadiock-Free Sharing of Resources

in Asynchronous Systems,
Sc.D. Thesis, EE Dept.
September 1970

AD 713-139

*TR-76 Winsto n, Patrick R
Learning Structural Descriptions

from Examples,
Ph.D. Thesis , EE Dept.
September 1970

AD 713-988

TR-77 Heggert y, Josep h P.
Complexity Measures for Language

Recognition by Canonic Systems,
MS. Thesis , EE Dept.
October 1970

AD 715-134

~~~~~~~~~~~ +~~~~~~~~~~~~~~~~~~~~~ 2 -~~~~~• .~~~~~~~~~~ ‘T~~
•
~

-
~ 
-: - -— 

~~~~Ti


173 PUBLICATIONS

sTR-78 Madnick, Stuart E.
Design Strategies for File Systems,
M.S. Thesis, EE Dept. & Sloan School
October 1970

AD 714-269

TR-79 Horn, Berthold K.
Shape from Shading: A Method for

Obtaining the Shape of a Smooth
Opaque Object from One View,

Ph.D. Thesis, EE Dept.
November 1970

- AD 717-336

TR-8O Clark, David D., Robert N. Graham,
Jerome H. Sal tzer and Michael 0. Schroeder

The Classroom Information end Computing
Service

January 1971
- AD 717-857

*TR-81 Banks, Edwin R.
Information Processing and Transmission

in Cellular Automata,
Ph.D. Thesis, ME Dept.
January 1971

AD 71 7-951

sTR-82 Krakauer, Lawrence J.
Computer Analysis of Visual Properties

of Curved Objects,
Ph.D. Thesis, EE Dept.
May 1971

AD 723-647

a TR-83 Lewin, Donald E.
In-Process Manufacturing Quality

Control,
Ph.D. Thesis, Sloan School
January 1973

AD 720-098

sTR-84 Winograd, Terry
Procedures as a Representation fc~rData in a Computer Program for

Understanding Natural language,
Ph.D. Thesis, Math Dept.
February 1971

AD 721-399

~~~~~~~~~~~~~ ~~~~~~- -?—-- ~~~~



PUBLICATIONS 174

sTR-85 Miller, Perry L
Automatic Creation of a Code Generator

from a Machine Description,
E.E. Thesis, EE Dept.
May 1971

AD 724-730

sTR-86 SchelI, Roger R.
Dynamic Reconfiguration in a Modi~arComputer System,
Ph.D. Thesis, EE Dept.
June 1971

AD 725-859

TR-87 Thomas, Robert R
A Model for Process Representation

and Synthesis,
Ph.D. Thesis, EE Dept.
June 1971

AD 726-049

TR-88 Welch, Terry A.
Bounds on Information Retrieval

Efficiency in Static File Structures,
Ph.D. Thesis, EE Dept.
June 1971

AD 725-429

TR-89 Owens, Richard C., Jr.
Primary Access Control in Large-

Scale Time-Shared Decision Systems,
M.S. Thesis, Sloan School
July 1971

AD 728-036

TR-9O Lester, Bruce P.
Cost Analysis of Debugging Systems,
B.S. & MS. Theses, EE Dept
September 1973

AD 730-521

*TR-91 Smoliar, Stephen W.
A Parallel Processing Model of

Musical Structures,
Ph.D. Thesis, Math. Dept
September 1971

A0 731-690

~~~~
•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



175 PUBLICATIONS

TR-92 Wang, Paul S.
Evaluation of Definite Integrals

by Symbolic Manipulation
Ph.D. Thesis, Math. Dept.
October 1971

AD 732-005

TR-93 Greif, Irene Gloria
Induction in Proofs about Programs,
MS. Thesis, EE Dept.
February 1972 .

AD 737-701

TR-94 Hack, Michel Henri Theodore
Analysis of Production Schemata

by Petri Nets,
M.S. Thesis, EE Dept.
February 1972

AD 740-320

sTR-95 Fateman, Richard J.
Essays in Algefraic Simplification
(A revision of a Harvard Ph.D. Thesis)
April 1972

AD 740- 132

TR-96 Manning, Frank
Autonomous, Synchronous Counters Constructed Only of

J-K Flip-Flops,
M.S. Thesis, EE Dept
May 1972

AD 744-030

TR-97 Vilfan, Bostjan
The Complexity of Finite Functions
Ph.D. Thesis, EE Dept.
March 1972

AD 739-678

TR-98 Stockmeyer, Larry Joseph
Bounds on Polynomial Evaluation Algorithms
MS. Thesis, EE Dept

• April 1972
AD 740-328

• ~~~~~~~~~~~~~ L - 
_________ - -

~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-_ _IT:~

:_ •

PUBLICATIONS 176

TR-99 lynch, Nancy Ann
Relativization of the Theory of Computational Complexity
Ph.D. Thesis, Math. Dept.
June 1972

AD 744-032

TR- 100 Mandl, Robert
Further Results on Hierarchies of Canonic Systems
M.S. Thesis, EE Dept.
June 1972

AD 744-206

TR-1O1 Dennis, Jack B. -

On the Design and Specification of a Common Base Language
June 1972

AD 744-207

TR-1O2 Hossley, Robert F.
Finite Tree Automata and 6,-Automata
M.S. Thesis, EE Dept.
September 1972

AD 749-36 7

*TR- 103 Sekino, Akira
Performance Evaluation of Multiprogrammed Time-Shared

Computer Systems
Ph.D Thesis, EE Dept.
September 1 972

AD 749-949

TR- 104 Schroeder, Michael D.
Cooperation of Mutually Suspicious Subsystems

in a Computer Utility
Ph.D. Thesis, EE Dept.
September 1972

AD 750-173

TR-105 Smith, Burton J.
An Analysis of Sorting Networks
Sc.D. Thesis, EE Dept.
October 1972

AD 751-614

TR- 106 Rackof 1, Charles W.
The Emptiness and Coirplementation Problems -

for Automata on Infinite Trees
MS. Thesis, EE Dept.
January 1973

AD 756-248

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

177 PUBLICATIONS

TR- 107 Madnick, Stuart E.
Storage Hierarchy Systems
Ph.D. Thesis, EE Dept.
April 1973

AD 760-00 1

TR- 108 Wand, Mitchell
Mathematical Foundations of Formal Language Theory
Ph.D. Thesis, Math. Dept.
December 1973

TR-109 Johnson, David S.
Near-Optimal Bin Packing Algorithms
Ph.D. Thesis, Math. Dept.
June 1973

PB 222-090

TR- I 10 Moll, Robert
Complexi ty Classes of Recursive Functions
Ph.D. Thesis, Math. Dept.
June 1973

AD 767-730

TR- 1 11 Linderman, John P.
Productivity in Parallel Computation Schemata
Ph.D. Thesis, EE Dept.
December 1973

PB 226-159/AS

TR- 112 Hawryszkiewycz, Igor T.
Semantics of Data Base Systems
Ph.D. Thesis, EE Dept.
December 1973

PB 226-061/AS

TR- 113 Herrmann, Paul P.
On Reducibility Among Combinatorial Problems
MS. Thesis, Math. Dept.
December 1973

PB 226-157/AS

- TR- 114 Metcalfe, Robert N. -

Packet Communication
Ph.D. Thesis, Applied Math, Harvard University
December 1973

AD 771-430

--. -—-———-— -—-• -
~~~~~~~~~~

—
~~~

- .

:~~ -
~~:

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~‘ _ J N _ - - -- - _q* ~~~~~~~~ ~~~~.
---- - -- --



PUBLICATIONS 178

TR- 115 Rotenberg, Leo
Making Computers Keep Secrets
Ph.D Thesis, EE Dept.
February 1974

- PB 229-352/AS

TR- 1 16 Stern, Jerry A.
Backup and Recovery of On-Line Information

in a Computer Utility
M.S. & E.E. Theses, EE Dept.
January 1974

AD 774- 3 41

TR- 117 Clark, David 0.
An Input/Output Architecture for

Virtual Memory Computer Systems
Ph.D. Thesis, EE Dept.
January I 974

AD 774-738

TR- 118 Briabrin, Victor -

An Abstract Model of a Research Institute:
Simple Automatic Programming Approach

March 1974
PB 231-505/AS

TR- 119 Hammer, Michael N.
A New Grammatical Transformation into

Deterministic Top-Down Form
Ph.D. Thesis, EE Dept
February 1974

AD 775-545

TR-1 20 Ramchandani, Chander
Analysis of Asynchronous Concurrent Systems

by Timed Petri Nets
Ph.D. Thesis, EE Dept
February 1974

AD 775-618

TR—121 Yao,Foong F.
On Lower Bounds for Selection Problems
Ph.D. Thesis, Math. Dept
March 1974

PB 230-950/AS

- - -~~~~ -~~~~~ •~~~~~~~~~~~ - -- - -~~~~~ - 

- 

— ~~~-



H
179 PUBLICATIONS

TR- 122 Scherf , John A.
Computer and Data Security: A Comprehensive

Annotated Bibliography
MS. Thesis, Sloan School
January 1974

AD 775-546

TR- 123 Introduction to Multics
February 1974

AD 918-562

TR- 124 Laventhal, Mark S.
Verification of Programs Operating on Structured Data
B.S. & MS. Theses, EE Dept.
March 1974

PB 231-365/AS

TR- 125 Mark, William S.
A Model-Debugging System
B.S. & MS. Theses, EE Dept.
April 1974

AD 778-688

TR- 126 Altman, Vernon E.
A Language Implementation System
B.S. & M.S. Theses, Sloan School
May 1974

AD 780-672

TR- 127 Greenberg, Bernard S.
An Experimental Analysis of Program Reference

Patterns in the Mu tics Virtual Memory
M.S. Thesis, EE Dept.
May 1974

AD 780-407

TR- 128 Frankston, Robert M.
The Computer Utility as a Marketplace for Computer

Services
MS. & E.E. Theses, EE Dept.
May 1974

- AD 780-436

TR- 129 Weissberg, Richard W.
Using Interactive Graphics in Simulating the Hospital

Emergency Room
M.S. Thesis, EE Dept.
May 1974

AD 780-437

— a -~.-. — —— .~• - .- __~_~~~ __-_

c,,- 
~~~~~ 

_ _ - -

PUBLICATIONS 180

TR- 130 Ruth, Gregory R.
Analysis of Algorithm Implementations
Ph.D. Thesis, EE Dept.
May 1974

AD 780-408

TR- 131 Levin, Michael
Mathematical Logic for Computer Scientists
June 1974

TR- 132 Janson, Philippe A.
Removing the Dynamic Linker from the Security

Kernel of a Computing Utility
M.S. These, EE Dept.
June 1974

AD 781-305

TR- 133 Stockrneyer, Larry J.
The Complexity of Decision Problems in

Automata Theory and Logic
Ph.D. Thesis, EE Dept.
July 1974

PB 235-283/AS

*TR- 334 EHis, David J.
Semantics of Data Structures and References
MS. & E.E. Theses, EE Dept.
August 1 974

PB 236-594/AS

TR-135 Pfister, Gregory F.
The Computer Control of Changing Pictures
Ph.D. Thesis, EE Dept.
September 1974

AD 787-795

TR- 136 Ward, Stephen A.
Functional Domains of Applicative Languages
Ph.D. Thesis, EE Dept.
September 1974

AD 787-796

TR- 137 Seif eras, Joel I.
Nondeterministic Time and Space Complexity

Classes
Ph.D Thesis, Math. Dept.
September 1974

PB 236-777/AS

pP ~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ .‘

~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ I 

- .- --



181 PUBLICATIONS

TR- 138 Vun, David V. V.
The Hensel Lemma in Algebraic Manipulation
Ph.D. Thesis, Math. Dept.
November 1974

AD A002-737

TR- 139 Ferrante, Jeanne
Some Upper and Lower Bounds on Decision

Procedures in Logic
Ph.D. Thesis, Math. Dept.
November 1974• PB 238-121/AS

TR- 140 Redell, David D. A
Naming and Protection in Extendible

Operating Systems
Ph.O. Thesis, EE Dept.
November 1974

AD AOO1-721

TR- 141 Richards, Martin, A. Evans and R. Mabee
The BCPL Reference Manual
December 1 974

AD AOO3-599

TR- 142 Brown, Gretchen P.
Some Problems in German to English

Machine Translation
M.S. & E.E. Theses, EE Dept.
December 1974

AD A003-002

TR- 143 Silverman, Howard
A Digitalis Therapy Advisor
MS. Thesis, EE Dept.
January 1975

TR- 144 Rackoff , Charles
The Computational Complexity of Some

Logical Theories
Ph.D. Thesis, EE Dept.
February 1 975

sTR- 145 Henderson, 0. Austin
The Binding Model: A Semantic Base

for Modular Programming Systems
Ph.D. Thesis, EE Dept.
February 1975

AD A006-961 

——-------—-- — - -.

~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~L~-- .

~~~~~~~~~ 
.- ~~~~~~~~~~~~~~~~

-..~ ~~~~~~~~~~~
.. - - ._

~~~~~~ -. -



V

PUBLICATIONS 182

sTR- 146 Malhotra, Ashok
Design Criteria for a Knowledge-Based

English Language System for Management:
An Experimental Analysis

Ph.D. Thesis, EE Dept.
February 1975

L
TR- 147 Van De Vanter, Michael L

A Formalization and Correctness Proof
- of the CGOL Language System

MS. Thesis, EE Dept.
March 1975

TR- 148 Johnson, Jerry
Program Restructuring for Virtual Memory Systems
Ph.D. Thesis, EE Dept.
March 1975

AD A009-218

*TR- 149 Snyder, Alan
- A Portable Compiler for the Language C

B.S. & MS. Theses, EE Dept.
May 1975

AD AOIO-218

sTR- 150 Rumbaugh, James E.
A Parallel Asynchronous Computer Architecture

for Data Flow Programs
Ph.D. Thesis, EE Dept.
May 1975

- AD AOLO-918

TR- 151 Manning, Frank B.
Automatic Test, Configuration, and Repair

of Cellular Arrays
Ph.D. Thesis, EE Dept
June 1975

AD A012-822

TR- 352 Qualitz, Joseph E.
Equivalence Problems for Monack Schemes
Ph.D. Thesis, EE Dept
June1975

AD AOl 2-823

- 
-

- PU,1~~~~ - ~~~~~~~~~~~~~~~~



183 - PUBLICATIONS

TR-153 Miller, Peter B.
Strategy Selection in Medical Diagnosis
M.S. Thesis, EE & CS Dept.
September 1975

TR- 154 Greif, Irene
Semantics of Communicating Parallel Processes
Ph.D. Thesis, EE & CS Dept.
September 1 975

AD AOl 6-302

TR- 155 Kahn, Kenneth M.
- Mechanization of Temporal Knowledge

MS. Thesis, EE & CS Dept
September 1 975

TR- 156 Bratt, Richard G.
Minimizing the Naming Facilities Requiring

Protection in a Computer Utility
MS. Thesis, EE & CS Dept.

- September 1975

sTR-157 Meldman, Jeffrey A.
A Preliminary Study in Computer-Aided Legal Analysis
Ph.D. Thesis, EE & CS Dept
November 1975

- AD AOI8-997

TR- 158 Grossman, Richard W.
Some Data-base Applications of Constraint Expressions
M.S. Thesis, EE & CS Dept
February 1976

AD A024- 149

TR- 159 Hack, Michel
Petri Net Languages
March 1976

TR- 160 Bosyj, Michael
A Program for the Design of Procurement Systems
MS. Thesis, EE & CS Dept.
May 1976

AD A026-688

TR-161 Hack, Michel
Decidability Questions
Ph.D. Thesis, EE & CS Dept.
June 1976

p~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- - -

- 
.& ) - — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -•-—- — —



PUBLICATIONS 184

sTR- 162 Kent, Stephen T.
Encryption-Based Protection Protocols for

Interactive User-Computer Cornnu~icationMS. Thesis, EE & CS Dept
June 1976

AD A026-91 I

TR-163 Montgomery, Warren A.
A Secure and Flexible Model of Process Initiation

for a Computer Utility
M.S. & E.E. Theses, EE & CS Dept.
Jima 1976

TR- 164 Reed, David P.
Processor Multiplexing in a Layered Operating System
MS. Thesis, EE & CS Dept
July 1976

TR- 165 McLeod, Dems J.
11gb Level Expression of Semantic kitegrity

Specifications in a Relational Data Base System
M.S. Thesis, EE & CS Dept.
September 1 976

AD A034- 184

IR- 166 Char,, Arvola V.
Index Selection in a Self-Adaptive Relational

Data Base Management System
M.S. Thesis,EE & CS Dept
September 1976

AD A034-185

TR- 167 Jenson, Philippe A.
Using Type Extension to &gansze Virtual Memory

Mechanisms
Ph.D. Thesis, EE & CS Dept.
September I 976

TR- 168 Pratt, Vaughan R.
Semantical Considerations on Floyd-Hoare Logic
September 1976

TR- 169 Saf ran, Charles, James F. Desforges and Philip N TslcNls
Diagnostic Planning and Cancer Management
September 1976

,
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



/

185 PUBLICATIONS

TR- 170 Furtek, Frederick C.
The Logic of Systems
Ph.D. Thesis, EE & CS Dept.
December 1976

TR- 171 Huber, Andrew R.
A Multi-Process Design of a Paging System
MS. & E.E. Theses, EE & CS Dept.
December 1976

TR- 172 Mark, William S. 
- -The Reformulation Model of Expertise

Ph.D. Thesis, EE & CS Dept.
December 1976

AD A035-397

TR- 173 Goodman, Nathan
Coordination of Parallel Processes in the Actor

Model of Computation
M.S. Thesis, EE & CS Dept

- December 1976

TR- 174 Hunt, Douglas H.
A Case Study of Intermodufe Dependencies in a

Virtual Memory Subsystem
MS. & E.E. Theses, EE & CS Dept.
December 1976

TR- 175 Goldberg, Harold J.
A Robust Environment for Program Development
MS. Thesis, EE & CS Dept.
February 1977

TR-I 76 Swertout, William R.
A Digitalis Therapy Advisor with Explanations
M.S. Thesis, EE & CS Dept.
February 1977

TR-177 Mason, Andrew Ft
A Layered Virtual Memory Manager
MS. & E.E. Theses, EE & CS Dept
May 1977

sTR- 1 78 Bishop, Peter B.
Computer Systems with a Very Large Address

Space and Garbage Collection
Ph.D. Thesis, EE & CS Dept.
May 1977

AD A040-601

- 
- -

opt- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ 

-

PUBLICATIONS 186

TR-179 Karger, Paul A.
Non-Discretionary Access Control for Decentralized

Computing System.
MS. Thesis, EE & CS Dept
May 1977

-
AD A040 -804

TR-180 Luniewski, Allen W.
A Simple and Flexible System k~tiallzatlon MecheOm
N.S. & ELTheses,EE&CS Dept
May1977

TR-181 Mayr, Ernst W.
The Complexity of the Finite Containment Problem

for Petri Nets
MS. Thesis, EE& CS Dept
June 1977

TR-182 Brown, Gretchen P.
A Framework for Procecsslng Dialogue
June1977

AD A042-370

TR-183 Jaffe, Jeffrey M.
Senilinear Sets and Application.
MS. Thesis, a & cs Dept.
July 1977

*TR-184 Levine, Paul H.
Facilitating Interprocess Communication In a

Heterogeneous Network Environment
B.S.& MS. Theses, EE&CS Dept
July 1977

AD A043-901

TR- 185 Goldman, Berry
Dea~ock Detection in Computer Networks
B.S. & MS. Theses, Et & CS Dept.
September 1977

AD A047-025

TR-186 Ackarm~~ WillIam ftA Structure Memory for Data Flow Con~ut.rs
MS. Thesis, EE & CS Dept
September 1977

AD A047-026

--- -

_ _ _ _ _ - - -
~~

-
~~~~—~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~



187 PUBLICATIONS

TR-187 Long, William J.
A Program Writer
Ph.D. Thesis, EE & CS Dept.
November 1977

AD A047-595

TR- 188 Bryant, Randal E.
— Simulation of Packet Communication

Architecture Computer Systems
M.S. Thesis, EE & CS Dept.
November 1977

AD A048-290

TR— 189 Ellis, David J.
Formal Specifications for Packet

Communication Systems
Ph.D. Thesis, EE & CS Dept.
November 1977

AD A048-980

TR- 190 Moss, J. Eliot B.
Abstract Data Types in Stack Based Languages
M.S. Thesis, EE & CS Dept
February 1978

AD A052-332

TR- 191 Vonezawa, Akinori
Specification and Verification Techniques

for Parallel Programs Based on Message
Passing Semantics

Ph.D. Thesis, EE & CS Dept.
January 1978

AD A051-149

TR- 192 Niamir, Bahram
Attribute Partitioning in a Self-

Adaptive Relational Database System
MS. Thesis, EE & CS Dept
January 1978

AD A053-292

TR- 193 Schaffert, J. Craig
A Formal Definition of CLU
MS. Thesis, EE & CS Dept.
January 1978

a- t .~ ~~v4j aS-* 4~ — ~~~~~~~~~~ - - k 
~ 

- - - —

~ 
J-~I~%; -~~~~

~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

w — — -



PUBLICATIONS 188

TR- 194 Hewitt, Carl and Henry Baker, Jr.
Actors and Continuous Functionals
February 1978

AD A052-266

TR- 195 Bruss, Anna R.
On Time-Space Classes and Their Relation

to the Theory of Real Ad~ tion
MS. Thesis, EE & CS Dept.
March I 978

TR- 196 Schroeder, Michael 0., David 0. Clark,
Jerome H. Saltzer and Douglas FL Wells

Final Report of the Multics Kernel Design Project
March 1978 -

TR- 197 Baker, Henry Jr.
Actor Systems for Real-Time Computation
Ph.D. Thesis, EE & CS Dept.
March 1978

AD A053-328

TR- 198 Haistead, Robert H., Jr.
Multiple-Processor Implementation of

Message-Passing Systems
M.S. Thesis, EE & CS Dept.
April 1978

AD A054-009

TR- 199 Terman, Christopher J.
The Specification of Code Generation Algorithms
M.S. Thesis, EE & CS Dept
April 1978

AD A054-301

TR-200 Hard , David
Logics of Programs; Axiornatics and Descriptive

Power
Ph.D. Thesis, EE & CS Dept.
May 1978

TR-201 Scheifler, Robert W.
A Denotational Semantics of CLU
M.S. Thesis, EE & CS Dept.
June 1978

~:- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ -


189 PUBLICATIONS

PROGRESS REPORTS

sProject MAC Progress Report I
to July 1964

AD 465-088

- iProject MAC Progress Report II
Jvly 1964-July 1965

AD 629-494

sProject MAC Progress Report Ill
July 1 965-July 1966

- AD 648-346

sProject MAC Progress Report IV
July 1966-July 1967

AD 68 1-342

IProject MAC Progress Report V
July 1967-July 1968

AD 687-770

sProject MAC Progress Report Vi
July 1 968-July 1969

AD 705-434

sProject MAC Progress Report VII
July 1 969-July 1970

AD 732-76 7

sProject MAC Progress Report VIII
July 1970-July 1971

AD 735- 148

sProject MAC Progress Report IX
July 1971-July 1972

AD 756-689

sProject MAC Progress Report X
July 1972-July 1973

AD 771-428

sProject MAC Progress Report Xl
July 1973-July 1974

AD A004-966

sLeboratory for Computer Science Progress Report XII
July 1974-July 1975

AD A024-527

_ _ _ _ _ _ _ -- -~~~-~
.-.~~ —- -

~~~
---- J~1~- - -

_‘__
/ 

-,



PUBLICATIONS 190

siaboratory for Computer Science Progress Report XIII
July 1975—July 1976

AD A061-246

- 
- 

Laboratory for Computer Science Progress Report XIV
July 1976-July 1977 -

AD A061-932

Copies of all reports with AD and PB numbers listed In Pthlications may be secured
from the National Technical Information Service, Operations Division, Springfield,
Virginia, 22151. Prices vary. The AD or PB number must be supplied with the
request. -

* Out of Print reports may be obtained from NTIS if the AD number is supplied (see
above). Out of Print reports without an AD or PB nixaber are unobtainable.

_ _ _ _  - ~~~~ ---~~~~-- ~~~- 

- 

- -  ~~~~-



OFFICIAL DISTRIBUTION LI ST

Defense Documentation Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria, VA 22314 Commandant of the Marine Corps

12 copies (Code RD—i)
Washington , D . C. 20380

Of f Ice of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington , VA 22217
1 copy

Off i ce of Naval Research
Branch Office/Boston Naval Ocean Systems Center
Bu ilding 114, Section D Advanced Software Techonolgy
666 Summer Street Division — Code 5200
Boston, MA 02210 San Diego, CA 92152

1 copy 1 copy

Office of Naval Research Mr. E. H. Gleissner
Branch Office/Chicago Naval Ship Research & Development Center
536 South Clark Street Computation & Math Departmen t
Chicago, IL 60605 Bethesda , MD 20084

1 copy 1 copy

Of fice of Naval Research Captain Grace M . Hopper (008)
Branch Office/Pasadena Naval Data Automation Command
1030 East Green Street Washington Navy Yard
Pasadena, CA 91106 Building 166

1 copy Washington , D. C. 20374
1 copy

New York Area
715 Broadway — 5th floor Mr. Kin B. Thompson
New York, N. Y. 10003 Technical Director

1 copy Information Systems Division
(OP—91T)

Naval Research Laboratory O f f i ce of Chief of Naval Ope ra t ions
Technical Informat ion Division Washington, D. C. 20350
Code 2627 - 1 copy
Washington, D. C. 20375

6 copies
Cap tain Richard L. Martin , USN

Assistant Chief for Technology Commanding Officer 
—

Office of Naval Research USS Francis Marion (LPA—249)
Code 200 FPO New York , N. Y. 09501
Arlington, VA 22217 1 copy

1 copy

Off ice of Naval Research
Code 455
Arlington, VA 22217

icopy

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


