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ABSTRACT

Three simple methods of extracting texture primitives
are compared. It appears that the simplest of these,
thresholding at a fixed percentile, yields primitives
that are quite effective in texture discrimination .
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1. Introduction

One can view textures as composed of “primitives” (connected

regions satisfying certain properties) placed in a certain

spatial arrangement. In this view, to describe a texture one

needs to describe both the primitives and the placement rules.

For the primitives we can construct a property list, wh ile for

the placement rules we can select a set of spatial relations and

list whi ch pairs (triples , quadruples ,...) of primitives satisfy

these relations. This model has been used by many researchers

initially to synthesize textures [l],[2] and , more recently,  in

texture discrimination [3 1, [ 4 ] ,  [51 .

In Tsuju and Tomita [3] ,  the problem was to segment a picture

consisting of regions of different textures. The primitives

(“atomic regions”) of which the textures were composed were de-

fined to be connected sets of points with almost the same gray

level. Once the atomic regions were extracted , for each one a

set of properties was measured ( shape , size , position , color ,

and average gray level) .  Histograms of the property values were

constructed and the textures were identified as peaks in these

histograms . Having identified the textures, the picture was

segmented by labeling the primitives with the names of the tex-

tures they belonged to.

The pictures to which Tsuji and Tomita applied their methods

consisted of artificially constructed objects covered by almost

regular subpatterns. An extension of the method to more realistic

I 
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scenes was proposed by Zucker et al.  [ 4 ] .  For “ real-world”
F pictures it was argued that the notion of “ atomic region ” was

not well defined , or better , that its definition did not lead

easily to its extraction. Therefore , instead of segmenting the

picture to extract the primitives, local property values were

directly obtained through a set of “ spot detectors ” having a

range of sizes. What was measured was the output intensity of

the spot detector of a given size at all points in the picture.

To prevent “spurious ” spot detections, a spot value was ignored

if a larger spot value occurred in its receptive field. In this

way one can construct a histogram of the outputs of the spot

detector . As in [3 ] ,  the textures were identified as peaks in

this histogram. Assuming that we have two textures in the

picture , they can be retrieved by thresholding the histogram,

e.g. at the lowest point between the two peaks. The spot size

was selected as the one that gave the most strongly bimodal

histogram. Although the method based on spot detection gives

less detailed information about the primitives than the one

proposed in [3 1, it is suf f icient for discriminating some real-

world textures.

In both papers ([3] and [41) no attempt is made to use the

spatial arrangement of the primitives to discriminate the textures

(i t  was not necessary) . In the work of Maleson et a l .  [ 5 ] ,

however , both sources of information are suggested for texture
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discrimination. To simplify the description of the primitives,

they are restricted to be clusters of pixels having “simple ”

shapes. As primitive properties, it is suggested that average

intensity (gray level), eccentricity,  axial orientation, and

size constitute a sufficient set for most textures. The place-

ment of primitives is described by a restricted set of spatial

relations ( such as collinearity ) between primitives in the same

class (i.e., having the same property values for a subset of

the properties).

In our work we propose three related methods for extracting

texture primitives. These methods are compared in connection with

the discrimination of a few texture samples, including four

Brodatz [6] textures and three LANDSAT geological terrain tex-

tures. In the methods proposed the primitives are not forced to

conform to pre—specified shapes (as they were in [ 5 ] ) .  This makes

possible the use of shape attributes not present in [5] that may

be useful in texture discrimination. Also we have not used

spatial relationships between the primitives to characterize the

textures.
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2. Three ways of extracting texture primitives

The basic idea of all the methods is to segment the texture

into primitives and background by thresholding of the gray level.

We will define the primitives as being regions formed by con-

nected sets of pixels whose gray level values are above (or

below ) the threshold .

Of course , by thresholding we should not expect , in general ,

to obtain exactly the perceptual texture primitives. But it is

hoped that the regions obtained are su f f i c ien t ly  related to the

“ actual” texture primitives that the properties measured for  these

reg ions reflect  property values of the “ actual” primitives.

We can predict that this method will be computationally eff  i~~

cient , since connected components of the binary image produced

by thresholding can be identif ied in a single pass through the

picture. Also in the same pass much information about the primi-

tives can be gathered (area , perimeter , m o m e n t s . . .) .

The main problem is how to select an adequate threshold . If

the histogram of the gray level values is bi-modal , a natura l

candidate for  a good threshold is the valley between the two

peaks . To make easier the computation of the primitive properties

we would like the primitives to be isolated regions . If the

threshold that separates the two peaks is near the 50th percentile,

most likely we will not get isolated regions. Also if the histo- 
•

gram is not bi—modal , the approach is not applicable . Therefore ,

~ 
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instead of making the threshold depend on the histogram, in

the f i r s t  method we chose the threshold such that we have a

fixed percentage of the pixels with above threshold gray level.

The percentage must be low enough so we can expect to get a

• set of isolated primitives , but sufficiently high to make the

primitive properties meaningful.  We have chosen 25% , but other

values near 25% would be good as well .

For each texture we have two possible thresholds depending

on whether we choose to consider dark or bright primitives.

Actually we may use both types of primitives for texture discri-

mination. The thresholding of the texture can be preceded by

some pre—processing operations , such as noise cleaning or even

blurring. Gray level transformations, however , such as histo-

gram flattening , do not significantly alter the final output.

The second method of extracting texture primitives is based

on the histogram peak sharpening algorithm of Peleg [ 7 ] .  This

algorithm, which can be thought of as a one-dimensional cluster-

ing algorithm, iteratively alters the histogram until  it consists

of a few spikes. The picture is segmented into the few gray

levels corresponding to the spikes . The number of spikes

(clusters)  of the modified histogram is a function of the number

of i terations and the “ neighborhood ” size used in the clustering

process. These properties were used to produce a set of spikes

that sums up as nearly as possible to 25% of the picture 
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points. In this way we take into account characteristics of

the histogram , which was not done in simple thresholding .

The third and last method (“Superslice”) was developed by

Milgram [81. In it, the image is not segmented by using a

single threshold ; rather , a collection of thresholds is used

to extract regions which are compared to a thinned edge map

of the picture . The regions are accepted or rejected based

on the coincidence of the boundary points of the regions with

edge points . Surviving competing reg ions are compared and only

the best match (with the edge map) is retained . This method

not only uses histogram information but also complements it

with local information derived from the picture . In our case

we used thresholds at the percentiles 15%, 25% , and 35%.

For each method the output is a binary p icture. The fixed

threshold method is the computationally cheapest , while Super-

slice is the most demanding . The last two algorithms (iterative

histogram modification and Superslice ) are described br ief ly  in

Appendix A.

In order to get meaningful primitive statistics, we use

128x128 pictures. The textures shown in Figures la , 2a , 3a , and

4a were taken from Brodat [6]  and show respectively wool , ra f f i a ,

sand , and grass. The results of applying thresholding to the

noise cleaned pictures are shown in Figures lc to 12c. Figures 
. 

*

16a , 17a , and 18a show three d i f f e r en t  terrain types: Mississipian

limestone and shale , Pennsylvanian sandstone and shale , and
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Lower Pennsylvanian shale. These pictures were noise cleaned

and then subjected to thresholding (bright 25% and dark 25%)

• and to Superslice. The results of these operations are shown

in Pictures 13b, 14b, 15b (bright 25%), l6b, l7b, 18b (dark

25%), 19c, 20c, and 21c (Superslice).

-
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3. Primitive properties

Once we have extracted the texture primitives, the next

step is to measure properties that may charac terize them . We

have chosen a set of shape attributes (area , perimeter , compact-

ness , eccentricity,  direction) together with average gray level.

The area is defined simply as the number of pixels in the

pr Lmitive , while the perimeter is its number of boundary pixels.

Compactness is the ratio of the square of the perimeter to the

area. Eccentricity is defined as the ratio of the major to the

minor axis of inertia (the detailed formu las are given in

Appendix B). Finally , direction is the angle that the major

axis makes with a fixed orientation (vertical in the picture)

The property values of a given region serve to describe

that particular region. The distribution of the values for all

regions serves to characterize the texture; it can be thought of

as a statistical description of the texture . The property value

-: distribution is given by the property value histogram. In com-

puting this histogram we do not take into account border regions,

i.e., regions that are adjacent to a border of the picture ,

becuase such regions would fals i fy  the property value distr ibu-

tion .

To discriminate the textures , we use features derived from

the histogram. We could , for instance , take as fea tures the

values of the histogram for each interval. This would completely

describe the histogram but would give too large a number of 

_
~__J:TI 
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4. ~~~~~riments

The f eatures described in Section 3 were extracted for

samples chosen from two sets of textures. The f i rs t  consisted

of four Brodatz textures [6]: wool, r a f f i a , sand , and grass ;

the second consisted of three different geological terrains from

a LANDSAT image. In each set there were four samples of each

texture .

A feature is said to “separate” two given textures if the

ranges of feature values for the two textures are non-overlapping

intervals. The “separability ” of two textures was measured in

terms of the number of features that separated the two textures.

For the Brodatz textures all three methods described in

Section 2 were used , while for the terrain textures only (dark

and bright) 25% thresholding and Superslice were used. Figures

• 21, 22, 23 display the feature values obtained for the Brodatz

texture samples (A, B, C, D are wool ; E , F, G, H are raffia; H

I , J, K , L are sand; M, N, o , p are grass) . (The textures de-

picted in Figure s la , 2a, 3a, 4a are A , E, I, and M , respectively.)

Tables 1, 2, and 3 summarize the effectiveness of the features

for separating the textures. From these tables we see that no

feauture alone separates all texture pairs. However, two features

used independently are sufficient to separate all pairs of tex-

tures.

A comparison of the methods can be made if we look at the

features that are common to every method . This information is

-

~
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features. We decided , instead, to use the mean and standard

deviation as descriptors for the distribution of the property

values. In the ca~pitatia~of the mean and standard deviation

very small regions and very large ones were not considered .

For very small regions most of the properties are not interest-

ing; therefore every region having less than 10 pixels was ig-

nored. For large regions we used a more complex rule (it is

described in Appendix C). They were ruled out on the basis that

they were “atypical” regions.

The effect of “erasing” these regions from the binary picture

is shown in Figures ld, 2d, 3d , 4d, 5d, 6d , 7d, 8d, 9d , lOd , lld ,

12d , lTc, 14c , 15c , 16c , l7c , l8c , 19d , 20d , 21d . (Actually

the regions were not erased but just ignored.)

The only feature derived from direction was standard devia-

tion. The mean was not used because it would vary if we rotated

the texture. Also used as features were the number of small

regions deleted and the number of regions used in the computation

of the mean and standard deviation. Thus we obtained 13 features;

certainly not all of them are independent of the others.

For the Superslice method, only ten features can be obtained .

Since Figures 18a , l9a, 20a, 21a are pseudo-images , we lose

three fea tures : the number of small regions deleted , the mean

gray level, and the standard deviation of gray level. . 
*
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contained in the upper hal2 of Table 7. From there it seems

they are roughly equivalent with a slight advantage to simple

thresholding.

- 
- For the geological terrain textures only thresholding and

Superslice were used. In the case of thresholding , both the

bright 25% and the dark 25% were used . The feature values are

displayed in Figures 24 , 25 , and 2~ (A,B,C ,D are Mississipian ;

E , F , G , H are Pennsylvanian; I , J, K, L are Lower Pennsylvanian)

The textures depicted in Figures l2a , 13a, and 14a are samples

A , E, arid I. The effectiveness of the features is summarized

in Tables 4, 5, and 6 (for Figure s 24 , 25 , and 26).

In this set of textures too the results are better for

simple thresho].ding. The results differ from those obtained

for the Brodatz textures , in that the best features were not

the same ones. This should case no surprise , as the two sets

of textures are quite different. Also we see that just one

feature (mean gray level) is sufficient to separate all textures

(Table 4). 

- - ---



5. Discussion

From the results obtained , it seems that the methods sug-

gested for primitive extraction may be succesfully employed

• for texture classification. It was surprising (but pleasing)

that the simplest method performed better for both sets of

textures.

Although all texture pairs could be separated with two

features used independently (Brodatz) or one feature (terrain) ,

this does not mean that for larger sample sizes we would have

the same results. However, it gives us an indication of the

usefulness of the method . Ncte that we did not need to use

pairs or triples of features concurrently.

Thresholding and iterative histogram modification are similar

in that they do not use lucal information from the texture .

Superslice does use such information in the form of an edge map .

The binary pictures obtained using Sup~islice look (subjectively)

more closely related to the original textures than those obtained

using the thresholding and histogram modification techniques.

In spite of this , Superslice did not perform as well as regards

texture classification . This may be because the sample size was

too small , or because of the dependence of the features (a method

performing well with one feature will also perform well with a

correlated one). Further studies are necessary to clarify this

matter .
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Appendix A

Algorithms for Iterative Histogram Modification and Superslice

Algorithm A.l

Iterative Histogram Modification [7)

Input: Histogram.

Let B1 be the number of pixels having gray level i. For each

histogram in i, the neighboring 2r (an input parameter) bins

i±j on each side of i (j=l ,2,...r) are examined. If B1 is greater

than the average A of Bj+1D••~~
Bj+r (and similarly on the other

side of 1), we compute the ratio X = (B~~A)/B~, which specifies

the fraction of pixels whose gray levels will be shifted towards

i. Then the following gray-level changes are executed:

B. • X from i+r to i+r—l;i+r
Bi+r_l •X from i+r—l to j+r—2;...

B. •X from i+l to 1.i+1
The entire process is iterated .

Algorithm A .2

Superslice [8]:

Input: Gray level range for thresholding, thinned edge picture.

1. For each gray level in the range:

a) threshold the image;

b) label all connected regions of above-threshold points;
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c) tor each connected region:

x. compute the percentage of border points which

coincide with significant thinned edge points;

ii. compute the contrast of the region with the back-

ground;

iii. classify the region as object/non-object based on

the size, edge match and contrast.

2. Construct the canonical tree for the set of object regions

based on containment.

3. Prune the containment tree by eliminating adjacent nodes

which are too similar .



.4, App endix B

Computation of Eccentricity and Direction

Eccentricity and direction can be computed from the second

order moments of inertia 
~~~ 

I~~, and 1
~~~A~

• Given a set of

points {(x1,y1),(x20y2)....} forming a region, the moments are

defined to be:

=

,21yy =

= ~:m1x~y~ where x~ and y are the coordinates of

the point (x1 ,y
~
) relative to the center of mass of the region.

The angle cp which the larger axis makes with a horizontal

line is given by

= ~ tan 1(i 
21xy )

yy xx

The eccentricity is given by
2 1/2

(I,~ 
cos2p + I,~~~ sin c~ - I

~~
sin2cQ

k~~xx ~lu 2 c1 + ‘yy cos2 p + I~~~5in2P
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Appendix C

Rule for Deleting Large_Primitives

The area range of the region for a given texture sample is

divided into 10 intervals; each interval corresponds to an

entry in the histogram. (In this histogram , the very small

primitives and the primitives touching the border are not in-

cluded.) The upper half of the histogram (from the sixth to

the tenth interval) is investigated for possible deletions. If

we have more than three regions in this half , no deletion is

performed . If we have three, every region (in this half )

larger than 400 pixe~~ is deleted ; in case of two or one , the

threshold is 300 pixels.

These thresholds (400,300) should not be thought of as

absolute numbers but as percentages of the total window area

of the sample. Considering that each window has 128x128 pixels ,

400 and 300 are approximately 2.5% and 1.9% of the total window

size. 
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FEATURES

* OF SMALLPRIMITIVE S N Y y y y

PRIMITIVES

AREA
MEAN N N N N N 0

AREA N N N N N Y 1

PERIMETER N N 

1

N N 
- 

N 
- 

Y 1

PERIME TER N N N N N Y 1ST. DEV .

COMPACTNESS
MEAN N 3

COMPACTNESS N ~ N N Y 2
_ -

ECCENTRICITY
MEAN Y N Y N Y 4

ECCENTRICITY Y N Y
_— 

I N N 3

DIRECTION N N Y N N N 1ST. DEV .

GRAY LEVEL Y 
- 

‘1 Y I Y N 5

GRAY LEVEL N I y N 4ST. DEV .

* OF FEATURES 6 3 8 5 3 8 33WITH “~~
“

Table 1. Effectiveness of the features for the Brodatz
textures, when the primitives are extracted
by thresholding (25%). A “I” entry means
that the ranges of the fea ture values (cor-
responding to the two textures) do not overlap.

-



TEXTURE
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_ _ _

FEATURES

*OF y y N N N N 2
PRIMITIVES

AREA N N N N I N 1
MEAN

AREA N N N N Y N 1
ST. DEV.

PERIMETER N N N N Y N 1
MEAN

PERIM ETER y N N I I N 3
ST. DEV.

COMPACTNESS N N I N Y 1 3
MEAN

COMPACTNESS N N N N I N 1
ST. DEV.

ECCENTRICITY I N Y N I N 3
MEAN

ECCENTRI CITY N N I N N N 1
ST. DEV.

DIRECTION N N N N N N 0
ST. DEV.

# OF FEATURES 3 1 3 1 7 1 16
WTH “I”

Table 3. Analogous to Table 1 for Superslice . 
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* O F SMALL I I N 3PRIMITIVES N N I

*OF N I I N 4PRIMITIVE S

AREA N N N N N N 0
MEAN

AREA N N N N N N 0
ST. DEV .

PERIMETER N N N N N N 0
MEAN

PERIMET}~R N N N N N N 0
ST. DEV .

COMPACTNESS N N I N I N 2
MEAN

COMPACTNESS N N N N N N 0
ST. DEV.

ECCENTRICITY N I I N N 3
MEAN

ECCENTRIC ITY N Y I N y 4
ST. DEV.

DIRECTION N N N N N N 0
ST. DEV .

GRAY LEVEL y y y y y N 5
MEAN 

_____ -____ _ _ _ _ _  ____  _ _ _ _ _  _ _ _ _ _  _ _ _ _ _

GRAY LEVEL I N I N N 1 3
ST. DEV .

* OF FEATURES 5 2 6 5 4 2 24
WITH “Y”

Table 2. Analogous to Table 1 for the spike program . 
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TEXTURE . 2
~.~~PAIRS ~

U ) >~~~
FE~hTURE S

$ O F SMALL I 2PRIMITIVES N

*OF N 0PRIMITIVE S N 
- 

N

AREA N N N 0MEAN

AREA N N N 0ST. DEV.

PERIMETER N N 0MEAN N

PERIMETER N
ST. DEV. N 

- 

1 1

COMPACTNESS N 2MEAN I

COMPACTNESS
ST. DEV. I 

- 

I 1 3

ECCENTRICITY N 0MEAN N N

ECCENTRICITY N N N 0
ST. DEV.

DIRECTION I N 1 2ST. DEV.

GRAY LEVEL Y I Y 3
MEAN

GRAY LEVEL N N N 0ST. DEV .

* OF FEATURES 4 3 6 13
WITH “I”

Table 5. Analogous to Table 4 but using
the dark 25%.
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TEXTURE . .

“~~~ PAIRS u5 2 ; u  ~~2;
~~~~~~~~~ U)~ < r ~ U~~~<~~ 4 r~~< 1~~E-4

~i ~~~ O H
FEATURES Z Z

*OF SMALL I N N 1
PRIMITIVES

#OF N N N 0
PRIMITIVES

AREA N N N 0
MEAN

AREA N N N 0
ST. DEV.

PERIMETER N N N 0
MEAN

PERIMETER N N N 0
ST. DEV .

COMPACTNESS N N N 0
MEAN

COMPACTNESS
ST. DEV. Y N 1 2

ECCENTRIC ITY
MEAN N N N 0

ECCENTRIC ITY N N
ST. DEV . N 0

DIRECTION I 1 1 3
ST. DEV.

GRAY LEVEL I I N 2MEAN

ST. DEV . I N 1 2

* OF FEATURES 5 2 3 10
WITH “I”

Table 4. Effectiveness of the teatures in dis-
criminating pairs of terrain textures.
A “I” entry means that we have non—
overlapping ranges of feature values.
The primitives were extracted by
thresholding (bright 25%).

_________________________________ —



_
_~~~~~~~

—
~~

-
~~
--‘—-----—

.AaU J~s ~~
. cv,

.4. 
Aa~I ~~ 

— — — — —

NY~W in in c~ cn
ria~~~ari xv~ s

•Aa Q . ILS ~l i I m c~i H

NOI1LD~~IIU
• __________ — —— - -  — ——

4)
4~~W

Aao 1LS ~~~ ~~. ~~~ i i s
~~~~~~~~~~~~

cn- o
NV31~ m m i I ~~

LLIDnI1LMaDDa

• # ~ :in ~~~~~ 
0 4 )

CN I H r~i m I
SS2NJ~3VdWO D 

— --

NV2W

_ _ _  

~~~~~~~ ± ± ÷ 
:~

~~3.LaWIUad
-~

NYaW H I H I

~!aa2WflI~~cI
_ _ _ _ _ _ _ _  —- I~- 4 . ~~~O

4J 4)
A20 J1S 

~~~ 
, ,

va~iv I
____  - — — — —4—--- —- (~ a)

SNO I)~ U 
,

- -  - - - -- __ _ _

~~~~

_i+

~~~~~~ 

~ 1

~~~~ ILl
S~~~fl1LX~J.L S~~1fiL X3J.
ZJ~VUO~~L NI~flflI~ J~

__ 
--

-- —~~— ~~~~~~~~--~~~~
- 

~~~~~~~~~~~~~~
- -
~~~~

— 
~~~~~~~~~~~~~~~~~~~~~~~~~ - - A



-
~

- —--_ —
~ _

_- _ .
~

---
~

- 
-
~~~

~~~~~ TEXTURE .

‘
~s~~ PAIRS 

~
~~~<

~-4 ~4 H  ~~
FEATURES •

#OF N N N 0
PRIMITIVE S

AREA N N N 0
MEAN

AREA N N N 0
ST. DEV.

PERIMETER N N N 0
MEAN

PERIMETER N N N 0
ST. DEV.

COMPACTNESS N N N 0
MEAN

COMPACTNESS N N N 0
ST. DEV.

ECCENTRIC ITY
MEAN N I N 1

ECCENTRI C ITY
ST. DEV. N N N 0

DIRECTION Y 1ST. DEV. N N

* OF FEATURES 1 1 0 2
WITH “I”

Table 6. Analogous to Table 4 but
extracting the primitives —

using Superslice.
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1. (a) Wool; (b) complemented wool; 2. Analogous to Figure 1,
(c) thresholded (25%); (d) after for raffia
the deletion of small, large ,
and boundary elements
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3. Analogous to Figure 1, 4. Analogous to Figure 1,
for sand for grass
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5. (a) Wool; (b)complemented wool; 6. Analogous to Figure 5,
(c) result of spike program; for raffia
(d) after the deletion of
small, large , and boundary
elements
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7. Analogous to Figure 5, 8. Analogous to Figure 5,
for sand for grass
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9. (a) Wool after applying Superslice: 10. Analogous to Figure 9,
the lighter regions represent the for raffia
best matches; (b) same as (a) but
complemented; (c) after retaining
the best matches; (d) after delet-
ing small , large, and boundary
regions
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11. Analogous to Figure 9, 12. Analogous to Figure 9,
for sand for grass
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~~~~~~~~~ ~~~~~~~~~~ 13. (a) Complemented Mississipian

limestone and shale
• (b) Thresholded (25% BRIGHT)

•~~~~~ ~~~~~ 
(c) After deletion of small ,

.~~~ large, and boundary regions
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14. Analogous to Figure 13, for
Pennsylvanian sandstone and shale
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15. Analogous to Figure 13, for
7 • Lower Pennsylvanian shale
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16. Analogous to Figure 13, using
25% DARK
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17. Analogous to Figure 14, using
• 25% DARK
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18. Analogous to Figure 15, using

25% DARK

~~
, 

~~

‘

. ~~~~~~~~~~

_ _ _ _ _ _ _ _ _  _ _



N _ _I j~~F
, 4~v’. 
~ ‘

,t” ‘

~~~~ 4 19. (a) Mississipian limestone and
• - shale after applying Superslice :

the lighter regions correspond
to the best matches
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- :- . (c) After retaining the best
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20. Analogous to Figure 19, for

Pennsylvanian sandstone and shale4
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21. Analogous to Figure 19, for
C, ~ Lower Pennsylvanian shale
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