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ABSTRACT

Estimates are made of sound absorption and sound speed characteristics

of sediments at the Dabob Bay and Keyport Sha llow Water ranges operated

by the Naval Undersea Warfare Engineering Station using empirical models

developed by Hamilton and mean grain size and porosity data measured in

samples collected by the authors. Data reported by earlier investigators

permit eu.timates to be made also for sediments at the Nanoose and Jervis

Inlet ranges. The purpose is to provide information which can be used in

the design and evaluation of acoustic imaging devices which may be able to

ease the problems of locating and recovery of torpedoes which became buried

in the sediments. Field and laboratory procedures are described. Also

reported are the results of measured sound speeds in a number of the gravity

core samples. The most ccanon surficial sediment is a soft, saturated

silty-clay mud. For such sediments the sound absorption coefficient a in

dB per meter should be give approximately by a = 0.1 F where F is the sound

frequency in kHz. It is concluded that sound absorption in these sediments,

although not small, should not preclude the short range use of an acoustic

imaging system operating at moderate frequencies. The possibility and

the consequences of the existence of gassy sediments is discussed.
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1. Introduction

The Naval Undersea Warfare Engineering Station (NUWES) and the Naval Post-

graduate Thhool (NPS) are jointly investigating the efficacy of acoustic

imaging for the timely location of embedded torpedoes. Negatively buoyant too'

pedoes at end-of-run have penetrated the Dabob Bay and Nanoose range mnudlin.j

and become buried many feet below the surface.

Depending on torpedo trajectories following shutdown the unit can either

enter the mud at a high pitch angle and bury nearly vertically to the tail or

deeper, or enter at a low pitch angle and travel a significant distance tef7ure

coming to rest in a nearly horizontal position some 5 to 10 feet below the mud-

line. Ideally, the acoustic imaging system should be useful both for lo,.,ting

the torpedo and for indicating the torpedo attitude and depth in the sediment

or mud.

The acoustic maging work is directed first at measuring and estimating

various acoustic properties of sediments in Dabob Bay, Nanoose (Strait of

Georgia), Keyport Shallow Water Range (SWR)and contiguous areas to the SWR, in

order to determine sound absorption and reflection characteristics and, par-

ticularly, any similarities which may exist in these properties. After this

the next steps will entail:

a. Selection of a convenient shallow water test site in which to bury

an object which may simulate a torpedo shape;

b. Measurements of bottom reflectivity and rý.xerberation at the test site;

and

c. The initial test and evaluation of a prototype imaging system using a

test bu-ied torpedo.

The detection range and toe resolution for any acoustic imaging system

2s a complicated function of frequency of L' c'd used. The resulting

system represents a compromise Detween several -
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among which are:

a. The dependence of sound absorpticn on frequency. In most fluids

and solids this usually increases with a frequency increase.

b. The sound frequency dependence of interfering effects such as

ambient noise, scattering from inhomogeneities in the medium and

r'eflections from the target itself.

c. The effect of the size of the acoustic system and the acoustic

wavelength on bearing and spatial resolution. Usually this

resolution will increase with an increase of frequency for a sys",em

of fixed dimensions.

The prototype acoustic-imaging equipment design will be based partially on

attenuation-determining parameters such as the range of sediment grain size,

porosity, and sound speed characteritzics. This report documents and discusses

the above sediment characteristics for cores obtained at the locations listed in

Tables 1 and 2 and shown in Figures I, 2 and 3 . The short cores recovered at

locations 6 and 15 in roughly 200 feet of water in Dabob Bay were obtained to

determine foundation design constraints for a potential underwater structure.

Abstracts from data reports of other group•' 2  on samples collected in

earlier studies are included in this report. These data provide a basis for

estimating acoustic properties of sediments on and near the ranges at Nanoose and

Jervis Inlet.

9



ID. Sediment Sample Collection and Storage

The facilities and crews of the boats IX 308 and NS-;1 provided support

for the collection of samples. We gratefully acknowledge the assistance

of the crewmen who so skillfully operated the winches, cranes, and the

boats during these operations.

For sample-taking in Dabob ty from the IX 308, a gravity corer and a

Shipek grab samp'er were used. The gravity corer, only, vras used in the

Keyport area collections from the NS-11.

The two-inch gravity corer was released by a trip mechanism some 10 to

16 feet above the bnttom and propelled into the sediment by a 200-pound

weight stand. Various core barrel lengths, from 3 feet to 12 feet, were

used at different times. The maximum length of sediment in the plastic

core liner was about four feet, even though the corer penetrated, at times,

to depths of 12 feet in the sediment.

The free-fall height (distance between bottom of gravity corer and

water sediment interface) set into the trip line was about 11 'eet for the

Dabob Bay collections and about 10 feet for the operations from the NS-11

near Keyport. Thie reduced free-fall height was necessitated by lift height

limitations of the smaller crane aboard the NS-11.

It was not feasible to carry the sediment sound speced measuring appa-

ratus aboard tne range craft, so the cores were stored by stacking th'erm (in

their liners) in garbage cans for later laboratory measurements. The cans

were filled with water to reduce dehydration of the cores during a six-day

storage period. The storage area used was the unheated rear entrance bay

of Building 717 at Bangor. Ambient temperatures ir this space were 8' to

100 C most of the time.

10



III. Sediment Sound Speed Measurements

A. Methodology

Values of sound speed in the sediments were determined in the labora-

tory using the Model USI 101 Sediment Velocimeter, built by Underwater

Systems, Inc. This instrument provides means for measuring the time delay

between the generation of an acoustic pulse at one transducer and its

arrival at a second transducer. The acoustic path between them is a core

liner filled with either sediment or "standardizing" fresh water. By

noting the difference i' time delays for the sediment-filled core liner and

for a water-filled core liner of the same nominal dimensions (internal dia-

meter and liner wall thickness), tne sediment sound speed, Cw, can be cal-

culated from the known sound speed in water, Cw, using

C
C = W- s tC

d

where d is the inside diameter of the core liner and t = t - ts, where tw

and t are the measured time delays for the pulse for the water and sedi-

ment, respectively.

The acoustic pulse is "shock excited" in the transducer by a sharp vol-

tage spike. The dominant frequency is about 450 kHz. Time delays were

measured to the peak of the first arrival as displayed on the deliyed sweep

of a cathode ray oscilloscope.

ilil 11



Sound speed in the water was calculated using the empirical model given

3
by Medwin . This formula is

c = 1449.2 •- 4.6 T - 0.055 T2 + 0.00029 T3 + (1.34 - 0.010 T)(S - 35)

+ 0.016 Z

where c = sound speed in meters per second

T = temperature, degrees Celsius

S = salinity in parts per thousand

Z = depth in meters

Although this model is not as accurate as that of Del Grosso (V.A.

Grosso, "New Equation for the Speed of Sound in Natural Water's (with

comparisons to other equations", J. Acoust. Soc. Am. 56, .084-1091 (1974)

the maximum error is not more than about 0.5 meter/second which is well

within experimental uncertainties for the sediment sound speed measurement

reported here This formula was also used to correct measured speeds in

the samples to the temperature of 100C.

B. Accuracy

The precision with which the time delay could be set was of the order

of 0.02 mircrosecond for a low attenuation loss sample. This precision was

caused by the limit of capability for reading the time delay on the adjust-

ment knob. However, from epeated measurements of time delay in the same

water-filled core tube, variations of about 0.1 microseconds were observed,

depending on position along the coke 'iner. These appear to be due to vari-

ations in the diameter or thu wa.... thickness of the plastic core liner. A

0.1 microsecond difference correspu:,os apDroximately to a 5 meter/second

difference in calculated sound speed.
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The largest source of error is most likely due to the inability to con-

trol and measure temperature in the sediment sample at the time of sound

speed measurements. Core samples were stored in a water-filled grbage ca..

in an unheated area (usual temperature of water about 9 0 to 100 C) except

during measurements. A few of the cores were slightly longer than the cans

and this undoubtedly lead to temperature gradients in the core. An accur-

ate assessment of the error due to temperature variability is not possible.

Estimates of the maximum temperature effect can be had from efforts to

repeat measurements after a time interval of a few hours or a day.

An example is Core D-2 wherein the time-spaced measured sound speeds

differed on tIhe order of 5 to 10 meters per second. Care was taken not to

measure sound speed across core areas where small fissures or other signs

of disturbance were visually evident.

Results of the sound speed observations, corrected to a temperature of

10'IC are presented as part of Table 3.

13



:V. Sediment Mass-Physical~-Property Determinations

Conventional soil testing procedures were used to determine wet den-

sity, porosity, and water content of the sediment samples 4. A specimen of

known volume was taken from selected regions of the cores or from the

Shipek grab-samples, weighed wet, dried, and then weighed again.

Letting W =weight of specimen, wet
w

Wd = weight of specimen, dry

V = volume of specimen

-The wet density, p = W /V.

The porosity, n, is the fraction of the total volume occupied by water,

and is calculated from

_ __ Wd

V

Porosity is often expressed as a percentage.

The water content, w, another sediment parameter of interest which is

often expressed as a percentage, is the ratio of the weight of water in the

sample to the weight of the solids in the sample.

"W - Wd

Wd
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The containers used for measuring the volume of the specimens were made

from thin-walled stainless steel tubing of nominal dimensions one inch long

•- and one inch in diameter. In most cases, these cylinders were pressed into

the sediment sample and the ends were squared off using a spatula. In some

cases, remolding of the sediment was necessary to obtain a properly filled

container. For the very fluid specimens a spoon was used to transfer sedi-

ment into a cup consisting of one of these cylinders with a plastic cap on

one end.

Weight of the wet specimens was determined to the nearest one-tenth

milligram within two hours after preparation with due care taken to hu-

imidify the samples. Drying was accomplished by leaving speciirvens in an

oven maintained at 1050 to 1100C for 20 hours or more. Care was also

taker. to only remove four or five samples at a time from the oven for

weighing to preclude hygroscopic weight gain from room humidity. Values of

wet density and porosity, resulting from the weighings and sediment charac-

teristic calculations are presented in Table 3.

Most of the sample regions used for the above measurements were also

selected for determination of sediLient grain size distribution. Choice of

specimens was based on a desire to get representative coverage of many dif-

ferent areas of the weapon's test ranges and to get information about

gradients in a few locations. Mr. Dick Roberts of the University of

Washington's Department of Oceanography Oceanography Technical Services,

performed the grain size analyses. The percentage weights in the major

textural groups, i.e., gravel, sand, silt and clay, and the grain size

statistical data from the moment method are also listed in Table 3.



V. Sed&,ment Data Collected by Other Investigators

Some data on sediment properties in areas of interest to this report

-!i "were kindly made available to us by the University of British Columbia

Department of Oceanography. Their surveys in the Strait of Geogria in-

clude several stations on or adjacent to the range at Nanoose and the range

at Jervis Inlet. The locations of the Georgia Strait stations are shown on

1
the charts in Figure 5, 6, and 7. Abstracts from their data reports

including the grain size analyses, are presented in Table 4.

In addition, we had available data collected by the Applied Physics

2
Laboratory of the University of Washington . Their stations are shown in

Fig. 4. Their tabulated results are presented in Table 5. The values of

water content were used to estimate a porosity value, assuming a typical

value of grain specific gravity of 2.7.

The acoustic property estimates for these areas are included in the re-

sults section.
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VI. Models for Absorption of Sound in Sediments

The sediment attenuation models developed by Hamiltonr 6p•rmit an esti-

/- mate of the absorption coefficient for sound waves based on sediment

porosity and mean grain size. These models were formulated from analysis

of a large amount of data, much of it Hamilton's, and are applicable to a

wide variety of sediment types.

The dependence of sound absorption on frequency in most sediments is

given approximately by a : k f where a is the attenuation coefficent for

plane waves due to absorption, in dB/m, f is the frequenc7 in kFz and k is

an empirical constant.

The linear dependence of a on frequency is approximate but very

closely realized for most terrigenous sediments. The coefficient k is cor-

5relatable to grain size or to porosity. Hamilton gives the following

regression equations for k in terms of porosity, n, in percent or in terms

of mean grain size Mz in phi units. (4 = -log of grain diameter in mn.)

Course, medium, and fine sand: (36 < ri < 46.7% or 0 < 4 < 2.6)

k = 0.2747 + 0.00527 n

or k = 0.4556 + 0.0245 MS~z

Very fine sand and lower porosity mixed sizes: (46.7 < n < 52% or

2.6 < 4 < 4.5)

k = 0.4903 n - 1.7688

or k = 0.1c,78 + 0.1245 M

17



Mixed sizes: (52 < n < 65% or 4.5 < 4 < 6.0)

k = 3.3232 - 0.0489 n

or k - 8.0399 - 2.5228 M + 0.20098 M 2• z Z

Silt Clays: (65 < n < 90% or 6.0 < 4 < 9.5)

k = 0.7602 - 0.01487 n + 0.000078 n2

or k = 0.9431 - 0.2041 M + 0.0117 M 2

The graphs relating k to mean grain size, M , or percentage porosity,

n, from Hamilton's papers5,6 are reproduced in Figures 8, 9 and 10. The

solid lines represent the regression equations given above. The graphs

also show some of the variability in the measured values of absorption con-

stant k. Most of the data fall within the dotted lines in these graphs.

Based on the Hamilton models for determining the attenuation coefficient k,

the expected values of k in dB/m/kHz for each of the stations and for vari-

ous depths below the mudline are tabulated and discussed in the results

section.

-1
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VII. Discussion of Results

A. Laboratory measurements and observations

All of the samples from the deeper parts of Dabob Bay and some of

those from shallow water areas near Keyport are very soft, high porosity

(usually 70 to 80 percent) clays or silty-clays. This is consistent with

other studies of the sediments from Dabob Bay.7 The thickness of the soft

mud layer was not ascertained during our sampling, but it is believed that

they are rather thick. It was noted during sample collection that the cor-

ing tool would penetrate sometimes as much as 12 feet into the sediment,

although the maxinum core length was about four feet.

In many of the samples, the top-most one or two centimeters was very

fluid-like with a density only slightly greater than that of water. There

were usually fairly strong negative sound speed gradients and positive den-

sity gradients in the top several centimeters and very weak gradients below

that depth. The sound speed in saturated silt-clay sediment is typically

one to two percent less than the speed of sound in the water. This was

confirmed in several cores in which sound speed could be measured in the

sea water inmediately above the sediment.

Descriptors which apply to a number of the samples collected from the

shallower parts of Dabob Bay and in shallow-water areas around Keyport (see

figure (3)) are sandy mud, sand and gravel and sand with mud and shells.

The porosity in these is significantly less than in the silty clays, typic-

ally 35 to 55 percent, the density is higher and the sound speed is signi-

ficantly higher than that in the sea water. In a few cases of the very

coarse samples, accurate sound speed measurements were precluded because of

the larger sound absorption.

19



During visual examination of the cores at the time of recovery, we were

not able to observe the presence of gas bubbles in the sediment. Be-ause

of their importance in affecting acoustic properties of the sediment, the

possibility of the existence of gas bubbles cannot be ignored. These sedi-

ments do contain significant amounts of organic materials and gas-filled

cracks did develop in some cores after several days of storage. The odor

of hydrogen sulfide was very strong during cutting of the cores, particu-

larly after several days.

The measured properties of samples collected from the Nanoose Range

area by the University of British Columbia (UBC) and the Applied Physics

Laboratory of the University of Washington (APL) are rather similar to

those collected by us in the deeper parts of Dabob Bay.

B. Estimates of sound abcrption"•" 5,6,8

The models developed by Hamilton and described briefly in

Chapter VI permit making of an estimate of the sound absorption coefficient

in saturated surficial seaiments, based on either the porosity or the mean

grain size. Using Hamilton's regression equations for k as a function of

porosity, the values of k for all the silty clays lie between .05 and 0. 1

dB/m/kHz. For most of the sandy or gravely sediment samples, a value of k

of about 0.5 is predicted.

Since there is a significant amount of variability in the data used in

generating the regression equations, there is a possibility that the

absorption in these s,'iiments ,fay differ by as much as a factor of two ;rom

this prediction.

20



As an example, for a silty clay for which k = 0.1, the sound absorp-

tion coefficient, a, would have the value

a=0.1 f dB/m

where f is the frequency in kHz. Thus, at, say 20 kHz, the absorption co-

efficient would be about 2 dB/m.

C. The Concern for the Existence of Gas Bubbles

The possiblity that gas Lubbles may exist in scme parts of the sedi-

ments at certain times during the year should be considered for ýhe reasons

given in the following paragraphs.

Hampton and Anderson9 conducted acoustic measurements in constructed

sediments which indicated that the presence of gas dominates the observed

behavior. They quoted the work of others who have observed absorption co-

efficients which are orders of magnitude larger than that in saturated

sediments. They also point out that the effect of gas bubbles is to cause

a significant decrease in the sound speed and that the acoustic reflec-

tivity is greatly enhanced.

SchubelI0 observed that in Chesapeake Bay there exist regions of sedi-

ment which have high reflectivity and poor penetration of sound (from

seismic profile records) compared to adjacent regions. That these dif-

ferences are most I.ely due to gas bubbles was shown by the greater static

campressibilit' of cores from these areas, ccmpared to others and by x-ray

measurauentz which showed voids in these cores which were not present in

cores frow the less turbid regions.
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Observations lhave been made of the phase inversion of a pressure wave

upon reflecticn from the sediments in Dabob Bay which could be explained by

bubbles in the sediment.

"Dr. David Weston (private communication) described observations of wrm

holes in shallow estuarine sediments during experiments he conducted many

years ago with Dr. A.B. Woodl Estimates of the volume of gas contained in

the sediment and calculation of the effects this would have on acoustic

propagation over and into such a boundary were consistent with acoustic

measurements. There is a strong possiblitiy that if gases are present, the

concentration and bubble size vary seasona ly.

D. Expected Gradients in Properties

Our measurements do show that there are rapid changes in the physi-

cal properties of the sediments in the top few centimeters. In the soft

sediments, there appear to be weak positive gradients in sound speed and

some decreases in porosity with depth in the top meter. However, the short

length of our cores and the limited precision of the sound speed measure-

ment prohibit use of our results to predict properties at greater depths.

The data presented in Reference 6 indicate that the approximate values

of the gradients for porosity and sound speed in a saturated silt-clay

sediment are -0.07 percent per meter and +1.3 per sec, respectively.

If the porosity changes so slowly as this, the increase in the absorp-

tion constant k with increasing depth is probably not largv enough to

create significant problems in the top 10 meters of sediment.

"22



VIII. Conclusions and Recommendations

The measured values of density, porosity, sound speeds and grain

size correspond well to values reported !i other- for similar sediments.

We believe that if the silty-clay sediments are fuLly saturated, the values

of the absorption coefficient calculated using Hamilton's ncdel should be

valid for materials having similar properties in the Nanoose Range and

that these values of absorption, while much larger than for sea water, are

not large enough to preclude the effective use of an acoustic imaging sys-

tEn in these soft sediments at a moderate frequency.

If bubbles are present in the sediment, the absorption coefficient

would be much larger and reverberation levels should increase significantly.

Both effects would significantly reduce the effectiveness of an acoustic

imaging system. Further, there is the possibility that the bubble effects

may be seasonal.

We were not successful in locating a shallow water area conveniently

close to land in the Keyport area for use in preliminary acoustic imaging

experiments. There are sci areas near Keyport but they are probably far

enough from land to preclude using land-based instrumentation for the test.

It is reccmmended that development work on acoustic imaging systems

be continued with an operating frequency which is as low as can be accomo-

dated. A noteworthy caveat is that turbid or "gassy" bottom sediments are

highly attenuating and reflecting at any frequency and can, therefore,

potentially limit sound penetration into the bottom to only a very few

meters. This could preclude acoustic detection of torpedoes buried 20

feet or more if they bury in sedimert structures entailing near-surface

gas saturated layers.
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It should be noted that, at the present time, it is not known if or to

what extent such gassy sediments exist in areas of interest. Therefore, it

is recommended that, whenever opportunities arise to conduct experiments as

part of other operations, they be exploited. U:'k of' ide-.... n sonars, sub-

bottom profilers and acoustic reverberation cr ',arg;t streength measuring

systems could provide useful information on vwr..ability of acoustic

properties in areas of interest.
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