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Approximate Confidence Intervals for an Exponential

Parameter from a Sequential Life Test

Abstract

~NJA sequential life test for the exponential location
parameter was given by Epstein and Sobel (1955). This

;l””i'¢§ sequential test may be modified by truncating the test at
;fo failures and/or at total test time t' . There may be

é need or a desire to also estimate the parameter after the
test decision, using the test data. Bryant and Schmee (1979)
have given confidence intervals for the mean lifetime, (6,
from a truncated sequential test scheme, using methods which
depend heavily on numerical techniques using a computer. A
more flexible approach is considered using a martingale
inequality which was also given by Wald (1947) in another
'context. Interval estimates are found which are functions of
a positive constant d which must be chosen less than an upper
bound which is itself a function of the number of failures
observed. It is suggested that d be chosen as a function

of the sample path (i.e., after the test is complete). The
validity of the confidence coefficient comes into question if

this posterior selection of d is employed. Simulation studies

indicate that the resulting intervals are usually conservative.
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Approximate Confidence Intervals for an Exponential

Parameter from a Sequential Life Test

I. Introduction

The theory of sequential tests was developed by
Abraham Wald (1947). Epstein and Sobel (1955) applied this
theory directly to get a sequential life test in the
exponential case. This requires the assumption that, if
T 1is the lifetime under consideration, the probability

density function of 1 1is given by

-1t/6
e i1t = > 0

CD“—‘

£(t) =

o

elsewhere,

where 6 > 0 is the average lifetime of an item. 1In the
sequential exponential life test, the continuation region is
bounded by two parallel lines inthe failure-total time »lane
as depicted in figure 1.1. 1Initially n items are placed on
test with or without replacement. At each failure time a
decision is made to accept or reject the null hypothesis, or

to continue the test. The test continues as long as the sample

Failures

1.

reject

& :
- '7-total time

Figure 1.1. Sequential life test boundaries with time and
failure truncation.




path remains inside the continuation boundaries. A
modification of this test is to truncate the continuation
region at ry failures and/or at total time t' . This
truncation is also illustrated in figure 1.1. These

truncated sequential tests are used by the Navy as reliability
acceptance tests in MIL-STD-781C (1977). The tables given in
MIL-STD~781C are for testing HO: g = 00 against Hl: 8 = 0l
where 0, < 6, . Since values of 0 considerably different

1 0
from 6, or 6; could lead to the acceptance or rejection of
HO , it may be of interest to also estimate 6 following the
test decision using the test data. This report gives a method
for finding approximate confidence intervals for 6 from
the sequential test or the truncated sequential test.

Bryant and Schmee (1979) have found confidence intervals
for © following the truncated sequential tests in
MIL-STD-781C. Their results require the application of a
technique developed by Aroian (1963), and Epstein, Patterson
and Qualls (1963). This technique, which Aroian calls the
"direct method," reduces the continuation region to a grid
of discrete points, including a set of points on the boundary
of the continuation region. Using an iterative procedure and
the properties of the exponential distribution, a probability
for each point on the boundary can be found as a function of

8 . Confidence intervals for 6 can then be found using

numerical techniques with the computer. A drawback of this

AW s e « SN RN IR PR AL TN iy
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method is the amount of computation required and its
dependence on the location of the continuation boundary.
All computations may have to be repeated if the value of
a test parameter is changed.
The objective of this report is to find a method
which is easier to apply computationally and perhaps is
more versatile. Our approach is to use density ratios
defined at each failure time and apply an inequality which
was given by Wald (1947). He suggested the inequality
could be applied to sequential estimation problems. O'Brien
(1973) uses this inequality to find sequential confidence
intervals for the shape parameter of the gamma distribution.
The inequality is also known to be a special case of a well
known martingale inequality. Robbins (1970) and Lai (1976)
also have results in sequential estimation from this inequality.
In this report, the inequality is applied in the manner
used by O'Brien, wherein the density ratio involves a positive
constant which must be chosen prior to the experiment in some
optimal fashion. The derivation of the intervals in this report
produces a constraint on this constant which is a function of
the number of failures observed. Consequently, it is suggested
that the intervals may be improved if the constant is chosen
as a function of the sample path generated by the failure times.
Whether this posterior method of selecting the constant
invalidates the desired confidence coefficient remains an open
question. Computer simulations indicate .that the resulting

intervals remain conservative, and that, while their width is

T AV NS it
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generally greater than the Bryant-Schmee intervals, the
comparison is favorable in light of the utility of these

intervals.

II. Testing without Replacement

If n items with exponential lifetimes are placed
on test without replacement, then denote the ordered

failure times as t], t2, S tn' Define Xi = ti - ti—l'

where to = 0. The Xi' i=1, 2, ..., n, are independent

with density functions.

-_(_p--i+1)xi
(n-;+l) e [} . > 0
. = d
f(xi,e)
0 elsewhere.
\

Consequently we can write the joint density of Xl' Xz, sy

Xk as
k
N f(x.:9)
fog o
or as
( LK
5 z (n—i+l)xi
] 1=
n % © s ¢ X, >0
(n-k) !0 =
f(xl,xz,...,xk) = 4 i=1,2,.oo'k
[ 0 elsewhere




Equivalently,

-Tx
1
f(xl, x2, o alal g xk) = R — e 0 7
(n-k) !0
where
k k
T = I (n-i+l)x. = I t. + (n-k)t
A e - k
= total time on test at tk.
Also, define
f(Xl,Xz,...,Xi;dle) W :
E(X /K .., X _36) B o Sy
Y, = 1
i
Y rE A > n.
n

At this point dl is an arbitrary positive constant. It

can be shown quite easily that Yl, Y2, ... is a martingale.
+1
T £(x,:d,0)
£ i=1 g |
E[Yk+l|Yk,...Y1] = Bites IYk,...,Yl
n £(X.,;0)
£
k
n £(X,:;d,90) E
gt " MR s o v .
k f(xk+l;0) o {J
n £(X,:0)
)

-




A £(X) 4174,0) = f ™ L b P
k f(xk+l;6) k ! f(xk+l;0) k+1 k+1
=Yk.
Thus, Yl' Y2, ... 1s a martingale by definition. We can

now use a well known martingale inequality (see Doob [1953])

which states that, for € > 0,

6r, )
P[max Y. > €] < E——, for all k.
: i - €
1<k
Since E(Yk) = 1, the bound does not depend on k and the

inequality becomes

i
P[mgx Yi =gy = =
i
or
. 1
P[Yi < &, fox all i} g W z " (2.1)

We note that the inequality { 2.1 ) was also given by
Wald (1948), without relying on the martingale property,
in the following lemma.

Wald Lemma: Let Xl, Xz, ey Xn be a sequence of
random variables with joint density fln(xl,...,xn), n =
l, 2, 3, ..., under hypothesis Hl and fOn(xl,...,xn) under

hypothesis H Let o be a constant between 0 and 1. Then,

0-

under Ho,
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1
P[(fln/fOn) < = for ail a) » 1 - d,

In the context of the sequential exponential 1life

test

By T, 5 E

ok, a0 xS (@

Yl = T = dl e 11
N3
(@ 035"

Then, applying inequality (2.1 ), we get

T 1
k =
¥ et (. =1}
k & 1 <

P[dl

. for all k] > 1 = &

Qi

Equivalently,

Tk(l-dl)
Pl———eie > =kInd, + In 0, for all k| > 1 - a.
edl 1 =

The right side of the inequality in brackets is positive

i€ dl < al/k. Finally we have, for dl < al/k,

Tk(l-dl)
Ble < ——=mpce  for SRR KL 300 = . A 2.2
dlln?‘-}-
1

)

5 ""—“’"““*‘*—.‘L‘w;—



We will refer to this upper bound on 6 as Uk'

Inequality (2.2 ) can also be exnressed as

P(6 < min Uk) > L= e
" il

Likewise define

( -
f(Xl,Xz,...,Xi,G/dz)

- SLages ALt = LA I S |
f(XlIX2I-00IXiI 0)

Z AEN

where d2 is an arbitrary positive constant. From inequality

( 2.1 ) we have

BiZ, = 7. for all K] 21 - =,
 where
oL
k -T,d4./6 -"k ]
iy d26 e k2 dk . -6—(d2 1)
k 0 -Tk/a 2 .
e
This yields
I
k
-—(d,-1)
Pl e ® <2, for a1l Kkl 21 - 9,
[0} —
or
i
Sl P S St I o S SRR R A
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T, (1-d.)
PIE-—2- < - In (adf), for all k] > 1 - a.
g . 1/k
| If ~ 1n (adz) >0 e, d2 < 1l/a , then
-
T, (1-d,)
p| £ —2 < 6, forall k| >1-a.  (2.3)
-ln(adz)

We shall refer to this lower bound on .6 as Lk‘ If Lk is to

be positive it must be true that d2 < 1 and d2 < l/al/k.

1/k

Since o < 1, we have the single constraint d2 < 1. Here

also, it is true that

P[max L

Kk k

since ( 2.3 ) is valid for all k. Applying the Bonferroni

inequality gives

P(max L, <8, min U, >8) > P(max L,<6) + P(min U >6) - 1,
Kk k - k kK
k k k k
or

P[max Lk < 8 < min Uk] >l -a+1l-a-1=1-2a.
k k 5

This establishes the following theorem.

Theorem 2.1 If a sequential exponential life

test is conducted without replacement and terminates with

r failures, then a two-sided confidence interval for the

T e e

ity ‘g‘ T .
Py !W/". *.'kamm o ey g

M—L
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mean lifetime 0, having confidence coefficient at least

1l - 2a, is given by

—

Tk(l—dz) _ Tk(l-dl)
AR g BN e
k<r -1ln(ad,) ' k<r 4d,ln(—)
o 2 b 1 dk
3]s
1/k

where 0 < dl < a and 0 < d2 < 1.
Due to the nature of the interval, it may happen
that

max min

k<r Dk 2 k<r Y

K
This leaves us with a confidence interval whose lower limit
exceeds its upper limit. Computer simulation studies have
shown that this inversion of the endpoints occurs infre-
quently, often as a consequence of an unusually early
failure. To avoid this predicament, the following iterative
scheme is proposed whenever

max min
U

k<r 'k 2 ker Ukt

(1) The upper limit of the confidence interval, say

U, is assigned the value of the next larger

member in the set {Uk LR (P S




il

T. . say, will exceed Tj' the total time on test at the jt

-12-~

(2) If U is greater than the lower limit, say L,
the endpoints are ordered correctly and the

procedure stops.

(3) If U is smaller than the lower limit, assign to

L the value of the next smaller number of the
set {Lk O S P TR
(4) If L > u return to step (1).
Since inequalities ( 2.2 ) and ( 2.3 J are valid for all k,
the interval that results from applying this procedure will
still have a confidence coefficient at least 1l-2a.
Accept decisions in the sequential test occur
between failure times. Consequently, if an accept decision
occurs and j failures have been observed, the total time

on test when the decision is made to accept Hy, denoted by

h

failure. Furthermore

. (1-d T, (1-
Ta'J(lk 2) 7 41(1 d2)
k
-ln(adz) -ln(adz)
and it may also be true that
Ta,‘(l'dz) , max Tk(l-dz)
-ln(adg) ~Ed —ln(ad;)

This suggests that we might shorten the confidence

interval for 6 by increasing the lower limit utilizing this
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total test time at the time of an accept decision. Note
that the upper limit cannot be improved in the same manner
since there we seek the minimum of a set, and Ta,j > 'I'j
implies the minimum will occur at a failure time. The
lower limit of the interval in Theorem 2.1 was chosen as

the maximum of the set {L k=1.2,...,£}. The following

kl
lemma admits the use of

Ta'.(l-dz)

-ln(adg)

as the lower limit when an accept decision occurs.

Lemma 2.2 If the sequential life test terminates

in an accept decision with j failures and total test time

a,j’ then
’

Proof: We note that this is an exponential life test,
without replacement, which is observed for a total test time
t'. This test can be shown to be equivalent to a Poisson
process with parameter A =1/6 which is observed for actual
time t'. We will apply that result here with t' = T_ .. A

a,j
well known result for a Poisson process (see Barlow and

T T




IR

T

Proschan (1975), Theorem 3.7) may be adapted as follows:

1,

Given j failures in a Poisson process in [0, T 5
’
the distribution of the failure times (here interpreted as
actual times) Tl’ T2, P Tj is the distribution of the
order statistics from the uniform distribution over the

interval [0, T_ .].
a,j
As a consequence, if Y; represents the observed

value of Ti' then

]

f(yl,yz,.--,yjlj)

v .3
a,)
and
T .
-_a,) j
e (T, ./8)
P(j Failures) = ) :
j!
Thus
T g
- a,j
5]
f(yl:yz,...,yj,j) = g—‘e-‘j—‘ .

Now if we apply Wald's lemma in the manner leading to

Theorem 2.1 letting

- T AR AT it
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j ./6
dg e e ar]/

0j ~ L

the conclusion of the lemma follows by the same algebraic
manipulations.

There remains the problem of selecting the values of
dl and d2 which are in some sense optimal, or near optimal,
while satisfying the given constraints. We shall say the
values of d1 and d2 are optimal if they minimize the length
of the confidence interval in Theorem 2.1 . The constraint
dl < al/k, k=12, ..., r, poses a dilemma. If dl is a
fixed constant as the theory behind Theorem 2.1 requires,
then it must be true that dl < a. It is not likely that a
value of dl in this range will be "optimal" in any sense of
the word. On the other hand if a value of dl is chosen
greater than a, and the test terminates with one failure,
then there is no upper bound (other than + «) for the
confidence interval.

The martingale inequality on which Theorem 2.1
is based has wide applicability. It is reasonable to
suspect that in a specific application the bound may be
guite conservative. Specifically the probability in
Theorem 2.1 may considerably exceed 1l-2a. This suggests
that some liberties might be taken in selecting d1 and d2

without violating the probability inequalities in ( 2.2)

and ( 2.3 ). Therefore, we propose t0choosed1 and d2 as

o ——
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functions of the sample path generated by the sequential
test. The following scheme implements this proposal.

Treat Uk' k=1Y 2, .0, N, as a function of 4. and

1

tk’ find the value of dl which

minimizes Uk' This optimal value is found to be the root

for each failure time,

of the equation

g(d) =1 - (%) In a -d + 1nd.

Note that the solution is not dependent on Tk and so, for
a given a, a set of optimal values of dl’ say {dll’ d12.
dl3' AR dln} can be computed by numerical methods. A

table of these values, for several values of a, is given in

Appendix 1. At each failure time, tk’ compute Uk using dlk'

Then if the minimum value of Uk occurs at tm say, we set

dl = dlm' The following lemma shows that for each k, the
relationship dlk < al/k will hold.

Lemma 2.3 . If dlk is the root of the equation
g(d) =1 - (1/k) 1lna-d + 1lnd, then d < al/k.

1k
Proof: First, g'(d) = 1/@d - 1 > 0, which implies
that g(d) is increasing on the interval (0, 1). Also
g(0) = -» and g(1) =-(1/k)1n o > O. I+ follows that g(d)
crosses the axis once from below in (0, 1). But g(ul/k) =
1/k 1/k

> 0. Thus dlk < a :

In the same way, consider Lk as a function of d2

l1-a

and find the set {d21,d22,...,d2n) of values which maximizes

A IR R KRN B 6 Sy R s
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Lk for k =1, 2, ..., n. These values are the roots of the
equations h(d) = 1 - (1/k) 1n a - Ind - 4"} and are also
tabled for some specific valuecs of « in Appendix 1. If the
maximum value of Lk occurs at tQ, set d2 = d22. Using the

same steps as in lemma 2.3 , it is seen that d2 < 1 for

k
each k.

To clarify this procedure, consider the following
example: Test plan I of MIL-STD-781C is used to test
0 6 = 60 against Hl : 0 = 81, where 80/0l = 1.5,
a =8 = .1. The test ends with an accept decision based on
six observed failures. At each failure time, the total time
on test was computed as were the upper and lower 95%
confidence limits using ( 2.2 ) and ( 2.3 ) and the optimal
values of dl and d2 given in Appendix 1. These computations
are summarized in Table 2.1 . A lower confidence limit was
also computed at the acceptance boundary as described by
lemma 2.2, using Ta,6 = 13.91. Failure times were
simulated using 6 = 80 = 1.5. According to our procedures
based on Theorem 2.1 , an approximate 90% confidence

interval for 6 is [.984, 4.101] with d, = .2628 and d2 =

1
.4244. The Bryant-Schmee 90% confidence interval for this
example is [1.108, 4.681).

The second method is really a simplification of

this first method. During computer simulations it was

noticed that, for a fixed dl or dz, max Lk and min U

k<r kir k

L TG P L kT I o S et e
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TABLE 2.1

Computation Results for Confidence Interval Example

Total
Test
Failure Time
k Ty s 17 Uy dox Ly
1 1.362 .0187 72.649 .1741 .2371
2 2.623 .0900 14.572 .2601 .3411
3 4.618 .1589 9.690 .3181 .4896
4 4.815 .2159 5.576 .3615 .4351
5 5.389 .2628 4.101 .3959 .4267
6 12.555 .3020 6.928 .4244 .8880
Ta,6 * 13491 - -- .4244 .9838
W ¥ ST M I e s ¢ o T R R T R S T
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usually occurred at or near t_, the last observed failure

¥
time. Hence, if we set d{ =G | and d2 = d2r we should get

1r
results nearly the same as with the first method. It was
also felt that this second method would be easier to justify
analytically. Unfortunately, an analytic justification of
either of these methods remains an unsolved problem. It is

not known if these posterior methods of selecting d, and d2

il
invalidate the probability inequalities (2,2 ) and (2.3 ).
To obtain some empirical conclusions, we conducted
computer simulations of two truncated sequential test plans
from MIL-STD-781C. At the time of test decision 60%, 80%,
and 90% confidence intervals for the mean failure time 6
were formed using both methods discussed here for selecting
d1 and d2. These confidence coefficients were chosen so
that our results could be compared with those obtained by
Bryant and Schmee (1979). Each simulation used 500 trials.
Estimates of the confidence coefficient, and the average
value of the endpoints were computed for our methods and for
the Bryant and Schmee intervals. Partial results are given
in Tables 2.2 through 2.5 . It was noted that, when the
test ended with an accept decision and one failure, the
upper endpoint on the confidence interval was often very
large, which tended to inflate the average endpoints.
Because of this, the average endpoints were also computed

excluding those trials which terminated in an accept

e
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TABLE

2.2

Simulation Results for 90% Confidence Interval from

MIL-STD~781C, Test Plan I; 00/6 ) 1)
a =g = .1
Estimated Ave. Endpoints, Ave. Endpoints,
G Coefficient at Least 1 Failure at Least 2 Failures
.884 <307 , .917 s 307 .917
«5 .898 «259 1.059 .259 1.059
.946 +256 1.102 .256 1.102
.912 « 7148 , 2.399 .708 1.637
1 .917 «655 ., 3.208 .650 1.760
.964 .647 , 3.228 .642 1.804
.916 1.020 , 7.038 1.003 3.743
1.5 .912 .942 , 8.487 .930 4.192
.962 .941 , 8.553 .930 4.367
.912 1037 15.331 1.096 5.800
2.0 .870 1.018 , 20.113 .989 6.734
.906 1.017 , 20.265 .988 7.081
Note: In each of Tables 2.2 through %D

(1) The first entry in each cell corresponds to
Bryant-Schmee results.

(2) The second entry corresponds to the first
method: wusing the optimal dl and d2 at each
failure.

(3) The third entry corresponds to the second
‘ method: wusing the optimal dl and d2 from the
% final failure time.

e T AT o 1

PO ET AP ST
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i TABLE 2.3

Simulation Results for 90% Confidence Interval from
MIL~-STD-781C, Test Plan III; 30/01 = 2,

a =8 = .1
Estimated Ave. Endpoints, Ave. Endpoints

) Coefficient at Least 1 Failure at Least 2 Failures
.886 w2590 1.398 .259 , 1.398

o> .944 <195 , 1.733 <195, 1.733
.974 «193. , 1.803 <193 1.803

.912 .868 , 3.746 .558 , 2.396

1 .931 <472 4,344 .463 , 2715
.962 .469 , 4.401 .460 , 2.797

.938 S92 8.729 .768 , 3.891

1.5 .944 .707 , 11.239 .688 , 4.272
.970 .706 , 11.430 687 , 4.521

.956 .940 , 18.898 «895 , 5.838

2.0 .962 «855 25.942 <825 7.232
.986 «855 26.140 829 7.616

o O e A T A T W R 3 W




TABLE - 2 4

Simulation Results for 80% Confidence Interval from
MIL-STD-781C, Test Plan I

Estimated Ave. Endpoints, Ave. Endpoints,

0 Coefficient at Least 1 Failure at Least 2 Failures
.784 342, .798 .342 , .798

5 .816 .286 , .907 .286 , .907
.898 .281 , .964 S8 .964

.810 .760 , 1.871 S T/ SeA 1.504

1 . 845 .696 , 2.434 .691 , o l.611
.920 .680 , 2.492 674 1.696

. 808 3. L2550 4.485 1500 i g i R 3.022

o5 .790 1.018 , 5.323 1.003 , 3.456
.892 1.01Y , 5.385 .996 , 3.609

.867 1.290 , 8.433 1247 , 4.661

2.0 .802 1.120 , 10.425 1.091 , 5.298

.867 1.118 , 10.661 1.089 , 5651




TABLE 2.5

Simulation Results from 80% Confidence lInterval from
MIL-STD-781C, Test Plan II1I

Estimated Ave. Endpoints, Ave. Endpoints

C) Coefficient at Least 1 Failure at Least 2 Failures
.788 .294 , 1.085 2945, 1.085

5 .872 <215, 1.346 2SS 1.346
.922 2120 4 437 S22, 1.437

.830 .601 , 1.857 .601 , 1.857

1.0 .887 .489 , 2.098 .489 , 2.098
.920 .484 , 2.198 .484 , 2.198

.856 .916 , 5.356 882 , 2.978

1.5 .849 .798 , 7.064 <122 3.527
.900 .794 , 7.188 .769 , 33l

.892 1.081 , 9.882 1.020 |, 4.311

2.0 .912 .946 , 12.656 .903 , 5.043
.956 .945 , 12.693 .903 , 5.332

R S ——
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decision with one failure. As expected, the Bryant-Schmee
intervals, on the average, were somewhat shorter than the
intervals from both of our methods. However, we also noted
that for some sample paths, our methods gave shorter
intervals than the corresponding Bryant-Schmee intervals.
The simulation results also indicate that the intervals
generated from our posterior methods of selecting dl and d2
remain conservative. We also note that our methods may be
just as easily applied to an untruncated sequential test,
while this is not so with the Bryant-Schmee approach. Their
method requires non-trivial computation of probabilities at
every discrete acceptance point up to that point where the
sample path ended. 1In the untruncated sequential test the
sample path may continue for a long time, resulting in a
rather formidable computation problem to get the Bryant-
Schmee intervals. We believe that, considering the
relative ease of computation and application, these approxi-
mate confidence intervals provide a competitive alternative

to those of Bryant and Schmee.

III. A Confidence Interval with No Observed Failures

The sequential life test may end in acceptance with
no failures observed. In this situation the confidence
interval should be one sided since there is no information
on which to base an upper limit. If no failures are

observed by total time TO' then we have observed a Poisson

T
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2
process with parameter A = n/9% for a total time TO' or
actual time To/n. This is equivalent to type I, or time,
censoring and Epstein (1960) showed that a one-sided 100 (l-a)
percent confidence interval for 6 1is
-
2T
0
L {3.1)
Xu,2

When no failures are observed, the two-sided

confidence interval of Theorem 2.1 reduces to

—

T (1-d,) T.(1-4,)
(o g 1J £3.2)

-1ln o dl ln o

If k = 0, the constraint on dl becomes 0 < dl < 0, leaving

the upper endpoint undefined. Since no failure times are
- known, we define the upper endpoint to be infinity. The

lower endpoint decreases as d2 decreases and approaches

To/(-ln o) as d2 goes to zero in the limit. The resulting

T
0 = ¥
[m ]. (3.3)

But from the relationship ketween the chi-~square and Poisson

interval is

distributions we have

2
“Xo, 272
Pixg 5 x5 ot ne M w g

Gl A o+




Hence,

~ 1ln a = xi 2/2 .

b !

and ( 3.1 ) is equivalent to ( 3.3 ), and either provides a
one~-sided 100 (l-a) percent confidence interval for 6 when

no failures have been observed in the life test.

IV. Testing with Replacement

In this section we will show that the derivations in
Section JTI are also valid if the sequential test is
conducted with replacement. Testing with replacement is
equivalent to observing a Poisson process with parameter
A = n/6, where again, n is the number of items placed on

test. As in Section II , define X, = t. - t. .. The X.,
b i i-1 i
i=1, 2, ..., n, are independent and are exponentially

distributed with mean lifetime 6/n. Hence,

X. X k -EE
S0t w B = n_ . 6
f(xl,...,xk,O) = ok e ek e o i

where Tk = ntk = total time on test at tk. We see that the
joint densities of Xyr X0 +e.y X, when testing with or
without replacement differ only by a constant involving n

and k. Thus, the density ratios in Section II will be the

same as here in the replacement case. It follows that




e

L
Theorem 2.1 also holds when testing with replacement.
Now, to establish the analogous result to Lemma 2.2 ,
we note that a total test time of Ta 5 is equal to actual
’
| time t_ . = T_ ./n if failed items are replaced. If t., is
1 a,j a,j i
the ith

ordered failure time and y; represents the observed

value of ti' then

; j!
f(YI'Y2I-°°'Yj|J)= "t__-"

J ’
a,j
and
-t ;
) (nt .]
a,)
P(j Failures) = = - .
j!
Thus
% T
; _nta, 5 =0,
£ ( 5y = 8 @ 6 - e 6
Y11Y20-~-rYjvJ Gj ej .

3
’

Except for the constant n this is the same result

obtained in the proof of Lemma 2.2 . The conclusion of

Lemma 2.2 , for testing with replacement, follows in the
same manner as in that proof.
It follows that all results and conclusions of

Section 1I1, where testing is without replacement, also

= |
" :

~ “W.&.ﬁwm.-_ S YR JER S S T .
b :
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apply to the sequential test scheme where failed items are

replaced.




APPENDIX 1

Tabled here are the optimal d, values for determining

2

the lower limit of the 100(l-a) percent two-sided confidence

interval,
Failures Confidence Coefficient

k 99% 98% 95% 90% 80%
1 0.1186 0.1309 0.1522 0.1741 0.2045
2 0.1879 0.2045 0.2323 0.2602 0.2973
3 0.2380 0.2568 0.2876 0.3180 0.3575
4 0.2771 0.2973 0.3298 0. 3615 0.4023
5 0.3092 0.3301 0.3637 0.3962 0.4371
6 0.3364 0.3575 0.3918 0.4243 0.4656
7 0.3597 0.3812 0.4160 0.4485 0.4894
8 0.3804 0.4023 0.4366 0.4691 0.5096
9 0.3988 0.4208 0.4551 0.4876 0.5271
10 0.4151 0.4371 0.4718 0.5034 0.5430
1l 0.4300 C.4516 0.4867 0.5184 0.5570
12 0.4437 0.4656 0.4999 0.5315 0.5702
| 13 0.4560 0.4779 0.5122 0.5430 0.5816
' 14 0.4674 0.4894 0.5236 0.5544 0.5922
15 0.4779 0.4999 0.5342 0.4641 0.6027
16 0.4885 0.5096 0.5430 0.5746 0.6115
17 0.4973 0.5192 0.5518 0.5825 0.6203
18 0.5061 0.5271 0.5605" 0.5904 0.6273
19 0.5148 0.5359 0.5685 0.5992 0.6344
20 0.5219 0.5430 0.5764 0.6062 0.6414
21 0.5298 0.5509 0.5834 06115 0.6484
22 0.5368 0.5570 0.5904 0.6186 0.6537
23 0.5430 0.5641 0.5957 0.6238 0.6590
24 0.5500 0.5702 0.6027 0.6309 0.6660
25 0.5553 0.5764 0.6080 0.6361 0.6695
26 0.5614 0.5816 0.6133 0.6414 0.6748
27 0.5676 0.5869 0.6186 0.6449 0.6801
i 28 0.5729 0.5922 0.6238 0.6520 0.6836
g 29 0.5781 0.5975 0.6273 0.6555 0.6871
‘ 30 0.5816 0.6027 0.6326 0.6590 0.6924
31 0.5869 0.6062 0.6379 0.6643 0.6977
32 0.5922 0.6115 0.6414 0.6678 0.7012
33 0.5957 0.6150 0.6449 0.6730 0.7047
34 0.5992 0.6203 0.6484 0.6766 0.7082
35 0.6045 0.6238 0.6520 0.6801 0.7117

TN B 5574 S L ATV KMo 50 A S e e e e el
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Failures Confidence Coefficient
k 99% 982 95% 90% 80%
36 0.6080 0.6273 0.6555 0.6836 0.7152
37 0.6115 0.6309 0.6590 0.6871 0. 7152
38 0.6150 0.6344 0.6625 0.6889 0.7187 ‘
39 0.6186 0.6379 0.6660 0.6906 0.7223
40 0.6221 0.6414 0.6695 0.6941 0.7258
41 0.6256 0.6449 0.6730 0.6977 0.7293
!
A
|
{
{
1
G AR IR A 3 3, S R P B {
]




determining the upper limit of the 100 (1-a)

Tabled here are the optimal d

el

sided confidence interval,

1

values for

percent two-

Failures Confidence Coefficient
k 99% 982 95% 90% 80%
1 0.0018 0.0037 0.0093 0.0187 0.0382
2 0.0267 0.0382 0.0619 0.0900 0.1329
3 0.0673 0.0864 0.1215 0.1590 0.2108
4 0.1090 0.1329 0.1742 0.2156 0.2712
5 0.1478 0.1742 0.2190 0.2625 0.3190
(3 0.1825 0.2108 0.2576 0.3020 0.3590
7 0.2137 0.2429 0.2907 0.3356 0.3912
8 0.2415 0.2712 0.3190 0.3639 0.4195
9 0.2664 0.2966 0.3444 0.3893 0.4439
10 0.2888 0.3190 0.3678 0.4107 0.4654
11 0.3098 0.3405 0.3873 0.4312 0.4849
12 0.3288 0.3590 0.4059 0.4498 0.5005
13 0.3464 0.3756 0.4225 0.4654 0.5161
14 0.3620 0.3912 0.4381 0.4800 0.5298
15 0.3766 0.4068 0.4517 0.4927 0.5434
16 0.3903 0.4195 0.4654 0.5064 0.5551
17 0.4029 0.4322 0.4771 0.5181 0.5668
18 0.4146 0.4439 0.4888 0.5278 0.5746
19 0.4264 0.4556 0.4985 0.5376 0.5844
20 0.4371 0.4654 0.5083 0.5473 0.5942
21 0.4458 0.4751 0.5181 0.5571 0.6020
22 0.4667 0.4849 0.5278 0.5649 0.6098
23 0.4654 0.4927 0.5356 0.5727 0.6176
24 0.4732 0.5005 0.5434 0.5785 0.6234
25 0.4810 0.5083 0.5512 0.5864 0.6293
26 0.4888 0.5161 0.5571 0.5942 0.6371
27 0.4966 0.5239 0.5629 0.6000 0.6410
28 0.5044 0.5298 0.5707 0.6059 0.6488
29 0.5109 0.5376 0.5766 0.6117 0.6527
30 0.5161 0.5434 0.5824 0.6176 0.6566
31 0.5239 0.5493 0.5883 0.6215 0.6605
32 0.5298 0.5531 0.5942 0.6273 0.6683
33 0.5356 0.5610 0.5981 0.6332 0.6722
34 0.5395 0.5668 0.6039 0.6371 0.6761
35 0.5454 Q5707 0.6098 0.6410 0.6800
36 0.5512 0.5746 0.6137 0.6449 0.6839
37 0.5551 0.5805 0.6176 0.6488 0.6878
38 0.5610 0.5844 0.6215 0.6527 0.6917
39 0.5649 0.5903 0.6254 0.6566 0.6956
40 0.5707 0.5942 0.6293 0.6605 0.6995
41 0.5746 0.5981 0.6332 0.6644 0.7034
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