AD-A	073 89	7 MIS APP AUG	SOURI ROXIMA 79 K	UNIV-CON TE CON B FAI	OLUMBIA FIDENCE	DEPT	OF STAT	ISTICS	XPONENT	IAL PA N00014	FAMETER -76-C-0	/6 12/1 FETC 789	:(U)
	AD A073897			00000s									
Ŵ						Ŵ	nim			abterri	END DATE FILMED 10-79 DDC		
	a												
										*			
													./

1. REPORT NUMBER	READ INSTRUCTIONS
	NO. 3. RECIPIENT'S CATALOG NUMBER
88	
I. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVER
Approximate Confidence Intervals for an Exponent	ial material product
Parameter from a Sequential Life Test	Technical Report
	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(#)
Konneth B. Reinhanka	N00014-76-C-0789
Kenneth B. Fairbanks	N00014-78-C-0785
Company and a second seco	-
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TAS
Department of Statistics	AREA & WORK UNIT NUMBERS
University of Missouri-Columbia	
Columbia, MO 65211	NR 042-353
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Office of Naval Research	(1/ August 1979
Department of the Navy (14 TK-88)	12. NUMBER OF PAGES
Arlington, VA 22217	33
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report)
(10) 27.1	Unclassified
(12)m	154. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
18. SUPPLEMENTARY NOTES	
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde II necessary and identify by block number Confidence intervals, sequential test, life test 	ber) , exponential distribution
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde il necessary and identify by block numbers) Confidence intervals, sequential test, life test ABSTRACT (Continue on reverse elde il necessary and identify by block numbers) A sequential life test for the exponential locat given by Epstein and Sobel (1955). This sequent 	•••) •••) •••) tion parameter was tial test may be
 SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse elde II necessary and identify by block numb Confidence intervals, sequential test, life test ABSTRACT (Continue on reverse elde II necessary and identify by block numb A sequential life test for the exponential locat given by Epstein and Sobel (1955). This sequent modified by truncating the test at r failures a time t'. There may be a need or a desire to al after the test decision, using the test data. E (1979) have given confidence intervals for the m 	 er, exponential distribution er, er, cion parameter was cial test may be and/or at total test lso estimate the parameter Bryant and Schmee mean lifetime, θ ,

20.

. 1

from a truncated sequential test scheme, using methods which depend heavily on numerical techniques using a computer. A more flexible approach is considered using a martingale inequality which was also given by Wald (1947) in another context. Interval estimates are found which are functions of a positive constant d which must be chosen less than an upper bound which is itself a function of the number of failures observed. It is suggested that d be chosen as a function of the sample path (i.e., after the test is complete). The validity of the confidence coefficient comes into question if this posterior selection of d is employed. Simulation studies indicate that the resulting intervals are usually conservative.

Acces	sion For	2	X
NTIS	GRA&I	K	
Unonn	B	H	
Justi	lication_		-
By			
Distr	bution/		_
Avai	Lability	Codes	
	Availan	d/or	
Dist	specia	1	
4			
	1000		
		_	

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

Approximate Confidence Intervals for an Exponential Parameter from a Sequential Life Test

by

Kenneth B. Fairbanks* University of Missouri - Colubmia

Technical Report No. 88

August 1979

Prepared under contract N00014-76-C-0789

(NR-042-353)

Office of Naval Research

Richard W. Madsen, Project Director

This report is based on part of the author's Ph.D. dissertation.

University of Missouri Department of Statistics Columbia, Missouri 65211 Approximate Confidence Intervals for an Exponential Parameter from a Sequential Life Test

Abstract

A sequential life test for the exponential location parameter was given by Epstein and Sobel (1955). This \mathcal{R} sub \mathcal{P} sequential test may be modified by truncating the test at r failures and/or at total test time t'. There may be a need or a desire to also estimate the parameter after the test decision, using the test data. Bryant and Schmee (1979) Theta have given confidence intervals for the mean lifetime, (θ) , from a truncated sequential test scheme, using methods which depend heavily on numerical techniques using a computer. A more flexible approach is considered using a martingale inequality which was also given by Wald (1947) in another context. Interval estimates are found which are functions of a positive constant d which must be chosen less than an upper bound which is itself a function of the number of failures observed. It is suggested that d be chosen as a function of the sample path (i.e., after the test is complete). The validity of the confidence coefficient comes into question if this posterior selection of d is employed. Simulation studies indicate that the resulting intervals are usually conservative.

Approximate Confidence Intervals for an Exponential Parameter from a Sequential Life Test

I. Introduction

The theory of sequential tests was developed by Abraham Wald (1947). Epstein and Sobel (1955) applied this theory directly to get a sequential life test in the exponential case. This requires the assumption that, if τ is the lifetime under consideration, the probability density function of τ is given by

 $f(\tau) = \begin{cases} \frac{1}{\theta} e^{-\tau/\theta} & \text{if } \tau \ge 0\\ 0 & \text{elsewhere,} \end{cases}$

where $\theta > 0$ is the average lifetime of an item. In the sequential exponential life test, the continuation region is bounded by two parallel lines in the failure-total time plane as depicted in figure 1.1. Initially n items are placed on test with or without replacement. At each failure time a decision is made to accept or reject the null hypothesis, or to continue the test. The test continues as long as the sample Failures

Figure 1.1. Sequential life test boundaries with time and failure truncation.

-2-

path remains inside the continuation boundaries. A modification of this test is to truncate the continuation region at r_0 failures and/or at total time t'. This truncation is also illustrated in figure 1.1. These truncated sequential tests are used by the Navy as reliability acceptance tests in MIL-STD-781C (1977). The tables given in MIL-STD-781C are for testing $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ where $\theta_1 < \theta_0$. Since values of θ considerably different from θ_0 or θ_1 could lead to the acceptance or rejection of H_0 , it may be of interest to also estimate θ following the test decision using the test data. This report gives a method for finding approximate confidence intervals for θ from the sequential test or the truncated sequential test.

Bryant and Schmee (1979) have found confidence intervals for θ following the truncated sequential tests in MIL-STD-781C. Their results require the application of a technique developed by Aroian (1963), and Epstein, Patterson and Qualls (1963). This technique, which Aroian calls the "direct method," reduces the continuation region to a grid of discrete points, including a set of points on the boundary of the continuation region. Using an iterative procedure and the properties of the exponential distribution, a probability for each point on the boundary can be found as a function of θ . Confidence intervals for θ can then be found using numerical techniques with the computer. A drawback of this

-3-

method is the amount of computation required and its dependence on the location of the continuation boundary. All computations may have to be repeated if the value of a test parameter is changed.

The objective of this report is to find a method which is easier to apply computationally and perhaps is more versatile. Our approach is to use density ratios defined at each failure time and apply an inequality which was given by Wald (1947). He suggested the inequality could be applied to sequential estimation problems. O'Brien (1973) uses this inequality to find sequential confidence intervals for the shape parameter of the gamma distribution. The inequality is also known to be a special case of a well known martingale inequality. Robbins (1970) and Lai (1976) also have results in sequential estimation from this inequality.

In this report, the inequality is applied in the manner used by O'Brien, wherein the density ratio involves a positive constant which must be chosen prior to the experiment in some optimal fashion. The derivation of the intervals in this report produces a constraint on this constant which is a function of the number of failures observed. Consequently, it is suggested that the intervals may be improved if the constant is chosen as a function of the sample path generated by the failure times. Whether this posterior method of selecting the constant invalidates the desired confidence coefficient remains an open question. Computer simulations indicate that the resulting intervals remain conservative, and that, while their width is

-4-

generally greater than the Bryant-Schmee intervals, the comparison is favorable in light of the utility of these intervals.

II. Testing without Replacement

If n items with exponential lifetimes are placed on test without replacement, then denote the ordered failure times as t_1, t_2, \ldots, t_n . Define $X_i \equiv t_i - t_{i-1}$, where $t_0 = 0$. The X_i , $i = 1, 2, \ldots, n$, are independent with density functions.

$$f(x_{i};\theta) = \begin{cases} \frac{(n-i+1)}{\theta} e^{-\frac{(n-i+1)}{\theta}x_{i}} \\ 0 & x_{i} > 0 \\ 0 & \text{elsewhere.} \end{cases}$$

Consequently we can write the joint density of x_1, x_2, \ldots, x_k as

$$f(x_1, x_2, \dots, x_k) = \begin{cases} \frac{n!}{(n-k)!\theta^k} e^{-\frac{1}{\theta} \sum_{i=1}^k (n-i+1)x_i}, & x_i > 0\\ & & i=1,2,\dots,k \\ 0 & & elsewhere \end{cases}$$

or as

Equivalently,

$$f(x_1, x_2, \dots, x_k) = \frac{n!}{(n-k)!\theta^k} e^{-\frac{T_k}{\theta}},$$

where

$$T_{k} = \sum_{i=1}^{k} (n-i+1) x_{i} = \sum_{i=1}^{k} t_{i} + (n-k) t_{k}$$

= total time on test at t_{k} .

Also, define

$$Y_{i} = \begin{cases} \frac{f(X_{1}, X_{2}, \dots, X_{i}; d_{1}\theta)}{f(X_{1}, X_{2}, \dots, X_{i}; \theta)} & \text{if } i = 1, 2, \dots, n \\ \\ Y_{n} & \text{if } i > n. \end{cases}$$

At this point d_1 is an arbitrary positive constant. It can be shown quite easily that Y_1, Y_2, \ldots is a martingale.

$$E[Y_{k+1}|Y_{k}, \dots, Y_{1}] = E\begin{bmatrix} k+1\\ \prod \\ i=1 \\ k+1 \\ m \\ f(X_{i}; \theta) \\ i=1 \end{bmatrix} |Y_{k}, \dots, Y_{1}|$$

$$= \frac{k}{\prod_{i=1}^{k} f(X_{i}; d_{1}\theta)}_{i=1} E\begin{bmatrix} f(X_{k+1}; d_{1}\theta)\\ f(X_{k+1}; \theta) \\ i=1 \end{bmatrix} |Y_{k}, \dots, Y_{1}|$$

-6-

$$= Y_{k} E \left[\frac{f(X_{k+1}; d_{1}\theta)}{f(X_{k+1}; \theta)} \right] = Y_{k} \int_{0}^{\infty} \frac{f(X_{k+1}; d_{1}\theta)}{f(X_{k+1}; \theta)} f(X_{k+1}; \theta) dX_{k+1}$$
$$= Y_{k} \cdot$$

Thus, Y_1 , Y_2 , ... is a martingale by definition. We can now use a well known martingale inequality (see Doob [1953]) which states that, for $\varepsilon > 0$,

$$\frac{P[\max Y_i > \varepsilon]}{i < k} \leq \frac{(Y_k)}{\varepsilon}, \text{ for all } k.$$

Since $E(Y_k) = 1$, the bound does not depend on k and the inequality becomes

$$\frac{P[\max Y_i > \varepsilon]}{i} \leq \frac{1}{\varepsilon},$$

or

$$P[Y_{i} \leq \varepsilon, \text{ for all } i] \geq 1 - \frac{1}{\varepsilon} . \qquad (2.1)$$

We note that the inequality (2.1) was also given by Wald (1948), without relying on the martingale property, in the following lemma.

Wald Lemma: Let X_1, X_2, \ldots, X_n be a sequence of random variables with joint density $f_{1n}(x_1, \ldots, x_n)$, n =1, 2, 3, ..., under hypothesis H_1 and $f_{0n}(x_1, \ldots, x_n)$ under hypothesis H_0 . Let α be a constant between 0 and 1. Then, under H_0 ,

$$P[(f_{1n}/f_{0n}) < \frac{1}{\alpha}, \text{ for all } n] \ge 1 - \alpha.$$

In the context of the sequential exponential life test

$$Y_{i} = \frac{\theta^{k} e^{-\frac{T_{k}}{d_{1}\theta}}}{(d_{1}\theta)^{k} e^{\frac{T_{k}}{\theta}}} = d_{1}^{-k} e^{-\frac{T_{k}}{\theta}(\frac{1}{d_{1}}-1)}.$$

Then, applying inequality (2.1), we get

$$P[d_1^{-k} e^{-\frac{T_k}{\theta}} (\frac{1}{d_1} - 1) \leq \frac{1}{\alpha}, \text{ for all } k] \geq 1 - \alpha.$$

Equivalently,

$$P\left[\frac{T_k(1-d_1)}{\theta d_1} > -k \ln d_1 + \ln \alpha, \text{ for all } k\right] \ge 1 - \alpha.$$

The right side of the inequality in brackets is positive if $d_1 < \alpha^{1/k}$. Finally we have, for $d_1 < \alpha^{1/k}$,

$$\mathbb{P}\left[\theta < \frac{T_{k}(1-d_{1})}{d_{1}\ln\left(\frac{\alpha}{d_{1}^{k}}\right)}, \text{ for all } k\right] \geq 1 - \alpha. \quad (2.2)$$

-8-

We will refer to this upper bound on θ as $\textbf{U}_k.$ Inequality (2.2) can also be expressed as

$$\frac{P(\theta < \min U_k) \geq 1 - \alpha}{k}.$$

Likewise define

$$z_{i} = \begin{cases} \frac{f(x_{1}, x_{2}, \dots, x_{i}; \theta/d_{2})}{f(x_{1}, x_{2}, \dots, x_{i}; \theta)} & \text{if } i = 1, 2, \dots, n \\ \\ z_{n} & \text{if } i > n, \end{cases}$$

where d_2 is an arbitrary positive constant. From inequality (2.1) we have

$$P[Z_k < \frac{1}{\alpha}, \text{ for all } k] \ge 1 - \alpha,$$

where

$$z_{k} = \left(\frac{d_{2}\theta}{\theta}\right)^{k} \frac{e^{-T_{k}d_{2}/\theta}}{e^{-T_{k}/\theta}} = d_{2}^{k} e^{-\frac{T_{k}}{\theta}(d_{2}-1)}$$

This yields

and the state of t

$$P[d_2^k e^{-\frac{T_k}{\theta}(d_2-1)} < \frac{1}{\alpha}, \text{ for all } k] \ge 1 - \alpha,$$

or

-9-

$$P\left[\frac{T_k(1-d_2)}{\theta} < -\ln (\alpha d_2^k), \text{ for all } k\right] \ge 1 - \alpha.$$

If - ln $(\alpha d_2^k) > 0$, i.e., $d_2 < 1/\alpha$, then

$$P\left[\frac{T_k(1-d_2)}{-\ln(\alpha d_2^k)} < \theta, \text{ for all } k\right] \ge 1 - \alpha. \quad (2.3)$$

We shall refer to this lower bound on θ as L_k . If L_k is to be positive it must be true that $d_2 < 1$ and $d_2 < 1/\alpha^{1/k}$. Since $\alpha^{1/k} < 1$, we have the single constraint $d_2 < 1$. Here also, it is true that

$$\frac{P[\max L_k < \theta] \geq 1 - \alpha,}{k}$$

since (2.3) is valid for all k. Applying the Bonferroni inequality gives

$$\frac{P(\max L_k < \theta, \min U_k > \theta)}{k} \geq \frac{P(\max L_k < \theta)}{k} + \frac{P(\min U_k > \theta)}{k} - 1,$$

or

 $\Pr[\max_{k} L_{k} < \theta < \min_{k} U_{k}] \ge 1 - \alpha + 1 - \alpha - 1 = 1 - 2\alpha.$

This establishes the following theorem.

Theorem 2.1 If a sequential exponential life test is conducted without replacement and terminates with r failures, then a two-sided confidence interval for the

-10-

mean lifetime θ , having confidence coefficient at least $1 - 2\alpha$, is given by

$$\max_{k \leq r} \frac{T_k(1-d_2)}{-\ln (\alpha d_2^k)}, \min_{k \leq r} \frac{T_k(1-d_1)}{d_1 \ln (\frac{\alpha}{d_1^k})}$$

where $0 < d_1 < \alpha^{1/k}$ and $0 < d_2 < 1$.

Due to the nature of the interval, it may happen that

$$\max_{k \leq r} L_k \geq \min_{k \leq r} U_k.$$

This leaves us with a confidence interval whose lower limit exceeds its upper limit. Computer simulation studies have shown that this inversion of the endpoints occurs infrequently, often as a consequence of an unusually early failure. To avoid this predicament, the following iterative scheme is proposed whenever

$$\max_{k \leq r} L_k \geq \min_{k \leq r} U_k.$$

(1) The upper limit of the confidence interval, say U, is assigned the value of the next larger member in the set $\{U_k : k = 1, 2, ..., n\}$.

- (2) If U is greater than the lower limit, say L, the endpoints are ordered correctly and the procedure stops.
- (3) If U is smaller than the lower limit, assign to L the value of the next smaller number of the set {L_k : k = 1,2,...,n}.
- (4) If $L \ge u$ return to step (1).

Since inequalities (2.2) and (2.3) are valid for all k, the interval that results from applying this procedure will still have a confidence coefficient at least $1-2\alpha$.

Accept decisions in the sequential test occur between failure times. Consequently, if an accept decision occurs and j failures have been observed, the total time on test when the decision is made to accept H_0 , denoted by $T_{a,j}$ say, will exceed T_j , the total time on test at the jth failure. Furthermore

$$\frac{T_{a,j}(1-d_2)}{-\ln(\alpha d_2^k)} > \frac{T_{j}(1-d_2)}{-\ln(\alpha d_2^k)}$$

and it may also be true that

$$\frac{T_{a,j}(1-d_2)}{-\ln(\alpha d_2)} > \frac{\max}{k \leq j} \frac{T_k(1-d_2)}{-\ln(\alpha d_2)}$$

This suggests that we might shorten the confidence interval for θ by increasing the lower limit utilizing this

total test time at the time of an accept decision. Note that the upper limit cannot be improved in the same manner since there we seek the minimum of a set, and $T_{a,j} > T_j$ implies the minimum will occur at a failure time. The lower limit of the interval in Theorem 2.1 was chosen as the maximum of the set {L_k, k = 1,2,...,r}. The following lemma admits the use of

$$\frac{T_{a,j}^{(1-d_2)}}{-\ln(\alpha d_2^k)}$$

as the lower limit when an accept decision occurs.

Lemma 2.2 If the sequential life test terminates in an accept decision with j failures and total test time $T_{a,j}$, then

$$P\left[\theta > \frac{T_{a,j}(1-d_2)}{-\ln(\alpha d_2)}\right] \ge 1 - \alpha .$$

Proof: We note that this is an exponential life test, without replacement, which is observed for a total test time t'. This test can be shown to be equivalent to a Poisson process with parameter $\lambda = 1/\theta$ which is observed for <u>actual</u> <u>time</u> t'. We will apply that result here with t' = T_{a,j}. A well known result for a Poisson process (see Barlow and Proschan (1975), Theorem 3.7) may be adapted as follows:

Given j failures in a Poisson process in $[0, T_{a,j}]$, the distribution of the failure times (here interpreted as actual times) T_1, T_2, \ldots, T_j is the distribution of the order statistics from the uniform distribution over the interval $[0, T_{a,j}]$.

As a consequence, if y_i represents the observed value of T_i , then

$$f(y_1, y_2, \dots, y_j | j) = \frac{j!}{T_{a,j}},$$

and

$$P(j \text{ Failures}) = \frac{e^{-\frac{T_{a,j}}{\theta}j}}{j!}$$

Thus

$$f(y_1, y_2, \dots, y_j, j) = \frac{e^{-\frac{T_a, j}{\theta}}}{e^{j}}.$$

Now if we apply Wald's lemma in the manner leading to Theorem 2.1 letting

-14-

$$f_{1j} = \frac{d_2^j e^{-d_2^T a_{,j}/\theta}}{\theta^j} \text{ and } f_{0j} = e^{-\frac{T_{a,j}/\theta}{\theta^j}}.$$

the conclusion of the lemma follows by the same algebraic manipulations.

There remains the problem of selecting the values of d_1 and d_2 which are in some sense optimal, or near optimal, while satisfying the given constraints. We shall say the values of d_1 and d_2 are optimal if they minimize the length of the confidence interval in Theorem 2.1. The constraint $d_1 < \alpha^{1/k}$, k = 1, 2, ..., r, poses a dilemma. If d_1 is a fixed constant as the theory behind Theorem 2.1 requires, then it must be true that $d_1 < \alpha$. It is not likely that a value of d_1 in this range will be "optimal" in any sense of the word. On the other hand if a value of d_1 is chosen greater than α , and the test terminates with one failure, then there is no upper bound (other than $+\infty$) for the confidence interval.

The martingale inequality on which Theorem 2.1 is based has wide applicability. It is reasonable to suspect that in a specific application the bound may be quite conservative. Specifically the probability in Theorem 2.1 may considerably exceed 1-2 α . This suggests that some liberties might be taken in selecting d₁ and d₂ without violating the probability inequalities in (2.2) and (2.3). Therefore, we propose to choose d₁ and d₂ as

-15-

functions of the sample path generated by the sequential test. The following scheme implements this proposal.

Treat U_k , k = 1, 2, ..., n, as a function of d_1 and for each failure time, t_k , find the value of d_1 which minimizes U_k . This optimal value is found to be the root of the equation

$$g(d) = 1 - (\frac{1}{k}) \ln \alpha - d + \ln d.$$

Note that the solution is not dependent on T_k and so, for a given α , a set of optimal values of d_1 , say $\{d_{11}, d_{12}, d_{13}, \ldots, d_{1n}\}$ can be computed by numerical methods. A table of these values, for several values of α , is given in Appendix 1. At each failure time, t_k , compute U_k using d_{1k} . Then if the minimum value of U_k occurs at t_m say, we set $d_1 \equiv d_{1m}$. The following lemma shows that for each k, the relationship $d_{1k} < \alpha^{1/k}$ will hold.

Lemma 2.3. If d_{1k} is the root of the equation g(d) = 1 - (1/k) ln a - d + lnd, then $d_{1k} < \alpha^{1/k}$.

Proof: First, g'(d) = 1/d - 1 > 0, which implies that g(d) is increasing on the interval (0, 1). Also g(0) = $-\infty$ and g(1) = $(1/k) \ln \alpha > 0$. It follows that g(d) crosses the axis once from below in (0, 1). But g($\alpha^{1/k}$) = $1-\alpha^{1/k} > 0$. Thus $d_{1k} < \alpha^{1/k}$.

In the same way, consider L_k as a function of d_2 and find the set $\{d_{21}, d_{22}, \dots, d_{2n}\}$ of values which maximizes

-16-

 L_k for k = 1, 2, ..., n. These values are the roots of the equations h(d) = 1 - (1/k) ln α - lnd - d⁻¹ and are also tabled for some specific values of α in Appendix 1. If the maximum value of L_k occurs at t_k , set $d_2 \equiv d_{2k}$. Using the same steps as in lemma 2.3, it is seen that $d_{2k} < 1$ for each k.

To clarify this procedure, consider the following example: Test plan I of MIL-STD-781C is used to test H_0 : $\theta = \theta_0$ against H_1 : $\theta = \theta_1$, where $\theta_0/\theta_1 = 1.5$, $\alpha = \beta = .1$. The test ends with an accept decision based on six observed failures. At each failure time, the total time on test was computed as were the upper and lower 95% confidence limits using (2.2) and (2.3) and the optimal values of d1 and d2 given in Appendix 1. These computations are summarized in Table 2.1. A lower confidence limit was also computed at the acceptance boundary as described by 2.2, using $T_{a,6} = 13.91$. Failure times were lemma simulated using $\theta = \theta_0 = 1.5$. According to our procedures based on Theorem 2.1, an approximate 90% confidence interval for θ is [.984, 4.101] with $d_1 = .2628$ and $d_2 =$.4244. The Bryant-Schmee 90% confidence interval for this example is [1.108, 4.681].

The second method is really a simplification of this first method. During computer simulations it was noticed that, for a fixed d_1 or d_2 , max L_k and min U_k $k \le r$ $k \le r$ $k \le r$

-17-

Failure k	Total Test Time ^T k	d _{lk}	U _k	d _{2k}	^L k
1	1.362	.0187	72.649	.1741	.2371
2	2.623	.0900	14.572	.2601	.3411
3	4.618	.1589	9.690	.3181	.4896
4	4.815	.2159	5.576	.3615	.4351
5	5.389	.2628	4.101	.3959	.4267
6	12.555	.3020	6.928	.4244	.8880
^T a,6	· 13.91			.4244	.9838

TABLE 2.1

Computation Results for Confidence Interval Example

-18-

usually occurred at or near t_r , the last observed failure time. Hence, if we set $d_1 \equiv d_{1r}$ and $d_2 = d_{2r}$ we should get results nearly the same as with the first method. It was also felt that this second method would be easier to justify analytically. Unfortunately, an analytic justification of either of these methods remains an unsolved problem. It is not known if these posterior methods of selecting d_1 and d_2 invalidate the probability inequalities (2.2) and (2.3).

To obtain some empirical conclusions, we conducted computer simulations of two truncated sequential test plans from MIL-STD-781C. At the time of test decision 60%, 80%, and 90% confidence intervals for the mean failure time θ were formed using both methods discussed here for selecting d, and d₂. These confidence coefficients were chosen so that our results could be compared with those obtained by Bryant and Schmee (1979). Each simulation used 500 trials. Estimates of the confidence coefficient, and the average value of the endpoints were computed for our methods and for the Bryant and Schmee intervals. Partial results are given in Tables 2.2 through 2.5. It was noted that, when the test ended with an accept decision and one failure, the upper endpoint on the confidence interval was often very large, which tended to inflate the average endpoints. Because of this, the average endpoints were also computed excluding those trials which terminated in an accept

-19-

TABLE 2.2

Simulation Results for 90% Confidence Interval from MIL-STD-781C, Test Plan I; $\theta_0/\theta = 1.5$ $\alpha = \beta = .1$

	Estimated	Ave. Endpo	oints,	Ave.	Endpoints,
9	Coefficient	at Least I	Failure	at Leas	st 2 Failures
	884	307	917	307	917
.5	. 898	.259	1.059	.259	1.059
	.946	.256 ,	1.102	.256	1.102
	.912	.714 ,	2.399	.708	1.637
1	.917	.655 ,	3.208	.650	1.760
	.964	.647 ,	3.228	.642	1.804
	.916	1.020 ,	7.038	1.003	3.743
1.5	.912	.942 ,	8.487	.930	4.192
	.962	.941 ,	8.553	.930	4.367
	.912	1.137 ,	15.331	1.096	5.800
2.0	.870	1.018 ,	20.113	.989	6.734
	.906	1.017 ,	20.265	.988	7.081

Note: In each of Tables 2.2 through 2.5 ,

- The first entry in each cell corresponds to Bryant-Schmee results.
- (2) The second entry corresponds to the first method: using the optimal d₁ and d₂ at each failure.
- (3) The third entry corresponds to the second method: using the optimal d₁ and d₂ from the final failure time.

-20-

TTTTTT	0	2	
TABLE	4.	2	

1

Simulation Results for 90% Confidence Interval from MIL-STD-781C, Test Plan III; $\theta_0/\theta_1 = 2$, $\alpha = \beta = .1$

	Estimated	Ave. Endp	oints,	Ave. End	lpoints
θ	Coefficient	at Least 1	Failure	at Least 2	Failures
	.886	.259 ,	1.398	.259 ,	1.398
.5	.944	.195 ,	1.733	.195 ,	1.733
	.974	.193 ,	1.803	.193 ,	1.803
	.912	.868 ,	3.746	.558 .	2.396
1	.931	.472 .	4.344	.463 .	2.715
	.962	.469 ,	4.401	.460 ,	2.797
	.938	.792 ,	8.729	.768 ,	3.891
1.5	.944	.707 .	11.239	.688 ,	4.272
	.970	.706 ,	11.430	.687 ,	4.521
	.956	.940 .	18.898	.895 ,	5.838
2.0	.962	.855 .	25.942	.825 .	7.232
	.986	.855 ,	26.140	.825 ,	7.616

-21-

TABLE	2.4	

Simulation Results for 80% Confidence Interval from MIL-STD-781C, Test Plan I

	Estimated	Ave. Endpo	oints,	Ave. End	points,
θ	Coefficient	at Least 1	Failure	at Least	2 Failures
	784	342	. 798	. 342 .	. 798
.5	.816	.286	.907	.286	.907
	.898	.281 ,	.964	.281 ,	.964
	.810	.760 ,	1.871	.752 ,	1.504
1	.845	.696 ,	2.434	.691 ,	1.611
	.920	.680 ,	2.492	.674 ,	1.696
	.808	1.125 ,	4.485	1.103 ,	3.022
1.5	.790	1.018 ,	5.323	1.003 ,	3.456
	.892	1.011 ,	5.385	.996 ,	3.609
	.867	1.290 ,	8.433	1.247 ,	4.661
2.0	.802	1.120 ,	10.425	1.091 ,	5.298
	.867	1.118 ,	10.661	1.089 ,	5.657

No service and the second states of the second s

TIDIT	2	F
TADLE	2.	2

Simulation Results from 80% Confidence Interval from MIL-STD-781C, Test Plan III

	Estimated	Ave. E	ndpoints,	Ave.	Endpoints
θ	Coefficient	at Leas	t l Failure	at Lea	st 2 Failure
	.788	.294 ,	1.085	.294	, 1.085
.5	.872	.215 ,	1.346	.215	, 1.346
	.922	.212 ,	1.437	.212	. 1.43
	.830	.601 ,	1.857	.601	, 1.85
1.0	.887	.489 ,	2.098	.489	, 2.098
	.920	.484 ,	2.198	.484	. 2.198
	.856	.916 ,	5.356	.882	. 2.978
1.5	.849	.798 .	7.064	.772	. 3.52
	.900	.794 ,	7.188	.769	, 3.73
	.892	1.081 ,	9.882	1.020	, 4.31
2.0	.912	.946 .	12.656	.903	. 5.04
	.956	.945 ,	12.693	.903	, 5.33

Life and an and and and

-23-

decision with one failure. As expected, the Bryant-Schmee intervals, on the average, were somewhat shorter than the intervals from both of our methods. However, we also noted that for some sample paths, our methods gave shorter intervals than the corresponding Bryant-Schmee intervals. The simulation results also indicate that the intervals generated from our posterior methods of selecting d, and d, remain conservative. We also note that our methods may be just as easily applied to an untruncated sequential test, while this is not so with the Bryant-Schmee approach. Their method requires non-trivial computation of probabilities at every discrete acceptance point up to that point where the sample path ended. In the untruncated sequential test the sample path may continue for a long time, resulting in a rather formidable computation problem to get the Bryant-Schmee intervals. We believe that, considering the relative ease of computation and application, these approximate confidence intervals provide a competitive alternative to those of Bryant and Schmee.

III. A Confidence Interval with No Observed Failures

The sequential life test may end in acceptance with no failures observed. In this situation the confidence interval should be one sided since there is no information on which to base an upper limit. If no failures are observed by total time T_0 , then we have observed a Poisson

-24-

process with parameter $\lambda = n/\theta$ for a total time T_0 , or actual time T_0/n . This is equivalent to type I, or time, censoring and Epstein (1960) showed that a one-sided $100(1-\alpha)$ percent confidence interval for θ is

$$\begin{bmatrix} \frac{2T_0}{\chi_{\alpha,2}^2}, & \infty \\ \chi_{\alpha,2} \end{bmatrix}.$$
 (3.1)

When no failures are observed, the two-sided confidence interval of Theorem 2.1 reduces to

$$\begin{bmatrix} \frac{T_0(1-d_2)}{-\ln \alpha} & \frac{T_0(1-d_1)}{d_1 \ln \alpha} \end{bmatrix}$$
(3.2)

If k = 0, the constraint on d_1 becomes 0 < d_1 < 0, leaving the upper endpoint undefined. Since no failure times are known, we define the upper endpoint to be infinity. The lower endpoint decreases as d_2 decreases and approaches $T_0/(-\ln \alpha)$ as d_2 goes to zero in the limit. The resulting interval is

$$\left[\frac{T_0}{-\ln \alpha}, \infty\right]. \tag{3.3}$$

But from the relationship between the chi-square and Poisson distributions we have

$$P(\chi_2^2 > \chi_{\alpha,2}^2) = e^{-\chi_{\alpha,2}^2/2} = \alpha.$$

Hence,

$$-\ln \alpha = \chi^2_{\alpha,2}/2 ,$$

and (3.1) is equivalent to (3.3), and either provides a one-sided $100(1-\alpha)$ percent confidence interval for θ when no failures have been observed in the life test.

IV. Testing with Replacement

In this section we will show that the derivations in Section II are also valid if the sequential test is conducted with replacement. Testing with replacement is equivalent to observing a Poisson process with parameter $\lambda = n/\theta$, where again, n is the number of items placed on test. As in Section II, define $X_i \equiv t_i - t_{i-1}$. The X_i , i = 1, 2, ..., n, are independent and are exponentially distributed with mean lifetime θ/n . Hence,

$$f(x_1,\ldots,x_k;\theta) = \frac{n^k}{\theta^k} e^{-\frac{n}{\theta} \sum_{i=1}^k x_i} = \frac{n^k}{\theta^k} e^{-\frac{nt_k}{\theta}} = \frac{n^k}{\theta^k} e^{-\frac{T_k}{\theta}},$$

where $T_k = nt_k = total$ time on test at t_k . We see that the joint densities of X_1, X_2, \ldots, X_k when testing with or without replacement differ only by a constant involving n and k. Thus, the density ratios in Section II will be the same as here in the replacement case. It follows that

Theorem 2.1 also holds when testing with replacement.

Now, to establish the analogous result to Lemma 2.2, we note that a total test time of $T_{a,j}$ is equal to actual time $t_{a,j} = T_{a,j}/n$ if failed items are replaced. If t_i is the ith ordered failure time and y_i represents the observed value of t_i , then

$$f(y_1, y_2, \dots, y_j | j) = \frac{j!}{t_{a,j}},$$

and

$$P(j \text{ Failures}) = \frac{e}{j!} \left(\frac{nt_{a,j}}{\theta}\right)^{j}$$

Thus

$$f(y_1, y_2, \dots, y_j, j) = \frac{n^j}{\theta^j} e^{-\frac{nt_a, j}{\theta}} = \frac{n^j}{\theta^j} e^{-\frac{T_a, j}{\theta}}$$

Except for the constant n^{j} , this is the same result obtained in the proof of Lemma 2.2 . The conclusion of Lemma 2.2 , for testing with replacement, follows in the same manner as in that proof.

It follows that all results and conclusions of Section II, where testing is without replacement, also

-27-

apply to the sequential test scheme where failed items are replaced.

APPENDIX 1

Tabled here are the optimal d_2 values for determining the lower limit of the $100(1-\alpha)$ percent two-sided confidence interval.

Failures		Confide	nce Coeffi			
k	998	988	95%	90%	80%	
1	0.1186	0.1309	0.1522	0.1741	0.2045	
2	0.1879	0.2045	0.2323	0.2602	0.2973	
3	0.2380	0.2568	0.2876	0.3180	0.3575	
4	0.2771	0.2973	0.3298	0.3615	0.4023	
5	0.3092	0.3301	0.3637	0.3962	0.4371	
6	0.3364	0.3575	0.3918	0.4243	0.4656	
7	0.3597	0.3812	0.4160	0.4485	0.4894	
8	0.3804	0.4023	0.4366	0.4691	0.5096	
9	0.3988	0.4208	0.4551	0.4876	0.5271	
10	0.4151	0.4371	0.4718	0.5034	0.5430	
11	0.4300	0.4516	0.4867	0.5184	0.5570	
12	0.4437	0.4656	0.4999	0.5315	0.5702	
13	0.4560	0.4779	0.5122	0.5430	0.5816	
14	0.4674	0.4894	0.5236	0.5544	0.5922	
15	0.4779	0.4999	0.5342	0.4641	0.6027	
16	0.4885	0.5096	0.5430	0.5746	0.6115	
17	0.4973	0.5192	0.5518	0.5825	0.6203	
18	0.5061	0.5271	0.5605	0.5904	0.6273	
19	0.5148	0.5359	0.5685	0.5992	0.6344	
20	0.5219	0.5430	0.5764	0.6062	0.6414	
21	0.5298	0.5509	0.5834	0.6115	0.6484	
22	0.5368	0.5570	0.5904	0.6186	0.6537	
23	0.5430	0.5641	0.5957	0.6238	0.6590	
24	0.5500	0.5702	0.6027	0.6309	0.6660	
25	0.5553	0.5764	0.6080	0.6361	0.6695	
26	0.5614	0.5816	0.6133	0.6414	0.6748	
27	0.5676	0.5869	0.6186	0.6449	0.6801	
28	0.5729	0.5922	0.6238	0.6520	0.6836	
29	0.5781	0.5975	0.6273	0.6555	0.6871	
30	0.5816	0.6027	0.6326	0.6590	0.6924	
31	0.5869	0.6062	0.6379	0.6643	0.6977	
32	0.5922	0.6115	0.6414	0.6678	0.7012	
33	0.5957	0.6150	0.6449	0.6730	0.7047	
34	0.5992	0.6203	0.6484	0.6766	0.7082	
35	0.6045	0.6238	0.6520	0 6801	0.7117	

Failures k	Confidence Coefficient						
	99%	98%	95%	90%	80%		
36	0.6080	0.6273	0.6555	0.6836	0.7152		
37	0.6115	0.6309	0.6590	0.6871	0.7152		
38	0.6150	0.6344	0.6625	0.6889	0.7187		
39	0.6186	0.6379	0.6660	0.6906	0.7223		
40	0.6221	0.6414	0.6695	0.6941	0.7258		
41	0.6256	0.6449	0.6730	0.6977	0.7293		

Tabled here are the optimal d_1 values for determining the upper limit of the $100(1-\alpha)$ percent twosided confidence interval.

Failures k	Confidence Coefficient						
	998	98%	95%	908	808		
	0.0010	0 00 27	0 0000	0 0107	0 0 0 0 0 0		
1	0.0018	0.0037	0.0093	0.0187	0.0382		
2	0.0267	0.0382	0.0619	0.0900	0.1329		
3	0.0673	0.0864	0.1215	0.1590	0.2108		
4	0.1090	0.1329	0.1742	0.2156	0.2/12		
5	0.1478	0.1/42	0.2190	0.2625	0.3190		
6	0.1825	0.2108	0.2576	0.3020	0.3590		
1	0.2137	0.2429	0.2907	0.3356	0.3912		
8	0.2415	0.2712	0.3190	0.3639	0.4195		
9	0.2664	0.2966	0.3444	0.3893	0.4439		
10	0.2888	0.3190	0.3678	0.4107	0.4654		
11	0.3098	0.3405	0.3873	0.4312	0.4849		
12	0.3288	0.3590	0.4059	0.4498	0.5005		
13	0.3464	0.3756	0.4225	0.4654	0.5161		
14	0.3620	0.3912	0.4381	0.4800	0.5298		
15	0.3766	0.4068	0.4517	0.4927	0.5434		
16	0.3903	0.4195	0.4654	0.5064	0.5551		
17	0.4029	0.4322	0.4771	0.5181	0.5668		
18	0.4146	0.4439	0.4888	0.5278	0.5746		
19	0.4264	0.4556	0.4985	0.5376	0.5844		
20	0.4371	0.4654	0.5083	0.5473	0.5942		
21	0.4458	0.4751	0.5181	0.5571	0.6020		
22	0.4667	0.4849	0.5278	0.5649	0.6098		
23	0.4654	0.4927	0.5356	0.5727	0.6176		
24	0.4732	0.5005	0.5434	0.5785	0.6234		
25	0.4810	0.5083	0.5512	0.5864	0.6293		
26	0.4888	0.5161	0.5571	0.5942	0.6371		
27	0.4966	0.5239	0.5629	0.6000	0.6410		
28	0.5044	0.5298	0.5707	0.6059	0.6488		
29	0.5109	0.5376	0.5766	0.6117	0.6527		
30	0.5161	0.5434	0.5824	0.6176	0.6566		
31 ·	0.5239	0.5493	0.5883	0.6215	0.6605		
32	0.5298	0.5551	0.5942	0.6273	0.6683		
33	0.5356	0.5610	0.5981	0.6332	0.6722		
34	0.5395	0.5668	0.6039	0.6371	0.6761		
35	0.5454	0.5707	0.6098	0.6410	0.6800		
36	0.5512	0.5746	0.6137	0.6449	0.6839		
37	0.5551	0.5805	0.6176	0.6488	0.6878		
38	0.5610	0.5844	0.6215	0.6527	0.6917		
39	0.5649	0.5903	0.6254	0.6566	0.6956		
40	0.5707	0.5942	0.6293	0.6605	0.6995		
41	0 5746	0 5001	0 6222	O CCAA	0 70 74		

-31-

BIBLIOGRAPHY

- Aroian, Leo A. (1963) "Exact Truncated Sequential Tests for the Exponential Density Function." <u>Proceedings</u>, <u>1963 Symposium on Reliability and Quality Control</u>, 9, <u>470-486</u>.
- Barlow, Richard and Proschan, Frank. (1975) Statistical <u>Theory of Reliability and Life Testing</u>, Holt, Rinehart and Winston, Inc., New York.
- Bryant, C. M. and Schmee, J. (1979) "Confidence Limits on MTBF for Sequntial Test Plans of MIL-STD 781." Tehnometrics, 21, 33-42.
- Doob, J. L. (1953) <u>Stochastic Processes</u>, John Wiley and Sons, Inc., New York.
- Epstein, B. (1960) "Estimation from Life Test Data." Technometrics, 2, 447-454.
- Epstein, B. and Sobel, M. (1955) "Sequential Life Tests in the Exponential Case." <u>The Annals of Mathematical</u> <u>Statistics</u>, 26,82-92.
- Epstein, B., Patterson, A., and Qualls, C. (1963) "The Exact Analysis of Sequential Life Tests with Particular Application to Agree Plans." <u>Proceedings, 1963</u> <u>Aerospace Reliability and Maintainability Conference</u>, 284-310.
- Lai, T. L. (1976) "On Confidence Sequences." The Annals of Statistics, 4, 265-280.
- MIL-STD 781C. (1977) Military Standard Reliability Qualification on Production Acceptance Tests: Exponential Distribution, Wahington, D.C.
- O'Brien, P. (1973) "A Procedure for the Sequential Interval Estimation of the Shape Parameter of the Gamma Distribution." <u>Technometrics</u>, 15, 563-569.

Robbins, Herbert. (1970) "Statistical Methods Related to the Law of the Iterated Logarith." The Annals of <u>Mathematical Statistics</u>, 41, 1397-1409.

Wald, Abraham. (1947) Sequential Analysis, John Wiley and Sons, Inc., New York.