
AO A073 flI P15501*1 IMIV COLWSIA CtrT OF STATISTICS flS 1U1
csvzoacc INTERv*1.S FoR *s £XPO.CNTI At. PARAICTER FROM A TWO ST—€TC (U)
AIM fl K S F*IUSNIIS NOOOtS—fl—C.fl5~1fl7 Ma I

F U U
I ____________

r

0OC 

I
I I

i~l~



I .0 ~ ~~ ~I2.5

_ _ _ _  ~ ~III~=
I . I .~~ 

‘~ IHH~°
IIIII~8

HID’ • 25 IUhI~ Qfl i.6

MICROCOPY RESOLUTION TEST CHART
NAT IONAL BUREAU OF STANDARDS 196 F A



LEvEV

~~ Unive rsity of Missouri -Columbia

Confidence Intervals for an
Exponential Parameter from a

Two Stage Ufe Test
by

Kenneth B. Fairbanks

Technical Report No. 87
Department of Statistics August 1979

*

Mathemati cal
Sciences

_ _ _ _ _ _ _ _  
- 

_ _

79 09 17
~~~~~~~~~~~~~~~~ .*

- -
~~~~~~~~~~~~~~~~~~~~~~~

- ..% 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ — -



I h u ll V ~~ t A , I l I  A l l  I, ” 1 1 1 1 .  P A’ ! ~~~ f ’~~t . ?~~ fo, . , I )

REPOR T DOCUMENT AII th4 PAG E I3E~~~
ttY ri~~~~

’oR\l
I R~ 1(11 1 NUM~~ I N ] .‘ , C . OV T  A C C t~ .S I( lN NC) ) f l I C I P I f  N1 ’~ 

( A T A L  rn p u ~~r r~

_ _ .

~ 

~~~~~~~~~~~~~~~~~~~~~ -

4 T I  IL E (~.n~l ~~~~~~~~ -~ S I ‘~ Pt OF Rf PONT 6 1 111100 ( U h F  1 1  11

cot~T1deñce Intervals for an 
Exponential Parameter , . 

from a Two Stage Life Test Technicai Report /
— 6 PERF ORMING ORG. RE~~~~ T NUMBER 

—

7. A IJT HOI1(s )  S CONTRACT OR G R A N T  NUUBEH~.)

L Kenneth B.1 Fairbanks (1- l N00~
l4—76—C—0789 / 

-

- 
~ 1

9 P E R F O R M I N G  O R G A N I Z A T I O N  NAME AND A DDRESS 10 PROGRAM ELEMENT . “ ROJECT . T A S K

Department of Statistics A R E A  & WOR K UNIT *~UM 8ERS

Univers i ty  of Missouri — Columbia 
-~ 

(
ColumbiE , MO 65211 NR 042—353 ~ 

- 
/

II C O N T R O L L I N G  O F F I C E  NA M E  AND ADDRESS ~~~~~~ 
12. REP ORT ~~~TE - .

O f f i c e  of Naval Research ( / 1 J A  ~t- l979 /
D~partment of the Navy \._~~~~~_ I~~ NUMRER OF PAGES
Arlington , VA 22217 30

IA .  M O N I T O R I N G  A G E N C Y  NAME & ADORES S(I( dl l f#r .n C from ContrOllinl OfUc.) IS. SEC URITY CLASS. (of lbS. r.por ()
Unclassified

-
- — /  

- / IS. . D E C L A S S I F I C A T I O N / D O W N G R A D I N G
SCHEDULE

16. D ISTRIBUTION S T A T E M E N T  (of lbS. ReporE)

Approved for public release ; distribution unlimited

17. D ISTRIB UTION S T A T E M E N T  (of SI’- .fr act .nt.r.d In Block 20, if dIff.r.nt fr.m R.po,FI

IS. SUPPL EMENTARY NOTES

II. K EY WORDS (Cenlinu. on t.v.ra. .ld. If n.c... .ry ~ id Id.ntlfy by bloc k numb.r)

Confidence interva l , two stage test , exponential distribution

20. A W STR A CT (Contl nu . on r•v•r.• old. II n.c...asy ~ id Id.nUfy by block nuaib.r)

The two stage life test of Bulgren and Hewett (1973) for the mean
li fetime , 0 , of an exponentially distributed l ifetime is essentially
a two stage version of type II censoring. Since the test decision
only determines whether 0 is above or below 

~~ 
, it may be of

interest to estimate 0 following the decision using the test data.
Epstein (1960a) found confidence intervals for under type II censoring .
This report shows that Epstein s intervals may be modified slightly

DD , ~~~~~~~ 1473 EDITION OF I wov as Is OS I OLIT I
S/N 0 1 0 2 • 0 14 •  660 1 ~~~~I I i lCURITY CLASSIFICAT ION OF THIS PAG E (W1FSfl 11.1W tSISIPWd)

L.- 1 (;~ ~ ~
.

~~~~~~~~~ ~~~~~~- — ~~~~~~~~~~~~~~~~~~~~ -~~~-~ ~~ lA~~.________

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
.



i 4 11 V CL A~~, I F I CA  I ION OF TNI~ PA GE(Wh on Dat. EnS.rod)

20.

and used to provide confidence intervals for 0 following the two
stage test. The resulting confidence intervals are shown to be
conservative.

_ _ _ _ _  

I
Jhj~~l~ a~~Ij / : L ’

______

$ECU~~ITY CL ASSIFICAIION OF T$IS PAQt(*Iuun Del. Entered)

----- —~ —— -.-----—- .&- -~~~b.~~ -.~~ - ... J—uj 
~~~~~~~~~~~~~~~~~~~~~~ -~ - - - .~~~~~~~ - i ~~~~~° -~~ ~~~~~~~~~~~~~~~

‘A 

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 

dP 

~~~~~~~~ -



Confidence Intervals for an Exponential Parameter

from a Two Stage Life Test

by

Kenneth B. Fairbanks*

University of Missouri Columbia

Technical Report No. 87

August 1979

Prepared under contract N00014-76-C-0789

(N R— 042—353)

Off ice of Naval Research

Richard W. Madsen , Project Director

This report is based on part of the author ’s Ph.D. dissertation .

University of Missouri

Department of Statistics

Columbia , Missouri 65211

-- ~ -

- . - - —- . -—————- — — ——  
_J A -.

~ : ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~ - ___



Confidence Intervals for an Exponential

Parameter from a Two Stage Li fe Test

Abstract ~~ — —

- 
I

(~~~ i .I.

The two stage life test of Buigren and Hewett (1973) for the

mean lifetime , . 0 , of an exponentially distributed lifetime is

essentially a two stage version of type ~I censoring
’
>~ Since the

test decision only determines whether 0 is above or below 0~ ‘

it may be of interest to estimate 0 following the decision using

the test data. Epstein (l960a) found confidence intervals for

under type II censoring. This report shows that Epstein ’s intervals

may be modified slightly and used to provide confidence intervals

for 0 following the two stage test. The resulting confidence

intervals are shown to be conservative.
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Confidence Intervals for an Exponential F

Parameter from a Two Stage Life Test

I. Introduction .

In the theory of reliability and life testing, a

lifetime T is often assumed to have an exponential

distribution . Thus the probability density function of

T may be expressed as

if 
~ � 0

f(t;O) = (1.1)

0 elsewhere

where e > 0 is the expected lifetime.

In a life test with type II censoring, n items

are placed on test and observed for failures until the

r0
th failure occurs. Properties of this test were given

by Epstein and Sobel (1953). Bulgren and Hewett (1973)

developed a two stage version of a life test with type II

censoring to test H
0
: 0 

~ 
00 vs. H1: 0 < 00 . In the

test n items are placed on test and two integer values ,

r
1 

and r2 are chosen such that r1 + r2 � n . In the

first stage,testing proceeds (with or without the replacement

of failed items) until r1 failures occur. At this time

a decision is made to accept or reject H0 , or to continue

on to the second stage where r2 additional failures are

— m_ — ~ ---m —-.—-~
-
~~

— -j -— - 
~~~— 

~~. ... - ...
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2

observed and a final decision is made . The decisions are

based on the values of T and T , the total times on test

at the times of the r1
t and r3

t failures repectively ,

with r3 
= r

1 
+ r2 - The test is depicted in figure 1.1.

It is possible that additional information about

the true value of 0 may be needed following the test

decision . Thus it may be of interest to estimate 0

using the data from the life test. In this report we

derive confidence intervals for 0 using data from the

two stage life test.

Stage reject H0 
I continue to stage 2: accept H0 2T

1 
I 

~ 
r~
0

0 d1 d2 
0

Stage reject H accept H 
- 2Tr

2 
0 1 0 

3
3

0
0 d

3 
-

Figure 1.1. The two stage life test.

II. A Two Sided Confidence Interval for 0

Confidence intervals for 0 using type II censoring

were given by Epstein (1960a) and Epstein (1960b). A two 

-- - -  —1__ - -—-,.~~~ - - - -

- —.,-—-- - i Jp Ir-sp~~~~.~.., - - - -~~~ ,.. .o ._ -, - —- ---—-~~~ .. - - - . —~~~-—-—- . - -—
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sided interval with confidence coefficient (I - ct) is

2T 2Tr r
,2r X2 c~ 2r

2

where Tr is the total time on test at the rth failure. If

t1~ t21~~~ ,t represent the ordered failure times, then

r
E t1 + (n - r ) t  (without  replacement)

i=l r
Tr

fltr (with replacement)

A two sided confidence interval for type II

censoring in a single stage is given by (2.1). This

suggests the possibility that the single stage interval

could be used at either stage of the two—stage test. More

formally, we conjecture that the following rule provides a

lOO (l—CL ’) percent confidence interval for 0.

When the decision is made at stage 1, use

2T 2T

2 ‘ 2

~~~~~~~ 
X
i~~~~,2r

/

—- - —--——. ~~~fl ‘S - ~~ - - - - - -, - .

— ‘A1. -- _ _ ’ ,
~~~--~~”~~~~~~,--- 

~~~ 



4

When the decision is made at stage 2, use (2.2)

r2T r~ r3
1 2  ‘ 2
I X~~i ~ a ’
L 

-‘~---,2r 3 l—~ -— , 2r 3

We shall re fe r  to the f i r s t  interval  in ( 2 . 2  ) as

and the second interva l as In general we wi l l  refer

to the singlc interval generated by rule ( 2.2 ) as I. To

establish that I is a confidence interval for 0 with a

coefficient at least 1—a ’, we would have to show that

P(OcI) > 1 - a’. Unfortunately , it will be shown that

P(OcI) < 1 — a ’ for some 0. However , we will also show

that, for a suitably chosen ct’, the confidence interval

given by ( 2.1 ) will have a confidence coefficient no less

than 1 - a.

First, define event D (the test decision is made

at stage 1) - Then ~ will represent continuation to stage 2.

We may then write

P(OcI) = P(D,0c1 1
) + P ( 5,0c1

2
) = p1 

+ p2, say.

If we recall that 2T /0 ~ X~r 
, it is seen that P(e~ l1

) =
1 1

1 — ct ’. Also , P(0c11
) = P(D,0c1 1) + P(~~,0ci 1

) = P
1 

+

P(~~,0cI1). Combining these results gives 

—- —.-- --. - — — -S— -~~ - .—.——.-- - - - ,- -. •_--__.fl_._ - .--

~ 
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P ( O c I )  = 1 — ci ’ — (P ( 5 , 0c1 1
) — P ( ~~, 0cI 2 ) )

= 1 — a ’ — p* , say .

To establish the va l id i ty  of the interval in ( 2 .1  ) it

wou ld be necessary that p~ = P ( D , 0c1 1
) — P ( D , 0c1 2 ) < 0.

Tha t this is not always the case wi l l  be show n la ter .  We

first introduce some notational definitions which should

make subsequent material more readable.

Define the transformations Y = 2T /0 and

Z = 2T /0 so that I “~ and Z “.‘ . Under theser3 2r1 2r3
transfo rmations , p~ is equal to

~[e o:l < < 
8O~ 2 X

~_~~~,2r1 
~ 

~ 
~~~~~~~~ 

-

~[ o 1  < ~ < 
O 0d~ 

X
~ _~~~,2r 3 

~ Z 

~

Now def ine

r 2  2R1 — IX ci’ ‘ X i

L~-~~’2’i

R
2 

= [eo dl 
, 

0 0d 2] and

‘A ~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -,~~~ ‘‘~~ 0~~ 
-
~ 
- — - .-~~ -
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H 3 = 

~~~~~~~~~~ Xi~,2r~1
Th us , under the transformations , R

1
, H

2 
and R

3 
correspond to

the cont inua t ion  region , and 1
3 respectively. This

permits us to wri te p~ simpl y as P(IcR
2
,Y~~R1

) —

P (Yc H
2 , Zc H

3
)

Making use of the endpoints of intervals R,~, H 2
and H

3
, we can make some general observations about

P(Ocl). We consider those intervals designated by nurbers in

parentheses in Figure 2.1.

1 (1) 1 (2) (4) (3)I I

~ O~ d1 0 0d1 0 0d 2 0 0d1 8 0d 2
2 2 2X~~ X I  X .  X X ci’~~~~~~~~ 2r 3 ~~

_-, 2r 1 ~~~~~~~~ 2r 1 l_ ~_- , 2r 1 1—~ --, 2r 1

Figure 2.1. A pa r t i ti on  of the pa rameter space .

In interval (1)

00 d1
0 <  2x i

2 r
3

.- 
- 

—--

~~~~ 

‘, -
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In this interval ,

0 0d1 > ~2

which implies that P(YER2,ZCR 3) = P(Y~ R2,YeR1
) = 0. Thus,

in interval (1) we have P(OcI ) = 1 — ci’.

In interval (2)

0 0d1 0 0d1
2 — 2

X Xci’
~— , 2r 3 -~-— ,2r 1

Since

O d  2
0 y-, 2r1

in this  inte rval , we have P (1E R 2 , Y C R 1) = 0. This gives the

result that P ( 0~~l )  > 1 — ci’ for all 0 in interval ( 2 ) .

In interval (3):

8
0 d20

x 
~~

‘
l— y - -~ 2r 1

Here

80d 2 2
8 ~~X

l—y-, 2r1 

—_--?--—- -

‘i ~~~~~~~~~~~~~~~~~~~~~~ 
-

- ~~~~~~~~~~~~~ A t ~~~~~~~~~ - . I  
~~~~~~~~~~~~

:- , - - - -- - ---~~~.- - - - :
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implies P ( Y ~~R 2 ,Yc R 1) = 0. So again , for 0 in the interval

(3), P (Ocl ) > 1 — a’.

In interval (4)

00d2 
0
0d1

2
X~

I X

We note that, if

(d 2/d1) ~ ( X ~~t /x 2 
a’

y-~ 2r 1 1—-~---- ,2r 1

the sense of the inequal i t ies  wi l l  be reversed and in te rva l

( 4 )  wi l l  be empty . When i t  is non-empty we have H 2 C R1 and

P ( O c I )  = l— a ’— P ( Y E R 2 ) + P ( Y e R 2 , ZcR 3)

= l—ct’—P(Y~ R2)(1-.P(ZcR 3!Y~ R2))

= 1-ci ’-P (~~) ( 1—P (0 ~~l 2 t~~) ) .

Since P ( D )  > 0 and P(0c1 215) < 1, it follows that

P ( O c I )  < 1 — a ’ for 0 in interval ( 4 )  when i t  is non-empty .

This shows that the confidence interval proposed by (2.1)

F 
is invalid in the sense that , for  some 0 , P ( O c I )  < 1 — ci’.

For those regions not included in these four

inte rvals a general pat tern of the behavior of P (OEI) as a

function of 0 was observed by computing P ( O c I )  on the

computer for  various test parameters given by Buigren and

—. ~~~~ - .

“ A _______________________ 
____ 

- --
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H ewet t  ( 1 9 7 3 )  . The general  pa t te rn which was observe d i s

depicted in Figure 2 . 2 .  I t  can be seen from Figure 2 . 2

that if a ’ were chosen s u f f i c i e n t ly small , it would be

possible to kee p P ( 0 ~~I )  > 1 — a, whe re 1 — a is the desired

conf idence  c o e f f i c i e n t .  An appropriate  value of a ’ can be

found if we find an upper boun d on p~ which can be solved

for  a ’. Recall that p~ is just F (YcR
2
,Y~~R1

) — P ( Y r R
2
,Z c R

3
).

The d i f f i c u l ty in f i n d i n g  a bound on p~ is fin ding a c losed

expression f o r  P ( Y c R 2 , Z e R 3) whi ch is also simple enough to

pe rmi t the solut ion for a ’ . Bulgren and Hewett  (1973) g ive

the jo in t  density of I and Z as

r2—l r1— l —z/2(z y) e 0<y<z 0<z<o

2 1 2r ( r 1) - r ( r 2 )

f ( y , z) =

0 elsewhere.

Then

00d 2 x~ ,

P(YcR
2,

ZcR
3
) = I ~f~3 

f(y,z)dzdy,

O d  x 2

_

~~~

.

~~~~~

_:

0

~ 

-~~~~~~~~ --
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P (Oc!)

00
d1 8

0
d1 00

d2 00
d1 

00
d2

2 2 2 2 2
X Xa~ X 2r X ci ’ X

-~~—- , 2r~ y-, 2r1 ~~— ‘ 1 1—y--- , 2r 1 1—i— i 2r 1

Figure 2 . 2 .  Behavior of P ( 0 c 1 )  when I is from
(2 .1 )

and it is apparent that  the closed , simple expression we

- seek is not possible. In lieu of evaluating this joint

probability directly, we wi ll s implif y it using a Bonferroni.

bound. A lower bound on P (Yi R2,ZcR 3
) , using the Bonf erron i

inequality, is

P (YER 2,ZER 3
) > P(YcR

2
) + P (ZcR 3

) — 1

= P(YcR
2
) + (1—a ’)  — 1

= P(YcR2
) — a .

Thus

p* < P (YcR 1,1cR 2) — P(YcR2
) + ci ’ . (2.3)

~~~~~~~~~~ 
- - 

- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ 

- -- - 

~~

‘- -
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This uppe r bound on p~ may be f u r t h e r  s imp l i f i ed

with some observations about the relationship of R1 to R2.

With respect to 0, interval H1 is f i xed. On the other hand ,

R2 increases in both size and location as 0 decreases.

When 0 = ~~~, R~ is the s ingle  point {o}. When 0 is such

that 0
0
d
1
/0 coincides with

2T /x
2 
~r1

it could be that R
2~~ R1. If this occurs , the upper bound

in ( 2.3 ) achievesjts maximum value a ’ . Since P(OcI )

1 - ci ’ — p*, the Bonferroni inequality gives P(Ocl ) >

1 — 2a ’. Obviously , if we want P(OcI) > 1 - a , a ’ is

given the value ci/2. This establishes the following

result.

Theorem 2.1.  Let r1 and r 2 be the numbe r of

fai lures requi re d for each stage of the two-stage

exponential life test, where r3 = r., + r2. If T and Tr1
th threpresent the total time on test at the r1 and

failures respectively, then the following rule gives a

two—sided confidence interval for the exponential mean 0,

with a confidence coefficient at least 1 — a , at the time

of decision for the two—sta ge test. If a decision is

made at the first stage , use

~~~~~~~ 

.-‘- - - -- ,--.
~
—-

~
- -— -- -~~~~~—— ~~~~~~~~~~~~~~~ - - .  - -

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~ ~~

_-_  _

~~~~
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2T 2Tr1 r1
2 ‘ 2

X ci X~~~1—1,2r1

If a decision is made at the second stage, use

r2T 2T

1 2  ‘ 2  —

IX x
[

.
~ 12r 3

The wide app l i cab i l i t y  of the Bon ferroni  i n e q u a l i t y

suggests that the boun d in ( 2 . 3  ) may be qui te  crude ,

leading to overly conservative confidence in tervals .  An

alternative approach will be employed in searching for a

less conservative confidence interval . We also will admit

the possibility that P (Ocl) < 1 — ci , for some 0, if the

difference (l-ci)-P(Ocl) can be shown to be small. This

would result in approximate confidence intervals.

Let

P(YcR2)P(Z~ R3
) — P(YcR2,Z€R 3).

Then

= P (YCR1,Y cR
2
) — P (YcR2)P(ZcR 3) + t~

= P (YcR 1,1cR2) — P(YcR
2
) (1—a ’) + 

~~~. (2.4)

‘A - ____

- . w
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If  A = 0 (this  would be true if I and Z were independent)

p * could be bo unded above w i t h o u t  use of the Bon ferroni

inequal ity . The penal ty  for assuming A = 0, when , in fact,

A ~ 0 could be a confide n ce interval where P ( O c I )  < 1 — a

for some 0. The d i f f e rence ( 1-a) - P(Oel ) would be at most

A , and the Bon fe rroni inequal i ty  can provi de an uppe r bound

on A.

P ( Y c R 1, Z cR 3
) > P ( Y c R 2 ) + P (ZcR

3
) — 1

= P(YcR
2) 

— a ’ .

Thus

A < P (YcR 2) (i—a ’) — P(YcR2) + a’

= cx ’(1—P(YcR 2
) )

= a’P(Decisjon at stage 1). (2.5)

Since this Bonferroni bound may also be overly conservative,

ari d since a’ will be less than a, it is apparent that A

will be small if it is positive. If A is negative the

res ulting confidence interval would be less conservative

than unde r the assumption A = 0 .  Thus , if we assume

A = 0 and then bound p~ under this assumption , the

resulting confidence interval will be such that P(OcI) >

1 - ci - A , where A is bounded above by ( 2.5 ) .  We

proceed with the assumption that A = 0.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -

~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~ 
~~~~~~~~~~~ 

-

;
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The expression ( 2.4 for p~ now becomes

p* = P(YcR1,YcR2) 
— P(Y~R2)(l—a ’). (2.6)

To establish an upper bound on ( 2 . 6  ) we again consider

the relat ionship of R1 with R 2 as 0 changes. Our

observations w i l l  pivo t on the relat ionship of R1 wi th H2
when 0 is such tha t

00d1/0 x2 
~~ ‘l—y~~2r1

i.e., when the lef t endpoints of H
1 and H 2 coincide . Here

ei ther R
2~~ H1 or R1~~ H2. We will designate the situation

R2~~ R1 as Case I , and Case II will correspond to R1~~ R2.

Case I and Case II are depicted in Figure 2.3 . In a

specific application , whether Case I or Case II applies

will depend on the test parameters involved and the value

of ci’. Each case is considered separately.

Case I: R2~~ H
1 when their lef t endpoin ts cc~incide .

We examine the nature of the relationship of R
1 with H2 for

different 0 and its effect on the problem of placing a

bound on p~ .

I.a) 0 is such that R1 fl R2 = 0.

Referring to ( 2.6 ) it is clear that p~ < 0

for these values of 0. 

‘A .~~ ~~~~~~~~~~ — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —I.- - —~_ — ~~~~~~~~~~~~~~~~~~~~~~~~~ -~ ~~~~ — —~~~~~ — —
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H1
Case I

r 1 ~~1

I I > 0

I j  J
R2

R1
Case II _____  _____

Figure 2.3 . Relationship of H
1 with R2 when 0 issuch that their left endpoints coincide.

I .b )  0 is such that  R1fl R
2 ~ ~ and R

1
11 R2 � 0.

Let R1fl H2 E R
5 

and fl R2 E R4. With this

notation we have

= P (Y cR
11Y cR

2
) — (1—a ’)P (YcR

2
)

= P (Y cR 5
) — (i—a ’) (P (YcR 4) + P(YcR

5) ]

= ct’P(YER
5
) — (l—a ’)P(YcR4). (2.7)

Expression C 2.7 ) is maximum when H4 = 0 or,
equivalently R2~~ R1,

( 
_ _ _  _ _ _ _ _ _ _ _ _  

L
.- - -

. —-‘-. 

‘A
~~j~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~-w -~~~

- -  -~~ 
-- 

~~~- ---~~~~~~- k
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It is clear that, to establish an upper bound on p~ for

Case I, it suffices to consider only those 0 for which R2

If  R
2~~ 

R
1 
expression ( 2.6 ) reduces to p~ =

cz’P(YcR2). Note first that if R2~~. H1, then P(YcR) <

P(YcR1) = 1 - a’. So, one bound on p~’ under Case I is

ct ’ ( l — a ’) .  A smaller bound may be found if we determine the

maximum value of P(YcH
2), subject to R2~~ 

R
1.

For that purpose, we find the value of 0 , say 0* ,

for which P(YcR2) is maximum for given 00,d1 and d2.

Since Y 
~ 

we can write2 r1

u (8)

P ( Y cR 2~~8) = 

f 
f ( t ) dt , where 9.~( 0 )  = 0 0d1/0 ,

r1 —l — t/2
e

u ( O )  = 0
0d2/0, and f(t) = r

1 -

2 r ( r 1)

Then -

ap ( Y c R 2~ o) 
= f(u(0)) au(0) — f ( 2 . ( 0 ) )

Setting

a~ (Y~R2 6)

~~~~~~~~~~~~ 
- 

- 

— - 

= 0

- “A 4~~~~~— 

~~~~~~~~ ~~~~~~~~~ _ _ _  

- .
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and making the appropriate substitutions , we obtain

r — 1  — G d r — 1  - O d
G d  1 0 2  O d  1 0 1

d 0 2  ~~~~~ 0 1  20

~~~~~~ 
e ‘

~l~~~~ 
e

or

d
2~~

1 
~~~~~~ (d1—d 2

)
e = 1 .

Finally

0 (d 2—d0 _~~~_

2r1
(ln d

2 
— in d1)

So, P(1cR2 1 3) increases to a maximum at 0* and then

decreases. Now let

R * - 
~~0

d
1 

O
0
d~~

2 — Le* ‘ e*J

If R2*~~ R
1
, an upper bound ~ p* is clearly a uP (YCR 2*)

under Case I.

Since

H1 
= 

[X~
_~~..I 2r 

‘ X
~~
i
2ri

_______________ — 
- 

— —--—---————— - -

- -.‘ 
_ _ _  -

~~~~~ 

. - -
-

~~~~~~~~~~~~~
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and ci’ is as yet unknown , it appears that it is not possible

to determine if R
2 *~~ R1. We note however that a’ < a and

consequently

2R2* C~~X ~— Ll~~s 2ni

implies that

R2
*~~ {~

2 
a’ x 2 , 1
[
l_r

~
2ri ~~ i 2r

1J

Thus in most cases , using the desired 1 — a coefficient,

it can be determined if R~*C H1. When this relationship

exists we find that P(GcI) > 1 — a’ — ci ’P(YCR
2*). So, if

ci’ = a/ (1+P (YeR
2*)1, we have P(OcI) > 1 — a. We also note

that

i+P(Y~ R2*) 
>

~~~~~

insures that the interval with ci’ = a/[i+P(1cR2*)] will

be less conservative than the original intervals in

Theorem 2.1 using ci’ c&/2.

Computations using actual test parameters given

by Buigren and Hewett (1973) suggest that R2* is quite

commonly contained in R
1 for smaller values of ci, say

- - ~~ - ‘~~~~~~~~~~~~~~~~ _ - — —- ---- -‘ -“. -

_ _ _ _ _ _  

- _ _ _
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ci < .2 .  The imp rovement ove r the intervals  of Theorem

2.1 will be discussed later in this section.

If R
2
*~~ H

1
, the problem becomes more complex.

Here P(1cR2 16) , subject to the constraint R2
-~ R1, reaches

its maximum value when the left endpoints of H1 and R2
coincide, or when the righ t endpoints coincide , depending

on the location of R2 with respect to R
1. Specifically ,

when R1 2 R2,

~~i X
2 

~~ 1
d1 l— y-~ 2r 1

G d
f(t)dt,if ~~ *~~

• <

2
ci

max P(1cR 2 1 0 ) =
2

X ç2~~

G d  2f(t) dt , if > x
1——— , 2r1d1 2 
2

2

We need to solve the equation

ci = a’ + cz ’ (max P ( Y E R 2 J O ) )  

--~-

— ~~~
—

~~~~~~~~~~~-- — —~~~~~~—.-- — —
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for a’ • The difficulty involved is the manner in which a ’

appears in the limits of integration in max P( 1cR 2 1 0 ) .

Consequently , if it is found that R2*~~ H1 Cannot be

established , the use of a’(l—a ’) as an upper bound on p~ is

advised . We next treat the corresponding problem under

Case II.

Case II: When 0 is such that the left endpoints

of R1 and H2 coincide , R1~~ H2. By arguments essentially

the same as those used for Case I, it suffices to consider

only the set of 0 for which R1E R2, in finding an upper

bound on p*

If R
1 ~~ 

R
2
,

= P(YcR2,YcR1) 
— (1—a ’)P(YER 2)

= P (Y cR
1
) — (l—a ’)P(YcR2

)

= (1—a ’) — (l—ci ’)P(YeR2)

= (1—a ’) [1—P(YcR 2)].

Now , s ince P(Yc R2) > P(Y~ R1) = 1 - ci ’ , we again find, as

we did in Case I , that p~ < ci’ (l—oi ’). This bound is

achieved by p* if R1 = R2.

We have shown that, under the assumption A = 0,

an upper bound on p~ is ci’ (1-a’), and P(Gcl) > 1 - ci ’ -

ct ’(l—a ’). If we want P(OcI) > 1 — ci , then set ci ’ i —

(l—a)~~
’2. In Theorem 2.1 we used a’ = ct/2 which is

4 ~
.‘- .M.~ -. .&__ — - — . -., . - . . — ~ 

-
~~ 

____—_.--- 
~~~~~~~~~

— - - - --

- ~~~~~~~~~~~~~~~~~~~~~~~~~~ . - - -
_____ - —.--—- ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ I.— ~~~~ ~~~~~~~~~~~~~~~~~~~~ .- —. —
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greater than 1 — (l—cz)~~
’2. Howeve r , for  small  a , a/2 ~~~ 1 -

(1—a) 1”2. Thus, the improvement over the results in

Theorem 2.1 is slight. A further improvement s
- 

possible when R2*~~ H1. Then we have a’ = a/[l+P (YcR 2*) 1.

The degree of improvement in this situation over the

inte rvals of Theorem 2.1 depends on the value of

To get some idea of how conservative the interval

in Theorem 2.1 is , some computer studies were carried out

using specific two-stage test parameters given by Bulgren

and Hewett (1973). For each test used , the interval

________ 

0
0d~

1 2  2
X ci’l_T_ ,2r1

(see Figure 2.2 ) was divided by twenty points . Using

a ’ = ~~~, P(OcI) was computed at each of the twenty points.

Numerical integration techniques were used to find

P(YcR
2,ZcR 3). Table 2.1 gives the min imum and

maximum values of P(OcI) over the twenty points. Many

4 other tests were included in this study but , since

results on those were nearly the same as for the tests

given in Table 2.1 , their results have not been included

in the Table.

I~ • - ~~- ~~~~~~~~~~~~~~~~ 
.— -- .. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - --  -

~~~~~~
- 

T~~1 _
•

~~~~~~~~~~~* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~ 

- — -_ - - . --
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Table 2 . 2  r e f lec t s  the improvement which is

possible i f  i t  happens that  R 2 *E H1 and the value used fo r

ci ’ is a/ 1+P(Y€ R 2 *) ra ther  than 1— (1—ct)1~
’2
. The desired

confidence coefficent in Table 2.2 is .90. As in

Table 2 . 1 the minimum and maximum observed values of

P (OcI) are given, first using a ’ = l— (1—a )1”2 , and then

using a ’ = a/l+P(YE R2*). The confidence intervals using

the latter expression for cx ’ are less conservative , but

the improvement is hardly dramatic. We do not sacrifice

much by using the simpler intervals of Theorem 2.1.

III. A One—Sided Confidence Interval

If a one—sided confidence interval for 0 is

desired following the two—stage test, the same approach as

used in Section II will yield analogous results. The

confidence interval is found according to the following

rule.

When the test decision is made at stage one , use

r2T
I rI 1

= 1’
],
, say.

L~~~
’,2rl

When the test decision comes at stage two, use (3.1)

E2Tr
I 2 ‘~~~~ 12, say.

~~~~~~~~

_____ 
________ --- - - ______ - - - -~ - -

_ _
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TABLE 2.1

Extreme Values of P(OcI) Using Theorem 2.1

Test Parameters Nominal Confidence Coefficients
cx .99 .95 .90 .80

.9973 .9855 .9692 .9328
2 .05 .05

.9931 .9650 .9285 .8497

.9973 .9856 .9693  .9328
3 .05 .05

.9931 .9648 .9278 .8466

.9974 .9863 .9710 .9365
4 .05 .05

.9926 .9600 .9147 .8327

Note: The first entry in each cell is the maximum observed
P(0€J ) over the twenty points used.

The second entry is the minimum observed P(OcI). 

- - _ _ _ _ _ _ _ _ _  

- -  -

_______
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TABLE 2.2

Extreme Values of P(Ocl ) Using ~I\~o Methods

Test Parameters Minimum Maximum
ci ’ P ( O c I )  P ( O c l )

.0513 .9272 .9698

.05 .05
.0592 .9143 .9642

.0513 .9278 .9636
3 .05 .05

.0595 .9152 .9690

.0513 .9290 .9690
2 .10 .10

.0608 .9166 .9634

- 

.0513 .9257 .9701

.10 .10
.0583 .9125 .9646

.0513 .9241 .9702
3 .10 .10

.0566 .9105 .9647

Note: The first entry in a cell corresponds to
a’ = 1 — (1—ci)~~

/2.

The second entry corresponds to a’ = a/(l+P(YER2*)].

— ,, - -
~~ 

- . a~-~., ’O - 
— —

- -‘ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Again , P(Ocl ) = 1 — ci’ - p~ , where

P (~~,0c1
1
] — P [D ,Ocl 2].

We use the transforma tions

2T 2T
____ 

r3
0 

and Z

and also define

B1 = [0, X~ l 2 r ]

= [o0
a1 

, 

00
d
21 and

R3 
= (0 , X

~~J 2 r ~~~

Now we may write

p* = P ( Y c R
2
,YcR

1
) — P(YcR2,Z cR 3

).

As with the two—sided intervals, we can make some

general observations about P(Ocl).

i) If

B d
0 <  I

~~~~~
, 3

then

_ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _

- -_, - _ -_*__~ a -~ - --T-~~~ ‘f l  -_-- 
- 

- — -,-- ..e ’

‘I- 

~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~ $r1 L~~~~~U I - - -  -~~~~~~~~ 

~~~~~ ~~~~~~~~~ ~~~~~~~~~~~~ -— - -
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0
0
d1 2 2

> Xci’,~~~ 
> Xa~ ,2r1

He re P(YCR ,YER ) P(YcR ,ZtR ) = 0, and P ( O c l )  = 1 — a ’.
L 2 1 2 3

ii) If

00d1 00
d
1

Xa~~,2r
3 

Xas ,2r
1

then

00
d1 2

O ~ 
Xa~ ,2r1

and

- 

R1 f l R2 0.

Since P(YER1,YCR 2) = 0, P ( O~~1) > 1 — a ’.

iii) If

80d2
‘

X~ t ,2r1

then

0
0

d
2 

< 
2

— Xat ,2r1

and

-4

— ~~~~~~~~~~~~~~~~~~~~~~ t~-
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R2~~ R
1.

Furthermore,

L

R ( O c I ) = 1 — a’ — P(YcR 2) + P(YcR 2,ZcR 3)

= I — a ’ — P(YcR 2)(l—P(ZcR 3~YcR2
))

< 1 — ci’.

We can u t i l i ze  the same approaches to f ind ing  an

upper bound on p~ that were used in the previous section

on two—sided intervals. One bound on p~ is fo un d using

the Bonferroni inequality, and the resul t is again

< a’. Consequently we would set a’ = in the intervals

3.1 ) to ensure that P(Ocl ) > 1 - a for all 8.

The other approach is to set

A = P(Yc R2)P(ZcR 3) — P (YcR 2,Z c R 3
) = 0.

Then p~ becomes P(YCR2,YER 1) - (l-cz ’)P(Y€R 2). By arguments

similar to those used in Section II , it can be shown that

p* takes its maximum value when R2~~ R1. If R
2~~. 

R1, then

= ct’P(YcR
2
) < ci ’ (1-a ’). Or, we may again define

r e d  e d i
R2

* = 
[~ 

~*‘ ‘ ~*
2J,

__________________________________ 

-

-- —
.-—-——-----,----- - - - - 

w— r - -
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where 0* is that value of 0 for which P(YER 210) is maximum.

So, we obtain p* < aup (1cR
2
*) when R2

*~~ R1. 
We arrive at

the same terminus as in Section II . We may use

- a’ 1 — (1—a) 112, which is nearly ci/2, or cz/[1+P (YCR2*)1

if R2*~~, H1 
and a less conservative one-sided interval is

desired.

~~ 
-
~ 

______ ________ 
________ 

________

____________________ - ~~~~~~~~~~~~~~ - - - - - ~- -

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- 

- 
~~~~~ 
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