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Confidence Intervals for an Exponential

Parameter from a Two Stage Life Test

Abstract el

| hela
N
The two stage life test of Bulgren and Hewett (1973) for the
“

mean lifetime, \@ . of an exponentially Qé?tributed\lifetime is

essentially a two stage version of type Ii censoring.‘)Since the ke

test decision only determines whether 6 is above or below \60 '

it may be of interest to estimate \éf following the decision using

the test data. Epstein (1960a) found confidence intervals for

under type II’éensoring. This report shows that Epstein's intervals
may be modified slightly and used to provide confidence intervals

for € following the two stage test. The resulting confidence

intervals are shown to be conservative.
N




Confidence Intervals for an Exponential

Parameter from a Two Stage Life Test

I. Introduction.

In the theory of reliability and life testing, a

lifetime T 1is often assumed to have an exponential

distribution. Thus the probability density function of

T may be expressed as
L g7iem if 720
£(r:0) =
0 elsewhere

where 6 > 0 is the expected lifetime.

In a life test with type II censoring, n

(1.1)

items

are placed on test and observed for failures until the

. th

0 failure occurs. Properties of this test were given

by Epstein and Sobel (1953). Bulgren and Hewett (1973)

developed a two stage version of a life test with
censoring to test Ho: g = eo vs. le 6 < 80 .
test n items are placed on test and two integer
ry and r, are chosen such that r, +r, <n.
first stage,testing proceeds (with or without the

of failed items) until r

a decision is made to accept or reject H

type II
In the
values,
In the

replacement

1 failures occur. At this time

0 ' ©°F to continue

on to the second stage where r, additional failures are

% DRI Wi 5. s




observed and a final decision is made. The decisions are

based on the values of Tr and Tr , the total times on test

1 3
at the times of the rlth and r3th

with r_ = ry +r, . The test is depicted in figure 1.1.

3
It is possible that additional information about

the true value of 6 may be needed following the test
decision. Thus it may be of interest to estimate 6
using the data from the life test. 1In this report we
derive confidence intervals for 6 wusing data from the

two stage life test.

Stage lreject HO gcontinue to stage 2: accept HO 27
1 ! ! 5 _ "1
L a %
1 d2
Stage Ireject H, i accept H, ' 2Tr3
2 [ 1 -— 5
0 d =
3

Figure 1.1. The two stage life test.

II. A Two Sided Confidence Interval for 6

failures repectively,

Confidence intervals for 6 wusing type II censoring

were given by Epstein (1960a) and Epstein (1960b). A two




sided interval with confidence coefficient (1 - a) is
2T 2T
' (2.1)
x2 1 20 X2 o 2r
9'_ 1_5 ’
2
th

where T is the total time on test at the r failure. 1If

r

tl't2""’tn represent the ordered failure times, then

KR
t

4 o () r)tr (without replacement)
1

nt (with replacement) s

A two sided confidence interval for type II
Ccensoring in a single stage is given by (2.1). This
suggests the possibility that the single stage interval
could be used at either stage of the two-stage test. More
formally, we conjecture that the following rule provides a
100(1l-a') percent confidence interval for 9.

When the decision is made at stage 1, use

2T 2T
=3 |
x2 14 'x'_z .
a' a'
5—,21‘1 l-——,Zrl
\
P F ad !b’ i o "o el DI e e e T obo b R T T

e s
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When the decision is made at stage 2, use (2.2)
2Tr 2T
3 ¥3
’ 2 .
Xiv X a
-2——,21‘3 l-—2—,2r3

We shall refer to the first interval in (2.2 ) as
Il and the second interval as 12. In general we will refer
to the single interval generated by rule ( 2.2 ) as I. To
establish that I is a confidence interval for 6 with a
coefficient at least 1l-ua', we would have to show that
P(6el) > 1 - a'. Unfortunately, it will be shown that
P(6el) < 1 - o' for some 6. However, we will also show
that, for a suitably chosen a', the confidence interval
given by ( 2.1 ) will have a confidence coefficient no less

than 1 - a.

First, define event D = (the test decision is made

at stage 1). Then D will represent continuation to stage 2.

We may then write

P(Bel) = P(D,eell) + P(B,eelz) =P + P,s say.

If we recall that 2Tr /8 % xgr , it is seen that P(eell)

1 1
- ' = D =
1 a'. Also, P(esll) P(D,eell) + P(D,eell) Pl +
P(B,eell). Combining these results gives
| iz .
R e e  —




P(6el)

l - a' - (P(D,eell) - P(D,eelz))

I

I = a' = p*, csav.

would be necessary that p* = P(B,Osll) - P(B,eelz) < 0.

That this is not always the case will be shown later.

first introduce some notational definitions which should

make subsequent material more readable.

Define the transformations Y = 2Tr /6 and
1

/8 so that Y Xgr and Z ~ Xgr . Under these
g i1 3

transformations, p* is equal to

Z = 2T
L

To establish the validity of the interval in ( 2.1 ) it

0 2 2
P oel _.<.Y_<_ ezlxal ijxa. i
l-——,2rl 2—I2rl
0. .d 6,.d
1 072 2 2
. g - 8 ' X q e Xot,2r i
l-—,2r sty
T 2
Now define
f 2 2
Rl =k al v Xav
i --——,2rl -5—,21:1
ré d 6,.d
R2 = g 1 ¢ g 2]' and
&8
|
N ﬁu‘:::—“".-“I?N‘"hiﬂ*h‘5’““iF%"""“"'“"""’“"h'“""r"‘r““"”""-w"““' " i 2o




By = X2 X2
3 ~ a’ ’ o'

Thus, under the transformations, R R, and R, correspond to

1% T2 3
ll' the continuation region, and 13 respectively. This

permits us to write p* simply as P(Ych,YaRl) -
P(YERZ,ZER3).
Making use of the endpoints of intervals Rl’ R2

and R3, we can make some general observations about
P(6el). We consider those intervals designated by nurbers in

parentheses in Figure 2.1.

|
) e €20 ! (4) ' 1435y o
g g
9 595 9092 %0% 909,
X2 X2 ij X2 X2
a' a a' a' i
-2——,21‘3 T,Zrl 7—,21‘1 1—2——,2rl l-lerl

Figure 2.1. A partition of the parameter space.

In interval (1) :




In this interval,

2
o

3 B

which implies that P(YERZ,

in interval (1) we have P(6el) =1 - a'.

In interval (2):

Tl s %
2 — 2
X X
o a
T,ZI‘B -2—,21‘
Since
e R
e Xa|
=—,2r
IR

in this interval, we have P(YERZ,YsRl)

result that P(6el) > 1 - a' for all 6 in interval (2).

In interval (3):

Here

N A ———

— A _
Py W‘qu—ww" e s s

2rl

Z€R3) = P(YeR

r'd

,YeRl)

0.

This gives the

-



inplies P(Y&RZ,YERI) = 0. So again, for 6 in the interval
(3}, P(Ocl) > 1 - a*,

In interval (4):

6 d 6 d
092 G
x2 5 e x:
o (o
-2——,2rl l—-j-—-,2rl
We note that, if
2
faddie s Ry,
&R e e e g
M | it |

the sense of the inequalities will be reversed and interval

(4) will be empty. When it is non-empty we have R, € R, and

2 1

P(06el)

- .—v
1-a P(YeRz) + P(YERZ,Z€R3)

len"~RB(¥eR,) (1-P(ZcR | YeR,))

1-a'-P(6)(1—P(ee12|b)).

Since P(D) > 0 and p(9512|6) < 1, it follows that

P(8el) < 1 - o' for 6 in interval (4) when it is non-empty.

This shows that the confidence interval proéosed by (2.1)

is invalid in the sense that, for some 6, P(6el) <1 - a'.
For those regions not included in these four

intervals a general pattern of the behavior of P(Bel) as a

function of 6 was observed by computing P(6el) on the

computer for various test parameters given by Bulgren and

B . L




Hewett (1973). The general pattern which was observed is
depicted in Figure 2.2. It can be seen from Figure 2.2
that if a' were chosen sufficiently small, it would be

possible to keep P(6el) > 1 - a, where 1 - a is the desired

confidence coefficient. An appropriate value of a'

found if we find an upper bound on p* which can be solved
for a'. Recall that p* is just P(YeRZ,YERl) - P(YeR
The difficulty in finding a bound on p* is finding a closed
expression for P(YERZ,Z€R3) which is alco simple enough to

permit the solution for a' . Bulgren and Hewett (1973) give

the joint density of Y and 7 as

4
Tl e Sl i
(z-y) . y 1 e
rl+r2 0<y<z 0<z<»
2 r(rl)r(rz)
f(er) = ‘¢
0 elsewhere.
|
Then
2
b S
) DR s
P(YeRz,ZeR3) = J f(y,z)dzdy,
2
ngl xl-gl 2r
0 P 3

,,AER3).

N
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T_ " A . g - S
?
eodl eodl eod2 eodl eod2
X2 X2 X2 X2 X2
o’ ot a',2r ol i
Figure 2.2. Behavior of P(8el) when I is from
(2.1)

and it is apparent that the closed, simple éxpression we

_ seek is not possible. In lieu of evaluating this joint
probability directly, we will simplify it using a Bonferroni
; bound. A lower bound on P(YERZ,Z€R3), using the Bonferroni

inequality, is

P(YERZ,ZER3) & P(YERZ) + P(ZER3).- 1

= P(YeRz) + (l=a') -1
= P(YeRz) - at, E
|

Thus
* = '
p* < P(Ych,YeRz) P(YeRz) * a's (2.3)

*«wm'-—-*vnnh‘?“.nu‘pq“sa‘uy¢a‘anauu;u-qg'-w-ntwuganunr*wrvvnwwﬂ——-1F S
m . - e — " . - .- - S— — — — . ta X :
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This upper bound on p* may be further simplified

with some observations about the relationship of Rl to Rz.

With respect to 6, interval Rl is fixed. On the other hand,

R2 increases in both size and location as 6 decreases.
When 6 = o, R, is the single point {0}. When 6 is such
that eodl/e coincides with

2
2T, % o
l l"'z_"l 21‘1,

it could be that R2§ Rl'

in ( 2.3 ) achievesits maximum value o'. Since P(0el) =

If this occurs, the upper bound

1l - a' - p*, the Bonferroni inequality gives P (6el) >
1l - 2a'. Obviously, if we want P(6el) Z1= g a' &8
given the value a/2. This establishes the following

result. E

Theorem 2.1. Let ry and r, be the number of

failures required for each stage of the two-stage

exponential life test, where r3 = rl + Iye. If Trl and Tr3

th
3

failures respectively, then the following rule gives a

represent the total time on test at the rlth and r

two-sided confidence interval for the exponential mean 0, |
with a confidence coefficient at least 1 - o, at the time
of decision for the two-stage test. If a decision is

made at the first stage, use




T

12

X
(0} a
7'25 l-ge2r,;

If a decision is made at the second stage, use

2T 2T
£y 3
X2 ’ X2 .
a (o3
727, 1-3:25,

The wide applicability of the Bonferroni inequality
suggests that the bound in ( 2.3 ) may be quite crude,
leading to overly conservative confidence intervals. An
alternative approach will be employed in searching for a
less conservative confidence interval. We also will admit
the possibility that P(6el) < 1 -~ o, for some 8, if the
difference (l-a)-P(6cl) can be shown to be small. This
would result in approximate confidence intervals.

Let

& = P(YERZ)P(ZERB) = P(YCRZ,ZER3).

Then

P(YeR YERZ) — P(Yst)P(ZeR3) S b

o
»
]

1'

]

P(YeRl,Yst) - P(YERZ)(l-a') + A, (2.4)

T e L

S g e 5
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If A = 0 (this would be true if Y and 2 were independent)
p* could be bounded above without use of the Bonferroni
inequality. The penalty for assuming A = 0, when, in fact,
A # 0 could be a confidence interval where P(0el) < 1 - «
for some 6. The difference (l-a) - P(8el) would be at most
4, and the Bonferroni inequality can provide an upper bound

on A.

P(YERl,Z€R3) 2 P(YERZ) + P(Z€R3) =

P(YCRZ) - a'.

Thus

>
A

< P(YeRZ)(l—a') - P(YERZ) + a'

a'(l-P(YERz))

a'P(Decision at stage 1). (2.5)

Since this Bonferroni bound may also be overly conservative,
and since a' will be less than o, it is apparent that A
will be small if it is positive. If A is negative the
resulting confidence interval would be less conservative
than under the assumption A = 0. Thus, if we assume

A = 0 and then bound p* under this assumption, the
resulting confidence interval will be such that P(6el) >

l - a - A, where A is bounded above by ( 2.5 ). We

proceed with the assumption that A = 0.
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The expression ( 2.4 ) for p* now becomes

p* = P(YERl,YERZ) - P(YERz)(l—a'). (2.6)

To establish an upper bound on ( 2.6 ) we again consider
the relationship of Rl with R2 as 8 changes. Our
observations will pivot on the relationship of R, with R

1 2
when 6 is such that

2
1
1-92-‘——,2r

eodl/e = X

14

1

i.e., when the left endpoints of R1 and R2 coincide. Here
either R2<_;_ Rl or RIE R2. We will designate the situation
R2§ Rl as Case I, and Case II h;ill correspond to RlE RZ’
Case I and Case II are depicted in Figure 2.3 . 1In a
specific application, whether Case I or Case II applies
will depend on the test parameters involved and the value
of a'. Each case is considered separately.

Case I: Rzg, R1 when their left endpoints coincide.

We examine the nature of the relationship of R, with R, for

1 2
different 6 and its effect on the problem of placing a

bound on p*.
I.a) 6 is such that Rl n R2 = g.

Referring to ( 2.6 ) it is clear that p* <o

for these values of 9.




15

Case I f________,/\\__“_____\

l [ | ] iy
| L 3 J
e

Case 11 ,____,A\____\

-

(PR el
Nilhe e o)
Y
@

Figure 2.3. Relationship of R, with R2 when 6 is
such that their left endpoints coincide.

I.b) 6 is such that R, N RZ # @ and §1n R, # #.

R

2 4" With this

2 5
notation we have

LetRlﬂR Z R andf{lﬂR

I

P* P(YeRl,YeRz) - (l-a')P(YERZ)

P(YERS) - (l-a')[P(YeR4) + P(YeRs)]

a'P(YsRs) - (l—a')P(YeR4). (2.7)

Expression ( 2.7 ) is maximum when R, = § or,

equivalently R,&€ R

2 i 0

- . P ———
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It is clear that, to establish an upper bound on p* for

Case I, it suffices to consider only those 6 for which R2

gRl. If R,& R, expression ( 2.6 ) reduces to p* = +

2 1l
a'P(YeRZ). Note first that if RZEQ Rl’ then P{YeR) <
P(YeRl) =1-a'. So, one bound on p* under Case I is

a'(l-a'). A smaller bound may be found if we determine the 1

- A
2= Ry

For that purpose, we find the value of 6, say 0%,

maximum value of P(YERZ), subject to R

for which P(YERZ) is maximum for given eo,dl and d2'
Since Y xz we can write
Zrl
u(e)
P(YERZIS) = J' £(t)dt, where £(8) = 6,d,/6,
2(9)
r-1 -t/2 J
t 1 e
u(d) = 6.4./8, and f(t) = r .
e T )
Then
3P (YeR, | 0)
2 5k du(e) _ 9% (8)
——een | SN 30 £(o(0)) 30 °
| ]
? Setting
3P(YeR2|9)
36 3
| 4
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and making the appropriate substitutions, we obtain

i rl—l -60d2 &a rl—l -eodl
d 02 5 ;I a 071 9 26
2| 6 1| @ !
or
r 0
1o 0 B
d2 26 (dl dz) g
-d—- (=) = .
1
Finally
i eo(dz-dl)

2rl(1n d2 - 1n dl)

So, P(YeRzla) increases to a maximum at 6* and then

o {?Odl BOd%}
R =
2 Tl y

, an upper bound on p* is clearly.a'P(YeRz*)

decreases. Now let

* C
If Ry3*S R,

under Case 1I.

Since

2
Rl — X2 ' v Xav

e o — ——————— . 248

et
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and o' is as yet unknown, it appears that it is not possible

to determine if R ,*C R

2 We note however that a < o and

1
consequently

implies that

2 2
RZ*E X o v XCI.' o
l-—,2r ==, 21
2 1 2 i

Thus in most cases, using the desired 1 - a coefficient,

it can be determined if Rz*g; Rl. When this relationship
exists we find that P(6el) Firlk g - a'P(YeRz*). So, if
a' = a/[l+P(YeR2*)i, we have P(8el) > 1 - a. We also note
that
a y
1l + P(YeRé‘; 2
insures that the interval with a' = a/[1+P(YeR2*)] will

be less conservative than the original intervals in
Theorem 2.1 wusing a' = a/2.

“Computations using actual test parameters given
by Bulgren and Hewett (1973) suggest that R2* is quite

commonly contained in Rl for smaller values of a, say

B
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< .2. The improvement over the intervals of Theorem

2.1 will be discussed later in this section.

1f Rz*g R,, the problem becomes more complex.
Here P(Yeszei, subject to the constraint R2§; Rl’ reaches

its maximum value when the left endpoints of R, and R

1 2
coincide, or when the right endpoints coincide, depending

on the location of Rz* with respect to Rl' Specifically,
when Rl 2 R2,
(
o S
dl l—-—-—,2r1
6.d
J fitja, if DL < 2
l-—,2r
2 1
X
max P(YER2|6)=1
X2
al
Pl
6.d
£(r) ae, if b > 4%,
l-—, 2r
a 2 1
12
d a'
{ 2 —2-—,21‘1

We need to solve the equation

a =

a' + a'(max P(YERZIG))
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for a'. The difficulty involved is the manner in which a'
appears in the limits of integration in max P(YeRzle).

Consequently, if it is found that RZ*S; Rl cannot be

established, the use of a'(l-a') as an upper bound on p* is
advised. We next treat the corresponding problem under

Case 1II.
Case II: When 6 is such that the left endpoints

of R, and R, coincide, R,€ R By arguments essentially

1 2 1 2¢
the same as those used for Case I, it suffices to consider

only the set of 6 for which R, € R in finding an upper

e R
bound on p*.

If R, & B

1 3

P(YeR

p* YeR,) - (1-a')P(YeR,)

2

P(YeRl) - (l-a')P(YeRz)

(l-a') - (1-&')P(YCR2)

(l—u')ll-P(YeRz)].

Now, since P(YERZ) > P(YaRl) =1 - a', we again find, as
we did in Case I, that p* < a'(l-a'). This bound is

1 = RZ'

We have shown that, under the assumption 4 = 0,

achieved by p* if R
an upper bound on p* is a'(l-a'), and P(6el) > 1 - a' -

a'(l-a'). If we want P(6el) > 1 - a, then set a' =1 -

(l-a)l/z. In Theorem 2.1 we used a' = a/2 which is

2 ,'-,—"-f- g & PG IR # L B R e P T L A . DA T v
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greater than 1 - (1—&)1/2

(l—a)l/2

. However, for small a, o/2 & 1 -
. Thus, the improvement over the results in
Theorem 2.1 1is slight. A further improvement .s

possible when R

*ie R Then we have a' = a/[1+P(YeR2*)].

2 1°
The degree of improvement in this situation over the
intervals of Theorem 2.1 depends on the value of
*
P(YER2 i
To get some idea of how conservative the interval
in Theorem 2.1 is, some computer studies were carried out

using specific two-stage test parameters given by Bulgren

and Hewett (1973). For each test used, the interval

e e

2 2

Xg 1 X g
3-2r;  l=3—,2r,

(see Figure 2.2 ) was divided by twenty points. Using
a' = %, P(6el) was computed at each of the twenty points.

Numerical integration techniques were used to find

P(YeR ,ZER3). Table 2.1 gives the minimum and

2
maximum values of P(6el) over the twenty points. Many
other tests were included in this study but, since

results on those were nearly the same as for the tests

given in Table 2.1 , their results have not been included

in the Table.
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Table 2.2 reflects the improvement which is

possible if it happens that R,*< R

2 1 and the value used for

a' is a/l+P(YaR2*) rather than 1—(1—&)1/2. The desired

e

confidence coefficent in Table 2.2 is .90. As in
Table 2.1 the minimum and maximum observed values of
P(06el) are given, first using a' = l-(l—a)l/z, and then
\ using a' = a/1+P(YsR2*). The confidence intervals using
the latter expression for a' are less conservative, but
the improvement is hardly dramatic. We do not sacrifice

much by using the simpler intervals of Theorem 2.1.

IIT. A One-Sided Confidence Interval

If a one-sided confidence interval for 6 is
desired following the two-stage test, the same approach as
used in Section II will yield analogous results. The

confidence interval is found according to the following

rule.
When the test decision is made at stage one, use
2Tr
1 oo Il, say.

xu',Zr1
{ When the test decision comes at stage two, use (3.1}
[!
" i |
! Ks
{ —T—_ ’ @ = 12' Say.

xa',2r3
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= TABLE 2.1
Extreme Values of P(6el) Using Theorem 2.1
Test Parameters Nominal Confidence Coefficients
0./9 a B =99 295 .90 . 80
0" "1 :
.9973 .9855 .9692 <9328
2 .05 .05
.9931 .9650 .9285 .8497
.9973 .9856 .9693 .8328
3 .05 .05
.9931 .9648 .9278 .8466
.9974 .9863 .9710 .9365
4 .05 .05
.9926 .9600 .9147 8327
Note: The first entry in each cell is the maximum observed
P(8el) over the twenty points used.
The second entry is the minimum observed P(8¢l).

ST AR S ST e - — il T e S
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v
TABLE 2.2
Extreme Values of P(6el) Using Two Methods
y
4
L Test Parameters Minimum Ma ximum
60/6l a 3 a' P(6¢el) P(6el)
.0513 .9272 .9698
2 .05 .05
.0592 .9143 .9642
.0513 .9278 .9636
3 .05 .05
.0595 .9152 .9690
.0513 .9290 .9690
2 .10 .10
.0608 .9166 .9634
.0513 .9257 .9701
> .10 .10
.0583 .9125 .9646
.0513 .9241 .9702
3 .10 .10
7 .0566 .9105 .9647

Note: The first entry in a cell corresponds to
a' =1 - (1-a)l/2,

The second entry corresponds to a' = a/[1+P(YsR2*)].
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Again, P(6el) = 1 - a' - p*, where
p* = P[D,eall] - P[D,Belzl.
We use the transformations

2Tr 2'1‘r

and also define

)
N
|
| o
@|O
o7
-
-
D
D|O
o]
g
-
V]
3
o)

Now we may write

p* = P(YeR YeRl) - P(YeR ZeR3).

& 3"

As with the two-sided intervals, we can make some
general observations about P(6el).

i) 3t

then

B R O S B i it A A ek il




26

01 2 2
G xa',2r3 K xa',Zr

1

Here P(YeR ZsR3) = 0, and P(6el) =1 - a'.

2,YeRl) = P(YERZ,
ii) If
eOdl e Bodl
X2 — — x2 <
a',2r3 u',Zrl
then
eodl
2] - Xa',Zrl
and
Ry n R, = g.
Since P(YERI,YERZ) =0, P(6el) > 1 = a',
iii) If
)
0 _>' 2 ’
xu',Zrl
then
) ¥,
9 - G.,zrl
and
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Furthermore,

R(0el) 1 = % = P(YeRz) + P(YeRz,ZeR3)

=1-a"' - P(YERZ)(I-P(ZeR3leR2))

A

I = a'.

We can utilize the same approaches to finding an
upper bound on p* that weré used in the previous section
on two-sided intervals. One bound on p* is found using
the Bonferroni inequality, and the result is again
p* < a'. Consequently we would set a' = % in the intervals
{ 3.1 ) to ensure that P(8cl) > 1 - a for all 6.

The other approach is to set

A = P(YERZ)P(Z£R3) - P(YER2,28R3) = 0.

Then p* becomes P(YeRz,YsRl) - (l-a')P(Yst). By arguments
similar to those used in Section II , it can be shown that
p* takes its maximum value when RZSE Rl' If RZEQ Rl' then

p* = a'P(YeRz) < a'(l-a'). Or, we may again define

R,.=[90‘31 eodz:l
2 Ci e
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where 6* is that value of 6 for which P(Y€R2|6) is maximum.
So, we obtain p* < a'P(YeRz*) when RZ*EE Rl. We arrive at

the same terminus as in Section II
1/2

. We may use

a' =1 - (1l-a) , which is nearly o/2, or a/[l+P(YeR2*)]

if Rz*gg Rl and a less conservative one-sided interval is
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