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A MAXIMUM LIKELIHOOD ESTIMATOR FOR AN EXPONENTIAL
PARAMETER FROM A LIFE TEST WITH BOTH

TYPE I AND TYPE 11 CENSORING

Abstract

A hybrid life test on items assumed to have an exponential
lifetime combines type 1 and type II censoring. In type I
censoring, n items are placed on test and observed for a fixed
time t*, while in type II censoring the test terminates with

the roth failure, where ry is a preassigned integer. If £,
o]

is the time of the roth failure, a hybrid life test terminates
at min(tr (t*). In some situations it may be of interest to
estimate 2he average lifetime € , following the test deci-
sion. In this report, we find the maximum likelihood estima-
tor, © , when the sample is subject to hybrid censoring.

An expression for E(0) 1is derived. Because this expression

is complex, computer simulations are used to examine the bias
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A MAXIMUM LIKELIHOOD ESTIMATOR FOR AN EXPONENTIAL
PARAMETER FROM A LIPE TEST WITH BOTH
TYPE 1 AND TYPE II CENSORING

1. 1Introduction

2 Collecting data for a life test is often complicated

by some type of censoring on the observed lifetimes. Con-

sequently, testing schemes involving various combinations of

time and failure censoring have been developed. 1In type I
censoring, n items are placed on test and observed for failures
for a fixed time period t*., 1In type Il censoring, n items

are placed on test and observed until the roth failure occurs,

where r, < n. The value of Y, is chosen prior to the test.

Epstein (1954) proposed a testing scheme which combines type I

and type II censoring. In '‘his scheme the test terminates

th

at mjn(tr t*), where t is the time of the ro failure.

r
o o
We shall refer to this testing scheme as the hybrid test.

In this report we shall assume that the lifetimes under
consideration have an exponential probability distribution.
Thus, if 1 represents the lifetime of an item, the density
function of 1 is

e /8 if

1
) T = 0

£(t;0) (1.1)

o

elsewhelre

where ¢ > 0. 1In this form 6 is the average lifetime of

an item in the population.




pre o gorem e

Epstein (1954) developed the hybrid scheme to test Ho: B = eo

against “l: 0 = ¢, , where 0, < ﬂo. 1f min(L, o L¥)

1 1
o
"o 1s accepted, while if min(Lr yB¥) =€, Ho is rejected.
r
o o
Figure 1.1. illustrates this hybrid testing scheme.

failures
1\
reject Ho
R et s T»—- ——'—1
g !
' [}
— —— accept H
(] (] ] (o)
; ’ !
r |
i |8
i » time
t *

Figure 1.1. Possible sample paths in a hybrid
scheme.

It is very likely that a true value of 6 1less than el
may lead to rejection of Ho' or a true value of 6 greater
than 80 may lead to the acceptance of "o' Consequently,

it may be of interest to compute an estimate of 8 folloying
the life test decision using the test data. The estimate
might be a point estimate or an interval estimate of 8 .

In this report we shall consider the problem of finding
a point estimator, the maximum likelihood estimator of € ,
when the data is collected for the hybrid life test. We
shall assume that the life test is conducted without replace-

ment, i.e. failed items are not replaced with new items.
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Point estimation for € under type I and type 11 cen-
soring is thoroughly discussed in the literature of reliability
and life testing. The maximum likelihood estimator of 0
under type 11 censoring was found by Epstein and Sobel (1953).
1f tl,tz,..

n items on test, the maximum likelihood estimator of 0 is

.,tn represent the ordered failure times of the

given by
r
R e .
0 = - ['E L, ¢ (n - rO)Lr ] = . /r0 (1.2)
o i=1l 1) o
r
o
where T e R SR ) R 0 represents the total
r Y 1 [ O
o i=1 o

accumulated test time, or total time on test, at the time
of the roth failure, tr . The maximum likelihood estimator
of 0 under type 1 congoring, and its properties, are dis-
cussed by Bartholomew (1957), Mendenhall and Lehman (1960)
and Bartholomew (1963), including a more general situation
where each item on test has its own truncation time t; ’

i=1,2,...,n. Under type I censoring the maximum likeli-

hood estimator is given by

A ol 1 *

8 = f[ ¢ b, % in = kjt¥%] (1.3)
where k 1is the number of failures observed by time t*,

These results and properties of the estimators are sum-

marized in Mann, Schafer, and Singpurwalla (1974).

i e N L R L S e

e




We may conjecture that (1.2) and (1.3) could be combined
to form a maximum likelihood estimator under the hybrid
censoring.  This conjecture will be shown to be true in
this report. For each item on test under this hybrid scheme,
a mixed distribution is defined having positive probability
at the point t*. Order statistics from this distribution,
which admit the possibility of ties, are defined and the like-

lihood of the first ro order statistics is found. An ex-

pression for E(f) 1is also derived in section II1.2. 2 simple,

closed expression for the bias is found when P L gl
closed but complex expressicn for E(8) is given for

25 r, < 5. The bias of 0 is further examined by simu-
lation, using some of the actual hybrid test schemes of

Epstein (1954).
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II. A MAXIMUM LIKELIHOOD ESTIMATOR

FOR THE HYBRID TEST

II1.1. Derivation of the maximum Likelihocod Estimator

Our approach is to define a density for lifetimes
under a hybrid test which admits ties with positive
probability. The joint density of the first ry order
statistics is then found, from which the maximum likelihood

estinator 1is derived.

Let

e
SRl ® 1B e Vg ot <
-tX
de ? ¢ = gt (2.1)
0 elsewhere

L

Now define a measure p as follows: If L is Lebesque measure
and n is the counting measure, then for any Lebesque

measurable set A,

p(A) = L(A) + n(AN{t*}).

Then, if we define

P(A) = [ff(t)du ,
A




f(t) is a density in the sense that it is the Radon-Nikodyn
derivative of P with respect to p. If 11, 12, sisig. T.  Are
the n unordered failure times of the items in the hybrid
test, we may consider 11, el xn to be a random sample from
a distribution with density function (2.1). Then the

likelihood of 8 is given by

Let 0 < ¢ < €, *v¢ < £ < ¥ define the
W = R —

corresponding order statistics. We have the possibility
of ties here since an item may assume the value t* (i.e.,
censored lifetimes) with probability e‘t*/e. Consequently,
the problem of these possible ties must be considered when
finding the joint density of the order statistics. 1In the
case of ties, the order statistics are defined uniquely,
though somewhat artificially, in the following manner. If
i

1. and Tj are tied at t* for the kth ordered failure time

and 1 < j, define t T and t

k=
considerations of order statistics, the density is assumed

k+1 = Tj. In most

to be continuous, and points in n-space where two or more
ties occur are ignored since they have zero probability.
Now these points must be considered separately. To that
end, we partition n-space into sets Ao, Al, oy An’ where

we define A, = {11, cees T exactly i points equal t*}.




Thus, AO is the set where all coordinates differ from t*,

while A3, for example, is the set of points where three

coordinates equal t*. The joint density of the order
statistics will differ on each Ai. We further partition
each Ai to obtain the required one-to-one transformation

onto the set

BBy Bgeaece S IF ML, Sk, € vos 2 B, £ £*)

For example, when n = 3, Az is partitioned into

o
]

s - = %
21 {(rl, Ty 13), QS S T t*}

P MR R by = T,
== - - - *
a,, {(Tl, Ty 13), 0 < T, <7 T, t*}
and
. . = = *
a,, {(Tl. Tye T3). 0 < Ty €Ty T, t*}
2 t, = Ty b, =T, t, = T, -

Consequently, on AZ with n

order statistics is

3, the joint deusity of the

gt t

ts)

3f(tl)f(t2)f(t3) .

2'




In general, there will be (2)(n-i)! sets in the
partition of Ai to accomplish the one-to-one transformation.
(2) accounts for the number of ways to select the i ties,
while the (n-i) untied coordinates can be permuted (n-i)!
ways. The joint density for the order statistics over set

Ai can be written as

n .
glt v eevy t)) = () (n-1)!

e L =0 s e R
3 3

=3

1

=t* /0

If we define Cn = (2)(n-i)! = nl!/i! and let g = e -

i
[4
then the joint density of the order statistics, in full

generality, is written as

n
i o e *
Cn'0 igl f(ti) if 0<t1<t2< <tn < t
n-1
i e oo = *
Ca,1 9 izlf(ti) if 0<t <t < <tn t
g(tlloto,tn)=< 2 n—z
i LI = - *
Cn,2 9 izlf(ti) RE U ce cnuace, = £ =t
C o 'f 0<t = t = ese = ¢ = t*
l n,nq 1 1 2 b .

[




It is now possible to tind the joint marginal

density of the first ry out of n order statistics from

density (2.1 ). Recall that r is the truncation value on
the number of failures for the hybrid test. This joint

marginal density can be found from the theorem which follows.

Theorem 2.1. If f(t) represents the density

function ( 2.1 ) and

t
F(t) = Jf(t)dn ,
0

then the joint marginal density function of the first

(n-r) order statistics having density f(t) is

( n
Cr,r(1Flty )]

i < < oo < *
if 0 tl < tn-r t

r+l

Cn,r+1 q

i < < eoeoe = *
if 0 t e, LR

OIS ER

r+2

Cn,r+2 q

t*

AL WS tl e tn—r-l = tn-r

LR

e R T 1Ma M
g G magpiets R S '-

[Ty T v R, W

—




10 ;
11
C. q M if O<t, =t = oo ¢t =t ]
n,n 1 2 n-r |
11
The proof is by induction on r, for r < n=-1l, Consider the §;
case where r = 1. 1In the region where 0 < Ll A g |
S
t*- n
GEEL s sevy £ _3) = C £ L) at,
1 n-1 n,o & ek Sl i n
n n-l
n-1
C / I f(t,)qdu ,
n,l{t*} isl l
where the limits on the first integral indicate that
integration is over the interval itn_l,t*), while the
second integral is over the single point t*, E
|
Then, ‘
‘F
l
t*- n-1 n-1 f
g(tl, . e tn-l) = C“'0 ( F(tn)].g f(ti) + Cn,l q.E f(ti)
t i=1 i=1
n-1 z
ﬂ‘l n_l }
= C Lil=g=Pit__.)] R £{t.) ¢ C g K £ix,}
n,0 n-1 i=1 i n,1 §ml i |
n-1
. - ] €& waw <t_".
Cn,lll F(tn-l)].ﬂ f(ti) 0 0<t1 t-1

i=1

The last equality follows from the observation that

Cn,o = Cn,l' Now in the region where




il

the integration will be over the single point t*, Thus,

n-2 2
GlLs o vy B 0F =0 / N f(t.)gq"du
1 n-1 n,2(t*} e i
2 n-2
= Cn,2 q iElf(ti)
1 < Ceeoe = t*
if 0 tl < t2 tn-l e,
Likewise,
3n-—3
= 1 e o o = -4 %
gltyreeert ) Cn'3q iglf(ti) 1f 0<t, <t < et Cuagt
= H i = =e s o= =4 %
gltyreeent ) Sy if 0<t =t, t-1=t

which is the desired result for r 1. Now assume the
theorem is true for r = k. It suffices to show it also

holds for r = k + 1. Again in the region

o < tl < oo tn_k .<— t*'
gty wony t 1)
n-k~1 tx- X
i Cn,k l:l] f(ti) t / =t f(tn-k) [I-F(tn_k)] dtn-k
n-k n-k-1




f n-k-l

+
{t*)} !

Cn,ki 1

f(ti)qk+1du.

i=1

Carrying out the integration we find

g(t )

e e e g tn—'k-l

n+l
(l-F(tn

k+1

L]

n-k-1
It f(ti)'
i=1

L -’ k+1
cn'k+1[1 F(tn_k_l)]

B N L WG

the last equality follows from the fact

Cn,k/k+l s cn,k+l F
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Then in the region where 0« N S "n-k—l = tn—k i
n"k"? y
k+2 3
BAE. > veivy KB 2 ) ® f O I e du
1 n~k-1 (t*} n,k+2 fat
~k=2
5 k+2 ®
Cn,ke2 9 L
if ¢ < tl < wed < tn—k-l = £k,
Likewise,
n-k-3
£ k+3 :
g(tl' b tn—k-l) B Cn,k+3 g izl f(ti)
i “ e = = *
e . o *Trekez " Speay ™ €
Glis asuan t Powe gt
1 ' “n-k-1 n,n
i = = eee = = *
if 0 < tl t2 tn—k-l t

i

This establishes the result for r k + 1 and the proof is

complete by induction.

From Theorem 2.1 , the joint marginal density of

the first ro order statistics is seen to be
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[ a
nex, o }.
Cn,n-rO“’”tro” 121 £(t,) :
¥
if 0 < t, < eee < ¢ <t ;
1 Lo :
n-r +1 ry~=1 %
n,n-ro+1q 121 f“-'i) {
_ ¥
1fo<t1<---<tro=t* ¥
n-r +2 Tome }
3 C q | o
g(tl, Vereig tro) = 4 n,n—r0*2 it ( 1)
1f 0 < t, < eee < ¢t = t = t*
1 0 1 r,
g 5
{
n
& Cn'nq ;,
if 0 < t L = eee = = * ?,
| g0 el
4
Equivalently, we can write ‘
( ; n-ro r0
SR & L S S B £(e, ) AiFf ¢ <o
’ s To Jmg To
’. g(tll LR B 7 tr ) = S
0
c g lI(I £(t,)
BRIRY: SRRy sigf i i
L s

i
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where k = the number of faillures observed in (Q,t*). Note

that 0 <k < r and k = r_  1f and only if t < &%,

il RS 0 r,
Consequently we may write the likelihood function of the
first ry order statistics as

a(n-ro)

k 3
L(®) « [ I f(ti)]q(l “)("‘k)ll-r(tr )] (
i=1 0

s

«3 3

where

In terms of density function ( 2.2 ), the likelihood becomes

K tr
(G LEE i P &
1 ¥ iw1®y 5 (1=a) (n-k) 5 (n ro)a
L(e)"—EG e e
6
1 k
P (E t;+(17a) (n=k) t*+a(n-r )t ]
i=] 0
2—-k—e -
0
Then,
K

InL(8) = C - klnd - -é- (£ ¢, + (1-a) (n=k)t* + a(n-r.)t )
i=1 4 .ty
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and
K
(3 t.+(1—a)(n-k)t*+a(n-ro)t ]
3nL(0) _ -k , _i=1 1 ‘o
a0 6 2
0
Setting
dlnk (8) _
% %

we find that the maximum likelihood estimator for 8 is

i + (1-a) (n=-k) t* + a(n—-ro)tr

- - SSESE AW

This is merely ti.e combination of the maximum likelihood

estimators from the type I and type II censoring which we
expected.

II.2 The First Moment of the Maximum Likelihood %
Estimator

The maximum likelihood estimator derived in the

previous section can be used to estimate 8 following the

hybrid life test. In order to examine the bias of this

estimator, an expression is derived in this section for the

first moment of 6. In section 11.1 we obtained

D)
"
x|
-~
i~

t. + (1-a) (n=k)t* + a(n-r, )t_ },
j=y 1 0" ¥,




where ti = i‘h ordered failure time, £ = 1s 24 oeer Dy
t* = truncation value for time,
B truncation value for failures, and
k = number of failures at time of decision.

The distribu®ion of k is given by

(?)p)(l-p)n_) §2.9 = Gy By sesy Egwl
P(k = ]) = <
Bo i ol n-i
L (i)p (1-p) if 3 = Xyr
i=r0
- 3 2 * AL -t*/e
where p = P(an 1tem fails before t*) =1 - e P

(2.3 ), "a" is a random indicator with a distribution

given by P(a=l) = P(k=r0) = P(tr <t*), and P(a=0) =
Q

1-P(a=1) .

The estimator § will be infinte when k = 0, soO
we will condition on § being finite and find E(8]8cw) =
£(5]k>0). Since 6 is infinite with probsbility P (k=0),
the distribution of § conditional on 8 < » is just the
unconditional distribution of 5 divided by the constant
P(k»0). Hence, E(8|8<w) will be merely the unconditional
expectation of 8 (over finite values of 8) divided by the

constant P(k>0). SO, E(6]B8<o) =

17




iy

1 k (1-a) (n—k) £+ a(n—ro)t"o
Fresoy JE|. X ti| *E X PR iEsererrit 224 )
jwl—a
K R

Each of the expectations in ( 2.4 ) will be

evaluated in turn. We first write

k r :

Ef L t.|= & E| It |kej|P(k=]).
- j=1  li=1-2%

k b

Given that k = j, for J = 1, 2, ««.ss; Ta~l, there are

0
exactly (?) equally likely ways of selecting the set of j
items out of n which will fail first. If we condition
again on each of the (?) equally likely combinations it is

seen that

th unordered failure time whose distribu-

where L is the i
tion is truncated at t*. The truncated distribution
follows from the fact that we are given the number of
failures observed before time t* is k = j. Thus the

distribution of Ty is given by

TN TR S vy

e

ity LT

e e

65

AW b fafls i 5 0.

~ e

‘_A_-_._..-.
RGO 2w, T
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1 =3,./8 1 =2 /0
B = =S if 0 < 1, < t* :
f£lt;) = 4q1-e™t P * { 2.5 ) t
| 3
i A.
0 elsewhere. 3

Direct integration using ( 2.5 ) gives the result that

= *
E(ri) = 9—35— » where q = 1-p. So,

J g
El t.r=j - R e ML R i Bl

i=1 X P §
]
Now, k = r, implies that at least r, items failed
by time t* (even though observation ceases at tr ). We
0
must treat this situation differently. ;
k s o :
Ef L ti k=r0 . E} L tiltr s et §A

To evalute this expectation we need the joint density of

the first r, order statistics taken from the exponential

population, conditioned on tr < &%, Let X, represent
0

the observed value of the random time ti. Then

F (x ’ e o g X |t < t*)
tl' e e oy tro 1 ro l’.'o

p(tl < xl, t2 X x2, ey tro < min(xro,t*)]

= P(t < t*) 4
o




R &

O P R S M S v

—

sy

e T T ————

and
f (2.0 ohing % T < t¥)
tl' Saialis tro 1 ro 0
S I%. sosnsx. 12 2 2w
- tl r0 1 r0 r0
axlaxz...axr
0
rf I'O‘lt (X X e oo X )
: tl r, 1572 'r0 iz e
PTE TEEF) . 2
¢ 0
0 elsewhere.
Since
To
_l[.z xi+(n-r0)xr ]
n! 6 i=1 0
ft t (xl,...,x ) = g
i To (n-r.) o
0
we can write
k
E iil ilk - r,
k

as

20
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t* t* t*
r
1 ( Zox ) = -
L. Pt <t ot . | r
0 r i=1l g 0
0 x,=0 x_=Xx ¥ @x (n-ro).e
il 2 -l ro ro-l
Yo
1 [ £ x.+(n-r )x_ ]}
"% d§=1° o
e dxr ek, dx 2.6
0 1

Evaluating and simplifying this r_-fold integral becomes

0

very tedious as ry increases. We have evaluated ( 2.6 )

for values of Ly through five. We give here the results
for rO = 1 and 2, while the results for r. = 3, 4, and 5 are

0
given in Appendix 1. In these expressions we define

(@}
]

n! " { 2.7 )
(n—r)!rP(tr<t*)

The integral ( 2.6 ) reduces to

_nt¥
c 9_ - 19%nt* 9
1 n2 n2
when ro = 1, and
( | _nt* ) _{n=1) x|
0(3n-2) 2nt*+(n+2)6 ¢} no+(n-1) t* 3]
b | - Sig 2 e T

n (n-1) n (n-1)

when r. = 2,

0




22

] R A TS ST

We now have, for the first expectation in expression ( 2.4 )

r.-1

tm

N ~Mx
r?
|

I Mo

% [
Shzgel) L) p(k=1) + &
1 ¥

P(0<k<r0)(0—qt*) k
= D + E 2 ti'k___ro P(k=r ) ( 2.8 )

where

is given by ( 2.6 ).

Next, we evaluate

(l-a) (n-k) t*
E[’ L ] :

If we condition on the value of a, this expectation becomes

E E#:%lﬁi‘a=;]P(a=0) =

D_t: < < - * -
E[k |k~ro:]P(k ry) t*P(k<r )

(FIP(k=i) = t*p(k<r) =




B 7P AR i R

-+
»

Il MmO
)
41
R
~

To establish this, we made use of the fact that a = 0 if

and only if k < ry- As before,

EX o

Bt} = 2 ptime gt ge ¥yt

Finally, we find

at
(n—ro) E

Conditioning again on the value of a, we get

at [t

t i
Yo Yo Yo
E = E|——|a=1|P(a=1) = E|—=|t_ <t*{P(t_ <t*) ,
k k r r L=

4 - e .
since a = 1 ~» tr < ¥ > ko= rye Here we require the

0

density of the roth order statistic from the exponential

distribution which is truncated at t*.

(

( r.-1
X 0 (n-r. +1)x
e r, L 0 r,
0 3]
ft (xr‘ltr <t*) = n!il-e e
* - -
r, 0 0 4 P(tr0< t*)06(n ro)!(r0 1)!

if x < Ex
C

0 elsewhere.

e A




Then
t
Yo
Ble-sit. < B8] Bt < £¥) »
0 o
*
f =1 o= -(n-r +1)t
3 n!{to thea TyEyml 0
g ] - E
r, (n rOT.(LO 1)! e 0 dt
t=0
Bl w . o
= - g [ ti1-e Y350 o 4 dt. £ 2.9
0
0
But
ro-l
™ ro-l ro—l _%E :
l-e = j e (-1) ’
il
by the binomial expansion. The integral ( 2.9 ) becomes
n-1 Y _ as £
nélry=1f "o - ( - (n=r +j+1) t*/0
0 r (=13 |5t Le b at
0 j=0 J C]
0
-
fn-1 ) _ o ry-1) = (n=r +jel)er
nélr -1 "o 1 iy J [(n=r +j+l+t*
5 0  {=1) j ] 0
0 5 l-e 5 +1 !
Xy j=0 (n-r +j+1) U

24
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Combining the three parts from ( 2.4 ) we have a final
expression for the first moment of 5, conditional on 8

being finite.

P (0<k<r.) (B-qt¥*) P(k=r_.) 0
0 & 0 E
P{k>0)p rOP(k>0) > TR

E(5|5<w) =

)

QP i 13

ro-l i F
s t* D (nfl) '

ETE;ET el P(k=1) +

n-1 {r -1
i B = 170
(n ro)neiro l] g (_l)jt 5 } .
Tg MO0 3=0 (n-r+i+1)°

_(n—r0+j+1)t*
5 (n—ro+j+1)t*
5 ERl s X d 1)

l-e

In the simplest state, when ry = Ly E(§Ik>0)

reduces to *

1

-nt*/0
P(k>0)

[6=(6+nt*")e 1,

where P(k>0) = P(t 1 < t*) = 1—e_m”*/6 = p¥*, say.

So,

E(8]|k>0) = 6-6(1-9*;:nt*(11g*)

1
= B-nt*(s; =1% «
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A

When ro = 1, 6 has a negative bias equal to nt*(%; -1).

Similar simplifications when r, > 1 were not found.

0
If this maximum likelihood estimate of 6 is
computed with the data from a hybrid life test, the values

of n, Loe and t* are supplied by the test and cannot be

adjusted for the purpose of reducing the bias. We have
simulated some hybrid life tests on the computer for the
purpose of observing some bias values which the maximum
‘é likelihood estimator inherits from the test. If we test
Ho : 6 = 60 against Hl e = Gl' where 61 < 60,
4 (1954) has given the theory necessary to find the values

Epstein
of n, I, and t* which correspond to given error probabili-
ties a and B. Simulations, of 1000 trials each, were run
on 27 different hybrid test schemes. In each simulation

E(0) was estimated and the bias was estimated at 0 = 90.

Table 2.1 gives the simulation results. The bias is

expressed in the table as the percentage of the actual |
value of 6. Using 1000 trials, the estimated standard
deviation for this percentage was less than 3% for all |
simulations. For comparison, the table also gives the
exact bias in each case for the maximum likelihood
estimate from a type I testing scheme having the same
values of n and t*. This exact bias was shown by

Bartholomew (1957) to be

2 T N T S P NS
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nt*E(%) - 9—-;—* S

where k = the number of failures in (0,t*) .

that k > 0 and E(1/k) is conditional on k > 0.

S ek £ .
q=-e and p = 1-q. It is clear from Table

sizes,

It is assumed

the bias may be quite large especially for smaller sample

As before,

2.1 that




APPENDIX 1

B o s

Listed here are the values of the integral ( 2.6 )

when ro = 3, 4, or 5. The constant Cr is defined in

equation ( 2.7 ).

2 -nt*
S 20(3n“~-7n+3) 2n06+30+3nt* )
n (n=-1) " (n-2) 2n
-tn~1)¢* ~fn=2) t*
o * - — *
* 2n6+2(n é)t ¥ _ 2n6 36+(n22)t = 3]
(n-1) 2(n-2)
3 2 -nt*
S 20(5n"=-25n"+35n-12) 3nf+4nt*+9 [§]
Fp = A1 Ny 3 3 7 + Z e
n“(n-1) “(n-2) “(n-3) 6n
-(n=1) t* -(n=-2) t*
3nf+3(n-1) t* ) 3n6-46+2(n-2) t* 0
o 3 e + 3 e
2(n-1) 2(n-2)
- (n-3) t*]
3n6-80+(n-3) t* 0
5 e
6(n-3)
4 3 2
gy Y (15n =130n~+375n"-404n+120)
0 e ciit - B 2 2 > g
n (n=1) " (n-2) " (n-3) " (n-4)
4no+5nt*+50 0 2n0+2(n-1) t* 3]
- 3 e + 5 e
24n 3(n-1)
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-(n=2) t*
- 4n6-56+3(n-2)t* 6

4(n-—2)2
L ~(n=3) t*
& 2n0-50+(n-3) t* 0
5 e
3(n-3)
-(n-4) t
_ 4no-150+(n-4)t* T ©§
5 e
24 (n-4)

A ey

g
:
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