AD=AO73 879 ARMY WAR COLL CARLISLE BARRACKS PA F/6 9/2
A REVIEW OF ARMY HIGH LEVEL PROGRAMMING LANGUAGES AND DOCUMENTA==ETC(U)

MAY 79 J 6 MCKNIGHT
UNCLASSIFIED

“l.l... 5

e ————

Co— E— - e—

DATE
FILMED

I0-79

DD

-

N

|0 'k

JoL =

2

l12S flis e

..... 5 TUDY

The views expressed in this paper are those of the author
and do not necessarily reflect the views of the PROJECT
Department of Defense or any of its agencies. This
document may not be released for open publication until
it has been cleared by the appropriate military service or
government agency.

~

26 MAY 1979

AO73879

D

i ST A REVIEW OF ARMY HIGH LEVEL PROGRAMMING LANGUAGES
AND DOCUMENTATION FOR ADP SOFTWARE
by
[> Lieutenant Colonel James G. McKnight. 35
i - = Quartermaster Corps ' . A W
FNIres .’
Ll j-
f = SEP 18 1979 |
‘ (Wi 1
3 |
= A
e, 2 2 e |
- US ARMY WAR COLLEGE, CARLISLE BARRACKS, PA 17013 Jj
R X NI XN T TN AR AT NS KRN NN NRERN|
% Approved for mublie rolenses !
distributionunlimited. i
i 79 09 12 033 |

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

ORY NUM 2. GOVT ACCTESSION NO||

3. RECIPIENT'S CATALOG NUMBER

AR BIGH LEVEL ROGRAMMING \

.

S. TYPE OF REFORY & PERIOD COVERED

\ GUAGES AND DOCUMENTATION FOR ADP SOFTWARE , '

6. PERFORMING ORG. REPORY NUMBER

7. AUTHOR(e) eRl SR 8. CONTRACT OR GRANT)
’)d’Gi James G. /McKnigit | ” ‘f_/ /
'j { | E——— ¢ / - /J

9. PERFORMING ORGANIZAYION NAME AND ADDRESS
US Army War College
Carlisle Barracks, PA 17013

10. PROGRAM I.L(s

NY, PROJECT, TASK
AREA & WORK

€
NIT NUMBERS

?. DATE
26 May W79 [

11, CONTROLLING OFFICE NAME AND ADDRESS :f

Same as Item 9

A3 NUMBER OF PAGES

FY8. MONITORING AGENCY NAME & ADDRESS(I(different from Controlling Ottice)

'8. SECURITY CLASS. (of thia report)

UNCLASSIFIED

18a Dle“ll FICATION/ DOWNGRADING
SCH LE

16. DISTRIBUTION STATEMENT (ol thie Report)

(/7) Study g

17. DISTRIBUTION STATEMENT (of the abateact entered in Block 20, I different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il naceasary and {dentify by dlock numbder)

b, “—

20. ADSTR (Continue en reverse side |{ neceseary and Identily by block number)
his paper reviews state of the art

for high level

programming languages and traces their development from
first ceneration computers to the present day. A review

]
[)')) ‘:::"n 1473 =ormion oF 1 NOV 88 18 OBSOLETR

and comparison of industry and Army standards for program
documentation is made and differences discussed. Dased
upon field interviews, findings concerning command unique
documentation are presented. Conclusions indicate that

more powerful and cost effective high level languajes are
UNCLASSIFIED

\\/ —

: L7/ 02 Sl

+

SECUMTY CLASMPICATION OF TWiS PAGE (ﬁiﬁﬁ%:m

TY CLASSIFICATICN OF THIS PAGE(When Dete Entered)

available for usc and that documentation for command
unique software is not adequatc. Recommendations are made
for securing a system languagze, establishing a central
review and approval authority for software documentation,

and for various follow up studics.

f:\ .

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

S W SRR T M N 5

USAWC MILITARY STUDIES PROGRAM PAPER

A REVIEW OF ARMY HIGH LEVEL PROGRAMMING LANGUAGES
AND DOCUMENTATION FOR ADP SOFTWARE
by

Lieutenant Colonel James ¢. MeKnight
Yuartermaster Corps

o Army e COIle‘r:c LVailability Codag
Carlisle Barracks, Pennsylvania 17013 m;:;fﬁ
26 May 1979 k. | .;') :;;il./on
SR |

)Q i

e ————

o
The views expressed in this paper are those ¢f the author and do ‘nn't
) e e Denaniment of Celenss or any 00 1S
ty roflect the views of the Depariment o
Approved for public release : necessanly reflc

agenc.es. This documant o s
distributionunlinmited. has been clearod by the appiopriate miitary serv.ce o

| on un
way not be recased for o, cn pubucetion u 1
gvornment @ ency.

;
|
i

il il

i e 1 e

————

AUTHOR(S): James G. McKnight, L1C, QliC

TITLE: A Review of Army [ligh Level Programming Languages and
Documentation for ADP Software

FORMAT: Individual Study Project

DATE: 206 llay 1979 PAGES: CLASSIFICATION: Unclassified

This paper reviews state of the art for high level
programming languages and traces their development from
first generation computers to the present day. A review
and comparison of industry and Army standards for program
documentation is made and differences discussed. DBased
upon field interviews, findings concerning command unique
documentation are presented. <Conclusions indicate that
more powerful and cost effective high level languages are
avallable for usc and that documentation for command
unique software ic not adequate. Recommendations are made
for securing a system languace, establishing a central
review and approval authority for software documentation,
and for various follow up studies.

S —————

.

TABLE OF CONTENTS

Pape

ABSTRACT...........O..I.....'I.....".O..l......ii

CHAPTER I.
II.
SEE
IV,
V.

PROBLEM STATEMENT AND METHODOLOGY.. 1
PROGRAMMING LANGUAGES:¢sessesessees 8
SOFTWARE DOCUMENTATION.:eceoosccessosld
FINDINGS.eveecsssessccscsssensssscssll
CONCLUSIONS AND RECOMMENDATIONS....36

FOOTNOTES..O.Q.QO'-o..ool..!.to'.'.‘.o.00.0.00004(\
L‘IBLIOle)l{\'...QQO.......0...0...0..00...l.'.00041

g R WS 2 T T O 1 A

s Y

T P Sy ey -

v

Chapter 1

PROBLEM STATEMENT AND METHODOLOGY

The purpose of this review is to evaluate

"high level" programming languages usad within the

Arny and to determine if state of the art capability
, is being exploited, In addition, a review of
b | existing software documentation standards will be
conducted in order to determine adeguacy.

Although numerous high level programming

languages exist within the ADP community, the U, 9,

Army currently limits ADP languages to three:
FORTRAN, COBOL, and BASIC, (Exceptions exist for
limited purposes.) These languages are in use due

to historic situations and may or nay not present

limitations to programming capability, Closely related

to program languages is program documentation, with

some languages beling more self documenting than

others., Long term benefits can be expected when

A s st

documentation is properly accomplished. Improper
documentation can lead to excesaive costs when
apecific programmers change employment, when new

e

hardware is purchased or when attempts are made to

export the system,
In order to narrow the scope of the review,

and to keep it within manageable bounds, only

i command unique software will bde addressed., This
limitation also recognizes the fact that Department

of the Arny standard systems are developed by organi-

zations with greater resources and capabilities than

local data processing institutions,
Methodology for conducting this study
consisted of a review of applicable Department

i of Defense instructions, Pepartment of the Army

“

Regulations, U, 8. Aray Computer Systems Command
Technical Manuals, academic literature and personal
interviews with military and civilian programmners

and managers,

|
z

Department of Defense instructions, Department
of the Army Regulations, and U, 8. Army Computer
Systems Command Technical Manuals were used to
establish familiarity with existing standards and
to provide a base for comparison., Likewise,
academic literature was used to gain knowledge of
standards accepted by the teaching profession, The
personal interviews allowed a determination of
"in fact" situations and comparisons against
standards to be made. In the interest of accurate
information, those interviewed were given assurances
of' non-attribution. Locations selected for obtaining
interviews were wide spread and diverse, In all,
thirty programmers from two divisions, one Corps
headquarters, an Army headquarters and two installa-
tions were interviewed. In addition, management
personnel from Department of the Army, U, S. Arnmy
Computer Systems Command and the Army and Alr Force
Exchange System were contacted.

Interviews and discussions were based upon the
following questions:

l. In what way did you learn to program?

2. What is your experience level?

e In what programming languages are you
qualified?

4. wWhen pregramming, how do you select variable

names to be used?

S. When programming, how do you determine
the composition of a data eclement,

G. Who is responsible for software documenta-
tion?

Ve Does your software documentation contain
a program narrative, comments throughout the program,
and a program f{lowchart?

8. wWho approves your finished documentation?

.

e e oo

e

P

Y 5 N

OGSy’ 7 008 %

e

9. In your opinion, and based upon your
experience, have your supervisors been technically
capable of reviewing your work?

10, when programming, what reference doeu-
ments do you use to assist you should you have
problems?

11, Do you program for hardware independence?

12, Has any outside agency ever checked your
completed work?

13, How do you account for time spent programming?

14, Are you given a restriction as to the
maximum allowable core size which you may use?

15. When programming, do you use subroutines?
If so, how?

16. Do you have any comments concerning
program languages or documentation which you would
like to make?

Certain data processing terms, which are
important for accurate understanding, are used
throughout the text of this repcrt. Definitions
are therefore provided below, Unless otherwise
stated, definitions are from IBIM's "Data Processing
Glossary".1
ANSI: American National Standards Institute. An
organization sponsored by the Business Equipment
Manufacturers Association (BEMA) for the purpose

of establishing voluntary industry standards,
Abbreviated ANSI.
Assembly: (assembler language) A source language
that includes symbolic machine language statements
i in which there is a one-to-one correspondence
with the instruction formats and data formats of

the computer.
BASIC: An algebra-like language used for problem
{ solving by engineers, sclentists and others who

may not be professional programmers,

Character: A letter, digit, or other symbeol that
is used as part of the organization, control, or
representation of data. A character is often in
the form of a spatial arrangement of adjacent or
connected strokes.

COBOL: Common Business-Oriented Language. A
business date processing language.

Command Unigue: An APP system supporting a functional

application unique to a single Army command, installa-
tion, or activity. (Author's defination.)

Comment: (comment statement) A statement used to
include information that may be helpful in prunning

a job or reviewing an output listing.

Core: (magnetic core) A configuration of magnetic

material that ls, or is intended to be, placed in

a spatial relationship to current-carrying conductors
and whose magnetic properties are essential to

its use, It may be used to concentrate an induced
magnetic field as in a transformer induction coil,

or armature, to retain a magnetic polarization

for the purpose of storing data, or for its nonlinear
properties as in a logic element, It may be made

of such material as iron, iron oxide, or ferrite

and in such shapes as wires, tapes, torolds, rods,

or thin film,

Data Element: Grouping of information units which

have a unigue meaning and sub-categories (data items)
of distinct units or values., Examples of data
elements are military personnel grade, sex, race,
geographic location, and military unit. (Army
Repulation 18~1)

Flowchart: A graphical representation for the

definition, analysis, or solution of a problem, in

S

P WP T

vhich symbols are used to represent operations,
data, flow, equipment, etc.
FORTRAN: FORmula TRANslating system,

3 A language
primarily used to express computer programs by

by
arithmetic formulas.

Hardware: Physical equipment, as opposed to the
computer program or method of use, for example,

mechanical, magnetic, electrical, or electronic
devices.

L

High Level Language: A language used to prepare

computer programs, A set of representations, conven-
tions, and rules used to convey information; more
like human language than machine language. A
language which must be translated into machine
language prior to use by a computer,

JOVIAL: A high level language used within DOD for
programming command and control applications,
(Author's definition)

Listing: (program listing) A printout, usually
prepared by a language translator, that lists the
source language statements and contents of a progran,
Qverlay: (1) The technique of repeatedly using

the same blogks of internal storage during different
stages of a program. When one routine is no

longer needed in storage, another routine can
replace all or part of it. (2) A program segment
or phase that is loaded into main storage. It
replaces all or part of a previously loaded segment,
PL/1: A high-level programming language, designed
for use in a wide range of commercial and scientific
computer applications.

Program Narrative: The details and characteristics

of a program or subroutine which would be of value

to a maintenance programmer in understanding the
p!‘ogram .

}
!
>
¢
f
{

T—
R S

A ,""ﬁ-.'}"ﬁ ¥

-~

RPG: Report program generator.

Software: A set of programs, procedures, and possibl,
associated documentation concerned with the operation
of a data processing system. For example, compilers,
library routines, manuals, circuit diagrams,
Subroutine: A segment of coded instructions which
can be stored at one place and can be linked to

one or more other calling routines.

Variable Name: An alphameric term that identifies

a data set, a control statement, a program, or a
procedure,

Word: A sequence of bits or characters treated as
a unit and capable of being stored in one computer

location. Synonymous with machine word.

7

Chapter II

PROGRAMMING LANGUAGES

The history of programming languages parallels
the development phases as the computer itself. Original
first generation computers were slow, had limited

capacity and very little capability for control or

b 2 N B T A 547

assistance to programs being used. The programmer
had to specify in exact and painstaking detail each
function to be performed. In order to do so, the
programmer used either machine or assembly language.
A thorough knowledge of hardware was required and

programs were complex. As an example, consider the

steps necessary to keep track of an exponent without
the aid of floating point arithmetic now so commonly
used.,

As computer capability passed into the second
and third generation, more machine assistance
became available., The programmer no longer had to
program in an abstract form which might read
M333272P (Move contents of location 333 to location
272 and punch a card.). Rather, high level languages
were available, High level languages are more

English-like or are closely related to mathmatical

formulas. The programmer does not have to keep

track of finite details and can program in broader
terms. In turn, the computer uses a software routine

called a compiler to transform high level languages

into machine languages. The power of this capabilty

can be seen in the fact that one high level instruc-

tion, after being compiled, may result in an entire
subroutine of machine language code. First
generation languages (assembly) resulted in a one

for one transliation., High level languages also |

have the major advantage of allowing the programmer

to think in a language closely related to normal |
problem solving., Well known examples are COROL

Sedls 50

and FORTRAN.

A new capability is being seen in the market
place today. This capability is high level language
which "designs" a system and is naturally referred
to as "system language"., Just as a COBOL statement
generates multiple machine language instructions,
system language instructions generate multiple
COBOL statements which then generate multiple
machine instructions. As one example, a system
language program consisting of 162 instructions
generated a COBOL program of 570 statements! Iot
only were the statements generated, but they were
error free. Estimates-also indicate that 75% of direct
programming time can be saved and of even greater
importance is the fact that a system language gene-
rates the total documentation necessary for support-
ing the software,

To further illustrate the capability of this
type of high level language, a detailed description
of one such language will be give. Through the
courtesy of Thorne Data Processing, Springfield,
Virginia, SL/1 is described.

"SL/1 is a very high-level language. As its
title implies, it is a systems language. It is
not a programming language, but rather a systems
language used to specify the data elements for
each input and output of a system. The language
is very powerful and permits the user to completely
define the total requirements of a system in
terms of elements associated with inputs and out-
puts. These elements may be input elements or
generated elements for which the user must provide
the element formulas, Full arithmetic and condi-
tional logic may be used in specifing the element

10

i T

formulas. The system elements provide the basic
ingredient for the building block approach that is
used; the subordinate elements In the element for-
mulas are used to build the basic elements, the
basic elements are used to build the inputs and
outputes, and the inputs and outputs are used to
build the system., Since SL/1 is a data and element-
formula specification language, it does not contain
the verbs and operations associated with conventional
programming languages, i.e., READ TO GO, etec. The
SL/1 user is never concerned with such programming
detaills,

During the Requirements Study the analyst
used the SL/1 language to record data related to
each data input (initial inputs) and each data
output (final product) of the proposed system. For
inputs, the analyst records the elements (by name)
appearing on the inputs along with element charac-
teristics (size, class, number of decimals, and
whether it has a sign)., Also, information related
to retention (whether or not the element should
be retained in a master file) of the elements is
recorded. For outputs, the element names desired
on each output, their characteristics, and where
they print (both detail print information and
accumulated totals) is recorded. Report title/
header line constants and total line identification
constants are also recorded. The formulas of

elements to be genenated by the system in associa-

tion with either inputs or outputs are given., Only
the simple element name relationships using conditional
and/or arithmetic logic are given.

Programs are not defined. Master and work files
are not defined. Only the system inputs and outputs

5 5

TR 2 g A T i S P LS O TS O SR - e S

e

are defined. While SL/1 takes care of the design

and programming details automatically, through train-
ing and application users learn how SL/1 implicitly
reacts to logical system specifications and are

able to predict or force resultant physical system
configurations. The analyst describes a data flow
pattern using the SL/1 language. The analyst essen-
tially states at a very high level WHAT is to be
accomplished and SL/1 does the burdensome detail work.

The SL/1 language statements are free form. Therefore,

any 80 character coding sheet, such as a COBOL coding

form, may be used to record the statements."
Documentation provided by SL/1 includes:

Input/Output system specifications

Report facsimilies

Documentation cover page

Table of contents

System description

List of system inputs

Expanded list of system inputs with descriptions

List of system outputs

Expanded list of system outputs with descriptions

Master file(s) explanation

Master file(s) general information

General narrative of programs

Detail narrative of each program

Operation of system narrative

Production control sheet

Tape librarian guide

Key punch instructions

System flowchart

Run Book (operating documentation) -
JCL cards

Generation data set control JCL

Program input/output record layouts

12

Element to record layout cross-reference
Element dictionary

Element edit dictionary

Element edit diagnostic dictionary

Master file record(s) COBOL specifications
Code Book (for elements that are codes)
Appendices

Source program listings

Master file punch outs

A NI S 2 T e I AR R) T e~

;
§

=

A Y= A A AN & R A YT T =iy e o 1

o =

Chapter III

SOFTWARE DOCUMENTATION

In discussing the requirements and accepted
principles of documentation, a clear distinction
must be made between system documentation and soft-
ware documentation., The first, and most obvious,
distinction being that software documentation is
a sub-element of system documentation., Documentation
for an ADP system includes the information and
instructions necessary for overall system usage and
understanding. As software is a narrow sub-set of
an overall system, it follows that software (also
referred to as a program) documentation addresses
a much narrower area. The Department of Defense
describes system documentation as being necessary
in order to:

*"a, Provide managers with documents to review

at significant developmental mile-
stones to determine that requirements
have been met and that resources should
continue to be expanded.

b. Record technical information to allow
coordination of later development and
use/modification of the ADS.

¢. Ensure that authors of documents and
managers of project development have a
guide to follow in preparing and checking
documentation,

de Provide uniformity of format and content
of ADS documentation throughout DOD
components."2

Industry tends to narrow it's definition of
system documentation somewhat, since it does not
have to worry about various components such as
those found within the Department of Defense. One
definition of system documentation applicable to

industry (and other users as well) reads:

2 TR IR (TR

P, ol T

e e

"System documentation encompasses all informa-

PN DRy 2Dy s -

tion needed to define the proposed data
processing system to a level that it can be
programmed, tested, and implemented, The

R e

major document is a system specification
which acts as the permanent record of the
structure, functions, flow, and control of
the system. It is the basic medium of
communication of information about the pro-

ST T TR W S, A

posed system between the systems design,

programming, and user functions. System
documentation thus specifies how a system

B ; T

will operate."” Contrasting the above system

documentation reasoning to the specifics of

{ software documentation, a summary of software
documentation can be expressed as "documentation
comprises the records of the detailed logic and
coding of the constituent programs of a systcm."4

With the distinction between system and soft-

TN T T e e

"

ware documentation in mind, a closer look at

reasons for software documentation should be provided. 3
Several reasons exist, but most can be classed 3
either directly or indirectly into the broad area
of maintenance. Maintenance, in this case, being
simply those actions, changes, modifications etc.
necessary to keep an operational software program
current with user needs or operating in a changing
hardware environment, The exception to this class-
ification is documentation necessary to aid in
program development and acceptance. The considera-
tion in software maintenance therefore is, or ii
should be, dollar cost. The direct relationship being
a high cost when documentation is poor. Whatever

the reason, time wasted by a programmer or analyst

16

|
5
B

e

e

translates into dollars,

Perhaps the most basic element of program
maintenance is trouble shooting., This can occur
when a system is placed prematurely into an opera-
tional mode, when data with unplanned paramenters
becomes the norm, or when a system is being field
tested. Another maintenance aspect occurs when {

hardware is changed or converted, as different
manufacturers have different software capabilities
built into thelr computers. This is of great impor-
tance in the military community as competitive
procurement is mandated. IMobility of the military
member also directly affects software maintenance.
Seldom, if ever, is the programmer's availability
the same as the life cycle of the software. To

the extent that documentation is accurate, another
programmer will be able to answer questions and per-
form maintenance upon the program., Again, poor
documentation results in later unnecessary costs.
Unfortunately these costs are normally tied to
"overhead" or "operating costs" and are not attri-
buted to the true cause.

Although different elements of industry have
different software documentation standards, most
generally follow the following outline: ;

1. System Flow Chart: shows relation of |4

specific program to entire system.,
24 System Narrative: similar to system

flow chart, but narrative rather than visual,
3. Program Flowchart: visual representation

of program logic and structure.
4. Program Narrative: same as system

narrative, but pertaining only to the software.
Se Commented Listing: a listing of computer

17

program instructions, produced by the computer,

with explanations of all variables and methods.
It is often linked to specific areas of a

flow chart by numbers.

6 File and Record Description: information

describing input and output configuration.
i Set-up and Run Procedures: information

describing how to load and operate the software
on a computer, Also includes instructions

§ for error conditions.

8. Discussion of Valid Data Ranges: an

explanation of any limits existing within the

program. An example might consist of a routine

which would check for maximum dollar value for
an order,

. Discussion of Algorithms: used when

complex sorting, formulas, or procedures exist.
The composition of documentation for Army
software as expressed in Army Regulation 18—1,5
is: Narrative system description, system description,
system flow chart, equipment and software requirements,
list of programs, program description, program
run diagram, input device document, output form
layout and samples, file and record layouts, detained
program narrative, processing macro-logic chart,
decision tables, timing criteria, operating ‘
instructions, memory layout, detail program |
flowchart, program logic details, miscellaneous
information, program compilation output, test
data and criteria test output results, and test

timing results.

Although the Army's criteria for software
documentation appears to be more detailed, a
closer examination reveals that several components

of the Army's standards are in fact expressed as

one industry standard. For example, the Army's
requirement for: equipment and software require-
ments, program run diagram, input device document,
output form layout, timing criteria, operating
instructions and miscellaneous information might well
be components of industry's Set-up and Run Procedures.

In both cases, howewver, the intent is to insure

that sufficient information is provided.

Two differences exist and should be recognized.
Industry's requirement for comments within the
program listing and for a discussion of Algorithms
are not expressed in Army requirements. Without
such a stated reguirement, complex routines may
have no recorded definition of logic used and
program listings can become a maze of unknown
variable names (also called data items). The
Army's principle producer of large software systems,
Computer Systems Command, recognizes the importance
of this area and offers the following as a guide
but not as a directive., "Self documenting pro-
grams aid in developing, .maintaining and reusing
programs, The most important and, unfortunately,
the most neglected program documentation is the

description of the meaning and usage of data items.
How often have we questioned why a programmer

po

redefines an alphanumeric data item as numeric?

4

we wonder why the programmer did not choose one
class or the other; so we go tripping through the
program looking for the answer, The easy solution |
to this problem is to provide a brief comment by E
the data item description."6

To the extent that standards are not clearly

stated and, most importantly, understood, the

19

unfortunate programmer and supervisor are placed
into a position of asking: What do I record?, When
do I record it?, How much detail?, and How will it
be used? For the Army, one other important question
must be answered, This guestion, "Who approves the
program documentation and determines that it is
sufficient?", has no apparent answer.

T = W P N W DR

T

Chapter IV
FINDINGS

A detalled examination and discussion of data
¢collected during interviews will be presented on
this and following pages., Conclusions and recommen-
dations are stated in Chapter V. Discussions are
related to each gquestion of the interview,

Question 1, "“In what way did you learn to

e

program?"

The purpose of this question was to provide a
basis for evaluating the mix of instructional
blas existing among those being interviewed. YFor
example, 1if a high percsntage of those interviewed
learned in a manufacturer sponsered environment,
then bias toward specific technigues and standards
would exist, Responses indicated that a bias should
not be expected, as 43} had learned in various
colleges and civilian institutions, 40% from formal
Army training, and 17% from on job training within
the Army or {rom self Baught methods, It therefore
appears that a valid random selection of persons
to be interviewed was made,

Question 2, "What is your experience level?"

This question was used to0 galn further insight
into the information gathered in later guestions.
A total of 145 years experience, averaging 4.8 years
per prosrammer was found, Of odunl ilmportance,
however, is the faect that these programmers have
served in 29 locations world-wide. It can therefore
be reasonably assumed that their experiences are
representative of overall conditions throughout
the Army.

Question 3. "In what programming languages

are you gualified?"

This guestion provides a basis for evaluating

comments and experiences about documentation, as

some languages are more self-documenting than others. !

Also, knowledge of languages provides a basis for i
discussing existing Army standards, Responses
indicated that all were familiar with COBQJL, 60%
knew FORTRAN, 467 could program in ASSEMBLY, 26%
in BASIC and RPG, 20% were capable in PLI and 10%
in other languages such as PLC and JOVIAL. Only

26% of the programmers were knowledgable in only
one language, while 20% could use two languages,

40% were capable of programming in more than three

and 13% had the capability to program in more than
five languages.

Question 4, "When programming, how do you select

variable names?"

Responses to this question indicate the degree
to which standard conventions are used. Responses
indicate that selection was entirely up to the
programmer, All programmers, with one exception,
indicated that the same basic process was used--
it being the selection of "meaningful" or "logical"
names, The obvious problem bein; that a name which
is meaningful or logical to one person may or may
not be to another. The exception mentioned above
indicated that he used "the Computer Systems Command
Naming Convention as outlined in their manuals",

Question 5. "When programming, how do you

determine the composition of a data element?"

Command unique software often becomes the basis
for Department of the Army Standard Systems and is
also frequently exported to other locations. To

the extent that standard data elements are used,
as shown in the 18=12 series of Army Regulations
(Catalog of Standard Data Elements and Codes),

a3

interface conditions are quaranteed., As a simplistic
example, consider a program which has as required
output military grades. Should "Captain" be
expressed as "CpT", "Capt", "O3" or "Captain", To
the extent that 18-12 is foilowed, the potential for
reprogramming is avoided., Obviously, the longer the
program, the more reprogramming/cost involved,
Responses to this guestion indicated that programmers
are not aware of the 18-12 series of Army Regulations
and that designers of command unique systems often
leave details of data elements to the programmers
decision, Not one programmer indicated that
reference was made to formal publications when the
need to determine a data element arose. Rather,
a "meaningful term" was used or a "whatever is logical"
type decision was made. These types of decisions
appear to be frequently made by programmers, as (7%
indicated that specifics were not provided by designers.
Expressed in terms of the designer, only 33% provided
details, In relation to the "Captain" example given
earlier, the programmer might have detailed instruc-
tions on data manipulation, but only broad guidance
as to input/output data element construction,
Question 6. "Who is responsible for documenta-
tion?"

This question relates to the specific area of

program documentation as opposed to the broader
aspect of system documentation. The question was
asked in order to determine the degree of programmer
independence. Responses indicated that the programmer
is 100% responsible.

Question 7. "Does your software documentation

contain a program narrative, comments throughout the

program, and a flowchart?"

This is perhaps the most complex guestion
asked during the interviews and provoked the most
discussion of all questions. Accordingly, detailed
discussions of principles involved will be provided,
To the portion of the guestion concerning a program
narrative, 87% responded that a narrative was used.
This figure can be further divided and indicates that
46% use a narrative within the program listing and
41% restrict narratives to the overall documentation
package. Comments were used by 46% of the programmers,
while 33% indicated that flowcharts were used,
Although somewhat lengthy, consider the following
example of a small subroutine coded in FORTRAN. With-
out comments or narrative, the code looks like:

30 SUBROUTINE ABLE(IARRAY,IROW,ICOL,ICSSEQ,ISORT)

31 DIMENSION IARRAY(25,25),ICSSEQ(25),I0UT(20)

32 NTHRU=IROW-1

33 DO 20 ITIMES=1,NTHRU

34 IPOINT=ITIMES

35 ICARRY=ITIMES

36 DO 30 IR=ICARRY,IROW

37 DO 40 KOLUMN=1,ISORT

38 ICOLSB=IABS(ICSSEQ(KOLUMN))

39 IF(ICSSEQ(KOLUMN) ,GT.0) GO TO 35

40 IF (IARRAY(IPOINT,ICOLSB).LT.IARRAY(IR,ICOLSB))
GO TO 45

41 IF(IARRAY(IPOINT,ICOLSB).EQ.IARRAY(IR,ICOLSE))
GO TO 40

42 GO TO 30

43 35 IF(IARRAY(IPOINT,ICOLSB).GT.IARRAY(IR,ICOLSB))
GO TO 45

44 IF(IARRAY(IPOINT,ICOLSB).LT.IARRAY(IR,ICOLSE))
GO TO 30

45 40 CONTINUE
46 45 IPOINT=IR
47 30 CONTINUE

48 DO 50 ISWITCH=1,ICOL

49 ISTORE=IARRAY(IPOINT,ISWICH))

50 IARRAY(IPOINT,ISWICH)=IARRAY(ITIMES,ISWICH)
51 IARRAY(ITIMES,ISWICH)=ISTORE

52 50 CONTINUE
53 20 CONTINUE
54 RETURN
55 END

E
3

TORE . Ity NN PO AR BRI /D

N e i gl i

Although the routine has but 26 instructions,
it is extremely difficult to decipher without
additional information. One can easily see the
difficulty facing a programmer when tasked to modify
such a program, The complex situation existing in
a 2000 instruction code sequence would reguire
tremendous expenditures of time before modification
could begin., Now, consider the same seqguence of
code when comments are added:
30 SUBROUTINE ABLE(IARRAY,IROW,ICOL,ICSSEQ,ISORT)

THIS SUBROUTINE PERFORMS THE ACTUAL SORT
ROUTINE. THE COLUMN SORT SEQUENCE DETERMINES
THE COLUMNS TO BE SORTED AS WELL AS THE SEQUENCE,
A + INDICATES ASCENDING AND A - DECENDING
VARIABLE NAMES

NTHRU-NUMBER OF TIMES THROUGH THE ARRAY
ITIMES=-CONTROLS MOVEMENT THROUGH DATA TO

BE SWITCHED

IPOINT=-BASE COMPARE LOCATION

ICARRY=-"'SEARCH"' COMPARE LOCATION

ICOLSB=USED FOR COLUMN IDENTIFICATION

DO LOOP 20%****DRTERMINES HOW MANY TIMES
THE SWITCHING WILL OCCUR.,
(NUMBER OF ROWS TO BE SWITCHED
1)

DO LOOP 30*****CONTROLS THE ROW SELECTION
FOR COMPARISON WITH POINTER.

DO LOOP 40#**#***CONTROLS THE COLUNMN BEING
USED WITH THE COMPARE SEQUENCE.
BY MOVING THROUGH THIS LOOP,
WITHOUT ENTERING FROM LOOP 30,
A FURTHER ATTEMPT TO RESOLVE
EQUAL SITUATIONS CAN BE MADE,

DO LOOP 50*****CONTROLS THE ACTUAL SWITCHING
OF ARRAY ELEMENTS, AND DUE
TO ITS LOOP CAPABILITY, THE
ULTIMATE SWITCHING OF ENTIRE
ROWS WITHIN' THE ARRAY.

aaoacaoaoaaoacaaoaoaoaaaaaaaaaaoaoaaoaacoaaoacaoaaaa

31 DIMENSION IARRAY(25,25),ICSSEQ(25),I0uT(20)
32 NTHRU=IROW=-1

33 DO 20 ITIMES=1,NTHRU

34 IPOINT-ITIMES

35 ICARRY=ITIMES

36 DO 30 IR=ICARRY,IROW

37 DO 40 KOLUMN=1,ISORT

38

39

40
a1

42

43
44

45

46
47

48
49
50
51
52
53
54
55

aaa oo o

Qaaa

aaa

QG

INSURE POSITIVE NUMBER
ICOLSB=IABS(ICSSEQ(KOLUMN))

CHECK FOR ASCENDING ORDER-BRANCH TO 35 IF
POSITIVE

IF(ICSSEQ(XOLUMN).GT.0) GO TO 35

£ maey

CHECK VALUES-BRANCH AS APPROPRIATE

70 A T o

IF (IARRAY(IPOINT,ICOLSB).LT.IARRAY(IR,
ICOLSB)) GO TO 45
IF(IARRAY(IPOINT,ICOLSB).EQ.IARRAY(IR,
ICOLSB)) GO T0 40

GO TO 30

CHECK VALUES-BRANCH AS APPROPRIATE

IF(IARRAY(IPOINT,ICOLSB).GT.IARRAY(IR,
ICOLSB))GO TO 45
IF(IARRAY(IPOINT,ICOLSB).LT.IARRAY(IR,ICOLSB))
GO T0 30

CONTINUE

RESET POINTER

IPOINT=IR
CONTINUE

SWITCH ELEMENTS

DO 50 ISWICH=1,ICOL
ISTORE=IARRAY(IPOINT,ISWICH)
IARRAY(IPOINT,ISWICH)=IARRAY(ITIMES,ISWICH)
TARRAY(ITIMES,ISWICH)=ISTORE

CONTINUE

CONTINUE

RETURN

END

An observer need not be knowledgable of FORTRAN
to see that the addition of comments has greatly
added to the understanding of the subroutine. By

looking at comments pertaining to the overall program,
further understanding can be achieved., In this
illustration, such comments might read: (Comments

would appear in the program listing.)

THIS IS A FORTRAN PROGRAM WHICH CONTAINS
A SUBPROGRAM. THE PURPOSE OF THE PROGRAl,
THROUGH USE OF THE SUBROUTINE, IS TO PERFORM
A TWO DIMENSIONAL,MULTI-COLUMN,VARIABLE
SEQUENCE SORT. IT ALSO UTILIZES VARIABLE
'INPUT AND OUTPUT FORMATS.(THE PROGRAM HAS
NOT BEEN MODIFIED SINCE IT WAS WRITTEN)
PROGRAM VARIABLES

ALPHA-ALPHANUMERIC INFORMATION

ICSSEQ~COLUMN SORT SEQUENCE

IN-INPUT FORMAT

IOUT-QUTPUT FORMAT

IARRAY-ARRAY FOR HOLDING DATA

IROW-NUMBER OF ROWS OF DATA

ICOL~NUMBER OF COLUMNS OF DATA

ISORT-NUMBER OF COLUMNS TO BE SORTED

caocaoaacaoacaaocacaoaoaaaoaoaa

An overall prelation has now been provided. Again,
consider a complex 2000 instruction sequence of code
and consider the addition of a program narrative:

PROGRAM NARRATIVE DESCRIPTION
This is a Fortran program, which contains a main program

with a subroutine call. It performs a two-dimensional,
multi-column, variable sequence sort, and utilizes
variable input and output formats. The maximum number
of rows and columns to be sorted must be equal to or
less than 25. In oprder for the program to function
properly, the following data must be supplied:

Number of rows of data

Number of columns of data

Number of columns to be sorted

Problem description

Column sort sequence with indication of

ascending or descending

Input format for data

Qutput format for data
Note: This program is an independent program, and

does not interface with any system,

The operations are as follow:

1. The number of rows and the number of columns
in the data set is read, along with the number
of columns to be sorted. Alphanumeric information
describing the problem is also read.

2. Formats to be used for input and output

are read,

3. All of the information listed above is

printed, with appropriate labelling information.

4., Data is read and printed in its original

sequence,

5. A subroutine (Able) is used to perform a

sort of the data, using the "Modified Cascade

method.,

6. Data is printed in its sorted sequence,

7. If additional data is present, steps 1-0

are re-executed

8. The program terminates on an error condition

when additional data is not present.

A programmer or analyst with basic FORTRAN know-
ledge would now have a much better concept of program
logic and intent. To give a visual assist, a flowchart
(Figure 1) can be provided. From the above example,
it can be seen that the absence of either narrative,
flowchart, or comments degrades the capability for
program maintenance. The absence of all three can
create an impossible situation,

Question 8. "Who approves your finished docu-

mentation?"

Answers to this question indicate the degree
to which documentation is reviewed for adequacy.
Opinions as to capabilities of those reviewing are
addressed in Question Nine. Seventy-three percent
responded that their supervisor/section chief

29

SUBROUTINE ABLE

RSTARLL AR
0 sla | (e

6T LCATROLS FOR
SUMROUTING LINITS
TOTAL BOWS - 1\

L

EaTABLISN
LocaTIoN

3 STARLISH

F FOLINTER

] COMPART JON
LOCATION

IDENTIFY COLUMNS
TO BE USED IF
COMPARISON 1S N "»
EQUAL

ET VARTARLE NAMF
AL TO ABRSOLUTE
COLUMN VALUE

FIGURE 1

30

T T

approved the documentation. The disturbing fact
remaining is that 27% indicated that no approval was
required.

Question 9., "In your opinion, and based upon
your experience, have your supervisors been techni-
cally capable of reviewing your work?"

This question is significant in relation to
question eight and also provides insight into the
independence of programmers working in a command
unique environment. Fully 80% expressed the opinion

that their supervisors were not technically capable
of providing assistance or evaluating work in the
area of programming. This perception related almost
exclusively to senior supervisors in the grade of
E-7, E-8, E-9, and to all officers. The inability

of senior enlisted members to deal with details

of programming seems to stem from previous promotion
patterns. Although not a specific interview question,
it seems that many enlisted supervisors reached their
present positions through the route of machine operator.
It follows then, that their knowledge of programming
would be limited. Lack of officer capability seems
linked to the wide background of those possessing
specialty code 53 (ADP). This specialty code is

used to identify officers possessing everything from
on job experience to doctorial degrees. Some may
well be qualified to deal with programming, but the
perception is that most are not.

Question 10, "When programming, what reference
documents do you use to assist you should you have
problems?"

Specific guidelines are available to programmers
in technical manuals published by the U. S. Army
Computer Systems Command, Use of these manuals

31

i 2 B

would insure maximum adherence to Army and ANSI stan-
dards and would impact specifically upon the use of
manufacturers unique capabilities, The important :
factor being that standards tend to insure software
compatibility among various hardware configurations,
Some examples of manufacturer's unique features
include Burrough's capability to index more than

two fields and the use of "vs" for designating
literals. Contrel Data Corporation offers a six
character rather than a four character word configura-
tion, and IbM's "Transform" verb is unigue. The

use of these types of unique capability obviously

tie a program to specified hardware and require
expenditures of time and money when hardware is
changed, It was found that manufacturer's litera-
ture was used as the sole referenge by 73% of the
programmers, 20% used Army publications, and 7%

used a mix of both Armyand manufacturer supplied
documents.,

Question 11, "Do you program for hardware

independence?"

This question is related directly to question
ten and directly impacts upon the area of software
conversion cost., The fact that 87% of those inter-
viewed responded "no" indicates that programmers
either are not aware of, or are not concerned with,
possible conversion to different hardware at a later
date.

Question 12, "las any outside agency ever

checked your completed work."“

In 93% of the responses, the answer was no.
Considering that work may have been reviewed after
a programmer's departure, it could be argued that
this figure is high. IHowever, only 13{! indicatead

W
ra

that an outside agency (Inspector (eneral or Command
Management Information System Office) had ever been
observed to review documentation. Indications are
that external review agencies simply do not have

the capability to review documentation for adherence
to regquirements and for adeqguacy.

Question 13, "lHow do you account for time spent

programming?"

This gquestion was designed to give an insight
into how developmental costs are accumulated on
command unigue software. Without an accurate account-
ing of time, a large portion of cost will not be
reflected.. In turn, it becomes impossible to know
when Department of the Army standards for command
unique software/systems have been exceeded. Resposes
indicated that 8%2% had no requirement or no erffeetive
way to keep track of programming effort devoted to
a particular program or system,

Question 14, "“Are you given a restriction as

to the maximum allowable core size which you may use?"

About half, 463, stated that a restriction orf
some sort was given., Amount of core to be used
varied and was dependent upon total core available.
Those interviewed, who reflected no restriction,
indicated that core was not a problem but that they
programmed to use "as lfttle core as possible". This
question is somewhat related to question eleven and
provides another indication as to how standards are
being observed.

Question 15, "When programming do you use sub-

routines? If so, how?"

The use of subroutines, which break logical
sequences of code into smaller stand alone modules,
has several advantages. Of prime importance is the

]

use of this technique to control the size of core
to be used, By using subroutines of a specified

daniilie, ci

size, large programs can be produced which will »un
on both large and small computers. (By the use of
"overlaying", subroutines are called into the core
of small machines only when needed.) Answers to
this question revealed that 80% of programmers use
subroutines. Of those using subroutines, 96% used

them for the reason stated above. The remaining

4% used subroutines only to avoid writing repetitious
sections of code.

Question 16. "Do you have any comments concern-

ing program languages or documentation which you
would like to make?"

As could be expected, many comments were made,

I will, however, reflect only those which have
significance to this paper.
An E-5 Programmer--"Internal documentation

F is critical, if it isn't in the program list-
ing it won't be used. External documentation
can never be trusted because no one is sure it
is current."“

An E-6 COBOL programmer--"Army standards are

too strict. None of the supervisors know
enough to determine when they are met."

An E-5 COBOL programmer--"We have a dollar

cost which is hidden. It s tied directly to
poor documentation,"

An E-6 supervisor--"Quick fixes on software

always occur under short fuses and it seems E
to be always late at night. If documentation
was in the program listing, the job would be
easier,"

An E-5 programmer--"Once you've tried to i

modify someone else's program, you understand i
about documentation."

34

A W-3 supervisor: "Most bosses just want the

program to be placed in an operational mode,

They have no concept of the long range importance

of documentation, Time is not allocated for
documentation. As soon as a program is running,
it's on to the next job!"

Chapter y

CONCLUSIONS AND RE
——xio AND

YOML INTYA M Q
LCOMMENDAT IONS

e

36

From the evidence presented in this paper,
several conclusions will be made and recommendations
offered. In addition, the author recognizes that
this study is not conclusive and that several areas
deserve further study. These areas will also be
shown. It should be remembered that only the
command unigue environment has been examined,

Conclusion 1

High level languages are available which
offer significant advantages to the Army. To

adapt such a language would save programming time,
provide more thorough documentation, and result in
long term dollar savings.

recommendation 1

A more detailed analysis of savings to be
derived from the use of a system languapge should be
made. Supportive evidence should then be presented
to the Department of Defense and approval authority
for use aggressively pursued.

Conclusion 2

Software documentation for command unigue
systems is being accomplished in a very haphazard
manner, Standards are difficult to understand,
incomplete, and without effective review or approval
authority,

Recommendation 2

A more simplistic set of standards for command
unique software should be developed. These standards
should be published as a separate reference document
and should recognize the limited resources generally

available where command unique systems exist, Specific

requirements should include mandatory use of comments
throughout the program listing and a goal of having
maximum documentation resident within the program
listing.

Recommendation 3

The Army should, in recognition of inadequate
technical skills existing in the command unique
environment, establish a central review and approval
authority for software documentation, This review
of documentation (revised per recommendation 2)
would achieve several benefits:

A. Significant but unknown dollar savings

would accrue through reduced system maintenance

cost.,

Be An effective and practical method of

enforcing standards would exist. Inspection
agencies would have only to ask for certifica-
tion of documentation when inspecting. Software
not having a "Certificate of Approval" would

be easily identified. In turn, software
reviewed by a central agency would presumably
meet all standards.,

Ce As a by product of the review, information
concerning identification and capability of
command unique systems could be extracted. A
truly accurate central library could then be
established.

D. By including cost as a criteria, an
incentive for accurate systems cost recording
would be generated,

Ea The empahsis on documentation, generated
by a central review, would create an awareness

not now present in the command unigque environa
ment,

Recommendation 4
A review of Officers holding career field 53

specialties should be made. The object of such a

38

i
:
i
|
|
!
!

review would be to determine the validity of
assignment to this field. The wide variance
existing between high and low degrees of technical
knowledge is unfair both to the Officer and to the
Army,

Recommendation 5

A review of software documentation and its
importance, as taught by the Army School System,

should be made.
Recommendation 6

An effective way of reflecting the true cost
of system maintenance should be developed., This
cost is suspected to be high, but data is not

recorded.

39

L

e

S

g e

FOOTNOTES

1, International Business Machines Corporation,
Data Processing Glossary, 1972,

2 Department of Defense, Standard 7935.1-S,
Automated Data Systems Documentation Standards, p. 2-1.

3. Keith R. London, Documentation Standards, p. 7.

4, Ibid.

Se Department of the Army, Regulation 18-1,
Management Information Systems Policies, Objectives,
Procedures and Responsibilities, pp. H-1,2,

Oe U. S. Army Computer Systems Command, Automatic
Data Processing Systems Development, lMaintenance and
Documentation standards and Procedures Manual 18-1,
Volume I General, p. 4005.

BIBLIOGRAPHY

1. Awad, Elias M. Business Data Processing,
Prentice-Hall Inc., Englewood Cliffs, N. J.: 1968

2. Department of the Army. Regulation 18-1,
Ilanagement Information Systems Policies, Objectives,
Procedures and Responsiblities: Washington, D. C.:
22 March 1976.

e Department of the Army. Technical
Bulletin 18-111, Technical Documentation: Washington,
D. C.: November 1978.

4, Department of Defense. Instruction 5000.31,
Interim List of DOD Approved High Order Programming
Languages: Washington, D. C. : 24 November 1976.

5. Department of Defense., Standard 7935.1-5,
Automated Data Systems Documentation Standards:
Washington, D. C.: 13 September 1977.

6. Fry J. and Gosden J. Survey of llanagement
Information Systems and Their Languages. The
Mitre Corporation, Washington, D. C. : May 1968.

7 o Goos, G. and Hartmanis, J. Lecture Notes
in Computer Science, Design and Implementation of
Programming Languages. Springer-Verlag Berlin and
Heidelberg, Germany: 1977.

8. Gosden, J., Bramson, S., Fry, J., llahle,
and Sternick, H., Achieving Inter-ADP Center Compa-
tebility. The Mitre Corporation, Washington, D. C.:

9, International Business Machines Corporation.
Candidate Language Evaluation and Recommendation
Report: Gaithersburg, Maryland: Undated.

10. International Business Machines Corporation.
Data Processing Glossary: White Plains, N. Y.: 1972,

11. Kopstein, Felix F. Rational vs Empirical
Approaches to Job/Task Descriptions for COBOL
Programmers. Human Resources Research Organization,
Alexandria, Virginia: June, 1970.

12, London, Keith R. Documentation Standards. .
Petrocelli Books, New York: 1974,

I S v

13. U. S. Army Computer Systems Command.
Automatic Data Processing Systems Development,
laintenance and Documentation Standards: Volume 1,
General, Ft. Belvoir, Virginia: 15 May 1975.

o

14, U, S, Army Computer Systems Command. Auto-
matic Data Proeessing Systems Development, Mainten-
ance and Documentation Standards: volume II,

B3500. Ft. Belvoir, Virginia: 15 March 1972.

15, U. S. Army Computer Systems Command.
Automatic Data Processing Systems Development,
Maintenance and Documentation Standards: Volume 11Xy
IBM System/360 DOS. Ft, Belvoir, Virginia: 15 Jan-
uary 1977,

16. U. S. Army Computer Systems Command,
Automatic Data Processing Systems Development,
Maintenance and Documentation Standards: volume Iv,
IBM System/360 0OS., Ft, Belvoir, Virginia: 15 July
1976.

17. U. S. Army Computer Systems Command.
Programming Procedures llanual: 18-1-1, Ft.
Belvoir, Virginia: July 1977.

18, U. S. Army Computer Systems Command.
Structured Design Technigues and Standards llanual:
18-1-2, Test, Ft. Belvoir, Virginia: July 1977.

19, U. S. Army, U. S. Navy, U., S. Air Force
and the Irvine Computer Science Department. Proceed-

ings of the Irvine workshoE on Alternatives for the
Environment, Certification, and Control of the DOD

Common High Order Language: Thomas A, Standish:
1978.

