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Preface

Although research activities in atomic and molecular collision processes

have flourished over the last two decades, theoretical calculations of

R AR R

molecular reaction rates remain a very difficult subject. In this report
we describe same of our efforts to treat electron-molecule collision problems
in a first-principle manner.

One can roughly divide the problem into two parts, i.e., (a) calculation
of the interaction and coupling potential, and (b) solution of the scattering
equations. A common practice is to use single-configuration self-consistent-
field target molecular wave functions to obtain the interaction and coupling
potentials. With these potentials one may solve the scattering by means of
the Born approximation. This is done for the case of electron impact on
hydrogen molecules in Part I. The Born approximation has the advantage of
computational simplicity, but is not always reliable in the low-energy region.
For more accurate work we resort to the method of close coupling. In Part II
we report the first close-coupling calculation for excitation of electronic
states (and dissociation) of the molecules by electron impact with full
allowance of projectile-target electron exchange. In some cases, notably
those in which the target molecule has an open-shell structure in the ground
electronic state, the use of single-configuration self-consistent-field
target wave functions (for calculating interaction and coupling potentials)

is not adequate. A multi-configuration self-consistent-field computational

sy

scheme is developed and applied to the oxygen molecule as described in
Part III.
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PART 1
DISSOCIATION OF HYDROGEN MOLECULE

BY ELECTRON IMPACT
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I. INTRODUCTION

Electron-impact dissociation of molecules is an important basic process
for atmospheric physics1 and laser work.2 A molecule can be dissociated by
electron impact when it is excited to the continuum '‘vibrational" levels of an
electronic state. Such an excited electronic state may be a purely repulsive
state or a bound state with discrete vibrational levels in addition to
continuum levels. The atomic species of dissociation products are dictated
by the dissociation limit to which the potential-energy curve is joined.

Here, we report theoretical studies of two electron-impact dissociation

processes of the H, molecule

R
H, § H, + H(ls) + H(1s) , )
» R
%QHZ*HGQ+HUﬂ. ()
®

The only excited state H2 in (1) is the bSZE state. However, since
the b3£; state is also the lowest triplet state, excitation t. ‘hc discrete
levels of the higher triplet states will contribute to process (1) via
cascade to b32; as well as direct excitation of the repulsive b32; state.

S pirt o,

®
The excited state H, in (2) may be any one of the four states, u’ .

2

512;, and aszz, all of which are bound states. Therefore, dissociation

results from excitation only to the continuum levels of these states, i.e.
excitation to these states above the dissociation limi;. In Fig. 1 these
two processes are illustrated.

Although the theory of electron-inpact dissocfation can be formulated
under the same general framework as that of electron-molecule inelastic

collisions, ab initio calculation of cross sections is complicated by the

multicenter integrals in the transition amplitudes as well as the unbound

(repulsive) nature of the dissociating statcs. However, in the case of
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excitation to bound electronic states, the technique of Caussian-type orbitals
(GT0) has furnished a very efficient means of calculating cross sections.4
We now extend the method of GTO to the case of dissociative collisions, and
cross sections of electron-impact dissociation of H, are reported.

Several theoretical studiess's related to process (1) have been reported,
but we have found no first-principle calculation published for process (2).
Among the previously published theoretical treatments of electron-impact
dissociation of the H, molecule [process (1)],the most recent and complete
one to our knowledge is that of Cartwright and Kuppcnnann,s based on the

9 and Ochkur'slo

Born approximation with Rudge's treatment for exchange. In
their paper the molecular electronic wave functions were expressed in terms
of the Slater-type orbitals (ST0) and a considerable amount of numerical work
was needed to cvaluate a typical three-center integral. The "delta-function"
appreximation was adopted therc,s resulting in a significant reduction of
computation. llowever, the method of Caussian orbitals makes the evaluation of
the electronic transition moment (due to electron impact) a rather simple
task and the Born integrals can be readily performed without invoking the delta-
function approximation or the closely related Franck-Condon-factor (FC) approxi-
mation. In this work the continuum vibrational wave functions of the excited
electronic state arc detemmined at various energiecs (above dissociation limit),
and the Born integrals are evaluated exactly with full allowance for variation
of the electronic transition moment with respect to the internudlear distance.
In order to account for the cascade contributions to process (1), we have
also computed the excitation cross sections to the discrete levels of the

3 3 3

a’l,c nu. d

3.+
g nu. and e Xu states.

Like the work of Cartwright and Kuppcrmanns and the earlier works,6’7

the Born approxiration with Rudge's™ and Ochkur'slo modification for treating




the exchange amplitude is adopted here. The incident electron energy is
varied to as high as 1000 eV for excitation of the singlet states. Although
we present the singlet excitation cross sections down to the threshold, the
emphasis should be placed on the high-energy region because of the use of

the Born approximation. In the high-energy region (say above 100 eV) the
effect of the electron exchange is quite negligible. Nevertheless, the
electron exchange in this case is taken into account by Ochkur's scheme.

For the singlet-triplet excitation processes, cross sections have been
computed from the threshold to 150 eV. Since the singlet-triplet cross
sections decrease very rapidly with increasing energy, the interest

lies mainly in the low-energy region. Although the plane-wave approximation
inherent in the Born approximation is justified only at high-incident energies,
the improvement resulted from the modifications introduced by Rudge and by
Ochkur may make these modifications applicable to much lower energies than the
original Born-Oppenheimer approximation. Indeed the excitation cross sections
calculated by the Rudge scheme are in quite satisfactory agreement with the experi-

mental data for the C3nu state of N2.4

II. METHOD OF COMPUTATION
A. Formulation
The general theoretical formulation for the dissociation of digtomic
molecules via excitation to repulsive states is similar to that developed
previously for excitation of discrete states.4 Here we are mainly con-
cerned with the calculation of excitation to a continuun vibrational state of
an excited electronic state by means of the Born approximation with Rudge's

and Ochkur's modification. The rotational motion of the molecule will not
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be included explicitly in the formulation, but such an effect will be taken
into account by averaging the cross sections over the orientation of the
molecular axis in space.

Denoting the electronic coordinates of the H2 molecule as ;1, ;2 and the
internuclear separation as ﬁ, we write the wave functions of the ground

electronic-vibrational (00) state and of the final state (nW) as
-+ > > > > >
¥ TR = v ()5, (), O

where Yo and wn are the electronic wave functions of the ground (0) and
excited (n) states, and X00 is the discrete (v=0) vibrational function of the
ground state, whereas Xnw is the unbound "vibrational' function of the upper
state characterized by energy W above the dissociation limit (see Fig. 1).
Since we do not consider the spin-orbit interactions, the spin functions can be
factored out; we assume that this has been done in Eqs(3) and (4). The spatial
part of electronic functions Yo and wn is written as the products of one-

electron orbitals, viz.,
by (F),T,0R) = 10, (?l.mk,g &0 , (5)

o (1,0 = /5 (410 (R0, (FR) ¢ Loy (7, R0, (1,01, (6)

where the + and - signs refer to a singlet and triplet excited-state function
respectively, and distinction is made of the log orbitals in Eqs. (5) and (6).
The collision process is characterized by the wave vectors of the incident
and scattered electron (ioo and an)’ their difference being ﬁcsignatcd by K;

It is convenient to introduce the electronic transition amplitude defined as




R > > K ii.;l ii.;" -+ > § ->
ConKR®O) = -fy (.7, 1ee Dy 1, Ddtdr,, ()
where @ and ¢ specify the relative orientation between R and K. Analogous
to the case of excitation to discrete vibrational levels, the differential
cross sections for excitation to a unit energy range about W of a singlet

and a triplet state (above the dissociation limit) are

Iﬁw(9¢) - (wnkn“/dnkoo)ffxn;(R)xoo(R)(2K’2~T'2)

2.2 :
xeon(K,R,®,¢)| R“dR sin® d® d¢ , (8)

® -
100(09) = (o K /Amko ) I k(R RIT 28, (K,R,8,0) |2

x R%dR sin® d@ds , 9)

s

respectively where W is the degeneracy of the excited state and T~ is equal
2

to k(z)o and [knw . i(2¢)!’]“ for the Ochkur and Rudge modification respectively

with ¢ being the ioniration energy in a.u. of the initial state.

Integration of Eqs. (8) and (9) over the scattered angle € and ¢ gives

the cross section Q(n,W¥) of exciting to a unit energy range about W of the

upper state, H
QW) = [ I y(80) sinededs . (10)

Then the total dissociation cross section through excitation of an electronic 4

state is

Q) = [ Q(aWdw . (11)
0o

Eq. (9) [or (8)] may be simplified if the Franck-Condon-factor approximation

: =
is invoked te suppress the R-dependence of con‘ viz.; 3
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T -2 . ;
Inw = Gepknn/4mkoe) [1T Gon(}"Ro’e’@)|2 singdie , (12)

where Ro is usually taken a: the equilibrium bond length of the ground state,

and the Franck-Condon factor U is

Q= Xy (Rxg ®RZR|Z (13)

Although our calculations are not based on the Franck-Condon-factor approxi-
mation, this concept serves a useful purpose, as the cross sections are now
siumply proportional to GRS For the purpose of later discussion we define

the sun of the Franck-Condon factors of the discrete levels (Sd) and of the

continuum levels (Sc) as

* goe 3
Sd(n) i zv(discrete)qnv i zv(discrete)”xnv(R)XOO(R)R dr[® , (14)
S (n) =/ aw = fav] fx_ Y ®Ryx. (R)RZAR| 2 1s)
c ( Cominum‘)‘nw Xnw X0

where in Eq. (14) is the v-th discrete vibrational function of an excited
electronic state (n). The quantities Sd(n) and Sc(n) provide us with an
estimate of relative excitation cross sections to discrete levels and to
continuum levels of a given electronic state (n). Finally, it is noted that

S4 and Sc would add up to unity.

3 VT O A




B. Details of computation

The electronic wave function: of the “2 molecule arc determined by the
self-consistent-field method with a basis set consisting of six s-type and
four p-type GIQO's for seven di“ferent values of internuclear distances,
R=0.5 0.6, 0.7, 0.74, 0.8, 0.9, and 1.0 3. With these wave functions we
have computcd(fon(K,R,@l®) for 32 values of K. The vibrational wave functions
X00 and Yy are computed numerically in tabular foum.

The potential-energy curves used are due to avlos and ’.xolnicmc:11

for the 312;, bSE;, EIE;, and aSE+ states; due to Spindlorlz for the B'l:;

: 3.+ , : ¢ :
state; and due to Sharps for the e L, state. Numerical integration of

Eqs. (8) and (9) then gives the differential cross sections. The cross
sections Q(nW) of Eq. (10) are computed for continuunm cnergy W from 2 to 10 eV for
the bSZ; state, and 0 to 4 eV for the other states. In addition, the cross

5o %

sections to the discrete vibrational levels of the a Lo (A | dJHu, and

u

+
eszu states are also computed by the procedure described pre\"iously.4

1. H, § H{1s) + H(1s)

As described in Sec. I, the H2 molecule may dissociate into two H(1s)
. . * . . .
atoms through direct excitation to the bszu state or excitation to higher
+
triplet states followed by radiative cascades to the bsEu state. Calculations

for excitation via these two different mechanisms are described separately

in the following subsections.
: - 3.+
A. Excitation to the b Eu state

. + .
The cross sections of the b3£u state are calculated by using Rudge's
treatment of exchange amplitude and presented in Table I and Fig. 2. In
-

o s . : : .
obtaining the total cross sections we have taken the limits of integraticn for




Eq. (11) as 2 to 10 eV. This is seen to be quite sufficient as we find

Sc(b3£;) of Eq. (15) to be 0.998 using the same limits of integration. A

similar calculation with Ochkur's exchange gives considerably larger cross
sections than those shown in Table I, especially at energies below 40 eV.
It has been suggested4 that Rudge's scheme is preferable to Ochkur's for i
the singlet-triplet excitation; hence only cross sections by Rudge's scheme
are presented for the triplet states.

In order to see how the computed cross sections depend on the accuracy

of the wave functions, we have repeated the calculation by using the wave

function of Phillipson and Mulliken (P.\l)13 for the bSZG state and that of

. Lo 4

McLean, Weiss, and Yoshimine (MWY)I for the ground state. The latter wave

function is made of five different electronic configurations so that a good

deal of electron correlation is believed to be accounted for. To facilitate

the numerical procedure, the STO basis functions of the above wave functions

are curve-fitted into the GTO form. The substitution of the PM function for

3 ¢ ! ~* :
our Gaussian-basis SCF wave function of the bsbu state produces virtually

no change in the cross sections, whereas the use of the MWY function for the

Lo

ground state gives results which are about 7% smaller than those in Table I.

St
% 9

B. Excitation to the discrete vibrational levels of the a

3 3 3.+
c Hu, d nu, and e Zu states

In order to account for the cascade contributions to dissociation into

5 two H(1ls) atoms, we have computed the cross sections for excitation to the

3:;, c3nu, a3 3

. discretc levels of the a ES states, and the results are

I, and e
u
included in Table I. There is very little overlap between the ground
electronic-vibrational state and continuumn level of these excited states

except the c3z; state, for which Sd and SC of Eqs. (14) and (15) are




10

3

respectively 0.80 and 0.20. The cross sections of the e Z; state in Table I

refer to excitation of discrete levels only.

As shown in Table I about one-half of the dissociation cross sections
comes from excitation of the higher triplet states and subscquent cascades.
We see that the major part of such contribution comes from the two lowest
triplet states, i.e., c3nu (20%) and 33£; (16%), and much smaller amount from

the e’L,, (6%) and d°

nu (5%) states. In view of the trend of diminishing
cross sections, the cascade contributions from still higher states are expected

to be small and will not be considered here.

C. Comparison with other theoretical calculations

Cartwright and KuppermannS have calculated the excitation cross sections
of the b3£; state by means of the Born approximation with the ''delta-
function approximation''for treating the continuum vibrational functions.
Their results obtained by means of the Rudge modification of the Born approxi-
mation are included in Fig. 2 and are seen to be about 20% larger than
ours. In order to better understand this difference, we repeated our calculation with
the delta-function approximation (also known as the "reflection approximation'').
The error in the total cross sections [Eq. (11)] introduced by the use of this
approximation is only about 3%, although the distribution of cross sections
Q(mW) [Eq. (10)] with respect to W is shifted by about (.2 eV toward high .
Therefore we believe that a large part of the difference must be attributed
to the difference in the electronic wave functions used in their and our
calculations, and to the different means of evaluating the electronic transition
moment. Their ground-state function was taken to be the two-parameter wave
function of Weinbawn which may give cross scctions appreciably different from

those resulted from our SCF wave functions. Khare and Moiseiwitsch6 have




11

3.+ .
L, state using

reported calculation of excitation cross sections of the b
the Ochkur exchange. These authors introduced a separate-atoms approximation
to simplify the computational work. The vibrational wave functions were not
taken into account in their work and the bsig excited electronic state was
regarded as a single level at 11 eV above the ground state. Nevertheless,

2 is in reasonable agreement with our

their peak cross section of 1.2 ma,
peak value of 1.01 waoz when the Cchkur exchange is used. Kharc7 has sub-

sequently re-calculated the b3Z; Ccross sections using one-center wave functions
so that the separate-atoms approximation could be discarded and the excitation

3

energy of the b Z; state was taken as 10.6 eV with the vibrational part of the

wave function neglected. The peak cross scction15 for b3E; of Khare's
calculation with Ochkur's exchange as presented in Fig. 7 of the paper of
Cartwright and Kuppermann is only a few percent below our value of 1.01 ﬂaoz.
This agreement, however, should be regarded as fortuitous in view of the
difference between Khare's approach and ours. We have performed some test
calculations and found that the Franck-Condon-factor approximation gives a
reasonably good estimate of cross sections (typically within 10%), which may
be explained by the fact that the R-dependence of the transition moment in
Eqs. (8) and (9) is nearly linear so that the value of the transition moment
at the equilibrium separation (Rj) is close to the averaged value over R.

f:‘delstein8 used a variational method to calculate the dissociation cross
sections. In his work the molecular vibration is not explicitly included.
His cross sections show a special feature of peaking at two different incident
energies which is not found in the results of Cartwright and Kuppermann or
of ours. We are not able to find enough details of the computational pro-
cedure in Ref. 8 to analyze the reasons for this discrepancy.

; ! 5 . . :
Cartwright and Kuppermann™ have also computed excitation cross sections

it o Ol e i Y

TR I B, W AT WRROP S o <

1y

Sl oot caaedi g b o SIS & Sabe




12
of the bound 332; state by using Rudge's exchange. Their cross sections are
about 20% larger than our results. We believe this difference is mainly due
to the different wave functions used in the calculations as in the case of
the bSZ; state. Theoretical cross sections of the csnu and asx* states

computed by using Ochkur's exchange have been given in Ref. 7. Because of the

difference in approach between Khare's work and ours, no comparison between the

two sets of results will be made.

D. Comparison with experiments

Corrigan16 investigated the electron-impact dissociation of the “2 molecule
by monitoring the rate of pressure decrease in a closed system as the diss-
ociation products are removed. Because of the nature of his experiment, the
measured cross sections include contributions not only from excitation to
electronic states, but also frem ionization of molecular hydrogen. By sub-
tracting the latter contribution, he obtained the dissociation cross sections
via the excited states of the neutral H2 molecule. These reported cross
sections still cover the cross sections for producing excited-state H(nR)
atoms as no distinction is made of the atomic species. In order to make Corrigan's
experimental data compatible with the present theoretical cross sections for
producing ground-state H(ls) atoms only, it is necessary to subtract from
Corrigan's data the experimental cross sections for the production of the
excited-state atoms. Mumma and Zipf17 measured the Lyman-alpha radiation
of atomic hydrogen resulting from electron-impact dissociation of molecular
hydrogen from the threshold to 350 eV. We have used these cross sections
to correct for H(2p). Although we have computed the cross sections for
electron-impact dissociation into H(1s) + H(2s), because of competing

mechanisms such as predissociation (see Sec. IV) which we have not dealt with
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here, we decided to use the published experimental cross sections to account
for the production of H(2s). The experimental data of Vroom and de Hccr18
show that the ratio of emission cross section for formation of H(2s) to the
cross section for H(2p) by electron impact is 0.485 and constant in the entire
impact-energy range (0.05-6 keV) of their experiment. Assuming that this ratio
(0.485) remains substantially unchanged below 50 eV, we have also corrected for
H(2s). It should be pointed out that these H(2p) and H(2s) cross sections in-
clude cascades from higher excited states as well as direct formation of H(2p)
and H(2s) from dissociation. Vroom and de Heer18 further found that the cross
sections for formation of H(np) atoms for n>3 are quite small. Therefore, we
believe that the correction for H(2p) and H(2s) as outlined above should
account for nearly all of H(nR) production (n2#1s).

In Fig. 3 is shown a compariscn of our theoretical dissociation cross
sections (sum of the contributions from the b,a,c,e,d states as listed in
Table 1) with the experimental data of Corrigan corrected for the production
of excited-state atoms as described in the preceding paragraph. The overall
agreement is seen to be quite good. As mentioned in Sec. ITI-B, population
of the b3£; state by means of excitation to the very high triplet states
(such as those above dsnu) with subsequent cascade has been neglected in our
calculations and inclusion of these contributions may somewhat increase the
theoretical cross sections. Also at the high-energy end the cross sections
reported by Corrigan may be subject to appreciable uncertainties introduced
by his subtraction of the effects of ionization.

Cross sections obtained from energy-loss experiment have been reported
by Ramien19 in 1931. His cross sections, however, are smaller than Corrigan's
by about a factor two. Comparison between Corrigan's data with the cross
sections of Ramienlg and of Engelhardt and Pholpszo has been discussed in

Ref. 16.

e S -
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V. H, § H(1s) + H(2s)

Dissociation of HZ into H(1s) + H(2s) is complicated by the possibility

of predissociation. Formation of H(1s) and H(2s) by electron impact may

result from (i) direct excitation to the continuum portion of the gel

+ + + % = . » » .
eszu, Elzg, and aszg states, (ii) excitation to some other excited electronic

states which cross (or nearly cross) with the B', a, E and € states in such a

+
Zu,

manner as to produce predissociation, (iii) excitation to the higher excited
states followed by dissociative cascade to the four states leading to

H(1s) + H(2s). An ab initio calculation of electron-impact predissociation
requires very accurate knowledge of the potential curves of numnerous excited
states which is beyond the scope of this work. Also the lack of detailed
information, concerning the branching ratios among many available cascade
channels from any given higher excited state, makes it difficult to obtain

a quantitative estimate of process (iii). Thus in the present work we will

confine ourselves to process (i).

A. Dissociation via the B'IZL, e3z;, and EIS;

: e g 4 ) Ll L
The dissociative excitation cross sections of the B' Eu’ (] Zu’

and

+ 5
Eltg states are presented in Table II and the sum of cross sections (of B',
e, and E states) is shown in Fig. 4. Because the potential-cnergy curve of

3

: . oF ok ; : +
the a Z; state is so unfavorable for disscciative excitation [Sc(astg) of

Eq. (15) is only 0.0026] that we omit this state from consideration. However,
one can estimate the dissociative excitation cross sections of the a32;

state by using the Franck-Condon-factor approximation along with S. * 0.0026
and the cross sections of the aSZ; state (discrete levels) in Tablc I. It is
seen that they are indeed much smaller than the contributions from the other

three states.
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From Table II we see that the B'1£; state account for more than 95% of
this dissociation process above 60 eV. Near the threshold excitation of the
03£; state is shown to be an important contributor. It should be pointed
out that due to the variation of the transition moment with R, the ratio of
cross sections (eSZG) of discrete levels to those of continuum levels differ

from the corresponding ratio Sd(ests)/sc(esza), which is 0.8/0.2.

B. Comparison with experiment

18 jeasured the cross sections for the electron-impact pro-

Vroom and de Heer
duction of H(2s) atoms in the energy range of 50 to 6000 eV. More recently, the
standard21 used for normalization of experimental cross sections was re-

17 suggested a factor of 0.8 by

examined, and as a result Mumna and Zipf
which the previously reported experimental cross sections should be multiplied.
Therefore, the cross sections of Vroom and de Heer have been corrected
accordingly and are shown in Fig. 4. It appears that the present theoretical
cross sections account for 61-67% of the experimental values,

The difference (33-39% of experimental data) may well

be due to other competing processes leading to formation of H(2s) atoms.

First, predissociation into H(1ls) + H(2s) through excitation to the states

of m, symmetry is shown to be an important process by experimcnts.z2
Second, consideration should be given to the possibility of excitation of

the higher excited states with subsequent cascades to the dissociating states.

However, not all of the highly excited Hz molecule will decay to the

dissociating states (8'125, Elz;. and e3£;) since there are lower states
(such as BIZL, xlz‘, and b3£;) which offer competing cascade paths.

1 1

Moreover, the B' E;. E 2‘, and eSE; are bound states, unlike the b3£; state,

so that only the fraction of cascades to the continuum portion of these states

¢
%
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will contribute to the formation of l(2s) atoms. Because of these competitions
we believe that the cascade contribution to formation of H(2s) atoms is not
likely to be very substantial. Finally the experimental data of \'room and
de Heer may contain, in addition to process (2), contribution from excitation
through doubly excited states, i.e.,

H, $ H(2s) + H(nR), ntAls
(at energies above the appropriate thresholds) which have been excluded in our
theoretical consideration. In the experiment of electron-impact dissociation
of H2 described in Ref. 22, some of the I(2s) atoms produced exhibit a threshold
of incident electron energy in the neighborhood of 29 eV, indeed suggesting a

possible dissociative mechanism such as

H, $ H(2s) + Hp) ,
although no determination of the absolute cross sections for this process was
reported. In the experimental condition of Ref. 18, the measured cross
sections represent the sum of contributions from the processes discussed above.
Therefore one would expect our theoretical cross sections to be smaller than
the experimental values.

The energy-dependence of the experimental cross sectionsls shows that the
dissociating state is an optically allowed one. Our results are in agreement
with the experiment in this regard as the major contributor is found to be
the B'IZL state. This characteristic energy-dependence will remain unchanged

. % S b P, > : ;
when predissociation of the '’ T, states is considered. To sumarize, our

lﬁ*, eSE‘

calculation indicates that the dissociative excitation of the B' "

’
1.+ y %
and E Zg states accounts for as much as two—-thirds of mecasured cross sections

for production of I1(2s) atoms. The remainder is very likely duc to pre-

] T 3. ; g . a
dissociation of 1"uu states and to the excitation of doubly excited states,

[

o TR

A, L




17
V. CONCLUSION .

The mechanism of electron-impact dissociation of molecules may be sub-
divided into (i) direct excitation of repulsive states (including excitation
of bound states above the dissociation limits), (1i) excitation of discrete

levels of bound states followed by cascades to a dissociating state, and

(iii) excitation of bound states which are predissociative (i.e., mixed with
dissociating states). The method of Caussian-type orbitals has been proven
to be a very efficient means of dealing with excitation of discrete levels
of molecules. As the computation of continuum functions poses no difficulty,
the method of GTO can be readily extended to ab initio calculations of
processes (i) and (ii). In order to make reliable calculation of pre-
dissociation [process (iii)], accurate electronic wave functions and detailed
knowledge of potential-curve crossing are required. Once this information

is available, the Gaussian technique can be applied to treat the problem of
excitation to the predissociative states.

In this report we have presented the results of the electron-impact dissoc-

iation of the "2 molecule into H(1ls) + H(ls), and into H(1ls) + H(2s) computed
within the framework of the Born approximation. In the former case we find N
that the total dissociation cross sections receive about equal contributions

from the direct excitation of the repulsive bSEL state and from the excitation

of higher triplet states with subsequent cascade to bSE;. The present

theoretical cross sections are in a reasonably good agreement with the experi-

mental values of Corrigan when the latter are made compatible so as to represent

the process leading to H(1s) + H(1s) only. ,
As to the process of H(1s) + H(2s), the excitation of the B":;. 03:;,

N I 2 .
and a’zg states (above the dissociation limit) may account for almost two-

thirds of the measured cross sections of Vroom and de Heer. Among these

MNTRYAFY
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1

dissociating states the B' ZS state is by far (95% or more) the most important

contributor at incident energies above 60 eV. At lower energies the e3

-
becomes important, particularly near the threshold. The balance (about one-

third) is expected (but not independently verified) to come from excitation

of the 1’3Hu states which are predissociated by the B'1£; and e3£; states. It

is also likely that some contribution comes from excitation of some doubly

excited states. Although our results are consistent with the experimental

data, further studies concerning predissociation and the nature of some of the doubly
excited states are necessary in order to have a more complete understanding

of dissociation of H2 into H(ls) + H(2s).

T

—
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Table I. Dissociation cross sections for production of H(1ls) + H(1ls) via

excitation of the b323 state (repulsive) and the a3z+, esz;, c3nu, and dsﬂu

g
states (bound) in units of 10717 a?,

Energy Cross sections
6 b L a3z; c*n N : an
10 1.76
13 4.47 1.07 1.96

15 4.18 1.22 1.98 0.334 0.408

i 20 2.69 0.854 1.19 0.286 0.311
3 30 1.10 0.342 0.433 0.122 0.120
40 0.525 0.160 0.196 0.0574 0.0532
50 0.287 0.0857 0.104 0.0309 0.0278
70 0.112 0.0328 0.0396 0.118 0.0103
100 0.0401 0.0116 0.0140 0.0041 0.0036
150 0.0123 0.0035 0.0042 0.0012 0.0011

3gxcitation to discrete vibrational levels only.

——
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Table II. Dissociation cross sections for production of H(ls) + H(2s) via
excitation® of the B'IZZ, Elz;, and eSZL states in units of lo'lscmz.
i
Energy Cross Sections ‘
(eV) Brlz! Elz; e’ |
‘
15 0.0623 0.0290 0.151 ;
18 1.33 0.113 0.860 "
20 1.98 0.141 0.800
40 3.91 0.166 0.163
60 3,75 0.133 0.0509
80 3.41 0.108 0.0217 ;
100 3.09 0.0910 0.0112 g
150 2.50 0.0645 0.0033
200 2.10 0.0498 y
500 1.13 0.0219
1000 0.674 0.0108

3 gxcitation to these states above the dissociation limit only.
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Dissociation into H(1s) + H(1s)
results from direct excitation of the repulsive bSE; state (la), and also from
excitation of higher triplet states such as 332; state (1b) followed by radiative
Z; state (1b'). Dissociation into H(1s) + H(2s) results from
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multiplied by a factor of 0.8 as suggested by Ref. 19. The experimental
cross sections are for the rate of production of H(2s) atoms, thus they
also include other modes of dissociation (see Sec. IV B).
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28' and e3>:u states. The experimental cross sections of Ref. 20 are
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PART 1T
APPLICATION OF THE CLOSE-COUPLING METHOD TO EXCITATION OF

ELECTRONIC STATES AND DISSOCIATION OF H, BY ELECTRON IMPACT

2
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I. INTRODUCTION

Excitation of the electronic states of molecule by electron impact is
one of the simplest basic processes in molecular collision phenomena. The
importance of such excitation processes in many areas of studies has stim-
ulated considerable experimental efforts in recent years. However, the
progress in the theoretical aspects of the problem has been much slower. In
fact the status of the theory of electron-impact excitation of the electronic
states of diatomic molecules is in a rather primitive stage in comparison
with the corresponding electron-atom processes. For a few diatomic molecules

1-8

(HZ’NZ’m)’ systematic studies of the excitation cross sections for a mumber

of singlet and triplet states have been made by means of the Born approximation
and/or the modified versions of it. The modifications of the Born approximation
as introduced by 0&:hkm‘9 and by R:.ldge10 enable one to handle the exchange
interaction between the colliding and the target electrons in a simple way.
Excitation from a singlet to another singlet state can be treated either by

the first Born approximation (referred to as the Born approximation in this

paper), or by one of the modified versions when the exchange effect is included.

On the other hand one must resort to the Born-Ochkur or the Born-Rudge

approximation for excitation to triplet states. In Refs. 1 and 2, it is

suggested that Born-Ochkur approximation be used for singlet-singlet excitation,

but the Born-Rudge scheme is recommended for singlet-triplet processes. ‘
Comparison with experiments shows satisfactory agreement for a few states,

but rather large discrepancy is found for same others. Viewed as a whole, one

can only regard the Born-type calculation as a means of providing theoretical

estimates but not always cross sections of precise quantitative significance.

In the cases of singlet-triplet processes, the excitation functions generally
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peak at a few eV above the threshold and decrease steeply with increasing energy.
For many applications, the major interest in triplet excitation lies in the
near-threshold region where the cross sections are large, but this is also
the region in which the validity of the Born approximation becomes questionable.
Recently a calculation based on "the first-order many-body formula" (a form

of distorted-wave approximation) was advancedu, which is yet to be tested
against more rigorous theory. Like the Born-Ochkur and Born-Rudge approximations

before it, this method, too, takes advantage of relative simplicity in
computation but also falls short of serious theoretical justification.
Collectively, these efforts are a testimony that while the need for theoretical
cross sections is great, the means of obtaining them is restricted - no doubt,
due to the computational complexity involved in the molecular problems.

The most rigorous and systematic formalism commonly applied to the electron-

atom collision processes is the method of close coupling.lz-l? About ten

years ago a very ambitious effort of applying the close-coupling metnod to
c.-lectmn-H2 excitation was undertaken by Fajen.18 He calculated the excitation i

cross sections of the Bl)::, C]‘Hu, and EI}:; states of H2 by a multi-state close

e

coupling scheme. To make the problem tractable, Fajen neglected the exchange
interaction between the colliding and target electrons. The emphasis of his

work is mainly focused on the problem of singlet-singlet excitation in the high

and intermediate energies, particularly the effect of multi-state indirect

coupling on the cross sections of the EIZ§ state. Black and Lane!”’20 a1so
calculated the cross sections of the Bl}:; state by the close-coupling method.
The electron-exchange was approximated as an efféctive exchange potential by
the scaled Slater-Hartree-Fock form to simplify the computation.20 The latter

work was primarily concerned with the resonant excitation of the 812:; state at

low incident-electron energies (11-13 eV).




30

In this report we apply the method of close coupling to the cplect:'cn-ll2
problem with the projectile-target electron exchange included, and calculate
excitation cross sections for several triplet states as well as the Blt; state.
The theoretical formulation and the computational procedures parallel closely
those of the atomic cases with two notable differences coming from the axial
symmetry of molecule and the two-center nature of (homonuclear diatomic)
molecular wave functions. From the computational standpoint, these differences
translate into one additional truncation of an infinite sum beyond the atamic
calculation. In our calculations this truncation is fully justified with a
demonstrated convergence. Aside from this point, all computations are carried
out to the same degree of refinement as the corresponding electron-atom

problems.

— ~ -
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II. GENERAL THEORY
The development of the close-coupling theory dates back to the

1950'.'..12 Since then this method has been applied with increasing frequency

13-17

to electran-atom problems, so that the general theory of the close-
coupling method is rather well known now. Nevertheless, for the purpose of
3 later discussions, we specialize it to electron-diatomic molecule collision
| processes which result in an excitatiop of electronic states. The formulation
here parallels closely to those already published in conjunction with electron-

] K atom case, particularly, the work by Smith, Henry, and Burke. 14

% In the field of electron-molecule collision, when an excitation is made
from one electronic state to another, we are interested in the excitation cross
‘ sections that are averaged over the initial rotational substates, and summed over the
final rotational substates. In order to compute such cross secticns, it is
possible — in fact desirable fram the computational point of view — to

21,22

formulate the problem in the molecule-fixed frame of reference, thereby

ignoring the rotational structure completely. However, in its stead, we

average the direction of the incident electron with respect to the orientation
of molecule. Only assumption needed here is that the energy of scattered
electrons be much greater than energy-spacings of the rotational states. +

As to the treatment of the vibrational motion, it is a common practice

to use the Franck-Condon-factor (FC) approximation, by which electronic states |1
of molecules are considered '‘vibrationless.'" This simplifies the calculation,
since the vibrational wave functions now enter the computation only through

FC factors so that the scattering equations can be solved without the 1
knowledge of vibrational motion. The validity of this approximation .

has been examined.> In this report we will focus our attention to the

electronic motion and ignore the !
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dependency of electronic functions on the internuclear distance. Thus, in what
follows, all electronic functions are those corresponding to the equilibrium
separation of a ground state.

An electronic state of a diatomic molecule is defined by the angular
momentum along the molecular axis A, and the spin (sm). We use n to distinguish
different states which have the same quantum numbers (Asm). Thus, we write an

N-electron electronic wave function as

O(nAsml'il,...,iN), (1)

where ;i represents the spatial ('xti) and spin (oi) coordinates of the i-th
electron. ¢'s are fully antisymmetrized products consisting of one-electron
molecular orbitals d’j (nJ.AJ. |?) with a- or B-spin, and they are assumed to satisfy

the Schroedinger equation exactly,

H o 0(ism) = E_,¢(mAsm), (2)
N
S > & -1 . -1
o1 if{”vi MU Y )
N-1 N
R A S 3
i=1 j=i+1 1t J

where Z is the nuclear charge, and ;A and ;B are the position vectors of the
two nuclei. The scattered-electron wave is characterized by angular momenta
(um') and spin (s=%, m=t}).

The essence of the close-coupling method consists of expanding the total
(N+1)-electron function of the collision system in terms of a suitable set of
basis functions. Due to the axially symmetric field in which these (N+1)
electrons move, the total angular momentum projected on the molecular axis

A=\+m' is a constant of the collision process.
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As we deal only with spin-independent Hamiltonians, the total spin (SM) are
good quantum numbers. In fact the cross sections are independent of M. &

Accordingly, we adopt a basis set which are eigenfunctions of (SMA), i.e.,

M -1, - SMA > e >
i wu X ):wMzs(xl'“.’rioi’.”’xN*l)

= I, C(s,5mMm|SDY, | (rO)€CsMm|0))
x 0(n>\sm|;1....,;i_1,§i*1,---,;N*l)- (4)

where C(j 1j 2"11m2|JM) is the Clebsch-Gordan coefficient, Y, 1is the spherical

£m
hannonic, and £ is a- or B-spin function. We also used two short-hand notations;
X! indicates that ri-coordinate is missing in the basis function as shown and the

channel index u = (n)\ll.).z3 The total (N+1)-electron wave function is now expanded

s . ki

in an explicitly antisymmetrized form as

T.» > SMA > -
¥ (Xpseee s Xyyg)= ZSMAuWu (Xp0eeeaXyey)s €))

and
o i-1 -1

G Gpeedyg) ® D8 DD G

QA -1
1P > g NS

u'

1

where 1~ Fu'u(r) are to be determined by solving the scattering equation

In this paper we will not consider the I_J_o_tm_d (N+1) -electron states in the expansion
of Eq. (5). Inclusion of such bound states allows for the possibility of
electron-capture into the target molecule,24 and would be essential in the

studies of resonance behaviors of excitation functions such as in Ref. 20. We

seek the solution of the Schroedinger equation,

HEY Kp,e.ni%y,,) = 0, (7
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where the (N+l)-electron Hamiltonian H is

H = By W * VG ®)
* > -1 o |
VG erByg) = 2 (T Ty 17+ [Tpfygl )

N -+ > -1
+ I (gl 9)
In lieu of Eq. (7) we apply the variational principle to the integral (a

standard prescription here),

> - SMA* > - T » - =
8fax . iy, BT (Xpseees Xy JIHEIY (X, Xy ) = 0, (10)

with a subsidiary condition that the scattered-electron functions be orthogonal

to all the relevant target one-electron orbitals ¢j. (Imposition of this orthogonal-
ity condition precludes the possibility of electron capture into those orbitals.)
For electron-atom problems, because of the spherical symmetry of the target,

this is equivalent to requiring orthogonality between the scattered radial

functions r.lFu.u and the target orbitals of the same &. This orthogonality

relation offers a great deal of simplification to the scattering equations. For
molecular systems, the requirement of r'lFu,u being orthogonal to the relevant
molecular orbitals would certainly ensure the orthogonality of the colliding-
electron wave function to the target states, but the former is somewhat more
stringent than the latter. However, in this work we adopt the former version

in order to take advantage of the simplification in handling the exchange terms

in the scattering equation, i.e.,zs

f o3 1D Y, 4 (0 By (D]GF = 0. (an
Upon expanding

¢J-(njler) =T, \mj(r)dsj,g(njkjlr) ' (12)




Eq. (11) becomes

-1 2
zl 629’" GXJ.,A-A' I¢j’1(anJ‘|r) T Fnoxvzl(r)r dr 0, (13)

for all molecular orbitals ¢j(njxj|r). This orthogonality condition may be
treated by means of the Lagrangian undetemmined multiplier Mn .2 which amounts
323

J
to adding to Eq.(10), the following equation

8JT,Ty &g o0 ij,(A-A') Mnjsz 65 2 (nj3;11)
x v 1F (r)rzdr =0 14)
n'A'e’ 3
From Eqs. (10) and (14), we obtain the familiar set of integro-differential
equations,
2
- WO A A b T ;
[;2 _g—z_l + k ]Fuvu(r) ' zun[Uu'un(r) ¥ wu|un(r)]Funu(r)

T

5 ijzalx'ékj-(A-A')Mnjkj“¢i.2(“jxjlr)’

where the direct (U) and exchange (W) potentials are

Bonlnggd = [ e ®yv@ 0. 5)

& i i & - SUE SN

e SMA* N, -1
wu'u"(rN*l) Fu"u(rN*l) N f wu' (x )rN Funu(rN)

= et | wfﬂA(x'(N+1))d?1...d?&di§1 :

k2 . 2(B-E 1)) - (18)

We will not attempt to simplifydqs. (16) and (17) until we come to a
specific application. However, we point out here that these coupling
potentials vanish between channels of differing parity.zb Parity of a channel

(nx2) associated with (n\) electronic state may be defined as (-1)2 for "gerade"

o 5 et i v_“ e e T
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states'(zg,ng,...). and (-1)""'1 for '"ungerade'' states (Zu,nu,...). As & result,

the scattering equations separate into two sets according to even or odd parity
just as in an electron-atom collision problem. The solutions Fu'u(r) are subject

to the boundary conditions,

Fu'u(r) + 0, as r0

as T, (19)

1 -i(k'r-42'm) _i(k'r-4R'm) SMA
Fu'u(r) ~ ';'1; [Gulue € s\-"u]’

where Su'u is the scattering matrix. Following a similar analysis of Blatt

and Biedenharn,12 the scattering amplitude is

fSMA(nAEs - n'x'l's'lﬁ,;) = (kin) iz-z'Y2 X-k(ﬁ)
4 Xy on i T (20)

where the transition matrix T is

2
wu - Surw T Sy : (21)

~

The differential cross section in r-direction is

I(m\s > n'A's' |k, T)
2 N
- 4m 25+1) A A 2
2 sy T Vg4 (0 Yoy (0 ﬂx'z',nu' : (22)

Integration over the scattered angle yields a total cross section for a

given incident direction (k). As stated before, we are to average the cross

sections with respect to k, i.e.,
Q(ms + n'A's') = %? [ dk dr I(nis > n'A's'|k,T)

m
=T 5 (25+1 i 2
kKt S W‘%Ty Taggr | Trgﬁx'z',mz 1= (23)

For the purpose of later discussions, it is convenient to have cross sections

expressed as

aacian
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~

: 25+1) e s SMA 's'et) (28)
i i : ¥

! % 'A's' = 2 z z Q (nASR. -+ N A's ]
QUBAS > B'A'st) = bg 2TeH1) 2, g=|A-A| 2'=|A-A"]

‘ with

i

¢ SMA TSm ¢

E Q (HASf, +n'A's'e') = ':‘2 l n'a'e! ’mg" . (25)

In accordance with the FC approximation, Eq. (23) is viewed as the cross
section from any one vibrational level of (nis) to all vibrational levels of

(n'A's') state. Therefore, cross sections between a pair of vibrational levels

are to be scaled by the appropriate Franck-Condon factor o prgis i.e.,

Q(mAsv + n'A's'v') = . n,V,Q(n)\s +n'A's'),
(26)
Gy nryr = 1Py ® 3, OFR),

where (R) is the vibrational wave function of (nv) state.
Xnv

It is worthwhile to draw the contrast between the electron-atom and electron-
molecule systems. An obvious difference is that the electronic wave functions of a
diatomic molecule are centered around two nuclei. This causes difficulty in
camputing the coupling potentials, which will be discussed in Sec. IV-A. The
other point of practical interest is the following. In an electron-atom
collision, the scattering equations are diagonal in T- 1; + 1 and ML
(IA and ¥ being the angular momenta of the atom and scattered electron
respectively), and the cross sections are independent of ML' Accordingly, the

cross sections corresponding to Eq. (24) are (apart from the parity consideration)

given by

L+
atom (2s+1) + (2L+1 »
Q (nt,s +n'L's') = 217——%7- z —————l) I
a a S s*+1) 1=0 (22a+1 m=lL—2at
L+2} 27)

QLS(nlais * L _2's'),
2'=|L-2!| 3
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| Thus, once the number of target states (nt a) are decided on, one set of ;’
scattering equations corresponding to a given pair of L,ML are solved at

a time, yielding partial cross sections QLS. Further, for a given L,2 and '

e ———

are restricted to a finite number of values as shown in Eq. (27). Strictly

speaking, L runs from 0 to «». In practice, since the partial cross sections

QLS diminish with increasing L for large L, the series in Eq. (27) may be

terminated after suming a finite number of QLS for L=0,1,...L . The point

i
5

T
%]

we like to emphasize here is that Hmax is chosen - and may be increased later -
according to the knowledge of partial cross sections QLS already calculated for
L< ,

However, for the electron-excitation of molecule considered in this paper,

only A is a  good quantum number.27 Thus, the scattering equations for a given

A would in principle contain infinite number of channels corresponding to

£ = |[A-A], |A-)X[+2,....etc. as shown in Eq. (24). Again, truncation of channels
(with respect to &) is inevitable. However, in this case the truncation must

be made before the scattering equations are solved. In other words, whether or
not a sufficient number of channels were included in a calculation can be
ascertained only after the calculation had already been completed. This is an
additional burden in the calculation of molecular excitation. We will discuss

this further in Sec. III.
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i III. APPLICATION TO ELECI'RGI-HZ COLLISION

Within the theoretical framework outlined in the previous section, we

made a series of two-state close-coupling calculations by including the }

1 3z+ 3.+ 5 3

, b Zu, c Hu, and e Z; states.

ground state X Z; and each of the Blz+ a

u’ g
With the number of electronic states thus limited to two, we must still decide

how many partial waves (22') are to be included in a calculation, as pointed
out at the end of Sec. II. After some test calculations we found that for the
singlet-triplet excitation it is quite adequate to include three partial

waves or less per electronic state in the energy-range (up to 40 eV) of

ENP_So.  VEERAG. o | SAE e

incident electrons considered here. However, in the case of excitation to the
singlet state (Blz;), it appears that a very large number of partial waves
would be required. Therefore, we adopt the following practical scheme18 to

carry out the close-coupling calculations with a limited number of partial

waves while maintaining sufficient degree of accuracy.

|
i
g

L,
¥
1%
i

A. Special Treatment for Singlet-Singlet Excitation

ik

Let us denote the close-coupling (CC) cross section of (xlz; % BIZG)

excitation by

Q(CC) (B]-Z‘:) -5 ZA Q(CC)A(R,,Q') G (28)

22°

PRI e o PRV P B

This is a short-hand version of Eq. (24) with S=M=)% and s=s'=0. We assert

here that for sufficiently large (2,2'>L), Q(CC)A(Q,Q') approach the corres-

Q(Born)A

ponding partial cross sections (2,2') by the Born approximation.

16

Barnes, Lane, and Lin" verify this in their work on electron-Na collision

with a qualitative physical reason behind it. Therefore, we may calculate
Q@A (e,21) for (2,4')<L, and substitute QB™A(g,27) for QM A(z,21) for |

(2,2')>L, viz.,
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L

@l = £,z @A, 42 QU™ (g, 1)

Y1k TS R

(Born) L
= qrotal)+ 1 (£, [QCCO(,01) - @B™A o)1 (29)

We will substantiate this claim later.

B. Coupling Potentials

The electronic wave functions used in this work are as follows:
¢(X1£+' s=m=0) = [lo a(1l) lo B(2)]
g’ g g :

0(812;; s=me0) = /% {loa(l) 1o,8(2)] - [1o,8(1) loa(]},
(30)

3+- = = +
o(a zg, s=1,m=0) /E{[loga(l) 20ge(z)] [1083(1) 20ga(2)]},

Jet: SN
o(a Zg, s=m=1) [loga(l) ZOgG(Z)] ’

3 3 3

and similarly for b Z;, and ¢ IIu (A=t1) states with 20 replaced

+
o u’ e
respectively by 1°u’ Zcu, and 11ru (A=t1) orbitals. Here, we used the brackets
to represent the normalized determinants. The detailed form of the molecular
orbitals will be given later. The threshold energies of these states are listed
in Table I, which should be viewed in the context of FC approximation. Let us
consider a process in which an incident electron (s=ms=!:) impinges upon an H2
molecule in the ground state (s=ms=o). Consistent with this, we construct basis

functions as in Eq. (4), which are spin-eigenfunctions of S=M=4 with N=2. For
example, with the X1£; state we have

Hoas® ) = Yy 1 Eaends; smeo), (31)

i e ¢ 8 5o 3
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and likewise for the B Zg state. In the case of 33£; we write

{
SMA -3 T 3.+ ¥: :

-«’%&(3)¢(a322; s=1, m=0)}. (32)

The basis functions associated with other triplet states are obtained similarly.

With these explicit expressions [Eqs. (30)-(32)], the potentials [Eqs. (16),

(17)] may be reduced to the following:

B lh) S8 B S W s e

where

vN

~ * ~ ~
mas,narers' M = Sy @y Jr Yo 40 Yo 40 ()
x (7,717 15,
and

A & A PN

vﬁxzs,n'x'z's'(’) =[dry, ,,@® Yo, a-x(®
£ £ [ o () | ey di (35)

R S e :

The Kronecker delta in Eq. (33) restricts the direct-coupling potentials to
those between channels belonging to electronic states of same spin, with the
obvious consequence that a singlet-to-triplet excitation is achieved only
through electron-exchange. The potential due to the nuclear charge W s
diagonal in electronic states as shown in Eq. (34). The part due to the

molecular electrons V€ is a sum of integrals involving one-electron molecular

orbitals (MO) ¢j’¢5 with numerical factors fj‘ Analogous to this, we find
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a2
= - ® b An "-" ‘1
Wt F (@) = L5 g5 [ 02 @Yg 4,0 (01 (71
xo1F) Y, (r) (rr')‘lpu,u,,(r') dr df' . (36)
For convenience we use short-hand notations
' = * -b' ->_->' -1 - ->' -bl 37
waﬁ I¢gr)hrl ¢3(x"dr (37)
0! 0.3 = f 0. @Y Y ) |F-71
g T
* W@ ) ¥ 400 ) ()R, W) dr d (38)

We display in Tables II-IV the coupling potentials between channels with
respect to the electronic states to which they belong.

In order to express these potentials more explicitly we use the following
well-known expansions, with the origin of the coordinate system chosen at the

center of homonuclear diatomic molecule as shown in Fig. 1. That is,

> >, - R A

™ = g D ® Yo® (39)
e RK A

T = g R0 G R Yeo® (40)
[X I S I P (41)
g T, “K “2K+I) r>) m 'K,m'T Tk,m' T

where R and R< stand for the greater or lesser of r and (R/2), and 1 and Te
for greater or lesser of r and r'. With these expansions we find
VN 2 L+
= . hX =
Mls,n'X'l'S'(r) 5(1“)’(““')(&) "l-lpl( even)

R, K
> cK(E'A-A',lA-A) (ﬁf : (42)




43

Ve L+ K
= "A- A
mzs,n'l'l's'(r) EJ fJ §=|2-2'|C (R'A-1",2A-2)
x yg(#5,0511), (43)

where we used the notation of Condon and Shortley,28 i.e.

cKamtm) = Lprpd® [ dr Y @Y L Y, @), (44)

and the Yx function is

A=A
Y5611 = (-1 ) [m——] [ 6@ [F)

vh
595
% ¥ @ & )(Zf3K¢' (n! A! |TN)dE

-K-1

Al-A. T ®
= (1’ J[2K+1] [{r'K'lf r’edar o« Ko r'ldr)
0

T
x {]dr' ¢ (2, IT") e, (r! )¢' (n A RN (45)
S

where Aj is the angular momentum along the molecular axis of a molecular orbital

°j' Similarly,

Wouo () Fyn(e) = -I;85 Iy o (2K+1) T fdr YKg(r) Yz A=) )

x ¢3(?)[{r-x-1 [r rK Fu.u“(r') dr' + & I{ r"K'lFu.u"(r')dr'}
0 r

~ A ~ *
RN SHCORAPRVCOLY @) 1. (46)
To simplify this we use the relation

o M (22,+1) (22,+1) g

’“1mY 2,,,2(;) -L-|§1'9«2| [ 4"(2L+1) ] Cl2yomm, |L Mo, +m))

X C(218,00]10) Yp(¥) , (47)
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and define a function ZK’ viz.,

4n % 2 2 LR
Zy(o5am|1) = [gpey] Tfdr Yy, (1) Yo, (r)e;(x)

PN M) C(K200|L0)
. TP A e C(K200|L
L=|K-2| 2L+1 gn
PN A X st
x [ dr YIM(r)¢j (njler) : (48)

The last integral in the above equation restricts l\i=kj, which in turn sets
gr)\j-m so that the sumation over g is merely formal in Lq. (46). Combining
Eqs. (47) and (48) into (46), we find

*
- ' -
W (OF,(0) = -3 T Ze03t A |)

r [+ <]
* [T [ e vt e
T

x ZK(¢j2'A-A'|r')]. (49)

We note that the parameter K in Eqs. (42) and (43) and L in Eq. (48) are limited
to a finite number of values so that those series [Eqs. (42), (43), and (48)]
can be summed without any omission as indeed done in this work. The exception
to this occurs in Eq. (49) with regard to K, where K has no upper limit. As

a practical matter this infinite series must be truncated, and we found it

sufficient to retain the three leading termms in this work.
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IV. METHOD OF COMPUTATION

In the usual approach of expressing the molecular orbitals (MO) by

linear combinations of atomic orbitals (LCAO), the molecular wave functions }

are centered around the two nuclei. The greatest (if not the only) difficulty
with an electron-molecule calculation arises from this two-center nature of
molecular function, the consequence of which needs no elaboration here. In

this section we develop a computational technique suitable for the potentials

by exploiting the advantages offered by the Gaussian-type orbitals (GTO).
To begin with, we define Gaussian functions centered at A and B with

exponents a, b, (see Fig. 2),

6(a,A) = expl-al(x-A) % (-A)% + -4}
R 2
= exp{-a(j— + r° + Rrcos6)} (50)
G(b,B) = e e
»B) = xp{-b(j—* T Rrcos8)}, (51)

The Gaussians shown above are known as s-type, from which P,"» Pys and py-type
GIO can be derived, i.e.,

z - R |

sz(a,A) = (..~Az) G(a,A) = (rcos6 2-) G(a,A), b
(52) &

pr(a,A) = (xn&) G(a,A) = rsin6fcos$ G(a,A), etc.

Crucial to our computational procedure is the fact that the exponent in Eq. (50)

is rational; in contrast, for the Slater-type orbitals (STO) the exponent

would be irrational. In terms of these Gaussian functions, the one-electron

molecular orbitals appearing in Eq. (30) are expressed as
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6
¢°g'°u = ifl ci{G(ai,A) + G(ai,B)}
(53)
10 R S R
+ j§7 ci{(rcose-fac(aj,A) + (rcosd + 2) G(aj,B)},
with og and % taking the upper and lower signs respectively, and
sid 10
. =e I c. rsin® {G(a.,A) + G(a.,B)}. (54)

The expansion coefficients c's are determined by the self-consistent-field

Tok g Bk 5ok 5 3
Zg, B Zu, a Zg’ b Zu, c Hu, and e

states at R = 0.74 corresponding to the equilibrium separation of the ground

(SCF) calculations for each of the X Z;

state (xlz;). These coefficients are listed in Table V along with the

29 The

30

corresponding exponents of six s-type and four p-type Gaussians.
general procedure of SCF calculation is discussed in the literature.
In case of (log)(Zou)eSZS which is the second lowest state of this symmetry,

the SCF procedure is applied to the second lowest root of the secular equation;
the 2°u orbital so obtained is found to be orthogonal to the lou orbital of the
(log)(lcu)b32; state. In all cases the orbital coefficients are converged with-

in 10°°.
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A. Coupling Potentials

With a substitution of Eqs. (53) and (54), reduction of the last integral

in Eq. (48) becomes possible. For example, we have

~ ~ * -
[ ar Ym(r)¢,,u(xj-1lr)

1 [ g G10FD0

e

n
x [ sineda[qﬁ(cose,sine)rsine][exp(-aiR rcosf) + exp(a;Rrcose)], (55)
o

B 2
x I, ¢, exp{-a(z—=r7)}

and similarly with other MO. Thus, a typical 6-integral has the form of

™
f sin6d6®m(cose,sine) f(cosf,sind) exp(yrcosd), y = *aR. (56)
o

In practice the products ®LM (cos9,sing) xf (cos8,sing) always turn out to be

an even function of sine (sinzne) so that we have to deal only with the

following integral.

m™
J sinddé cos™® e
o

Xcosf

= P (e + Q (e, (57)

where

; n+l n !
P (x) = (-1) x —’l—_—T

m=0 (n-m) I
and (58)

Q) = -D"P_(-x).

The angular integrations for yy function in Eq. (45) are performed in a

similar manner; the only difference is that there are two MO in the integrand

so that the number of terms are increased. However, the form remains 3

the same.

Thus, with the angular integration completed, r-integration is carried out

numerically by Simpson's rule for Yk function in Eq. (45). From this V€ are

assembled in accordance with Eq. (43), and subsequently by combining V¢ and

VN, we obtain Uw,(r) in Eq. (33) in a tabular form from r=0 to 31ao, beyond

which Uw.(r) are fitted to a two term asymptotic fomm, i.e.,

T R A A A S KTWE S TP
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o

Upe () = 3 * s - (59)

"

This curve-fitting is based on 50 data points between r=31 and 41ao with a
maximm error of 0.1% for the worst case. For numerical integration we start
with a mesh-size 6r=0.01253o and double it after every 80 quadrature points
until Gr-o.la° is reached as shown in Table VI. This quadrature scheme is
common to all numerical procedures, i.e., with Yo ZK’ and the scattered wave
F.. of the next subsection, so that the potentials are fed into the scattering

1)
equation as they were calculated without further manipulations, except the

asymtotic fitting of Uuu' described above.

Similarly, the Zy functions are tabulated as prescribed by Eq. (48) from
r=0 to a suitable cut-off value Tout? beyond which the exchange potentials are
set to zero. The effective range of exchange is expected to be roughly the
extent of the molecular orbitals. In our test calculations we found no
appreciable difference (less than 0.2%) in cross sections when we used

ot ™ 20,25, and 31ao. For the sake of safety, however, we settled on Yait ™

ZSao, accepting the waste of '"overkill."

To ascertain the effect of truncation in the summation over K of Eq. (49),
we performed test-calculations with the b3£; state at E = 15 eV by retaining

one, three, and five ZK terms in Eq. (49). With five ZK terms, the partial
3, 1473 x 10°°

cross sections for A = 0 are .01807, .1204 x 10~ ag respectively

for (&,2') = (0,1), (2,3), and (4,5) as shown in Table VII. The corresponding

partial cross sections with three I terms are 0.01810, .1210 x 1073

6 4

, and

.1141 x 10"°, and with one term, they are .01829, .1816 x 10~

.2725 x 10-10. The difference between the three- and five-term results is

, and

quite negligible with respect to both the partial cross sections and the total
cross section. With regard to the one-temm calculation, the larger discrepancy

in the (2,3) and (4,5) partial cross sections over the (0,1) may be understood

i
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in the following way. Namely, the last integral of Eq. (48) is nothing but

a decomposition of h()¢j by angular momentum, i.e.,
~ ’A ® -
¢j’L(njAj|r) = [dr YL'M(r)@»j {njler) ; (60)

For the MO's of H2 considered here, we find that the largest concentrations
are in ¢1° ,0 and @10 1 etc. over other higher angular-momentum components.
These large components will enter into the sumation of Eq. (48) only if
K=2, 2 1 so that, viewed from this point, :K=1 and ZK=2:1 are important
terms. In the above example with only :K=0 term, other important terms ZK=2
and ZK-4 are not taken into account, and this omission may explain the un-
satisfactory results for (2,R') = (2,3) and (4,5). Since these higher partial
waves contribute much less to the total cross section than the lower ones, the
net effect on the total cross section is merely 0.5% in this case even with
only one ZK term. We expect some minor fluctuations in this discrepancy
(0.5%) as we change the incident-electron energy, and consider different
electronic states. Therefore, in order to leave ample margin of safety to
cover such variations, we decided to retain three leading, non-vanishing :K
tems in Eq. (49) (e.g., K=0,2,4; 1,3,5; or 2,4,6, etc.) with K<9 in all

succeeding calculations presented in this report.

B. Scattering equations

For the purpose of discussion here, we re-write the integro-differential

equations in Eq. (15) as follows

d2 L. (2 +*1)

[—2 ——2— . K i) Fij(r) = 2 (U5, (1) + Wy (0 JFy; (r)

(61)

+ EJ(orbxtal) L) 51,1 § A-14) J\ Q“J R Jler)’

A €

gy

e S
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where we used i,j for the scattering and incident channels respectively. The
summation J is over the molecular orbitals, and £(J) covers even or odd values
as dictated by the orbital (JKJ).

Once the U(r), W(r), and ¢J’2(r) are made available, the procedure of
solution becomes quite analogous to atomic case. We solve this set of integro-
differential equations by the noniterative integral equation method (NIEM).15
Here, we give just a brief description of NIEM as applied to our problem, while
the readers are referred to the paper by Smith and Henry15 for
details. We expect two sets of arbitrary constants which are to be determined
by the boundary conditions. For the moment we look for the solutions
wij(r) of Eq. (61) without regard to boundary conditions, in place of Fij(f)
which satisfy the boundary conditions. By means of the Green's-function

technique, the solution can be expressed in an integral representation, i.e.,

T
b3 = 855 6D ) + 2 J ax 682 (3 (7,0, (05 (9

" I Bpim B Tk [ Op(my tn Al X)

K- pe S

x KL Ky LK Ry KLy Ky gy
(o] (o] (o]

x ZK(d)p(i)li A'Ail)') wm- 62))

ij
C LTy S S0 M 40l (62)
with
(1) R, [
SRIUURE S S MULE
g
G (kyr) = ki r yli(kir)’ 63)

62D rj) = 68 a6 M a0 - 6V iy 68 ko),

"'m " "\q_

"
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v T

where jl and y, are the spherical Bessel functions of the first and second kind &
respectively. In Eq. (62) the summation Zp(in) indicates the pair of MO -1

and ¢ appearing in the two ZK-functions are dictated by the electronic 4

*p(m) p(i)
states to which channels i and n belong. Eq. (62) above corresponds to Eq. (12)

of the paper by Smith and Henry. As they point out, the right-side of Eq. (62)

are known except the Lagrangian multiplier M and the term,

o

=
Io y k(o ciy & A vy, Ody. (64)

e iy

-
Pon

Since Eq. (61) is linear in wij’ it is possible to treat these unknown terms
as inhomogeneity, and seek the complete solutions as appropriate linear

7 combinations of the homogeneous and particular solutions. There is no point

i35 F TR

in attempting to reproduce their elegant treatmentls here. We might note in

passing that with K and p(in) each taking three distinct values and nine

L :”4.' 3

channels, this amounts to in excess of 80 inhomogeneities including the
orthogonality terms. However, all particular integrals as well as homogeneous
solutions are processed simultanecously in the actual computation.

From the solutions wij(r) the scattering matrix may be detemiined as

follows. For large distance r, we may write

’ 3 )i i - S -
wij(r) v kg f[sink et Aj; * cos (k;r .Qin)Bij] ; (65)

v—

where we used the asymtotic form of the spherical Bessel functions jg and Yoo and

A and B are constant matrices to be determined. On the other hand the required

asymtotic form is

e P )
Fij(r) v ki [sxn(kir ulin) 5ij + cos(kir aein)Ri.] A (66)

J
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Therefore,
R=m’l, (67)
and
S* L+ iR (68)
A and B matrices are determined numerically by matching wij (r) at two adjacent

points ™ and rM+6r, that is, by setting up two simultaneous matrix equations

for the two unknown matrices A and B. In practice we chose ™

for the triplet cases, and Iy = 45, 55, and 65a 5 for the Blz:; state to

= 31 and 4Sao

observe the proper convergence of R matrix.

=,

1
4

:
1
4
i
A
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V. RESULTS AND DISCUSSION

We present the cross sections of the triplet states and the B1

¥
state separately, as the two cases differ in treatment as well as in the
energy-range of interest.
A. Excitation to Triplet States

The cross sections of the triplet states have been calculated by including
partial waves (22')<5, and A=0,1,2,3 at several incident-electron energies.
Typical breakdown of cross sections by (22') at two different energies are
shown in Tables VII and VIII. First, we note that the partial cross sections
QA(z,l') are much larger when Af=(2-2')=+1 than others. This is reminiscent
of the dipole-selection rule applied to atomic excitation, in which cross
sections are again found to be largest when AR=t1. Next, for a given sequence
of AL, QA(Q,l')decreases with increasing (22'), although the effectiveness
of large partial waves lingers on longer at high (40 eV) energy. There is no
surprise here; the present results merely conforms to the long-held view that
only the low partial waves are effective at low incident-electron energies.

In Table IX we show the breakdown of cross sections in terms of A, i.e.,
- '
=z, e, (69)

Since QA=in are identical there is no need to repeat calculations with negative
values of A. The decreasing trend of QA with increasing A is assured by the

foregoing discussion as the low partial waves Y are eliminated with

Ly,A-A
increasing A. Overall, it is evident from these tables that we have included
sufficient number of partial waves even at the highest energy (40 eV) con-
sidered in this report. We found a similar pattern in the partial cross

sections with other triplet states. The total cross sections of the four

X ';.T—;T Wil M

S
Bial®
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triplet states are presented in Table X. We also included in this table

cross sections by other theoretical calculations for comparison. There are

some unexpected features as well as predictable ones in the excitation

functions of these states. We now discuss these points as we compare the

present close-coupling (CC) results with other theoretical calculations.
3.+

1. bt and e%*
u u

The lowest excited state b3

Z: is a repulsive state, which dissociates
into two H(1ls) atoms. The cross sections of this state are shown in Fig. 3.

We have previously calculated these cross sections by using the Born-Rudge
approximation; - they are included in Fig. 3 for comparison. The wave functions
used there3 are identical to those employed in the present work. These
Born-Rudge (BR) cross sections are in an essential agreement with the earlier

calculation of similar nature by Cartwright and Kuppemann.4 A difference of

about 20% in magnitude was attributed to the usage of different wave functions.

Comparison of the present CC and the BR calculations shows that the former
gives an appreciably broader excitation function and much smaller (v30%)

cross sections below 20 eV. However, these two sets are in good agreement
above 20 eV. We will not discuss the Born-type calculations of still earlier
days7’8 as the works described in Refs. 3 and 4 are representative of the
Born-type calculations. Recently, Rescigno gg_gl,ll calculated cross sections

of the b°

2; state by means of the distorted-wave approximation with random-
phase approximation (DW-RPA) to compute the inelastic transition density.
Their results are shown in Table X and also in Fig. 3. (In this figure

the magnitude of their cross sections are reduced by a factor of two). These

11

authors = attempt to account for the distortion of the incident electron by

means of the Coulomb and exchange operators for the molecule in the ground state.
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The same operators are used for the distortion of the scattered electron instead

of the operators appropriate for the excited state. They justify this procedure
] ; - - 3 :

based on the previous application of DW-RPA to electron-atom cases. i Beside

this point, it is difficult to assess to what extent the static distortion

in DW-RPA can represent the dynamic process. At any rate, their excitation
function is rather similar to the BR calculation cited above, except the

magnitude is about twice as large.

In drastic contrast to the bSZ; state, the excitation function of the
e3£; state shows an extremely sharp peak as shown in Fig. 4, even though these
two states are of same symmetry type. In fact with the threshold energy of
13.22 eV, we found no decreasing trend in cross section as the incident-
electron energy is reduced as low as 14 eV. Compared with these CC results,

3

the BR cross sections™ are much smaller (factor of four) near the threshold,

but the difference becomes smaller at high incident energy (v20% at 40 eV).

The large difference in shape between the excitation functions of bSZ;

3

and e Z; found here, which is not revealed in the Born-Rudge calculation, is

somewhat puzzling. One possible explanation is as follows: a singlet-triplet
excitation involves an exchange between the colliding electron and a molecular
electron. Its cross sections decrease drastically with energy if the

colliding electron is found in the vicinity of the target for less than a

certain critical time which may be viewed as the range of interaction divided

by the velocity of the colliding electron. The e’

Z; state has both electrons I
in bonding orbitals whereas b32; involves one antibonding orbital. Thus the
bsz; state has a more diffuse electron density distribution, hence a larger
range of interaction. This may account for the fact that the decline in the

b32; excitation function sets in at a higher energy. On the other hand when
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the Born-Ochkur approximation is used, the 1/k4 factor (k being the wave vector)

in the scattering-matrix element gives such a steep energy dependence that it

obscures the difference in the range of interaction.

3.+ 3
2. a Zg and c Hu

-

Fig. 5 shows the cross sections of aSL; computed by the close-coupling,

11

the Born-Rudge approximations,3 and DW-RPA. The difference in shape of

excitation function is not too severe for a3

Z; between CC and BR calculations.
Again, we see a large difference in magnitude at low energy (“40% at 15 eV)
but a better agreement at high energy (v20% at 40 eV). he cross sections by
DW-RPA are much larger than CC results (v50%). However, the shift in the
position of peak may well be due to the different values of threshold energy
used in the calculations.

The cross sections of c3Hu presented in this paper are based on the three-

state close-coupling calculations technically, as we included the X1

c3nu(x=:1) states in the scattering equation. However, at one energy (15 eV)

+
Z d
gan

we also performed a two-state calculation, from which we obtained a cross

17 7

section of 5.95x10° cm2 as compared with 5.63 x 10'1 cm2 from the three-

state calculation. The slight difference (6%) indicates that the mutual

interactions between channels belonging to the c3nu(x=+1) and c3

nu(x=-1)
states have no great effect on the cross sections. The results of c3nu

cross sections by CC and BR are compared in Fig. 6. Here, the discrepancy is

mainly on the magnitude of cross sections. The BR cross section53 are ruch smaller

than the CC counterpart. Although the discrepancy diminishes with in-

creasing of incident-electron energy, the BR cross section is only one-half of the

CC cross section even at 40 eV. We can offer no particular reason for this
discrepancy beyond the inadequacy of the Born-type approximation already dis-

cussed.
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3. Comparison with Experimental Dissociation Cross Sections i

The formation of two H(ls) atoms by electron impact on H2 arises fram i

; . s + 3 3 .
direct excitation of bSEu and from excitation of other triplet states followed

by cascade to bSE* It has been shown in Ref. 3 that aSE; and c3nu are the
two major cascading states to bSZS and that 9323 and d3nu play only minor

aSZ*, c3H , and
g u

roles. Thus we take the sum of the cross sections of bSZG,
e3£; as the theoretical cross sections for the dissociation process

H2 - H(1s) + H(1ls) which are shown in Fig. 7. Experimentally Corrigan32

has obtained dissociation cross sections (via the excited states of the neutral
H2 molecule) which cover the formation of the excited-state H(n?) atoms as well
as H(1s). In Ref. 3 efforts were made to subtract from Corrigan's data the
experimental cross sections for producing the excited-states atoms. The
"corrected'" experimental data given in Ref. 3 correspond to the formation of
two H(1ls) atoms and are reproduced in Fig. 7 for comparison with the theoretical
values. The agreement is seen to be quite good. However, it must be cautioned

that there is a considerable uncertainty in Corrigan's data (see Fig. 2 of

.
s
e e - i

Ref. 32) especially at the high-energy side. The close agreement between theory
and experiment, therefore, should not be regarded as having much quantitative
significance.
4. Summary
With a limited number of case studies made here, only a tentative con-

clusion can be drawn on the performarce of the Born-type approximations.

Nevertheless, we see a pattern emerging. First, at a moderate energy (say

20 eV or above) of incident electron the agreement between CC and BR results
is reasonable in most cases. While this comparison reaffirms that the Born-
types are basically "high-energy" approximations, it also puts a limit of

their applicability on a more quantitative basis as well. The other is much
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more serious, that is, at low energy the discrepancy is not only large,
neither does it appear to follow any clear trend. We can say neither BR
overestimates, nor underestimates cross sections since the detdils of the
exchange-potential, which must reflect the characteristics of electronic
states involved, are lost amid the approximate procedures leading to the Born-
Rudge or Born-Ochkur method. Indeed, the present close-coupling calculation
shows that the shape of excitation functions is not alike for all triplet

states whereas a much higher uniformity was seen from the BR results.

B. Excitation to the Blt': state

As described in Sec. III-A, our close-coupling calculation for the

1 1

+
z B
8-’

wave analyses of the Born approximation. The essential assumption made in

X I:; excitation has been carried out with the aid of a parallel partial-

Sec. III-A was that for large (2,%')

Q0 2,201y = QB (g 01y, (70)
with
Q.2 = 5, e,e) . 1)

In order to discuss how this assumption may affect the total excitation cross
sections, we display in Tables XI and XII the partial cross sections of Eq. (71)
sumed over A = -6 to +6 at the incident-electron energies of 25 and 100 eV.

In addition to the Born and CC cross sections, we also included in these tables
a set of cross sections calculated by the close-coupling method without the
electron-exchange (CCNE). It is evident from these tables that the partial
cross sections Q(&,%') of the singlet state do not decrease with increasing

2 as rapidly as the triplet counterparts. This is due to the presence of the

long-range direct potentials in the singlet-singlet excitation - hence the

necessity of a special treatment referred to above. We show in Tables XI and XIT
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the Q(2,2'=2-1) and Q(2,2'=2+1) sequences only, since their contributions

to the total cross sections are about 90% and 10% respectively. For the
sequence £'=2-1, the three sets of partial cross sections merge to one another;
for example, within 4% at the last entry (2=7). Furthermore, this error will
affect only the fraction (2,2'>7) of the total cross section so that the net
effect on the total cross section is expected to be much smaller. As to the
2'=2+1 sequence, the convergence is not as good as &'=%-1 sequence. However,
the entire Q(2,2'=2+1) sequence occupies only 10% of the total, so that any
error there will be scaled down by a factor of 10. Therefore, we estimate that
the total error incurred by our procedure does not exceed 5% or so at 100 eV,
and smaller yet at lower energies of incident electron. The important point

to note here is that the difference between the Born and CC calculations
manifests mainly in the partial cross sections of small 2 as shown in Tables XI and
XII so that the partial cross sections of large % may be computed by either
method without incurring much error. Therefore, we replace Q(CC)(Q,Q') by
Q(Born)(l’z.) for (2,2')>7 as prescribed by Eq. (29) to obtain the total CC
cross sections. The total cross sections by CCNE are obtained in a similar
manner.

These total cross sections are shown in Table XIII and in Fig. 8. For
comparison we also calculated the cross sections of this state by using the
Born-Ochkur approximation (BO). As expected the Born approximation grossly
overestimates the cross sections at low energy (by 55% at 25 eV), but at high
energy (100 eV) the CC and Born cross sections are within 8% of each other.
The poor performance of CCNE should also have been anticipated, since it makes
no allowance for the electron-exchange. Nevertheless, it is somewhat
disappointing to see a substantial difference between CCNE and CC at energies

as high as 50 eV. The CCNE and Born approximation give essentially the same

cross sections even at 25 eV. It is more difficult to assess the performance
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| of the Born-Ochkur approximation. While it tends to reduce the cross sections
below those given by the Born approximation, such a reduction is assured by the
1 formulation.33 Therefore, at this time we can view the '"success' of the
Born-Ochkur approximation only as qualitative and phenomenological.

On the other hand, much better agreement between the Born and CC at high

energy is encouraging; even at 75 eV the discrepancy is a mere 10%. With this

quantitative assessment, the Born approximation can be now utilized to provide

Cross sections at still higher incident-electron energies.




VI. CONCLUSION

While the basic formalism governing the collision process is identical
in electron-atom and electron-molecule cases, the theoretical advancement of
molecular collision lags far behind that of the atomic process. There is no
denying that this vast gap between the two is directly attributable to the
computational difficulties associated with molecules. In this work we
accomplished in devising a computational procedure capable of handling the
singlet-singlet and singlet-triplet excitations to the same level of refinement
as in the corresponding electron-atom collision theory.

With an application to H, molecule, we demonstrated the importance of
treating electron-exchange properly, by which certain characteristics of each
molecular state involved may be brought out. In contrast,only a qualitative
feature can be expected from the short-cut methods hitherto applied to electron-
molecule collisions such as the Born-type approximation.

Because of the scarcity of excitation measurements for the low excited
states of HZ’ we were not able to make a close comparison with experiment.
However, with this beginning, extension to homonuclear diatomics of the second
row is within our reach where greater abundance of experimental data are
available. Finally, in understanding collision processes, we believe theory
can offer more to electron-molecule processes than atomic cases as the

experimental analyses are more complicated and difficult with the former.
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Table I. Threshold (vertical excitation) energies in eV. :
]
1.+ 1.+ Spt 3.+ O '
el O G R ;
]
0.0 11.37 10.50 11.80 11.96 13.22

B &
F § I
| - '
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Table II. Coupling potentials for (xltg, alz;) system,

1.+ let
X Zg B 2u
xlz* 2(lo_,10 ) + {10 _,10._} | VZ(10 ,lo )#l{lc lo }
b g’ e £ u'tg’ oy u'g
1
plst ..’!(log,lou) :;i.{log’lou} 1(log,log) +1(10u,lcu)
n 2{1"g'1°g} *§(lou,lou}

ke
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Table III. Coupling potentials for (XIZ;,aSZ;) system,?

1.+ 3.+
z
X g a Zg
1.+
X'z P |
g 2(log,log) + {log,log} VE{ZGg,log}
3.+ (lo ,10 ) + (20 ,-o ) !
. Eg )g{lo 520 _}
£ & 2{10 10 } --{Zog,ac }

3Tables for (Y Z ,b Z ) and (Y 5 g’ e Z ) systems are similarly 4

obtained by substltutlng lo, and 20, orbitals respectively for 20g
orbital.
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Table vy, Step-size

of integration regiun:J

(A ér rB
0.0125 0.0125 1.0
1.0125 0.025 3.0
3.05 0.05 7.0
72 0.1 --

apA and rp are the starting and final points of

a region,
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Table VII. Partial cross sections? QA'O(R.,!.') in ag defined as in Eq. (25

for the bsl'.; state at E = 15 eV.

.181(-1) .779(-4) .181(-7)
.413(0) .129(-1) .913(-5)

.583(-2) .120(-3) .180(-7)
.319(-2) .735(-3) .317(-9)

.138(-4) .368(-4) .147(-6)
.768(-4) «597(-5) . 305(-5)

3Numbers in the parentheses indicate the power of 10.




3.+
Eq.(25) for the b L, State at E = 40 eV.

| Table VIII. Partial cross sections? QA=1(2’2,) in ag defined as in

2 1 2 3 4 5

3

1 .250(-2) .448(-5)

2 .475(-1) .244(-2) .308(-5)
3 .102(-1) .481(-3)

4 .278(-4) .145(-2) .675(-4)
5 .372(-5) .192(-3)

Numbers in the parentheses indicate the power of 10,

72




Table IX. Partial cross sections QA(bSZL) in ag

defined as in Eq.(69) at E = 15 and 40 eV,

A
Q
A E =15 eV E = 40 eV
0 .454019 .077405
1 .271013 .064906
2 .002737 .006672
3 .000038 .000721
sum? 1.001595 0.222003

LI Ry | : 3
Q "= Q "(A#0) are included in the sum.
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Table XI. Partial cross sectionsaQ(E,z') defined as in Eq.(71) for the

gl

+ E 2
Zu state at E = 25 eV in a.

s Al e Mo ikl VS8 i o

Q(L,2'=2-1) Q2,2 '=2+1)

L CC CCNE Born CC CONE Born

0 .355(-2)  .671(-3)  .887(-2)
1 .287(-1) .943(-1) .370(0) .329(-1) .161(-1) .159(-3)
2 .184(0) .468(0) .605(0) .248(-1) .169(-1) .320(-2)
3 .378(0) .674(0) .533(0) .213(-1) .162(-1) .341(-2)
4 .351(0) .432(0) .360(0) «639(-2) .738(-2) .239(-2)
5 .234(0) .238(0) .217(0) .416(-2) .295(-2) .124(-2)
6 .114(0) .126(0) .122(0) .912(-3) .107(-2) .687(-3)
7 .685(-1) .660(-1) .676(-1) .384(-3) .344(-3)
8 .347(-1) .364(-1)

Numbers in the parentheses indicate the power of 10.




Table XII. Partial cross sections® Q(2,%') defined as in Eq.(71) for the

i " s 2
B z;u state at E = 100 eV in ao.

Q(L,2'=2-1) Q(R,2'=2+1)

CCNE CcC CONE Born

o

.948(-3) .111(-2) .127(-2)
.763(-2) .102(-1) 113(-1) .441(-2) .113(-2) .987(-4)
.197(-1) .146(-1) .334(-1) .625(-2) .192(-2) .405(-3)
.223(-1) .349(-1) .583(-1) .574(-2) .498(-2) .198(-2)
.437(-1) .616(-1) +791(-1) .576(-2) .758(-2) .368(-2)
.667(-1) .863(-1) .920(-1) .118(-1) .870(-2) .488(-2)
.887(-1) .911(-1) .975(-1) +795(-2) .858(-2) .536(-2)
.943(-1) .935(-1) .967(-1) «133(-2) .532(-2)

.890(-1) .920(-1)

1
2
3
4
S
6
7
8

INumbers in the parentheses indicate the power of 10.




Table XIII. Total cross sections of the Bl‘}:; state in

units of 10”17 anz.
Energy cC CONE Born BO
(eV)
2S 4,31 6.31 6.66 531
SO 4,71 5.41 5.55 5.14
75 4.09 4.30 4,55 4,36
100 3.58 3.69 3.87 3.76
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A

Fig. 1. Coordinate system showing the expansions of IF-i:'['l, fi:A-I:['l, and

|¥B-?|'1.




‘1. 2. Gaussian-type orbitals in the Cartesian and spherical coordinate

vstoms,
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Fig. 3. Excitation cross sections of the be:l state calculated by means of
(i) the close-coupling (solid line) of this work; (ii) the Born-Rudge approxi-
mation (uniform dashed line) in Ref. 3; (iii) DW RPA reduced to one-half
(long-short dashed line) in Ref. 11.
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Fig. 4. Excitation cross sections of the o3x; state calculated by
means of (i) close-coupling (solid line) of this work; (ii) the Born-

Rudge approximation (dashed line) in Ref. 3.
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Fig. 5. Excitation cross sections of the as):* state calculated by
means of (i) close-coupling (solid line) of this work; (ii) the Born-
Rudge approximation (uniform dashed line) in Ref. 3; (iii) DW-RPA
(long-short dashed line) in Ref. 11.
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Fig. 6. Excitation cross sections of the c n, state calculated by means
of (i) the close-coupling (solid line) of this work; (ii) the Born-Rudge
approximation (dashed line) in Ref. 3.
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Theoretical cross sections of this work (solid line) for the
dissociation process stv H(1s) + H(1s) as compared with experimental
values (dashed line) of Ref. 32 corrected to represent the production of
H(1s) atoms only as described in Ref. 3.
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Fig. 8. Excitation cross sections of the B
(i) the close-coupling with exchange (solid line): (ii) the close-coupling
without exchange (uniform dashed line); (iii) the Born approximation (long-
short dashed line); (iv) the Born-Ochkur approximation (long-short-short
dashed line).
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PART III

ELECTRON IMPACT DISSOCIATION OF THE 02
MOLEQULE VIA THE SCHUMANN-RUNGE SYSTEM
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I. INTRODUCTION

Inelastic collisions of electrons and molecules with resulting excitation
and dissociation of molecules constitute a very basic kind of processes in
many different phenomena. The importance of the 02 molecules in the
atmospheric physics has long been recognized.1 More specifically, the
Schumann-Runge system of 02, to which this part of the report is directed,
has been extensively studied experimentally, both by the optica12'4 and

electron-energy loss spectroscopy.s’6

The upper state of the Schumann-Runge
system is the lowest dipole-allowed excited state, and it is a repulsive
state which dissociates into O(SP) and O(ID) atoms (see Fig. 1). Thus, the
continua of this system is responsible for dissociation of O2 in the earth's
upper atmosphere by UV absorption of the solar radiation. The 0, molecule
may also be dissociated by electron-impact. In spite of the importance of
such processes, systematic theoretical studies based on the first principle
calculations are sparse in the literature, and do not exceed the stages of
the optical oscillator strength.7 The very complicated numerical procedures
required to evaluate the multicenter integrals had been the major source of
difficulty. However, with the introduction of the Gaussian type orbitals
(GTO) to the molecular wave functions, the evaluation of the multicenter
integrals has become a rather simple task, and the advantage of using GTO
for calculating excitation cross sections hes been amply demonstrated by
the cases of H,, Ny, and CO molecules. 510
An additional complication arises in the theoretical studies of 0,
molecule in contrast with other atmospheric molecules cited above. That is,

the ground state of 0, has an incompletely filled shell. Therefore, a single-

configuration wave function is not adequate in describing the molecular wave

|
|
|
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function, and one must employ multiconfiguration (MC) wave functions. We
shall examine in some detail the effect of the configuration-mixing on the
cross sections. Because of this additional complexity, our report will be
confined to the level of the Born-type calculation. As with the N, and Q0

2
8,9 we shall rely on the Ochkur'sn modified version of the Born

molecules,
approximation, and present the dissociation cross sections of the 02 molecule

from the threshold to 1000 eV of the incident-electron energy.
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II. THEORY

A theoretical formulation for the problem of electron excitation/
dissociation of diatomic molecules by electron impact has been presented in
Ref. 10 and Part I of this report. In this section the key steps will be
sketched only. We are concerned with calculation of excitation cross
sections to an excited state characterized by electronic and vibrational
quantum numbers (nW) from the ground electronics-vibrational state (00).
It should be noted that the upper state of the Schumann-Runge system

B3

}:; state is a repulsive state, so that the ''vibrational states'" are in

fact continua. Molecular rotation will not be included explicitly in the
formulation, but its effect will be taken into account by averaging the cross
sections over the relative orientation between the molecular axis and the
direction of incident electron. The total wave functions of molecule are
written as a product of the vibrational part x(R) and the electronic part
v(?l,?z,...,ﬁ). It is convenient to couple the molecular wave functions with
the spin of the colliding electrons to form a set of basis functions, fram
which the direct-excitation (Born approximation) and the exchange-excitation
(Ochkur's versionu) collision amplitudes can be calculated. We assume

this has been done. Then the transition amplitude is

N
e (KGR, ,0) = -f voEF,,. 0 ,ﬁ).zlexp(ii-i"i)
1.

vo(?l,?z, " .?N,ii) d?ld?z. i .d‘fN. Q)

The differential cross sections in (8¢) direction for excitation from the

ground (00) to the upper (nW) state are

BRI RS S S /. ¢ %
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T(0:9) = (o u/nk ) [ [xyRx, (R

@2k 2)e(K,R,0,0)|% R%R singdade @)

where ©y is the degeneracy of the excited state. Integration of the differential
Cross sections over (8¢) gives the cross section for excitation to a unit energy

range about W of the repulsive state, viz.,

Q(00+nW) = [ I ,.(8,¢) sinededs . 3)

It follows that the cross sections of the entire repulsive state, irrespective

of the continuum levels are
Q(0+n) = [ Q(N0+nW) dW. 4)
o

Another quantity of physical significance is the generalized oscillator

strengths, which are related to the transition amplitude of Eq. (1) as
Fon(GR) = (2WaE/4nk?) [ |e (K,R8,8)| x sinédede, ()

where AE is the vertical excitation energy in a.u. (1 a.u. = 27.2 eV). In

particular, the optical oscillator strengths,
£fn(R) = F_ (K=0,R) (6)

are closely related to the photodissociation processes of the 0, molecule

'
via the Schumann-Runge (st g- - Bszu') system. From the foregoing discussion,
it is clear that the transition amplitude e - in Eq. (1) governs the accuracy
of the theoretical calculation that follows, be it the excitation cross
section or photodissociation cross section.

In the usual approach of writing wave functions as an antisymmeterized

products of one-electron functions ¢, if the wave functions in Eq. (1) are




considered to be single-configuration functions, Eq.(1) reduced to

eon (RO, = - [ o3 Rep(ik-Ho; G0, )

where % and ¢j are the pair of '"active' electron-functions. As we mentioned
in Sec. I, a single-configuration functions are not sufficient in the case
of the 02 molecule; therefore, we adopt the wave functions in Eq. (1) in the

form of multi-configuration (MC) functions, viz.,

3
wo(fl,?z,...,n) =1 3;(R) wi(rl,?z,...,n) (8)

<> &> > >
‘i’n(rl,rz,...,R) 3. bj (R) wj (rl,rz,...,R) 9

J

where wi, u;j are the single-configuration wave functions, and a;, bj are the
configuration-mixing coefficients. The details of computing these MC wave
functions will be presented in Sec. III. In this scheme of using MC wave

functions, the transition amplitude becomes

e (KR,©,0) = - Rb; (R [o; G, N ep(k-D) o;GRE ,  (10)

v sle &
1, 1,) 1

where Aij = 1, if the antisymmeterized product vy differ by one one-electron

I

orbital fram that of wj, i.e., o5 and °j respectively; otherwise Aij = 0.

Corresponding to this, the optical oscillator strength may be computed by

substituting Eq. (10) into (5), and taking the limiting value as K+0, with
the result,

Fon(®) = (20 8E/3) | 1y 5 a4

ij a; (R) bj (R)

[ oGR 2 oD &F|% : (1)

For the purpose of studying the effects of configuration mixing, it is

sufficient to examine the dipole transition amplitude, i.e.,
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T =1 850, (b ¢;(?,§)z o, (7, Rdt (12)

In Sec. IV we shall examine in detail how z varies and converges as we include
more and more configurations.

As shown in Eqs. (6) and (11), the optical oscillator strength varies
with the internuclear separation R. Therefore, in order to obtain the
optical oscillator strength of the entire Schumann-Runge system, we must

integrate f on(R) with the vibrational functions x(R), i.e.
2
fop = IR1 Rr x(X|R)f_ (R)x(BIR) . (13)

In principle R1 and R2 should be 0 and =, but since x's are localized so that

finite limits may be used.
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III. Multi-configuration (MC) wave functions

The daminant configurations of the ground Xst; and the upper le:l'l

states arelz
X: (lag)z(lau)z(ZOg)z(Zou)z(Sog)z(luu)4(11rg)2 1 (14)
: T MR L S WO S
B: (1o%(10 )220 )% 20030 1) 1n ). (15)

within the single-configuration approximation, each of the molecular orbitals.
(MO) may be expanded in a suitable GTO basis set, and the expansion coefficients
are detemined by the standard self-consistent-field (SCF) method.13 However,
as these configurations have partially filled shells, they are subject to
severe configuration mixing. Therefore, the refined wave functions must be
taken as linear combinations of different single-configuration functions as
shown in Eqs. (8) and (9).

In our investigation we adopted the multiconfiguration self-consistent-
field method (MCSCF) to detemine the configuration-mixing coefficients. The
MCSCF method offers greater flexibility than the more restricted configuration-
interaction (CI) method in that the configuration-mixing coefficients as well
as the orbital expansion coefficients are optimized simultaneously. Therefore,
at the present MCSCF is considered to be the best theoretical means of obtaining
accurate wave functions for the molecules. We have developed a computer
program to handle the MCSCF procedures for diatomic molecules, and applied
it to the 02 molecule.

Although, in principle, there are an infinite number of configurations
that may be included for a given symmetry of electronic state, as a practical
matter this number must be restricted to a manageable size. In constructing

different configurations, we have considered the following shells




(20g) (20,) (30) (30,) (A7) (I.) (16)

We restricted (log) and (lou) shells to be always doubly occupied, since

the electrons in these shells are very tightly bound to the nuclei, and are
relatively immme to perturbation. However, in order to gain greater

flexibility we included (Sau) shell, although it does not appear in the

dominant configurations shown in (14) and (15). By permuting the assignment

of 12 electrons in the shells shown in (16), there arise 30 configurations
cansistent with 3:; symetry (grownd state) and 28 configurations for i,
symmetry (upper state of the Schumann-Runge system). In Table I and II, we
present these configurations along with the mixing coefficients at the equilibrium

3

internuclear separation for the ground X’  state, and for the 33::; state

respectively. Configurations are specified bf' the occupation number of
electrons in each shell. It is noted that, when three or more shells are
partially occupied, we have more than one configuration from such occupancy.
This is due to the different way three spin functions may be coupled to yield
a triplet function. It is possible and probably necessary to include more
configurations than shown in Tables I and II, if our goal is to construct the
potential-energy curves of the 02 molecule. However, with the present

objective of studying electron-impact excitation and dissociation, we believe

we have considered sufficient number of configurations.
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IV. RESULTS AND DISCUSSION

A. Optical Oscillator Strength
With the multiconfiguration functions for both the ground x’r.; and
the upper Bst; states as shown in Tables I and II, the dipole transition

amplitude z of Eq. (12) is reduced as follows

Ter e a® by(R) {<ln |z|in, >

+ <308|z|30u> + <303|z| o> * <2°g'zI3°u>
+ <Zog|z|20u>}, a7

with
<11ru|z|11rg> = [ ¢.(1u8|?,§) z ¢(11ru|i",§)d?, etc. (18)

In Table III we list these five matrix elements computed at the equilibrium
separation of the ground state (R-l.ZR). In Eq. (17) for a given pair of
configuration (i,j), at most one of the five elements is nonvanishing.

In Tables IV we present some of the significant contributions, i.e.,
the products f ai(R)bJ. (R), R = 1.2 from various pairs of configurations
(i,j). The factor f covers the normalization of determinantal functions and
t1 sign coming from the interchange of columns in the determinantal function.
It is readily apparent from these tables that only a few configurations are
important as far as the studies of electron-excitation or photoabsorption
processes are concerned. In fact a few (less than five) well-chosen con-

figurations give a sufficiently accurate oscillator strength as shown in

Table IV. Considering the large amount of numerical work yet to be'processes
before the final goal of the cross sections, we decided to limit the number

of configurations to five (configurations 1,2,3,7,13) for the ground state

and to five (1,4,8,12,10) for the upper state. By using these five-configuration

s -
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wave functions we have computed the transition amplitude, oscillator strength,
etc. at R = 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, and 1.5 &. Finally, since the
Schumann-Runge system is a contimam, by integrating the transition amplitude
with the continum "vibrational" functions as shown in Eq. (13), we obtained
the oscillator strength of the entire system. The continuum vibrational

functions are constructed from the potential curve12

, and the integration

in Eq. (13) was carried out numerically Rl’ RZ, and AR corresponding to
WN=70, W=10.0, and W= 0.1 eV," respectively. In this manner we obtained
the theoretical optical oscillator strength of 0.131. This value is somewhat

smaller than experimental data®™>

ranging from 0.142 to 0.162 by the optical
method, and 0.161 by the electron-energy loss method. Recently, Julienne,
Neumann, and l(rauss7 reported the oscillator strength of this system as
0.18 at the equilibrium separation of the ground state. These authors included
in their calculations 2n orbitals as well as d-type orbitals in the basis
set. On the other hand, they did not go through the averaging process of
Eq. (13). Beside the optical oscillator strength,Huebner, et. al. measured
the oscillator strengths as a function of vertical excitation energy from
their electron-energy loss experiment. Since the veritcal excitation energy
AE is a function of internuclear separation R, we convert our theoretical
oscillator strengths in terms of AE, and compare them with the experiment

in Fig. 2. We see a very good agreement batween theory and experiment

up to AE = 9 eV. Beyond AE = 9 eV the experimental values may contain

contribution from another repulsive Snu st:ate.14

This may cause the experi-
mental values to appear larger, since, in the electron-energy loss experimem:,5
the distinction of different electronic states was not made. On the theoretical
side, the potential curve of the Bsz; state rises very rapidly as R decreases

in this region so that the continuum function becomes less reliable. Those

SR SN




factors could explain the discrepancy between theory and experiment above
AE = 9.0 eV,

B. Dissociation Cross Sections

In order to obtain the dissociation cross sections, the transition

amplitude in Eq. (1) must be computed at a number of values of K as well as
R. Our numerical procedure consists of camputing the transition amplitude
at 32 distinct K-values for each of the seven internuclear separations
ranging from 0.9 to 1.5 ): 8 Next, the differential cross sections are
camputed by the angular averaging procedure as shown in Eq. (2). Finally,
the total cross sections are obtained by means of the Born-Ochkur method,
indicated in Eqs. (2)-(4). In evaluating Eq. (4) the limits are taken to
be W= 7.0 to 10.0 eV as before (See Sec. IV-B). The total cross sections
are presented in Table VI. We find the peak cross section of 7.3 x 10" Ven?
at 20 eV. There are no extensive experimental measurements for excitation
(dissociation) of this state. By extrapolating the differential cross

3 reports a cross section of 8.6 x 10V

section data, Trajma et al.
at 20 eV, which is in fair agreement with our calculation. But their cross
section (11.5 x 10'17cm2) at one other energy (45 eV) is much larger than

the present result.
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V. CONCLUSION

In spite of the importance of the 02 molecule in aeronomical studies,
laboratory measurements of electron-impact cross sections of excitation
(dissociation) of 0z have been very meager. As with other molecules,
overlaping of molecular spectra due to different states makes the experiment
a difficult task.

In this report we have presented the Born-Ochkur cross sections of the
electron-impact dissociation of 02 via the Schumann-Runge system. As with
other diatomic molecules the computing procedures have been facilitated
by the GIO technique we have developed past several years. However, for this
particular dissociation process, two additional obstacles are encountered.
One is the continua of the vibrational states as opposed to discrete states.

We treated this problem by generating numerically a tabular function for the

continam functions from the potential-energy curves. The other has to do
with strong configuration mixing of the electronic wave functions peculiar n
to 02 molecule. Although as many as 30 configurations have been examined, ‘1
by a careful analysis, we have been able to these canfigurations to mere
five so as to keep the computation practical, while still maintaining the
over-all accuracy of theoretical calculations.

In view of the experimental difficulty of direct measurements of cross
sections, we believe our theoretical cross sections are valuable in under-

standing the aeronomical phenomena.
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Table I. Configurations for the x’z; State®

S b
Zag Zou 308 3°u 1n 1n 1n in Coefficients
) 2 2 2 0 2 2 1 1 .956082
2. 2 2 0 2 2 2 1 1 -.072058
3. 2 2 2 0 1 1 2 2 -.199331
4. 2 2 0 2 1 1 2 2 .039208
S. 0 2 y- 2 2 2 1 1 -.029427
6. 2 0 2 2 2 2 1 1 -.014419
y A 2 1 2 1 2 2 1 1 .122624
8. 2 1 2 1 2 2 1 1 -.037672
9. 2 2 2 2 1 1 1 1 .021566
10. 2 2 2 2 1 1 1 1 -.000094
11. 1 2 1 2 2 2 1 1 -.041254
12. 1 2 1 2 2 2 1 1 .000191
13. 2 2 1 1 1 2 2 1 -.127933
14. 2 2 1 1 1 2 2 1 .008548
15. 2 2 1 1 1 2 2 1 -.009622
16. 1 2 2 1 1 2 2 1 .055217
17. 1 2 2 1 1 2 2 1 -.008658
18. 1 2 2 1 1 2 2 1 .002904
19. 0 2 2 2 1 1 2 2 .008228
20. 2 0 2 2 1 1 2 2 .003764
21. 1 2 1 2 1 1 2 2 .022654
22. 1 2 1 2 1 1 2 2 -.000504
23. 2 1 2 1 1 1 2 2 -.031174
24. 2 1 2 1 1 1 2 2 .006808
25. 2 1 1 2 1 2 2 1 .025786
26. 2 1 1 2 1 & 2 1 -.000533
27. 2 1 1 2 1 2 2 1 .005620
28. 1 1 2 2 1 2 2 1 .002310
29. 1 1 2 2 1 2 2 1 .001286
30. 1 1 2 2 1 2 2 1 -.002463

aConfigurations are specified by the occupation mumbers.
bM:i.xing coefficient at R = 1.28,

100




Table II. Configuration for the B> - States®

+ + - b
Zo‘ 2°u 308 Sou lllu in lng lng Coefficients
1. 2 2 2 0 2 1 1 2 .903183
2. 2 2 0 2 2 1 1 2 -.012380
3. 2 0 2 2 2 | 1 2 -.027354
4, 2 1 2 1 2 1 1 2 .079494
S. 2 1 2 1 2 1 1 2 -.000534
6. 2 1 2 1 2 1 1 2 -.036249
7. 0 2 2 2 2 ] 1 2 -.021400
8. 2 2 1 1 2 2 1 1 .374944
9, 2 2 1 1 2 2 1 1 .049311
10. 2 2 1 1 1 1 2 2 .109441
11. 2 2 1 1 1 i 2 2 .003832
12. 1 2 2 1 2 2 1 1 -.077988
13. 1 2 2 1 2 2 1 1 -.025139
14. 1 2 2 1 1 1 2 2 -.066132
15. 1 2 2 1 1 1 2 2 -.000042
16. 2 1 1 2 2 2 1 1 -.079394
17. 2 1 1 2 2 2 1 1 -.015914
18. 2 1 1 2 1 1 2 2 -.015732
19. 2 1 1 2 1 1 2 2 -.004150
20. 2 2 2 Z 2 1 0 1 -.042689
21. 2 2 2 2 0 1 2 1 .022660
22. 1 2 1 2 2 1 1 2 -.003645
23. 1 2 1 2 2 1 1 2 -.000996
24. 1 2 1 2 2 1 1 2 .001298
2S. 1 1 2 2 1 1 2 2 -.004650
26. 1 1 2 2 1 1 2 2 .002139
27. 1 1 2 2 2 2 1 1 -.013389
28. 1 1 2 2 2 2 1 1 .004883

'Configurations are specified by the occupation numbers.
bhixing coefficients at R = 1.28.
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Table III. Dipole Matrix Elements®

‘ <1nu|z|1ng>
. <Sog|z|30u>

1
2
3 <Sag|z|20u>
4, <Zog|z]30u>
S

7 <Zag|z|20u>

1.182825
-1.117884
-1.253562

0.141830
-0.887668

%Defined in Eq. (18); R = 1.28.

(T T e S 3l
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Table IV. Contributions to Dipole Matrix Element

Configurations Type® Contribution
X B
1 1 1 1.444464
1 8 2 -.566726
3 1 1 -.301152
13 1 2 .182671
13 8 1 -.080239
7 8 3 .057635
2 8 2 .042713
3 10 2 .034488
13 10 1 .023421
7 4 1 .016306
1 12 4 -.014956
13 4 3 .012749

7 16 2 .010883

- 2 16 3 .010142

E ) 16 1 4 -.010003
7 12 5 -.008489
16 12 1 .007203
4 10 2 -.006784
16 14 1 .006108
16 4 S -.003896
11 12 2 .003597 ;
11 16 S -.002907 b
3 14 4 .002644 4
13 2 2 .002504 E
8 9 3 -.002329
8 6 1 .002284 1
1 8 4 .002194 ‘
2 2 1 .001492 |
4 18 3 .001094 '3
9 20 1 .001089 1
S 7 1 .001053 |4
others .001998
total .873282

. %ypes are as listed in Table III.




Table V. Excitation (Dissociation) Cross Sections

0, (xsz; + ) in 10717 el

eV Cross Section

10 3.13

15 6.57

20 7.29

25 .21

30 .91

40 .20
| 50 .56
s

75 .40

— ~N .f\) w E=3 w [« (=) ~
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Fig. 1. Potential-energy curves of the 02 molecule illustrating the "

dissociation of 0, via electron-impact excitation of the Schumann-
Runge system. |




Q14—

—— THEORY

QR =ue gtpy ;
(HUEBNER et.al)_

0.10 |-

080

0.60-

040

020

0.00

ENERGY LOSS (ev)

Fig. 2. Optical oscillator strength of the Schumann-Runge system
as a function of vertical excitation-energy.
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