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Variance Reduction in Monte Carlo Simulation 

by 

Mark Brown 

Herbert Solomon 

and 

Michael A. Stephens 

1.  Introduction. 

Monte Carlo simulation is employed in a large variety of problems. Fre- 

quently, one is interested in the expectation of a function g(lL,...}X~) 

where < X., i > 1 > is i.i.d. with known distribution F and N is a 

stopping time (often a constant). The procedure followed is to generate 

a large number of samples  (X-  ,...,xA '),  i = 1,2,...,M, and estimate 

the expectation of interest by 

M 

M E S^l    *'"'\   ) * M . , 
1=1 l 

An interesting aspect of the simulation estimation problem is that 

F is known. Thus functions of the form ü (F,X..,... ,X-J) can be employed 

as estimators, while in statistical estimation problem with F unknown 

£ cannot be computed from the data and is thus not considered to be an 

estimator. Thus the class of estimators is considerably wider in Monte 

Carlo problems. 

One approach available to reduce the variance of the Monte Carlo 

estimator is to find a function £ (F,X,,.. -.>X„) with the same expectation 

as g, and with smaller variance. Then £    rather than g is averaged 

over the M samples. Of course, £  =  E„g fits this description but were 



it directly computable one would not need to simulate in the first place. 

Thus an important requirement of i,    is that it be simply computable. 

We illustrate the above remarks by considering the problem of Monte 

Carlo estimation of M(t) = EN(t), the expected number of renewals in 

[0,t] for a renewal process with known interarrival time distribution F. 

Several unbiased estimators which compete favorably with the naive estimator, 

N(t), are presented and studied. 

We believe that our approach and methodology, although only applied to 

renewal function estimation in this paper, can be useful in a large 

variety of Monte Carlo simulation problems. 

2.      Assume that < X±,  i > 1 > is i.i.d. with cdf F where F(0) = 0. 

Define Sn = 0, S = Z X., n = l,2,...,N(t) = maxfn: S < t}, and 
ü      n  ]_ l n — 

M(t) = EN(t), t > 0. Sometimes we consider the point t = 0 as a renewal 

epoch. In this case we use N„(t) = N(t)+1 and M^t) = M(t)+1. The 

renewal age at time t is defined by A(t) = t-S , y,  Pr(A(t) = t) = F(t) 

and dFw|) = F(x)dM(t-x) for 0 < x < t, thus dF^,  = F(x)dMQ(t-x) 

for 0 < x < t. 

Define 

5.   = 
l 

1    if    S.  < t 
l — 

0    if    Si > t . 

00 00 00           (A   \                                                                      (A   \                                                 .^ 

Then   N(t) = Z 6. and   M(t)=ES 5. = Z F{   ;(t),    where    Fv   '    is the i• 
1    x 1    x 1 

convolution of   F. 



To estimate    F      (t) = E5.    we will use 

E(8i|x1,...,Xi_1) = E(S1|Si_1)  = Fft-S^) . 

We then estimate M(t) by: 

00 N(t)+1 
(1) M_(t) = £ F(t-S  ) =   I     FCt-S.^) . 

i=l i=l 

Since Var(F(t-S  )) = Var[E(&i|si )] < Var b±,    we have replaced 

each component, 6.> by a component with the same expectation and. 

smaller variance. Intuitively we would expect that if we reduce the 

variability at each stage (given the past) then we should reduce the 

variability of the overall estimator. However, the computation of 

variance involves covariance terms, and if these are increased while 

variances are decreased there can conceivably be an increase in variance. 

Theorem 1 (below) demonstrates that Mp,(t) does indeed have lower variance 

than M(t). 

Theorem 1. M„(t) is an unbiased estimator of M(t) and Var N(t) - Var M_(t) 

E[2M(A(t))-F(A(t))] > 0, with strict equality if F(t) > 0. 

Before proving theorem 1 we comment that the reduction in variance 

is unsatisfactorily small for large t. If u? = Ex < oo then 

E[2M(A(t))-F(A(t))] =0(1)* thus Var N(t) and Var Mp(t) are of the 

form 7t +0(l) with common y,  and we improve only the asymptotically 

negligible 0(1) term. Estimators considered in later sections do 

considerably better for large t. 



Proof of Theorem 1.    Express    M„(t)    as 

F(t) +  /      F(t-x)dN(x) =   /      F(t-x)dN  (x) 
Jo ->0 

Then 

M^t) =J      F(t-x)dJ^(x) = J     ldW^x)  -J      F(t-x)d^(x) 

= l^(t)  - J    äF^-^ = ^(t)-l = M(t)  . 

Now, 

EM^(t) = J     F2(t-x)dM^(x) 

+ 2    Jj     F(t-2 -r)F(t-s )dMQ (r)dMQ (s-r) 
r~ < s 

We evaluate this expression in several steps: 

F2(t-x)diy^(x) = /  F(t-x)dl^(x) - / (i)     j  F2(t-x)d!^(x) = /  F(t-x)dJ^(x) - I      F(t-x)F(t-x)dl^(x) 

= M(t) - EF(A(t)) . 

(ii)    F(t-r)F(t-s) = l-F(t-r) - F(t-s) + F(t-r)F(t-s) . 

(iii)    2 JJ    ldI^(r)dM0(s-r) = 2 f  M(t-r)dMQ(r) = 2M(t) + 2M^ (t) 
r < s        ^        Jo 

(iv)     -2 JJ     F(t-r)dW0(r)dJVL(s-r) = -2 /   F(t-r)M(t-r)dM^(r) 
r < s -*r=0 

= -2EM(A(t)) . 

1+ 



JJ      F(t-s)dMQ(r)dJ^)(s-r) = -2 /   F(t-r)dMQ(r) (v)      -2 
r < s -^ r=0 

= -2M(t) . 

(vi)     2  JJ  F(t-r)F(t-s)dI^(r)dM0(s-r) = 2 /  F(t-r)F(t-r)dMQ(r) 
r < s u    '        Jr=0 

= 2EF(A(t)) . 

Combining (i)-(vi) we obtain: 

(2) El£(t) = M(t) + 2MT2')(t) - E(2M(A(t)) - F(A(t))) . 

Furthermore 

(3) EH2^) = E[   /      ldN(t)]2= M(t)  +2    JJ      dM(r)dM(s-r) 
^0 r < s 

= M(t)  + 2M(2)(t)   . 

Thus from (2) and  (3): 

Var W(t) - Var M^t) = E[2M(A(t))  - F(A(t))]   . 

Since 

M(s) =   £F(i)(s),  2M(S)-F(S) = F(s) + 2    £   F(i)(s)>0; 
i=l i=2 



thus E[2M(A(t))-F(A(t))] >0 for all t and is strictly positive 

for F(t) > 0. 

3.  In this section we assume that F is continuous. The cumulative 

hazard H is defined by H(t) = -log F(t). 'When F is absolutely 

'o continuous with density f then H(t) = /„ h(y)dy where h is the 

f (t) 
hazard function, h(t) = ——- . 

F(t) 
Our next estimator is based on the intuitive idea that 

E(dN(s)|past) = dH(A(s)).     Thus instead of using    N(t) = /* dW(s)    we 

try 

ft N(t) N(t)+1 
MH(t)=J       dH(A(s))  =      %K(X±)   + H(A(t)) =        I     \ 

where    H.   = H[(t-S.   ,) A X.]     (where    a A b = min(a,b)). 

°° 00 
Note that    N(t) = Z S.     while    M„(t) = Z H..     Thus    5.     is replaced 

]_  1 n     -l  1 1 

by X±,      and  E(B1|Si_1) = E(H±|S1-1) = Fft-S^) . 

The process Mrr(t) is a cumulative process in the sense of Smith 

[3]. Thus (Smith [3]) 

VarMH(t)~^E[H(X)-(S^l)x]
2 , 

where    u = EX.     But    H(X) = -log F(X)    is exponentially distributed with 

parameter    1,    thus: 



where p is the correlation coefficient between X and H(X) and cr 

is the variance of X.  Thus Kj(t)    is asymptotically better than N(t) 

for p > \±/2<r,     asymptotically worse than N(t) for p < |_i./2cr. 

In general if we have two unbiased estimators of a parameter, T 

and Tp, with covariance matrix A,  then the minimum variance unbiased 

estimator of the form av   + (l-a)T_ is the one with 

1=1  d 

i=l j=l 1J 

The variance of this estimator is 

I A:1' 

The idea now is to let A be the asymptotic covariance matrix of 

and to employ the above result to obtain an unbiased estimator which 

improves on both ^ir(^)    and W(t) for large t. We already know the 

0(t) terms for Var W(t) and Var M„(t). We only need the leading 

term for Cov(N(t), NL.(t)). This is given in lemma 1 below. 

2 
Lemma 1. If a  is finite then 

Cov(N(t), i^(t)) = t (2_-££) +o(t) 
u 



Proof. 

Var(N(t)-MH(t)) = Var £ (B^Hft-S^ A X±)) 
1 

£ E Var[6±- Hft-S^ A X^ls^] = E £ Fft-S^) = EN(t) = M(t) 

Thus 

M(t) = Var(N(t)-l^(t)) = Var N(t) + Var(J^(t)) - 2Cov(N(t),l^(t)) , 

and therefore 

Cov(H(t),I^(t)) = | [Var N(t)+Var N^(t)-M(t)] 

H   p.        ^ 

2 
t /cr   op \ ,  , »   II 

Now 

2  2,       pi 

i=l j=l 1J 

and 

8 



0-2   /••,     ^ (1-P   ) 
X    A. . n 

2 
Note that the asymptotic relative savings in variance is    p      the 

square of the correlation coefficient between   X   and   H(X).    Summarizing: 

Theorem 2.    The estimator 

M :*/-4-\ _  (i _ 2£.w+\ J. 2£ (t) =  (l-^)N(t) +2t^(t) 

is an unbiased for M(t) with variance 

SSL. (i-p2) +0(t) 

(p is the correlation coefficient between X and H(X)). It follows 

that: 

Var N(t) - Var M (t)   2 J  ;_ » 
 VarH(f) ^=p +o(l)' 

2    - -x2 

Example:    Let    H(x)=x,F(x) = e      .    Then, 

r °° 2 /—    /- oo        _ 2 /— 
M- =  /      e      dx   = *-g j        —   e        dx  = 1Ls- 

2 .«• 00 

Jo 
EX2 = 2  /     xe"X   dx = 1 , 

thus 

2 • ir      lf-n  . 1 rfolt -x2,       ,       u_     1   pr       2 7t 
.915 



Thus in this case (Weibull with shape parameter 2) the unbiased estimator 

M (t) has an asymptotic relative reduction in risk over N(t) of 

91.5 percent.  || 

Integration by parts shows that 

1 (°° 
p = =• /  H(x)F(x)dx j a Jo 

since    H(x) = -log F(x)    the integral can probably be given an enthropy 

interpretation.    Also    p = — EH(X)    where   H(x) = f     H(z)dz.    This is 

true since 

/  H(x)F(x)dx = /  Hfx-JEL.  dx = E /  H(x)lv. dx = E /  H(x)dx = EH(X) 
Jo Jo     ^>X     Jo     x>x     ->0 

OO" Note that both p and — are invariant under a change of time scale, 

t •• et, c > 0. 

00 

k.    In section 3 we estimated M(t) by a weighted average of W(t) = Z 8. 
W(t)+1 1 

and Mp,(t) =   Z  H((t-S. , ) A X. )• Now we apply the same idea but 

stagewise. At stage i, having observed X-,,....,X. .., N(t) adds the 

component 8. = L, <  , q ,    while NL(t) adds H. = H((t-S. ,) A X.). 
i —   i-1 

Each of b.}  H. are conditionally (given S. , ) unbiased for F(t-S. -) 

and unconditionally unbiased for F  (t). The approach we now follow is 

to use the weighted average of 8. and H. which has smallest conditional 

variance given X, ,...,X. ,. 

10 



Define    F.   = F(t-S.   . ),  C.   = H(t-S.   , ).     Then: 
l v      l-l '    l l-l 

VarCs. |S.  -, ) = F.-F? v l'   l -1 l    l 

Cov(5.,H. |S.   , ) = F. (F.-C. ) 
^ l'  l1   l-l7 lv  l    iy 

Var(H.|S.   . ) = F.+F.(F.-2C.)  . v l    l-l ill      i' 

The minimum conditional variance  (given   X-,,....,X.  ,)    unbiased linear 

combination is then: 

C.F. C.F. 
L.   =   (1 - -~0B-   + -i-i H-   • l       v F.   ' l        F.       l 

The corresponding estimator of M(t) is: 

N(t)+1 H(t-S -,)F(t-S. .) 
Vt) = N(t)-   £    ,(11.  ) 1"1  fe.-H.) 

1      v  l -1 

We do not know now M. (t) compares with the other estimators we 

have looked at. The variance of an estimator of the form 2 K. is 
l 

Z Var K. + 2  E  Cov(K.,K.); L. was chosen from among a class of 
l    i<j-    l j    l 

estimators E L to minimize Z Var K.. However we know very little 

about Cov(L.,L.).    This latter quantity must be shown to be- suitably 

small in order to demonstrate that M_(t) has desirable variance 

properties. 

11 



5_. We next consider an unbiased estimator with asymptotic variance 

0(1)• Thus it asymptotically enjoys a 100 percent reduction in 

variance over N(t). 

As is well known N(t)+1 is a stopping time and thus by Wald's 

identity: 

N(t)+1 
ESN(t)+l

=E   £  X. =„(M(t)+l) 

Thus 

Ä(t) = ^klü - i 

is unbiased for   M(t).    Now    Var(SN,tx+1) = Var(t+Z(t)) = Var Z(t), 

where    Z(t)    is the forward i 

then    Var Z(t)    converges to 

where    Z(t)    is the forward recurrence time at    t.    If   |j._  = EA   < oo 

2 2 

^"%?=~T2?~ 

as    t •* oo .    Thus 

* W^-3n2 
Var M(t) -»• =TT  

12^T 

and is thus   0(1)« 

12 
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