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ABSTRACT

The mathematical properties of the following probability

distributions and their moment generating functions are

derived:
Weibull distribution
Rayleigh distribution
Exponential distribution |
Normal distribution
Voznesensky distribution
Generalized Rayleigh distribution

The relative merits of applying these distributions to
problems in ship responses to the sea, which is described

as a stationary stochastic process, are discussed.

In Part 2, the most promising long-term distributioms
derived from the above survey are applied to ship bending
stress data from four ships. It is concluded that a
numerical solution of long-~term distributions, using either
Weibull or Normal distributions of the short-term Rayleigh
parameters (classified by weather groups) is better than

any explicit function.
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Part 1
Mathematical Properties

1. Introduction

Researchers of the past decade have studied the waves of the ocean's surface
and the accompanying wave-induced stresses in a ship's hull by treating these
quantities as continuous random functions which may be represented by stationary
stochastic processes. The wave height, in terms of displacement from the mean,
may at any instant be viewed as the net displacement resulting from the sum of a
large number of small displacements, each of which is the result of a single wave
originating over a wide area and which is independent of the others. The central
limit theorem of probability theory guarantees that the sum of a large number of
independent random variables may be treated as if it were itself normally dis-
tributed. Thus the process governing wave height may be treated as normally dis-~
tributed. Since a ship's response is linearly related to the wave height, then
the response may also be viewed as the sum of a large number of independent ran-
dom variables and hence also treated as if it were normal. Thus the stationary
stochastic process of interest is assumed to be normal.

The ship designer is concerned with many practical questions about this
normally distributed stochastic process. If the displacement from the mean is
normally distributed, what is the distribution of the peak-to-trough values in
many reversals? What are the chances of exceeding a particular stress level
in one reversal, or in an operating period, or in a ship's lifetime? What are
the chances that the maximum stress in any period does not exceed a certain
level? If the questions depend on weather or sea state conditions, what are the
answers to the above questions with and without regard to weather and sea state?
What are the chances of encountering different weather and sea conditions? And,
in short, to what value should one deésign his structure with a pre-determined risk
factor?

These questions involve the distributions of many random variables which
are related to the normally distributed stochastic process. Numerous data in
the form of twenty-minute wave or stress records have been laboriously collected
in an attempt to recognize which distributions are at work, and what are the
values of any parameters present. It is the purpose of this part of the report
to catalog the common and not-so-common probability distributions which re-
searchers have used and to derive their significant properties. Hopefully, this

will contribute to the more intelligent use of recorded data.
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2. Basic Probability Concepts

Before we embark on a discussion of the different distributions, we shall
briefly discuss some of the elementary probability ideas which are used in the
comparative discussion which follows.

A continuous random variable X is described by two functions f(x) and F(x)
which are respectively called the probability density function (pdf), and the
cumulative distribution function (cdf) for X. F(x) is the probability that the
random variable X takes on a value less than or equal to x, while f(x) = %5.
Both functions are loosely referred to as"the distribution of X';nd f(x) may be
loosely interpreted as the probability that X takes on a value in some 'small"

interval about x. The probability that X falls in some interval [a,b] is
b
P(a<X<b) = [ f£(t)dt
a

Thus, F(x) is the area under the density curve up to value x.

A T
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N

The distributions of random variables can be characterized by their mo-
h

x

ments. The nt™ moment of a random variable is defined as

By = X" £(x) dx,

and the first two moments are most frequently used in the form of the mean
u = E(x) and the variance o2 = E(X2) - Efx)2. The more moments, starting with
the mean, which two different distributions have in common, the more similarly
the two random variables behave.

The moments of a random variable are exceedingly useful in estimating any

unknown parameters from a statistical sample. Suppose one has a sample Xx;, Xj....

*
A more detailed discussion of the basic concepts may be found in Freund (1),

Feller (2), Meyer (3). See references listed on pp. 40-41.




X from a population where the unknown distribution is thought to have a certain

form but with unknown parameters. Then

x? + xg * wae + xﬁ

k

may be taken as an estimate of E(xn). If theoretical expressions for E(x™) have
been developed in terms of the unknown parameters, then these estimates of E(x")
give equations which may be solved for the parameters.

The moment generating function (MGF) of a random variable is a frequently
used device to develop the moments of a random variable. If X is a random

variable with pdf f(x) then the MGF, M,(6) is defined as

M (8) = E(ex®) = [ X0 £(x) dax

@ n = n
Since SR z %T or . Me(8) = 2 %;T E(x™) and hence
n=0 . n=1 i
d" M, (8) &
PO SRS = E(x) .
de”
6=0

Several other useful properties of moment generating functions which greatly sim-
plify the comparison of random variables are listed below.
1) There is a one-to-one relation between moment generating and distribu-
tions of random variables. That is if X and Y are random variables
whose MGF's My(0) and MY(B) both exist and are equal, then X and Y have
the same distribution.
2) If the density of random variable X has a parameter A and as A + Aq,
Mx(8) - My(6), then the distribution of X may be treated as the distribu-
tion of Y for A close to A,.
3) If X has MGF My(8) and Y = 252 | then ¥ has MGF My(0) = e*/® (D).
4) If Xj, X95...5 Xp are independent random variables with respective MGF's
Mxie),...., MXh(e) and Y = X3 + Xy + ... + X;;, the MGF My(6) = Mxl(e)
MXZ(G)...... Hxn(e).

a/b 6

We require an additional property of probability density functions. If X
and Y are two random variables with respective pdf's f(x) and g(y) which are
related in a one-to-one fashion through a steadily increasing or decreasing func-

tion x = h(y) then dx

g(y) = £(h(y)) dy

o ———r. -




3. The Weibull Distribution

The Weibull distribution has been used of late by a large number of researchers
(Nordenstrom (4 ), Mansour (5 ), Hoffman and Karst (6 ) Voznessensky (7)), in deal-
ing with engineering problems related %0 the oceans surface and may be called
"currently in fashion'". The high flexibility of its two or three parameters allow
for excellent curve fitting to a wide varietyof data, and many éarlier used distrib~ 1
utions may be made special cases of the Weibull distribution.

A random variable is said to have a Weibull distribution if its pdf has the
form

SR 1
f(x) = @B x b o E x>0 where a > 0, A
B >0

0 x <0

The cumulative distribution function is

-ax

»
fv

F(x) = { 1 -e
0

This is the two-parameter form which appears in most references. There is a
three-parameter form of this distribution which shifts the left end of the density
curve further leftward and allows for negative values of the random variable X.

This alternate form of the Weibull distribution may be expressed as density

-1 --’-‘:—a-)Y
£(x) = {y("—?) o x> a j
0 X < a
and cumulative distribution Y
_(x-a),
F(x) = {1 - e b X >a
0 x < a

(Note: Some references prefer to write b as V-a)

We shall calculate the mean and variance of this random variable from its
moment generating function which will be calculated first for the two-parameter
form and then converted to the three-parameter form by property 3 of moment gen-
erating functions.

Now g~1 -axB x6
e e

My (03 = E(e*®) =/ e*® £(x) dx =] aBx dx ,

and letting y = axB  we have
- 9(1)1/8
My(6) = of e © eYdy .

ol e =
~ -




1/8 '
& b ® o0 n/8
If e is expanded as ) o ( f ) , we have
n=0

- o n =
By » [ o & 4 o7 y*/® ay

n=0

The integral f ys_l eV dy is denoted by I' (s) and is the well known gamma
0

function. It is a generalization of s! (I'(s+l) = s! for s an interger) and its’

properties are outlined in the appendix.

Thus the MGF for the two-parameter form of the Weibull distribution is

® n
- 8 /8 o
M (0) = HZO = 0 r(+3)
and the nth moments are
Ex® = o8 ra +%) .

If X has the above 3-parameter form, then z = x-a is a random variable fitting

B
the two-parameter Weibull density with g =y and g -illg. Thus
fie

M) = I b® ra+d 2,
n=0 Y 3
Since x = z+a, property 3 of moment generating functions gives
) n n
n
me(oy = ¢ 3 b ra+PH 2
Y n.
n=0
as the MGF of the three-parameter Weibull distribution.

Since the a in the three-parameter form is merely a translation, we shall
restrict our investigation of properties to the two-parameter form unless forced
to use the three-parameter case. The mean of the three-parameter form is merely
the mean of the two-parameter form translated by a and the variances are the

same.




First
-1 1
= — +
M a B r B)

and
o = E(X2) - E (x)2

-2 1
g8 [ra+ %) - 1+7g) ]

= O

Observe that the parameter a may be eliminated, and the simple relation

2 2 2
a= + = r(1+ )
ey ——E~ 2 @)
¥ rzaa +1)
B
established between U and 0 and the B parameter. Since M and 0 may be estimated
from a statistical sample, the B parameter may be easily estimated. Unfortu-
nately, the B may not be explicitly solved for and one must resort either to a
numerical solution to the equation or to examining the graph of R(B) in Figure
1. Note also that as B increases, R(B) asymptotically approaches 1 and hence
the larger u becomes, the larger B will be.
The MGF M (6) may be written as
© —1/8 n
M(0) = ] r<1+8>
n=0
or

-1/
M(e) = My (@a 3 = M (0
("] X
-1/8
where Y is Weibull with q@ = 1 and parameter B. Thus X = q , and the a appears

to be playing the role of a change of scale in the Weibull distribution. The B
parameter seems then to characterize the type of distribution which must first
be determined from data. Once the g is determined then the o may be estimated

either from

“ 1

or from a maximum likelihood estimate with confidence intervals as will be dis-

cussed later.

b=

A ————— 1o

g —— 3 ‘
a -’ i N IW“ ':v« Ie ﬁmw‘vw B —— e e R



The above discussion implies that a scalar multiple of a Weibull variable

is still Weibull distributed. This is so,for if Y = XX where X has pdf

g-1 -a x8
f(x) = a B x e x>0

then Y has pdf

B-1 -a{ §) 1
gly) = a B (L) e = y>0
A A
0 8 y <0
or P ‘8—1 -ay
gly) = a By e. y>0
y<0

where ;.= a/AB . This means that all Weibull random variables are linearly re-
lated to a standardized Weibull variable with a = 1. Hence tables for "stand-
ardized variables" at different g values could be prepared which would greatly

simplify use of this distribution.




4. Maximum Likelihood Estimate and Confidence Intervals

If X4, xz,...xn are n independent Weibull random variables with the same
fixed B parameter and identical distributions
f(x) = a B xB—le_a xP
then the liklihood function L(a) for a set of values X1, X2,...X, is defined

as the probability of Xj = xj,...,X,;, = x5. Thus

L(@) = a8 seen & B X

f B
3 =a /[ %xi
- g% ( xlxz...xn)B s s

o, R B = B
xg 1 o X1 B % X0

The value of a which maximizes L(az) then is taken as the "best'" estimate a for
t his sample and is called the maximum likelihood estimate.

(Note: The maximum likelihood estimate may or may not agree with the value
obtained through use of a's relation to the mean. These are two different es-
timates which reflect two different criteria of "best" estimate. They may fre-
quently agree but in general need not. The advantage of the maximum likelihood
estimate in this case is that a confidence interval may be developed for the

true o value of the sampled population rather than a simple value with no error

bounds).
L(a) may be maximized by setting %& = 0. This is awkward, however. Since
d In L{a) . _1 dL
da L(a) do

we shall solve

d 1n L(a) s 0
da

instead.
n n B
InL@ =nlna+nlnB+ (B-1) [ Inxi-a ] x
i=1 i=1

M e e R wr -
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and thus

is the "best" estimate of .

A confidence interval for ¢, or equivalently 1/a may be developed as follows.

Consider the random variable

n
=g ] »
1=1

where X, are independent identically distributed Weibull random variables.

itself a random variable with a distribution yet to be determined.

First, if X has pdf

B-1 -a xB
f(x) = { a x e
0
Y = xB has pdf
8-1/8 =-ay 4
gy) = {aBy e |3§|
0
or
B-1/8 -ay
g(y) = qaBy e
0
or gly) = ae
0

Thus, X Pis Weibull

w =

P AR AT IONA

W = - 2zt —_—

population. Hence, Y has MGF
MG) = ] (g) =r T(nH)
y n.
n=0
© n
- I (P
n=0
e
L S

y

1-8/8

LA -

y<?©

distributed with parameter 8 = 1 and a as in the sampled

QIO
~r

L ———

U is




B R

~v

By property 4) of moment generating functions, U then has MGF

= -9
My @ = -2

or -n
M,y (0 = (- 20)

by property 3).

The random variable W with pdf

f(w) = 1 w e w>0
22 r(u/2)
0

w<0

is called chi-squared distributed with m degrees of freedom. It's MGF is
-m/2
Mw(e) = (1 - 20)

Thus we see that oqU 2n is chi-squared distributed with 2n degrees of free-
dom. Extensive tables of chi-square values of m degrees of freedom are available
which list xz(x,m) for 0 < XA < 1 where *Z(A,m) is such that

]m h(w) dw = A
x?(a,m)

That is xz(x,m) is the value above which lies A% of the area under the chi-

ed e.
squar curv *h(h»

itrrs,
x* (2,m)

v

I1f a desired confidence level )\ were set, say A = .95, then

P [ x2(.025,2n) < 2nal < xz(.975,2n) ] = .9 .

=10~

R e

‘—\T- -




After rearrangement we obtain

2. 2
P X (.025,2n) o < X_(.975,2n) ] = 0.95

2nU 2nU

or 2 9
P [ X g.OZS,ZnQ e < X $.935,2n2 3 e
2 2 . x5 2. z xiB
i=1 i=1

More generally we have for any confidence level A
A 3 A
2 A =
x< (1 + 7, 2n) e x° (1 - 2 s2n) 3

p23
B 2 B
. 121 x4 izl 4

P [

=11~

- . - S e R




%
5.  The Rayleigh Distribution
A random variable, X, is said to be Rayleigh distributed if its pdf is of
the form
f(x) = 2x e-leR x>0
3 * s
L 0 x<O0

where R > 0.

This type of random variable has been used by many researchers (15). Longuet-
Higgins (8) and Ochi (9) showed that if the normal stochastic process govern-
ing wave displacement from the mean is a narrow-band process (that is one where
x(t) = A(t) cos (wot + E(t)) and E is small). Then the envelope A of the dis-

placements in each small twenty-minute sample of data is Rayleigh distributed
with parameter R changing from sample record to sample record., Since the peak-
to-trough values of such a process may be treated as twice the A values; the

r values of the peak-to-trough stress or wave heights per reversal are taken as

Rayleigh distributed random variables with

n
2
R =-% 'Z Xy , the mean square of the sample.
i=1

If we compare this f(x) to that of section 3, we quickly see that the
Rayleigh variable is nothing more than the two-parameter Weibull random variable
withc = 1/R and B = 2. Thus all the Rayleigh variable's properties follow
from before.

we= /R r(1+‘§7
o= R(r @) -2+ .

From the appendix T (3/2) = f% and T(2) =1 so that

~R

= s 02 =R[1- %’] .

The moment generating function of the Rayleigh variable then is

| -SF W n
‘ My@) = [ & R ra+7z .
n=0
=12~
N - 0 B B i

- e




This form of the MGF is not too easily dealt with and perhaps a more conven-

ient form is . 2
R RO4/4
Mg(®) = 1+ '{;—ee [1 + erf (fi%)]

which may be obtained by direct calculation of E(exe).

Here erf (0) is the error function discussed in the appendix,

The maximum likelihood estimate of R then is

‘Z‘ 2
Rm = X
i ’
L i=1 ’
which is the previously used value. Indeed the maximum likelihood estimate in

this case represents,being the sum of squares of displacements, the average

energy over the sample period. The A confidence interval for R then is
n

n
) 2 2
2 x 2 X{
P [ 21"1 3 < B 4 iy N
X~ (@ -7/2,2n) x2 (1 +1/2, 2n)

This may then be used to develop a confidence for y and 02 through p = /7R

2
02 = R[1 - /4] if the sampled population is indeed Rayleigh rather
n n n
than take the point estimates of (TR %- Z X4 and oz% %‘ Z [xi - 2 z Xy ;
n
i=1 i=1 i=1
Also, since
2
gz + "2 « T3 4B)
u? r? @+

for a Weibull random variable, then it is reasonable to expect that for our

2

point eatimates of u and 0“, we should have

o+u? v 1@ . 4
uz r2(8/2) : :

If this is not true, then the Rayleigh distribution can not fit the data well.
If it is roughly true, then a chi-square test (see Freund (1)) will tell how

accurate the fit is.

-13-
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6. The Exponential Distribution

Various writers have investigated the application of different distributions

to studies of ship hull stress statistics. In some cases they have found, or

assumed, that long-term data (several years) roughly fit an exponential distri-

bution (4) (5). Hence, we discuss the exponential distribution.

A random variable, X, is said to be exponentially distributed if its pdf

3lx

1

£ =Y =
(x) e
0 x <0

1f we compare this to section 3, we see that the exponential random variable

is nothing more than the two-parameter Weibull variable with 8 =1 and a= 1/y.

Hence the mean and variance are

u= nr (2 = ¢
ola adirm-ri) ~ " .
The MGF of X has been developed in section 4 as
M©) = (L-ne )0 .
The maximum likelihood estimate of n is thus
n
n ';1,' 121 *1 ,

and the )2 confidence interval for n is
n

n
P [ 212='1 e 2 S Ziglxi T
x2(1 -4, 20) x2(L +% , 2n)
Again, as in section 5, if we use the point estimates of
u %-% (x, + Xy + oot x,] and ol Ey % [ i§1 (x; —‘t 1E1 x1)2] for a

sample of size k, it will only be reasonable to assume that an exponential

random variable is at work if azluz 2l

Application to ship stresses is discussed in Part 2.

Y
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7. The Normal Distribution

Although the normal distribution is not directly applicable to ship stress
statistics, it will be shown in Section 2 to be applicable indirectly to the
problem. Accordingly, in this section we wish to list the properties of
the normal random variable and compare it to those of the Weibull random. It
has been conjectured that perhaps the two random are indeed one and the same
or at least their density curves are so close that they may be treated as the
same.

A random variable, X, is said to be normally distributed if it's pdf ;

1,x-u,2
1 —7(0)
filx) = ———= e -© < X < ®
2n o
It is a two-parameter distribution whose parameters are actually the mean and
Xy
standard deviation. If z =7"_" then the pdf of z is
1
S _22/2
ORIV —czcm

which is again a normal distribution which is referred to as standard normal.
Although the cumulative distribution function can not be directly calculated, |
tables of its values for the standard normal case are readily available, and
these may quickly be related to any normal random variable.

We first obtain the MGF of the standard normal variable z.

1 2
I eze e—z /2

M (6 [ ——
2(8) B

dz

i J -1/2 [22-2z6]
21 F

dz “

We complete the square of the exponent and have
@

2 2 !
04/2 - 2_
(o) = & 1 J . 1/2 [z°-2z6+6°] &
27 =
or 2
M, (0) = " i

-15-




Since the generai normal random variable X may be written as X = o(z4-%3),
property 3 again yields
ﬁl2_+ue
Me(0) = e 2

The normal distribution is the most frequently used and most important
probability distribution because of the central limit theorem which guarantees
that the sum of a large number of independent random variables may be treated
as if the sum were normally distributed. Property 4 of moment generating func-
tions enables us to apply the central limit theorem to approximate many common
random variables via the normal distribution. For example the aforementioned
chi-squared distribution with m degrees of freedom had MGF of (1 - 26)_m/2.
When m=2n, this is the product of n MGFs of (1 - 20)"! which is the MGF of
an exponential random variable. Thus, the chi-square variable may be viewed
as the sum of n independent exponentially distributed random variables and
hence, via the central limit theorem, approximated by normal random variable
with the same mean and variance.

In order to see how well the normal and Weibull distributions agree, we
must first decide which form of the Weibull to use. Since the normal may take
on negative values, the three-parameter form initially seems more appropriate.
However, since the discrepancy between the two forms applies to energy states

which are always positive, the two-parameter form seems to be the one to com-

L)

pare to the normal. Thus we compare the moment generating functions:

e (normal)
and n
° ) -n/B n
X S r(i1 + E) (two-parameter Weibull)
n}
n=0
n

Even when the normal MGF is expanded as a series, the presence of T(1l + B) in

the Weibull MGF make the two functions sufficiently different that it appears

-




there is no hope of making them agree. Thus, the normal and two-parameter
Weibull distributions are two distinctly different distributions!

Let us still examine the graphs of these two density functions over the
range of values usually dealt with. The mean and variances of a probability
density function characterize the centering and spread from the center of the
probability weight. The higher moments (3rd, 4th... etc.) of the distribution
characterize the skewness of the density about the mean. (That is the tendency
to flatness in the density curve on one side of the mean.) If two probability
density curves are to be roughly the same then it is clear that in addition to
their means and variances being egual, as many higher moments as possible must

be also equal. Thus, if the normal and Weibull are approximately egual, we must

have
u o= a-lls r@+ 1 ) (1st moment)

B

02 +u2 = 0_2/ BI‘ (1 +§2‘ ) (2nd moment)

2 3 a-3/3

3
o + g = ra +'E ) (3rd moment)

etc.

When the first two equations are inserted into the third, we get the

condition

®{w

1
ra+p [3ra+dr- 2rfa+rgrl - rasd)

1

o 3 1 2 2
0 = H(B) = r(1+8)- ra+g) [3rQ+g)-2r2(0+%) 1]

A value of B which makes H(B) ~ 0, in addition to satisfying the first two
equations, will produce a Weibull density quite similar to a normal density.
An investigation of H(B) (see Figure 2) shows that H(E) = 0 for B~ 3.5.
However, for 3 < B < 10, IB(B)|<5 x 10_3. Thus, it appears that a Weibull
distribution will behave "1like" a normal distribution for 3 < B < 10, and that
the closest approximation will be when g N 3.5. It is reasonable to ask how

the 4th and higher moments behave when H(B) = 0. Unfortunately, when H(B) = O,

o) Y=

. A o

e




the 4th moments do not agree. Hence, the Weibu!l will not tend to a normal
exactly, but it can be made to fit up to the 3rd moment. The accompanying
graphs (Fig. 3) illustrate how good this fit is.

8. The Voznesensky Distribution

A brief summary of the Voznesensky distribution may be found in Ochi (9).

b Y

This distribution was developed from an empirical standpoint ysing the random
samples of peak values instead of a spectral analysis.

Voznesensky defined his distribution through its moments. First, he re-
quires a random variable, X, where kth moments were E(Xk) = rQ1 +-% ) for
some still to be determined n. Next the random variable governing the distribu~
tion of peak values per reversal was taken as 2 = X/T(1 + %). The n could

then be determined using point estimates of p and o from the equation

o Pl + 2/n) - 21 + 1/n)
u T (1+ 1/n) g

If we compare the moments with those of the Weibull variable in section 3,
we see that Voznesensky's X-variable is merely a two-parameter Weibull variable

with o = 1 and B = n., His condition for determining n is the condition

2
9+ = R(B)

ul

which was discussed before. Hence we shall not further discuss this special

case of the Weibull distribution.
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9. The Generalized Rayleigh Distribution

The earlier work of Rice (10), is summarized in Ochi (9). Rice examined
the stochastic process x(t) governing the displacement from the mean. Assuming
x(t) is normal, the distributions and correlations of %(t) and ;(t) were de-
rived. Let f(x(t), i(t), x(t)) be the joint density of these three random
variables. Maxima of x(t) occur when x(t) is zero while §(t) is negative, and
probability of peaks of x(t) exceeding level ¢ may be obtained by integrating
the joint density function with %(t) = 0, over the range £ < x(t) and x(t) < O.
The chief advantage of this approach is the appearance of the spectral band-
width parameter ¢ in the distribution.

When the above process is finished, we arrive at the following density

x{l—e2

2
ko -X /2 € _ 2
+ /1 - €2 xe J e e
)/21T : -0

function for X, the maxima of the stochastic process.

1 -x2/2£2
s € e

f(x) = dt

for
O<e<1

- < X < o
A random variable with this density is said to have the generalized Rayleigh
distribution. The name follows from the fact that as €+> 0, and hence the
process becomes narrow band, the distribution approaches that of a Rayleigh ran-
dom variable with R = 2. (Note: In the above dénsity function we have already
divided X by its rms value, and hence the additional parameter does not appear
in the demsity function and R is constant). As €+1, however, and the band width
widens, the density function approaches the standard normal case. A graph of
f(x) for various € values is in Figure 4.
Ideally, we would like the MGF for the random variable. Although the form
of the density is quite involved and initially seems to prohibit a simple in-~

tegral evaluation, several pages of integral transformations listed in the

appendix yield

-19-
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2 2
06) = 22 sofi- o Az 0 (14 et (ade? ).
V2

As expected, we see that as ¢+0, the MGF becomes

2
2
Me(0) = 1+ 6/m/2 P 12 11 4 erf €8]
V2~
which is that of a Rayleigh random variable with R=2. As e*1, the MGF becomes
2
My(e) = e°

which is that of the standard normal random variable.

If the MGF Mx(9) is expanded as a powers series in §, we have
Mg(®) = 1 +aTZ A - 2o + (2= c2] 02721 + 3472 yﬁ ' IR s

from which we may easily read off E(X) and E(XZ). Hence,

u o= A =gt Vn/2
gt = Lkl - (1= x/D
This of course agrees with the mean and variance of the two limiting cases.

Before we gompare this distribution to the Weibull case, we shall make

some interesting observations. The MGF MX (6) above, may be written as

M) = My (&l-€ )

where Z is a random variable with MGF

2 2;1..2 = _g2
M, (8) e Pt ;1 +/n 9 e (1 + erf(e)] E .

Hence, by property 3

21_ 2

At AR /
V2

But Mz(e) is the product of

X =

2.2 2
/(1~€%)
(8) .
and Mw
T 2
My(g) = 1+ /n 8 . [1 + erf (8)].
-20:
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My (®) is the MGF of a normal random variable with u= 0 and o? = 262/(1—62).

Hence W has density

— 2(1-€2
_w
/1~€2 __L____)_

o) = b S
v

- < Wy < o

MY(G) is clearly the MGF of a Rayleigh random variable with R=2 and hence

density e_y2/2

gF) = Y ¥ y>0

0 Yy< O

Thus by property 4, the random variable X may be written as the sum of

two independent variables U and V

/ 2
x=/£_:_.€_2 W+ /L-E _ Y = U+V
2 2
2

One variable, U, is normal with u = 0 and 02 =€e“. The other, V, is
Rayleigh with u =/F7E /E:;E and o2 - (2 -7/2)(1 - €2). The Chebyshev Theorem
states that .ny random variable has no more than a 1/n change of falling more
than n 0 distance from its mean. Thus, for ¢ near zero, the U values have little
effect on X, and for ¢ near 1, the V values have little effect. Thus, the more
narrow-band the stochastic process becomes, the more the distribution of the
maxima becomes Rayleigh.

If we compare the generalized Rayleigh case to the Weibull case, we immed-
iately see that the three-parameter Weibull distribution must be used. since
X may take on negative values. Since the form of MGFs are again quite distinct
as in section 7, there is no hope of showing that the generalized Rayleigh var-
able is really a three-parameter Weibull variable with y, b, a related to €.
However, since the Weibull distribution does have three parameters, y, b, a,
these may be selected as functions of g' to require that the first three moments
of the two distributions fit. This will make the mean, variance and skewness

coincide again, and hence the two curves would be quite similar to the eye.




Thus we want

1
J/2 7 o - bIrQ+%5) +a = EX
2 1
B et = B &2 r(1+;)+b2r(1+%) = Ex?)
WalZ A - 2 = b3r(1+‘3)+3ab21‘(1+%)+3a2bI‘(l+%)

e - E(X3)

Now if b=v/1—e:26,a=v’1-~eza

The equations become

/u/2 =(31‘(1+—£-) + a

1 ol =a2+2aer(1+l)+821“(1+3)
1-g2 Y ¥

ELE 3
32 = B I’(l+%)+3a82 I‘(1+—$)+3a281‘(1+%)+a3

These simplify to
3/2
2 1

[ ra+%) - P @a+5) ]

i) r(1+,37)—3r(1+.17) r(1+%)+2r3(1+%)

3/2
b e d ) e
1-€2
(m - 3) -215
£ o 1
pad L Lot LS
ra+2)-ra+l)
Y Y
iii) a = /-2?1 - sr(l+%)

Thus a "good fit" of the Weibull density to the generalized Rayleigh distribu-

tion may be achieved with the dependence on €, the spectral width, clearly

brought out.
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10. Further Weibull Properties

A) The Mode:

(two-parameter)

The mode of a random variable X is thaf value which is most likely to occur

and will be the most fregquently observed value in a large sample. The mode will

occur when the pdf f(x), or equivalent, ln f(x) achieves its maximum. Now

In f(x) = 1lna B+ (B-1) Inx - a xB

d lgxfgxz = (g-1)

which vanishes when

1/8
x = | B-1 ]

aB

B) The p-th value xu:

LB

B
[ =

|

xf1 )

Xp is the value above which lies p%Z of the probability weight, or above

which p%Z of the values in a large sample will lie.

(-]

J f(t) dt = »p

Xp
or B

e = P
Hence 8

ax, = 1n (1/p)
and X =l in (1/p) ]

P a

C) Order Statistics:

If a sample of n independent random variables is taken a large number of

times, a histogram of the maximum values can be developed.

The maximum value

of a sample of size n is itself a random variable, Xpax, with a distribution.

Now requiring Xpax < X is equivalent to requiring that each of the n sampled

random variables X; ¢ x for i = dydyvonyti

sampled population, then

o e

Thus if F(x) is the edf of the
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P(Xpoe < ¥) = FO©
is the edf of X ., and

n-1
n F(x) f(x)

is the pdf.

Thus for the Weibull random variable the density function of Xp,x is

Lee=h - B
ax ] B 1 -ax

aBn [1l-e e 0 < x

This can be maximized easily to find its mode. This will be the most frequently
occurring maximum value observed in many repeats of n samples. The probability

of a maximum exceeding this value is so large as to be of little design interest.




11. Numerical Solution

Finally, mention should be made of the possibility of obtaining a long-
term distribution by numerically summing a large number of short-term distri-
butions, such as the Rayleigh ( 6). In this case it is unnecessary that the
resulting distribution fit any particular function. Of course, the method
can be refined by using the generalized Rayleigh distribution for the short-
term data, having an additional bandwidth parameter, €, as discussed in

section 9 (6).

Available ship stress data are usually in the form of short-term (20 to
30 minutes) records taken automatically ever four hours. If the peak-~to-trough
stress variations are assumed to be Rayleigh distributed, then the individual
records can be characterized by their Rayleigh parameters, R (rms values).
Hence, one way to proceed is to determine a suitable distribution function
to describe the R, which may be treated as a random variable with pdf g(R).
If X is the measured stress or wave height; the Rayleigh distribution obtained
from each record may be considered a conditional distribution of X given R
which we denote by f(x/R). Then f(x/R)g(R) is the joint density of X and R,

and the density of X alone regardless of R may be obtaineu from:

[7 £&x/R) gR) dR
0

This is what is referred to as the long~term distribution.

Examples will be presented in Part 2.

X

The long-term distribution of stress or wave heights per reversal has
also been obtained as follows (11), (12), (13), (14). First the data are
classified according to weather severity. Within each weather group the
twenty-minute records each yield a Rayleigh distribution but with different
R values. The R values are then taken as a sample of the distribution of ship
stresses within that weather group, and long~term distributions are obtained

for each weather group. The results for all weather groups are then weighted

according to chances of weather occurences and added. Examples are given in
Part 2.
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This approach has the advantage of relating the observed data to the
physical cause--the sea conditions--rather than relying on the adoption of
a particular distribution function that happens to match the data at low N
values. This is claimed not only to result in more reliable extrapolation
of the data to large values of N but permits comparison of ships on different
services by reducing results to the same '"standard" or typical weather
conditions.

Within a given weather condition, Nordenstrom has claimed (4) the parameter
of short term Rayleigh distribution follows a Weibull distribution, while Webb
researchers (11), (6) have claimed that the normal distribution is at work,

If one examines a sample of the parameter Xl, X2,...Xn, using the point estimates
of u and 02 to estimate o and B discussed above, the B either does or does not
fall in the range where the H(B) = 0 and where the two distributions are

close. The R(B) in section 3 which determines B must be close to R(3,5) = 1.1002,
if a normal is also to fit the data fairly well, Since 3 < 8 < 10 seems to

give fairly normal approximations and (see graph) since in this range 1.132 <

R(B) < 1,014, it appears that a normal and Weibull distribution may be quite
similar over a broad range of a,

A few examples run on the weather data in the appendix of SSC-196 seem to
indicate that the weather groups III, IV, V each yield a B within this range,
but that the data for groups I, II yield B falling slightly outside the broad
range. The lumped weather data also does not fall within the B range. Since

R(B) = o2 + u2 , the "best" B will occur when 02/p2 ~ ,1002, it seems reason-

u2

able that the higher weather groups with the larger u values will yield BR's

falling within a range where the normal and Weibull densities are close,

26~
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12. Comments and Conclusions

The application of the Weibull distribution to problems in ship research
appears particularly promising. Under the assumptions that a normal "stochastic"
process is initially at work, a reasonable assumption in light of the central
1imit theorem, the distributions of the variables of interest may very well be
special cases of the Weibull distribution. Those which are not directly Weibull
may be such that their density curves will be fit quite well by the Weibull
density, sé that questions based on areas under these curves may be approxi-
mately the same. Accordingly, Part 2 of this report will examine actual full-
scale statistical data from ship research to determine the applicability of the

Weibull distribution, as well as other approaches discussed here.

..27,.
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Part 2

Application of Long-Term Distributions

1. Introduction

It is the objective of this part of the report to show the application
of the most promising forms of long~term distribution presented in Part 1
to a marine system response to stochastic inputs. Specifically, ship hull
stresses in irregular waves at sea represent a phenomenon of great interest
to ship designers for which considerable full-scale statistical data are
available.

A review of published data revealed that histograms--and/or cumulative

statistics--were available for the following ships:

Esso Malaysia, 190,000-ton deadweight tanker

R.G. Follis, 66,500-ton deadweight tanker
Fotini L, 74,000-ton deadweight bulk carrier

Wolverine State, 15,000-ton general cargo ship

The data describe the total population of cycles of peak-to-trough midship
bending stress obtained over periods of two to three years. They were

recorded automatically for periods of 20-30 minutes every 4 hours.

It was hoped to obtain similar data for the SL-~7 container ship

Sealand Maclean, but it was found that the available data were not in

sufficient detail.

In the case of the first ship mentioned above, the tanker Esso
Malaysia computer cards were available at Webb Institute for the entire 1%
years of data collection. (These were obtained from Teledyne Engineeriug
Services in connection with a project at Webb sponsored by the American
Bureau of Shipping (15).) Hence, it was decided to use these cards to
make a completely independent statistical analysis of the data, rather
than to rely on the previously published results. The results of this
analysis, presented in the next section, were found to agree quite well
with the published figures (15).
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It should be noted that for the analysisof ship stresses the longest
time for which data have been collected on any one ship is about three
years, whereas a typical ship's lifetime is 20 to 25 years. Hence, the real
problem is to obtain a cumulative distribution--or probability model--that
can be extrapolated by a time factor of 10 or more. Basically, there are
two approaches, one to find a long-term distribution that describes all the
data (stress reversals) and the other is to assume that all short-term data
(20-minute records) can be described by Rayleigh distributions and that the
long-term distribution can be obtained by summing up these short-term
distributions. In the latter case it is not necessary to obtain a formal

long-term distribution function.

In addition to the Esso Malaysia analysis presented in the next section,

long-term trends for the other ships listed above will be presented in the
following section. In all cases the applicability of the Weibull distribution
discussed in Part 1 will be considered.
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2. Esso Malaysia Analysis

Stress Data

Bending stress data from 24 instrumented voyages of the supertanker Esso
Malaysia were analyzed. Stresses were recorded in 20-minute records ("intervals"),
normally one interval per 4~hour watch. The reduced data population for the
24 voyages, after discarding intervals containing unusable data, consisted of

3589 analyzable records. Information recorded in each interval included:

1. Ship, wind and wave direction information.

2. Counts of number of stress reversals (peak-to-peak) falling
within each of 16 stress ranges,

Total number of stress reversals in the interval.
4, RMS peak-to-peak stress for the interval.

5. Maximum single peak-to-peak stress value in the interval.

Our analysis of these data has been concentrated mostly on the distribution

of the stress reversals, item 2 above.

A total of 785,511 stress reversals were counted and grouped into 16
stress ranges within each record by a Probability Analyzer, a small computer
used by Teledyne Materials Research to generate the statistical characteristics
(digital) of the recorded intervals (analog). Results were recorded on 3589
computer cards (one for each interval), and it was this set of cards that was

further processed at Webb Institute for this project.

The stress ranges into which the Probability Analyzer groups the digitized
stress reversals could be adjusted to various levels depending on the magnitude

of the maximum measured stresses. In the Esso Malaysia analysis, most tape reels

had maximum stresses below 8000 PSI, so the analyzer was adjusted to 16 ranges
of 500 PSI each. For reels coataining higher stresses, ranges of 750 PSI each
(maximum stress 12,000 PSI) or 1000 PSI each (maximum stress 16,000 PSI) were

used. The flexibility enabled the stress ranges to be chosen to suit the data
without placing excessive numbers of reversals in any one range, The grouping

of data from the Esso Malaysia is summarized in Table I.
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Table I
Summary of Stress Analysis -- Esso Malaysia
Probability Analyzer Stress ‘Group '
Max. Setting,PSI Range, PSI No. Reels No. Intervals
8000 5C0 48 2727
12000 750 : 10 648
16000 1000 3 214

3589

To get the whole population into one histogram, the numbers of stress
reversals falling within each stress range had to be summed. This required
regrouping into constant stress ranges. This was done, approximately, by
plotting cumulative curves of the three groups of data and adding them,
as in Figure 5. The resulting cumulative curve was then read back at stress
level ranges of 500 PSI, and the cumulative number of reversals converted
into "percent equal to or less than", by dividing number of occurrences by
the total number of reversals, N = 785,511. Division by N + 1 instead of N
yielded a "plotting position" for the probability paper analysis which makes
the first (lowest) and last (highest) measurements symmetrical with respect
to the 0% and 100% levels, respectively. This adjustment enabled the most
extreme data point to be plotted (4), The resulting cumulative distribution
and plotting positions are tabulated in Table II.

Distribution of the Stress Reversals

The probability of exceeding different levels of stress actually measured
on the ship can be determined from Table II. It is the "percent greater than"

the given stress level, that is:
QX > X§) = 1 - P(X £ X3) g

where

Q(X > X4) = probability of exceeding Xy

P(X S XJ) probability of not exceeding Xj

(cumulative % from Table II) x 100

=32~
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Table 11

Cumulative Stress Reversal Histogram, Esso Malaysia

Prob. Paper
Cum. No. Plotting Probability
Stress Level, Reversals Cumulative Position of
PSI = or < Percent Percent Exceedance —logloP
0 0 0 0
500 306,700 39.04 39.04 0.6096 0.21
1,000 564,600 71,88 71.88 .2812 0.55
1,500 680,740 86.66 86.66 .1334 0.87
2,000 733,900 93.43 93.43 .0657 1.18
2,500 757,600 96.45 96.45 .0355 1.45
3,000 769,780" 98.00 98.00 .0200 1.70
3,500 776,300 98.83 98.83 .0117 1.93
4,000 780,900 99.41 99.41 .0059 2.23
4,500 782,400 99.60 99.60 .0046 2.40
5,000 783,400 99.73 99.73 .0027 2.57
5,500 784,420 99.86 99.86 .0014 2.85
6,000 784,876 99.919 99.919 .00081 3.09
6,500 785,070 99.944 99.94 .00056 3.25
7,000 785,295 99.973 99.972 .00027 3.57
7,500 785,369 99.982 99.982 .00018 3.74
8,000 785,411 99.987 99.987 .00013 3.89
9,000 785,455* 99.9929 99.9927 .000071 4.15
10,000 785,477 99.9957 99.9955 .000043 4.37
11,000 785,492 99.9976 99.9975 .000024 4.62
12,000 785,506* 99.9994 99.9992 .000006 5.20
13,000 785,510* 99.9999 99.9997 .000001 5.90
13,800"" 785,511" | 100. 99.9999

kS
These are exact. Others are close approximations, not exact counts, because of

the varying stress level ranges used in the original analysis (see text).

*k
Highest single value of stress was 13,800 PSI.

=33=
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The probability of exceedance thus derived from the stress reversal histogram
is plotted in Figure 6. For a long-term probability of exceedance of stress
levels beyond those actually measured, the curve in Figure 6 must be extra-
polated to higher stress levels and smaller probabilities. To do this, a
probability distribution model must be determined which fits closely the
observed data and therefore gives a reliable estimate of predicted extreme

values.

Most attempts at fitting a distribution to the entire population of
stress reversals have not produced satisfactory fits at extreme stress levels.
However, it appears from Part 1 that one type of extreme value distribution,
the Weibull distribution, may satisfactorily describe the entire population

of stress reversals. This hypothesis was tested for the Esso Malaysia data

by plotting the cumulative stress percentages on Weibull probability paper,

on which a true distribution plots as a straight line. Figure 7 shows such

a plot, using the stress levels and plotting positions given in Table II.

It is clear from this plot that the entire population of stress reversal

data is not well fited by a Weibull distribution, since the plotted points
describe a curve rather than a straight line, The question remains whether

an approximate straight line fit can be determined such that the corresponding
Weibull distribution will define a satisfactory long-term curve to extrapolate
the measured data. Two visual fits were tried, as shown on the figure. Line
1 was fitted to the entire range of data, and Line 2 favored the high-stress
data, where the trend was nearly linear. In both cases the Weibull parameters
were estimated from the plotted straight lines. The cumulative Weibull
distribution is:

-ax&
Q(x) = e = probability of exceedance, where
7
X = stress level
=34
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The Weibull paper is constructed with linear scales of ln x as abscissa
(horizontal scale), and 1n ln-% as ordinate (vertical scale). A straight
line on the Weibull paper has slope = B and the intercept with the zero

axis of In x is a. That is, the straight line has the equation

In 1In % =R Inx + 1ln a

where ¢ and B are the Weibull parameters.
The parameters detemined from the Weibull fits are as follows:

Line 1 a = 0.00060 B =1.091
Line 2 a = 0.00512 B = 0.826

Each of these lines, in addition to the actual curve from the histogram, was
used to predict long-term trends. The long-term curves are plotted in Figure
8, which shows, as expected, a poor fit for Line 1. Line 2 is a better fit

at high stress levels, but since the number of stress reversals at these levels
is so small, the reliability of the Weibull curve as an extrapolator is

questionable.

A third Weibull fit was tried, using calculated estimates of o and B
determined as explained in Part 1, rather than from a Weibull paper plot.
7 The resulting long-term curve (o = .00041, B = 1.192) was found
to be entirely inadequate to represent the data. This numerical technique
cannot "bias" the fitted line toward any particular part of the histogram.
All three fitted Weibull lines were then subjected to chi-squared goodness
of fit tests to the measured data. In all cases the results showed poor
to very poor correlation with the data. It is concluded that the Weibull

distribution is not an acceptable model of unstratified stress-reversal data.

~35~

——— Ol o .

>

~- «W . .
W % B e e e e o I
RN . b e e e el " =




3. Analysis of Data for Other Ships

The available stress reversal measurements of several other ships were
also tested for Weibull fits, and the results are shown in Figure 9. The
ships are the R.G. Follis, the Fotini L. and the Wolverine State. It can

be seen that the Follis and Fotinl stresses exhibit the same characteristic

curve as that found for the Esso Malaysia data when plotted on Weibull paper,

and the fit to a straight line is just as unsatisfactory. Only the Wolverine
State data are well described by a Weibull distribution. Why this should
be so is not known, but it is clear that the Weibull distribution cannot

be assumed to describe bending stress distribution for all types of ships.

Distribution of Rayleigh Parameters

Since the stress reversals do not seem to be well described by a Weibull
distribution, it is of interest to test whether the Rayleigh. parameters (rms
peak-to-trough or v E) of the 20-minute stress records--or the maximum single
stress reversals from each record (Xmax)-—provide a better fit to a Weibull
distribution. Nordenstrom (16) made such an analysis of the Wolverine State

data, as shown in Figure 10, where the Weibull distribution of both v E and

Xmax is seen to be good. Since this information was also available from

the Esso Malaysia data, plots were made on Weibull paper as shown in Figure

11. As in the case of the stress reversals, these data plot as curves, although
the Weibull fit is better for v E than for the stress-reversal data of the

Esso Malaysia. Similar rms peak-to-trough stress data have also been determined

for the high~speed SL-7 containership Sea-Land MclLean, and the distribution

plotted in Figure 12, indicating a similar nonlinear trend. (As previously

noted, stress reversal data were not available for this ship).

It appears, in summary, that the following observations can be made

about the Weibull distribution of ship stress data:

1. Weibull fits to stress reversal data are poor.
2, Weibull fits to vV E values are fair to good.
3. Weibull fits to xmax values are poor,
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Previous conclusions (17) that the Weibull distribution of v E values gave
excellent agreement with statistical data were based largely on an analysis

of Wolverine State data, which, as we have shown, seems gratuitously to be

very well fitted by Weibull distributions. When applied to other vessels,
although the agreement is not as good, it appears to be acceptable. Previous

work (11) shows that the normal distribution of VE values is also acceptable.

Grouped- Data, Normal YE  Distribution

The method of extrapolating ship stress data to predict long-term trends,
which has been the standard procedure used by researchers at Webb Institute,
was described in Part 1 of this report. Briefly repeated, the procedure assumes:
- Normal distribution of ¥ E values within each Beaufort number
group, with observed standard deviation for each.

- Rayleigh distribution of peak-to-trough stresses within each
record.

- Actual distribution of Beaufort Numbers as experienced in service.

Then three integrations are performed to obtain the long-term curve. This
procedure does not require any specific formulation of a distribution function

for the long-term curve.

For the four ships for which stress histograms were available, long-term
distribution curves computed in this way have been published previously for

the Esso Malaysia, R.G. Follis and Fotini L in (15). The results are shown

in Figure 13, in which each long-term distribution curve is plotted along with
the histogram data points for each ship.

A study of Figure 13 shows that the fit of these "grouped Normal Vv E "
long-term curves to the actual measured data is good for the R.G. Follis
and excellent for the other two vessels. The agreement between curves and
data over the full range of the data establishes confidence in the curve
as an extrapolator to lower probabilities. That is, it is reasonable to
assume that the probability model used here should correctly describe the
stresses over a long period (20 years or more) since it correctly describes
the cumulative stress distribution observed over a period of two or three
years, provided that the conditions of operation (route, weather distribution,

and ship characteristics) remain unchanged.
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4. Long-Term Distribution Techniques Compared

The Wolverine State analysis was published in references (17), (11), (13

and (18). A number of different long-term curves were calculated from these
reports, based on varying amounts of data available over the years, and on
modified instrumentation and analysis procedures described in (18). The long-
term curve representing the most comprehensive data population is from (18),
reproduced here as Figure 14. Two long-term curves from grouped data, assuming
a normal distribution of Y E within each weather group, can be seen to fit the
histogram data well. The curves are based on 20 and 44 voyages respectively,
while the histogram represents 30 voyages, The Weibull distribution of VE
(not grouped) shown in Figure 10 is also plotted in Figure 14, and the fit is
also acceptable. Finally, the exponential fit to stress reversal data (see

Part 1) has also been calculated for the Wolverine State. This distribution

plots as a straight line on Figure 14, and since it lies everywhere below the

measured data, it is corsidered unacceptable as an extrapolator.

Of the two methods which give acceptable fits to the histogram data,
which is a better or morereliable extrapolator to much longer times? The
answer to this question is somewhat speculative, because verification would
require a much longer data collection effort to extend the histogram, and the

data collected on the Wolverine State represents the most extensive program

of its kind. In principle, grouping the stress data by weather severity and
analyzing the several groups as independent populations should be more
reliable, because the scatter of VE values within any one weather group
would be less than that of the entire population taken as a single group.

On this basis, the "grouped normal YE" technique might be chosen. For
numerical analysis, the normal distribution model also has the advantage of
having parameters (mean and standard deviation) which are easily calculated
from the data without necessitating special plotting, as is necessary in
determining the Weibull parameters. Of course, the weather grouping procedure
can be combined with the Weibull distribution assumption by describing
separate Weibull fits to each group of data, as is done by Nordenstrgm (19).
This procedure would have the advantage mentioned above for grouped data,

but would still require the special plotting technique.
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5. Conclusions

In the first part of this report it has been shown that the Weibull
distribution appears to be a particularly useful tool for statistical studies
of stochastic processes. Accordingly, characteristics of the distribution
were presented for convenient reference, its estimation discussed, and com-

parisons made with a normal distribution.

It was shown that the Rayleigh, Voznesensky and exponential distributions

are special cases of a two-parameter Weibull distribution, with parameters:

Rayleigh a = 1/R B =2
Voznesensky a=1 B=n
Exponential a=1/n B =1

Finally, the generalized Rayleigh distributed random variable is in reality
the sum of two independent random variables, one of which is normally distributed
while the other is Rayleigh. As the band width varies, the generalized Rayleigh
distribution tends to one of these cases, A 3-parameter Weibull distribution may
be closely fit to the generalized Rayleigh distribution with the Weibull parameter
dependent on the band width.

In Part 2 the application of the Weibull distribution to the problem of
ship hull stress statistics led to the following conclusions regarding the
goodness of fit:

Stress reversal data (X) - poor
Rayleigh parameters (R or VE) - acceptable

Highest stresses per record (Xmax) - poor

Accordingly, it appears that the numerical solution of the long-term
distribution is most appropriate, using either a Weibull or normal distribution
of Rayleigh parameters. It is believed to be preferable in extrapolating stress
data to long periods of time to classify and analyze stress data by weather

groups.

6. Acknowledgments

The assistance of Hugo van Wieringen, summer research assistant, in com-

puter processing of data is acknowledged with thanks.




7. References

1) Freund, J.E., Mathematical Statistics, Prentice Hall, 1971.

2) Feller, W., An Introduction to Probability Theory and Its Applications,
Wiley Press, 1968.

3) Meyer, P.L., Introduction to Probability and Statistical Applications,
Addison-Wesley, 1972,

4) Nordenstrgm, N., '"Methods for Predicting Long Term Distributions of
Wave Loads and Probability of Failure for Ships', Det Norske Veritas
Report 71-2-S.

5) Mansour, A.E., 'Probabilistic Design Concepts in Ship Structural Safety
and Reliability", The Society of Naval Architects and Marine Engineers, 1972.

6) Hoffman, D. and Karst, 0.J., ''The Theory of the Rayleigh Distribution
and Some of Its Applications', Journal of Ship Research, September 1975.

7) Voznessensky, A.S. and Netsvetaeff, Y.A., "Wave Energy Spectrum for
Model Tests'", Contribution to 1lth ITTC, 1966.

8) Longuet-Higgens, M.S., '"On the Statistical Distribution of the Heights
of Sea Waves'", Journal of Marine Research, 1952,

9) Ochi, M.K., "Statistics for Prediction of Ship Performance in a Seaway",
International Shipbuilding Frogress, 1973.

10) Rice, S.0., '"Mathematical Analysis of Random Noise', Bell System Tech-
nical Journal, 1944-45.

11) Band, E.G.U., "Analysis of Ship Data to Predict Long Term Trends of
Hull Bending Moments', American Bureau of Shipping, 1966,

12) Bennet, R., Iverson, A., and Nordenstrém, N., "Results from Full-Scale
Measurements and Predictions of Wave Bending Moments Acting on Ships'",
Report No. 32 of the Swedish Shipbuilding Research Fdn., October 1962.

13) Lewis, E.V., "Predicting Long-Term Distributions of Wave-Induced Bending
Moment on Ship Hulls'", SNAME Spring Meeting, 1967.

14) Hoffman, D., Williamson, J., and Lewis, E.V., "Correlation of Model and
{ Full-Scale Results in Predicting Wave Bending Moment Trends', SSC Report
SsC-233, 1972.

15)  Little, R.S., Lewis, E.V,, and Bailey, F.C., "A Statistical Study of
Wave-Induced Bending Moments on Large Oceangoing Tankers and Bulk
Carriers'", Trans. SNAME, 1971,

16) Nordenstrgm, N,, "A Method to Predict Long-Term Distributions of Waves
and Wave-Induced Motions and Loads on Ships'", DNV Publication No. 81,
April 1973,

~40-

P — e e e e

- “Wv‘mw‘r B T R —————
o 5
B S|




17)

18)

19)

20)

21)

Lewis, E.V., "Long-Term Applications of St, Denis/Pierson Technique to
Ship Design', SNAME Seakeeping Symposium, October 1973.

Hoffman, D., vanHooff, R. and Lewis, E.V,, "Evaluation of Methods for
Extrapolation of Ship Bending Stress Data', Ship Structure Committee
Report 234, 1972.

Nordenstr¢m, N., "Further Analysis of Full Scale Measurements of Midship
Bending Moments', Chalmers University Report, Gothenburg, May 1965.

Abramowitz, M. and Stegun, I.A., Handbook of Mathematical Functions,
National Bureau of Standards, Applied Mathematical Series 55, 1964.

Bateman, H., Higher Transcendental Function, McGraw-Hill, 1953.

-4]1-




Appendix 1

The Error Function

The error function erf (x) which appeared throughout the main body of this

note is defined as
X
—t2

erf(x) = 2 £ e dt .
’ /r

The full list of properties of this function may be found along with tables in

Abramowitz (20). The most commonly used properties are listed below.,

lim erf(x) =1

X

erf(-x) = - erf(x)

-x2
%

derf(x) _ _2
dx oy

The error function may be approximated by the series expansion

z (-1)" 2ntl

b o £l n! (2n+l)

b

n=0

The error function is also associated with the complementary error func-—

tion erfc(x).

~t2
erfc(x) = 1 - erf(x) = ;;? R
r
x

we also have

degfelx) o - 3 e'x2
i £
% -

erfc(-x) = 1 - erf(-x) = 1 + erf(x)
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Appendix 2

The Gamma Function

The gamma function TI(x) is defined as

Mx) = J t¥ 1 ot g¢
0

This integral converges for x > 0, and via integration by parts satisfies the
recursive relation
‘-1(x) = (x~-1) r(x-1) .

Since ra) = et dt = 1, for any integer m
0

T'(m) = (m-1) !

Also J _1/2
r(1/2) = 0 ¢ et dat
-2 e du (t = u?)
0
= /7 erf (») = /57 .
Additional forms of the gamma function are
I'(x) 1im n! n* £ d 0, =1, ~2
X) = e or x =1; =250000
e X(x+l)....(x+n) P :
and 1 i -x/n
= xeYX I [(1+-§)e/1
r(x) n=1
where

Y = .5772156649..... is Euler's constant.
Although the form of the gamma function is rather involved, extensive tables
are available, (Abramowitz (20)), Quick estimations of I (x) may, however, be
made through the recursive property and the minimax polynomial approximation.
Fr1+x) = 1- .577191652 x

+ .988205891 x2




& »

.897056937 x> -,

4

+

.918206857 x

.756704078 x°

+ .482199394 xb

.193527818 x’

+ .035868343 x°
which represents T'(1 + x) for 0 < x < 1 within an error of 3 x 10-7.
Extensive additional properties of the gamma function may be found in

Abramowitz (20), Bateman (21).
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Appendix 3

Calculation of Moment Generating Function for the
Generalized Rayleigh Distribution

A random variable X is said to have the generalized Rayleigh distribution

if its density function is x/1-€2
€
~x2/3e2 o R -t
f(x) = : [s:ex/26 +/1-e:2xeX/ZJ et/2 dt ]

VAL -0

-@(x‘< oo
€
The change of variables x = /f“i u will simplify the calculationms, and if
~€

Mu(e) is the moment generating function of u, then M, (6), the moment generating
function of x, will be

Mx(6) = M.eu (9) =
-€

€6
i =

The probability density function of u, g(u),is f£(x(u)) =&

9 . 1-¢
or 2 e g B ~u2/2[e?/1-€2] ; -t2
Sear n ( - + Uue et/zdt}
o /1-¢ V21 /1-€Z ~
My(8) = J % )
= 2igle) # 1 H(e) ]
V2r /1-€2
where (s = J eU0 e~u2/2(1-¢2)
-00 /2_1; V1l-¢
i 2 e2 t2
and E e b
H(8) = JJ eue ue S e = dt du

The integral in G(0®) is quickly recognized as the integral defining’ the
moment generating function of a normally distributed random variable with

ue=20 and 02 ]l -¢?

Thus 82 (1-¢2)
2
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The integral for H(®) is more involved. If the order of integration is reversed

@ ul € t2
o i breeiog
H(B) = ue’? e . e du dt
- e ?
which is of the form x2 2
= + L
i 1/2[0—12 022]
I = J J yeBY e v dy dx
S
L2
Where y = u, X = t’ 012 = 1, 022 = lsg

By completing the square in the integrand we obtain

- 6022 2
52022/2 ‘_x2/2°_12 -1/2 [_17222_ ]
I==e ye e 2

dy dx
o
® 2 2
il 025 2/ 2 & -1/2[x_2.+1_..]
9y 2 o 02
I=e I j [y + 902 ] e 2 dy dx
= 2
x-609
2
where y has replaced y - 60,
Thus I =1; +1, where
020,2 [2 -1/2 [ 25 + X
I, =e 2/ JJ eoze/["l 02]
1 2 dy dx
and ® o
2 2
9202.2/.2 -1/2 [ 25 4+ X )
I,=e ; y e “1 w2 dy dx

-0 x-e°22

We now examine Ij and 12 and evaluate them through several changes of

variables. Under a change of variables .x = f(t,s), y = g(t,s) the integral

‘ I I F(x,y) dx dy = I I F(f(t,s), g(t,s)) I A(x,y) l dt ds
R R 8(‘3.3)
d(x,y)
whenever a(t,s)| * O
, where R* is R expressed in terms of the new variables and
& 3
agx y) dy 9s
a(t,s)
2
ot 98
A-5
R ey - ._>' 3 V
B T i L e =
4 £ JW”J . ‘ g




First let t = A -.-L-,.B_(Mn
it ad* 2%  lse] T 1%

and I; becomes

020,22 - e 2 2
2 Yo ki ~t</2 -g4/2
I. = e 6 01023 e e ds dt

1
b LA
92

We now relate the t,s coordinate system so as to make the line

s = Eli - 602 parallel to the horizontal axis. Thus
%3
t = t'cos 6 - s'sin 6
s = t'sin® - s' cos 6
where tan 6 = 2l . sin 6 = - g cos 0§ = ___:zi_——_-
02 ;012+022 v'012+022
Hence
1 ; 1
Exp sy = :7==?===§ [Ozt' - cls'], g o e [alt’ + ozs'] 5
o_< 2 2
1 %% oy “+o
t2+82 _ (" 2+ s' 2
.aﬁﬂ-s)_— = l and e 2 = e 2

a(s',t")
If we substitute the primed variables into I; and the rewrite the integral with

the primed notation eliminated we have

92052 2" : @ _t2/2 J _32/2
I1 = e 60102 EQI e dt] [ e ds ]
6 o2
¢012+022
i 2
-t</2
ot J é at = J2r
B -s2/2
and I e ds
(2] 022
| /012 + 057
A-6
PO W e g e R A S e

W - .
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_92
= /2 - e du
iz 6 ap
V,i- ;(J]_E 4'(52i 6 022
: 72 Vot ¥ ot
i ad
- /2 J e % + N2 J e du
e 0

- !-2_1; % /2. ! m erf ( e 02
2 2 V2 Va2 + 022

/T |1+erf (8022 )
2 2 Vo012 + 032

Hence - o
I, = ee %2 ok 8 0 0)3 1+ erf ¢( Ly =)
1 1,52 73 Ja12 * 022

P—
Next we consider I, under the same set of variable changes.
2o 20 o X
.602/2 1/2[?-2""?‘12']
I; = e y e 1 2 dy dx
x—9022

-00

where

-1/2 [t24s?)
t e ' ds dt
)

v x R S L W ’ .
'y WWW‘?W e R e —
B = . _ .




= 0
since 2
( -t</2
t e dt = 0 ~
- Q0
while ® @
-1/2 [t? + s2)
122 = 0y s e ds dt
-f 0 022
/“022 + 0,2
But @ ®
—t2/2 -82/2
I90= o l e J J s e ds
lb 022
VOl + 02
;5 92 021’
2(012 + 03?)
= ar o, e 5
Thus a3g. 27 2 82 o,
2 .
2 2z 2
e g b +
o 152 {o 5% wp e L TOY
VOlz + 022
Finally
02¢.2/ 2 2
2 » 3 8 op
I= e ® gy 0% m 1+ erf ( )
2/0124052
0y 093 6202/ 2 "‘gZE“Z
+ _._i_ﬁ_ /Zr' e 2 i ® %2
701 + 022
P 2 2, 1-¢2 2 2 2
g1“= 1, oy°= ok then of +03* = lfe
€
and




Thus the moment generating funCtion of U is

92(1—52)/ 2
M,(8) = €2 Je :

52 1-e2?] -
oy 1-e2 y . e 2¢2 [1+erf (-£- 1-€2) ]
e ) . 7 e

2 2
) 6[1~e]/2
1 : e

+

€

and the moment generating function for X is

82e2/2 f— S 922 3
Mx(9)=ez{e + 8 %";ﬁ*—a [1+erf (82€? 5

vz
922
+ 1-¢2 2 }
3 e
€
02¢2 oo 82/2 .
= e 2 + 8V1-e2 /)2 e [ 1+ erf (-75 V1-¢2 ) ] .
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FIGURE 4 The Generalized Rayleigh Distribution
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