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Maximum Likelihood Estimation of the Autoregressive Coefficients
and ~.bving Average Covariances of Vector Autoregressive

M,ving Average 1.kdels

Fereydoon ~irabi
Stanford University

1. Introduction.

The purpose of this paper Is to derive asymptotically efficient

estimates for the autoregressive matrix coefficients and moving average

covariance matrices of the vector autoregressive moving average (vARMA )
models in both time and frequency domains. To do this we shall apply

the Newton-Raphson and scoring methods to the maximum likelihood

equations derived from modified likelihood functions under the Gaussian

ass~mption. ~~ -

The parameterization in this paper differs from that of other works

in the vector case, except Ahrabi (1978) which deals with the same

estimation problems in the vector moving average case, and it follows

that of Anderson (1975 ) , Parzen (1971), and Clevenson (1970) in the

sca.lar case. The usual parameterization of V.ABMA models is in terms

of the autoregressive and moving average coefficients and the covariance

matrix of the disturbance vector ~~~~. With this parameterization, Hannan

(1969b,lgTO ) has considered the problem in the pure moving average case

in the frequency domain. Nicholls (1976) has extended this work to the

estimation of full VARMA models which also contain exogenous variables.

Reinse]. (1976) has considered the problem in the time domain and has

derived estimates using the Newton-Raphson method on the (modified)

1 
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maximum likelihood equations . An iterative nonlinear least squares

estimation procedure has been proposed by Tunnicliffe Wilson (1973).

Other papers in this area include Akaike (1973), Kashyap (1970),

%tkittle (1963), and Osborn (1977).

As indicated above, there is an alternative parameterization

~thich we will use in this paper. One advantage of this parameterization

is that we do not need to assume that some past values of ~~‘s are

fixed. Also as Hannan (19 75 ) has pointed out it is easy to recover the

original parameters using the spectral density.

Newton (1975 ) considers , among other things, the estimation of

moving average covariance matrices In the pure moving average case in

the frequency domain. But his method is different from the methods

used in this paper. He regresses the elements of the sample spectral

density, evaluated at some equidistant points, on certain trigono.

metric functions using the method of weI~~ted least squares.

To summarize, ~iapter 2 describes the model and the parameters to

be estimated. Chapter 3 deals with the estimation problem in the time

domain. The modifi ed likelihood function is derived under the assumption

of normality, using the method developed in Anderson (1975). Then the

Newton-Raj *ison and scoring n~ thods are applied to the resulting maximum

likelihood equations . The chapter closes with remarks about the computa-

tiona]. problems. The estimation in the frequency domain is discussed in

Chapter 4. The modified likelihood function used is similar to that of

Whittle (1953,1961) and Dunsmuir and Hannan (1976). Again the Newton- ! -

Ra~~son and scoring methods are applied to the maximum likelihood equations .

2
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The asymptotic properties are discussed in Chapter 5. The estimates

are shown to be asymptotically efficient under suitable assumptions.

In Chapter 6 we return to the usual pa.rameterization and derive

estimates for the autoregressive and moving average matrix coefficients

and the covariance matrix of €~~, using the scoring method in the time

domain. Finally in the Appendix we present some of the mathematical

results used in previous chapters.
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2. The febdel.

We have observations, 
~~~~

, 
~~~~

, .. ., ~~~~, on the process t Zt~
generated by

(2.1) 
~i~t_i = 

~j~t-j ~~ 
t = 0, 1,

where ~~‘s and ~~‘s are m X 1 vectors and ~~‘s and ~j
’S are

m X m matriees and = = I .  Let

(2.2) 8(z) = 

~~

(2.3) A(z) = ~~ A~z~j =O

Assumption ~ are independently identically distributed

random vectors with mean zero and unknown covariance matrix V.

Assumption 2. The zeros of ~B(z)l lie outside the unit circle.

Assumption 3. The zeros of I~~(z) I lie outside the unit circle.

Assumption 14.• A greatest conmon left divisor of A (z) and B(z)

~~~ I~4fl.

Assumption 5. The matrix (~~~~, ~~~~
) is of full rank, i.e.,

Remarks.

(i)  Assumption 2 ensures the stationarity of the process. It al so

makes ~~ independent of 
~~~~~~~~ ~t+2’ •

~~~
•

14 
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(ii ) Assumptions 3, 1~, 5 ensure that the system i~ identified. By

this we mean that the autocovariances of the process defined by

(2.4) 
~~~~~

= 
~~~~~~~~~~~~~~ 

, s = O , +1, ... ,

determine A(z ) and B(z)  uniquely. (See Hannan (1969a)). En particular

we can get the moving average matrix coefficients from the moving average

covariance matrices defined by

(a)(2.5) = 
~~ ~ t~~~ ÷s ‘ ~ = ~~, ~~, ... , q

uniquely, by solving the following system of equations

(s) q-s
= Z ~j~~~~ +i , s = 0, 1, ... , q

i=O

Finally, assumption 5 is not a necessary condition and it can be replaced

by other conditions, see Hannan (197].) and Kashyap and Nasbu.rg (1974).

The parameters of interest are

_ D  t A l
— L

~~~ t, .t÷s ~ 
— .‘ .‘ ... , ‘~ ~

~ r = 1,.. .,p

Since we will differentiat e the log likelihood function of 
~~i’ 

... ,

with respect to the elements of the above matrix parameters , it is more

convenient to vectorize them.

5
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Definition. If C = (c1, ..., ce ), where ~~‘ s are column

vectors,

v e c C =

Zn

Before we proceed with vectorization of th e matrix parameters, we

notice that z (0) is symmetric and hence should be treated different ly

from ~ ~~~~~~
, s = i., . . . ,  q. In vectorizing E (o) we only need to

vecto rize the diagonal. and lower diagonal element s. So we let

(0)\
(].) 11

(2) (0)vec~~ ,

where vec is an operator that vector izes the element s of the matrix

that it is applied to , ignoring the diagonal and upper diagonal elements ,

e.g. ,

1 3 4  0
vec 0 5 2 = 1~.

4 8 1  8

So the parameters are

(1)

= 
~(2) , g = vec ~~~ , a 1, ..., q .

r = 1 , ..., p.

6
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Finally we can state that the parameters of interest are the components of

p where

(2.6) (61 ,e t )  = (
~j~ . . .,  

~~~~~~~ ~~~~~

, e~, ... ,

We shall also find it useful to introduce another vector, 6 where

(2.7) = (vec’ ~ (O) , vec’ E (’), ... , vec’

- (e ’- 0’ ~..l’ ~~~~~

Remarks.

(i) We can find a matrix ~ such that for any m x m matrix
-

. 
m X m 2

A

(2.8) dg ( A ) = C v e c A .

It is easy to see that C is obtained from the m2 X m2 identity matrix

by del eting all the rows except the 1st, m+2nd , 2m+3rd , ..., ni2th, i.e.,

/ ~if Zrx+2
‘

where

7



~m
2 = 

~~~ ~2’ ~~~ ~m2~

(ii) Similarly we can find an m x matrix D such that

for any m X m matrix A

(2.9) v~~~A = D v e c A .

It is easily verified that 1) is obtained from i 2 by deleting the
m

following rows -

1, m-’-l, 2m+l , ..., (m-1)m+l

m+2, 2m+2, ..., (m-l )m+2

2m s3, ..., (m-l )m+3

(rn-i )mim

8 
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3. Estimation in the Time Domain.

3.1. The Likelihood Function.

We are concerned with maximum likelihood estimation, so the fi rst

step is to find the likelihood function. To fi nd this we need to know

the distribution of But in the previous chapter we assumed that

S are i. i.d. , without assuming any particular distribution. However

in deriving the likelihood function we shall treat €~ ‘s as normal

vectors and later we shall demonstrate that the resulting estimates have

the same asymptotic covari ance matrix irrespective of the distribution

of 
~t ’ S as long as the assumptions in Chapter 2 are satisfied.

Even with the assumption of normality we cannot find the exact

likelihood function except in the pure moving average case. In order to

find an approximate likelihood function, following Anderson (1975), we

assume

~o L 1 ~~~” 1-p~~~~~

The likelihood function we will derive is in fact the conditional likeli -

hood of 
~~~~~~~~~~~~~~~~~~ 

& ven that 
~o’Ll’” ’~ l-p are equal to their expected

values. Now

+ 
~l~t-l + + 

~p~t-p = 

~t ~

Transposing both sides yields

+ 

~~-l~i 
+ 

~~~~ 
+ =

Writing these equations for t = 1,2, ..., T, we get

9
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~~~~~~~~~~~~

f~i (~\ /~ \(3.1.1) ( : + : ~ ~~~~~~ ~i 1 ~

As in Anderson (1975) we notice that

~~~~~ 
~
“
\ k  ‘

where

0 0

~T~l 2

Similarly

I T

HI ( ~l \ = L2 ~~

/
\~~~-2/

and so on. This means that we can write (3.1.1) as

10



( 3.1. 2 )  

~~~~ 

=

where

= 
~~L’ ~~~~•‘  ~

) , u’ = (ii
1
, ..., ~~

) .

Now we shall need the following lemma in vectorizing (3.1.2).

Lemma 3.1.

vec A B C  = (~ ‘ ØA)vec B .

• See !.ti.nc and Marcus (1964).

Using this lemma on the left hand side of (3.1.2) we get

(3.1.3) ~~~ (B ØL~ )VeC Y VeC U

Now let

= 

~~~~~~ 

(B ØLi ) , ~ = vec Y , U = vec U ,

then (3.1.3) can be written as

(3.1.4)

U

~ 

~~~~~~~
- 

—
~~
- - - - -

~~~~ 
-- - — --  • -  -•• _____



Because of’ the Gaussian assumption, to find the likelihood f-unction

(the density of ~
) we only need to find the covariance matrix of U.

Now, it follows from the normality of ~~~s that

(3 1.5) _ N(O , z)

where

~ (i) ~ (q) 0 ...
~‘(1 ) ~ (D) ~ (1) E(q) o ...

. .
.

(3.1.6) z= ~~ 
“i’ . . 

.

S 
I 

.
S 

I .
S .

I .

I
5 

‘
. 

~~~~
.

e S

. ~~‘ (q) t (1) . 

~ (0)

+ (L ,Øz (1) + L ~~~~~’~
’ ) ~~~~~~~~~ 

~~~~~~~~~ + L ~®~~(~~)’ ) 5

The following lemma will enable us to derive the distribution of

from ( 3 .1.5).

12
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Lemma 3.2. If’ A is any r X  a matrix,

vec = 
~~~~~~ 

vec

where is a square rs X rs matrix partitioned into r X s

submatrices such that the 1~th block has a 1 in the 3j th position

and zeros elsewhere. (See !.~ cRae (1974 ))
~~~

Proof. K can be written as

~].l ~2l ••~~ 
~~~sl

‘

~1r ~2r ~ar

where an s x r matrix with 1 in the 1~th position and zeros

elsewhere. Now

a, b
—.i. —1

vec = 

~r,s 
vec(a~, ..., ~~ = 

~Sr,s 
= ~ sai

a b
—r

So

BUt is an r X 1 vector with in the 1th position and zeros

elsewhere, hence

/ a11

~
= ( a12

~~ ir b
13 
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-

This means that

: = vec A’

b
—r

Q. E.

Note. We shall use the convention

~sn,n

Now we use the above leuma to derive the distribution of U. ~~~

definition

U = vec U = vec (u~, ...,

Now, using lemma 3.2 we have

vec (u1, ..., ~~ ) ‘ 
~ n,T vec (u..~, ...,

This, together with (3.1.5), yields

where

l1~.

_ 
_ _  - ~~~~~~~~~~~~~~~~~~~~ •.



= 
~~m,T ~~~

Lemma 3.3.

(j ) if A and B are in X zi and r X s matrices respectively,

then

=

~~~ ~Sr,s 
= 
~k,r

See MacRae (1974).

Using this 1~~m~a and noticing that E is given by (3.1.6) we get

(3.1.7) F ~
(O) Ø~~~ 4 ( ~

(1)ØLt +z (l)’ØL ) + . . .÷  (~ (~ ) Ø~~’~ (q)t Ø~~(q) )

We shall be using these ~~~~~ in the later chapters as well.

Finally from (3.1.3) we get

1 ‘1
~~— N (O,~~~ ~~~~~) .

This gives us the (modified ) log likelihood function

(3.1.8) log I (~
) = - 

~~‘ ~~~ 
+ ~~ 

iog I~~’t - log 2n ,

since I~~~I = 1, as we shall see in (3.5.2). The maximum likelihood

estimates are a ~et of roots of’

15 
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r - - -

~~~~~~

- _ _ _ _ _ _ _ _ _ _ _ _ _

~- 1og t()~~ = 0 .

So we proceed to derive the first derivative of log £ (k).

3.2. The First Derivative of log I (k).

In differentiating the log likelihood function with respect to 0

we only need to differentiate the first term and by using

0(~~log 2 — 0‘-5” -

complete the derivative. That is

3 2 1 ~ logi  
- 

. ~( ‘ ~ ‘r~~s ~) ~~~ ~
)

( . . )  - -
~~~~~ ~~~~~~~~~

— -

We shall also use the following lemma

L~ mna 3.4. For any two column vectors x and z

vec (x z ’ ) = ~~ ®~~~.

Proof. It is easily verified by writing out the two sides.

The Derivative With Respect to Autoregressive Coefficients.

Let ~~~~ denote the j ,jth element of 
~r then from (3.1.3)

(3 .2.2) 
~b (r) = E Ø L  , i,j = 1, ..., in

ii

Using this we get

16
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~(~‘~ ‘r~~ ~)(3.2.3) (r) 
— 

= ~ ‘~~‘r~
1(E ØL ” )~ + ‘(E ØL  r

)F
_l

$ x;

= 2~ ’ wr l(E 0Lr~~

Nov using lemma 3.1 we have

= vec [~~~ ’r ’(E ®L ~
’)~ 1

= (~~t ® , ~~u F ~
l ) vec(E ® L r )

This together with (3.2.3 ), yields

~(~‘~ ‘r~~ ~
)

(3.2.4) = 2(~’ØZ ’r~~)

where

= [vec (B
11 0 L”), vec ~~ L’), ..., vec ~~~ ® L’~fl, r = 1, ..., p.

~‘&i1ch in turn yields

~(~‘ r ~ -~(3.2.5) = 2(~ ’Ø~~~ ’r ~~)E

where

(3.2.6) = ..., 
~~~~~ 

.

Finally using (3.1. 8) we get

17
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(3 .2.7) = -E’ (y®r~~s~~)

The Derivative with Respect to ?~ ving Average Cova.ria.nces.

As indicated by (3.2.1) we only need to find

~

However it is more convenient to find

~

which is related to the former derivative . To find the relationship we

note that

~
Tij a•ji

where C7~~~~ and ~ 0) are treated as different variables. This means
ij  ji

~~~~~~~~ ~
) ~~~~~~~ ~)

which in turn yields

(3.2.8) 
— 

= 2
ii ii

where “ — “ indicates that we take the symmetry of into account.

In view of’ (2.8) and (2.9) using (3 .2.8) we get

18
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-

~ ~~~

‘ z’ ~ ~~~
‘ ~~~‘

(3.2. ) =

where C is a [qm2 
+ 

m(rn+1 ) 1 x (q÷1 )m2 matrix which can be written

as

1~~l\ 
m

_ [ ~~~~~~G — ~~G2 1  2

\G3J qm2

and

= (C, 0), ~ = (2D, 9), ~ = (2’ ~
)

with C and 1) as in Chapter 2. It is obvious that from (3.2.9) we

can conclude

(3.2.10 ) ~ log 2 = G ~ log 2
—

We now proceed to derive •~_1og I Using lemma 3.1 we have

~ t vec (~‘ B’ F
1B ~

)
(3.2.11) =

~~vec F~~
= (~~

t
~~’0 ~~~~~ 

—— — a~’

= -(~ ‘B ’ 0~~’B’ )vec(~~ .
~~~~~~, r~~ ) -

•

~ vec r
= (~ ‘$ ‘ Ø~~’B ’ ) (f 1Ø[ ~

1)

~~vec t’
= -(i ’s ’ ~~

‘ 0 ~~‘ s’ r~~)

19 
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~~vec 1
To find 

, 
we need to find 

~ -‘ , for s = 0,1,. .. ,q and

1,j  =- 1 , . . . ,m. From (3.1.6) we get

(3.2.12 ) (0) = 
~1j ® .~T

ij

(3.2.13 ) = ~~ .Øt ’5 + , s = 1, ..., q, i,j  = 1, ...,
ii

where is an in X in matrix with one in the 1~th position and zeros

elsewhere. Now, vectorizing (3.2.12) yields

~~iec r
(
~

) = vec(~1~0~~~) ~~~~~~ say ,
ii

which yields

~ vec !‘
(3.2.111. ) = ~~~~~~~ ~~~~~~ • . .,  ~~~

) )=~~~, say

Similarly

vec r
(3.2.15 ) — = F = (a~~~~ a (s) )

— t —‘S ‘—11 ~ —mm ~

where

a (8) = ~~~ E ®I .~’s + E~~ ØL 5 J , s = 1,. . . ,q

So the derivative with respect to ~~‘ is

20
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— - --

, vec r
(3.2.16 ) = ~~ ~l’ ~ ‘‘ = ~ , say

Now using (3.2.11) we have

1
(3.2.17 ) = -F’ (r ~ ~

To complete the derivative of ~ lOJ 2 we need to find the expected
~ C-

value of (3.2.16 ) —

~ -l -1
— 

= -F’ ~ vec(r ~‘~~r )

= -F’ vec(r~~~ f~~ 5’

-F’ vec F 1

Using (3.2.1) -we get

(3.2.18 ) a log 2 
= ~~ ~~ ~~- Yec r~ - }

Finally using (3.2.10), we have

(3.2.19) a log z 
= 

1 G F , [ F  ~~ ~:0r l%~~ Vec

3.3. The Numerical Approximations.

The equation

a 1o g 2 ( )~~ = 0

Is nonlinear and cannot be solved explicitly. Therefore we will use

numerical approximations that yield asymptotical ly efficient estimates .

_ _ _ _ _ _  
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These methods are the Newthn-Ra~~son and Scoring methods. Both methods

require that we start with an Initial estimate that is consistent of

order T~~/2 , call it 
~(o 

~~

• Then, the Newton-Raj *ison method consists

of solving the following set of’ linear equations for

a2log £ ( ~ ) ~ log e(~)(3.3.1) - a~ a2 ’ P P (0) (l)~ -.(0 ) = a2

In the Scoring method,

2a log_2 ( ~ )~j
H Aa~a~,’ lI e=2(O)

replaces

a2iog~ (~,)
a p a p ’ ‘— — 2 2(o )

i.e., we solve the following set of linear equations for

a
2log £ (~ ) a log 2 (~ )

(3.3.2) ~~ 
~~ ap ’ A ~2(l Y2(0)~ A

— Q-2 (~ ) 2~~(o)

Initial estimate £(o )~
In the vector Yule-Walker equations

r~1 
B y  

~~~~~~~ 
, s q+1, ..., q+p ,

22 
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we can replace the autocovariances i.e. , ~~~~‘ 5 by their sample analogues,

£k s, and then solve the resulting equations to obtain initial estimates

for Br ’ 5• So the equations are

r~i. ~r~°~9r—s = -E 5 ~ s = q+l , ..., q+p

where

(3.3 .4) 
~~~k 

= Zt~t+k

Having obtained these estimates we can form

= 
r~~ ~r~°~~t-r , t = 1, ..., T

Bear in mind that ~~ (o) = and = = = 9. Now we can use

the same autocovariances of ~~ (O) ’ s to estimate s(s) , ~ = 0,1, ..., q.

We estimate by

(3.3.5) = 
~~

. 

~ 
~~~o~~ ,÷~ (o) = ~~~)‘ , s 0,1, ..., q

Finally by vectorizing the initial estimates obtained in this manner we

get an initial estimate of p, which we shall denote by

Note. The initial estimate 
~(o) may not satisfy the conditions for

a moving average covariance matrix. For example when m = q = 1, p = 0

the constraint on E is
2

1
0•0

23
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The Newton-Raphson Method.

This method consists of solving the following system of linear

equations for 
~ (l)

~
2log £ 

(

A A 
— ~~ log £- ag,a~,’ p=~ 

2(i y2(o) - a~ 2 2(o )

So we need to find the second partial derivatives of log I.

Derivation of

As in (3.2.7)

a log 2 
= 

~
, (

~~Ø £~~~ ~~
)

Differentiating this with respect to b~~ yields

= E ’[ ®r ~~ (E 0L~’)~ ) .

-. ii -

Now using lemma 3.4 we can rewrite the term inside the brackets as

0 L”)~~~, ]  = (~~~‘ 0 v’ec(~~~~ 0 i” )

where we have used lemma 3.1. So finally we have

(3.3.6) = -E’ [~~~’®r~~ ]E

2~4
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I
Derivation of

Differentiating (3.2.7) with respect to we get

2a log 
(s) = E ’[~~Ør~~ (~~~~ ) r~~s ~ J

— 
a•
ij i j

Now using lemma 3. 11. the right hand side can be rewritten as

ar
E’ vec[F ’~ 

— r ~~~~‘]
i j

which in turn can be rewritten using lemma 3.1 as

1 a vec r

~
‘ (

~~‘~‘L~ ®C ~ ij

This means

a
2
log 2 

= B’ (~~~‘ ~‘r ~ ® -1) ~ vec £
— —— —

But (3.2.15) states

a vec r
= F

So

= E ’(~~ ’s’r 3 ®r ~~)F

25
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Finally we get

~
2log £ a2lo&I ~ z’ (~~‘s ’r ~~0 r~~)F G’

a~ ae’ a~

2
Derivation of a log £

4 As in (3.2.17 ) we have

a log t

Differentiating this with respect to we get

(3.3.8) = ~ ~ , [~~~l

- 

~ 
+ vec t’ (s) ~

Now, using lemma 3.14. the right hand side of (3.3.8) can be rewritten as

ar ar
~~F’ vec[-C’~~~~ ’~~’r~~ ~~ 

~~~~~~~ (s) £
1
~ Z~~1’~. ’

ar ~ r d] .
—

°‘ij

And using lemma 3.1 this can be rewritten as

26
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1 1 a vec r
- !. ~ ~~~

1
® C~~~ ’~’i~”÷ C ~~~~~~~ 

01,-i -

ii

avec 1’

~~~~~ (a )  ~ sa y .
ij

Using this and (3.2.15) we get

2 a vec ra log £ = - F t M  
— 

= - F’MF
a~ a~’ 2 — — a~’ 2 — ——

Finally

(3.3.10) a2
log £ = G a2

log t ~~~ = - ~ F’~ ~~~~
~e ae ’ ae ae ’

Now, putting (3.3.6), (3.3.7) and (3.3.10 ) together we get

2 E’ 0 E 0
(3.3.11) a log 2 - — — — —

2 2~ 9 ~~~
‘

where

01,_i

(3.3.12 ) TI =

Now we are ready to write down the equations for the Newton-Ra~tson

method. They are

27
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‘~~1

A A A A

2 B(o) 
~ ~~~, (e(1) -a(o ) ) 

~ (o)

where = ~~~~~Og ~ which is given by (3.2.7) and (3.2.18). Once we have

we could carry out a second iteration by replacing 
~(i) 

with

~ (2)’ £(o ) with 2(1) ’ ]1(~) with 
~~~~ 

and S (0) with 
~ (i) in (3.3.13)

and solve for £(2 y But even for samples of’ moderate size this would

be computationafly very costly.

The Scoring Method.

The equation for this method is given by (3.3.2). We notice that

we have to find

log 2

Taking expectations of both sides of’ (3.3.11) we get

(3.3.14 ) (~~log 2 ) = - 
2 en

Q GF ’

Now recall that

e(~~’)  ~~~~ s’ -l

Applying this to (3.3.9) we get

e(M) r~~Ør~~

We can also easily find the expectation of the other entries of ~~ . The

end result is

28
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/ i”~~~
’ ‘ØC’ ~~~~~l

® 
~,-i

e u =
-l 

~~

=~~~~~~~, say.

Substituting this in (3.3.111-) we get

(3.3.15 ) ~~~~1O~~2 ) = - 
9 

~ 
9 )2 . .. 2~~~’ 2~~9’

So finally the equations for the Scoring method are

(3.3.16) (
~

‘ 
~r) 

~ ( o ) ( o  
~ 2’) 

(i) ’
~~(o)~ 

=
~~~~~ )

3.4. The Pure lt ving Average Case.

The pure moving average case corresponds to the model defined by

(2 . 1)  with ~ = 0. This case was treated by Ahrabi (1978). But we

can also derive the estimation equations from (3.3.13) and (3.3.16)

by letting

~~= o , 2 = e .

The resulting equations are in fact simplified versions of those of

Abrabi (1918). This is because in the latter, the second order

derivatives of the log likelihood have a more complex representation

and also that for the Scoring method instead of

29
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e a
2log £-

we had used

~,a log L a loE 2)

which proved to be more cumbersome.

An important distinction between the general case and the case

of’ the pure moving average model is that the log likelihood for the

latter case, as derived from (3.1.8) by letting ~ = 2’ is the exact

log likelihood of the data. That is we do not need to assume that

some past values of’ are fixed.

The model, as pointed out above, is

+ 

~3••~~_]• + • ••  +

The parameters to be estimated are the components of’ 0 as defined in

Chapter 2, with ~~~~~. And obviously in this case we only need

assumptions 1 and 3.

The Newton Rariison Method.

We get the seoond order derivative of log £ with respect to

by letting ~~~~~~ in (3.3.10) which yields

( 3. 4 . 1)  
~~~~~~~~~~~~~~~~~ = - 

~~

30
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where

(3 .4.2) = r~~® r 1
~~ r~~- + r~~~~ ’ r~~® r~~ - r~~Ø r~~

Now let

(3. 11.3)  ~~~= = vec~~ ’ = K ~,T vec X =
~~;1,T~:’

where Y was introduced in (3.1.2). We also recall that

(3.4.4) £. = 
~~~~~~~~ ~~ ~ n,T

where E was defined by (3.1.6). From (3.11.3) we get

Substituting this and £ as in (3.4 .4) in (3.11.2) we get

-1 -l -l -1——’ -l -1(3.11.5 ) 
~~

= 
~~~~~~~~~~~~~ 

®~ ~~~~

- 0 E 1) 
~Sm, T® 

~~ T~

= 

~~U,T®¼T~ !~~ n,T ®
~~n,T~ ‘

say. Now if’ we let

31
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- - 
T

(3.11.6 ) T®
~Sm,T~E =

then (3.11.1) can be rewritten as

(3.4. 7) log 2 
= - ~~

We note that

(3 .14.8) 
~~n,T®

~ Di,T~ 
vec (~j~®~~

8 ) = 
~~~~~~~~~~~~~~~~~~~ 

= vec (~~®~~~ )

using Lemmas 3.1 and 3.3. It is now clear that F is what was called E

and is what was called ~ in Ahrabi (1918). The first order deriva-

tive, in the same manner , is derived from (3.2.19) -which yields

= ~~2~ ’Ez ’~~®C~~~-. vec ,

which is identical to (3.2.11) of’ Abrabi (1978). We need an initial

estimate for 9 which is derived from (3.3.5) if we replace ~~~~~ by

That is

~~~~~~~~~~~ 

=
~ :~ ~t~~+a ‘ s = 0 ,l, ..., q

So finally the Newton-Raphson equations are

9~’ ~ (o)~ 2’ ~~(l)~~~ (o)~ 
= GF ’ - vec E(~ ) ] .

32
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The Scoring Method.

We need to find e ~~~~~~~~ . We get this from (3.3.15) which

yields

= - ~ GF~(F~~® £~ T2 = - 
1 G~~’(E 1O ‘ G .

So the equations for this method are

= ~~~~~~~~~~~~~~~~~~~~~ - veC

3.5. The Problem of Computation.

If we look at equation (3.3.13 ) and (3.3.16), which are the equations

for the Newton-Raphson and Scoring methods respectively, -we realize that

to get 
~ (1) we have to tackle two computational problems :

(1) The problem of’ computing T1(o)s ~ (o)’ ~ (oy

(ii ) The problem of solving the resulting equations.

The second problem is the less serious one, because it involves solving

a set of’ r = (p-4-q )m2 + m(m+1)/2 linear equations. Even thou~~ r can

be large it remains fixed as the number of observations (T) increases.

By comparison in the first , as we shall see, the matrices that are to be

inverted have dimensions of order T. So we shall concentrate on (i ).

If’ -we look at ,~3.3.l2 ) and (3.3.15) it becomes apparent that the

major computational problem for computing 
~(o) and 

~(o) is the

problem of inversion of ~ and 1’. This is also the case for 
~(o)

which is derived from (3.2.7) and (3.2.19).

33
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Inversion of ~~.

We rec all that as in (3.1.4) ~ is given by

= (a 0 ~~~)

where

2 0
—

Now, using lemma (3.3) we have

(3.5.1) 
~ U,T ~ ~m,T = (Li® B )  =

say. We notice that since Li is lower triangular, so is L This

makes it possible to find 1.1 via some r ecursive equations. It is

clear from (3.5.1) that ~ has it s for the diagonal elements. This

means

(3 .5 .2) = = 1

which was used in derIving (3.1.8). We also notice that ~ is block Toeplitz.

Lemma 3.5. For ~ defined by (3.5.1)

T-l
-
~ (3.5.3 ) ~—l 

= ~~ 
(L~ OB ’~~ ),

— j =O

where B (0) 
= and ~~~~~~~~~ j  = 1, ..., T-1 are given by the recursive

equations
311
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~~~~~~~~

(3.5.4) E 0 , r = 1,2, . . . ,  T— 1

i+j= r

Proof. Multiplying 
~ by the right hand side of (3.5.3) yields

T-1 T-l
I ~ (La ® B~~~

) —  
~ ~ ~~~~~~~~~~~~~~~

j =0 i=o j =0

T-l
= ~ [Lr

® ~
r=0 i+j=r

since LT~~ 0, h = 0,1 Now the first term of (3.3.5) is

LO Ø B B (0) 
= iinT

so letting the left hand side of (3.3.5) be equal to we get

~~ = ~ , r = 1,2, ..., T.-l
j +j=r

If we write out the first few equations it becomes clear that these

can easily be solved recursively. The first equation is

B~~
(l) + ~~~(o) 

= 2 ’

which yields

(3.5.6) = -
~~~~
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The second equation is

~~~(2) + B~B~~~ + ~~~ (o) 
= 2 ’

which yields

B (2) 
~~~~ 

- 

~2 = - 

~2 ‘

using (3.5.6) .  So at stage n

~~~~ - B ~~~~~ B B(~
_2 ) B— .... l .. 

— —2— .

Notice that there are n terms here, but we know that for n> p,

= 9 Th1. s means that for any n we shall at most have p terms .

That is, the equations (3.5.4) are recursive of order p. This makes

the computation task much easier. Q.E.D.

From (3.5.1) we get

—-1 -l(3. 5.7) = 
~~~~~ ~~,T

where we have used the fact that 
~ i,T is orthogonal. From (3.5.7)

we get

‘

which together with (3.5.3) and lemma (3.3 ) yields -
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~~~~~
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T-l
(3.~ .8) ~-l ~ (B i ) ® Li )

j =0

The Problem of Inversion of F.

We recall that

(.3 . 5 . 9)  
~ n,T ~

where E is defined by (3.1.6). This means

~Ifl~T ~~~ ~ n,T

So the problem reduces to the problem of inversion of E. Now from

(3.1.6) it is clear that ~ is a symmetri c, banded block-Toeplitz

matrix, Which makes it easier to compute ~~~
. There are efficient

algorithms for inversion of symmetric block-Poeplitz matrices, e.g.

see Friedlander, Murf , Kailath and Ljung (1978). The idea is that for

an N X N toeplitz matrix R the inverse can be represented by

I(1 1 (L~U L U )  ;

where

(b ;

:
.

. 

0)

... • 

b~~ ~1.

~~~~~~~ -~~~~~~ II IT~~~~~~~ ~~~~~~~~~~~~~~ 



—-5 - 
~~~~

- - -— --— - -

~~~~

j 0 • 0

I mNN
= 

t •
%
. .

\a1N ... a
~~~~

0

/ 
l

• 
0

f afl~~~
U = i  • ,
—.1 .~~~~ .

\~~~~~.:.~~~ N l /

/ 0  0

— f b~~~~~~ ~~~~

— 

¶ 
. .

. 
.
.

Now the sequences a and b can be found recursively. This baa also

been extended to the block-toeplitz case. Now, when we have a banded

toeplitz matrix then there a.re simplif’ications in the recursive formulae

(similar to the simplifications that arose in solving (3.5.11 )) and this

has been done, in the scalaz’ case by Dickinson (1978). It appears that

the method could be extended to the ease of’ symmetric banded block-

toeplitz matrices.

38

- - 5  --- -5  _ _ _ _  —-5-— - - -5—-~~~~-—--



Additional Computing Hints.

After computing F(0) and !(o)’ there is one more tedious computa-

tion in the Scoring method and that is the computation of

(3.5.10) F’ (F (0) Q 
~~~~~~~~ 

)F

If’ we look at the definition of F in (3.2.14) and (3.2.16 ) we notice

that to compute (3.5.10 ) we have to compute terms like

(3.5.11) [vec(~~j ø Lr ) 1 l (~~~)0 ~~~~ vec(~~~~ 
~ 5 )

i,j,u,v= l , . . . ,  in, r,s = 0,1, ..., q

And also terms that are essentially of the form (3.5.11) except that

one or both of the L’ s might be replaced by L’ . Now using lemma

(3.1), (3.5.11) can be rewritten as

[vec(~~~~~L
r)J vec[f(Q)(~~v~~ L)C(O)

1 
~

which, using lemma 1(1) of the Appendix, is equal to

(3.5.12 ) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .

Now let

1,lm
A -l

‘
ml sin

39
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then by just carrying out the multiplications in (3.5.12 ) we see

that it is equal to

Note. Throu~~out this paper we have assumed that = 0.

However in practice the mean of is i~nk~~wn and will be estimated

by

— l~~~
~i

i

Then the estimating equations will be the same as in this paper except

that wi].]. be replaced by ~~ -~~~

1~0 

--— - . ~~~~~~~~~~~~~~~~~~~~~~~~~
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4. Estimation in the Frequency Domain.

11.1. Preliminaries.

For a stationary process (
~~, t = 0, 4-1

, ...) with mean zero and

covariances = ~ ~~~~~~ s = 0,+l, ..., the spectral density matrix

f is defined by

(1 1.1. 1)  r(x ) = 
~~ ~~~~~~

if the sum converges. The covariances can be recovered from t(.) via

= j  f(X )e~~~~

The sample analogue of the spectra]. density, the periodogram, is defize d

F by

(4.1.2) i~x)  = 

~~ 

C e~~~~ ,

where

= 

~~ 

= 
~~~~~~~~ 

s = 0,1, ..., ~-i .

We can also represent 1(x) in terms of the discrete Fourier transforms

(14.1.5) 1(x )  = w(x )w*(x )

where

111



—- ---5-- - - — — - --—- —---—-- -5 - _—— -— - -5- - - -

T
(4.i .4) w(x ) = 1 

— E ~~elt~~,
,~~~T t=1

and “i” indicates “ conjugate transpose” . For a fuller treatment see

Anderson (1971), Chapter 7.

If the proces s (~~ ) is Gaussian the log likelihood is

(14 .1 .5 )  log 2 = - 
~~
. I~I - ~ ~,‘D~~z — ~~~ log 2n ,

where

— I t
— 

— 
‘—1’ ~~~~~~ —‘i’ ‘

D = e z z ’  .
— —

Following 1~thitt1e (1953,1961) and Dunsmuir and Hannon (1976), we will

approximate the second term in (4.1.5) by

- . E tr( f
~~
(Xt)I(Xt)] ~

- :  where t(x ) and 1(x ) were defined by (4.1.1) and (4.1.2) and

= ~~~~~~~~~~ t = 0,1, ..., T-]. .

We shall also approximate the remaining terms in (11.1.5) by

- E logIf(x~ )I .
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We shell show the relation of this approximatio n to that proposed by

Dunamuir and Hannan (1976), in the Appendix.

For our problam

= D V
~t it~ ’ -.e -B

It is well known that the spectral density for the process defined by

(2.1) is given by

(4.1.6) f(x ) = ~~ B 1(e~~ )A(e~~ )V A*(e~~ )B*~~(eik )

where B (. ), A(. ) and V were introduced in Chapter 2. (See Ha,man

(1970)). It follows that the spectral density of the moving averag e

part is given by

(11.1.7) ~(x) = ~~ A(e~~ )V A*(e~~ ) = ~~~ E~~~e~~~~ ,

where we have used the definition given in (11.1.1). Now using (li.i.6)

and (11.1.7) -we get

(11.1.8) r(x ) = ~
_l

(e~~ )2(x )~
*_l (e~~ ) .

Finally, we approximate the log likelihood by

T-1 T-l

(11.1.9) A = - E logj~~~l - 
~~
. E tr(t 1

~~ )
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where

c m r ( x t ) ,  
~~~~ I(x~

) .

As in the time domain, we shall use the Newton-Rar~son and Scoring

methods to arrive at approximate maximum likelihood estimates that are

asymptotically efficient .

Note: For any square matrix A we have

~~log I A I  
1

~ ajj 
= cof ajj = (A~~ )

Using this we get

~~1og I A I  ~~~A

= } (
~~‘ )

,~~ (
~~~~)~~ = tr (

~~~~ ~~~
- )  .

Using this on (14.1.9) we get

1~~ f
(4.1.10 ) = - 

~ 
tr(f~~ ~~~~ 

+ 
~~
. 

~~ tr(f ~~~~~~~
. f 11)

- 
3. ~~ 

tr(~~
1I~) 

+ 
1 

E tr(f 1~~)

~t
=
~t

.

li .2. The First Derivative of A.

Derivation of

To find this we need to find the first order derivatives of

Now (1i.1.8) can be written as
144
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(4.2 .1)  = ~~~ 
, t = 0,]., ..., T-1

and B(e~~t), 
~~ ~~~~ 

Differentiating (11.2.1) with respect

to b~~~~~~ we get

(4.2.2) Qi) = - 

~~ (h) - 

~~~~~~ ~~~ ‘~~

i X h  -lX h

= -~~~E~~~~e ~ - ~~~~~~~~~~ 
t

where we have differentiated (2.2) to get

_ i Xh
(11.2.3) 

~~~~~~~~~~ 

= 
~rs e

Using (11.2.2) we can get the derivative of t r (~~~~~ ) in the

fbllowing manner

(11.2. 14.) 
~~~~~~~~~~ 

= - tr (f 1 

~~~~ ~~~~~~

= tr (~~
‘B;’Ere4e ~ 1

)

1 * 
-iX h

+ t r (~~ ~~~~~~~~~~ 
t ~~~~1~~~~~

)

i X h  -lA b 1
= e ~ tr( I~~~’~~’E~3 ) + e ~ ~~~~~~~~~ ~t~sr~

- l Ab  lA b

= e ~~ (3*l
f 

~~t ~rs + e ~ 
(h

~~~
½ 3  

~sr ~

r ,s = ].,...,m, h = 1,... ,p .
115 1 
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Notice that in the above expression the two terms are conjugates. Th

see this note that

lAth 1 1 lAth 1 1e (i~~~ Bt ~sr 
= e ~~ );.~

l A b  , l Ah ~~~
— e ~ (B’f 

di’ ) — e ~ (B f~~~~~I )- 

~-t—t -~t rs - —t’-.t .4 ra

-lA h

= e (B~~~ ~t~rs ~

Now using (4.1.9) and (14.1.10 ) -we have

-3. -1

4 ____ 
1 ~ 

tr (f t ~~~) ~ ~ 
tr(ç ~~~).2.5 

~~~~ 
= - 2 

~~~~ 
+ 2 

~~~~

From (4.2. 11)

~~t r (f I )  - l Ab
= e ~ (

~~~~~_ l l  

~rs

+ e ~ 
~~~~~~~~~ ~sr 

= 2 e ~ 
~~ ‘

since the sums are real and the s-ummands are conj ugates. The sums are
ix.’.

real because the s~”~nt~nds are func tions of e and because
ix -ix

e = e T-t 
~~ (1e.2.5) can be written as

46

____  

1~

- __________



= - ~~ e~~~t” 
~~~~~~~~~~~ ~rs + 

~ 
e

_t
~ th 

~~~~ ~rs

But we notice that the second term on the ri ~~~it hand side is o(T).

This is because

E e
_
~
Atb (~~~1)rs = ~~ Jo

2
~ 

_
~~~(B*_l )rsdX = 0

Since

= E d~ ~
_lA(j~~~)

and

f ~~~~~~~~~~ = 0 for h ~~ 0 j  = 0,1 

1~ te: We can omit terms that are 0(T) because of the forms of the

Newton-Ra rIison and Scoring method equations and the fact that

So we final ly get

~lAt vec (~~~~~~~~~)

_iAth
= - e vec (~~ ~~~~~~ , ii = l,. . . ,p
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I~~~~~~~~~~

- _ - - - —=
~~~~~~~~~~~

- - -

~~=~~~~~~

- 
~~~~~~~~~~~~~~~~~~~~~~~~ M 

~1

Putting these together for Ii = 1, ..., p we get

(14 .2.6) - 
~~~~~~~~ 

vec (Q~~~j~ )

where

-iA~ ~2iXt -piX~( 14 .2.7) ~~ m~~’(X t ) = (e ,e , ..., e

4 

m

Derivation of

We shall need the derivatives of which follow from (14.1.7)

and (11.2.1)

(11.2.8) = 
~t (0) ~t 

= 
~~~~ ~t~~kj~t

1 
i X s  i~~s *(11.2.9) (a) = 

~~~ 
i~t 

(~~~ 
e + e ~ )B 1

kt

k,2 = 1,...,m, a = 1, . . . ,q

USing these we get

~ 
tr( f 3.I)~~ 

= -tr (~~~ (~~~ B-~~~~B*l  )f • 1 }

= - . tr ( 1ft
1I~~~~~~~Bu )

= - ~~~~ tr( ~~~B~~~~~~~~~
1
~~~ )
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r 
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= - 2n t~t~’t~t~~21c

- 
i i

- * _]~~
2n ’ t~t~t~t ’kg

1 / _

~~t~ t% ~kt ’

since the matrix in brackets is Hermitian . This yields

~ 
t~~(ç’i)~~ 1 * 1~ — 

- vec (Q~~~~~~~~~~ ) ,

which in turn yields

~ tr (f ~~~~~)

(11.2.10) t 
= - 

~~~~-. 
~~~ vec (Q~~B~~~~~~~~~)

= - ~ vec (Q B I  ~~~~ ,

since the sum is real . Now, using (4.1.10)

= - 

~ 
E tr(f ’It ) + 

~ 
~ tr(~~’I~ )( 1 ~ 

.

Now

(li..2.11) 
~~~ 

tr( ’~t)II~.~ 
= - vec

This togethe r with (14.2.10 ) yields

14.9
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(4.2.12 ) -
~~~~~~ 

= ) (~~~B I B *Q~~~Q. l )

We proceed to derive ~~~~~
- . Using (4 .2.9) we have

(14.2.13 ) ~ tr(f ,~~I)~~ 
= - ~~ trt~~

1
~~~~~ kg e ~~~ 

~~~ 
e t )~~~~~~~~t l

~ 
ix~s _

~= - ~~~~e ( I ~~~~~~
)
~~

- l A s  * 1j .e t (Q; B~~~~~~ )
~~

Prom this we get

~~~~tr(~~~~t ) l A s  1
(s)  = - ~~. ~ e ~ (

~~ +~~9~~ 
)
~~

This means

~~t t r (~~
’
~ t ) l A s  * 1t 

= - ~~. ~ e vec ~~~~~~~~~~~~ 
) ,

-

- ~~ s t

which fi nally gives us

(14.2.14) ~~~~ e t vec ( , s = l,...,q

using (14.1.10). Putting (4.2.12 ) and (4.2.13 ) together, we get
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~~~~~

(4.2.15 ) vec ~~~~~~~~~~~~~~~~

where

1 iA~ ~ix~(14.2.16 ) 
~~~ ~~~‘ (x~ ) = (2—, e , . . . , e )® 1 2

Now, as in the time domain

So

(11.2.17 ) = G 4 vec (~~‘~~~~~~~~-~~~)

Note. There is an alternative form for (4.2.16 ) which we shall

find more useful in deriving the second derivatives of A. To derive

this alternative form we note that (11.2.3.3) can be rewritten as

~ tr (~~1~~) 
~ 

lAts
(14.2.18) = - 

~~~~
. [e

where

and we have used the fact that is a Herinitiaxi matrix. Now,

from (11.2.3.8 ) we get
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~ tr(f ~~I ) ix a
= - ~~~~ (e ~ vec + e vec 4] .

• But using lemma (3.2) we have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ tr ()~~~~~~ 
= - 

3. [e
ixt I 2 + e

ixt8
~~ ]vec ~~

-Which gives us

= i~
- E (e

lAtSI 2 + e~~~t~~~ ) vec

Using this and (11.2.12 ) we get

(14.2.19) = 
E 

~~~~

where

ix -ix -qix
(11.2.20 ) 

~~~ ~ H~(x~
) = (l,e t, ..., e t )~~~I +( 1,e ~~~~~~~ t )øx

Finally for we have the alternative form

(14.2.21) = 

~ 
vec (

~~-~~
‘)
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14.3. Second Order Derivativ es of A.

Derivation of

Using lemma (3 .1) we can rewrite ( 14.2.6) as

(14.3.1) ~~~~~ = - 

~~~~~
(L

~
®S

~~
) vec

Differentiating this with respect to ~~~‘ we get

( 14.3 .2) = - E~~
(
~ ®~~

1 ) 
~~~

Now, from (2.2)

vec~~~~= e ,

j =0 -j

which gives us

~~vec~~~ ix~j
= e 

~m2 ~ = l,...,p

Or

~~vec B ix pjx 
*

= (e , ..., e 
~
®

~~m2 1t

Substituting this in ( 14.3.2) we get

(li .3.3) = -

-; 53
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Dtrivation of

2
We shall fi rst find —

~~
-

~~~
— and then use

2 2
(11.3.14 )  ~ A 

= G’
~~~~~~~~ .

, 

~~~~~~~~.

,

Now, (11.2.6) can be rewritten as

= - ~ ~~(I~~® ~~ )vec ~~~~~~~~

Differentiating with respect to x we get

-l2 ~~vec~~~

= 
~~~~~~~~~ ~~~

) vec (
~~~ -s-—

~~vec~~~— 

= 
~~

~- vec~~~
= 

~ ~~~~~~~~~
4

®~~~
l ) ax

~~r letting x be the components of e we get

( 14.3 .5)  
2 

= ~~ (~~~~~~~l®~~~
1) ~~vec ~~

L - _ _ _  _ _



Now, as in (4.2.8) and (14.2.9)

~St
)

-ix 5 i X s

~~ 
=~~~~[e t Ekt +:~g e t )

Vectorizing these results in

~~vec Q
(11.3.6) (() ) = ~~~ vec (&~~) = , say

~~vec~~~ - l As
(14.3.7) 

~ (s) = ~~ fe ~ +e ~ 
~~k 1

But 
~~~ k 

= ye 
~~k = vec = ~~~~~ using lemma (3.2). So

a vec~~~ -lAs— (4.3.8) 
(a )  = (e ~ 

2 + e ~
m

Now (14.3.6) and (14 . 3 .8) yield

vec
(11.3.9) 

~~~~~~~~~~~~~~~ ..., ~~~~~~ ~~~~~~m

~~vec % l A s  l A s
(14.3.10) = ~~ (e ~ ~ + e ~ 

~~~
)

Finally putting these together we have
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~~VeC~~~ 1 *
(11.3.11) =

Substituting this in (14.3.5) we have

_ _ _  
1 

~~ ~~~~~~ S~
-’® ~~l ~~~~

Substituting this in (4.3. 14 ) yields

— 

- (li..3. 12) 
e’ 

= ~ (~ t~~~~ -l 0 ~~~~~ )~~~~
‘ .

Derivation of

~e ~e’

Differentiating (11.2.21) with respet to 9’ we get

2 *(11.3.3.3 ) ~~~~~~~~~~~~ = i~ -~~ ~~t

where

= ~~l~~~~~~~-l ~~l = ~~l ~~~~~~~~~~~ 
)S ’

~~

So we need to find the first order derivatives of ~~~~~ . Differentiating

with respect to x we get

-1 ~~t -1 -l -l
~r ~t~~t~~T % -

~~~~~ ~~~~

Vectorizing both sides yields
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~~vec~~~ 3. , ,
~~~~~(4.3.1 14 ) — ~~~~~~~~~~ 

= -[ (P~ O~~~ ) + ( Ø~~~
) + (

~~ Ø~~~ 
)] vec~~~~

~st= - ~ t~~°~~r 
, s ay .

Now, for x = we get

~~ve c P
_ _ _ _  = -~~~~ vec (~~ ~~~~

) - 
~~~~

which gives us

vec P
(14.3.15 ) = -

Similarly for x = we get

~~vec P - l As  l A s
( ) =~~~~~~~~ (e t~~~2 + e  t J ç )~

Or

~~vec P - l As  l A s
(11.3.16 ) _ ,

‘

~~~~ = - ~~~~~~~ ~ ~~~ +e  ~~ 

~~
) , s = ]. , .. . ,q

-s

Putting (4.3.15) and (14.3.16) together we get

~~vec~~~ *= - ~~r~it~ t ’

which means
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a ~~ p
(11.3 .17) 

ae ’ 
—t 

= - ~~~~

Substituting this in (14.3.13) we get

(14.3.18) 
ae ae’ 

= - c
This completes the derivation of the second order derivatives of A.

14.4. The Newton-BaiIlSon Method.

This method consists of solving the following system of linear

equations for P(1)

(14.14.1) - 

a2 a~ I ~~~~~~ 

(e(1)-~e(O) ) =

We get the matrix of second order derivatives of A, evaluated at

= P~~~, from (4.3 .3), (11.3.12 ) and. (4.3.18)

2
(14.4.2) - 

a A  
=

a2 ap ’

( ~ ~t~~~
®

~~~(o)~~t t B ~ (O) )0~~~~~~t~~~
\

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
).

—- - 
- - - 5- - - - -

- -~~-- —-5- — - 5 -  -5 -~~~~ -- -  
k_.___~~~~~~~~~~~~~~~ 

-
~~~



— _ 
- ‘  rrz-r - r t~~~~a~~~~._ 

_ 
—_——--=--—•— —_ --- --5 —-—-- -5.~~~~~~ _ -— —~~~

We get the first derivative of A, evaluated at = 2(e) ’ from (11.2.6)

and (11.2.17 )

/ - vec (
~~~o )

~~ 
(0 )Lt ) \

(14.14.5) 

~ I2~ (o) = (
\ r Z G 4~~~~ P (o)

We substitute these in (14.11.1) and solve for ~‘-(1)

li .5. The Scoring Method.

This method consists of solving the following system of linear

equations for

(14.5.1) - e(
~~2,) IP~ 

(& (l) -
~ (o) ) =

Now, we have seen in section (14.3) that ~~~~~~~~~ , depends on the

observations only throu~ i ~~~~ , t = 0, ..., T-l. Lemma (6)

of the Appendix allows us to replace 
~~ 

by £~ 
when taking

expectations of (Ii..3.3), (14.3.12) and (4.3.18). So we get

(11.5.2) ~ (~~~~ ,) = e ( - ~~ ~~~~~~~~~~~~~~~~~

~~~~
-
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(li.5.3) e( a~~
,) — e(~~. Ei~

(
~~~~

’® ~~l)H*GI)

~~ 0 ~~
‘)~~~~‘

- 

= 
~~ ~~ 

(~
;l 

0 ~~~~~ ~~~~~~ ‘ .

Finally -

_ _ _ _  = - 

~~~~~~ ~~
(E ~~~~~~~~~~~~~—— 8,t t

Now

1 -.3. ~-1 ‘ 1  -1

~t~~~ t®~ t ~~~~ 
0

~~t~~~St 0~ t

where

So

= 0 ,

which means

e ~

Hence

(14.5.14) e(a~~
,) 

~ 
- E G R (~~ I

’
O ~~1)~~4~

t

So we evaluate these expressions at ~ = 
~(o)  and then substitute them

in (14. 5.1) and solve the resulting system of linear equations for ~(i ~
•

6o 
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14.6. The Pure ?.bving Average Case.

In this special case we have

~~~~~~~~~~~~~~~~~~~~~~~ ~t 9 ~~’

which means

-3. -l

~t =
~~t~~t.~t

p = f~1]~ f~1f~l

Using these and (4.3.18 ) we can get the Newton-Rarhaon equations

- (~~ 
~~~~~~~~~~~~~~~~ 

= 
~ ~~~t

’
~~~ 

P (() ) 
~

• 
This is identica l to the equation derived by Ahrabi (1978). Similarly

the equation for the scoring method can be derived using (11.5.11)

t

~~~

Q Jh ~~~~~~ ) 
® 

~(o) )~~ Q
’ 

~ (~ (1) ~~ o)~ 
= 4 ye 

~t 
(0) ‘

which is identical to the equation derived by Abrabi (1978).

6] .
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5. Asymptotic Pro perties.

The four estimat es proposed in the precedi ng ~ iapter s are asymptoti-

cally equivalent and we shall show that they are asymptotically efficient ,

i.e. ,

•v’~ ~~~~~~~~ ~s~N( 0 , -,,~
1(p))  ,

where ~~~~ is the limiting average information matrix and

indicates convergenc e in distribution.

To find “(2 )
~ 

by definition we have

~8(p) = u r n  - ~~

T ’ oo

2
= 

_ i 
~~ 

a A)
T - o o

- - Now let

(5.1) ~(p) = — —
Then from (14 .5.2), (4 .5.3) and (14. 5 . 14) we have

1 .4 *(5.2) = Urn 
~~~~~~~~~~ ~~tT- ’ oo t

(2n 
*

=

~~~~~

-. J ~ (f’0Q~~~~dx,0 — — — —
62
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r 
:~~~~~~~~~~~T 

- TT ii ~~~~~~~~~~~~~
— -  

—

( 5 . 5)  
T- ’~~ 

- 
~~ ~~~ R (B~~ ®S

~
’)

~~~~

= - 2 j  

2it -1 ® ~
_l 

) * dX
(2ir ) o

(5.11) 

T-’  
1 ( 1 

~ G H ( ~~ 
-l ® ~~l )H~G ’)

t2i~
= ~~~~~~~~ J GH (~~~

1 ® Q- 1 
)H~~~’ d x .

i6~r’ 0

The four estimates are obtained from equations like

(5 .5) 
~(o)~~(~ ) 2(o)~ 

=

where 
~(o) ~~ an initial estimate of 6(P) and is consistent. We

can write (5.5) as

(5.6) 
~(() ) ,/T c (1)-.e) = .

~(0) “~~ (e (0) -.e) L

I 2r2(0)

where p is the true parameter value. Now

1 ~ log 2 
= 

1 ~ log £ + 1 ~
21og £ 

~~~ )
2 JT 

~ 2 24(e) ~~~ a~ a~’ 2 2 ~ 
— ~(o)

where I p - p ’i < p -~~~~I .  Now ( 5 . 6 )  can be rewritten using (5 .7)

6-~
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(5 . 8)  0 ~~ ~~ 
+ 

~ 
+

}
_.( ) ~ (l ~ p~~Q ’  p=p

~ 1og 2

~‘T ~~~

Now noticing that

1 ~
2
1og 2 

+ ~~~
, - ; ~(Q)

and that ~‘T (~ (0)
-P) is bounded in probability, we see that (5.8 . is

(asymptotically) equivalent to

(5 .9) ~~ (~ ~
) = ~~~~~ 

1 ~ logs

Theorem. If in addition to AssumptionS 1-5 of Chapter 2 we assume

that the ~~~~‘ S have finite fourth order moments, then

(5.10) ~~ (
~~~~-& ~

where 
~(i) 

is any one of the four estimates proposed in the previous

chapters.

Proof. using (5.9) it suffices to show that

(5.11) 
1 ~ log £ ~ N(o,~ (~ ) )

Let

614
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/~~~( vec (A.~,...(5.12 ) ~ =~ —q

\ vec V

where 
~~

‘ s and V were introduced in (~ apter 2. Now

~ 1og 2 _ r  ~- 1og 2

~~-i 
—

~~~~
. ~ pj  ~~~~~

which means

~~1o~~2 a log2
(5.13 ) a~ 

=
~~j~

— . a~
a2’

It follows from Assumptions 3-5 of Chapter 2 that is nonsingular,

which mean~

1 ~ log 2 - ~2’ -l 
~ log 2

2

Now, it has been shown by Nicholls (1976) and Reinsel (1976 ) that

A

(5.15) ‘~~ (t
~~~

-.~.
) —~- N (O , )

where 
~ (l)  is the estimate obtained by solving equations of the form

(5.16 ’ 
~ (o) L(i )~~ (o)~ 

= a ~~g 2
~—
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where 
~(o) is an initial estimate of ~ and ‘~~ ( o) ~ 

an initial

estimate of the limiting average information matrix of ~~~. Now

applying the same argument as we did for p we see that (5.16 ) is

equivalent to

(5.17) .,/~ (~ ~) = ~—l~~~~ 1 ~ log 2

~~~/T 
°

~~~

Now (5.15 ) and (5.17) imply

(5.18) -~~~~ a log £

Finally from (5.111), using (5.18), we get

(5.19) 
i a log £ —,

The desired result is obtained from (5 .9) ,  which together with (5.19)

gives us

(5.20 ) ~~ (
~~~ -& -. N(O,~~

’(2)) . 
Q.E.D.

Note. The approximation to the log likelihood used by Nicholls

(1976 ) is not identical to ours, i.e., (11.1.9). But as we shall

demonstrate in the Appendix it is asymptotically equivalent to it. This

means that if Nicholls had used (11.1.9) he would still have obtained

asymptotically efficient estimates, as we assumed in the proof above.
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6. Estimation of the Coefficients and the Covariance Matrix

of the ~~~~~‘ a in the Time Domain (The Scoring Method ).

For the model defined by (2.1), Reinsel(l976) gives equations for

the estimates of A.~,. . . ,~~~~~, B~,... ,~~~~,
, V, using Newton-Ra~~son

method on the (modified) log likelihood of the data. In this chapter

we shall use the techniques developed in the preceding chapters to

arrive at the equations for the estirnatesof these parameters using the

scoring method.

The Likelihood Function.

Assuming that 
~o _1 r

~~~~~~1_q 2~ and using the same rnethod

as in section 5.1 we have

(6.1) ~ y = c t e ,

where

(6.2) a = ~~(A~ØLi)

(6.3) e = vec(€ 1,...,~~~)’ ,

and ~ and y were introduced in section 3.1. Now, to derive the

likelihood function we need the covariance matrix of e. Using lemma

3 .2 we have

(6. 14) = vec (
~~~~

. . ~~~~~~~~ = 
~~~,T 

(
~~T )

L - 

--- — - -~~~~~ J
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But

— N(O,~~~ØV)

So

(6.5) ~~~~~~~~ ~m,T~~T®V~tu,T = 
~
®

~‘r =

say , where we have used lemma 3.3. Using (6.1) and (6.5) we have

— N (0, a ~ a’ ~~~~

So finally the modified log likelihood is

(6.6) log 2 ~~
) = - log 21t - ~ logi ~~

1a ~ a’ ~~~‘ -l

-

We can further simplify this by noticing that as in (5.5.2)

= = 1

and

t~ I = ~vØi j = I v I T

So (6.6) become s
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(6.7) log £(~ )=_ ~~ log 2n - ~- log vi -

The Estimation Method.

The parameters to be estimated are

= vec A1 , i =

= vec , j  = l,...,p ,

We let

(6.8) ~= ( (~)
where Cr’ (c&j , ..., Cr~~), ~~~‘ (~j~ ..., f~). We are going to apply

the scoring method to arrive at approximate maxim um likelihood estimates

that are asymptotically efficient. It is well known (See Dunsrnuir and

Hannan (1976). ) that

(6.9) lim ~ ~
2log 2 = 0

T - c x  T

This means that the limiting average information matrix is block diagonal .

So we can write separate equations for estimates of and V without

violating asymptotic efficiency of the estimates. We shall first derive

the quations for 
~ (i)’ 

the estimate of ~~ , 
by the scoring method. These

epiations are
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(6.10 ) _~ ( a~1og 2
) 1 ~.

(0)

- 
a log 2
a~, I~~~.(0)

(0)

where 
~ ( o)  and 

~ (o) are initial estimate s of ~ and. V that are

consistent of order T
_
~
’2, as given by Reinsel (1976). We proceed

to find the first and second ord er deri vatives of log 2 with respect

to

The Fir st Order Derivatives.

Derivation of ~~ 2

DIfferentiating (6.7) with respect to ~~~~ we get

~ log 2 
= ~~ ~ ~~

‘ 

~~s 1a~ ’ 
~~~ ® L~’ ~~~~

= ( ‘wa ’
~~~Ø ’~~’a ’~~f’&4 ) vec(E1.®L”)

using lemma 3.1. Using the same method as used in deriving (3 .2 . 5 )

we get

(6.11 ) a ~~ 2 = 
~
, (a ’~’~~Ø& f ”a ’~~ )

where
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1

(6.12 ) -= 
~~l’ ~q )

and was defined in (3 .2 . 14 ) .

Derivation of a log £

This was derived in Chapter 3 and is given by (3 .2.7),  which

states

(6.13 ) a ~~~~~~~~ 2 
= -E ’ (yør~~~~ ) .

Now we need to express F ’1 in terms of the parameters in this chapter.

We recall that

(6.114) F = ~ (uu ’)

where

-: as given by (3.1.11). Now using (6.1), (6. 14), (6.111) we have

r = ~ ( e ’a’) = e,9a ’

Substituting this in (6.13) we get

(6.15 ) a ~~ £ 
= ~~~~

‘ (~ øa ’ 
~ 3~~a~~~~ ) .
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The Second Order Derivatives.

Derivation of ~

Differentiatin g (6.11 ) wIth respect to ~~~~ we get

(6.16 ) ~~~Og~~~ = E~ (a 1 (E Ø L h )a
_l

~~~ 0 ~~
‘ 

~~~~~~~~

+ a~~ ~~2~d 
-l (E ’ ® L’ h )~

‘ ~~~~~~~~ ~ + ~~ a ’ 1
~~~a ’

(E ® Lh )a~~~~~I

Now, using l~nw~as 3.11, (6.16) can be rewritten as

(6.17) a
2log 2 

= -~~~‘ vec [a ’ 1J ~~a~~~~~y~’ ~
, -l ® L’~ ~~~~ 

-l

+ e’ -l (~j~ ® ~~~ h 
~~~~ ~~ ~~~

‘ 
~~~

‘ ~~~‘ -l + ~~~‘ ~~~~~~~~~~

-1
(E~~~~~Lh )a

_l
Z~~~~ ].

Taking ~~ ectations of both sides of (6.17 ) and using (6.5) we have

(6.18) g(~~~log 2 ) = -2~~’ ~~~~~~~~~~~~~~~~~~~~~~
ajj

-

~~~

‘ vec 1 ~ ~.f ’a~~ (E~~ O L h ) i]

As we shall now show in the Appendix (lemma 3) the first term on the

right hand side of (6.18 ) is equal to zero . Using this and lemma 5.1,
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(6.18) can be rewritten as

~~ 
a2log £~ = ~

, (~~®~~~
‘
~~~~~~~ d

1
) vec (E O Lh )

aci aa~~ — — — — — ij —
— iJ

From this we finally get

(6.19 ) ~ (~~1og 2 ) = ..i~’ (~Ø a ’ _1~_ _ l
)~

flerivation of

Differentiating (6.11) with respect to we get

(6.20) = ~ [@ 1
( E ®  L

h
)~~Oa t l

J
l
a~~~~~~

+ a~~ Oa’1
~i

1a~~ (E ~~ L~~~ 1

= ~~~
‘ vec[a’ i ’a~~~~~’ (E’ ® L’~ ~~~~

‘ -l

+ ~~~
‘ 

~~~~~~~~~~~~~~~~~~~ 
~~t_ l~

using lemma 3.14. Taking expectations we have

(6.21 ) ~ (a l og 
h ~ =~~~~‘ vec(fB t~~~(Ej O L ~h )&

_l ]
a~~ab1.

+ ~~~
‘ vecE~ ’ ~-r~a ’ ~ ® Lh )~~

l
~~ I .

7)
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The first term on th e right hand side of (6.21 ) is equal to zero . This

follows from lemma 2 of the Appendix. Now using lemma 3.1, (6.21 ) can

be rewritt en as

) = ~~i (4 I

a~~ s~~~

_l®u ~~~

_l

i

l
a~~~

l

) vec (~j~ O? ) .

From thi s we finally get

(6.22) ~~~~~~~~ ) = ~~ 
(j’a ’~ ’ 

~~~~O a’ i~~a~~)E

Derivation of ~ (~~1Og~t)

This has already been derived In (3.3. 114 ) and (3.3.15 ) which together

yield

g ( .og t) 
= -E’ (~~1 

~ ~~® r~
l )~

But

So

(6.23 ) ~ 
~~~~~~~~ = ~~ ~~~ aa a’ 

~~
‘ 

~® a ’ ~‘,f~’a 1 )E .

Putting (6.19), (6.22), and (6.23 ) together we get
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~

I

(6.214 ) ~~ ( 2 ) = 

a ’ ~l)  
® ~ ~

1
3-la~lj

(LE) = W , say .

The Scoring Me thod Equation for

Substituting the expressions derived for th e firs t and second order

derivat ives of log £ in (6.10), we get th e desired equation, which is

(6.25 ) W (0) (~~(1)-~,(0 ) ) = W
(

~~~~
)

where

(6.26 ) = ~~lO~~2 A

~(0) a~
(0)

and a log £ is given by (6.11) and (6.13).

Estimation of V.

Once we have 
~ (l)’ we can replace a and ~ with 

~ (l)’ ~(i)
in (6.7) and maximize the resulting function, which we denote by

log 1 . So we will maximize

(6.27 ) log 1= -~~~~~ log 2i~ - ~~ iogIVI - 

~ ~~ (1)a l
~~~~~~l)~~.
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Now the last term can be rewritte n as

(6 .28 ) 
~ (l)~ (1)~~,T~~T ® 

~~,T~ (i)~~(l ~~~~ 

= - 

~~~

This follows from (6.1) and (6. 14). Now it Is well known that the value

of V which maxImizes (6.27 ) is given by

A
(6.29) Z (i) = 

~~ t~~i ~~t
(l)

~~t
(l)

See Anderson (1958), Chapter 3. We can express V (1) in terms of

y using the same argument as in (6.28). So

1 , ~-1~~(6.30) 
~ (i) T ,T~ (1)~ (l)~~ ~ (1)~ (l)~m,T

We could theoretically carry out further iterations , but this would

be computationa ly costly. The estimates given above are asymptotically

equivalent to the estima tes derived via Newton-Ra~~son method and

henc e are asymptotically efficient as demonstrat ed by Reinsel (1976).
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Appendix.

We shall now derive some of the results that we have used in the

previous chapters .

The Time Domain.

Lemma 1. (i) For any two matrices A and B
r x s  s x r

(1) tr (AB)  = (vec A)’ vec B’

(ii) For square matrices A and B

(2) tr(AO B) = tr (A) . tr(B)

Proof. (1) and (2) are easily verifi ed by writing out the

two sides.

Lemma 2. ~~ 
~~
‘ ~uv’ ~rs ’ and L as defined in the time domain

(3) tn (E ØLh )~~1 
~~rs ® Lk ) J 0 ,

for positive integers h,k.

Proof. From (3.5.5 ) we have

T-1
= 

E 
(B (i) ØLI )

i=0

Similarly

T-l1 
= E (A ( i) OL i )

j r ~0
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So the left hand side of (3) can be r~wnitten as

T-1 

~~~~~~~~~~~~~~~~~~~~~~~~
j =O 1=0

Now, Lemma i (ii ) applied to the summand in ( 11 ) yields

( 5 )  tr( A~~~~~~~~~~Ers ) tr(L ~~~~~~~ ) = 0

since i+j -fh +k is a positive integer and

tr(L~’) = 0 , r = 1,2 , . . .  .

This means that ( 14) is identically zero which proves the lemma.

Lemma 3.

(6) ~~
.
‘ 

~~~~~~~~~~~~~~~~~~~~~~~ =

Proof. The left hand side of (6) is a column vector , a typical

element of which is

(7) vec (E ®Lk ) vec(@ ’
~~~(E ®L h )~~~~ }

uv — i j  —
This follows from the definitio n of E as given by (6.12). Now

applying Lemma 1(i ) aM Lemma 2 to (7) we show that it is identically

zero .
Q.E.D.
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Note: It Is obvious that by the same reasoning as in Lemma 3

(8) ~~~‘ vec[a ’
~~~(~~ . ® L”)~

’
~~~J =

which was used in (6.18).

The Frequency Domain.

Lemma 14. For A( . ) and B( .- ) as in C2iapter 2

(~~) j  
~~~~~~~ ~~ = j  logiBB i dX = 0

where we have omitted the argument e~~ .

Proof. We shall prove this Lemma for A and the argument for B

is identical . We shall show that

(10 ) 
~~~ JO

2

~ 
~~~~~~~~~~~ 0 , h 1, ..., q .

Then since for a = 0

J2~T 
logIAA*~~ j

2ii 
iog~~~I~~. = 0 ,

the desired result will follow. To derive the left hand side of

( 1 -  ) we have

- 
__ __ :



- -----5

tr (A* A E rse~~
hA * ) + ~~~~~~~~~~~~~~~~~~~

= tr( A~~Ers e~~~ ) + t r (~
*_l

~~re~~~~ )

= e1
~~~(A~~ )sr + e

_
~~

h (A*~~ )rs .

From this we get

~ log I AA* I 
~~~~~~ ‘-1 ~~~= e  + e  A

So finally

1ogfAA *(~~ f2 ~ e~~~A’ -l~~ + 
12n e~~~~A*l dX = 0

since A’ 1 is a power series in e~~ and A*~~ a power series in

and

e1’
~~cv~. = j2

~ 
~~~~~~~ = 0

Q.E.D.

Lemma 5. 
~~~ £~‘ V as in Chapter 14.

T-1
(U) 

E logI f ~ I ~ -m log 2it + log I Vi
t=O

Proof. The left hand side, as T -ø ~~, tends to
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(12 ) 
~~ J logi ~~~ 

) I d X .

But

I~~~(x )I  = (2n )~~ J~~
_1 

A*B*~lt = (2n )~~~ ~I *I 1IAA * I ,

which yields

iog~f(~ )~ = -m log 2i~+ log~VI _ 1og~~~ *~ + 10gIAA *I

So (12 ) becomes

-m log 2n + log~VI + .1. 
[ (logIAA *j ~~~~~~~~ ) 

~~

-m log ~~ ÷ iog~~ l ,

using Lemma 14.
Q.. E. D.

Note. It follows from Lemma 5 that the modi fied log likelihood

used in Chapter 11, given by (4 .1.9) is asymptotically equivalent to

the one used by Dunsmuir and Hannan (1976) and Nicholls (1976). One

consequence of this is that maximizing (4.1.9) with respect to

..., ~~, B~, ..., ~~~~ , V leads to asymptotically efficient estimates

for these parameters. We have used this in the proof of the theorem in

Chapter 5.
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Lemma 6. 
~~ ~~~ 

as in Chapter 14

(is ) K 
~~ 

_
~~~

lJ ~~ 
t = 0,1, ..., T-l

where

~IAH = tr

for any matrix A and

= o(l )

Proof. Using (11.1.2) we get

-is)”.
~~I = !~ V e-t 2n 

Is I<T ~l~~
5

So

—i s)L —Is) ’.
(114) €

~ ~~~~~~~~~~~~~~ 

= - 

~~ I s I ~~ T-l 
V e - 

~~~ ~SkT-l
5 

t

Using triangle inequality on (114) yields

(15 ) 1
~~~t~~~t

11 
~~~~~ 

~ IL5 II 2nT I I ~~T l
LsII ~~~~~~~

say. Now the first term of is 0( 1). This follows from
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‘
~~‘1~~

2

which means

~~~ ~~~~~~
1 - ” ° as T .*. c~~,

Is I >T

The second term of is also 0(1) because

(i6 ) 
~~l> ’.=O = sV ~~~~

S =

this follows because f is a rational function of ~~~ Now (16 )

implies that

~ isV5II ~j E IIs~~1I < c .
~s kT— l

Q.E .D.

Note. Lemma 6 say s that

u r n  
~ 

I
~ 

=
T ~~~~~~~~

and the convergence Is unifo rm in t. This enabled us to derive a

suitable approximation to

2
_ _ _ ‘
~~

p 
~
p’

in section 14.5.
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