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Maximum Likelihood Estimation of the Autoregressive Coefficients
and Moving Average Covariances of Vector Autoregressive
Moving Average Models

Fereydoon Ahrabi
Stanford University

1. Introduction.

. The purpose of this paper is to derive asymptotically efficient

estimates for the autoregressive matrix coefficients and moving average
covariance matrices of the vector autoregressive moving average (VARMA)
models in both time and frequency domains. To do this we shall apply

the Newton-Raphson and scoring methods to the maximum likelihood

equations derived from modified likelihood functions under the Gaussian

o
assymption. ~— .

The parameterization in this paper differs from that of other works

in the vector case, except Ahrabi (1978) which deals with the same

estimation problems in the vector moving average case, and it follows

that of Anderson (1975), Parzen (1971), and Clevenson (1970) in the

scalar case. The usual parameterization of VARMA models is in terms

of the autoregressive and moving average coefficients and the covariance
i matrix of the disturbance vector L
| (1969b,1970 ) has considered the problem in the pure moving average case

With this parameterization, Hannan

in the frequency domain. Nicholls (1976) has extended this work to the
estimation of full VARMA models which also contain exogenous variables.
Reinsel (1976) has considered the problem in the time domain and has

derived estimates using the Newton-Raphson method on the (modified)
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maximum likelihood equations. An iterative nonlinear least squares
estimation procedure has been proposed by Tunnicliffe Wilson (1973 ).
Other papers in this area include Akaike (1973), Kashyap (1970),
whittle (1963), and Osborn (1977).

As indicated above, there is an alternative parameterization
which we will use in this paper. One advantage of this parameterization
is that we do not need to assume that some past values of st's are
fixed. Also as Hannan (1975) has pcinted out it is easy to recover the
original parameters using the spectral density.

Newton (1975) considers, among other things, the estimation of
moving average covariance matrices in the pure moving average case in
the frequency domain. But his method is different from the methods
used in this paper. He regresses the elements of the sample spectral
density, evaluated at some equidistant points, on certain trigono-
metric functions using the method of weighted least squares.

To summarize, Chapter 2 describes the model and the parameters to
be estimated. Chapter 3 deals with the estimation problem in the time
domain. The modified likelihood function is derived under the assumption
of normality, using the method developed in Anderson (1975). Then the
Newton-Raphson and scoring methods are applied to the resulting maximum
likelihood equations. The chapter closes with remarks about the computa-
tional problems. The estimation in the frequency domain is discussed in
Chapter 4. The modified likelihood function used is similar to that of
Whittle (1953,1961) and Dunsmuir and Hannan (1976). Again the Newton-

Raphson and scoring methods are applied to the maximum likelihood equations.
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The asymptotic properties are discussed in Chapter 5. The estimates
are shown to be asymptotically efficient under suitable assumptions.

In Chapter 6 we return to the usual parameterization and derive
estimates for the autoregressive and moving average matrix coefficients
and the covariance matrix of &? using the scoring method in the time
domain. Finally in the Appendix we present some of the mathematical

results used in previous chapters.

TP




2. The Model.

We have observations, X2 x2, cesy x,r, on the process {xt]

generated by

(2.1) EB =%£S-E~,t=o,:l, ey
1=O~1¥4:-1 L L R

where xt's and st's are m X 1 vectors and Ei's and éj's are

m X m matrices and B =£D=I' Let

~0 ~m
i
2.2 B(z) = B .z ,
(2.2) (z) é:o B,z
(2.3) A(z) = }E Az .

Assumption 1. The St's are independently identically distributed

random vectors with mean zero and unknown covariance matrix V.

Assumption 2. The zeros of |B(z)| 1lie outside the unit circle.

Assumption 3. The zeros of |é(z)| lie outside the unit circle.

Assumption 4. A greatest common left divisor of A(z) and B(z)

is I

Assumption 5. The matrix (gp, ixq) is of full rank, i.e.,

r(gp, ,{\q) = m.

Remarks.

(1) Assumption 2 ensures the stationarity of the process. It also

makes N independent of 5t+l’ 5t+2’ soe o




(1i) Assumptions 3, 4, 5 ensure that the system is identified. By

this we mean that the autocovariances of the process defined by

(2.’4’) !s= gxtx't"'s ’ s=o, :1, cecy
determine A(z) and B(z) uniquely. (See Hannan (1969a)). In particular
we can get the moving average matrix coefficients from the moving average

covariance matrices defined by

(2.5) §(8)=8u u! g WDy X anny g

uniquely, by solving the following system of equations

(s) 94
p =z ; VAL sy 8=0,1, +e.p Q.
i=05l s+l

Finally, assumption 5 is not a necessary condition and it can be replaced
by other conditions, see Hannan (1971) and Kashyap and Nasburg (197h4).

The parameters of interest are

-]
E( )=62t2{‘,+s s S=0,l, .-o,q,

Er, r=l’---,po

| Since we will differentiate the log likelihood function of (xl, seny x,r)
l with respect to the elements of the above matrix parameters, it is more

convenient to vectorize them.

S« A sl




Definition. If C = (cl’ . olels E-n)’ where c . 's are column

vectors,
5]
vec C =| . .
n

Before we proceed with vectorization of the matrix parameters, we

notice that £©) 1s symmetric and hence should be treated differently
from g(s), s=1, «c., Q. In vectorizing g:_(o) we only need to

vectorize the diagonal and lower diagonal elements. So we let

L 0)
1) I
20 = dg E o5 . ’
+() |
mm

952) - v 5100 i

where vec 1is an operator that vectorizes the elements of the matrix

that it is applied to, ignoring the diagonal and upper diagonal elements,

e.g., i
,ﬁ O 0
veelo 5 2| ={8 }|.
] L 8 1 8
! So the parameters are
1
s
90= (2) ’ gs=vec§ ’ 8=l, -.-,qo
;




Finally we can state that the parameters of interest are the components of

e where

(2.6) p' = (E',Q,') = (Ei: ecey EI‘), 9('): Q]'_, veey Q"l) .

We shall also find it useful to introduce another vector, § where

0)

(2-7) §' = (vec’ E( , vec! g(l)’ ceey Vee! E(Q))

_ (Br. A ar
= (85 835 --+» 8g) -

Remarks.

(i) We can find a matrix € 5 such that for any m X m matrix

>

(2.8) dg(A) = C vec A .

It is easy to see that C 1is obtained from the m2 X m2 identity matrix

by deleting all the rows except the 1lst, m+2nd, 2m+3rd, ..., m2th, i.e.,

e




B O .t L0 A i i by o 5 b

3
{
|
:l

I =(e,e’c.o,s).
~m2 ~l7 ~2 m2

(1) Similarly ve can find an 281) x u® matrix D such that

for any m X m matrix A
(2.9) vec A =D vec A .

It is easily verified that D 1is obtained from I o by deleting the
m

following rows

1, m+l, 2m+l, ..., (m=l)m+l
m+2, 2m+2, ..., (m-1)m+2

2am+3, ..., (m-l)m+3

(m-i Jm-+m




3. Estimation in the Time Domain.

3.1l. The Likelihood Function.

We are concerned with maximum likelihood estimation, so the first
step is to find the likelihood function. To find this we need to know

the distribution of ¢ But in the previous chapter we assumed that

Nt.
t f.t's are i.i.d., without assuming any particular distribution. However
g in deriving the likelihood function we shall treat €, ,'s as normal

~t
vectors and later we shall demonstrate that the resulting estimates have

the same asymptotic covariance matrix irrespective of the distribution

oot

of gt's as long as the assumptions in Chapter 2 are satisfied.
Even with the assumption of normality we cannot find the exact

likelihood function except in the pure moving average case. In order to

find an approximate likelihood function, following Anderson (1975), we ]

assume
X():x-l: e e =xl_P=g.

The likelihood function we will derive is in fact the conditional likeli-
hood of NARREEEY /), given that YO’X-]_""’Xl-p are equal to their expected

values. Now

X’t 2 Elxt-l + ecee + gpzt-p = Et .

Transposing both sides yields
0Bt gl T B

Writing these equations for t =1,2, ..., T, we get




R A a0 o s i G s 0 i Sy

2iad i

9 Q

4 /xi :

(3.1.1) E + . gi tasy x'
Y \ ¥ :

[

-p

As in Anderson (1975) we notice that

g
1
4 a
.1 = El' . 5}

where

Similarly

Yr.o

and so on. This means that we can write (3.1.1) as

10

3=




I g

S —

[
(5.1-2) L ‘!gd. = 9 )
where

z' = (xl’ ceey YIT) ’ H' = (21: csey E’I) .

Now we shall need the following lemma in vectorizing (3.1.2).

Lemma 35.1.

vec ABC = (' ® A)vec B .

See Minc and Marcus (196k4).

Using this lemma on the left hand side of (3.1.2) we get
(3e2eD) E (&@Ei)vec Y =vecU.
i=0
Now let
s-§ @), y-veyr, up-vey,
i=0

then (3.1.3) can be written as

(3.1.4) S$y=u.

T A TR A

i




Because of the Gaussian assumption, to find the likelihood function
(the density of y) we only need to find the covariance matrix of u.

Now, it follows from the normality of gt's that

%
(5.3.5) (E )“' N(Q, z)
St
where
g0) - LA) @ & n D
g @) g‘(0) el 2@} P e O
: . b . i % . i . Z(Q)
(6.1.6) =] '@ S i “ |
9‘ : > . ; y s . ! i . ¢ g . Exj
: SRR o |
4 i LY ‘g - e

) ” I;r®§(0) P (£.®§(l) . k@g(l)') AP (k'q®§(q) & Eq@,g(q)') :

The following lemma will enable us to derive the distribution of u

from (3.1.5).

12

-




Lemma 3.2. If A is any r X s matrix,

=
vecé "Sr,s vecé,

vhere 51' a is a square rs X rs matrix partitioned into r X s
J

submatrices such that the 1,jth block has a 1 in the j:lth position

and zeros elsewhere. (See MacRae (1974).)

Proof. K can be written as

Ell Eel L qu
, Be,s =} - ’
il
; Elr §2r L LN Esr
|

where E:l,j is an s X r matrix with 1 in the ijt‘h position and zeros

elsewhere. Now

51 %5
Er,s vec‘é:‘lsr,s vec(ga_, Ly 5s)=5r,s : i - e
a b
“ ~8 ~Y

S
b — z E a .
, Ml i

th
But gug‘ is an r X 1 wvector with &, in the i position and zeros

elsewhere, hence

.- Al > o O\ " %
ekt oo 5 R SRS TR — i e e NG




This means that

[\

= vec A'
~

QO+ 00 O
|

L]

Qu Ea Do

Note. We shall use the convention

Now we use the above lemma to derive the distribution of u. By
definition

]
E=Vecg=vec(21, oy BI‘) .

Now, using lemma 3.2 we have

vee (), oo, 51,)' = K1 vee (), -ev, W)

This, together with (3.1.5), yields

L B N(Q: E) ’

where

1k




Lemma 35.3.

(1) If A and B are mxX n and r X s matrices respectively,

then

K, s BB DK, , - 24 -

(11) §r,s o -lsé,r s

See MacRae (1974).
Using this lemma and noticing that £ is given by (3.1.6) we get

(3.1.7) r = E(O)QI?I s (él)®£' +§(1)'®£)+“. § (g(Q)®£'q + §(‘1)' ®£(Q)) :

We shall be using these lemmas in the later chapters as well.

Finally from (3.1.3) we get

L~NQ gt L™

This gives us the (modified) log likelihood function

1 -1 1 -1 Tm
(3.1.8) logt(y) =-zy' 8 [ 8y +5logll™| - 7 1og2n,
since |8 =1, as ve shall see in (3.5.2). The maximum likelihood

estimates are a set of roots of

15
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3 log £(y)
og

So we proceed to derive the first derivative of log £ (x)-

3.2. The First Derivative of log £ (y)-

In differentiating the log likelihood function with respect to g

we only need to differentiate the first term and by using

complete the derivative. That is

parsy) Ayeriay

dlog £ _ 1 g
(3.2.1) 'Tg_’ -2( 3 e 35 " 1

We shall also use the following lemma

Lemma 3.4. For any two column vectors x and 2z

vee(xz')=z®x -

Proof. It is easily verified by writing out the two sides.

The Derivative With Respect to Autoregressive Coefficients.

! Let bg) denote the i,j® element of B, then from (3.1.3)
(5'2’2) —m-—-g‘ij@‘]&‘r, 1,J=l, noo,m.
bbj_.j

_.} Using this we get




a(x'S'F'ls X’

6-2.3) -yl @ Y By ®L e y
E¥
-2y g E, @ L )y

Now using lemma 3.1 we have

Y8 E O L)y = veely gL (g, @ KT )]

= (xv®xu§|£'l)vec(gij® L'.r) .

This together with (3.2.3), yields

-1
oy's'L 8 y) z
(G.2.4) % < k =2 @ LYLE, »
~Y

where
E = [vec(li:_ll ®£r), vec(gel®£r), b sy vec(gtm®£r)], r=1, «e., p.

Which in turn yields

=1
oy's'L "8 y) il
(3.2.5) SE - 2(xl Dy'8'T >§ ;
where
(5.2-6) E = (gl, coey Ep) .

Finally using (3.1.8) we get

17
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(3.2.7) olel. gy ey

The Derivative with Respect to Moving Average Covariances.

As indicated by (3.2.1) we only need to find

2L ey

E 2 .
However it is more convenient to find

dy'sr s g
9

R

which is related to the former derivative. To find the relationship we

note that
ar ar \'
{0 " | 10)) *
Bcr:lJ bo:ji
where G_'Efj)) and Uj«i)) are treated as different variables. This means

Ay gL sy ANy g™ sy

(©) ¥ (©) 3
acrj_,j Badi
which in turn yields
rarp-L ™ -1
3.2.8) SLAL sy oxal 3y
a?ri(? ao}‘;j !
where " — " indicates that we take the symmetry of 2(0) into account.

In view of (2.8) and (2.9) using (3.2.8) we get

18




4

T

e A T ¢

-1 -1
dy's'l 8y oy's'l 8y
(3.2.9) an—— (G o——_
g o8

where G is a [qm2 + "—’%Lll] X (q+1)m2 matrix which can be written

as
G n
o 9,2 mgmél) g
2
G/ m
and

91 = (2; 9), 9,2 = (22: 9): 95 = (9: S)

with C and D as in Chapter 2. It is obvious that from (3.2.9) we

can conclude

dlog ¢ _ . dlogt
(3.2.10) S6 = g ¥ .

We now proceed to derive a—l—is—z . Using lemma 3.1 we have

38
-1 i 3
OY'SL "By O vee(y'sL 8y
3.2.11) ' - ]
38 38’
® d vec P
= ( '@ |$9
IN I agl
or
= -( '3 QD y'B )vec(r‘-l —~' [‘-l)
1 1 d vec r
- -y oys)crert) —
o vecr
-1 -1 ~
- -yl orylt) —
X X ¥

et AR s o R R




3 vec [ or
i To find ——— we need to find —7—7 for s= 0,1,...,q9 and

i,j =lye..,m. From (3.1.6) we get

ar
(3.2.12) g‘m=§dj®5r ’
ij
d7T
(3.2.13) _7'7 43®L5+E31®L &=L sy Be Bid =Ly snny By

vhere Eij is an m X m matrix with one in the i;jth position and zeros

elsewhere. Now, vectorizing (3.2.12) yields

d vec

¥ D L
;(5)— = vec(gij®5r) =25 s,
ij
which yields -
d vec F
— e @9 410) (0)y_
(5'2'1h) ae (~11 b 21 y Sesy gm )"F~O’ say .
<0
] Similarly
d vee I’
o ol (s) (s)
:' (3.2.15) 37 = g"s = (a v waly qm )
| ~s
E' where 1
ﬁ! (s

! vedEJ®L3+EJi®L],s= yousyQ 4

| So the derivative with respect to ZB:' is

20




(3.2.16)

Now using (3.2.11) we have

dyerTey
Y;

- e (M@ y) -

(3.2.17)

To complete the derivative of 2lop f we need to find the expected

d¢
value of (3.2.16) i
dyeL ey e %
e = = -E' & vec(D By y'8'L ")
o8
- - vee(L'g8 T &' L)
= <F* vec I .
Using (3.2.1) we get
(5.2.18) dlogt  Lpirlyy® e g-vee L7
d 6
Finally using (3.2.10), we have
(5.2.19) dlogs Lopirlgy@r g y-vee Il

3.3, The Numerical Agproximations.

The equation

3 log £ (y)
oR

=0

is nonlinear and cannot be solved explicitly. Therefore we will use

numerical approximations that yield asymptotically efficient estimates.




These methods are the Newton-Raphson and Scoring methods. Both methods
require that we start with an initial estimate that is consistent of
order T"l/e, call it §(o). Then, the Newton-Raphson method consists

of solving the following set of linear equations for ﬁ(l).

Flog ¢ ()

g 3 log£(y)
(3.3.1) - —W

e=~3(o)(2(l)'5(0>)= 3g  lew)

In the Scoring method,

( F1og ¢ )
“1 % )l eb0)

replaces

aglog £(y)
P dp'

~

2

£=£(0)

i.e., we solve the following set of linear equations for §(1)

aglog 2(y) iy % d log £ (y)i
(3.3.2) ﬂ(w oed ©1)Lo) = dp t oot
2= (0) © o 18%(o)

Initial estimate ).

In the vector Yule-Walker equations

El Er!r_s = ’!_s » 8§ =Qtl, ..., q+p ,

b el - it st




we can replace the autocovariances i.e., !s's by their sample analogues,
gk's, and then solve the resulting equations to obtain initial estimates

for gr's. So the equations are

A
53:3.5) E gr(o)gr_s = 'g_s > S =atl, ..., qt+p ,
=1
where
1 T-k
(3.5.4) % =T L Yelbuc = Sl -

Having obtained these estimates we can form

A
Bear in mind that %(O):; and R =xl_p=0. Now we can use

~

the same autocovariances of (0)'s to estimate g(s ), B=10,15 vy Qe

a
~t
We estimate g(s) by

a(-s)

T-s
(3.3.5) =7 & 8.0l = £655" 5 8 -0, vy e

™M

(
( =)
Finally by vectorizing the initial estimates obtained in this manner we

get an initial estimate of p, which we shall denote by Q).

Note. The initial estimate g(o) may not satisfy the conditions for
a moving average covariance matrix. For example when m =q =1, p =0

the constraint on z is

0_2
il 1
-§<E.
%

23




The Newton-Raphson Method.

This method consists of solving the following system of linear

equations for é 1)

2
3 log £ A A v _dlog ¥
BT T PP L0k 1C) Ui T .

ey L TT————

LR (0) B=R(0)

So we need to find the second partial derivatives of 1log £.

2
Derivation of 2 loﬂ'z.

As in (3.2.7)

;- A i i i AP A bk e

oLE!l. pu@rlsy) .

~

Differentiating this with respect to b_(;') yields
i

2
d log £ -1 r
S - @I ®L Y

Now using lemma 3.4 we can rewrite the term inside the brackets as
-1 gl o ¢ -1 r
vee[l (§4J®5 y'l = (xy' @ )Vec(gid®£ ) »

where we have used lemma 3.1. So finally we have

2

(3.5.6) ?rel‘gﬁé—‘ - By ®LE .

2k




2

Derivation of g2 e,z .

~

Differentiating (3.2.7) with respect to oi(j) we get

2 or
d log £ -1 ~ -1
—57—)-=E'[®I‘ (=) L8yl -

Now using lemma 3.4 the right hand side can be rewritten as

This means

2 dvec
dogt gy arlert) —=.
38 38" Y




Finally we get

2 2
(3.3.7) ﬂ.‘_’ﬁ_‘_ - é&%i gv = E' (zxvsvp"l® E-l)F G' .
328"  dB 3§

P1og ¢
Derivation of L2982 |
BQBQ

As in (3.2.17) we have

ool lpirlay®Llgy-vee [

~

1.

Differentiating this with respect to cri(§) we get

Q log £ 1
(3.5.8) —5-(1- =sE-L7 —7l 8 @L78
ar or
=1 Sl & -1 o1 7
- "8y®r i 3] L "gy+ vecl - L

d

r
F' vee[-LTg8yyaL™ P ) £ i ey
ij

o] o

And using lemma 3.1 this can be rewritten as

26

i S il b



(.39 -rpurterlayerteriayertert-riert
1 dvee [
g & e e
o P
ij
Using this and (3.2.15) we get
Plog 2 1 dvecl 1
S~ B e B RS -
3 36 38" 38"
Finally
8210g 4 Flog 4 3
(33.10) =g S8 =g- - S oR MEG -

dg 3g' " 38 38"

Now, putting (3.3.6), (3.3.7) and (3.3.10) together we get

fime (¥ C E 9
(3.3.11) CIE LU A n :
9g dg' s 9 EG
where
s g @t et
'ﬁ (3.3-12) E = .
al -1 1
Iayy @1 5
Now we are ready to write down the equations for the Newton-Raphson

method. They are

27




s e

P ——

E' 9 A E 9. A A A
(3.3.13) e Ty fe ®1)-L(0)) = &(0) *

J log £
where = which is given by (3.2.7) and (3.2.18). Once we have
R 3—-5-—& gl y :
é(l) , we could carry out a second iteration by replacing B(l) with
~ A A A ~
by By By Sy tn Ig) = B W® £ 10 6.3.55)
and solve for é(e ) But even for samples of moderate size this would

be computationally very costly.

The Scoring Method.

The equation for this method is given by (3.3.2). We notice that

we have to find

2

Taking expectations of both sides of (3.3.11) we get

£ 3%

Fiog ¢ B2 2
(3.3.14) S(gﬁap,—) = - en .

Now recall that

Applying this to (3.3.9) we get

e =L@ .

We can also easily find the expectation of the other entries of IIl. The
end result is
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ey e

s7rg or™ stort
el =
~ '- o5 i 5
s tort 2 o™
= é ) BGJ.
Substituting this in (3.3.14) we get
( ) <3210 l) E' 9 E 2
3e5.15 & TBE— = - A :
gog o gF'| |2 Eg
So finally the equations for the Scoring method are
E o\ . E
(3.3.16) TR PR T T L ) =By

3.4, The Pure Moving Average Case.

The pure moving average case corresponds to the model defined by
(2.1) with B = Q. This case was treated by Ahrabi (1978). But we

can also derive the estimation equations from (3.3.13) and (3.3.16)

by letting

p-0, g-¢g-

The resulting equations are in fact simplified versions of those of
Ahrabi (1978). This is because in the latter, the second order

derivatives of the log likelihood have a more complex representation

and also that for the Scoring method instead of q
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8210 )
-e Y‘B"‘e 5

~

we had used

6(310952 L 5190'51) :

which proved to be more cumbersome.

An important distinction between the general case and the case
of the pure moving average model is that the log likelihood for the
latter case, as derived from (3.1.8) by letting B = O, is the exsct
log likelihood of the data. That is we do not need to assume that
some past values of Xy are fixed.

The model, as pointed out above, is

xt = £t+ﬂlst-l + oo +£‘qst_q .

The parameters to be estimated are the components of 6 as defined in

Chapter 2, with L = And obviously in this case we only need

\~1t0
assumptions 1 and 3.

The Newton Raphson Method.

We get the second order derivative of log £ with respect to ¢,

by letting $=I in (3.3.10) which yields
821 L 1
(5.4.1) Seos = -5 GE'MEQ
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where

-rtertyy

(3.4.2)

133

Now let i

4]
(3.4.3) i= ( ) = vec Y' =K1'n,'r vec Y ='IS.:1’,DWL,
Lp

where Y was introduced in (3.1.2). We also recall that

(Bok.l4) P'&ngn,

where I was defined by (3.1.6). From (3.4.3) we get

e

(.b.5) M= (& @K E Oy 2T e
) -2 ® gy 1@ Ky p)

= 1@ Ky ) By 0 ® Ky )

say. Now if we let

31




(3.14.6) %, @K E=E,

then (3.4.1) can be rewritten as

(3.4.7) sxeel . soPufe .

We note that

G.4.8) (K (@ Ky ) vee§y ;O L) = veelky 1 (E; @ LK p] = vee(LBE; ;)

using Lemmas 3.1 and 3.3. It is now clear that E is vhat was called E
and i is what was called y in Ahrabi (1978). The first order deriva-

tive, in the same manner, is derived from (3.2.19) which yields

1 £ l Sre=l~ =1l~ -1
ooel S oFE i @I g vee 2,

which is identical to (3.2.11) of Ahrabi (1978). We need an initial

estimate for ¢ which is derived from (3.3.5) if we replace :\Et by

xt. That is




The Scoring Method.

2
d log £
We need to find € Tgéeg"' . We get this from (3.3.15) which
yields

3.5. The Problem of Computation.

If we look at equation (3.3.13) and (3.3.16), which are the equations

for the Newton-Raphson and Scoring methods respectively, we realize that

1qe}3

to get we have to tackle two computational problems:

(1)
(i) The problem of computing ﬂ(o), é(o)’ §'(o)'

(11) The problem of solving the resulting equations.

The second problem is the less serious one, because it involves solving
a set of r = (p+q)xn2 + m(m+1)/2 1linear equations. Even though r can
be large it remains fixed as the number of observations (T) increases.
By comparison in the first, as we shall see,the matrices that are to be
inverted have dimensions of order T. So we shall concentrate on (i).

If we look at 3.3.12) and (3.3.15) it becomes apparent that the
major computational problem for computing :Ii(o ) and 5(0 ) is the
problem of inversion of 8 and [. This is also the case for g(o)
which is derived from (3.2.7) and (3.2.19).
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Inversion of @.

We recall that as in (3.1.4) 8 1is given by
i
= (B, ®L")
v} aoi),

where

Now, using lemma (3.3) we have

13- R

(3.5.1) Ko, 2 Kn,7 = ig) (Ei®?.i) .

2

say. We notice that since .Ij is lower triangular, so is ; This
makes it possible to find i'l via some recursive equations. It is
clear from (3.5.1) that § has 1's for the diagonal elements. This

means
(3.5.2) sl = 18] =1,

which was used in deriving (3.1.8). We also notice that 5 is block Toeplitz.

Lemma 3.5. For 3 defined by (3.5.1)

N

T-1
(3.5.3) it - fdep),
j=0

where 2(0) = ;m and B(J), j=1, «o., T=1 are given by the recursive
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i

(3.5.4) 5 gig(*’) =0, T=1,2 eer, Tl

Proof. Multiplying 3  the rignt hand side of (3.5.3) yields

T-1
¢.5.5) % ¥ (,If®§(3)) f Z(L ”’@BB(J))
3=0 1=0 j=0
T-1
- L we L pzY,
r=0 i+j=r
T+h
since L =0, h=0,1, ... . Now the first term of (3.3.5) is
@3 -1, .

so letting the left hand side of (3.3.5) be equal to Iup ¥e get

Y. Bg('j) =Q, T =12 «o., T-1.
it+j=r

If we write out the first few equations it becomes clear that these

can easily be solved recursively. The first equation is

¥ . .3.113.(0)
which yields

(1)
(3.5.6) B"/ = -B .
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The second equation is
(2) (1) ) _
B2 TRE T CEE g,
which yields

(@} _ (1) =
E ol iR

using (3.5.6). 8o at stage n

(n) _ (n-1) (n-2)
B~ BE T -RE o - B
Notice that there are n terms here, but we know that for n > p,
En = 0. This means that for any n we shall at most have p terms.
That is, the equations (3.5.4) are recursive of order p. This makes
the computation task much easier. Q.E.D.

From (3.5.1) we get

(3.5.7) 3 i

2 =K

where we have used the fact tuat K . is orthogonal. From (3.5.7)
J

we get

~a1

1
2 - Krd Ky

which together with (3.5.3) and lemma (3.3) yields -
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T-1 <
(3.5.8) 3t ¢ Ve .
3=0

The Problem of Inversion of T[.

We recall that

(5‘5'9) E = &ﬂ,T E l(‘;!,lr ]

where X is defined by (3.1.6). This means

So the problem reduces to the problem of inversion of Z. DNow from
(3.1.6) it is clear that T is a symmetric, banded block-Toeplitz
matrix, which makes it easier to compute g’l. There are efficient

algorithms for inversion of symmetric block-Toeplitz matrices, e.g.

see Friedlander, Morf, Kailath and Ljung (1978). The idea is that for

an N X N toeplitz matrix R the inverse can be represented by

-1 1
B Ul -Gl 4
where
1 0
i Py s
£1~ . .o 4




0. 0
,IJQ= a'l.!N‘. .'. ’
By oer By O

1 0

Rl e S :
Sy v By
0 0
by

o N ¢,

yé_ . .' e 2

O e

Now the sequences g and b can be found recursively. This has also
been extended to the block-toeplitz case. Now, when we have a banded
toeplitz matrix then there are simplifications in the recursive formulae
(similar to the simplifications that arose in solving (3.5.4))and this
has been done, in the scalar case by Dickinson (1978). It appears that
the method could be extended to the case of symmetric banded block-
toeplitz matrices.




Additional Computing Hints.

After computing izé) and gzg )? there is one more tedious computa-

tion in the Scoring method and that is the computation of

[ a-1 -1
(3.5.10) E' (L)@ L0k -

If we look at the definition of F in (3.2.1k) and (3.2.16) we notice

that to compute (3.5.10) we have to compute terms like

(5.5.11)  [vee(g, ;@ L)) €)@ L 5)) veeE, B L) ,

i,,j,u,v=l, ceey m’ I‘,S = O’l, eovy q .
And also terms that are essentially of the form (3.5.11) except that
one or both of the L’'s might be replaced by L'. DNow using lemmsa
(3.1), (3.5.11) can be rewritten as

Ty A=l a-1
[vee (B, ;@ L)) veell(5) (&, ® L )(5)! »

which, using lemma 1(i) of the Appendix, is equal to

A=]l r.a-l 'S
(.5.12) tr(L5) B ;@ L (o) By ®@L )] -
Now let
e S
A=) - e
~(0) .




then by just carrying out the multiplications in (3.5.12) we see

that it is equal to

tr('l:“igrgdvy s) :

Note. Throughout this paper we have assumed that s!t = 0,

However in practice the mean of Yt is unknown and will be estimated

by

i:

-
(n e

Zt .

t=1

Then the estimating equations will be the same as in this paper except

that y, will be replaced by y, -y -

ko




4. Estimation in the Frequency Domain.

4,1. Preliminaries.

For a stationary process {Et’ t=0,+1, ...} with mean zero and
covariances 25 = e(ﬁtﬁws)’ s = 0,+1, ..., the spectral density matrix

f 1is defined by
1 o -:lsh

if the sum converges. The covariances can be recovered from £(-) via

" 1sn

n

The sample analogue of the spectral density, the periodogram, is defired

by
T-1
(4.1.2) =2 Y c, o
-(T-1) ~®
i
I where
|
=% f‘, =¢C', 8=0,1 T-1
| Cs =T Y =Cg’ = 0,1, ..., .
il e’

T

We can also represent ;(x) in terms of the discrete Fourier transforms

| (4.1.3) IN) = xOW*0N)

b where

L1

TV e B A AT S WIS T




i e o 4

A e e i

(ha1.b) win) = =2 E L,

BT t=1 ¢

and "*' indicates "conjugate transpose". For a fuller treatment see
Anderson (1971), Chapter 7.

If the process (Ett;) is Gaussian the log likelihood is

%‘L log 2r ,

(4.1.5) log ¢ = - % |Q| - %g'g-lg-

where

Following Whittle (1953,1961) and Dunsmuir and Hannon (1976), we will

approximate the second term in (4.1.5) by
1
. %}t:tr[,g O JIO)T
where f£(A) and I(A) were defined by (4.1.1) and (4.1.2) and

t = O,l, es ey T-l .

We shall also approximate the remaining terms in (4.1.5) by

L
-5 L loglthy)
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We shall show the relation of this approximation to that proposed by
Dunsmuir and Hannan (1976), in the Appendix.

For our problem

It is well known that the spectral density for the process defined by

(2.1) is given by

1 -1, i
(e

(.1.6)  £0) = =B Pt

)A(e )\ A*(e P)

where B(*), A(*) and V were introduced in Chapter 2. (See Hannan

(1970)). It follows that the spectral density of the moving average

part is given by

61T gh) =k At -4 § el
-q
where we have used the definition given in (%.1.1). Now using (4.1.6)

and (4.1.7) we get

(4.1.8) £0n) = B (e g™t ()

Finally, we approximate the log likelihood by

71
(.1.9) A=-% b loglt,| - % {: r(£'L,) »

3




T I O

where

As in the time domain, we shall use the Newton-Raphson and Scoring
methods to arrive at approximate maximum likelihood estimates that are

asymptotically efficient.

Note: For any square matrix A we have

dlog |al %
TN, TN

Using this we get

3 log |al g 1 OA
x Tk @ Ry )

Using this on (4.1.9) we get

df of
A 1 »1 Y88, . 1 o g P |
(4.1.10) S °"3 gtr(st 3% )+ 5 {: tr(zt X £t .:.[4;)
3T er(grln,) | AL tr(glny)
S l t & 1 % l
5 R 2 ex  |Lef, "

4,2, The First Derivative of A.

Derivaticn of % .

To find this we need to find the first order derivatives of ltt

Now (4.1.8) can be written as

L




- ¥
(’#.2.1) £t=§'tlst?‘tl ) t=o’l, coey T‘l’

and B, = g(ev‘t), Q = 30‘1’.)‘ Differentiating (4.2.1) with respect

(k)
to brs we get

*
of JB dB
~t g =1 *2] -1 *.] ~t  _*a)
M22)  —myc B Ty BedB RSB Jm R
rs rs rs
i\,h =i\, h
e t M-l t
= 'Etlga-s{rte - flE Bl e )

vwhere we have differentiated (2.2) to get

daB in.h ?
Nt e t

(4.2.3) ;m =B ® . l
rs .

Using (4.2.2) we can get the derivative of tr(gt'_‘l;t) in the

following manner

i 6 b

=1
‘ (4.2.4%) : tr(f't 51;)
| o T

i rs rs

8
] AW
’
=4
A"ﬁ
c‘v

]
ct
N

[ |
Hy

1D
2
3
F&
&
£

r,s = 1,00-,“, h = l,on-’p .




Notice that in the above expression the two terms are conjugates. To

see this note that

i\, h i\,h
t R PR -1-1s
e (Ef,frc B, )sr . (ztzt )rs
TV A I\
e CBE Tt Bl L
-iAh
t %=1
o B -
Now using (4.1.9) and (4.1.10) we have
-1
(h2.5) s —-lz—(—)——atr( = ) i Y
X anl = E b8 Lot
rs rs

From (4.2.4)

dtr(£I,) -inh

t (*-l ‘l )

~'b~t

t -1
+§e (If’lgt )sr=2§e e ?

since the sums are real and the summands are conjugates. The sums are

real because the summands are functions of e = and because
Ny s
e =e =%, S0 (4.2.5) can be written as




=i\, h =i\ h

A t o *-1,-1 t o*-1

AR T e
Ts

But we notice that the second term on the right hand side is o(T).

This is because

-i\,h 2n
1 t k-1 1 -i\h %=1
lim = Y e (B)=—fe (B™7) a=0
T_.mT%: ~t ‘rs " 2n o rs ’
Since
00
ety g e (d*h)
rs j
j=0
and

2n
f eI 0 for nfO §=0,1,... .
0

Note: We can omit terms that are o(T) because of the forms of the

Newton-Raphson and Scoring method equations and the fact that

L g -

So we finally get

dA -irh *2] =1

t
® oL B LY

-iAh i
-ge vec(q,'BI,) >, h=1,.0.,p.

k7




Putting these together for h =1, ..., p we get

(+.2.6)

B.2.7) Q=R O)=(e He S .,e )OI,

Derivation of g—g .

We shall need the derivatives of f, which follow from (4.1.7)

~t

and (4.2.1)

of o9,

~t =1 “~t _*al 1 _-1 *a]
(ll-.2.8) S—TO—)-=§t ;((—)-)-Bt =2_ﬂ'§t§k.[‘§t )

ke

of -in s iz, s

~t A t t *a]l
Bein) @ B B e Bk B

ko

k,t = l’coo,m, s = l,..o,q .

1 - e
= - = tr(Qr B LBr % Exp)
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Using these we get

adiaskc




since the matrix in brackets is Hermitian. This yields

3 tr (£ L, )

Tadlec. il IR
-~ "2nvec(9=tBIBtgt)’
2%, ik

which in turn yields

3L tr(g:;l;t)
t

(4.2.10) —~ % = -217 Y vec(g;lB I.B '1)
ago t
1 1 -1
=-§;§vec(gtBIB s 1
since the sum is real. Now, using (4.1.10)
8.1 2 eln)ed 2 ey, -
BQO 520 t BQO t ~ ~t
Now
d -1 i -1
; (k.2.11) — Ytr(£L); , =-5=Fvecq .
%j 3%, ¢ e |5t‘£t 2"§ i
?g This together with (4.2.10) yields




da 1 = ot of
(4.2.12) 3 )E vec(Qr B.L B9 % ) -
20
A
We proceed to derive —— . Using (4.2.9) we have
d6
o S P S ¥ i % W
(h2.35) R BEEE trlfy By (Eype *Epc e By £ Ly
kb
iN s
SO T e b * -1
= (9 BeZeBed o
-iN, s
L t -1 * -1 3
e GBI g
:. From this we get
3T tr(gr ) ol ok
1» £ o ]_..z e t ( -1B I %=1
4 a,(ST n § st ~t~t.§t3r, )M *
| ")
i This means
4
L 1
: {‘ T E SRR . |
— =-=}e vec(Q, B, I,B.Q. ) »
d6 t
~s
vhich finally gives us
in,s
A . l t -l ¥ - -
(4.2.14) a—e = Q—ﬂ‘é e vec(gt gtztgtgtl'gtl) s 8 =1juessq
R

using (4.1.10). Putting (4.2.12) and (%.2.13) together, we get




(%.2.15) % = 2% § -"I't vec(g;lgt‘z B*Q;l_ggl) )
0
where
P UA,,
(4.2.16) =3I W)= Ge % .se I, .
m
Now, as in the time domain
%ot
38 o6
So
(2ar) LT gy v nIng 4 -

o8 t

Note. There is an alternative form for (4.2.16) which we shall
find more useful in deriving the second derivatives of A. To derive

this alternative form we note that (4.2.13) can be rewritten as

3 tr(gilL,) Pen A
(4.2.18) _a_(;;t).:b_ —-kte tgre g1,

ke
where
=1 * =]
& = St BIIIBISI ’

and we have used the fact that By is a Hermitian matrix. Now,

from (4.2.18) we get




-1
: tr(zt E‘t) e [ents vec +e-ntsvec *1
3¢, =" o% By &'

But using lemma (3.2) we have

vec g{_‘ = L(m,m vec ﬁt E!Sm vec gt .

i\, s i\, s
~s

Using this and (4.2.12) we get

QA 1 -1
(4.2.19) i § Hy vec(g,-Q.") ,
where
b e Uy i =air,
(4.2.20) H =H (xt)= (@ "5 eeey @ )®£2+(1,e y vy @ )®5m.

m

Finally for %’e\ we have the alternative form

(4.2.21) = la‘—ﬂ Y G Hy vec(gt-ggl) .
t ~

(4
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Sadifimais 4.

L4.3. Second Order Derivatives of A.

£a

Derivation of SESET

~ ~

Using lemma (3.1) we can rewrite (4.2.6) as
(%.3.1) aA=-Zﬁ (1. ®Q7t) vec B, .
3 BT L& ROy B

Differentiating this with respect to B' we get

d vec B
(4.3.2) # s L8 L®%) —g -
Now, from (2.2)
inJ
B, = 5 % F)
vec B, Jg) By e

which gives us

o vec B, :Dst.j
_SET_-—-e 52, J=l,o-o,po

J m
Or
o vec B, ing t %
—3_5'_—e 9 eeey € )®£2-gt'

(h.}.}) é%r = - ggt(]:' ® '1)3: .




Fa

Derivation of W .

We shall first find T and then use
288!
> >
(4.3.4) A _ Th_ o .

Differentiating with respect to x we get

2 : 3 vee gt
w7l RO L) —5—
- L4 Ene L) ol 52 g1
- [ AEEeLE® &) ind
- § emngtogh Tt

By letting x be the components of E' we get

2 —zﬁ.( v'-l® )avecgt
TR IB8 @8,

(5.3.5)

5k




Now, as in (4.2.8) and (4.2.9)

1
ac' ) = 57 B

ke
Bst 1 -ikts :lkts
als} = 5% e Bxe *Box © 1.

Vectorizing these results in

3 d vec Qt 1 =
(4+.3.6) W=_ﬂ vec(Eu)=2-—ﬂgu , say ,
ke
d vec gt 1 -ikts n.ts
(l‘..3.7) W = 2—“ {e Ekc +e e'%k] .
ke
But &y = Vec E, = vec Etz = K18y using lemma (3.2). So
d vec Q‘t -in, s in, s
1 t t

; (+.3.8) . 5 le Lo+te “Kle, -

; O‘M m

i

| Now (4.3.6) and (4.3.8) yield

|

i d vec 3!:

| 1 1 3
) (h’o5o9) '_a'e:;— = é;[sn,sel, ceey sﬂm] - 2_1t £m2 > 1

2
d vec in. s in.s
F (4.3.10) ~3"‘=21—ﬂ(et12+e tgm).
' d¢' “m
| 3
! Finally putting these together we have
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dvec § 1«
4.3.11) —_— = = H .
( BE' an ~

Substituting this in (4.3.5) we have

3' = {: gh(%gbgtd@g;l)g: .

~~

Substituting this in (4.3.4) yields

2
(+.3.12) :Bge, -5 LGBy TOERS
2
Derivation of —2A— .
3¢ 36"

Differentiating (4.2.21) with respec. to §' we get

(4+.3.13)

2
a1 o
ﬁ§

where

- GBIEE 8 -G Bl )Y -

So we need to find the first order derivatives of Bt. . Differentiating

gt with respect to x we get

% 5 RobLiss 3;

Vectorizing both sides yields

1 a3 .a

% =%




d vec P X o3 : 3Q

(h3aah) - (EOG) (G T® ) (@ B G vee 5T
3

- 't;it vec B-S_t ) say .

(0)

Now, for x = o’u we get
d vec P
o L e
o ) 49 = M, vee(FRE ) = - 57 My
ke

which gives us

d vec P
~t 1
F (4.3.15) = ol ’—% .
~0
Similarly for x = crlﬁ; ) we get
d vec P -iA, s i\, s 1'
o SR t t
TN ) AP agfe K
ke
Or
!
] d vec P ~in, s i\, s
{
| (4.3.16) —_...;'t’='§l,?¥,b<e 1:'é;,‘.=,+e t;I‘_(m), 8 = dyeeepQ o
ags m

T

Putting (4.3.15) and (%.3.16) together we get

avecgt

- u
38 “cmbh i

which means

5T

e e i e i




(4.3.17) — == MU

gA_ .
(4.3.18) = = =iy {: GH M H G .
This completes the derivation of the second order derivatives of A.

4.,4. The Newton-Raphson Method.

This method consists of solving the following system of linear

equations for é(l)

2
A A A JA
(hoh’ol) - (p -p ) = . °
agag' p:é(o) ~(1)~() 52 ?'é(o)

~

We get the matrix of second order derivatives of A, evaluated at

L= §(o)’ from (4.3.3), (4.3.12) and (%.3.18)

£a 3 H
3p3p' l 2:‘3(0)

(b.4.2) -

? Z (I' a1 * 1 1At Ata] =1\ *

| L& ~¢®St(o))‘3>t 'é?r'gﬁt(lb@t(o . (0) S M8

j 1 - Al A At =] 1 A * 4
-5 L8E Q08 08P 0% 52 LR ofkE /-

R




We get the first derivative of A, evaluated at p = é(o y» from (4.2.6)

and (4.2.17)

-] A
- 28 veo§0)2 (0)%)
(b.4.3) g-a"l S :
2 E=B(o)

1 A
27%9:%"“ £, 0)

We substitute these in (4.4.1) and solve for é(l) .

4.5. The Scoring Method.

This method consists of solving the following system of linear

equations for é\(l)'

2
A 5, \=P =
(b.5.1) - (55587 | 0 0, € E0) = Bele=p oy -

2

dA
Now, we have seen in section (4.3) that W , depends on the
observations only through I, t =0y ¢eey T-1l. Lemma (6)
of the Appendix allows us to replace ;['t by f-t vhen taking

expectations of (4.3.3), (4.3.12) and (4.3.18). So we get

821\ ' =1,
(4.5.2) e(sEsE =e(-§ R (1. ® & )
oL GO R

29




2 ] - *
(h5.3) (i) = %gt@;;,;g;l@ ')

« 1 valn =L =1, *.,
"o LSRR B HeE

i peE s -

Finally
A 1 * 1
e( )==-—=8( GH MH G ).
2~ 8!(2 §~~t~t~t~
Now
J -1 'al L | -1
M =B®Q +Q ®E*Y O
where
-1 * -] =1
Bo = 9 BeleBel -% -
So
egtég;lafn*‘l-ggl=o,
which means
. "l -l
28 O% -
Hence
(4.5.4) e(Ih) 2 . A T GH, (Q ® QG
= 3% " g2 LG B -

So we evaluate these expressions at p = é(o) and then substitute them

in (4.5.1) and solve the resulting system of linear equations for é(l )
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L.6. The Pure Moving Average Case.

In this special case we have

A_"b
]
g)

B =L

which means

A‘d

Using these and (4.3.18) we can get the Newton-Raphson equations

Ll g |

A
§dgvee L (0)

l " ' A A l
- o2 L ShY o) B )20y = B

This is identical to the equation derived by Ahrabi (1978). Similarly

the equation for the scoring method can be derived using (4.5.4)

1 a1 =1 Al % 1. .A A o
PS. [§§§t (St(o)®£t(o))§t§ 1€1)€0)) = 2u-§§£t vee £.(0)

which is identical to the equation derived by Ahrabi (1978).
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5. Asymptotic Properties.

The four estimates proposed in the preceding chapters are asymptoti-

cally equivalent and we shall show that they are asymptotically efficient,

i.e.,

ﬁ (é(l)-g) é"’N(‘f?‘v 2-1(2)) ’

o

vwhere _g(g) is the limiting average information matrix and " —»"

indicates convergence in distribution.

To find 3(p), by definition we have

P 0
3(e) = lim - e(&%8X)
T - agag'
Pl
= Um -z g(==4),
T
T+s © " 3
Now let
P Q'
(5.1) p)=1" " %

Then from (4.5.2), (4.5.3) and (4.5.4) we have

(5.2)

1
L R {-%t(
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, 2 % 51 el
(5.5) g= Wy (3 z: R, (B, ®Q, M)
21
L [Tt egt e
(&) 0
1 1 vl -1, *
(5.4) = lim = (== GH,( @ H,G')
gt o T8n2§~~tgt S S
21
- 27 gH (8 '@ m'g'an.
1

The four estimates are obtained from equations like

(5.5) $ (BB, )L Dlogt ‘
LORGIEICH i e20)

where § ) 1is an initial estimate of 8(p) and is consistent. We

can write (5.5) as

5.6) 801 VT (1) 0) = 810y VT (Brpy-p) + = &L .
(5:6)  20)7T Ly ® = 20) YT ©0)8) * = e | ey

where P is the true parameter value. Now

1 dlog #_ 1 dlogt .1 Fioge
48 g C9C. PR iBPey 1T SE30Nl pe

(5.7)

+ (g'é(o)) 4

|g-§(o)|. Now (5.6) can be rewritten using (5.7)




T ——

Now noticing that

1 82105 £ <, - 3(p)
+ ~~
3gde’lee

and that +T (é‘(o)-g) is bounded in probability, we see that (5.8) is

(asymptotically) equivalent to

(5.9) T (gm-g) G 2-1(53) = dlog £
4F o p

Theorem. If in addition to Assumptions 1-5 of Chapter 2 we assume

that the gt's have finite fourth order moments, then

(5.10) /T By B N, 371 ()

where é(l) is any one of the four estimates proposed in the previous

chapters.

Proof. Using (5.9) it suffices to show that

(5.11) ;/-l% -5-8—195—‘- 4 N, 8(0)) -
g
Let
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vec(A y.+-5A )
(5.12) £ = S :
571 sy

~
vec !

where éi's and V were introduced in Chapter 2. Now

3P,
dlog £ _ dlog £ |
£s § Py g’
which means
Bl log 2 %% 210gs
. ag = ?g_ R .
ap'
It follows from Assumptions 3-5 of Chapter 2 that B__E,_ is nonsingular,
which means i
(5.3} 1 alogz=(ﬁ)‘l 1 dlogt
: 4T 98 ST S

Now, it has been shown by Nicholls (1976) and Reinsel (1976) that
>
(5.15) /T (g )-E) =NQ,-) -

where ? 1) is the estimate obtained by solving equations of the form

. BT 2 X 1 Jlog £
o 3o)Carto) =F 554,
~ 158%%0)
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A

where £y 1is an initial estimate of £ and 3(E(p)) ean initial

~

estimate of the limiting average information matrix of §£. Now
applying the same argument as we did for p we see that (5.16) is

equivalent to

8 -1 1 0 log £
(5.17) VT (§1y78) = 2 <’§),/—f —gg— -

Now (5.15) and (5.17) imply

L13log? & g
(5.18) ﬁ—a-f— = N(Q,- )

Finally from (5.14), using (5.18), we get

(5.19) J—; 2308 %, N(g,8()) -

The desired result is obtained from (5.9), which together with (5.19)

gives us

(5.20) VT Bye) = N8 () - E
Note. The approximation to the log likelihood used by Nicholls
(1976) is not identical to ours, i.e., (4.1.9). But as we shall
demonstrate in the Appendix it is asymptotically equivalent to it. This
means that if Nicholls had used (4.1.9) he would still have obtained

asymptotically efficient estimates, as we assumed in the proof above.




6. Estimation of the Coefficients and the Covariance Matrix

of the ¢ 's in the Time Domain (The Scoring Method).

For the model defined by (2.1), Reinsel(1976) gives equations for
the estimates of ﬂl""’ﬁq’ gl,...,gp, V, using Newton-Raphson
method on the (modified) log likelihood of the data. In this chapter
we shall use the techniques developed in the preceding chapters to
arrive at the equations for the estimatesof these parameters using the

scoring method.

The Likelihood Function.

Assuming that £ = Ea =-~-=51_q =0, and using the same method

as in section 3.1 we have

1) 3y - g

where

6.2) e- Lo,
i=0

(6.3) e = vec(sl,...,sr)' 3

and 8 and y were introduced in section 3.1. Now, to derive the

~

likelihood function we need the covariance matrix of e. Using lemma

3.2 we have

A
(6.4) e = Sm,T vec(gl,...,f,r) = Em,T .e .
=T




(6.5) elee' ) =Ky oGO UK ¢ = ¥®L = 45

say, where we have used lemma 3.3. Using (6.1) and (6.5) we have

(6.6) log £(g) = - = log 27 -  loglg™ade's

So (6.6) becomes




(6.7)  log £(y)=-2 log2n - Z1og |y - 3 y's'a g7 e 8y

The Estimation Method.

The parameters to be estimated are

9,1 = vec 'éi s 1 =15..050,
QJ. = vec EJ. 2 J = LyesesP »
v.
We let
<
(6.8) fl:(a) )

vhere Q' - (gi, Se g %), B' - (Ei, Gleleiy gi)). We are going to apply
the scoring method to arrive at approximate maximum likelihood estimates
that are asymptotically efficient. It is well known (See Dunsmuir and

Hannan (1976).) that

2
1 Xlog s _
(6.9) lim 5——5-5—81 £=-0.

T »x rs

This means that the limiting average information matrix is block diagonal.
So we can write separate equations for estimates of 7 and V .ﬁithout
violating asymptotic efficiency of the estimates. We shall first derive
the quations for ?1(1 )? the estimate of 1 by the scoring method. These

eruations are
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2
d log £ A a

(6.10) =< ( =) @100y
n a1 A (1)7(0)
e |‘.l=‘l(o)

A

~ ~

" éslﬁﬁ_l_l 2
1 1=1(0)
-
o)
where i(o) and 2(0) are initial estimates of n and V that are
consistent of order 'I"l/ 2, as given by Reinsel (1976). We proceed
to find the first and second order derivatives of log £ with respect
to 1-
The First Order Derivatives.

Derivation of i%%tg—z o

Differentiating (6.7) with respect to af;) we get

D108 £ _ .yara' ~lg-lg-1 |
_(j)—aai‘? =y'8e 48 (E;®L)E 8y
3

(zl gl g' -l ® x! gl g' -l,é-lg-l ) vec (Eij ® 'Eh ) i

using lemma 3.1. Using the same method as used in deriving (3.2.5)

we get
(6.11) Llaedﬁ.i - B (2-19'!@ ¢ -1{-12-1?“;) ’

where

et K 2




R

(6~12) E‘ (Eli eocy Eq) ’

and Er was defined in (3.2.4).

Derivation of 396 L .

This was derived in Chapter 3 and is given by (3.2.7), which

states
(6-15) L. Fgeray -

Now we need to express E'l in terms of the parameters in this chapter.

We recall that

(6.14) r==¢efuu'),
where
u=38%

as given by (3.1.4). Now using (6.1), (6.4), (6.14) we hﬁve

L-e@eee) - 848 -

Substituting this in (6.13) we get

(6.15) e e AL e i i AR
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The Second Order Derivatives.

2
Derivation of £ ?Wl%%-,z— .

Differentiating (6.11) with respect to a(h) we get

1]
2
J log £ b | h, -1 1=1g-1_-1
(6.16) S - E(e7 (B ®L e 3y @ T4 s
32 da, - > -

+ g7y ®¢ e @ LM e ey ¢ ay@ 8 g e

~ ~ o~

Now, using lemmas 3.4, (6.16) can be rewritten as

2
617) LR F veelg e ey yee T @
el aa.ij
B AT i A e e W

i Taking expectations of both sides of (6.17) and using (6.5) we have

2
(6.18) e(2L8 L ) . oF veclg' M (E;, ®L')g'
h ~ g
92 day
* TN
{; E vecle' g7 €, @ LM -
,{! As we shall now show in the Appendix (lemma 3) the first term on the

right hand side of (6.18) is equal to zero. Using this and lemma 3.1,
T2




(6.18) can be rewritten as

2
dlog £ o 1-1¢-1_-1 h
5(._Jm_))=_§ B@a 3a )vec(§13®£),

From this we finally get

2 "z ~
(6.19) e3gEL) - £ (@®e g E

2
Derivation of S(galo B'z Je

Differentiating (6.11) with respect to ’b(h) we get

13
2
d log £ Sy a=l h t=lq-1 =1
(6.20) Toat _§ietE, @ y@e g
+ g ey@e e E @ Py
_ ' veeld g e ey y (E;.,j® Pg'

rg T @ re ™

using lemma 3.4. Taking expectations we have

2
(6-21) 6(5 1o lh ) =§| vec[gc-l(§;3®£|h)g' -l]
3% 3by

4
| +E veeld' e g, @ e el
|




T

==

B T

The first term on the right hand side of (6.21) is equal to zero. This

follows from lemma 2 of the Appendix. Now using lemma 3.1, (6.21) can

be rewritten as

° ki - t=] =] =
agabg”

From this we finally get
Plog ¢ PR (gL et B |
6.22) e(Sger)- E@es ®g 4 ¢E -

a2
Derivation of &( = .

~ ~

This has already been derived in (3.3.14) and (3.3.15) which together

yield
2
e PED - ey e
But
r-gde -
So

6.23) g(ga_pl%gg'_t) . paleads @ Lyl E -

Putting (6.19), (6.22), and (6.23) together we get

kiaadia i 3 . e it




E

2 =~

d log £ 1=1 =1 =1
(6.24) -e(ygﬁ—) - y : ®@a 8¢

R ¢ A TR N F Y- N

The Scoring Method Equation for n(l).

Substituting the expressions derived for the first and second order

derivatives of log £ in (6.10), we get the desired equation, which is

(6.25) E(o)@.(l)‘ﬁ(o)) = X0)
where
A _0log £ »
(6.26) ,‘!(o) i n 1‘—1.1(0) »
x=.!(o)

and aa—ffs—‘ is given by (6.11) and (6.13).

Estimation of V.

have 1 lace @ and 8 with &, ., 8
Once we have N(p)> Ve can replace @ and $ 84y 201)
in (6.7) and maximize the resulting function, which we denote by
log 7 . So we will maximize

~ Tm T 1 raAr 1=l g=lA-1l A
(6.27)  log £=- log 2n - = loglyl - 5y 2(1).@(1)\3 Q2L




Now the last term can be rewritten as

2y
2

1AL Av-l

(6.28) 23,(1)3(1).,,,, (Tp N DK, 'I"~'(l)~(1)X

This follows from (6.1) and (6.4). Now it is well known that the value

of V which maximizes (6.27) is given by

=1 L
P’J'i
m

dl >
Va3

'_l

N
tmy
-
"

(6.29) (1) =

A
See Anderson (1958), Chapter 3. We can express !(1) in terms of é ny

A

g(l), y using the same argument as in (6.28). So

(6.30) §..=ix 84 g’ &
i Ya) = 7 En,nf@)Ba Xy 2 2 (@, *

We could theoretically carry out further iterations, but this would
be computationaly costly. The estimates given above are asymptotically
equivalent to the estimates derived via Newton-Raphson method and

hence are asymptotically efficient as demonstrated by Reinsel (1976).




Apgend.ix -

We shall now derive some of the results that we have used in the
previous chapters.

The Time Domain.

Lemma 1. (i) For any two matrices A spd B

rXs sXr
(1) tr(AB) = (vec A)' vec B .
(1) For square matrices A and B
(@) tr(A® B) = tr(a)- tr(B) .

Proof. (1) and (2) are easily verified by writing out the

two sides.

Lemma 2. For @, 3, E , Ers’ and L as defined in the time domain

~v
-1 hy -1 k
() trlg ", ®L )8 E, ,®L) =0,

for positive integers h,k.

Proof. From (3.5.3) we have
T-1
i=0
Similarly

77




So the left hand side of (3) can be rewritten as
(3) (1) J+h+i+k
) L L tr gl Ea®T ).

Now, Lemma 1(ii) applied to the summand in (4) yields

) e p®p ) eI H) Lo

since i+j+h+k is a positive integer and
B ) = 0 5 e L vae &

This means that (4) is identically zero which proves the lemma.

Lemma 3.

= =1 th, t=1
6) E' vec@ (Ei,j®£‘- B8 1 =0.

~

Proof. The left hand side of (6) is a column vector, a typical

element of which is
(7) vec(® ®1¥) vecla' 1, . @1 M)s' ) .
~Ny o~ ~ Mjeo R R

This follows from the definition of E as given by (6.12). Now

applying Lemma 1(i) and Lemma 2 to (7) we show that it is identically

Zero.

Q-Eo Do




oo ks i

T

it

It is obvious that by the same reasoning as in Lemms 3

Note:
(8) E

which was used in (6.18).

The Frequency Domain.

Lemma 4. For A(-) and B(+) as in Chapter 2
2n . 2n e
(9) f logléﬁ | ax = f l°8|§§ lax =0,
0 (0]

where we have omitted the argument ev‘-

Proof. We shall prove this Lemma for A and the argument for B

is identical. We shall show that

2n
(lo) % f logléé*ldl= 9' F) h = 1, ceey q .
& Jo
Then since for g' = 9

#
2n 2n

f log| AA*|ax =f log|L lan =0,
0 0

the desired result will follow. To derive the left hand side of

(10) we have




From this we get

*
d loglapl U\ Y
So finally
an 2n an
-+ =f log|AA* @ =f ey Iy +[ e Mg -0,
% o 0 0

since é‘ =k is a power series in eD‘ and A*'l a power series in

2n 2n
f P - f e W =0,
0 0

L., Q-E-Do

Lemma 5. For f,, V as in Chapter L.

3 T-1

3 (11) = 2 log|f,| =» -m log 2n + log|V| .
; T 2o ~t ~

{

| Proof. The left hand side, as T = », tends to




2n

(12) 51;; log| £ )lan .
0
But
12001 = @)™ Ay A s - 0™yl IBEt T 1as*
which yields

logl£()| = -m log 2r +1og|¥| - 1og| BB*| + logl4A*| .

So (12) becomes

2n
-m log 2 +logl¥l + 2= [  (loglaA*| - log|BB*|) ar
0

= -m log 2r + loglzf ’

using Lemma L.
Q.E.D.
Note. It follows from Lemma 5 that the modified log likelihood
used in Chapter 4, given by (4.1.9) is asymptotically equivalent to
the one used by Dunsmuir and Hannan (1976) and Nicholls (1976). One

consequence of this is that maximizing (4.1.9) with respect to

_151, sovy 'I‘\q, Bl’ vosy -§p’ V leads to asymptotically efficient estimates

for these parameters. We have used this in the proof of the theorem in

Chapter 5.
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Lemma 6. For I, and f  as in Chapter U

(13) e .-t <gn, t=0,, .., 1,

where

flal

1
ot
2]

i

>

.

for any matrix A and

&p = o(1) .
Proof. Using (4.1.2) we get
~isA
€L = %? Xt s

IsIST-l =
So
(b 1 z -isht 1 X o] -isht
14) Cl, =f = «au V. e e s|V. e .

t t 2n |s1 Sta ~g 2nT |S| <1 ~s

Using triangle inequality on (14) yields

(15) le g, -gl<s T vl +s= T lsvll =g,
t ~t on |s|>T-l ~8 2nT |s|§T-1 ~s T

say. Now the first term of gp 1is 0(1). This follows from
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which means

| |2 Iyl =0 as T+w,
s|>T

The second term of &p is also o(1) because

e-isk

df v
(16) gil)‘.:O = o= sg-m Sy's )

this follows because g is a rational function of eix. Now (16)

implies that j

o] gmllszsll < L lsgl<a.

Q.E.D.

Note. Lemma 6 says that

lim €£t=f

)
T +w s

and the convergence is uniform in t. This enabled us to derive a

suitable approximation to

in section 4.5.

i 8= °
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