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ABSTRACT

This report presents a statistical version of the Gaussian

initial orbit technique. It neglects neither the angular

velocity nor the radial velocity terms in the f and g series.

More importantly it provides a rigorous , analytically simple

result for the radius of convergence of the f and g series.

The radius of convergence can be extremely small at periastron,

approaching zero as the eccentricity of the orbit approaches

unity. The leading term is given by /~ (l 
- e)3~

’2P/(3ir ) as

e + 1 where P is the orbital period. This implies that

initial orbit determination by any procedure which uses the

f and g series is a process fraught with the possibility of

unknown errors. The central result is given in Eq. (29).
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I. INTRODUCTION

This report’s primary contribution is a rigorous result

concerning the radius of convergence of the f and g series

of celestial mechanics. It is given in Eq. (29). The result

• appears to be unknown in that a thorough perusal of the L
classical texts (Brouwer and Clemence, Brown, Brown and Shook,

Danby, Escobal, Moulton, Pluinmer , Smart, Wintner, etc.) and

several other texts reveals no mention of it. The simplicity

of the formula, its apparent connection with the well-known

divergence at e = 0.6627434 associated with the use of

Lagrange’s formula on Kepler’s equation, and its importance

lead me to believe that 1) there must be a simpler method of

deriving it and 2) while the work here is original, it must P
duplicate someone else’s.

The f and g series are important in orbit determination,

the differential correction of orbits, and in the nume~ :c ai.

integration of orbits. Their use in orbit determination is

principally to obtain a distance estimate from the measurement

of angles. In the other two cases the f and g series form

the basis for the algorithms used in the numerical integration

of the equations of motion.

The main thrust of the analytical result is that for

highly eccentric orbits (e ~ 0.5) the radii of convergence

of the f and g series become very small near the periastron

point. For example, with an eccentricity of 1//~ the common

_______________ — ________



radius of convergence is E~ n(l + /~) 
- l//~JP/(2ir) “~ P/36

(P is the orbital period). This is ~2O~ for a 2 rev/day

artificial satellite. Hence, the usuable range of the series,

that is when they provide 1% accuracy, is <5m (see Table 3).

Thus, if we remember to include the inevitable errors of

observation, the procedure of Gaussian initial orbit determina-

tion will be a difficult one. The neglect of the non-negligible •

velocity terms only compounds the problem*.

As we rarely ever get exactly three measurements of angles

only , a statistical initial orbit determination procedure, based

on the logic of Gauss, seems appropriate. This is developed in

Sections II - V. It is no longer necessary to throw away any

velocity effects using this formulation. The motivation for and

proof of the central result is given in Section VI. A brief

discussion of its implications (~VII) and alternatives to the

Gaussian technique (DVIII) are also presented .

*For a Molniya type satellite (argument of perigee = 270°,
inclination = 60°, eccentricity = 1//~) observed at theequator, & = nv’~ , o = n/~ , and t/r = 2n where n is the mean
motion. Clearly the angular speed and the foreshortening term
are comparable and neither is small.
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II. THE MOTION OCCURS IN A PLANE

Let r(t) be the geocentric location vector in the usual

(approximately) inertial reference frame where the z axis is

the axis of the earth (e.g., the North Celestial Pole is at

x 0, y 0, z = + CD) , the z = 0 plane is the extension of

the earth ’s equatorial plane, the positive x axis points in

the direction of the Vernal Equinox, and the y axis completes

a right handed triple;

S

r = (x,y,z) = r(cosócosct, cosdsincz, simS), (1)

where ~ and tS are geocentric right ascension and declination.

If G is the constant of gravitation and M~ is the mass of the

earth, then the equations of motion are

d2r/dt2 = r = — GM~~/ I r I 3 
- iir/r~ (2)

where - •

2 2 2 2 2= x + y + z = , r > 0. (3)

For r > 0 there exists a unique, continuous solution of Eqs. (2)

for which r(t) takes on the value r(t0) and v(t) = r(t) = d~ (t)/dt

takes on the value v(t ). Moreover, the solution is a con-

tinuous function of r(t0) and !(t0) and a continous function of

3
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7

small changes in the right-hand side of Eq. (2). These state-

ments are easily proved by using the standard existence and unique-

ness theorems (~3.1ff of reference 1) for ordinary differential

equations obtained from Picard ’s method of successive approxima-

tions. The continuity of the solution with respect to changes in

the force is the foundation of perturbation theory. The dependence

of the solution on six independent, initial conditions is the

foundation for the statement , “Three d i f ferent  observations of

angles (e.g., u and 6) only su f f i ce  to uniquely determine an

orbit” .

If we take the vector cross product of Eq. (2) with r(t)

we find

r ( t )  X ~ (t )  = 0 , (4)

but , H

d E r ( t )  X v ( t) J / d t  = r ( t )  X i(t ) , (5)

so

L = r ( t )  X v ( t ) , L = = (~ia( 1 — e2 ) J ~~
”2 , ( 6)

is a constant vector. If neither r(t) nor v(t) is null*, their

vector cross product determines a plane (reference 3, §31).

*The vector r(t) can vanish only if the motion is rectilinear.
In that case r(t) and v(t) are col].inear, L vanishes, and it’s •
obviously impossible to determine a unique plane. If r > 0,
then v(t) is never null. See also reference 2, §241ff.
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L is normal to this plane and both r(t) and v(t) always lie in

this plane. Hence, the motion takes place in this ~~t ~.e which

is called the invariable plane. We recognize L as the angular

momentum (per unit mass).

Now consider three location vectors at the three different

times t1, t)~ and t~. Let = r(t~ ). Then, since (reference 3,

§36) the necessary and sufficient condition that three non-null

vectors, a, b, and C , be coplanar is

.

a (b X c) = 0 , ( 7)

it follows that

r1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (8a )

It also follows from the properties of the triple scalar p

product (p37 of reference 3) tha t any permutation of the

indices does not affect the result. Another form of Eq.(8) is

xl ~~ 
z1

D = x~ y~ z~ = 0. (9 )

Xk y
~ 

Z
k 
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Since this is a third order determinant there exists 6(=3!)

di fferent ways of expanding it . In order to demonstrate

three of these mathema tically redundan t ways of expressing

( 9 ) ,  define

P~~~(a~ b) = a~ b~ 
- a~ b~~s P~~~(b~ a) = - P~~~( a 5 b) = P

~~~
(a

~ b ) .  ( 10) 1;
i i j k  = three dimensional Levi—Civita symbol* , (11)

then , since D = 0, three of these ways are

D = 

~ ~ijk 
X
1 
P
Jk (Y? z)l (12a)

= 
~ C

j )~ ~~ P Jk
(z S x)

~ (l2b)

= 
~ ~~~~ 

Z i  P k(x ,y), (12c)

where i, j ,  and k are each summed over 1, 2, and 3. Even more

compactly,

D = 
~ ~

EabccijkaiP.k (bSc). (13)

= £231 = £312 = ~ C 132 £213 = £321 = — 1 , all other
= 0 for i , j , and k one of 1, 2, or 3.

6
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where Eabc is the alphabetical counterpart to Cijk and a, b, and

c are each summed over x , y, and z.

In order to remove the mathematical redundancy of Eqs. (12)

we employ the physics of the problem to evaluate the P ’ s and the

observations of the problem to evaluate the remaining geocentric

coordinate. To do this we need to be able to express r(t~ ) in

terms of r(t0) and v(t0) at some arbitrary epoch to. For this

purpose the f and g series are used .

Before proceeding to a defini t ion of the f and g series , we

should note that there is another formulation of the coplanar ity

of the three location vectors which is useful. Since the vectors

are three dimens ional , their coplanarity implies their linear

dependence. Thus, there mus t ex ist scalar constants d . , d., and

dk such that

d1r1 + d~ r~ + dkrk = 0. (8b)

This formula serves as the basis for the Gibbsian variation of

the Gaussian technique.

I-
7
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III. THE f AND g SERIES L
We already know that, as long as r > 0 , r (t) is a continuous

function of r (t0) and v(t0). We choose to express this in the

form

r(t) = f(r(t0), v(t0), t 
— t0] r (t

~,
)

+ g [r ( t 0) ,  v ( t 0) ,  t — t0]v(t0). (14)

If we can determine f and g then we can compute the P ’ s. The

usual method of doing this is to substitute power series

expansions for f and g in T t - t0 into Eq. (14) and then use

that result in Eq. (2). Alternatively,  we note that F.

a = fa0 + ga0 a = x , y,  or z (iSa)

= — h ( r ) a  h E li/r3 (15b)

and that all of the higher derivatives can be computed by

successive differentiation of the equations of motion.

Through sixth order in ‘P the result is

8
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f - 1 - h~T
2/2 + h0p0T3/3 + h0 (3q0 

- l5p~ + h0)T 4/24

+ h0p0(7p~ 
- 3q0 - h0)T 5/8 - h0(945p~ - 2lOh0p~

- 630p~q0 + 45q~ + 24h0q0 + h~~)T 6/720 , (]6a)

g — ‘P - h0T
3/6 + h0p0T4/4 + h0(9q0 + h0 

- 45p~ )T 5/l20

+ h0p0(l4p~ 
- 6q0 - h0)T6/24 , (16b)

where ,

p — r v/r2, (h a)

q — v/r2 — h. (17b)

The important thing to notice is that the actual dependence

of f and g on and is really on 
~~~~~~~~~~~~ 

and •

The important question to ask is “Do these series converge , and
S if they do, under what circumstances?” We’ll defer an answer

to this question so that we can continue the discussion of

initial orbit estimation (Cf. §VI).

From Eq. (15a) it follows that

9
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P1~~(a.b) = (f~~ ) - g~f~ )(a0b0 — a0b0) — P~]
(fI~~)(a0b0 

- a0b0)

= ~~~~~~~~~~~~~~~~ (18)

Hence , Eq. (13) can be written

D = 
~ Y. ~~~~~~~~~~~~~~~~~~~~ = 0. (19)

This puts the physics into the P’s. Since

(20)

where R is the topocentric location of the celestial object and

R is the geocentric location of the observer, we can replace a

by A + A and Eq. (19) becomes

D = ~ ~~~~~~~~~~~~~~~~~~~~~ + Ai) = 0. (21)

Of the three quantities which make up Rj~ two are measured . If

no component of L vanishes Ci ~ 
0, 1T/2; ~ ~ 0,ir/2, i~ , 3,t/2), since

the P’s are determined by the physics, Eqs. (21) appear to be

three linear , homogeneous equations in the three unknowns, ~~~
and Rk . This, though , isn ’t true . We need to examine the

topocentric geometry more thoroughly to explicitly see this.

10

• - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~ • —.~-—~ _______________________ 
________ _____



IV. THE TOPOCENTRIC GEOMETRY

At any time t = tk we can wri te

r~ = R~ + R 2 + 2RkRcosZ k, (22a)

coszk 
— sin+ sin

~k 
+ cos4 cosAkcos(T k 

— Ak)~ 
(22b)

where

R R(cos~ cosA ,cos~ sinA , s im S ) ,  (23 )

R = R(cos4’cost ,cos4’sinT ,sin4’). (24)

Here is the sidereal time corresponding to tks 4’ is the

observer ’s geocentric latitude, and R is the observer ’s geocentric

distance. There is only one positive root of Eqs. (22) and it

is given by

= — RcosZk + [r ~ — R2sin2Zk]’~
’2. (25)

Therefore, we can replace the object’s topocentric distance at

any time in terms of known quantities and its geocentric distance

at that time. We replace rk by its f and g series so Eqs. (21)

explicitly depend only on r0, v0 = 
~~~

, and V0 I~~

11
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The actual application of Gauss ’s technique involves the

explicit solution of Eqs. (21) for one of the Rk, the use of

Eq. (25), and the total neglect of the velocity terms in the

f and g series. Thus , one equation in three unknowns is reduced

to one equation in one unknown. If we actually look at the

equations involved, one can (for nearly circular orbits only)

heuristically argue the radial velocity term away. In any case

it’s clear that throwing away all of the velocity information is

improper. It ’ s also clear that the Gaussian technique doesn ’t

“solve ” the initial orbit problem.

Gibbs ’s method starts from Eq. (8b) . He includes terms of

the fourth order in time in the f and g series . From Eqs . (16)

we see that this is also the minimum order which includes all

the effects of the velocity. Thus, the Gibbs ’s technique is

midway in complexity and accuracy between Gauss ’s method and

the statistical method proposed in the next section . H

12
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V. STATISTICAL ORBIT DETERMINATION

As a practical matter one almost never acquires exactly three

measurements of angles only. Therefore, instead of throwing a*ay
F 

- the velocity information , we can solve for r0 — ~~~, v0 = jy~~ ,

and V0 = 
~~~~~~ 

To be more explicit let us write out Eqs. (21)

in fu l l  for three , di fferent, arbi trary times t = t1,t~ , and tk;

XjJk P)~~(f~~)x. + P~~~(f~~ )xJ 
+ P~](f~~)x~ = 0 , (26a)

‘1ijk P~~~(f~~ )Y. + P~~1(f ~~~)Y ~ + P . . ( f lg ) y ~ = 0, (26b)

Zjjk E P
]~~

(f~~ )z. + P~~~(f ~~~) z
J 

+ P1](f~~ )z~ 
= 0. (26c)

The explicitly appearing components of r1 , r3
, and are to be

replaced by

Xj 
= R

~
cos

~~
cosA

~ 
+ Rcos4’cosr

~~
, (27a)

“1 
= R1cos~~ sinA . + Rcos4’sint ., (27b)

Z
i 

= R~simS1 + Rsin4’, etc. (27c)

Each value of R~ is an implicit function of rj given by Eqs. (22)

or Eqs. (22b, 25). Each ri is given in terms of r0, v0, V0, and

13 
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= ti - to through the f and g series. We form the quantity

SI,

S 
~~~~~~ 

— 

(X
~ )k + + Z

~jk
) . (28)

1,), —

The i ,j,k sums are unrestr icted from 1 to N (= the total

number of observations). There are 3(~) 
= N(N - l)(N - 2)/2

non-zero terms in the sum. We now minimize S with respect to

r0, v0, and V0. Having found these values, we then solve

for the orbital elements using all of this information.

This procedure still rests on the rapid convergence of the f

and g series but no other approximation has been made.

An efficient method of searching for the minimum value

of S is the method of steepest descent. This requires that

all of the second derivatives of f and g with respect to h,

p, and q be computed. Since f and g are polynomials in

these variables, this is a simple matter once f and g series are

known. However, from the pattern in Eqs. (16), one must

include terms of the tenth order in T before this can be

done with any accuracy. The programming and testing of

statistical orbit determination, for a wide variety of

different artificial satellite orbits, is currently underway.

All terms inclusive of those twelth order in ‘P are being used.

14
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VI. THE RADIUS OF CONVERGENCE OF THE f AND g SERIES

This section has been partitioned into three different

subsections. We first show (~VIA) why we suspect that there

is a problem with the f and g series for large eccentricities.

We then sum the f and g series in terms of the true anomaly

(IVIB) . Next (~VIC), we provide a rigorous proof for the

following:
C

The f and g series defined by Eq. (14) have the following

radius of convergence in ‘P = t - t0; if e = 0 the radius of

convergence is infinite, if e is unity the radius of convergence

is (8Q3/9u)1”2 where u = GM. and Q is the distance from the

focus of the parabola to its directrix , if ec(0,1) the radius r.
of convergence is given by P’t/(2ir) where P is the period and

2 r 2 1/2 2 1/2 
211/2

~~~LMo + & n [l + ( l— e )  ] _ t h e _ ( l_ e )  . (29)

Here M is the value of the mean anomaly corresponding to

t = t0, M
0

c ( — I r , 1 T ) .

In the next section (~VII) we discuss the implications of

this for orbit determination using the Gaussian method.

A. The Problem

We obtained the first few terms of the f and g series in

Eqs. (16). The coefficients of T are algebraic combinations of

15



the auxiliary variables h, p, and q. In order to get a

quantitative feeling for the relative size of these three

quantities let us compute their average over an entire orbit*.

We find,

= M/[a3(l - e2)3”2], (30a)

= 0, <p2> = e2<h>/2, (30b)
C

= (1 — e2 i <h> . (30c)

Hence, the coefficient of Tk in f is of the order , on the average

(given a very heuristic averaging procedure) of hk~
’2. For g,

k k-i
the coefficient of ‘P is of the order of h T.  A simple proof

by induction coupled with the exact relationship

dh/dt = —3hp (31)

shows that it ’s true for all values of k. Hence, for the series

to converge, we would need (by Cauchy ’s root rest, §17-4 of

reference 4)

T(<h>)~~~
2<i or T/P<(l-e2)314/(2~ ). (32)

Clearly as e+1 T/P÷0.
*For any quantity u, <u> = J~~udt/P .

0

16
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The above can be easily criticized especially for the use

of averaging and the limit as the eccentricity approaches unity .

The proper limit of the formulas of elliptical motion involves

both letting e~ 1 and a+~ such that Q = a(l-e) is finite . Hence,

an asymptotic expansion in l-e that starts from the parabolic

formulas is much more appropriate . This will  be investigated

af ter we ’ve summed the f and g series.

More generally though, despite our averaging , it appears

that the convergence of the f and g series depends (since h = i/r 3) ,

on the satellite ’s distance , e.g., Eq. (32) without averaging

Lmplles that

r > (T 2
~i)~~

’3 (33)

for convergence. This leads us to ask the question , “What

fraction of an orbit is the distance greater than some pre-

selected lower bound?” . Suppose we parametrize the lower bound

by ap with p > 0. Then the resulting fraction is a function

of p and e only, say H(p,e). A straightforward computation yields

• fi p < l ,
H(p , 0) = .

~ (34a)

to p~~~~l.

10 p c Q,
I1(p,1) = (34b)

H Ii ~~~~~~~

17
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H (p,e) for 0<e<l = 1 p <i  — e.

1 - (1/~ ) 1cos~~ (( l-p)/e] - (e2
(34c)

— (1 — p )  J I i—e<p<i+e ,

0 p>1 + e.

We note H(l,e) = (2e + n ) / ( 2 i i ) and ~H/3p < 0 for ec (0 , 1) .

U(p,e) is tabulated in Table 1 for e = 0( 0 . 1 ) 0 . 9 , p = l—e (0.l)l+e.

B. Summing the f and g Series

The parametric representation of the geocentric position

is

x/r = cosôcosc& = cosc~cosu - sin~ cosisinu , (35a)

y/r = cos6sinc* = sin~ cosu + cos~cosisinu , (35b)

z/r = simS = sinisinu, (35c)

r = a(1 — e2)/(l + ecosv), (35d)

U V + W ,  (35e)

tan(v/2) = Ed + e)/(l - e)]V2tan (E/2), (35f ) 
t

E - esinE = M = n (t  - t0) + M0 . (35g )

18
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The standard origin of time is the time of perigee passage

• (usually denoted by T). The remaining notation is a = semi—

major axis , e = eccentricity, i = inclination, ~ = longitude

of the ascending node, w = argument of perigee, v = true

anomaly , E = eccentric anomaly , M = mean anomaly , n = mean

motion , nP = 27T where P is the period, and n2a3 = i .

If we express Eq. (14) explicitly in terms of the

parametric representation of the motion then we find (
(T = t - t0 here )

• f = ~~~
_ r (T )t 0sin [v (T) - v0] + r (T ) r0~ 0cos [v(T)  - v0]~~/L , (36a)

g = ) r ( T ) r osin [v(T) - vo]~ /L, ( 36b)

where L was defined in Eq. (6). All v’s refer now to the true

anomaly , not I d~/dt I and the subscript o indicates a quantity

evaluated at t = t0 ( e .g . ,  v0 = 0 if to = T ) .  Equations

(36) are exact as long as the Jacobian a(x0,y0,z0,*0,~0,~0)/

a(a,e,i,c~,w,M0) doesn’t vanish. Although we haven ’t computed

• this determinant , we expect it to vanish for e = 0 , i = 0 ,

i = ¶/2. If the motion is assumed to be circular then

p = q = 0 , h = ji/a3 = n2 and by induction on the coefficients

• of T~ we find

f = cos[v(T) - v0], (37a)
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g = (1/n)sin[v(T) — v01. (37b)

But if e = 0 , v = E = M and since the sine and cosine are

analytic for all real values of their argument , the power

series expansions of f and g in terms of t - to converge

everywhere. This proves the first part of the theorem.

Let us now consider the case e = 1. The analog of

Kepler ’s equation is

3 3 1/2
tan(v/2) + ( l/3)tan  (v/2) = (p/2Q ) (t - t0 ) (38)

r

where v (t0) = 0. The explicit solution for tan (v/2 ) is r

1 11/3
tan(v/2 )  = [CT + (1 + c ‘P ) J

r 11/3
• + LCT — (1 + C ‘P ) j , (39a)

with

c2 = 9~/8Q
3,c > 0, T = t — t0. (39b)

From this result , we can compute sinv and cosv in terms of

T. If we substitute this into Eqs. (36) and then expand the

binomials, we will have the appropriate power series. They will

converge when the binomial series converges, e.g., for

21
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cITI < 1. Now we can address the earlier criticism concerning

the limit as e-’l. Since

Q = u r n  a( l  — e ) ,  Q finite, (40)

a-~~ •

e~ l 
-

it will be asymptotically correct to replace Q by ad l  - e) in c.

Thus , as e~1 we can expect convergence of the f and g series

when

371 1T 1/P < 1~ (1 — e) 3”2 . (4 1)

Although of a different functional form than the result in

(32) , the problem with e~ l does not go away .*

Having provided this much motivation for the existence of

a problem, we now turn to solving it rigorously. It is simpler

to work with the eccentric anaomaly than the mean anomaly so

we rewrite the f and g sums as

f = (a/Lr0) (r0t0sinv0 + Lcosv0) (cosE - e)

F 2 1/2 1
+ LaU - e ) /r0LJ (Lsinv0 

- r0t0cosv0)sinE , (42a ) H
*This is the limit of Eq. (29) when = 0 and e -

~~ l .
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g = - (ar 0/L) s inv0 (cosE - e)

1 2 1/2 1
+ Lar0(1 — e ) /L]cosv0sinE. (42b)

We need not only to expand the trigonometric functions of the

eccentric anomaly • in a power series (which converges for all

real values of E), but to expand E in a convergent power series

in M, substitute this, term by term , in the series for cosE and

sinE , rearrange terms to obtain a power series for f and g in

M, and then show convergence.

• C. The Series f(M), g(M) and Their Convergence

The first thing we need to do is obtain E(M) in a power

series. From Kepler ’s equation , Eq. (35g), we can solve for

E(M) in a convergent Fourier series (S17.2 of reference 5),

E = M + 
~ 

(2/v)J
~~
(ve)sin (vM) , (43)

v=l

where J~ (z) is the Bessel function of the first kind , of order

p, argument z. For e real, this series converges on 10,13. We

want, however, a Taylor ’s series representation for E(M). To

compute the derivatives d~ E/dM~ we differentiate (43) L times

term by term and sum. The sum will be d ZE/dM t if the series

obtained by (2~ - 1)-fold differentiation term by term converges

and if the series obtained by t-foid differentiation term by

• term converges uniformly (~ 18.5 of reference 4). Thus, we need

23
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to show

~ v
t_l

Jv (ve)~~~~
(vM) (44)

v—]

converges uniformly V~ > 1 and ec(0 ,l) . The e = 0 , e — 1 cases

we’ve already disposed of.

By Weierstrass ’s comparison test (reference 6, §3.34), since

• for all real M, I sinvM l ~~. 
l~ I cosvM l ~ 1, if

H ~ Iv~~~
J
~~
(ve)I £ > 1, ec (O,l), (45)

v ] .

converges then the series (44) converges uniformly. But J
~
(ve)

for ec(0,l~ is a positive decreasing function of v (reference 5

§8.5). It, therefore, follows from D’Alembert ’s ratio test

(reference 4 § 17.4) that the series (45) converges whence the

series (44) all converge uniformly for £ > 1, ec (0,l]. Therefore,

dtE/dM t 
= o R. ]. + 2(—l) 2 

~ 
v’ J

~
(ve)cos(vM) ,& odd, (46a)

v=l

I
2(_l)2 

~ 
v
~~
’J
~
(ve)sin(vM) ,R. even. (46b)

v—i

• Since all the derivatives of E with respect to M exist, E

is an analytic function of M (reference 7 §l69H of Vol. II). It

is, therefore, expressible in a Taylor’s series and the Taylor

.

I

—~~~~~~~~~ ~~~~~~~~~~~~~~~ •:~~~~~~~~~~~~~~~~~~: ~~~~~



— ~~~~~~~~~~~~---~~~~

series, in a sufficiently small neighborhood , does converge to E.

At M = 0* we have,

dLE/dM L
l = + 2(—l)~~~~ ~ v

L_l
Jv (ve) , £ odd, (47a)

M=0 ‘ 
v=l

0, t even. (47b)

The first few values are**

E’(O) = l/(l—e), (48a)

E’’’(O) = —e/(l—e)4, (48b)

Ev(O) = e(l + 9e)/(l—e)7, (48c)

E~
Tui (O) = —e(l + 54e + 225e2)/(1—e)1°. (48d)

Thus,

E = M/(1—e) + ~ S + 
M2~ 

+ 1/r(2k + 2 ) ,  (49)

where r(z) is the gamma function and

*The expansion about M = 0 is e~iiivalent to expanding about theinstant of perigee passage. For any other value of M we would
• find that the f and g series in (N - 14 ) has radius ~2 convergence

n~. Hence, once the M = 0 result is established the ~ 0
result follows iminedi~ tely .
**The reader can see in Eqs. (48) the kernel of the problem. •

•

25

• ~~~~~~~~~~~~ -~~_ • •-.~ • _•• • • - ~~ -•--



____________ •

S2k + 1 = 2(_1)k X y 2k(v ,e), (50a)

y2k(v ,e) E v2’
~
J,
~
(ve). (SOb)

I
The radius of convergence of the E(M) power series, 4, is •

:~given by (reference 4 §19.5). H

1/iL = liifl SUPIS2k + 1/r (2k + 2) 11(2k + 1) (51)

Since for ec (0,1] J
~~
(ve) is a positive decreasing function of

V and for k > 0, v > u is a positive increasing function

of v , it follows that y2k (v,e) has a single maximum as a

function of v. Call this value of v , N (not necessarily an

integer). Let jN] be the greatest integer less than or

equal to N. Then ,

< IN], 12k(m 
— l,e) < f y2k(v,e)dv < y 2k (m ,e) ,  (52)

So, since J0(0) = 1, P

IN]—l [N]

m~0 
12k(m,e) < ~1N]~ (v ,e)dv 

m~0 
y2k (m .e). (53)

• Also,

26



[N)+m+1
~~‘ ~ 

1, + m ,e) > 

~~~ + 
Y2k(v,e)dV >

In 
(54)

so

12k (m ,e) > I Y2k(V ,e)dV > Y2k(m,e). (55)• m= [N]+l IN]+l m a2+(N ]

Combining the inequalities (53, 55) yields

[NH-i
J y2k (v ,e)dv — I y2k (v,e)dv + y2k (tN] ,e) + Y2k(LN] + l,e)
0 IN)

> ~~~~~~~~~ (56)
m=O

However,

y 2k (N ,e) > { y?k(v,e)dv > y2kUNhe), (57a) r.

and
IN]+l

12k(N ,e) > f 12k(v ,e)dv > Y2kW’~
] + l,e), (57b)

• so
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1

(NJ+l

{N1 
y2k (v,e)dv > 12k (INI ,e) + Y2k (ENJ+l ,e). (57c)

Therefore,

‘2k = J y 2k (v ,e)d v 
m~ 0 

y 2k (m ,e) = l S 2k + 11/2 . (58)

We now have , for all k > 0, ec(0,l] an upper bound for
S2k + iJ . The next step is the evaluation of the integral in

(58).

We can write (reference 5 §8.5)

J
~~
(ve) = (1/it) f exp[—vF(O ,e)]de , (59)

where

F(O ,x) = £n [O + ~e
2 

— x2sin2e)112] — £n (xsinO)

— cotOdO 2 — x2sin2O)~
”2, (60)

and we can prove ,

F(O ,x) > F(O,x) > F(O ,l) = 0. (61)

Replace J
~
(ve) in the integral of with this expression,

interchange the order of integration (this requires the uniform

28
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convergence of the improper integral ‘2k (reference 6, 14.44 1 ;

we shall explicitly show this below) and make the change of

variable ~ = vF(0,x) in the v integral. Then,

• 
212k = (2/n)~~~IdO/F

2
~~

l(O,e)1~~ Ij2kexp (_U)dU > + ii . (62)

The i~ integral is just ~(2k + 1) and from the inequality on

F(O,e) above,

2r (2k+1 ) (
ii

• 
1TF2~~~~(0,e)O 

dO > 1 S2k + ~ 
. (63)

The result for 4 is, then

= u r n  2F(2k + 1) l/(2k+1)
k-.co 

~(2k + 2)F2k
~
l(0,e) 

. (64)

Or,

4 — F(0,e). (65)

Let us now look back on what we’ve done. We’ve shown that

E(M), expressed as a power series in M about M — 0 converges for

I M~ < F(O,e). The one missing point is the uniform convergence

of the 12k integral which we now provide.
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We need to show that

f~ 
v2k{(1/n)f

’
~exp[ — vF(0,e)]dO}dv

(l/it)f {f

oo 
v2kexp i -vF(O ,e)]dv}dO. (66)

0 0

This will be true if the inner integral on the right hand side

of (66) converges uniformly in 0 for Oc[0,n]. From (61) we can

majorize the integral by the gamma function again so that by de la

Vallee Poussin ’s comparison test for convergence (16.12 of

reference 7, Vol. I) the inner integral on the right hand

side of (66) does converge uniformly.

The last thing we need to do is inquire into the permissi-

bility of substituting one power series in another, performing

the Cauchy multiplications, rearranging, and summing. From Vol..

II , §161 of reference 7 we can see that in the present circuin-

stances this is permissible and the radius of convergence of

the f and g series is precisely 4. Q.E.D.

One might wonder as to the relationship between this result

and the results, for instance in §100 of reference 9, wherein

r and v are expressed in a Fourier series of M. These are known

to be divergent for some values of M once e > 0.6627434. This

number happens to be the modulus of a complex root of F2(O,e) — 1.

The connection arises because of the nature of the Kapteyn

series for E(M) and the use of Lagrange’s formula (reference 10

30
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156). The series for r and v are really power series in e whose

coefficients happen to be trigonometric functions of the mean

anomaly. If we expanded sinM etc. in a power series in M, its

radius of convergence would clearly be at most 0.66---. In fact,

from reference 11 §4.3, it would be much less. It appears that

the theorem given in the beginning of this Section is the most

general result one can obtain without special arguments depend—

ing on the values of e and M.
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VII. THE IMPLICATIONS FOR ORBITAL ANALYSIS

F(0,e) is given in Table 2 for e = 0(0. 1)1 .0 .  We note that

F(0,O.l)/F(O,0.7) = 11 which shows the dramatic drop in the

permissible time span as e 1. If n = 2 rev/day, e = 0.7, then

the maximum time for which the f and g series converge is

<21 minutes. We also give in Table 2 the maximum eccentricity such

that the f and g series converge for IT  I /P  < 0 (0 . 0 5) 0 . 5 .

Although it is clear that for M0 = 0 , 4 -
~~ 0 very rapidly as

e -
~~ 1, we shall rarely be so unfortunate as to observe a satellite

at perigee. The two most promising search patterns will find

satellites near iS = 0. The most common high eccentricity

satellites can be characterized by (roughly) n = 2 rev/day ,

e = 1//7 , w = 3it/2. Hence, E = it/4 , M0 = (it—2)/4 and Pn./(2it)

= 38~3. Of course, V0 is a maximum now and v0 nearly a maximum

so that their neglect is especially serious.

It would seem that, since we can ’t know the orbital phase of

the initial observations, the best we can do is retain a reason-

able number of terms in the f and g series , numerically investigate

their divergence, and restrict the time span of the observations

to a safe , small , duration. Table 3 contains the maximum time

duration we can use and keep the relative percentage error at

1% and 0.1% for e = 0.7 as a function of M0 = 0(10)60° for the

twelfth order f series. The results for g are similar. When we

turn to the rapidity of the convergence of the f and g series as

32
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TABLE 2

RADIUS OF CONVERGEN CE OF THE f AND g SERIES H

e 4 = F(0,e) TI/P e

0.0 0 l
_

0.1 2.00 0.05 0.589

0.2 1.31 0.10 0.410

0.3 0.920 0.15 0.293

0.4 0.650 0.20 0.212
N ’

0.5 0.451 0.25 0.154

0.6 0.299 0.30 0.112

0.7 0.181 0135 0.082

0.8 0.0931 0 .40  0.060

• 0.9 0.0313 0.45 0.044 r.
1.0 0 0.50 0.032

____ ~~~~
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TABLE 3

Maximum Durations for I. and 0.1% Relative Convergence:
• Twelfth Order and e = 0.7  

‘~

T0 1

• 0° 5rn7 [rn3

10 6.7 1.4

20 11.7 3.1

30 17.5 5.6

40 23.6 7.3

50 29.8 10.2

60 >30.0 15.0
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a function of e, T, and M0 we discover that the series

converge or they don’t. What I mean by this tautology is that

the partial sums of the f and g series , for fixed e, T, and

are either constant as a function of their order (and

essentially equal to f and g) or they are meaningless. Numerical

values for the third through twelfth order partial sums were

computed before reaching this conclusion.

The other side of the problem is the desire to have the

observations span as large an extent of the true argument of

latitude [e.g., u of Eq. (35e) ]  as possible. For highly elliptical

orbits this will be the case only near periastron , just when the

radius of convergence is its smallest.

35
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VIII. ALTERNATIVES

While the statistical method outlined in IV is clearly

better than the traditional Gaussian method , it too relies

on the rapid convergence of the f and g series. With angles

only data the other classical methods are the Gibbsian

variation of Gauss ’s method and the procedures of Laplace

and Lagrange. I br ief ly mentioned the Gibbsian variation of

Gauss ’s method on page 12. Since it does minimally include the

velocity , it is better than Gauss ’s procedure . However , as it

too relies on the rapid convergence of the f and g series , it

is subject to the above criticism of the statistical Gaussian

method . The Laplace method requires two numerical differentiations

of the topocentric direction cosines. I don ’t think this is V

a good thing to do. The Laplace method does not rely on the

f and g series though. The Lagrangian method only uses a

single numerical differentiation of the topocentric direction

• cosines but does use the f and g series. Hence, this is

open to the same difficulties as the Gaussian, Gauss—Gibbs,

and statistical Gaussian techniques.

If one has angles and angular rates , which should be

the case for artificial satelli tes , one can improve the

• situation. A modified Laplace method has been developed

wherein only one numerical differentiation is required

(reference 12). A modified Lagrange method without any

numerical differentiations has been developed12 but it still

36
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relies on the f and g series. Finally, there is yet another

method12 which is exact (given that the force is -iirJr
3)

and only uses two sets of observations of angles and angular

rates. Unfortunately, the exact technique is very susceptable

to errors in the angular rates. ITo make this statistical

would require f and g series.]

• If we step back from all of this and remember the history

of the first three hundred years of dynamical astronomy , we

• realize almost all of the development has been concerned

with perturbations of a circular orbit with the observer in

the orbital plane. As the practical problem is to compute

ini tial orbits for highly eccentric motion, it would appear

that a perturbation of a parabolic orbit is the analysis to

pursue. Moulton9 has made a start on this.

r
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NOTE ADDED IN PROOF

After the full review of this technical note Donald Batman

showed me a reference in the second edition of Moulton ’s book.

It occurs under the heading “The Laplacian Method of Determining

Orbits” (pg. 202) and refers to a paper of Moulton ’s (published

after the first edition of the text) in which one can find “the

determination of the exac t realm of convergence” of the f and g

series. The full reference is

F. R. Moulton, Astron. J. 23, 93 (1903).

In this paper, by a method completely independent of the I’

technique used here in, Eq. (29) is derived. He also gave

tables similar to Table 2 but was discussing orbit determina—

tion for asteroids , not artificial satellites.
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of convergence can be extremely smaU at perlas j~~ro°cMne.~ero as t~3e eccentricity of the orhit
approaches unity. The leading term is given by - 3/2 P 3i~))as e -.1 where P 1. the cabital
period. This Implies that initial otbit determination by any p ure which uses the I and g rl•s
is a process fraught with the possibility of unknown errors. The central result is given In Eq. (29)
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