
~h 3 : ~~~~ LEVEL~
AN EXPLORATORY STUDY OF ThE COGN~ VE

STRUCTURES UNDERLYING THE COMPRE-
• HENSION OF SOFTWARE DESIGN PROBLEMS

Michael E. Atwood, Aithea A. Turner, and H. Rudy Ramsey
Science Applications, Inc.

and

Jean Nichols Hooper
Army Research Institute

HUMAN FACTORS TECHNICAL AREA

T D D C

_ _ _

H
U. S. Army

Research Institute for the Behavioral and Social Sciences
H

July 1979

Approv id for pub l.c rets •se; d istribution unhim it.d .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— —•~~ ,-~~-~—~~~~— ~-•-

~~~~~~~~~~~~~~~

• •——

~~~~~~~~

-

~~~~~~~~

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES
A Field Operating A gency un der the Jurisdict ion of the
Deputy Chi ef of Staf f for Personnel

W I L L I A M 1. H A U S E R
JOSEPH Z E I D N E R Co lon e l . U S Arm y
Technical Director Commander

Research accomplished
under contract to the Department of the Army

• Science Applications, Inc.

NOTICES

DISTRIPUTION: Primary distribution of thu report has been made by ARI. P1.. . address corrupondsn~.concerning digtributio~ of report, to: U. S. Army Rsuserch Institute for the Siltov ioral and Social Sci.nc..ATTN. PERI P. ~OO1 Ei,enhov.er Avenue, Alexandria. Virgin.. 22333.

FtNAL OISPOLTIOH: This report may be destroyad sthen it ~i no longir needed. Ph ase do not return .1 to
the U 5. Army RIs arch Institute for the Sofiaviorel and Social Sciences.

.~QIL In. findings in this report are not to be construed as an official Department of the Army position,
• unless so d signetsd by other authoriZed document..

• Unclassified / 7 ’
SECURITY CLASSIFICATION OF THIS PAGE (l It,.., Oat. Ent.f .d)

nE
~
,’

~~
“

~~~
‘ A ~~~~~~ ~~ 

READ INSTRUCT IONS
I’ rvu~ I I~U~..UM I~ U ~~ I lUll BEFORE COMPLET IN G FORM

I. REPORT NUMBER ~GDyT k c c c w x a  3. RECIyL~~N T 5  CATALOG NUMBER

Technical Report 392 
~~~~ 

j ?
~~~~ ~ 2~i ___________________________

• 
• i~~ TITLE (end Subtitl.) S. TY VERED

(.
~~ 

J~N~~XPLORATOR Y STUDY OF THE~~OGNIT IVE ~STRUC TURES / 3 f l  
~ 

echnica 
D~~~~ 78

‘-— -
~~~ rUNDERLYING THE ~OMPREHENS ION OF SOFTWARE DESIGN 

~
- ec

I PROBLEMS —
~- - —~~.-—•

•
— • (~~~~~~~~ ~~EPORT NUMBER

• ~~~~~~ • ••_ _.~~_ •~

q

I S~./ x~ SAl-79-l~~-DENi• 7.~~AU.ti4QR(i.) -~~~
. • • — - ~~~~~~

--- -
~

• _—
~~ ~~ . CONTRA T OR GRANT NUMBER(.)

Michael E./Atwood, Al thea A.JTurner, \
H. Rudy

1
Rarnsey~~~~ Jean Nic ooper (ART) DAHCl9-7 8-C-~~~5f

9. PERFORMING ORGANIZATION NAM E AND ADDRESS 10. PROGRAM ELEMENT . PROJECT , TASK
C • A 1 + • T AREA & WORK UNIT NUMBERS..~cience r.pp i1ca~1ons , ~flC. ,._.~~~

7935 E. Prentice Avenue •‘
~
r /‘ 2Q762725A7~~JEnglewoo d , CO 80111

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REP,Q3LDA.TE
U.S. Army Research Institute for the Behaviora l JUlM~~~78and Social Sciences (PERT-OS) •fJ ,

~3 N U MB E R O F P A GE S
5001 Eisenhower Avenue , Alexandr ia , VA 22333

IS. MONITORING AGENCY NAME a AODRESS(if dilf.rwt f rom Con~~ i!l~J Of f I c 3~ ¶ 5 . SECURITY CLAS S. (of thi. r.p ort)

-- J~~7~~~~~~~;:, / Unclass i f ied
I isa . OECLASSIFICATION /OOWNGRADINGI SCHEDULE

16 DISTRIBUTION STATEMENT (of lbS. R.port)

Approved for public release; distribution unlimi ted

¶ 7. DISTRIBUTION STATEMENT (of lb. .b.tract entered I. , Block 20. If different from Report)

IS. SUPPLEMENTARY NOTES

Mon i tored techn ical ly by Jean ~4ichols Hooper and Edgar M . Johnson , Human
Factors Technical Area , ARI .

IS. KEY WORDS (Continu. on rev.,.. .ide If n.c..wy end Identify by block numb.,)
Com puter programm ing
Computer program documentat ion
Specifications
Memory (psychology)

ACT (r~~e~~u. revsr~~ .(à ft necw~~y end Identify by block numb.r)

An experimen t was conducted to evaluate a framework for the study of
software complexity and comprehension. Basic to this framework is the con-
cept that a person ’s knowledge of , and experience wi th , software desi gn
affects that person ’s abilit y to comprehend a software problem and its po-
tential solutions. Past research on software complexity and comprehensi-
bility has largely been based on the assumption that complexity is a function
of surface properties , such as variable names and flow of control . Such
measure s , however, ignore the effects of experience .

DO 1 JAN 73 ~473 EOt flON OF I WOV SS IS 0BSOLETE Unclassifie d
SECURITY CLA SSIFICATION OF THIS PAGE (When Dat. Entered)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~



Unclassifi ed
S~~CURITY CLASSIFICATION OF THIS PAGE(1Then Data InS.r.d)

2~~~Research on expert-novice differences in problems solving suggests that
experts possess a large number of previously developed knowledge structures,
or sc hemata, that can be used to understand or solve the current problem.
Research on text comprehension provides theoretical concepts and experimenta l• paradigms that are useful in determining the structure and content of these
experience-related schemata.~ ç

• An experiment examined the~
”know1edge structures used by participants ,

at differing levels of experience , in comprehending software system specifi-
cations . Six participants , at each of five l evels , studied a software system
specification and then summarized both the presented specification and the
probable form of the corresponding software design. The results indicate that
software designers use previously learned schemata in understanding a soft-
ware design problem and in actually constructing a design and that these
schemata differ as a function of experience. In addition , the structure and
content of these schemata were investigated. It is suggested that by deter-
mining the structure and content of such schemata, software complexity and
comprehensibility can be considered in a more meaningful manner.

~
I I, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ NTt.5 G1~?I4~I
t.~~ r~a
~~~n~ noed

~~~~~~~~~~~~~~~~~
a~~li~LQ24~3~~

~‘3~\ 
$9GC\~

]~

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Ent.r .4)

- ~~~.• •~.“—. 1. i4



Technical Report 392

AN EXPLORATORY STUDY OF THE COGN~ VE
STRUCTURES UNDERLYING THE COMPRE-

HENSION OF SOFTWA RE DESIGN PROBLEMS

Michael E. Atwood, Althea A. Turner , and H. Rudy Ramsey
Science Applications, Inc.

and

Jean Nichols Hooper
Army Research Institute

Raymond C. Sidorsky, Team Chief

Submitted by:
Edgar M. Johnson, Chief

HUMAN FACTORS TECHNICAL AREA

Approved by:

Frank J. Harris , Acting Director
ORGANIZATIONS AND SYSTEMS
RESEARCH LABORATORY

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL 5~2 I  Ncr :
5001 Eisenhower Avenue, A lexandria . Virginia 22333

OffIce , Deputy Chief of Staff fo r Personnel
Department of the Army

• July 1979

2Q762725A778 and DisplayJ Army Project Number Information Processing

Opprov ed for public release; distribution unlimited .

Iii

SL rn. ~~. . -•  . ~~~-



FOREWORD

The Human Factors Technical Area of the Army Research Institute (ARI )
is concerned with human resource demands of increasingly complex battle-
field systems used to acquire , transmit, process , disseminate, and utilize
information. This increased complexity places great demands upon the oper-
ator interacting with the machine system. Research in this area focuses
on huma n performance problems related to interactions within command and
control centers as well as issues of system development. It is concerned
with such areas as software development , topographic products and pro-
cedures , tactical symbology, user-oriented systems, information management ,
staff operations and procedures , and sensor systems integration and
utilization.

One area of special interest involves the development of computer
software to support automated battlefield systems. Software development
is a costly, unrel iable, not well understood process. The research reported
here applied a theoretical framework based on representation of text in
memory to the production of software design and specification summaries.
The findings verified the prediction that experience is a determinant of
the knowledge structures employed in representing design information . The
research is part of a larger effort to develop a conceptualiz. ion of the
programming process and identi fy behavioral bottlenecks in so f~~ ue devel-
opment. Efforts in this area are directed at improving accuracy and pro-
ductivity in programming through the design of procedures , languages, and
methods to enhance programmer performance.

Research in the area of human factors in software development is
conducted as an in-house effort augmented contractually by organizatior.s
selected as having unique capabilities and facilities; in this case,

• Science Applications, Incorporated , under Contract DAHC19—78—C-0005. The
effort is responsive to requirements of Army Project 2Q762725A778, and to
general requirements expressed by members of the Integrated Software Re-
search and Development Working Group (ISRAD).

• 
. _

J EPH ZF~~ AER
* chni cal Director



• AN EXPLORATORY STUDY OF THE COGNITIVE STRUCTU RES UNDERLYING
THE COMPREHENSION OF SOFTWARE DESIGN PROBLEMS

BRIEF

Requirement:

To develop and test a theoretical framework for guiding and integrat-
ing future research on measures of software complexity and comprehensibility .

Procedure:

Research on expert-novice differences in problem solving suggests
that experts differ from novices in the number and type of experience—
related schemata, or memory structures, that can be applied to a current
problem. These general schemata are used to develop a macrostructure, which
describes the problem solver’s understanding of a particular problem. Prob-
lem information that corresponds to a problem solver ’s schemata does not
require additional processing in order to be comprehended ; information that
does not correspond, however, must be processed and incorporated into a
macrostructure . Techniques derived from research on text comprehension were
used to determine the macrostructures formed by participants at varying
levels of experience to represent a software system specification. By
analyzing the macrostructure information included by less experienced par-
ticipants but omitted by more experienced participants, the schemata used
by experienced participants were inferred .

Findings:

Software designers use previously developed schemata , or memory struc-
tures, to understand a software design problem and to construct a design .
These schemata differ as a function of experience. Further, examination
of the form and content of these schemata led to the conclusion that soft-
ware complexity and comprehensibility can be defined in terms of such
schemata.

Utilization of Findings:

The actual specification presented to a software designer can vary
both in form and content. Structuring these specifications to correspond
more closely to the designer’s schemata would aid the designer both in com-
prehending these specifications and constructing the indicated design.
The complexity of a software design or program should be defined in terms

vii



of the deviations from the designer’s or programmer ’s existing schemata.
Software development procedures, techniques, and training programs should
make use of available schemata and should aid the formation of relevant
additional schemata.

II

viii



~~~
- _ •

~~~~~
• • .• 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

TABLE OF CONTENTS
• Page

INTRODUCTION 1

The Effects of Expertise on Schema Selection 3

Overview of the Current Research 9

METHOD 13
-

RESULTS 16

Surface Measures 16

Analyses of Propositional Ideas 21

Analyses of Propositional Type 27

DISCUSSION 36
CONCLUSIONS 46
REFERENCES 50

p

I

LIST OF FIGURES
Page

Figure 1 : A generalized representation of a software design
structure 12

• Figure 2: Problem Statement 14
Figure 3: Hierarchical Structure of Telegram Processor Text 26

• Figure 4: Input-Process-Output Analysis 31
Figure 5: Analysis by Level in Hierarchy 32

Figure 6: Analysis of General and Detail Information 34
Figure 7: Proposition Usage as a Function of Experience Group 35
Figure 8: Representative Specification Summaries for each

Experience Level 41
F igure 9: Representa tive Des ig n Sumar ies for each Exper ience

Level 42

x

- —

~~
—-

~~~~~ :~~~~~~~
—

~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~
-—

~~~~~~~~~

-- -

LIST OF TABLES
Page

• Table 1: Means and (Standard Deviations )
Reading Times (in seconds) 17

Table 2: Means and (Standard Deviati ons ; of Writing Times for
Specification Summaries (in seconds) 19

Table 3: Means and (Standard Deviations) of Writing Times for
• Design Summaries (in seconds) 20

H Table 4: Means and (Standard Deviations) of Number of Words in
• Spec i f icat ion Summaries 22

Table 5: Means and (Standard Deviations) of Number of Words in
Design Sumaries 23

Table 6: The Propositions Underlying a Single Sentence . . .  25
Table 7: Means and (Standard Deviations) of Number of Relevant

Proposition Clusters in Design Summaries 28



TI~T~

rNTR oDuc Tro N

The production of software is primarily a human activity .

Al though tremendous advances in both hardware and software techno-

logy have been made in the past decade , the development of soft-
ware systems remai ns a predomi nantl y human ac ti vity . As a resul t,
the ability of software development personnel to comprehend the

• nature of a project and its required solution affects the cost,
time , and success of that project. The comprehensibility of a
software project is determined , in large part, by its complexity .

In recognition of the importance of the human component ,

a lar ge number of sof tware deve l opment methods , “rules of thumb ,”
have been proposed . These techniques and guidelines are intended
to make software easier for humans to comceptualize and , therefore ,

to specify and proceduralize. As yet, the usefulness and validity
of these methods have not been proven . However, these methods in-

dicate an important approach to software development , for they imply

that the complexity and comprehensibility of a given software pro-
ject is determined by those who develop the software as well as by

the nature of the project itself.

This paper describes our initial empirica l and theoretical

efforts at developing a coherent framework for the study of soft-
ware complex ity and comprehens i on. Bas i c to thi s framework i s the
idea that a person ’s knowledge of, and ex peri ence with , software
design affects that person ’s ability to comprehend a software prob-
lem and its potential solutions.

There is a growing literature on software complexi ty and

comprehension . However , we feel that the usefulness of this litera-

ture is extremely limited due to the prevalent definitions of the

terms “complex i ty ” and “comprehens ion ”. The concepts discussed in

this literature differ from those we wish to i nvesti gate.



Past research on software comprehensibility and complexity

has usually been based on the assumption that the complexity of a

computer program is a function of such surface properties as control
s tructures , var iable names , and s imi lar as pec ts. Exam p les of suc h
studi es can be found in S ime , Green , and Guest (1973, 1977), Newsted
(1974), Shepard and Love (1977), Miller (1975), and Weissman (1973,
1974) .  These , and similar studies , have considered how comprehensi-

• bility is influenced by comment statements , mnemon i c var i able names ,
mean ingful var iable names , alternative language constructs, etc.

Although at first glance it may appear reasonable that such

aspects do affect program complexi ty and comprehensibility , we argue
that when the effec ts of p rogrammer exper ience are ignore d no general
statements about complexity or comprehensibility are possible. This
point is illustrated in an experiment reported by Shneiderman (1976).
Shneiderman compared the comprehensibi lity of arithmetic and logical

IF statements using participants of two different experience levels.
It was found that log ical IF ’s were more “comprehens ible ” than arith-
metic IF’s for the less experienced participants . There were no
differences in “comprehensibility ” for the more experienced partici-

pants .

• We believe that complexity and comprehensibility are functions

of an indivi dual ’s exper iences and ab i l iti es. Imag ine that we have
a group of programmers of varying levels of experience. In effect,

we have a dimension labelled ‘~experience ” ; at one extreme we have
• programmers that we characterize as “expert’s and at the other extreme ,

we have “nov ices ”. Assume we have a single program, such as a sort
routine. We present this program to all of these programmers indivdu-
all y and ask them to rate its complexity . We would expect to s~e a
wide range of complexity ratings. The “expert1’ may consider this pro-
gram to be “trivial” , but the “novice ” categorizes it as “incompre—

hensible ” . The crucial question that remains to be answered , arid the

• one that we will address in this paper , is why this statement is true.

2

L ...A • . • . ~• •



• How do the expert and novice differ in their ability to comprehend
this program?

Our answer to this question can be illustrated by continuing
the above example. After examining the presented program , we would
not be surprised if the experts made coments such as “this is like
a Shel l  sort , excep t that . . . “ or “this is really a bubble sort with

• the addition of . . . “
. Similarly, less experienced programmers may

note that “the program appears to be interchanging values , but I’m
not quite sure why or how” .

The exper t has seen a l arge number of sor t rou ti nes . Fur ther ,
the exper t can exp la in how these rout ines work , the principa l di ffer-
ences among al ternative sort techniques , etc. The exper t “knows ” these
things because , through ex per ience , this programmer is able to “under-
stand” sor t rou ti nes . Th i s “understanding ” means that the expert has

• organ ized and i ntegrated var i ous p ieces of i nforma ti on abou t sor t
• routines and has stored this information in memory as coherent know-

le dge s truc tures . Comp rehens ion , i n th i s case , is driven or guided by
these existing knowledge structures . The absence of such knowledge
structures makes comprehension by the novice much more difficult.

In this paper , we will focus on these knowledge structures and
attempt to determine how these structures develop as a function of

experience . If we are able to develop a sufficient understanding of
these knowledge structures , then we will have a better understanding
of the concepts of software complexity and comprehensibility . As a
result of this understanding , it may be possib e to suggest software
development procedures that lead to the production of more comprehensi-
ble software, wi th corresponding reductions in the cost and time associ-
ated with software develoDment.

The Effects of Expertise on Schema Selection

Complex ity and comprehensibility then can only be defined and
measured with respect to the level of expertise of a given programmer,



• or group of programmers . In order to define and measure these concepts ,

therefore , we must be able to categorize what is implied by “expertise ” .

That is , why is an expert able to perform some task or understand some
problem better than a novice?

• Within the past few years, cognitive psychologists have at-

• tempted to answer this question by comparing the performance of experts

and novices in a variety of tasks. This research supports the conclusion
that exper t pro b lem solv ing behav ior i s s tron g l y i nfl uence d or dr i ven
by existing memory structures , or “schema ta” . That is , an ex per t has a
large number of generalize d plans , solut i on stra tegi es , or schemata for
a given type of problem. When presented with a problem the expert

attempts to retrieve one of these schemata and adapt it to achieve a
solu ti on to the curren t prob lem .

The standard paradi gm in this type of research is to compare the
performance of experts and novices on problems that both can solve and
to exam ine the problem solv i ng p rocesses used by subjects of different
levels of expertise. A good example of this type of research is the
study of Chase and Simon (1973). They found that highly experienced

• chess players differ from “good” amateur players not in their ability

to execute more efficient search strategies or apply more sophisticated
problem sol ving processes or in thei r ability to consider a larger num-
ber of potential moves , but rather in the experts ’ memory for a larger

number of chess positions and the “correc t” , or optimal move associated
with each position . In other words , experts have a large number of

si tuati on—specifi c schemata .

In the area of engineering thermodynamics , Bhaskar and Simon (1977)

have demonstrated that there are a relatively small number of well-defined

schemata . In this case , the schemata are based on the basic thermodyna-

mics equations , which are few in number. In more complex tasks , how-

ever -- and software design appears to be such a task -- these scher ’ta

may be more complex .

4

L ~~-•••~~• • •~~ •~~ -•• • - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  _ _



___ ______ 

-‘
I’

Larkin (1977) has considered behavior on problems which
are apparently more complex than those used by Bhaskaç and Simon -—
mechanics problems in physics. Again , schemata were closely tied to
the standard equations that are fou nd in physics textbooks . These
schema ta , however , were organized into larger schemata . In particular.
these equation— based schemata were organized into “chunks ” of related
equations and principles by expert physicists . Rather than retrievi ng
equation- based schemata , the experts initially retrieve one or more
appropriate chunks and only then consider the individual equations
involved. In essence, there is a hierarchy of schemata, ranging from
extremely general to situation—specific. Larkin ’s nov i ces , however,
did not possess this hierarchical knowledge structure and immediately
began retrieving equation-based schemata.

Notice that there is no guarantee that the individual equations
retrieved by the novice are, in fact, applicable to the current problem .
Each equation must be retrieved , tested for relevance , and ei ther app l i ed
or rejected. In effect, this is a type of trial—and-error behavior.
Because these schemata are chunked , however , the expert can quickly
consider and accept or reject a number of equations and , in effect,
filter the knowledge that need be considered .

The research reviewed in this section supports the conclusion

that the problem solving performance of experts and novices differs due

to the memory s tructures , or schemata , employed by the individual. The

principal question that we have left unanswered is what these knowledge

structures consist of and how they are organized,

In research on human problem solving , this question has not

been directly addressed . Methodologies which could be used to deter-

mine the structure of the knowledge that guides problem solving have

been developed and successfully applied in text comprehension studies .
• Al though these studies are more concerned with the integration , storage ,

and retrieval of information than with the structures already In memory,
these paradigms may also be useful in determining the structure 

of5



existi ng knowledge. Below , we will briefly descri be this research
and associated paradigms and indicate how these paradigms may be
applied to the question above. Follow ing this , we present the results
of an experiment directed toward differentiating between the knowledge

• structures utilized by experts and novices in software design.

Kintsch and van Dijk (1978) have theorized that people have
several types of knowledge structures available to them when process-
ing text. One of these is the “schema ”. Schemata are generic know-
ledge structures which specify principal elements , charac ter istic

• categories and procedures for a particular type of information . When
a given schema (such as a narrative schema or a psychological report
schema) is called up, its information is made available to the problem
solver. Some of this information can be used to direct processing ,
to indicate what is relevant or which parts are obl igatory, etc.

The schema can be represented as a tree structure of the hier-
archicall y organized information which is associated wi th the schema ’s
theme or topic. The terminal nodes of each branch of the schema are
empty slots , each of which has a set of conditions which potential
values must meet. When a situation invokes a particular schema , these
slots are filled wi th information from the situation which meet their
conditions.

An example of a schema is the narrative story schema (Kintsch
& Van Dijk, 1978). This particular structure has received attention
from a number of other researchers ( Rumel har t, 1975; Thorndyke , 1975;
Schank , 1975) because it is well structured and wel l known In our

• culture . The narrative story has an Initial situation , wh ich can be
broken down irto setting , time, and characters ; a complication which
should be interesting and which causes actions or reactions by charac-

ters; a resolution to the complication ; and an optional eval uation

and/or moral. There must be at least one episode (sequence of initial
situation , which may be the outcome of a previous episode , complicat ion
and resolution), but there may be more. When a person reads a narrative

,6



the slots of this schema are filled in with story-specific information
which satisfies the conditions of each particular branch. This story-
specific information corresponds to the most general level of the
story.

The lowest level of a discourse is cal led the microstructure.
This level is formed from the text itself. As one reads (or hears)
informat ion , this information is organized into idea units , ca l led
propositions . In addition to those propositions derived directly
from the text , other propositions can be inferred from the text in-
formation or supplied from previous knowledge about the topic.

Through application of operations such as deletion of irrele-

van t deta i ls , abstrac tion , and transferral of important propositions
intact , this level can be transformed into a more general one called
the macrostructure. These operations can be used recursively to obtain
new macrostructures at increasingly more general levels of information.

The schema directs the formation of macrostructure by applying

the operations to a particular l evel of propositions so as to reduce
and organize the information in the text. In this process , information
in the schema is utilized to ensure that important information is not

deleted and irrelevant or inferrable information is not retained. Many
of the microstructure propositions are lost (forgotten) when they are
el iminated from inclusion in the macrostructure . The final level of
macros truc ture con tains the informat ion whi ch f i l l s  in the s lo ts at
the terminal nodes of the schema .

While the schema is an abstract knowledge structure, the macro-

structure Is derived from a particular text. The schema is not directly
• observable. It can be inferred , however , from the similarity in how

people treat a well known class of information , such as narrative stories

and from the Incomprehensibil ity of information for which no schema is

available. The effects of the narrative can be observed by examining

recall protocols or sumarles for macrostructure propositions

.7



Much of the information available in the recall paradigm
is not directly relevant to the study of rnacrostructure at a particu-

• lar level . This is because when asked to recall a text, ind iv i duals
typically include a large amount of high-level information from the

• macrostructure. In addition , they recall idiosyncratic details from

the micros truc ture .

A second method used to exami ne macrostructure is summari-

zation. A summary is a text based on the most important propositions
of another text. These are the macro-propositions. By eliminating

• much of the detailed information in the text, summar ies tend to reflec t

only the macrostructure propositions.

A number of levels of macro-propositions are possible since

the operations which form macrostructure can be applied recursively.
In order to compare the summaries of different subjects, it is necessary

to ensure that the level of detail (macrostructure) in the summaries is

not radically different. Therefore, to enable comparability , summar ies
are restricted to a maximum and minimum number of words. Because of

thi s restr ic tion , all participants tend to use macrostructure proposi-

tions at a s imi la r  level .

Kintsch , Kozminsky , Streby, McKoon , & Keenan (1976) used the
recall paradigm to study the macrostructures underlying comprehension

of history and science paragraphs. Recall was compared to theoretically
derived hierarchical structures for each paragraph. They found that

participants tended to recall information far more frequently from
higher levels of the hierarchy than they did from the lowest levels.

• This is consistent wi th the hypothesis that micro-level propositions
• tend to be forgotten while macro-level proposi tions are stored.

If a schema is not available for a text, the memory for the

text is retarded. What is recalled is more idiosyncratic than recall
for a text for which the reader has a schema . Kintch and Greene (1978)

used a sequential recall task to examine the effects of the availability



r~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

of a schema on comprehension and recall using stories wi th familiar
and un familiar schemata. Using a series of five participants , with
each participant re—telling the story to the next , the final version
of an Apache Indian tale was very short and idiosyncractic. A Decameron
story , however , was intact and showed much better recall. Partici-
pants in this experiment were familiar wi th western-culture litera-
ture so that appropriate , well-develo ped schemata were available
for the Decameron stor y ; this i s , of course , not true for the Indian
story which is from a different culture . Although these participants
were “experts ” in comprehending one type of story, they were “nov ices ”

in comprehending the other.

Kintsch and Kozminsky (1977) utilized the summarization tech-

nique to examine differences between reading and listening. A com-
parison of the summaries showed remarkable consistency among groups.
Propositions in the upper levels were recalled by participants more
frequently.

As demonstrated by Kintsch and van Dijk (1978), theore ti cal l y
derived macrostructures predict quite well the propositions included
in participants ’ summaries . Al though the research cited above is
primarily concerned wi th how newly presented information is under-
stood , we feel that it is also relevant to examining existing knowledge

structures.

Overv iew of the Curren t Research

In our review of the li terature on expert and novice problem
solvers , we concluded that expert problem solv ing behavior is strongly
influenced by existing memory structures or schemata . A similar

result is also apparent in our discussion of the literature on text
comprehension (e.g., K intsch and Greene , 1978). There are many simi-

• lari ties between the schemata involved in text processing and the
hierarch ical knowledge structures employed by expert problem solvers .

9

• • • • • •  ~~~~• • • • •- ~• • • • ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- -~~~~~~~~ - .---~ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



The concept of sc hemata can also be used to differentiate the know-
ledge structures used by experts and novices in a given problem
solv ing domain , such as comprehension of software design problems .

The research reported here is a preliminary study to examine

the knowledge structures used by experts and novices in comprehending
software designs. In order to examine the knowledge structures used
in  software design , we have attempted to elicit the subjects’ macro-
structures. Recall that the macrostructure of a text is more directly
observable than the sc hema used to organize and comprehend the text.
As we indicated above , the experimental paradigm of summarization is
more useful then a recall task to examine macrostructures because
less extraneous information is included that is not part of the macro-

structure in summaries than in recall. In the present study , we have
used this technique to assess differences in the knowledge structures

employed by subjects wi th different levels of experience in software
design .

We will now briefly consider the types of resul ts that we

would anticipate from the application of this technique to the analysis
of the knowledge structures involved in software design , or any ot her
problem solving task. First, we would expect a s ummary , which in the
experiment reported here is a summary of the specifications for a

computer system, to include that information that a participant con-
siders to be “most important” . We argue tha t “most important” is
actually a function of a participant ’s experience. In summarizing a
famf,iar narrative , for example , a participant provides the macro-
structure of this particular narrative; the participant does not
provide information such as the fact that the narrative involves an

• in i t ia l  situation , a compl ication , a resol ution , etc . Since a
participant expect s to see this type of information and since these
expectations are confirmed , the participant does not consciously
attend to this Information . That is, what is “obvious ” is not con—
sidered Important or essential to processing the text. 

• 
_
~---~•~.i~_•._ • • - - •~~~~~ ••~~~ • •~~~~



If we consider now a complete macrostructure that underlies
the specifications of a software system, we would expect relatively
inexperienced participants to concentrate on the higher levels of
this structure whi le more exper ienced par ti c ipants woul d ignore thi s
“obvious ” information and concentrate on the more important informa-
tion at the lower levels. This obvious information is already inte-
grated into the knowledge structures used by the experienced partici-
pant in this task.

In Figure 1 , we present a prototypical macrostructure for
a software design . At the top level , we assume that a des ig n can
be considered to consist of “inputs ” , “processes ” , and “outputs ” .
At the l ower levels , each of these elements is further decomposed
or refined. As a person gains experience , memory structures are
developed that encompass more and more levels of this structure.
We would p red ict , therefore , that the novice would concen tra te
on the higher l evels while people with more experience would concen-
trate on the lower level s in reading and summarization . By corn-

paring the summaries provided by participants at different levels of
experience , we should be able to develop insights into the nature

and evolution of the memory structure, or schema ta , involved in soft-
ware design .

d



Novice

SYST EMS
~~~

- —
-S

-

-5

..
.
~~~~

.••
• 

;~- U__a ~~

I l  161 j j  / t t 4 ( 4 4 4 4 4  4 4fl
I , , . i s , i , , . • , ,

[ SYSTEMS IIntermediate
— ~~~~_

_
— I ~~~~~~~~~C YlI~U ’fti~SYST EMS

-5 -5 -5 -5

~ 
SOFTWARE

F JNPUT~1 
PR~C~SS~~~~~~~~~ T

TPUT i

6’~ 16% /1 t~ I ‘~ ‘~ I t i I~4 (I •~ ~I l,  41 ~I, ,,, ,, ,, ,,
~

Expert F SYSTEMS J• -~~r ~~~~~~~~
- -- ...

C~ M I’U~~L4~
SYST EMS

-5 -5 -5 -5

~~ 
SOFTWARE

INPUT PROCESS 
• 

OUTPUT

# 4  I I I  / j ~~ I i 4 I 4 ( ‘ 4 I SI  4 444  4I I , ,  I i ,  6, , S~I 4 4 ,  • • .  ,, ,, I l l

Figure 1
A genera l ized representation of a software design structure .

(Shaded areas show top level(s) of macrostructure .
Area above shaded portion is inferred schema.)

12



METH OD

Participants. Thirty undergraduate students at the University of
Colorado (Boulder campus) were recruited through newspaper adver-

- 

ti sements and c lassroom announcemen ts . Part icipants were paid for
participating in the experiment. Six participants were assigned
to each of five experimental groups on the basis of formal course-
work in computer science. Participants in the first group had no
courses. Those in Group 2 were currently enrolled in their first
course and those in Group 3 were currently enrolled in their second
course. These two courses compr i se an i ntroduc tory sequence and
are re qui red for fur ther courses . Grou p 4 par ti c ipants had comp le ted
three or four formal courses and those in Group 5 had completed five
or more courses.

Apparatus. The execution of this experiment was controlled by a
Xerox Sigma 3 com puter. Par tic ipants typed thei r res ponses on a
keyboard that was connected to a IV-Phase System CRT Display Terminal .

From one to six participants were run concurrently under the
control of the real-time computer system. The procedure was parti-
cipant-paced and an independent sequence of events was presented to
each participant. Terminals were arranged in pairs and each pair
was in a small room off a larg e commo n room. The d is p la y term i nals
were on a 1.2 x 0.75 m table. The terminals in each experimenta l
room were positioned so tha t. participants faced opposite walls.

Materials. Material consisted of a description of the functional

requirements of a computer system to process telegrams . This text

was typed on a single page and lauelled “TELEGRAM PROCESSOR” at the
top. This text was further divided into a short background section ,
labelled “Background” and a description of the specifications , la bel led
“Desi gn Task” . The entire text that was presented to participants was
approximatel y 270 words in length and is presented in Figure 2.

13



TELEGRAM PROCESSOR

Background

A system is required to process a stream of telegrams. Hard-
ware consists of a batch processing system and incl udes a line
printer and a paper tape reader.

Des ign Tas k. •

You are to desig n a system that will process a stream of telegrams .
This stream is ava il able on paper tape as a s tream of letters, digits ,
and blanks .

The tape is accessed by a “read block” instruction which reads
into main storage a variabl e length character string delimi ted by a
terminal EOB (End of Block) character. The size of a block cannot
exceed 100 characters, excluding the EOB characters.

The words in the telegram are separated by sequences of blanks
and each telegram is terminated by the occurence of the word ‘ZZZZ’.
The stream is terminated by the occurence of an empty telegram -- that
is, a telegram with no words, followed by ‘ZZZZ’.

Each telegram is to be pr ocessed to determi ne the num ber of
• chargeable words, and to check for occurrences of overl ength words.

The words ‘ZZZZ’ and ‘stop ’ are not chargeable and an overcharge is
added if one or more words exceed 12 characters in length .

Telegrams are to be printed on a line printer. When possible,
each output line should be between 100-120 characters in length. No
word should be split between the end of one line and the start of the
next. You may assume that all words will contain fewer than 20 characters.

Finally, extra bl anks in the telegram are to be deleted on output
and the word count and an overcharge message (if necessary) are to be
printed after each telegram.

• Figure 2.

Problem Statement

14



__-

Procedure. Participants were given a typewritten copy of Telegram

Processor text with instructions to read it for comprehension and to

~make sure that they understood it. The time that each participant
took to read and understand this text was recorded . When participants
ind icated that they understood the problem statement , each was asked
to write two summaries . One was a sui~mary of the design specifications

that the participant had just read. The other was a summary of what
• 

. the design for the indicated computer system would look like , if each

participant actually were to complete the design . This was done in

• order to determine if there were any significant differences in the

• type of information contained in these two types of summary . At no

time , however, were participants actually required to perform the
design task.

• The order of writing these summaries was counterbalanced so

th~t half the participants in each experience group did the specifi-

cation summary first and half did the design summary first. The text

containing the design specifications was available to subjects while

they were writing both types of summaries. In this way , any effects

due to memory limi tations were eliminated , as the main interest in

this study was the structure imposed on the text by participants of
di ffering l evels of expertise.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ • _~_•j


RESULTS

Three different types of analyses were performed on the data .
The fi rst considered surface features of summaries, such as reading
times , writing times , and number of words included in summaries.

The second focused on the number of ideas, or ~roposi’tions , contained
in the specification and desi gn summaries . The final type of analysis
concerned the type, or content, of propositions contained in the sum-
maries.

Surface Measures

The first set of measures that we will report can be character-
ized as “surface” information . This information is concerned more
with surface properties of subjects ’ responses than wi th the i deas con-
veyed in them. Two of these are tempora l measures - reading/study time
(or simply reading time) and writing time . •The last measure to be re-
ported is word count.

The reading time data for five particip ants in Group 2 and one
each in Groups 3 and 4 was lost when these partici pants accident ly
erased this i nformation . Since there was only one score for Group 2,
this group was eliminated from the analysis of these data . No differ-

ences were reliable among the remaining four groups (see Table 1). There
is a tendency in the data , however, for times in Group 3 to be somewhat
slower than those of the other three groups .

Due to the large variability in the data , there were no reliable
differences for experience l evel in writinq times for either specifica-
tion or design summaries (see Tables 2 and 3). Participants who wrote
specification summaries first , however , wrote longer than participants
wno wrote them second (F(l , 20) = 5.631 , p < .05).


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 2 3 4 5 Overall

H 263.67 406.00* 385.60** 279.80** 232.83 • 291.826
• (99.03) (***) (160.72) (98.28) (76.63) (117.50)

* one score only
** five scores

• Table l

Means and (Standard Deviations)

Reading Times (in seconds)

.4

I

Experience Level

1 2 3 4 5 Overall

3300.00 2663.67 3270.67 2144.33 995.33 2474.80
1

(1526.44) (2172.05) (1794.50) (1014.64) (647.35) (1567.01)

2237.33 1698.67 1048.67 1194.33 1024.00 1440.60
2

(1205.22) (809.34) (397.83) (251.36) (447.40) (771.18)

2768.67 2181.17 2159.67 1669.33 1009.67 1957.7
Overal l

(1360.81) (1558.37) (1683.03) (841.32) (497.93) (1322.55)

* 1 indicates specification summary first; 2 indicates specification
summary second.

I
Tab le 2

Means and (Standard Devi ations)
of Writi ng Times for

Specifi cation Summaries (in seconds)

19


~~~T . I.TT . IITHT:I . T . •IT~~~~~~~~——~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

EXPERIENCE LEVEL

1 2 3 4 5 Overall

1386 666.33 1425.67 1761 .00 1308.00 1376.07

(200.33) (560.12) (82.53) (64.82) (309.11) (292.03)

1906.00 1389.00 2669.33 2296.33 1408.50 1971.36

(1428.40) (160.78) (2508.61) (900.63) (570.64) (1304.10)

1646.00 1027.67 2047.5 2028.67 1348.20 1663.45
Overa l l

(955.67) (540.84) (1727.42) (641.95) (363.61) (961.19)

* 1 indicates design summary first; 2 indicates design summary
second.

1
Table 3

Means and (Standard Deviations )
of Writing Times for

Design Summari es (i n seconds)

20



As expected , since summary lengths were limi ted , there were
no reliable differences in the number of words observed for speci-
fication sumaries or for design summaries . The order of the tasks
also had no significant effect on the number of words written for

• either summary type (see Tables 4 and 5).

To summarize, the analyses on surface features of the data---
• reading times , writing times and number of words in specifi cation and

design summaries -- did not show any reliable differences among the
experience groups . The order of the summary tasks had some effect

on the writing times for specification summaries but not for design

summaries. Order did not interact wi th experience on any surface
measure.

• Anal yses of Propositional Ideas

The remaining analyses to be reported here are concerned with

the ideas which are expressed in the summaries . To assess these
• i deas and their relationship to those in the text , we have adapted

a method of propositi onal anal ysis proposed by Kin tsch (1972, 1974)
• and developed by Turner & Greene (1978). Propositional analysis pro-

• vides an objective means for analyzing the “idea units ” or proposi-
• tions in a text.

This method was modi fied to enable the scori ng of each proto-
• col for its propositional content without resorting to too much

detail. The micro-level propositions were grouped into clusters ,

generall y involving a predicate proposition and its modifiers . (A
predicate proposition is one that involves a state or an action. A

• modifier proposition can express qualification , quantification or

circumstance.) To clarify this distinct ion , consid er an example.
One of the statements in the “Telegram Processor” text is “The words
in the telegram are separated by sequences of blanks . . . “

. Using
Kintsch ’s method , we obtain three micro—level propositions (Table 6).

21

I ~~• •~~~~~~~• • • • • _ _ _ _ _ _



~

EXPERIENCE LEVEL

1 2 3 4 5 Overal l

78.00 77.67 81 .33 77.33 71.33 77.13
1 

(1.00) (2.52) (2.52) (11.93) (8.33) (6.74)

77.00 78.67 71.67 66.33 70.33 72.80
2

(8.72 ) (2.31) (8.74 ) (7.55) (8. 96) (7.48 )

77.50 78.17 76.50 71.83 70.83 74.965
• Overall

(5.58) (2.2 3) (7.82 ) (9.15) (7.76 ) (7 .15)

* 1 indicates specification summary first; 2 indicates specificati on
summary second.

Table 4

Means and (Standard Deviations )
of Number of Words in
Specifi cation Summaries

• 22 

~~~~~~~~ ••---•~~~~- - ~—— • •-•-~~~~~~~~—— -• • • • • • • • • • • • ••


•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~

— — ..

• EXPERIENCE LEVEL

1 2 3 4 5 Overall

71 .33 73.33 72.33 73.33 76.67 73.40
1 

(7.51) (11.55) (10.02) (9.87) (3.51) (7.78)

66.33 69.67 73.33 80.00 70.33 71.93
2

(2.39) (8.15) (10.69) (0.00) (7.23) (7.79)

68.83 71.50 72.83 76.67 73.50 72.66
Overall

(6.56)~ (9.16) (9.28) (7.23) (6.16) (7.685)

* 1 indicates design summary second; 2 indicates design summary
fi rst.

Table 5

Means and (Standard Deviations )
of Number of Words in

Design Summaries



For our pur poses , y is the only proposition scored because it
is a predicate proposition. The other propositions represent
refinements of this basic i dea .

Using this modification , we identified 27 cluster proposi-
tions in the text. These 27 propositions were placed in a tree
structure based on their l evel within a hierarchical net of sub-

• ordinate relationships . The proposition clusters and the hier-
archy can be seen in Figure 3.

Each summary was scored for total number of proposition
clus ters. This includes correct and incorrect propositions ,
inferences , elaborations , etc. In addition , each specification
s umary was score d a second time to coun t those pro pos iti ons that
correc tl y reproduce pro pos it ions whic h are inc lu ded on the l i s t of
27 cluster propositions in Figure 3. These will be referred to
as “reproduct i ve ” propositions. For example , if a participant
were to i nclu de i n hi s or her sumar y the statemen t, “Output each
telegram to the pr inter ,” this participant would receive credit
for reproducing Proposition 21 (“Telegrams are printed on the line
pr inter ”).

Des ign summaries were score d a secon d time as w e l l .  Thi s
anal ysis included any reproductive propositions plus any proposi-
t ions whi ch were determ ined to be per tinent to a des i gn by an
expert judge. These “pertinent” propositions which are correct
statements , may be i deas that are inferred from or abstrac ted from
the specifications of the design problem or supplied from partici-

• pants ’ ex i s t ing  knowl edge structure . This set of propositions --
reproductive (as defined above) and pertinent -- will be referred

to as “relevant ” propositions. An example of a pertinent proposi-
tion would be “Calcula te the cost of each telegram~wh i ch i s cost
per word times number of words plus overcharge ” . At no t ime i n
the specification was a proposition such as “calcu la te the cos t of
each telegram ” included . Yet this is a relevan t and correct idea
for the design of this system.

24



-1

C
0
4.’ C
..- a) 0

.— C
o C 4-~ 0
0 ~~o +j 0 4-)

U) ., ~ØE 9- 0
..- ..-

‘4- U I—o L. r~ a)
.‘- ~~ S..

• I a) (_, 0~ ~~.0
>

(/; ~;
I ~~~ =

C C
(0 (0 U)
‘- ‘- .~~

a, -~~~ .~~~ C
o • (0 a)
C 1t 9- >~ ‘— U
a) E 0 .~~~ .~~~ C
4-) (0 a)
C ~- in ~~ 9- 4.3

C) a) 0 C
a, o .e.’ a)

C (0 ifl U)
C a, a, 5- a,
.,

~~ 4.) U a,
• 0~ 0. C

C C) a, C)
C •‘ U) U) C

•r ~~~ U) .

C a, C) a, a) .
~~~ U)

(0 S.. S. S.. (/) U)
a, (0 (0 (0 >, (0

a, >~~~~ —
U) a, U) U . 0 (0

-
~~ 5- C C C
S.. a) S.. a,~~~~~ (0 .,

o .C 0 4.3 a,
~~~ I— ~~ C .l.)~~~ — a,

a, (0 ( 0  — S..
U) S. C .0 a,( 0 0  ~0 D
a, ~~ C
.C a) 4-’
4.) U)

U) U)
4- a) 0 C

.~~ U) 0 5. 0. 0
~~ ( 0 0
C.D ~~ C 5. 4.)
LU ~~ 0 (/)... E U)
LU ~~ 4.) (0 9-  0

40 S.. 0 0.
4.) D~ 0

C U) C a, V S.
o U) LU a,~~~~ 0

~~ U) W . =
4.’ ~~ a, 4-’ 4-’ a)
.
~~~ 

Q LU %. a, .
U) ~~ —~ 0. a) E
o
0 LU 5. 4.) i f)
o ~~ U) -
S.. .- , i — C C

• 0. (0 •~~ U
C U)
0 U) 4-’

LU .
~~~ C

o ~— ~— 4.’ 5~•~~~~~~
— v ~~ 

.,.. .

I— — ~~ U) ~~.~~ U, .‘~~ 0
~~ 0. 0. G) C

• 0 0 LU
_J C.) U) 5. 1— U)
___ ___ ___ =

S.
a)
-I-

• ‘4-.—4.’ ~~C

25

• ~~~~~~~~~~~~~~—-~~~~~~~~-••~~~--•- • • • • • • • -•
~~
-•- •~~~~~~~~

-——-—-- -~~~~~~~~~~~ • - •



~~~~~~~~~~~~TIII iT~~ _ _  

— —--

~~~

•

~~~~~~~~

•—

~~~

•

_ i I —

2 —i- 3 4

_______ 1 1. Design a system.

2. System processes te~egrams .
‘ 7 3. Hardware consists of batch process ing

system.

-\ “
~ 

4. (3) includes line printer and paper
tape reader.

“
~-~o 

5. Stream of tele grams ava il ab le  on
paper tape.

6. Stream Consists of letter , digits

‘11 , 12 and b lanks .
7. Access input by “Rea d Block ” .

\\\j”~l3 8. “Read Block: reads a variable length
character string.

I 15 9. Block terminated by EOB character.
\~\ 10. Block < 100 characters .

17 11. Process each teleg ram
12. Words are separate d by b la nks.

‘18 • 19 13. Each telegram terminated by ‘ Z U ~ ” .
• \.J 14. Each stream of telegrams terminated

by empty telegrams .
2 15. Empty telegram - telegram with words

followed by “UU” .

21 1 22 16. Determine number of chargeable words .

17. Wor ds “UU ” and “STOP” not chargeable.

\\\~ 23 . 24 18. Check for overlength words .
• 
\\~‘\\ 

‘ 19. Overcharge added if (20).

\\ 25 20. Overlength > 12 characters .

21. Telegrams are printed on line printer.

26 , 22. Output line is between 100—120 characters .
- 23. Do not split words.

‘27 24. Words < 20 characters .

25. Delete extra blanks on Output.
2 3 26. Output word count.

— 

Level in Hierarchy 27. Output overcharge messages .

F i gure 3

Hieraronica] Str cture ~f Telegram Processor ~ext

26



- • ___________

The total number of idea-level proposition clusters , which in-
clude s both relevant and irrelevant clusters , did not d i ffer among
experience groups for either specification or design summaries .
Order also had no effect, and there was no significant interaction
between order and experience l evel . Controlling the number of words

wri tten in a sumary effectively controlled the number of clusters
included in the summaries .

The number of reproduced proposition clusters for specification

s ummar ies did not d i ffer sign ifi can tl y among ex per ience grou ps , nor
did order of task have an effect.

As noted above , the anal ys i s of des ign s ummar ies cons id ers a l l
relevant (reproductive and pertinent) propositions. The results of

a two—way analysis of variance show that experience is not significant

at the .05 level of confidence (F(F4, -20) = 2.6547, p = .063). How-

ever , this F-ratio approaches significance due to the large difference
between naive participants and those in the other four groups (see
Table 7). Design summaries for naive participants contain fewer

relevant proposition clusters than those of the other four groups .
Half of the naive participants included no relevant propositions in

their design summaries. There were no differences among the other
four groups in the amounts of information included. There are no

signif icant effects for order of task or the interaction of ex-

perience and order.

To sum ar ize , the total number of propositions , or the number
of propositions which reproduce the text or are rel evant to the
design , are not significantly affected by experience or by the order

of tasks .

Anal yses of Pro pos iti onal Type

The next set of anal yses takes into accoun t what i s written i n
the summar ies , not just how much is written . Three separate divisions

27

L A • • ~~~~~~~~~~~
—•

~~~~~~——~~~~
- --

~~~ • • •~~~ •~~~~~~~• •~~~~~~~ -~~~



_

~~~~~

-

~~

- • • • • •-

H EXPERIENCE LEVEL

1 2 3 4 5 Overall

~~~4.17 9.17 10.17 10.67 9.83 8.80 1
(5.95) (3.06) (2.40) (1.75) (5.27) (4.45) 

.

j

4 

I 

;
[

Table 7 -
Means and (Standard Deviations)

of Number of Relevan t Proposition 
.

Clus ters i n Des ign Summar i es

28



-T~~Ti
_
~_ -

~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~
-

of the proposition list for the text were made . The first analysis

divides propositions into three categories -- Inpu t , Process , and

Output. The second anal ysis breaks the propositions down into five

hierarchical level s and the final analysis focuses on the l evel of
detai l i ncluded i n the summar ies.

In performing these analyses , we elected to redefine the experi-

ence group factor. Group 1 was the “Low Experience ” grou p and was
composed of studen ts with no compu ter sc ience exper ience , Grou ps 2 and

• 3 were combined to yield a “Me di um Exper ience ” group. These students ,

who were in the process of taking the required introductory sequence

in computer sc ience , are just learn ing the bas ic conce pts. Grou ps 4
and 5 were comb i ned to form a “High Experience ” group. These students
have taken upper l evel courses involving more in-depth concepts. This

• regrouping enabled us to more easily examine trends involving the

kinds of information that participants at differi ng l evels of exper-

tise attend to.

In the f i rst anal ys i s , propositions were divided into three

categories —— Input , Process and Out put . “Input” propositions in-
clude propos iti on 5 ( “ the stream of tele grams i n on pa per tape”) and
its subordinates (6, 7, 8, 9, 10; see Figure 3). “Process ” propositions

include Proposition 11 (“Process each telegram ”) and all i ts subordi-
nates. “Output ” propositions are Proposition 22 (“Teleg rams are printed

on l ine pr in ter ”) and those below it. Propositions 1 through 4 were
excluded from this analysis.

Sumar ies were examine d in terms of the percent of In put , Process ,

and Output information which was reproduced. Reproductive specifica-
tion propositions and relevant design propc~s iti ons were c lass ifi ed on
this dimension. Several proposition s did not fit into this framework .
These oropositions were ei•ther macro-level propositions (“Design a
system ” , “the system should process streams of tel egrams”) or oroposi-
tions related to hardware . These were excluded from the present analysis.

29



Analyses were performed separately for Input , Process , and
Output informa tion (see F ig ur e 4 ) .  In a l l  cases , participants in-
cluded more information in their specification summaries than in
the i r des ign summar ies , regardless of level of experience. This
factor, summary type, was significant in each analysis. (Input
Informat ion: F( l , 54) = 5.9299 , p < .05; Process: F(1 , 54) =

5.0393, p < .05; Output: F(1 , 54) - 8,4569, p < .01). In addition ,
a higher percentage of process information was included by Medium
and High experience participants than by novices . (F(2, 54) =

8.8475, p < .001). Interaction between Summary Type and Experience
Level was not significant.

The second propositional -type analysis divid ed the proposi-
tions of the problem statement into five hierarchical levels as
i nd i ca ted i n F ig ure 3. Level 1 , represented by a single proposi-
tion (“Design a system”) is the superordinate proposition in this
text. Level 2 is also a single proposition (“The system is to
process a stream of tele g rams ”). Level 3 breaks the problem down
i nto four areas - Hardware , Inpu t, Process ,- Output. Level s 4 and
5 are fur ther deta i ls  of the sys tem ’s specification.

Each participant’ s summa ry was scored for the percent of the
pro pos iti ons re p rodu ced on each l evel . The low ex per i ence g rou p
included far more Level 2 and 3 propositions in t’ ~i r summar ies

• than did more experienced groi ps (see Figure 5). Participants
in all three groups included similar amounts from Level 4. Level 5
pro posi tions were inclu ded mos t frequen tl y by the hi g h ex per ience
group, sl ightly less often by the medium group and very infrequently
by the low experience group (see Figure 5).

A two-way unequal-n analysis of variance indicated that the

Level in the Hierarchy had a reliable effect on inclusion of pro-

positions in summaries (F(4, 135) = 2. 8905 , p = .025). While

Experience is not a significant factor , the interaction of Hier-

archy and Experience is significant (F(8, 135) = 2.3186, < .05).



-~

60 • INPUT

50
*

4.)

• - .I. —~~

• 10

I I-

Low Med. High
• EXPERIENCE

PROCESS - SPECIFICATION
60 • 

. DESIGN

I I
Low Med. High

EXPERIENCE

OUTPUT

~ 30 .“
S..
C)
0.

20

10

_____________________________ NOTE: Percent = Percent of
Low Med. High possible propositions

EXPERIENCE in corresponding
category

Figure 4

Input—Process-Output Analys is

Ii i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



ITF 
.

4 

NI

sa~~euiun~ uo~~e3~J.LDad5 ui. papnI.3u~ u0U~odo.A~

• 32

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


The last analysis focuses on the l evel of detail included in
the summaries . For this measure , propositions on the terminal
nodes i n the hierarch ical struc ture we re cons id ere d the l owes t level
of detail in the specifications . Thus , any proposition which had
other propositions subordinated to it was considered a “general”
proposition. General propositi ons are #1 , 2, 3, 5, 7, 11 , 14, 16
18, 21 and 23. All other propositions were considered “detail” pro-
posi tions. A percent score for each type was calculated for each
participant.

Low experience participants included mostly general proposi-

tions in their specification summaries (see Figure 6). High experi —
ence participants included far more detail than general propositions.

The medium group included roughly the same amount of each. A two-way
unequal-n analysis of variance indicated that the two main effects,

experience and level of detail , were not significant. However, the
interaction •of Experience with Generality was highly significant

(F(2, 54) = 5.5358, p < .01).

In sumar y, the amount of Input-Process-Output information
included in specification and design summiries was significantly
d i fferen t, but this variable did not interact with Experience. The
level in the hierarchical structure of the text was a significant

factor and interacted with experience. The interaction indicated
more lower-level information in experi enced partici pan ts ’ summar i es ,
while more upper-level information appeared in inexperienced partici-

pants ’ summaries. The Generality-of-Propositions dimension interacted
with Experience although neither factor was significant alone . Experi-

enced participants concentrated on detailed information , wh ile inex-
perienced wrote more general information . This result is illustrated

In Figure 7. In the figure , those propositions used by at least half

th~ participants in a given group are circled.

33

~~~~• •• ~~ • • J



-—--

~~~~~

-

~~~~~~~~

-- •

-.~
• I..)I-

LiJ
0

=

C/ 0
/ 4-’

/
//

/\\

0
I.’-
=

_:
4.3
C)

-J ~~~~~~
W C)~~~~~. 0  C.) S. C

z z ~ ID
U.) ~~

U.) S..
0. C)

C
U.J C)

0
U,

U,

ID
C

-J

U.)

‘U
-J

z
U.)
L)

LU
0.

A~VWW (~S Y~GI.~ I~ I 3 dS ~I C Cfl~~NI J.~13~~3d

____________________________ • ~~~~~~~~~~~~~~~~ ~~~~~ •- ~~~~~~_—- • - •• - —~~~~~• •_ - -~~~~~ •- • 
•_ :~~

_ • _ • ~~~~~~~ _ • • —-~~~~~~~ ~~• -—~~~~~~~~~~~~~~ • —~~~~ -• ~~~~~-— • _~~~~~~~ -



• • - • — —• ,~~~~~~~~—-•--~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
--— •— -

~~~~~~~~~~~~~_ •~~ -~

LOW MEDI UM HIGH

l—~~ —-3——4 1— —3——-4 1—2—3-—-4

\ VH ~~~ 8 7 8

\~~~~~~~~~~~~~~~~~~~~~
2 ~1 1—12 1

\©
14—15 14—15

8 19 18—®

~~~ 2O

~~~~~ —24 ~~~~~~—24 ~~23—24

•
‘\

~~

F i gure 7
Proposition Usage as a Function of Experience Group

35

• • •~ •— • •

DISCUSSION

A primary motivation underlying this experiment was to examine

the knowl edge structures employed in understanding a software design

problem and to investigate differences in the knowl edge structures
employed by participants at varying levels of experience. Three

types of measures were taken , relating to “surface ” factors , number

of i deas , and classification of idea types.

The types of information examined can be broken into two
classes . The first category is concerned with task-related behavior.

These measures assess the participants performance in writing summar-

ies according to instructions. The second class of information col-
lec ted in thi s exper iment assesses the content of the summari es. Thi s
informat ion is the resul t of the comprehens ion process whi ch involve s
the utilization of schemata to guide it and to organize the new informa-

tion . In the remainder 0f this section , we w ill consi der each of these
types of information separately. In the following section , we w ill
sumarize the conclusions derived from this research.

Certa in measures are the resul t of the summary wr iti ng process
itself. Participants were asked to restrict the length of their sum-

-

man es to 60-80 words. As a result , and as was to be expected , there

were no rel iable di fferences in the number of words w ritten either as
a function of type of summary or experience groups . Constraining the
number of words that could be used effectively constrained the number

of propositions that could be expressed. Another side effect of the
restriction of summary length can be seen in the time taken to write

summaries . There were no significant differences due to experience

level for either specification or design summaries.

There was an order effect, however , with specif i ca tion summa ry
• writing times being significa ~ly longer when these summaries were

~~~~~~~~~~~~~~~~~~~~—-— —-~~~~~~~~~~ • ~~~~~~ __ ~~~ _ _ •~~~~~ 
_
~__1__~~ - - - I---



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
• ___ -•

wri tten first than when they were wri tten after the design summaries .

Since it is reasonable to expect that participants would require some

amount of learning time to be accustomed to the experimenta l apparatus ,

we would expect that the time required to write the first summary, re-

gar dless of type , would be somewhat longer than the time required to
write the second. We have no explanation for the fact that only

specification summary writing times were so affected . Additional re-
search would be required to determine if this is a reliabl e result or
is due primarily to the small sample sizes and large observed vari-

ances in the present experiment.

The number of reproduc tive propositions included in a specifi-

cation surnary was also affected by the restriction on sumary length.

There was no difference in the observed number of reproductive propo-
sitions due to experience level . Recall that reproductive proposi-

tions were defined as those that were derived directly from the in-

formation stated in the problem statement. Since the problem state-
ment was available to partici pants while they were writing their sum-

mar i es , memory effects due to differences in comprehension l evel and

organization are unlikely. Thus , the task for the specification

s ummary was one of selection of information from a known set.

To some extent , reading time is also a function of the experi-
mental task. Since participan ts knew that the problem specification

would be available to them during their sumanizing tasks , they were
not necessarily motivated to comprehend the problem at a deep level
during the reading and studying part of the task. No reliable dif-

- ferences in reading/study time due to experience level were observed.
A difference in reading/study time, had such been observed could
indicate that participants with different levels of experience were

doing different things as they read the text.

Reading time , however , is not entirely a function of the ex-
perimental setting , but can also be Influenced by the schemata used

37

~

.TT . - .. I T T ~~~
T _ --—~

by participants to process the text. If this were the case , the
effects of experience on reading time would produce a U-shaped
funct ion.

Recall that participants in Group 1 had no previous computer-
relevant experience. Because of their unfamiliarity wi th the computer-
related terms and concepts expressed in the problem statement, we
would expect these participants to stop study i ng the problem state-
ment when they had only a very superficial grasp of its contents.
That i s , although these participants could read the problem state-
ment as “text” , their lack of relevant experience and corresponding
appropriate memory structures , or schema ta , prevented their actually
understanding the problem statement at anything other than a super-
ficial level . Reading times for Group 1 , there-fore, should be fai rl y
low .

Reading times for Groups 4 and 5, who were the most experi-
enced participants , should also be fairly low. In this case , their
experience allows them to “sk im over ” or ignore information that

• they consider to be irrelevant to solving the stated problems and
to focus on information that they consider more important. In this
case , low reading times are attributed to the presence , ra ther than
absence , of appropriate schemata.

• Participants in Groups 2 and 3, on the other hand , were more
• familiar with the computer-related concepts than Group 1 partici pants

but lacked the experience of those in Groups 4 and 5. Al thoug h these
participants understood the individual concepts , they have had little,
if any, experience in integrating these concepts to formulate a
design for a computer system or group . Attempting to integrate these
concepts, therefore , takes a significant amount of time and effort and

• results in fairly long reading times .

Reading times , therefore, are affected both by the experimental
setting and the schemata used to process the pr~bIem statement.

38

Although the effects of experience l evel failed to reach significance
• (at t ie .05 level of confidence), an examinat ion of Table 1 suggests

that the pattern of reading times were , to a degree, infl uenced by
• schema ta.

Unl i ke t he measures discussed above , the rema ining measures
- are primarily concerned with a participant” s understanding and organi-
zation of the problem specifications , in part icular , and computer
systems , in general. This understanding , we bel ieve, i s struc tured
by a participant’ s schemata , which are largely determined by experi-
ence.

The schemata used by a naive participant in this task is
probabl y a very general schema for processing a text. In addition ,
naive participants should have difficulty in understanding the text

as a design problem because of their lack of knowl edge about com-
puter systems an d des igns . Par tic i pan ts in al l ot her grou ps s hould
have schemata for computer science problems . The more experienced
a participant is , the more detailed his or her schema should be.
These participants should be able to generate propositions which
are relevant to a design.

The propositional content of the summaries is interpreted
as a macrostructure which is produced by the interaction of an individu-
a ls ’ schemata with the text . Differences in the ideas inc luded in

• the sumanies represent differences in the schemata utilized in the
comprehension and organization of the problem. The schemata are not
directly observable in the summaries since people rarely include in-
forma tion from the i r schema ta in summar i es , because it is too “ob-
vious ” . However , sumanies should include the top levels of macro-
structure imediately below the level of schemata. Therefore, the

• schemata for a given experience group are inferrable from the macro-
structure propositions that they Include.

• 39

r•-- - ----—
~

--
~

_
~

•- - •
~

-- -
~

—
~~

•
~~

•• —— ,

~~~~~~~~~~~~~~

••- •

~~~~~~~~~~~~~

-

-- - •- • • -~~~ •

In order to fami liarize the reader wi th the nature of the
summaries , we present prototypical s ummaries in Figures 8 and 9
for specifi cations and designs , respectively. With the exception

of the design summary for the low experience group, the i l l us t ra ted
summaries contain those ideas stated by at least half of the parti-
ci pants in each group. Since there was no such concensus in the
design summaries of the low experience group, a represen tati ve
suma ry i s presen ted.

Without a schema for a software design , naive participants
asked to do design summaries have difficulty determining what

information is relevant to the problem at hand. For experienced
participants , the design sumary task entails inclusion of informa-
tion that is not directly stated in the problem as well as informa-

ti on that is reproductive .

In the anal ys i s of the design summar i es , we judged proposi-
tions on the basis of relevance to software design; that is , pro-
positions were judged on the basis of whether or not the information

conveyed was , in fact , related to or cons istent w i th a sof tware
design task. As would be expected , there was a tendency for more ex-

perienced participants to achieve higher relevancy scores, al thoug h

th i s effect was not si gnif ican t at the ,05 level of confidence.

Extremely low scores attained by the nai- ve (Group 1) participants ,
can be attributed to this group ’s lack of exper ience and fam i l iar ity
wi th the concepts involved in software design. This suggests that
more experienced participants are retrieving and utilizing some
schemata or memory structures that contain useful , relevant informa-
tion about software design.

Some Insights into the structure, con tent , or nature of the
knowledge structures that are brought to bear on a software design
task can be derived from consideri ng the types of propositions that
are used in participants ’ suuiiianies. Obviously, there are several

40

~~~~~~~~~~~~~~~~

Low (Grou p 1)

This system should process a stream of telegrams . The paper tape
is accessed by read block. The end of the telegram would have the

• . letters ZZZZ . Process the telegram to determi ne the number of charge-
able words and to check for overleng th words . Telegrams are printed
on a l i n e p r i n t e r, each line being between 100-120 characters in length .
Words cannot be split from line to next. On output , extra blan ks
deleted. -

Medium (Groups 2 and 3)

The block size cannot exceed 100 characters. ZZZZ will denote the
end of a telegram. Count the number of words to be charged and over-
charged. There is an overcharge if a word excee ds 12 charac ters .
The telegrams will be printed on a printer with lines of 100-120 charac-
ters and no words split between lines . Extra blanks are deleted.

Hi gh (Groups 4 and 5)

Blocks are 100 or less characters . The words of a telegram will be
separated by blanks , teleg rams are sep arated by “ZZZZ ” . The s tream
is terminated by a blank telegram . Count the number of words and
check for words longer than 12 characters . The words “ZZZZ ” and
“stop ” are not chargeable. Print telegram on linepninter , w ith 100-120
characters per line . Extra blanks deleted. Print word count and over-
charge message for each te legram.

FIgure 8.
Representative Specifi cation Sumarles

for each Experi ence Level

41



_________________ _______________ -• •

Low (Group 1)

My first step would be to design a batch processing system , in-

clud ing a line printer and a paper tape reader. The computer

- 
_ 

would have to complement the functi ons of the batch processing
system. I would set the apparatus up looking somewhat like an

assembl y line. It would look like the basic computer system ,
lo ts of metal , buttons , and complicated gadgetry .

Medium (Groups 2 and 3)

First , check for the end of the telegram . When the end is found,

check for blanks. Foe each space increment the number of chargeable
words. Check for any overlength words. The words “ZZZZ” and “stop ”

are not to be counted. Next , calcula te the char ges for the te legram .
Then, output it followed by the word count and the overcharge (if
needed). Each output line should be between 100 and 120 cha racters
lon g .

High (Groups 4 and 5)

Read a block until an EOB character i s encoun tered. Separate the
stream in to tele grams us ing the marker “ZZZZ ” . The next procedure
processes each telegram . It counts the number of chargeable words

in each one and notes if the character count in a word is greater

than twelve characters . The telegram i-s pri nted , deleting any extra

b lanks , followed by the word count and overcharge message. When an

empty telegram is encountered , stop processing.

Fi gure 9.
Representative Design Summaries

for each Experience Level

42

~~~~~~~~~~~~~~~~~~~~
—__ • • —- - • •-~-

—-- --
~~ -- •-— ~~ ----—••-— —- -- —- ~ —~•~--- - • • -~• • •

I

ways in which types or categories of propositions could be defined.

for analys is. Due to the exploratory nature of this experiment

and the limi ted amount of available data , onl y three suc h anal yses
• were performed , based on their potential usefulness in detecting

differences among groups and for the practical implications that

• • would be implied by such differences . These analyses involve , at

a very general level , classification on the basis of computer system
functi on and on the basis of the hierarchical structure underlying
the problem statement.

In our fi rst analysis , we partitioned the propositions in the

ori ginal problem statement on the basis of whether they were primaril y

concerned with i nput, process , or output functions . Admittedly, this

input-process-output classification is only a gross description of the

types of functions that could be involved in a softwa re system. It is ,
however , a classification that applies to almost all software desi gns;
that is , it has obvious validity and generality . Attempts at more

deta i led c lass ifi ca ti ons may well lack suc h general i t y because they
would necessarily be restricted to a limi ted number of software design
tasks. Further , although we argue that this classif ication is general ,
notice that all three of these components are not equally emphasized

in all designs . That is, it is usually the case that one or another of -

these components will most affect the overall succe ss of the design
effort . It would be expected , therefore, that more experienced subjects
would be better able to identify the more crucial element and , as a
result, tend to concentrate on this element in their summaries .

Both summaries of the presented specifications and of the ultimate
design were included in this analysis. Recall that particioants were divided

• into three experimental groups for the purposes of these analyses in order
to highlight group differences and increase statist ical power.

43

_______ ~ — - - --- •---. ——_—-----——— ——____—••—_ •_ • -•-- •_ -- _ • •—•.—~-—

• For all three analyses (input , process , and output) there was a
significant effect due to the type of summary . Since scores were deter-
mi ned on the basis of the percent of the possible propositions in each of
the three categories that were included in subjects ’ s ummar i es an d the
total number of possible design propositions (reproductive and pertinent)
in each category was larger than that for the specification summary pro-
positions (reproductive only), this introduced an artificial difference
in the derived scores . This difference , therefore , i s cons idere d to
be an artifact and is not either theoretical or practical interest.

In terms of the propositions related to the “proc ess ” category ,
there was a significant difference due to experience. As can be seen
in Figure 4, there is a general trend for scores to increase as experi-
ence increases . This trend can also be noted in the analysis of “output” -
related propositions , although this difference did not reach statistical
significance. For “input” -related propositions , however , the profile
of scores as a functi on of experience was essentially flat , showinq
no discernable experience effects.

We interpret these analyses as fol lows. First , in this parti-
cular problem , the design of the input-related processes and struc-
tures i s rela ti vel y s imp le and stra ightforward . The process- and

• output-related processes and structures are more complicated , however.
More experienced participants are better able to recognize these po-
tential com pli ca ti ons and concentra te on these more relevan t i ssue s ~n
the i r su mm aries .

Specification summary propositions were also analyzed with

respect to their location in the hierarchical structure underlying
the original problem statement (see Figure 3). The si gn i f ican t effect
due to hierarchical l evels was expected. This finding of a significant
di fference due to levels ~n the hierarchy tends to confirm that this
hierarchy was constructed in a logically consistent manner; failure
to detect a significant difference would tend to invalidate the pro-
posed hierarch ical configuration .

• 44

Of primary interest in this analysis is the significant inter-

ac ti on effec t between hi erarch i cal level and ex per ience grou p . In
general , participants in the l owest exp~~i ence g rou p concen tra ted on
propositions at the highest l evels of the hierarchy while more ex-

perienced participants tended not to mention these propositions in

their summaries and concentrated on the l ower—l evel propositions. As
we wi l l ar gue la ter , more experienced participants did not include
these higher- l evel propositions because the information contained in
these propositions was also contained in the memory structures devel-

oped by these participants to deal with software design tasks. In
effect, since the information presented corresponded exactly to what
par ti c ipan ts alread y knew , participants did not need to explicitly

attend to this information.

A related analysis categorized propositions as being either

general or detail. This analysis , which is sim ilar to the analysis
of h ierarch ical levels , also produced a significant interaction be-
tween experience groups and type of proposition . This interaction

is clearly illustrated in Figures 6 and 7. Notice that the amount
of general informa ti on included in s pec ifi ca tion summa r i es decl i nes
as a funct ion of exper ience wh i le the amoun t of detail inform ation
shows a corresponding increase. Again , this suggests that partici-
pants do not include information in their summaries that corre-
sponds to already-known information . In effect, participants do

not include informa ti on that they cons ider to be “obv ious ” . The
type of knowledge structures employed by the more experienced parti-

cipants is apparent from Figure 7. Those propositions which are
high in the hierarchy , but no t included in par ti c ipan ts ’ summar i es ,

are presumed to be represented in these knowledge structures , or
schemata.

L A

CONCLUSIONS

In th i s paper , we have focuse d on the memory s truc tures i nvo l ve d
in the comprehension of software system specifications . The primary
motivation underlying this research was to determine what these know-

•
-

ledge structures consist of and how they are organized . Al though the
ex i s tence of suc h knowle dge s truc tures , or schema ta , has been demon-
strated , especially in research on expert versus novice problem solving
behavio r, the structure and content of these schemata is not well under-
stood.

In an effort to develop such an understanding , we adopted some
of the theoretical concepts and experimenta l paradigms employed in
research on text comprehension. This research is largely concerned
w i th the sc hemata and assoc i ated macros truc tures that are i nv olve d i n
comprehending and integrating newly presented information. We assumed

that there were strong parallels between these types of structures and
the types of structures employed by expert problem solvers .

Using a summarization paradigm , the performance of participants
w i th var yi ng levels of exper ience w ith so ftware des ign conce pts was
compared. Summaries of specification and design information were
analyzed. We conjectured that participants at the low end of the

experi ence continuum would concentrate on only the relatively high
level concepts . More experienced participants were expected to con-
centrate on lower level concepts that are more concerned with the de-
tails relevant to a successful design or problem solving activity than

on the very general concepts involved in this type of activity . As is
clearl y illustrated in Figure 7, this expectation was confirmed.

By analyzing the informati on that was included in the less ex-

penienced participants ’ sumaries but omitte i from the sumaries of

more expert participants , the different memory structures employed by

the expert and novice were examined .

46

—— — • -~~~~~~~- - ~~- - -~~---—- --~~~~~~~~~~-•~~~~~~~~~~~~-~~~~~ - -

—-- ~~~~ -~~ - -- -•~~-~~~ • • ~-~~~---—- -- ~

I , — I

A large body of research supports the conclusion that expert
problem solv ing behavior is strongly influenced or driven by existing
memory struc tures , or schemata . These schemata contain , in part,
general ized plans for solving certain classes of problems . When pre-
sented with a given problem , the expert is often able to retrieve
one of these schemata and adapt it to achieve a soluti on to the current
problem. In effect , these schemata allow the expert to solve problems
more quickly, and frequently achieve better or more appropriate solu-
tions than less experienced subjects . In the experiment reported in
this paper , we employed an experimenta l technique that allowed us to
determine the probable content of these schemata , or knowl edge struc-
tures .

There are several potential implications of this research , but
it is necessary to first consider the limitations of the experiment
reported in this paper. Since we have reported only an exploratory
experiment , there are several limitations that potentially affect the
generality of our conclusions. First , we have considered only one
software design problem and this probl em was relatively simple. Clearly,
there are different types of software design tasks and it might well be
the case that some tasks , perhaps desi gning an operating system , are

at some level fundamentally different from other tasks , such as de-
signing a system for statistical analyses. In this experiment , we have
considered only one of a large class of potential design problems and ,
correspondingly, only one memory structure that is involved in design .

We do not c laim that this single structure is general to all software
design tasks. In text comprehension research , for example , di f fe ren t

schemata are found to underly the comprehension of narratives and

artic les in a professional journal. We assume , however , that the

knowledge structures involved in a variety of software design efforts
are s i m i l a r in s tructure, although not necessarily in content , and that

the principal finding of this study also applies to these as yet un-
considered schemata.

The second limi tation concerns the particthants that were available
for this research . In comparison wi th professional software development
personnel , our most experienced parti cipants were clearly not “exoert” . It
is partially in response to this limi tation that we used such a simple
design problem . We were able, however , to demonstrate clear effects as
a function of experience. We suggest that these effects would be ex-
tended with more difficult problems and more experienced partic ioants ,

Al though we recognize these limitations , we do not feel that they

ser iousl y impact the implications of this research . We feel that we have
i dentified a methodology that can extend theoretical research on the
nature of expertise in problem solving and have provided some insights
into the nature of the knowledge structures underlying expertise , In

addit ion , we have demonstrated the applicability and usefulness of this

type of basic research to applied problems .

Firs t , we have demonstrated tha t a software des igner uses pre-

viousl y learne d schema ta i n unders tan di ng a sof tware des i gn p ro b le m
and in actually constructing a design. The actual specifications pre-

sented to the designer can vary both in form and content. We suggest
that structuring these specifi cations to more closely correspond to
these schemata would aid the designer both in the comprehension of
these specifications and the construction of the indicated desi gn.

Second , and of more general consequence , we can develo p a muc h
-

• better understanding of the concepts of software complexity and com-
prehensibili ty . We have argued that these concepts can only be defined

and measured wi th reference to an individual’ s experiences and abilities ,
which are best represented as schemata. By providing a method for

• determining the structurt~ and conten t of these schema ta , comp lex i ty
and comprehensibility can now be considered in a more meaningful manner.

t

4
k

48

___ — ~~— -~

• As a result of this understanding , we ga i n a new pers pective on
relevant metrics of software complexity . Obviously, the develop-

4 ment of procedures , techniques , training programs , etc., that lead
to the development of more comprehens ib le sof tware have numerous ,
significant benefi ts .

I

’

I
i~. ~ ‘ ,

-~~~

REF ERENCES

Bhas kar , R., & Simon , H. A. Problem solv ing in semantically rich
domains : An example from engi neering thermodynamics. Cognitive
Science , 1977 , 1, 193-215.

Chase , W. G., & Simon , H. A. Perception in chess. Cognitive
Psychology, 1973, 4, 55-81.

• Ki ntsch , W. Notes on the structure of semantic memory . In E. Tulv ing
& W. Donaldson (Eds.), Organization of Memory. New York: Academi c
Press , 1972.

Ki ntsch , W. The representation of meanin g in memory . Hil lsdale ,
New Jerse y : Er l baum , 1974.

Kintsch , W. , & Greene , E. The role of culture specifi~ schemata in
the comprehension and recall of stories. Discourse Pric2sses, 1978,
1 , 1—1 3.

Kintsch , W., Kozminsky , E., Streby, W. J., McKo on , G., & Keenan , J . M.
Comprehension and recall of text as a function of content variables.
Journal of Verbal Learning and Verbal Behavior, 1975 , 14 , 196-214.

Kintsch , W ., & van Dijk , T. i~. Toward a mode! of text comprehension
and production. Psychological Review, 1978 , 85 , 363-394.

Lark i n , J. H. Problem solving in physics (Technical Report). Berkeley ,
Cal i f o rn ia : Un ivers ity of Cal iforn i a , Department of Physics , July 1977.

Miller , L. A. Naive programme r problems with specification of transfer-
of-control . AFIPS Conference Proceedin,~~ 1975 , 44, 657-663.

News ted , P. Grade and ab ility predictions in an introductory program-
ming course (Technical Report). Milwaukee , Wi scons i n: Un ivers ity of
Wiscons i n , School of Business Administration , 1974.

Rumeihar t , D. E. Notes on a schema for stories. In D. G. Bobrow
& A. Collins (Eds .), Representation and understanding . New York:
Academic Press , 1975.

Schank , R. C. SAM -- A story understander (Technical Report 43).
New Haven , Connecticut: Yale University , Department of Computer Science ,
1975.

Sheppard , S. B. & Love , L. T. A prel imi nary experiment to test infl u-
ences on human understanding of software (Technical Report TR-77-388l00-l).• Ar l ington , V i r g i n i a : General Electr i c , Information Sciences Programs,
June 1977.

Shneiderma n , B. Exp loring experiments in programmer behavior. Inter-
national Journal of Computer and Information Sciences, 1976 , 5, 123- 143.

50

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- • -

Sime , M. E., Green , T. R. G. , & Guest, D. J. Psychological evalua-
tion of two conditional constructions used in computer languages .

• International Journal of Man—Machine Studies, 1973, 5, 105—113.

Sime , M. E., Green , T. R. G., & Guest, 0. J. Scope marki ng in com-
puter conditionals -- A psycholog i cal evaluation . International
Journal of Man-Machine Studies, 1977, 9, 107—118.

Thorndyke , P. W. Cognitive structures in human story comprehension
and memory (Unpublished doctoral dissertation). Stanford , Cal i f o rn ia:
Stanford University , 1975.

Turner , A., & Greene , E. The construction and use of a propos itional
text base (Technical Report 63). Boulder , Colorado : University of
Colorado , Ins ti tute for the Study of In tellectual Behav ior , Apr i l 1977.

Weissma n, L. Psychological complexity of computer programs : An
initial experiment (Technical Report CSRG-26). Toronto , Canada :
Univers ity of Toronto , Computer Science Research Group , 1973.

Weissman , L. M. A methodology for studyi ng the psychological corn-
p lex i ty of computer programs (Technical Report CSRG-37). Toronto,
Canada : University of Toronto , Computer Systems Research Group,
Augus t 1974.

I.

• - • • • • • ~~ -•

