Technical Report 392

AN EXPLORATORY STUDY OF THE COGNITIVE
STRUCTURES UNDERLYING THE COMPRE-
HENSION OF SOFTWARE DESIGN PROBLEMS

Michael E. Atwood, Althea A. Turner, and H. Rudy Ramsey

P‘ \ Science Applications, Inc.
N i and
Jean Nichols Hoop
g Army Research Instit?x’te
e
&
q‘: HUMAN FACTOR
- S TECHNICAL AREA
>_1
o S‘ []
8 ﬁc [IJ
(i)
Ll
i E U. S. Army
' l Research Institute for the Behavioral and Social Scie_nces
=
[— July 1979

Approved for public release; distribution unlimited.

P - “&__ZQ—M‘ i i e -

T

G
.

U. S. ARMY RESEARCH INSTITUTE
FOR THE BEHAVIORAL AND SOCIAL SCIENCES

A Field Operating Agency under the Jurisdiction of the
Deputy Chief of Staff for Personnel

WILLIAM L. HAUSER
JOSEPH ZEIDNER Colonel, U S Army
Technical Director Commander

Research accomplished
under contract to the Department of the Army

Science Applications, Inc.

NOTICES

OISTRIBUTION: Primaery distribution of this report hes been mede by ARI. Please address correspondence

concerning distribution of reports to: U. S. Army Resserch Institute for the Behavioral snd Social Sciences,
ATTN: PERI-P, 5001 Eisenhower Avenue, Alexandria, Virginia 22333,

EINAL DISPOSITION: This report mey be destroyed when it is no longer needed. Plesss do not ratuen it to
the U. S. Army Reserch Institute for the Beheviorel and Socis! Sciences.

NOTE: The findings in this report ere not to be construed as an officisl Department of the Army position,
uniess 50 designeted by other suthorized documents.

|
{
|
|
|
{
4

Unclassified 4J£/j£>

SECURITY CLASSIFICATION OF THIS PAGE (When Data Enlotcd)

REPORT DOCUMENTATION P{GE B Sl WS
1. REPORT NUMBER 2. CESSION.NOJJ 3. REC/IP;LENT'S CATALOG NUMBER
Technical Report 392 //) R& 7 lfﬁ/(- 274 \Z,

[TITLE and Subrisie) 5. Tvﬁn&u@n&ﬁ-&r««»ﬁveneo
/ echnical Repert .
/£ | AN_EXPLORATORY STUDY OF THE COGNITIVE STRUCTURES c
Lot FUNDERLYING THE COMPREHENSION OF SOFTWARE DESIGN 3 Oct ¥77 - 3 Dec W78.)

PROBLEMS — s EPORT NUMBER
. Ab KL 77 x| sA1- 79-1§§-DENZ
A | 7.,Au.nton(n) - - — . F b RANT NUMBER(s)

o) | Michael E. /ﬁfwood Althea A /Turner, \\\ §Z~¢w~—~w~-~—~u"~~
Bl B RudyzRamsey;ilud Jean Nichols/Hooper (ART) } DAHC19 78-C-ppgs /

9. PERFORMING ORGANIZA_TION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Science Applications, Inc. Sl E“'°“K"F*"""°E“
7935 E. Prentice Avenue (1 /N 20762725A778
Englewood, CO 80111 1é >_,9,f§ il
12. .
U Moy Beenroh ThaTi tate Tor the Behavioral | ot pmre
and Social Sciences (PERI-0S) 13 fowezaor Faces
5001 Eisenhower Avenue, Alexandria, VA 22333 ' |g3

14. MONITORING AGENCY NAME & ADORESS(if different from Controlling Office) 15. SECURITY CLASS. (of this report)

g e
4 ;7 AP, | |unclassified
e ST - 15a. sDESLDAsﬂEFlCATlON/DO'NGRADING

16. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Monitored technically by Jean Nichols Hooper and Edgar M. Johnson Human
Ffactors Technical Area, ARI.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Computer programming

Computer program documentation
Specifications
Memory (psychology)

TRACT (Contfnue en reverse side if neceesary and identify by block number)

An experiment was conducted to evaluate a framework for the study of
software complexity and comprehension. Basic to this framework is the con-
cept that a person's knowledge of, and experience with, software design
affects that person's ability to comprehend a software problem and its po-
tential solutions. Past research on software complexity and comprehensi-
bility has largely been based on the assumption that complexity is a function
of surface properties, such as variable names and flow of control. Such
measures, however, ignore the effects of experience. ==, . .70, ,

¥ . v
4 o'y 73 Eoimion oF 1 NOV 68 1S OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THMIS PAGE (When Data Entered)

i e B8

~ _Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

——p—

—

' Availand/or
Dis " P°°\

2N

Research on expert-novice differences in problems solving suggests that
experts possess a large number of previously developed knowledge structures,
or schemata, that can be used to understand or solve the current problem.
Research on text comprehension provides theoretical concepts and experimental
paradigms that are useful in determining the structure and content of these
experience-related schemata.

An experiment examined the knowledge structures used by participants,
at differing levels of experience, in comprehending software system specifi-
cations. Six participants, at each of five levels, studied a software system
specification and then summarized both the presented specification and the
probable form of the corresponding software design. The results indicate that
software designers use previously learned schemata in understanding a soft-
ware design problem and in actually constructing a design and that these
schemata differ as a function of experience. In addition, the structure and
content of these schemata were investigated. It is suggested that by deter-
mining the structure and content of such schemata, software complexity and
comprehensibility can be considered in a more meaningful manner.

Accession For

NT1S GRakl
TDQ TAB
| taiannounced

Justification

By
_pistribution/

Availabilit

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

ii

s e TPPNRT SR . e W e il i it L s i i . ansiiat

L b e i Bl e e

Technical Report 392

AN EXPLORATORY STUDY OF THE COGNITIVE
STRUCTURES UNDERLYING THE COMPRE-
HENSION OF SOFTWARE DESIGN PROBLEMS

Michael E. Atwood, Althea A. Turner, and H. Rudy Ramsey
Science Applications, Inc.

and
Jean Nichols Hooper
Army Research Institute

Raymond C. Sidorsky, Team Chief

Submitted by:
Edgar M. Johnson, Chief
HUMAN FACTORS TECHNICAL AREA

Approved by:
Frank J. Harris, Acting Director

ORGANIZATIONS AND SYSTEMS
RESEARCH LABORATORY

U.S. ARMY RESEARCH INSTITUTE FOR THE BEHAVIORAL AND SOCIAL S¢!ENCE -
5001 Eisenhower Avenue, Alexandria, Virginia 22333

Office, Deputy Chief of Staff for Personnel
Department of the Army

July 1979

Army Project Number Information Processing
2Q762725A778 and Display

Approved for public release; distribution unlimited.

iii

FOREWORD

The Human Factors Technical Area of the Army Research Institute (ARI)
is concerned with human resource demands of increasingly complex battle-
field systems used to acquire, transmit, process, disseminate, and utilize
information. This increased complexity places great demands upon the oper-
ator interacting with the machine system. Research in this area focuses
on human performance problems related to interactions within command and
control centers as well as issues of system development. It is concerned
with such areas as software development, topographic products and pro-
cedures, tactical symbology, user-oriented systems, information management,
staff operations and procedures, and sensor systems integration and
utilization.

One area of special interest involves the development of computer
software to support automated battlefield systems. Software development
is a costly, unreliable, not well understood process. The research reported
here applied a theoretical framework based on representation of text in
memory to the production of software design and specification summaries.
The findings verified the prediction that experience is a determinant of
the knowledge structures employed in representing design information. The
research is part of a larger effort to develop a conceptualiz:tion of the
programming process and identify behavioral bottlenecks in software devel-
opment. Efforts in this area are directed at improving accuracy and pro-
ductivity in programming through the design of procedures, languages, and
methods to enhance programmer performance.

Research in the area of human factors in software development is
conducted as an in-house effort augmented contractually by organizations
selected as having unique capabilities and facilities; in this case,
Science Applications, Incorporated, under Contract DAHC19-78-C-0005. The
effort is responsive to requirements of Army Project 2Q762725A778, and to
general requirements expressed by members of the Integrated Software Re-
search and Development Working Group (ISRAD).

N a*«
JOSEPH Z R

chnical Director

e e —

AN EXPLORATORY STUDY OF THE COGNITIVE STRUCTURES UNDERLYING
THE COMPREHENSION OF SOFTWARE DESIGN PROBLEMS

BRIEF

Requirement:

To develop and test a theoretical framework for guiding and integrat-
ing future research on measures of software complexity and comprehensibility.

Procedure:

Research on expert-novice differences in problem solving suggests
that experts differ from novices in the number and type of experience-
related schemata, or memory structures, that can be applied to a current
problem. These general schemata are used to develop a macrostructure, which
describes the problem solver's understanding of a particular problem. Prob-
lem information that corresponds to a problem solver's schemata does not
require additional processing in order to be comprehended; information that
does not correspond, however, must be processed and incorporated into a
macrostructure. Techniques derived from research on text comprehension were
used to determine the macrostructures formed by participants at varying
levels of experience to represent a software system specification. By
analyzing the macrostructure information included by less experienced par-
ticipants but omitted by more experienced participants, the schemata used
by experienced participants were inferred.

Findings:

Software designers use previously developed schemata, or memory struc-
tures, to understand a software design problem and to construct a design.
These schemata differ as a function of experience. Further, examination
of the form and content of these schemata led to the conclusion that soft-
ware complexity and comprehensibility can be defined in terms of such
schemata.

Utilization of Findings:

The actual specification presented to a software designer can vary
both in form and content. Structuring these specifications to correspond
more closely to the designer's schemata would aid the designer both in com-
prehending these specifications and constructing the indicated design.

The complexity of a software design or program should be defined in terms

TN i e

of the deviations from the designer's or programmer's existing schemata.
Software development procedures, techniques, and training programs should
make use of available schemata and should aid the formation of relevant
additional schemata.

viii

TABLE OF CONTENTS

INTRODUCTION
The Effects of Expertise on Schema Selection
Overview of the Current Research
METHOD
RESULTS
Surface Measures
Analyses of Propositional Ideas
Analyses of Propositional Type
DISCUSSION
CONCLUSIONS
REPERENEES . it s i e 0s h e e w e e R

Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

00 N O O & W N

LIST OF FIGURES

A generalized representation of a software design
A ald (o 40T 2 Gl e i S S e SRl P e LT S 8 e S

Probliem SEAtEmEnt ., . » + LU TH g e e s s
Hierarchical Structure of Telegram Processor Text
Input-Process-Output Analysis
Analysis by Level in Hierarchy
Analysis of General and Detail Information
Proposition Usage as a Function of Experience Group

Representative Specification Summaries for each
EXperdlene el aveili e R e o B 5 L e ey s

Representative Design Summaries for each Experience
) P G T MG T R e L s S A S

s

Table

Table

Table

Table

Table

Table 6

Table

LIST OF TABLES

Page
Means and (Standard Deviations)
Reading Times (in seconds) . . . o + o « & « & « o o « 17
Means and (Standard Deviations; of Writing Times for
Specification Summaries (in seconds) 19
Means and (Standard Deviations) of Writing Times for
Design Summaries (in seconds) 20
Means and (Standard Deviations) of Number of Words in
Specification Summaries « « « &« =« 4 s 5 « » 22
Means and (Standard Deviations) of Number of Words in
Dasign SUMMBrIEs . . « « & « o & 5 ¢ 5.3 » o » « o & 23
The Propositions Underlying a Single Sentence 25

Means and (Standard Deviations) of Number of Relevant
Proposition Clusters in Design Summaries 28

INTRODUCTION

The production of software is primarily a human &ctivity.
Although tremendous advances in both hardware and software techno-
logy have been made in the past decade, the development of soft-
ware systems remains a predominantly human activity. As a result,
" the ability of software development personnel to comprehend the
nature of a project and its required solution affects the cost,
time, and success of that project. The comprehensibility of a
software project is determined, in large part, by its complexity.

In recognition of the importance of the human component,
a large number of software development methods, "rules of thumb,"
have been proposed. These techniques and guidelines are intended
to make software easier for humans to comceptualize and, therefore,
to specify and proceduralize. As yet, the usefulness and validity
of these methods have not been proven. However, these methods in-
dicate an important approach to software development, for they imply
that the complexity and comprehensibility of a given software pro-
ject is determined by those who develop the software as well as by
the nature of the project itself.

This paper describes our initial empirical and theoretical
efforts at developing a coherent framework for the study of soft-
ware complexity and comprehension. Basic to this framework is the
idea that a person's knowledge of, and experience with, software
design affects that person's ability to comprehend a software prob-
Tem and its potential solutions.

There is a growing literature on software complexity and
comprehension. However, we feel that the usefulness of this litera-
ture is extremely limited due to the prevalent definitions of the

terms “complexity" and "comprehension". The concepts discussed in
this literature differ from those we wish to investigate.

Past research on software comprehensibility and complexity
has usually been based on the assumption that the complexity of a
computer program is a function of such surface properties as control
structures, variable names, and similar aspects. Examples of such
studies can be found in Sime, Green, and Guest (1973, 1977), Newsted
(1974), Shepard and Love (1977), Miller (1975), and Weissman (1973,
1974). These, and similar studies, have considered how comprehensi-
bility is influenced by comment statements, mnemonic variable names,
meaningful variable names, alternative language constructs, etc.

Although at first glance it may appear reasonable that such
aspects do affect program complexity and comprehensibility, we argue
that when the effects of programmer experience are ignored no general
statements about complexity or comprehensibility are possible. This
point is illustrated in an experiment reported by Shneiderman (1976).
Shneiderman compared the comprehensibility of arithmetic and logical
IF statements using participants of two different experience levels.
It was found that logical IF's were more “comprehensible" than arith-
metic IF's for the less experienced participants. There were no
differences in "comprehensibility" for the more experienced partici-
pants.

We believe that complexity and comprehensibility are functions
of an individual's experiences and abilities. Imagine that we have
a group of programmers of varying levels of experience. In effect,
we have a dimension labelled "experience"; at one extreme we have
programmers that we characterize as "expert" and at the other extreme,
we have "novices". Assume we have a single program, such as a sort
routine. We present this program to all of these programmers indivdu-
ally and ask them to rate its complexity. We would expect to see a
wide range of complexity ratings. The "expert" may consider this pro-
gram to be "trivial", but the "novice" categorizes it as "incompre-
hensible". The crucial question that remains to be answered, and the
one that we will address in this paper, is why this statement is true.

How do the expert and novice differ in their ability to comprehend
this program?

Our answer to this question can be illustrated by continuing
the above example. After examining the presented program, we would
not be surprised if the experts made comments such as "this is like
a Shell sort, except that ..." or "this is really a bubble sort with
the addition of ...". Similarly, less experienced programmers may
note that "the program appears to be interchanging values, but I'm
not quite sure why or how".

The expert has seen a large number of sort routines. Further,
the expert can explain how these routines work, the principal differ-
ences among alternative sort techniques, etc. The expert "knows" these
things because, through experience, this programmer is able to "under-
stand" sort routines. This “understanding"” means that the expert has
organized and integrated various pieces of information about sort
routines and has stored this information in memory as coherent know-
ledge structures. Comprehension, in this case, is driven or guided by
these existing knowledge structures. The absence of such knowledge
structures makes comprehension by the novice much more difficult.

In this paper, we will focus on these knowledge structures and
attempt to determine how these structures develop as a function of
experience. If we are able to develop a sufficient understanding of
these knowledge structures, then we will have a better understanding
of the concepts of software complexity and comprehensibility. As a
result of this understanding, it may be possibie to suggest software
development procedures that lead to the production of more comprehensi-
ble software, with corresponding reductions in the cost and time associ-
ated with software development.

The Effects of Expertise on Schema Selection

Complexity and comprehensibility then can only be defined and
measured with respect to the level of expertise of a given programmer,

Do aatinn g Boctan

B b o a lt i Gl L L s il A s e

TP A AL wrgryee

Gl i il o aat s ulie ol Adide L omi mai b iy s

chomadha o 0

or group of programmers. In order to define and measure these concepts,
therefore, we must be able to categorize what is implied by "expertise".
That is, why is an expert able to perform some task or understand some

problem better than a novice? é

it PN i b ot

Within the past few years, cognitive psychologists have at-
tempted to answer this question by comparing the performance of experts .
and novices in a variety of tasks. This research supports the conclusion ’ é
that expert problem solving behavior is strongly influenced or driven
by existing memory structures, or "schemata". That is, an expert has a
large number of generalized plans, solution strategies, or schemata for
a given type of problem. When presented with a problem the expert
attempts to retrieve one of these schemata and adapt it to achieve a
solution to the current problem.

The standard paradigm in this type of research is to compare the
performance of experts and novices on. problems that both can solve and
to examine the problem solving processes used by subjects of different
levels of expertise. A good example of this type of research is the
study of Chase and Simon (1973). They found that highly experienced
chess players differ from "good" amateur players not in their ability
to execute more efficient search strategies or apply more sophisticated
problem solving processes or in their ability to consider a larger num-
ber of potential moves, but rather in the experts' memory for a larger
number of chess positions and the "correct", or optimal move associated
with each position. In other words, experts have a large number of
situation-specific schemata.

In the area of engineering thermodynamics, Bhaskar and Simon (1977)
have demonstrated that there are a relatively small number of well-defined
schemata. In this case, the schemata are based on the basic thermodyna-
mics equations, which are few in number. In more complex tasks, how-
ever -- and software design appears to be such a task -- these schemata i
may be more complex.

Larkin (1977) has considered behavior on problems which
are apparently more complex than those used by Bhaskag and Simon --
mechanics problems in physics. Again, schemata were closely tied to
the standard equations that are found in physics textbooks. These
schemata, however, were organized into larger schemata. In particular,

these equation-based schemata were organized into "chunks" of related
equations and principles by expert physicists. Rather than retrieving
equation-based schemata, the experts initially retrieve one or more
appropriate chunks and only then consider the individual equations
involved. In essence, there is a hierarchy of schemata, ranging from
extremely general to situation-specific. Larkin's novices, however,
did not possess this hierarchical knowledge structure and immediately
began retrieving equation-based schemata.

Notice that there is no guarantee that the individual equations
retrieved by the novice are, in fact, applicable to the current problem.
Each equation must be retrieved, tested for relevance, and either applied
or rejected. In effect, this is a type of trial-and-error behavior.
Because these schemata are chunked, however, the expert can quickly
consider and accept or reject a number of equations and, in effect,
filter the knowledge that need be considered.

The research reviewed in this section supports the conclusion
that the problem solving performance of experts and novices differs due
to the memory structures, or schemata, employed by the individual. The
principal question that we have left unanswered is what these knowledge
structures consist of and how they are organized,

In research on human problem solying, this question has not
been directly addressed. Methodologies which could be used to deter-
mine the structure of the knowledge that guides problem solving have
been developed and successfully applied in text comprehension studies.
Although these studies are more concerned with the integration, storage,
and retrieval of information than with the structures already in memory,
these paradigms may also be useful in determining the structure of

existing knowledge. Below, we will briefly describe this research

and associated paradigms and indicate how these paradigms may be
applied to the question above. Following this, we present the results
of an experiment directed toward differentiating between the knowledge
structures utilized by experts and novices in software design.

Kintsch and van Dijk (1978) have theorized that people have
several types of knowledge structures available to them when process-
ing text. One of these is the "schema". Schemata are generic know-
ledge structures which specify principal elements, characteristic
categories and procedures for a particular type of information. When
a given schema (such as a narrative schema or a psychological report
schema) is called up, its information is made available to the problem
solver. Some of this information can be used to direct processing,
to indicate what is relevant or which parts are obligatory, etc.

The schema can be represented as a tree structure of the hier-
archically organized information which is associated with the schema's
theme or topic. The terminal nodes of each branch of the schema are
empty slots, each of which has a set of conditions which potential
values must meet. When a situation invokes a particular schema, these
slots are filled with information from the situation which meet their
conditions.

An example of a schema is the narrative story schema (Kintsch
& Van Dijk, 1978). This particular structure has received attention
from a number of other researchers (Rumelhart, 1975; Thorndyke, 1975;
Schank, 1975) because it is well structured and well known in our
culture. The narrative story has an initial situation, which can be
broken down irto setting, time, and characters; a complication which
should be interesting and which causes actions or reactions by charac-
ters; a resolution to the complication; and an optional evaluation
and/or moral. There must be at least one episode (sequence of initial
situation, which may be the outcome of a previous episode, complication
and resolution), but there may be more. When a person reads a narrative,

the slots of this schema are filled in with story-specific information
which satisfies the conditions of each particular branch. This story-
specific information corresponds to‘;he most general level of the
story.

:%; 1
E
|
i
%
t

The lowest level of a discourse is called the microstructure.
This level is formed from the text itself. As one reads (or hears)
information, this information is organized into idea units, called
propositions. In addition to those propositions derived directly
from the text, other propositions can be inferred from the text in-
formation or supplied from previous knowledge about the topic.

S dsea

Through application of operations such as deletion of irrele-
vant details, abstraction, and transferral of important propositions

1 intact, this level can be transformed into a more general one called
the macrostructure. These operations can be used recursively to obtain
i new macrostructures at increasingly more general levels of information.

5

The schema directs the formation of macrostructure by applying
the operations to a particular level of propositions so as to reduce
and organize the information in the text. In this process, information
in the schema is utilized to ensure that important information is not :
deleted and irrelevant or inferrable information is not retained. Many { 4
of the microstructure propositions are lost (forgotten) when they are i
eliminated from inclusion in the macrostructure. The final level of
macrostructure contains the information which fills in the slots at
the terminal nodes of the schema.

T A B . 5

While the schema is an abstract knowledge structure, the macro-
. structure is derived from a particular text. The schema is not directly
observable. It can be inferred, however, from the similarity in how
: - people treat a well known class of information, such as narrative stories
' and from the incomprehensibility of information for which no schema is
available. The effects of the narrative can be observed by examining
recall protocols or summaries for macrostructure propositions.

D

SigE

Much of the information available in the recall paradigm
is not directly relevant to the study of macrostructure at a particu-
lar level. This is because when asked to recall a text, individuals
typically include a large amount of high-level information from the

-macrostructure. In addition, they recall idiosyncratic details from

the microstructure.

A second method used to examine macrostructure is summari-
zation. A summary is a text based on the most important propositions
of another text. These are the macro-propositions. By eliminating
much of the detailed information in the text, summaries tend to reflect
only the macrostructure propositions.

A number of levels of macro-propositions are possible since
the operations which form macrostructure can be applied recursively.
In order to compare the summaries of different subjects, it is necessary
to ensure that the level of detail (macrostructure) in the summaries is
not radically different. Therefore, to enable comparability, summaries
are restricted to a maximum and minimum number of words. Because of
this restriction, all participants tend to use macrostructure proposi-
tions at a similar level.

Kintsch, Kozminsky, Streby, McKoon, & Keenan (1976) used the
recall paradigm to study the macrostructures underlying comprehension
of history and science paragraphs. Recall was compared to theoretically
derived hierarchical structures for each paragraph. They found that
participants tended to recall information far more frequently from
higher levels of the hierarchy than they did from the lowest levels.
This is consistent with the hypothesis that micro-level propositions
tend to be forgotten while macro-level propositions are stored.

If a schema is not available for a text, the memory for the
text is retarded. What is recalled is more idiosyncratic than recall
for a text for which the reader has a schema. Kintch and Greene (1378)
used a sequential recall task to examine the effects of the availability

of a schema on comprehension and recall using stories with familiar
and unfamiliar schemata. Using a series of five participants, with
each participant re-telling the story to the next, the final version

of an Apache Indian tale was very short and idiosyncractic. A Decameron

story, however, was intact and showed much better recall. Partici-
pants in this experiment were familiar with western-culture litera-
ture so that appropriate, well-developed schemata were available

for the Decameron story; this is, of course, not true for the Indian
story which is from a different culture. Although these participants
were "experts" in comprehending one type of story, they were "novices"
in comprehending the other.

Kintsch and Kozminsky (1977) utilized the summarization tech-
nique to examine differences between reading and listening. A com-
parison of the summaries showed remarkable consistency among groups.
Propositions in the upper levels were recalled by participants more
frequently.

As demonstrated by Kintsch and van Dijk (1978), theoretically
derived macrostructures predict quite well the propositions included
in participants' summaries. Although the research cited above is
primarily concerned with how newly presented information is under-
stood, we feel that it is also relevant to examining existing knowledge
structures.

Overview of the Current Research

In our review of the literature on expert and novice problem
solvers, we concluded that expert problem solving behavior is strongly
influenced by existing memory structures or schemata. A similar
result is also apparent in our discussion of the literature on text
comprehension (e.g., Kintsch and Greene, 1978). There are many simi-
larities between the schemata involved in text processing and the
hierarchical knowledge structures employed by expert problem solvers.

L

F—-v—v——— Bihahinii e canan ol L . o andaade L L oo Al o e bl)

The concept of schemata can also be used to differentiate the know-
ledge structures used by experts and novices in a given problem
solving domain, such as comprehension of software design problems.

The research reported here is a preliminary study to examine
the knowledge structures used by experts and novices in comprehending
software designs. In order to examine the knowledge structures used
in software design, we have attempted to elicit the subjects' macro-
structures. Recall that the macrostructure of a text is more directly
observable than the schema used to organize and comprehend the text.
As we indicated above, the experimental paradigm of summarization is
more useful then a recall task to examine macrostructures because
less extraneous information is included that is not part of the macro-
structure in summaries than in recall. In the present study, we have
used this technique to assess differences in the knowledge structures
employed by subjects with different levels of experience in software
design.

We will now briefly consider the types of results that we
would anticipate from the application of this technique to the analysis
of the knowledge structures involved in software design, or any other
problem solving task. First, we would expect a summary, which in the
experiment reported here is a summary of the specifications for a
computer system, to include that information that a participant con-
siders to be "most important". We argue that "most important" is
actually a function of a participant's experience. In summarizing a
famiiiar narrative, for example, a participant provides the macro-
structure of this particular narrative; the participant does not
provide information such as the fact that the narrative involves an
initial situation, a complication, a resolution, etc. Since a
participant expects to see this type of information and since these
expectations are confirmed, the participant does not consciously
attend to this information. That is, what is "obvious" is not con-
sidered important or essential to processing the text.

10

If we consider now a complete macrostructure that underlies
the specifications of a software system, we would expect relatively
inexperienced participants to concentrate on the higher levels of
this structure while more experienced participants would ignore this
"obvious" information and concentrate on the more important informa-
tion at the lower levels. This obvious information is already inte-
grated into the knowledge structures used by the experienced partici-
pant in this task.

In Figure 1, we present a prototypical macrostructure for
a software design. At the top level, we assume that a design can
be considered to consist of "inputs", "processes", and "outputs".
At the lower levels, each of these elements is further decomposed
or refined. As a person gains experience, memory structures are
developed that encompass more and more levels of this structure.
We would predict, therefore, that the novice would concentrate
on the higher levels while people with more experience would concen-
trate on the lower levels in reading and summarization. By com-
paring the summaries provided by participants at different levels of
experience, we should be able to develop insights into the nature
and evolution of the memory structure, or schemata, involved in soft-
ware design.

T

e SR S

Novice

SYSTEMS

Hi| N . LSE) B LIESEIE IS UL
¥ SRR £ Mo ke bt B Rl
: SYSTEMS
Intermediate Bl
:’ s b T —~—
[
SYSTEMS
- = s = -~
- ~

= SOFTWARE

-7 ~
= SOFTWARE
PROCESS QUTPUT
PN i SR Pt R oM
Figure 1

A generalized representation of a software design structure.

(Shaded areas show top level(s) of macrostructure.
Area above shaded portion is inferred schema.)

12

L il

METHOD

Participants. Thirty undergraduate students at the University of
Colorado (Boulder campus) were recruited through newspaper adver-

tisements and classroom announcements. Participants were paid for

participating in the experiment. Six participants were assigned

to each of five experimental groups on the basis of formal course-
work in computer science. Participants in the first group had no
courses. Those in Group 2 were currently enrolled in their first
course and those in Group 3 were currently enrolled in their second
course. These two courses comprise an introductory sequence and

are required for further courses. Group 4 participants had completed
three or four formal courses and those in Group 5 had completed five
or more courses.

Apparatus. The execution of this experiment was controlled by a
Xerox Sigma 3 computer. Participants typed their responses on a
keyboard that was connected to a IV-Phase System CRT Display Terminal.

From one to six participants were run concurrently under the
control of the real-time computer system. The procedure was parti-
cipant-paced and an independent sequence of events was presented to
each participant. Terminals were arranged in pairs and each pair
was in a small room off a large common room. The display terminals
were on a 1.2 x 0.75 m table. The terminals in each experimental
room were positioned so tha. participants faced opposite walls.

Materials. Material consisted of a description of the functional
requirements of a computer system to process telegrams. This text

was typed on a single page and lavelled "TELEGRAM PROCESSOR" at the
top. This text was further divided into a short background section,
labelled "Background" and a description of the specifications, labelled
"Design Task". The entire text that was presented to participants was
approximately 270 words in length and is presented in Figure 2.

13

-

A g

TELEGRAM PROCESSOR

Background

A system is required to process a stream of telegrams. Hard-
ware consists of a batch processing system and includes a line
printer and a paper tape reader.

V Design Task.

You are to design a system that will process a stream of telegrams.
This stream is available on paper tape as a stream of letters, digits,
and blanks.

The tape is accessed by a "read block" instruction which reads
into main storage a variable length character string delimited by a
terminal EOB (End of Block) character. The size of a block cannot
exceed 100 characters, excluding the EOB characters.

The words in the telegram are separated by sequences of blanks
and each telegram is terminated by the occurence of the word 'ZZZZ'.
The stream is terminated by the occurence of an empty telegram -- that
is, a telegram with no words, followed by 'ZZZZ'.

Each telegram is to be processed to determine the number of
chargeable words, and to check for occurrences of overlength words.
The words 'ZZZZ' and ‘'stop' are not chargeable and an overcharge is
added if one or more words exceed 12 characters in length.

Telegrams are to be printed on a line printer. When possible,
each output line should be between 100-120 characters in length. No
word should be split between the end of one line and the start of the
next. You may assume that all words will contain fewer than 20 characters.

Finally, extra blanks in the telegram are to be deleted on output

and the word count and an overcharge message (if necessary) are to be
printed after each telegram.

Figure 2.

Problem Statement

14

Procedure. Participants were given a typewritten copy of Telegram
Processor text with instructions to read it for comprehension and to

‘make sure that they understood it. The time that each participant |
took to read and understand this text was recorded. When participants :
indicated that they understood the problem statement, each was asked
to write two summaries. One was a summary of the design specifications ;
that the participant had just read. The other was a summary of what |
the design for the indicated computer system would look like, if each

participant actually were to complete the design. This was done in

order to determine if there were any significant differences in the @
type of information contained in these two types of summary. At no

time, however, were participants actually required to perform the

design task.

The order of writing these summaries was counterbalanced so
that half the participants in each experience group did the specifi-
cation summary first and half did the design summary first. The text
containing the design specifications was available to subjects while
they were writing both types of summaries. In this way, any effects
due to memory limitations were eliminated, as the main interest in
this study was the structure imposed on the text by participants of
differing levels of expertise.

15

RESULTS

Three different types of analyses were performed on the data.
The first considered surface features of summaries, such as reading
times, writing times, and number of words included in summaries.
The second focused on the number of ideas. or propositions, contained
in the specification and design summaries. The final type of analysis
concerned the type, or content, of propositions contained in the sum-

maries.

Surface Measures

The first set of measures that we will report can be character-
ized as "surface" information. This information is concerned more
with surface properties of subjects' responses than with the ideas con-
veyed in them. Two of these are temporal measures - reading/study time
(or simply reading time) and writing time. The last measure to be re-
ported is word count.

The reading time data for five participants in Group 2 and one
each in Groups 3 and 4 was lost when these participants accidently
erased this information. Since there was only one score for Group 2,
this group was eliminated from the analysis of these data. No differ-
ences were reliable among the remaining four groups (see Table 1). There
is a tendency in the data, however, for times in Group 3 to be somewhat
slower than those of the other three groups.

Due to the large variability in the data, there were no reliable
differences for experience level in writing times for either specifica-
tion or design summaries (see Tables 2 and 3). Participants who wrote
specification summaries first, however, wrote longer than participants
wno wrote them second (F(1, 20) = 5.631, p < .05).

16

2 3 4 5 Overall

263.67
(99.03)

406.00* 385.60** 279.80%* 232.83 291.826
(anx) (160.72) (98.28) (76.63) (117.50)

* one score only
** five scores

Table 1

Means and (Standard Deviations)
Reading Times (in seconds)

Overall

Experience Level

1 2 3 4 5 Overal]
3300.00 2663.67 3270.67 2144 .33 995.33 2474.80
]*
(1526.44) | (2172.05) |(1794.50) | (1014.64) | (647.35) || (1567.01)
2237.33 1698.67 1048.67 1194.33 1024.00 1440.60
24
(1205.22) (809.34) (397.83) (251.36) | (447.40) (771.18)
2768.67 2181.17 2159.67 1669.33 1009.67 1957.7
(1360.81) | (1558.37) | (1683.03) (841.32) | (497.93) || (1322.55)

* 1 indicates specification summary first; 2 indicates specification
summary second.

Table 2

Means and (Standard Deviations)
of Writing Times for

Specification Summaries (in seconds)

19

———

EXPERIENCE LEVEL

1 2 3 4 5 Overall

5 1386 666.33 1425.67 1761.00 1308.00 1376.07
(20G6.33) { (560.12) (82.53) (64.82) { (309.11) (292.03)

o 1906.00 1389.00 2669.33 2296.33 1408.50 1971.36
(1428.40) (160.78) | (2508.61) (900.63) (570.64) |{}(1304.10)

1646.00 1027.67 2047.5 2028.67 1348.20 1663.45

Overall

(955.67) (540.84) (1727.42) (641.95) (363.61) (961.19)

* 1 indicates design summary first; 2 indicates design summary

second.

Table 3

Means and (Standard Deviations)
of Writing Times for

Design Summaries (in seconds)

20

As expected, since summary lengths were limited, there were
no reliable differences in the number of words observed for speci-
fication summaries or for design summaries. The order of the tasks
also had no significant effect on the number of words written for
either summary type (see Tables 4 and 5).

To summarize, the analyses on surface features of the data---
reading times, writing times and number of words in specification and
design summaries -- did not show any reliable differences among the
experience groups. The order of the summary tasks had some effect
on the writing times for specification summaries but not for design
summaries. Order did not interact with experience on any surface
measure.

Analyses of Propositional Ideas

The remaining analyses to be reported here are concerned with
the ideas which are expressed in the summaries. To assess these
ideas and their relationship to those in the text, we have adapted
a method of propositional analysis proposed by Kintsch (1972, 1974)
and developed by Turner & Greene (1978). Propositional analysis pro-
vides an objective means for analyzing the "idea units" or proposi-
tions in a text.

This method was modified to enable the scoring of each proto-
col for its propositional content without resorting to too much
detail. The micro-level propositions were grouped into clusters,
generally involving a predicate proposition and its modifiers. (A
predicate proposition is one that involves a state or an action. A
modifier proposition can express qualification, quantification or
circumstance.) To clarify this distinction, consider an example.

One of the statements in the "Telegram Processor" text is "The words
in the telegram are separated by sequences of blanks ...". Using
Kintsch's method, we obtain three micro-level propositions (Table 6).

21

EXPERIENCE LEVEL

1 2 3 4 5 Overall

78.00 77.67 81.33 77.33 71.33 77.13 d
4 ™
4 (1.00) (2.52) (2.52) (11.93) (8.33) (6.74)

77.00 78.67 71.67 66.33 70.33 72.80

(8.72) (2.31) (8.74) (7.55) (8.96) (7.48)

77.50 78.17 76.50 71.83 70.83 74.965

Overall
(5.58) (2.23) (7.82) (9.15) (7.76) (7.15)

* 1 indicates specification summary first; 2 indicates specification
summary second.

Table 4

Means and (Standard Deviations)
of Number of Words in
Specification Summaries

EXPERIENCE LEVEL

1 2 3 4 5 Overall
| | 71.33 73.33 72.33 73.33 76.67][73.40
i 1
' (7.51) (11.55) (10.02) (9.87) (3.51) (7.78)
66.33 69.67 73.33 80.00 70.33 71.93
24
(2.39) (8.15) (10.69) (0.00) £7.23) (7.79)
68.83 71.50 72.83 76.67 73.50 72.66
Overall
(6.56)" (9.16) (9.28) (7.23) (6.16) (7.685)

* 1 indicates design summary second; 2 indicates design summary
first. '

Table 5

Means and (Standard Deviations)
of Number of Words in
Design Summaries

23

For our purposes, y is the only proposition scored because it
is a predicate proposition. The other propositions represent
refinements of this basic idea.

Using this modification, we identified 27 cluster proposi-
tions in the text. These 27 propositions were placed in a tree
structure based on their level within a hierarchical net of sub-
ordinate relationships. The proposition clusters and the hier-
archy can be seen in Figure 3.

Each summary was scored for total number of proposition
clusters. This includes correct and incorrect propositions,
inferences, elaborations, etc. In addition, each specification
summary was scored a second time to count those propositions that
correctly reproduce propositions which are included on the list of
27 cluster propositions in Figure 3. These will be referred to
as "reproductive" propositions. For example, if a participant
were to include in his or her summary the statement, "Output each
telegram to the printer," this participant would receive credit
for reproducing Proposition 21 ("Telegrams are pﬁinted on the line
printer").

Design summaries were scored a second time as well. This
analysis included any reproductive propositions plus any proposi-
tions which were determined to be pertinent to a design by an
expert judge. These "pertinent" propositions which are correct
statements, may be ideas that are inferred from or abstracted from
the specifications of the design problem or supplied from partici-
pants' existing knowledge structure. This set of propositions --
reproductive (as defined above) and pertinent -- will be referred
to as "relevant" propositions. An example of a pertinent proposi-
tion would be "Calculate the cost of each telegram ,which is cost
per word times number of words plus overcharge". At no time in
the specification was a proposition such as "calculate the cost of
each telegram" included. Yet this is a relevant and correct idea
for the design of this system.

24

92udjuas 3buts e burA4apun suorytsodoad ayjy

9 alqe}

25

stsAleue |euotjtsodoad jo poyjaw S,ydsjuLy buisn
. Sjuelq jo saduanbas Aq pajededss ade swedba|s] ayz uL Spaom 3yjy,
32U33UdS 3y} JO uoLjeIu3SAAdaA |euoL}Lsodoud

uoL3edLpadd ‘syue|q Aq pajededas aJae SpaoM (® 9 “31vyvdis) A

uotjestyienp "sjue|q JO sddUdNbas 3ue UYL (SANVIE ©SIININDIS 40 LSISNOD))

adueIsSwNIAL) "sweuba|ad) uL aJe SspJaoM (Wv49313L “SGYOM NI :NOILYDO01) »
uoLjtsodoayg jo adf] 7 9Judjuas ul butruesy uoLyLsodoay A3L313U3p]

AR T oy

s

TR

- N

/

w

N i 1. Design a system. i
5‘:: . 2. System processes telegrams.

8 3. Hardware consists of batch processing ‘
7<:w system. q

. ~\‘9 4. (3) includes line printer and paper
, tape reader. 1

\10 5. Stream of telegrams available cn
paper tape.

6. Stream consists of letter, digits
and blanks.

]1‘\\ 5 7. Access input by "Read Block".
\\\\\\‘13 8. "Read Block: reads a variable length ,
\\I character string. j
| 7 9. Block terminated by £0B character.
10. Block < 100 characters.
\\\16----17 11. Process each telegram
12. Words are separated by blanks.
1819 13. Each telegram terminated by “ZZZZ".
14. Each stream of telegrams terminated
h‘*zo by empty telegrams. f
15. Empty telegram - telegram with words
followed by "222z". |
2| =——p—22 16. Determine number of chargeable words.
17. Words "22ZZ" and "STOP" not chargeable.
\23—-—-24 18. Check for overlength words.
\ 19. Overcharge added if (20). j
25 20. Overlength > 12 characters. !
\\\ 21. Telegrams are printed on 1ine printer.
\ 26 22. Output line is between 100-120 characters.
\\ ; 23. Do not split words. =
27 24. Words < 20 characters.
25. Delete extra blanks on output.
2 3 “ 5 26. Output word count. 3
Leve] in Hisrarchy 27. Output overcharge messages.

Figure 3

Mierarchical Structure of Telegram Processor Text

26

The total number of idea-level proposition clusters, which in-
cludes both relevant and irrelevant clusters, did not differ among
experience groups for either specification or design summaries.
Order also had no effect, and there was no significant interaction
between order and experience level. Controlling the number of words
written in a summary effectively controlled the number of clusters
included in the summaries.

The number of reproduced proposition clusters for specification
summaries did not differ significantly among experience groups, nor
did order of task have an effect.

As noted above, the analysis of design summaries considers all
relevant (reproductive and pertinent) propositions. The results of
a two-way analysis of variance show that experience is not significant
at the .05 level of confidence (F(F4, 20) = 2.6547, p = .063). How-
ever, this F-ratio approaches significance due to the large difference
between naive participants and those in the other four groups (see
Table 7). Design summaries for naive participants contain fewer
relevant proposition clusters than those of the other four groups.
Half of the naive participants included no relevant propositions in
their design summaries. There were no differences among the other
four groups in the amounts of information included. There are no
significant effects for order of task or the interaction of ex-
perience and order.

To summarize, the total number of propositions, or the number
of propositions which reproduce the text or are relevant to the
design, are not significantly affected by experience or by the order
of tasks.

Analyses of Propositional Type

The next set of analyses takes into account what is written in
the summaries, not just how much is written. Three separate divisions

EXPERTENCE LEVEL

5 Overall

9.83 8.80
{5.27) (4.45)

Table 7

Means and (Standard Deviations)
of Number of Relevant Proposition
Clusters in Design Summaries

of the proposition list for the text were made. The first analysis
divides propositions into three categories -- Input, Process, and
Qutput. The second analysis breaks the propositions down into five
hierarchical levels and the final analysis focuses on the level of
detail included in the summaries.

In performing these analyses, we elected to redefine the experi-
ence group factor. Group 1 was the "Low Experience" group and was
composed of students with no computer science experience, Groups 2 and
3 were combined to yield a "Medium Experience" group. These students,
who were in the process of taking the required introductory sequence
in computer science, are just learning the basic concepts. Groups 4
and 5 were combined to form a "High Experience" group. These students
have taken upper level courses involving more in-depth concepts. This
regrouping enabled us to more easily examine trends involving the
kinds of information that participants at differing levels of exper-
tise attend to. '

In the first analysis, propositions were divided into three
categories -- Input, Process and Cutput. "Input" propositions in-
clude proposition 5 ("the stream of telegrams in on paper tape") and
its subordinates (6, 7, 8, 9, 10; see Figure 3). "Process" propositions
include Proposition 11 ("Process each telegram") and all its subordi-
nates. "Output" propositions are Proposition 22 ("Telearams are printed
on line printer") and those below it. Propositions 1 through 4 were
excluded from this analysis.

Summaries were examined in terms of the percent of Input, Process,
and Output information which was reproduced. Reproductive specifica-
tion propositions and relevant design propcsitions were classified on
this dimension. Several propositions did not fit into this framework.
These propositions were either macro-level propositions ("Design a
system", "the system should process streams of telegrams") or oroposi-
tions related to hardware. These were excluded from the present analysis.

29

5
?
g
:
?
!
4
|
i‘f
3

Analyses were performed separately for Input, Process, and
Output information (see Figure 4). In all cases, participants in-
cluded more information in their specification summaries than in
their design summaries, regardless of level of experience. This
factor, summary type, was significant in each analysis. (Input
Information: F(1, 54) = 5.9299, p < .05; Process: F(1, 54) =
5.0393, p < .05; Output: F(1, 54) - 8,4569, p < .01). In addition,
a higher percentage of process information was included by Medium
and High experience participants than by novices. (F(2, 54) =
8.8475, p < .001). |Interaction between Summary Type and Experience
Level was not significant.

The second propositional-type analysis divided the proposi-
tions of the problem statement into five hierarchical levels as
indicated in Figure 3. Level 1, represented by a single proposi-
tion ("Design a system") is the superordinate proposition in this
text. Level 2 is also a single proposition ("The system is to
process a stream of telegrams"). Level 3 breaks the problem down
into four areas - Hardware, Input, Process, Output. Levels 4 and
5 are further details of the system's specification.

Each participant's summary was scored for the percent of the
propositions reproduced on each level. The low experience group
included far more Level 2 and 3 propositions in t'=2ir summaries
than did more experienced groups (see Figure 5). Participants
in all three groups included similar amounts from Level 4. Level 5
propositions were included most frequently by the high experience
group, slightly less often by the medium group and very infrequently
by the low experience group (see Figure 5).

A two-way unequal-n analysis of variance indicated that the
Level in the Hierarchy had a reliable effect on inclusion of pro-
positions in summaries (F(4, 135) = 2.8905, p = .025). While
Experience is not a significant factor, the interaction of Hier-
archy and Experience is significant (F(8, 135) = 2.3186, < .05).

Percent »

EXPERIENCE

PROCESS

SPECIFICATION
DESIGN

Med.
EXPERIENCE

OUTPUT

4 4 Percent = Percent of
Low Med. High possible propositions
EXPERIENCE in corresponding

category

Figure 4
Input-Process-Output Analysis

31

Ayddeualy ulL [3A37] Aq sLsA|euy
G a4nbL4

AYdueuaLy UL |3A3]

3 4

-t

MR ks
W LPAY ---=-====-

YbLH
ERIIEINEL e |

t 1

T o
<o
TS
+ o0z
<+ 52
+og”
+ ¢
4ot
TSt
dos
+ 55’
T 09
4 o
+ 0"

32

S3LJABUING UOL3eIL413dS UL papniou] uoLjuodouq

7 g e £

The last analysis focuses on the level of detail included in
the summaries. For this measure, propositions on the terminal
nodes in the hierarchical structure were considered the lowest level
of detail in the specifications. Thus, any proposition which had
other propositions subordinated to it was considered a "general"
proposition. General propositions are #1, 2, 3, 5, 7, 11, 14, 16
18, 21 and 23. A1l other propositions were considered "detail" pro-
positions. A percent score for each type was calculated for each
participant.

Low experience participants included mostly general proposi-
tions in their specification summaries (see Figure 6). High experi-
ence participants included far more detail than general propositions.
The medium group included roughly the same amount of each. A two-way
unequal-n analysis of variance indicated that the two main effects,
experience and level of detail, were not significant. However, the
interaction .of Experience with Generality was highly significant
(F(2, 54) = 5.5358, p < .01).

In summary, the amount of Input-Process-Output information
included in specification and design summaries was significantly
different, but this variable did not interact with Experience. The
level in the hierarchical structure of the text was a significant
factor and interacted with experience. The interaction indicated
more lower-level information in experienced participants' summaries,
while more upper-level information appeared in inexperienced partici-
pants' summaries. The Generality-of-Propositions dimension interacted
with Experience although neither factor was significant alone. Experi-

enced participants concentrated on detailed information, while inex-
perienced wrote more general information. This result is illustrated
in Figure 7. In the figure, those propositions used by at least half
the participants in a given group are circled.

i i il i i

A b i

uoLjeunoju] (Lelsq pue [esauay 4o
9 aunbly4

BEVERRERIEIREL)E]
IH aw

s1SA|euy

01

TVHINTYD

11v13a

TVY3INI9 INIDYId

4+ 0b

d

v

-
-

GNTINI LN32¥

-
-
-

AdYWNNS NCILYITSIZ34S NI G

34

LOW MEDIUM HIGH

1 3—4 T34 1—2—3—4
- !*5——6
8 \\7——8 \\ -
9 (9) ,

—_
o
)

=2

20
2
24 24 1
;
26 26 |
27 27

Figure 7

Proposition Usage as a Function of Experience Group
39

DISCUSSION

A primary motivation underlying this experiment was to examine
the knowledge structures employed in understanding a software design
problem and to investigate differences in the knowledge structures
employed by participants at varying levels of experience. Three
types of measures were taken, relating to "surface" factors, number
of ideas, and classification of idea types.

The types of information examined can be broken into two
classes. The first category is concerned with task-related behavior.
These measures assess the participants performance in writing summar-
ies according to instructions. The second class of information col-
lected in this experiment assesses the content of the summaries. This
information is the result of the comprehension process which involves
the utilization of schemata to guide it and to organize the new informa-
tion. In the remainder of this section, we will consider each of these
types of information separately. In the following section, we will
summarize the conclusions derived from this research.

Certain measures are the result of the summary writing process
itself. Participants were asked to restrict the length of their sum-
maries to 60-80 words. As a result, and as was to be expected, there
were no reliable differences in the number of words written either as
a function of type of summary or experience groups. Constraining the
number of words that could be used effectively constrained the number
of propositions that could be expressed. Another side effect of the
restriction of summary length can be seen in the time taken to write
summaries. There were no significant differences due to experience
level for either specification or design summaries.

There was an order effect, however, with specification summary
writing times being significa tly longer when these summaries were

36

written first than when they were written after the design summaries.
Since it is reasonable to expect that participants would require some
amount of learning time to be accustomed to the experimental apparatus,
we would expect that the time required to write the first summary, re-
gardless of type, would be somewhat longer than the time required to
write the second. We have no explanation for the fact that only
specification summary writing times were so affected. Additional re-
search would be required to determine if this is a reliable result or
is due primarily to the small sample sizes and large observed vari-
ances in the present experiment.

The number of reproductive propositions included in a specifi-
cation summary was also affected by the restriction on summary length.
There was no difference in the observed number of reproductive propo-
sitions due to experience level. Recall that reproductive proposi-
tions were defined as those that were derived directly from the in-
formation stated in the problem statement. Since the problem state-
ment was available to participants while they were writing their sum-
maries, memory effects due to differences in comprehension level and
organization are unlikely. Thus, the task for the specification
summary was one of selection of information from a known set.

To some extent, reading time is also a function of the experi-
mental task. Since participants knew that the problem specification
would be available to them during their summarizing tasks, they were
not necessarily motivated to comprehend the problem at a deep level
during the reading and studying part of the task. No reliable dif-

ferences in reading/study time due to experience level were observed.
A difference in reading/study time, had such been observed could
indicate that participants with different levels of experience were
doing different things as they read the text.

Reading time, however, is not entirely a function of the ex-
perimental setting, but can also be influenced by the schemata used

37

i<

by participants to process the text. If this were the case, the
effects of experience on reading time would produce a U-shaped
function.

Recall that participants in Group 1 had no previous computer-
relevant experience. Because of their unfamiliarity with the computer-
related terms and concepts expressed in the problem statement, we
would expect these participants to stop studying the problem state-
ment when they had only a very superficial grasp of its contents.
That is, 21though these participants could read the problem state-
ment as “text", their lack of relevant experience and corresponding
appropriate memory structures, or schemata, prevented their actually
understanding the problem statement at anything other than a super-
ficial level. Reading times for Group 1, therefore, should be fairly
Tow.

Reading times for Groups 4 and 5, who were the most experi-
enced participants, should also be fairly low. In this case, their
experience allows them to "skim over" or ignore information that
they consider to be irrelevant to solving the stated problems and
to focus on information that they consider more important. In this
case, low reading times are attributed to the presence, rather than
absence, of appropriate schemata.

Participants in Groups 2 and 3, on the other hand, were more
familiar with the computer-related concepts than Group 1 participants
but lacked the experience of those in Groups 4 and 5. Although these
participants understood the individual concepts, they have had little,
if any, experience in integrating these concepts to formulate a
design for a computer system or group. Attempting to integrate these
concepts, therefore, takes a significant amount of time and effort and
results in fairly long reading times.

Reading times, therefore, are affected both by the experimental
setting and the schemata used to process the problem statement.

38

Although the effects of experience level failed to reach significance
(at the .05 level of confidence), an examination of Table 1 suggests
that the pattern of reading times were, to a degree, influenced by
schemata.

Unlike the measures discussed above, the remaining measures
are primarily concerned with a participant"s understanding and organi-
zation of the problem specifications, in particular, and computer
systems, in general. This understanding, we believe, is structured
by a participant's schemata, which are largely determined by experi-
ence.

The schemata used by a naive participant in this task is
probably a very general schema for processing a text. In addition,
naive participants should have difficulty in understanding the text
as a design problem because of their lack of knowledge about com-
puter systems and designs. Participants in all other groups should
have schemata for computer science problems. The more experienced
a participant is, the more detailed his or her schema should be.
These participants should be able to generate propositions which
are relevant to a design.

The propositional content of the summaries is interpreted
as a macrostructure which is produced by the interaction of an individu-
als’ schemata with the text. Differences in the ideas included in
the summaries represent differences in the schemata utilized in the
comprehension and organization of the problem. The schemata are not
directly observable in the summaries since people rarely include in-
formation from their schemata in summaries, because it is too "ob-
vious". However, summaries should include the top levels of macro-
structure immediately below the level of schemata. Therefore, the
schemata for a given experience group are inferrable from the macro-
structure propositions that they include.

39

I In order to familiarize the reader with the nature of the
summaries, we present prototypical summaries in Figures 8 and 9

for specifications and designs, respectively. With the exception
of the design summary for the low experience group, the illustrated
summaries contain those ideas stated by at least half of the parti-
cipants in each group. Since there was no such concensus in the
design summaries of the low experience group, a representative
summary is presented.

Without a schema for a software design, naive participants
asked to do design summaries have difficulty determining what
information is relevant to the problem at hand. For experienced
participants, the design summary task entails inclusion of informa-
tion that is not directly stated in the problem as well as informa-
tion that is reproductive.

i In the analysis of the design summaries, we judged proposi-
tions on the basis of relevance to software design; that is, pro-
p positions were judged on the basis of whether or not the information
1 conveyed was, in fact, related to or consistent with a software
design task. As would be expected, there was a tendency for more ex-
3 perienced participants to achieve higher relevancy scores, although
this effect was not significant at the ,05 level of confidence.
Extremely low scores attained by the naive (Group 1) participants,
can be attributed to this group"s lack of experience and familiarity
with the concepts involved in software design. This suggests that
more experienced participants are retrieving and utilizing some
i schemata or memory structures that contain useful, relevant informa-
\ tion about software design.

5 Some insights into the structure, content, or nature of the

knowledge structures that are brought to bear on a software design .
task can be derived from considering the types of propositions that

are used in participants' summaries. Obviously, there are several

40

Low (Group'l)

This system should process a stream of telegrams. The paper tape

is accessed by read block. The end of the telegram would have the
letters ZZZZ. Process the telegram to determine the number of charge-
able words and to check for overlength words. Telegrams are printed
on a lineprinter, each line being between 100-120 characters in length.
Words cannot be split from line to next. On output, extra blanks
deleted.

Medium (Groups 2 and 3)

The block size cannot exceed 100 characters. ZZZZ will denote the

end of a telegram. Count the number of words to be charged and over-
charged. There is an overcharge if a word exceeds 12 characters.

The telegrams will be printed on a printer with lines of 100-120 charac-
ters and no words split between Tines. Extra blanks are deleted.

High (Groups 4 and 5)

Blocks are 100 or less characters. The words of a telegram will be
separated by blanks, telegrams are separated by "ZZZZ". The stream

is terminated by a blank telegram. Count the number of words and

check for words longer than 12 characters. The words "ZZZZ" and

"stop" are not chargeable. Print telegram on lineprinter, with 100-120
characters per line. Extra blanks deleted. Print word count and over-
charge message for each telegram.

Figure 8.
Representative Specification Summaries
for each Experience Level

4

M S

Low (Group 1)

My first step would be to design a batch processing system, in-
cluding a line printer and a paper tape reader. The computer
would have to complement the functions of the batch processing
system. I would set the apparatus up looking somewhat like an
assembly line. It would look like the basic computer system,
lots of metal, buttons, and complicated gadgetry.

Medium (Groups 2 and 3)

First, check for the end of the telegram. When the end is found,
check for blanks. Foe each space increment the number of chargeable
words. Check for any overlength words. The words "ZZZZ" and "stop"
are not to be counted. Next, calculate the charges for the telegram.
Then, output it followed by the word count and the overcharge (if
needed). Each output line should be between 100 and 120 characters
long.

High (Groups 4 and 5)

Read a block until an EOB character is encountered. Separate the
stream into telegrams using the marker "ZZZZ". The next procedure
processes each telegram. It counts the number of chargeable words
in each one and notes if the character count in a word is greater
than twelve characters. The telegram is printed, deleting any extra
blanks, followed by the word count and overcharge message. When an
empty telegram is encountered, stop processing.

Figure 9.
Representative Design Summaries
for each Experience .evel

ways in which types or categories of propositions could be defined.
for analysis. Due to the exploratory nature of this experiment

and the limited amount of available data, only three such analyses
were performed, based on their potential usefulness in detecting
differences among groups and for the practical implications that
would be implied by such differences. These analyses involve, at

a very general level, classification on the basis of computer system
function and on the basis of the hierarchical structure underlying
the problem statement.

In our first analysis, we partitioned the propositions in the
original problem statement on the basis of whether they were primarily
concerned with input, process, or output functions. Admittedly, this
input-process-output classification is only a gross description of the
types of functions that could be involved in a software system. It is,
however, a classification that applies to almost all software designs;

. that is, it has obvious validity and generality. Attempts at more
detailed classifications may well lack such generality because they
would necessarily be restricted to a limited number of software design
tasks. Further, although we argue that this classification is general,
notice that all three of these components are not equally emphasized ;

in all designs. That is, it is usually the case that one or another of
these components will most affect the overall success of the design
effort. It would be expected, therefore, that more experienced subjects
would be better able to identify the more crucial element and, as a
result, tend to concentrate on this element in their summaries.

Both summaries of the presented specifications and of the ultimate
design were included in this analysis. Recall that particioants were divided
into three experimental groups for the purposes of these analyses in order
to highlight group differences and increase statistical power.

43

G

et

For all three analyses (input, process, and output) there was a
significant effect due to the type of summary. Since scores were deter-
mined on the basis of the percent of the possible propositions in each of
the three categories that were included in subjects' summaries and the
total number of possible design propositions (reproductive and pertinent)
in each category was larger than that for the specification summary pro-
positions (reproductive only), this introduced an artificial difference
in the derived scores. This difference, therefore, is considered to
be an artifact and is not either theoretical or practical interest.

In terms of the propositions related to the "process" category,
there was a significant difference due to experience. As can be seen
in Figure 4, there is a general trend for scores to increase as experi-
ence increases. This trend can also be noted in the analysis of "output"-
related propositions, although this difference did not reach statistical
significance. For "input"-related propositions, however, the profile
of scores as a function of experience was essentially flat, showing
no discernable experience effects.

We interpret these analyses as follows. First, in this parti-
cular problem, the design of the input-related processes and struc-
tures is relatively simple and straightforward. The process- and
output-related processes and structures are more complicated, however.
More experienced participants are better able to recognize these po-
tential complications and concentrate on these more relevant issues in
their summaries.

Specification summary propositions were also analyzed with
respect to their location in the hierarchical structure underlying
the original problem statement (see Figure 3). The significant effect

due to hierarchical Tlevels was expected. This finding of a significant
difference due to levels in the hierarchy tends to confirm that this
hierarchy was constructed in a logically consistent manner; failure

to detect a significant difference would tend to invalidate the pro-
posed hierarchical configuration.

Of primary interest in this analysis is the significant inter-
action effect between hierarchical level and experience group. In
general, participants in the lowest expsrience group concentrated on
propositions at the highest levels of the hierarchy while more ex-
perienced participants tended not to mention these propositions in
their summaries and concentrated on the Jower-level propositions. As
we will argue later, more experienced participants did not include
these higher-level propositions because the information contained in
these propositions was also contained in the memory structures devel-
oped by these participants to deal with software design tasks. In
effect, since the information presented corresponded exactly to what
participants already knew, participants did not need to explicitly
attend to this information.

A related analysis categorized propositions as being either
general or detail. This analysis, which is similar to the analysis
of hierarchical levels, also produced a significant interaction be-
tween experience groups and type of proposition. This interaction
is clearly illustrated in Figures 6 and 7. Notice that the amount
of general information included in specification summaries declines
as a function of experience while the amount of detail information
shows a corresponding increase. Again, this suggests that partici-
pants do not include information in their summaries that corre-
sponds to already-known information. In effect, participants do
not include information that they consider to be "obvious". The
type of knowledge structures employed by the more experienced parti-
cipants is apparent from Figure 7. Those propositions which are
high in the hierarchy, but not included in participants' summaries,
are presumed to be represented in these knowledge structures, or
schemata.

45

¢
|

CONCLUSIONS

In this paper, we have focused on the memory structures involved
in the comprehension of software system specifications. The primary
motivation underlying this research was to determine what these know-
ledge structures consist of and how they are organized. Although the
existence of such knowledge structures, or schemata, has been demon-
strated, especially in research on expert versus novice problem solving
behavior, the structure and content of these schemata is not well under-
stood.

In an effort to develop such an understanding, we adopted some
of the theoretical concepts and experimental paradigms employed in
research on text comprehension. This research is largely concerned
with the schemata and associated macrostructures that are involved in
comprehending and integrating newly presented information. We assumed
that there were strong parallels between these types of structures and
the types of structures employed by expert problem solvers.

Using a summarization paradigm, the performance of participants
with varying levels of experience with software design concepts was
compared. Summaries of specification and design information were
analyzed. We conjectured that participants at the low end of the
experience continuum would concentrate on only the relatively high
level concepts. More experienced participants were expected to con-
centrate on lower level concepts that are more concerned with the de-
tails relevant to a successful design or problem solving activity than
on the very general concepts involved in this type of activity. As is
clearly illustrated in Figure 7, this expectation was confirmed.

By analyzing the information that was included in the less ex-
perienced participants' summaries but ommitted from the summaries of
more expert participants, the different memory structures employed by
the expert and novice were examined.

46

s .

_—las

A large body of research supports the conclusion that expert
problem solving behavior is strongly influenced or driven by existing
memory structures, or schemata. These schemata contain, in part,
generalized plans for solving certain classes of problems. When pre-
sented with a given problem, the expert is often able to retrieve
one of these schemata and adapt it to achieve a solution to the current
problem. In effect, these schemata allow the expert to solve problems
more quickly, and frequently achieve better or more appropriate solu-
tions than less experienced subjects. In the experiment reported in
this paper, we employed an experimental technique that allowed us to
determine the probable content of these schemata, or knowledge struc-
tures.

There are several potential implications of this research, but
it is necessary to first consider the limitations of the experiment
reported in this paper. Since we have reported only an exploratory
experiment, there are several limitations that potentially affect the
generality of our conclusions. First, we have considered only one
software design problem and this prob1em was relatively simple. Clearly,
there are different types of software design tasks and it might well be
the case that some tasks, perhaps designing an operating system, are
at some level fundamentally different from other tasks, such as de-
signing a system for statistical analyses. In this experiment, we have
considered only one of a large class of potential design problems and,
correspondingly, only one memory structure that is involved in design.
We do not claim that this single structure is general to all software
design tasks. In text comprehension research, for example, different
schemata are found to underly the comprehension of narratives and
articles in a professional journal. We assume, however, that the
knowledge structures involved in a variety of software design efforts
are similar in structure, although not necessarily in content, and that
the principal finding of this study also applies to these as yet un-
considered schemata.

47

P T A L Y Ty

The second limitation concerns the participants that were available
for this research. In comparison with professional software development
personnel, our most experienced participants were clearly not "expert". It
is partially in response to this limitation that we used such a simple
design problem. We were able, however, to demonstrate clear effects as
a function of experience. We suggest that these effects would be ex-
tended with more difficult problems and more experienced participants,

Although we recognize these limitations. we do not feel that they
seriously impact the implications of this research. We feel that we have
identified a methodology that can extend theoretical research on the
nature of expertise in problem solving and have provided some insights
into the nature of the knowledge structures underlying expertise. 1In
addition, we have demonstrated the applicability and usefulness of this
type of basic research to applied problems.

First, we have demonstrated that a software designer uses pre-
viously learned schemata in understanding a software design problem
and in actually constructing a design. The actual specifications pre-
sented to the designer can vary both in form and content. We suggest
that structuring these specifications to more closely correspond to
these schemata would aid the designer both in the comprehension of
these specifications and the construction of the indicated design.

Second, and of more general consequence, we can develop a much
better understanding of the concepts of software complexity and com-
prehensibility. We have argued that these concepts can only be defined
and measured with reference to an individual's experiences and abilities,
which are best represented as schemata. By providing a method for
determining the structure and content of these schemata, complexity
and comprehensibility can now be considered in a more meaningful manner.

As a result of this understanding, we gain a new perspective on
relevant metrics of software complexity. Obviously, the develop-
ﬁf i ment of procedures, techniques, training programs, etc., that lead
' to the development of more comprehensible software have numerous,
significant benefits.

B e . ey}
i

49

REFERENCES

Bhaskar, R., & Simon, H. A. Problem solving in semantically (ich
domains: An example from engineering thermodynamics. Cognitive
Science, 1977, 1, 193-215.

Chase, W. G., & Simon, H. A. Perception in chess. Cognitive
Psychology, 1973, 4, 55-81.

Kintsch, W. Notes on the structure of semantic memory. In E. Tu]ving
& W. Donaldson (Eds.), Organization of Memory. New York: Academic
Press, 1972.

Kintsch, W. The representation of meaning in memory. Hillsdale,
New Jersey: Erlbaum, 1974.

Kintsch, W., & Greene, E. The role of culture specific schemata in
the comprehension and recall of stories. Discourse Processes, 1978,
]9]'13.

Kintsch, w:, Kozminsky, E., Streby, W. J., McKoon, G., & Keenan, J. M.
Comprehension and recall of text as a function of content variables.
Journal of Verbal Learning and Verbal Behavior, 1975, 14, 196-214.

Kintsch, W., & van Dijk, T. A. Toward a model of text comprehension
and production. Psychological Review, 1978, 85, 363-394.

Larkin, J. H. Problem solving in physics (Technical Report). Berkeley,
California: University of California, Department of Physics, July 1977.

Miller, L. A. Naive programmer problems with specification of transfer-
of-control. AFIPS Conference Proceedings, 1975, 44, 657-663.

Newsted, P. Grade and ability predictions in an introductory program-
ming course (Technical Report). Milwaukee, Wisconsin: University of
Wisconsin, School of Business Administration, 1974.

Rumelhart, D. E. Notes on a schema for stories. In D. G. Bobrow

& A. Collins (Eds.), Representation and understanding. New York:
Academic Press, 1975.

Schank, R. C. SAM -- A story understander (Technical Report 43).

New Haven, Connecticut: Yale University, Department of Computer Science,
1975.

Sheppard, S. B. & Love, L. T. A preliminary experiment to test influ-
ences on human understanding of software (Technical Report TR-77-388100-1).

Arlington, Virginia: General Electric, Information Sciences Programs,
June 1977.

Shneiderman, B. Exploring experiments in programmer behavior. Inter-
national Journal of Computer and Information Sciences, 1976, 5, 123-143.

50

e s S O] ‘~.

Sime, M. E., Green, T. R. G., & Guest, D. J. Psychological evalua-
tion of two conditional constructions used in computer languages.
International Journal of Man-Machine Studies, 1973, 5, 105-113.

Sime, M. E., Green, T. R. G., & Guest, D. J. Scope marking in com-
puter conditionals -- A psychological evaluation. International
Journal of Man-Machine Studies, 1977, 9, 107-118.

Thorndyke, P. W. Cognitive structures in human story comprehension
and memory (Unpublished doctoral dissertation). Stanford, California:
Stanford University, 1975.

Turner, A., & Greene, E. The construction and use of a propositional
text base (Technical Report 63). Boulder, Colorado: University of
Colorado, Institute for the Study of Intellectual Behavior, April 1977.

Weissman, L. Psychological complexity of computer programs: An
initial experiment (Technical Report CSRG-26). Toronto, Canada:
University of Toronto, Computer Science Research Group, 1973.

Weissman, L. M. A methodology for studying the psychological com-
plexity of computer programs (Technical Report CSRG-37). Toronto,
Canada: University of Toronto, Computer Systems Research Group,
August 1974. {

51

