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SUMMARY

A method for predicting the response of a wing to non-stationary
buffet loads is presented. The wing is treated as a cantilever beam with /
known mass distribution. Using generalized co-ordinates, the vibration of
the wing is governed by the second order mass-spring-damper oscillator ~v
equation. The buffet load on the wing is expressed as an integral of the
sectional force, which is a function of the spanwise location and time. The
non-stationary load is represented by the product of a deterministic time

function and a statistically stationary random function. The time history of
the applied load is segmented into a number of time intervals. Analytical
expressions for the mean square response of the wing displacement are
derived using a power spectral density for the random part of the applied
load, similar to that used in the theory of isotropic turbulence. The effects
of damping, ratio of the undamped natural frequency of the system to the
half power frequency of the power spectral density, length of time segment,
and duration of applied load on the response of the wing have been investi-
gated for three examples of the load versus time histories.

RESUME

La pr~sente communication porte sur tine m6thode do py~voire
In r6action d'une sule sourniise ai une charge tion-stationnaire do buffeting. Onl
consid~ro quo I'sile est une poutreoen porte-ti-faux dont In r6partition de In
masse est connue. En faisant usage Ai des coordonn(~es gn&A-alis~es, In
vibration die Iaile est gouvernk~ par I'tquation do l'oscillateur xnasse-resort
anortic du deuxi~no ordre. La charge dun buffeting sur l'ailo est exprini~e
conine WICe int~grale do la force par unit6 do surface de In section ot qui est
une fonction du temps et de Is position suivant l'onvorgure. La chargeP lrinstationnsire est repr~senthe par le produit d'une fonction d6torniine' du
tenmps et une fonction stationnaire statistiquement Wi~atoirio. L'6volution
chronologique do In charge appliqu~e est fractionn~ie en un certain no"mbre
d'intervalles de temips. On de'rive des expressions analytiques do la re'ponse
efficace du d~plaeceient de I'aile en utilisant, comnie dans Ia tht~orie de la
turbulence isotropique, une densit6 spect~rale de'veloppi~e en puitssances pour
la partie aIfstoire de In charge appliqu6e. On a 6tudi6 pour trois exorpen
de Ia charge en fonctioti de I'volution chronologique les effets sur hni rponse
do I'nile do I'aniortissernoiit, du rapport do In fr6quence propre non amortie
du syst~mc stir In fr~quence A derni-puissance de In densit6, spectrale di~velop-
p~e on puissances, do In longuewr do 1'intervallo do temps et do In durt~e
d'appllcation do la charge.
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SYMBOLS

Symbols Definition

b wing span

c mean chord

cly) wing chord

cn(y,t) fluctuating sectional normal force coefficient

C141(y) effective slope of sectional lift curve

C generalized damping coefficient

SCz 1(t, ,t ) covariance function

E Young's modulus

E[z2 (t)J expected value of z(t)

iI z2t)) defined in Equation (55)

f(t) stationary function

"F(yt) sectional fluctuating force

!i i ,force
H It(W) frequency respnso function

-I sectional mnoment of inertia

l(tW) tine dependent frequency respouse function

K generalized stiffnets

'•L~t) golalized force

la(y) mass distribution

iI generalizod muss

q dynamic premure

RLl) auto-correlation function of input load

constant in expres•i•on for power spectral density

SLL(EtaW2) power spectral density of applied load

t'T time

(vii)i:) 1 . .



SYMBOLS (Cont'd)

Symbols Definition

TB duration aircraft spent in buffet r~gime or duration of applied load

Tn undamped natural period

At, duration of time segment

u(t) unit step function

V aircraft velocity

w1 (y) mode shape function

y distance along span direction

z displacement

13- 1Ht u(t-tr1 ) - u(t-tr)

F v( t) deterministic function

6 spatial decay coefficient; also amplitude function

. intensity of applied load

correlation length

damping ratio

Y2~

P (Y a2z ,r) cross correlation coefficient

: r delay; also2t-t

w frequency

w •widamped natural frequency

Wtd ddmped natural frequency

(•f half power frequency

Subscripts: 'T' denotes first fundamental bending mode

denotes rth time segment

VL' denotes applied load

SSuperscript: denotes nodimuenslonal time with respeit to T17

(viii)
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TIIEORETICAL ANALYSIS OF TIlE TR.ANSIENT R.ESPONSE

OF A WING TO NON.STATIONARY BUFFET LOADS

1.0 INTRODUCTION

In recent years, increased attention has been given to the investigation of buffet characteristics
in order to meet the design requirements of future aircraft. This arises from the demand for greater
maneuverability and gust requirements in the transonic flight r1gime. Furthermore, the advent of the
supercritical wing held promise for expanding the buffet onset boundary at transonic speeds.

Historically, the term buffeting was first introduced in connection with the structural failure
that occurred to the tail of a Junkers monoplane in 1930. This led to wind tunnel testing of tail vibra-
tions excited by the separated flow of the wing. The complexities of the buffet phenomenon, which
involves the solutions of the vibrations of the wing surface and the unsteady aerodynamics around it,
made the problem not easily amenable to theoretical analysis. Most of the earlier investigations in-
volved wind tunnel tests to predict buffet onset and to provide some indications of buffet intensities.
A complete account of the earlier work on the study of buffeting is given by Pearcy (Ref. 1).

The use of statistical theory in the investigation of buffeting was pioneered by Liepman
(Ref. 2) who examined the problem of the lift force exerted on a two-dimensional thin airfoil moving
in turbulent air. Later, he extended the method to wings of finite span (Ref. 3). The analysis was
generalized by Ribner (Ref. 4) using a model of turbulence represented by the superposition of plane
sinusoidal shear waves of all orientations and wavelengths. These analyses assumed the exciting force
to be statistically stationary, so that well known statistical concepts developed in other branches of
science could be applied. Experimental studies involving model testings in wind tunnels and flight tests
were carried out mainly-by NACA using strain gages developed for measuring the wing root bending
moment. These investigations were reported in detail by Huston and Skopinski (Refs. 5, 6), Huston
(Ref. 7), and Skopinski and Huston (Ref. 8). After this period of intense studies in the fifties, research
in this subject was continued into the sixties at a slower pace. Aside from wing buffeting, work on
dynamic response of launch vehicles to transonic buffeting was carried out by Cole (Ref. 9), Cole,
Robinson and Gambucci (Ref. 10), and Coe (Refs. 11, 12). In the seventies, the rapid advances in
transonic aerodynamics generated numerous studies on the transonic buffet characteristics of wind
tunnel models as well as of actual aircraft. Hollingsworth and Cohen (Ref. 13) reported comparisons
of flight tests with wind tunnel data for the F-4 aircraft. Mayes, Lores and Barnard (Ref. 14) studied
the transonic buffet characteristics of a 60 degrees swept wing fighter aircraft. The flight and wind
tunnel tests on the F-8D aircraft was carried out by Damstrom and Mayes (Ref. 15), and the buffet
studies of the F-8 supercritical wing aircraft was reported by DeAngelis and Monaghan (Ref. 16).
Detailed investigations of the Northrop F-5A using an extensively instrumented aircraft to study the
dynamic buffet pressure distributions on the wing surfaces and the responses during a-series of
transonic maneuvers were reported in References 17 and 18 by Hwang and Pi. A first generation
method for predicting the buffet loads and responses was described by Mullans and Lemley (Ref. 19),
while Cunningham et al (Ref. 20) used fluctuating pressure data obtained for a rigid wind tunnel model
as the forcing function to calculate the aircraft dynamic response and presented results for the F-111A.
In general, methods employing wing fluctuating pressure data are found expensive due to the work and
time involved in model construction. Butler and Spavins (Ref. 21) used a more direct approach in pre-
dicting buffet response in flight. The technique was based on a method proposed by Jones (Ref. 22)
who suggested using a nondimensional representation of the overall aerodynamic excitation and damnp-
ing parameters determined from model testing in a wind tunnel. Preliminary results for a combat
trainer aircraft showed good agreement between predicted and measured response data.

All the prediction methods for the dynamic response of a wing to buffet loads assume the
exciting force to be statistically stationary. This assumption is valid if at a certain buffet condition,
the aircraft flight path is unchanged within a long analysis time. In wind tunnel testing, statistical
stationarity requires running time to be very long compared to some characteristic time, for example,
the natural period of the first bending mode, assuming the first bending mode to be the dominant one.
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However, in actual flight during buffet maneuvers, the condition of stationarity may not be met, or in
wind tunnel testing, transients have to be considered if the running time is very short or the model is
pitched during a test. To analyse the response of a wing under such conditions, nonstationary tech-
niques to predict the dynamic response has to be developed. A theory of non-stationary response of a
linear dynamic system has been given by Caughey (Ref, 23) and extended by Barnoski and Maurer
(Ref. 24), and Holman mad Hart (Ref. 25). Using some of the concepts developed in these earlier
studies a method is given in this report to compute the non-stationary response of a wving for specified
power spectral density and time history of the exciting force. With this method, it is possible to
investigate the continuous excursion of an aircraft into the buffc. . Information such as the
maximum rms response and the time delay between tie maximunl response and the applied force can
be computed for known structural and inertial properties of the wing as a function of the duration the
aircraft spent in the buffet r6gime.

2.0 ANALYSIS

2.1 Differential Equation of Wing Vibration

Figure 1 shows a schematic of the wing which is treated as a cantilever beam fixed at y 0.
TThe differential equation of beamu bending relates the time and space derivatives of the displacement z
to the load distribution on the beam which may include inertia forces, external or applied components,
as well as internal components. The equation can be written as:

ry" l &yit) -- re (y~t) t + F(y,t) (1)

Let

ZYt (y10 (2)

where w, (y) is the motde shape finction., Hero z(y,t) is confined to a single tiormal mode appropriate
to vibration in the first fundamiental boildilig motde, anid the subscript "1" is used to denote this mode.
Normally. ,',qtation (2) is written as a sumanation of all the possible modes, but in almost all wing

buffeting tests, nIost of the energy in the power spevtrum of the huffet henlding moment is concentrated
inl the vicinity of the natural frequemncy of the first mode. Usually, the first mode is well separated fromn
-te higher modes, atnd as a result, the response due to the higher mode is small and Elquation (2)
suffices in describing the vibrating system. To find z(y,t) at any point on the wing, it is newes'ry to
determine j (t) first. When tie wing is subjected to a time dependent loal, zl(t) is governed by the
usual simple setcnd order mas,.pringdcuper oscillator etuation in generalized c)-ordinates.
Equation (1) call now be written as:

Mil + Cz' + Kz1 - LMt) (3)

where the dots denote differentiation wift rtespct to time.

The generalized miass NM and stiffness K are defin'd as:

fI fi(y)wIj(ywy (4)



b d2 wv1(y) 1
K fFEl11 (5)

Included in the terim F(y,t) in Equation (1) aye two aerodynamnic forces, namely, a fluctuating
lift force and a damping force associated with the fluctuating angle of attack (i/V) induced by the
relative velocity of the wing. If the fluctuating sectional normal force coefficient c, (y,t) is known, the
generalized force L(t) can be evaluated as:

b
L(t) q fc(y)w (y)c,, (y,t)dy (6)

4M while the generalized damping coefficient C is

qb

C f el (y)c(y)w2(y)dy(7

In the above equation, c1 (y) is the effective slope of the sectional lift curve. Define the undainped
r natural frequency Wn as:

and let

(9)

Usaing the above two equations. Equation (3) can livwritten as

il+ 2ow~i + -nz L~t) (10)

Equ~ationa (7) gives the aerodynamnic darNuinig coeffivientC Whttn structural damping is to be
included, it can be added directly to C to give the ~.uwl damnping coeff icient (Refs.. 22. 26). Another
approach of introducing structural dampin~g is discus"e by Seatan and Rosenbaum (Rof. 27) and
Davift and Worrioi (Ref. 28). The damping is assumed to be proportional to the displacement but in
phas with the velocity of a harmonically oscillating system. The method applies strictly to harmionic
motion and to the complex exponential form of solution, For m'adotn motion, gwa~t caution has to be
exertcised in using such a form of dampingj Let the fluctuating sectionall force be wrtitton as.

bly.t 0 Qciy) ca(y-t w1 (y) (1
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and from Equation (6),

L(t) = b F(y,t)dy (12)

In the above equation, the buffet load L(t) on the wing is expressed as an integral of the sectional force
expressed as a function of the spanwise location and time. If the sectional force is assumed to be inde-
pendent of position along the span, the overall load is obtained by multiplying it by the wing span.
However, the exciting force thus obtained will be overestimated since fluctuttions at one chord station
will not be in phase with fluctuations at another station.

Assume the time average value of F(y,t) to vanish, that is, F(y,t) 0. The auto-correlation
function of L(t) is defined as:

tim 1 T
R f L(t)L(t+r)dt (13)

Substituting Equations (11) mid (12) into (13), IL(r) c4a" now be expressed as:

•... . bb
IL L(T) a f f 1(y 1,y2;r)dyIdy 1  114)

where 111:(y 1 ,yj ;r) is the spaketime correlation function of the sectional force, whots wean is taken to
Wbe ro. Define a crossacorrelation Loofficient P1Y ,Yj,) such that

Rpy 11y 2,r) py,y;r) (5

where F&(y ,t), F&(y 2 ,t) O.e the mean squar values of F(y1 ,t) and l wy2 1t) respectively, Onve
11 .-(y y12 ;r) is known, then from Equation (14) the meian square value of the load Lit) can be obtained

,L(t) a RL(O) (16)

For some spe.ial types of flow, Ij,(y ,y2, -r) has he sane shalpe at different values of y and
depends only on • - y2 - yt' From Equations (14) to (16),

b b-y
L3(t) F2(yt) f dy f pt()dt (17)

If p(t) is equal to a constant and has a value unity over the interval 0 , y < b, then
Equation (17) b•emes



LE(t) F2(y,t) • b2 (18)

which gives the mean square value of the load for perfect correlation. If p(Q) drops rapidly, then
b-y

f p(t)dt hardly depends on y. Since this has the dimension of length, it can be termed as the correla-i -Y
tion length X. From Equation (17),

L2(t) F2(y,t) X'b (19)

Since the sectional force is correlated only for a short distance, then X is small and hence L2 (t) is
smaller than that obtained from Equation (18) for perfect correlation. In actual cases, the form of the
correlation function RF(yI ,Y2 ,T) depends on the wing geometry (swept or unswept), presence of lead-
ing edge flaps and other special characteristics in the design of the wing. However, in the preliminary

stage of design, it is helpful to obtain a rough estimate of the buffet load. In order to do so, some
approximate form of the correlation function is needed since the exact form will not be known for the
wing until it has been constructed and tested experimentally. Although it is not within the scope of
this report to discuss this subject in great detail, two other forms of RF(Y1 ,Y2 ;r) are briefly considered

and the resulting values of L2 (t) are evaluated to give some idea of the form of the fluctuating load on
the wing.

For a straight wing with large aspect ratio, the influence of tip vortices on the fluctuating
load is unimportant. The buffet load will be predominantly determined by the fluctuating pressure in
the separated flow region. In Reference 2, Liepman considered isotropic turbulence to illustrate the
random excitation on a thin wing moving through turbulent air. If it is assumed that the buffet load
has a similar form of power spectrum, the correlation function can be expressed as:

RF(t,O) F2 (t) e- 1/ ( - (20)

where Z" is the mean chord and F2 (t) is constant and independent of y. Substituting into Equation (17)
gives

L2 (t' F2(t)-(l - Cb/')bi" (21)

Another form of the correlation function that is of some interest is given by

p(,) =Fim 0-. (22)

where 5 is the spatial decay constant which is determined empirically. This form of the correlation
function is similar to that given by Mullan and Lemley (Ref. 19) based on data obtained from wind
tunnel tests of a 10% scale model of the F-4E aircraft. For highly swept wings, they found that wing
tip vortices and snag vortices have an important influence on the fluctuating pressure on the wing. The
buffet load for this correlation function, after substituting Equation (22) into Equation (17) and per-

k forming the integi,.tion, is

.. . .. .
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1~ L2(t) F2(t)'- - - (1 -6b/c) (23)

2.2 Response to Non-Stationary Input

For a given buffet maneuver, the mean square loading on the wing versus time may be repre-
sented schematically as in Figure 2. The points A and B correspond to the onset and exit of buffeting
respectively. The duration of time the aircraft spends in the buffet r6gime is denoted by TB. The load
is non-stationary and time varying properties, such as the mean square of the response, can only be
determined by instantaneous averaging over an ensemble.

The load L(t) can be represented as:

L(t) y(t)'f(t) (24)

where y(t) is a deterministic function of time and f(t) is stationary (Ref. 29). Furthermore, it is
assumed that f(z) is Giussian such that the response is Gaussian as well. The non-stationary input can
be represented by a time segmentation technique whereby the time TI) the aircraft experiences buffet-
ing is divided into a number of time segments. At any segment, L(t) is expressed as:

i ,. In

L(t) 2 y,(t)'(t) (25)

where the subscript r denotes the rth time segment and the deterministic function y,(t) may be con-
sidered as a shaping function written in the following form:

Y (t) CAM (26)

where 0,(t) * ult,. 1 ) - u(t-t,). Here u(t) is a unit stop function. c, is a constant at each time seg-
ment and represents the intensity of the generalized input load. Figurv 3 illustrates the variation of c
with time and hence reprements the load intensity as a function of time. The formulation as described
in the above manner gives an appr-oximate description of a continuously varying load. However, such a
representation can be exact in practice, for example, in wind tunnel testings where the model angle of
incidence advances ill steps with time so that the buffet load can be represented by E quation (25).

To determine z1(t), the response zl,(t) due to the rth time segment is first evaluated since

Iz~J ~ E[,(t] (27)

where m is the time segment where t is locatad, that is, t •.. t < tIn and E denotes the expected
value, Knowing the load L(t), Equation (10) may be solved for z•,(t). Introduce a frequency response
function HM(co as

14W) +1wit 
-

: -.•' , "i .xo~ (28), . ., , , . , , . .•" ... •
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and

IH(w)I2  12( 22+422 2 (29)

The covariance CI z(t 1 AD2 can be expressed in terms of the power spectral density of the applied load
SL L(~lW I 2 ) as:

I(Wit 1-w2t2)

where H*(W.2) is the conjugate of H(W2). If z, (t) has zero moan, then

where R z I (t13,2) is the auto-correlation function. The mean square response can simply be obtained
by setting t~ I t2 -t, that is,

E~z1
2(t)I R~1 21(t't) (32)

In Equation (25), let f,(t) 0. Since RL .1.41t2) EFL(t 1 )L(t2 )I, it may be expressed in thefollowing form after using Equation (25) for L(t1 ) and L(t 2 ):

RLL~lltl 1;'y~l 'Ys(t 2)E~fr(ti~fs~t)1 3

Expressinig Ejfr(tt )fg(tj 12) - tRi,(tt ,t2), Equation (33) can be rewritten as;

RLL(tl,t2) to So Y/r(t1)Y~2R~%t2 (34

If f~l AD~ ,t)is known, t1He from1 the generalized Wioner-Khlnchino relations (Reof. 29),

SLL(0 1 w1(W I -&I It - W212)
SL1W4 W2) f RLL(t1,) AD dtd (35)

Combining Equations (34) and (35) yields:



la8w

-( I I -w 1t- 2 t 2)
SLL((&)1,(2) Ž2;Ž f f ^i,(t1)^Ys(t2)Rfrf(tj~t2) e dtjdt2  (36)

If f, (t) and f, (t) are stationary, then Rf rf s(t, ,t2) Rf, f(t, t2) Rrz.f s(r), that is, the corre-
l~ation depends only on r t1 - t2. Since r

Ry fr Sy,(co e1' dc (37)

and substituting into Equation (36) gives

In
SLL(W~I,WO2) 1; Ž2 f S(&)A,(wo-w.) Aý (w-w,.))dw 38

where

21r

and

1 - -i(w-w 2 )t2-f y,(t 2) e dt2  (0

Fronm Equation (30), the mean square value of z, (t) is given as:

VE Iz2() f f SLL~(At,WO)H(c11 ) Ir(c 2)e dwjdw2  (41)

Substituting Equation (38) inito Equation (41) yields

E [ZI(t)J I; E [Z, 2(t)] 1; Ž2 ' S~ (&)Itt())1(,()d (42)

where

IW1 t

it-----.T (tw Aw-w-.) 14.--. o dw (4 .
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and

-iw2t

I(t,w) is the time dependent frequency response function. Equation (42) gives the general formulation
for amplitude modulated stationary inputs and is a function of the spectral density Syrf('i.) and cross
spectral density Sf f,(w~~).

To evaluate I(t,wo), consider the time segment denoted by t 1 -I t < t, (Figure 3). It can be
shown that in Equation (39)

7 A~(~-~) I {rs(wi -W) + {ei -1tre (45)t

Substituting this expression into Equation (43) gives

er iwtr H(o 1)) eiwl(t-tr)
Ir(t,wa) e fe -e i(w, 1

-e f -- e d4., 1  (46)

The integrals f e dow and f e dw, cant be evaluated by

contour integration. The function H(w1 I (w- has poles at a 1 1 , a2 co. + I W11 and
03 ~ - ,Where CWd is the damped natural frequency and is defined as:

(4 Wu (4'7)

Considering the first integral, the Integration path for t > tr is taken above the real axis as
depicted in Figure 4a, while for t < t,, the integration is below the real axis. Similar paths of Integra-
tion are taken for the second integral. Upon substitution of these integrals into Equation (46), the
final form becomes:

1w r wr- Ww

U(t-tr) [e etp)t+t,)+ -t (48)
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where

S•08e Cos dt +"sinC.d (49)

and

¢(t) e sin Wdt (50)

In buffet maneuvers or in wind tunnel testing of a pitched model whose incidence changes
with time like a step function, the loading on the wing can be approximated by Equation (25) with
fr(t) being the same in all time segments. The only changes in L(t) being the intensity. Th-s may be a
fair approrimation since buffeting is primarily due to the fluctuating pressure forces of the separated
flow on the upper wing surface. The frequency structure of the separated flow may not change by a
large extent as the incidence varies. If it is assumed that there is no correlation between different
segments, then from Equation (42),

E [z(t)] = f Sf r(W)Ilr(ts)1 2 dwA (51)

where after some algebra, IIr(tW)12 is given as follows:

for t,_ < t < tr,

+ 0 2 (t-t,.) + i 0 2(t-tr ) (52)

CWdd

fort> tri

* ~~~~II(t,w)I 2 
= r2 IH((O1 ' 2 tw~ + OP(tdtr)

-+ ¢W 2(tt r-O) + -- 0(t-tr) (53)c2 c2
W + _ .2ttr•-+•_.•tt)



2cos((tt-t)_) 44t 0(t-tr)

S~+

+ 2-sin w(t,-4- 04044

Wd•

- *(tY.O~i~t-~)]}(53)

2.3 Evaluation of Mean Square Response for a Given Power Spectral Density of the Input

Equation (51) can be integrated to give the mean square response, provided the form of the
power spectral density Sf r f(w) of the input is specified. Cole (Ref. 26) gives a form of the spectral
density which has been found to adequately describe the buffeting input to launch vehicles. In the
present notations, this can be written as

So

Sf, f (W) (54

Sfrfr( W) (

where wf is the half power frequency and S0 is a constant. In Figure 5, is plotted versus
so nOn

for different values of -. For - 0, Sf f (w) constant So, which is the power spectral density

(On
for white noise. As - increases, the energy of the exciting force near the natural frequency w,,(Af

diminishes and this will have an appreciable effect on the response of the system.

Consider the rth time segment and using Equation (52) or (53) for II(t,w)12 together with
the expression for IH(w)J 2 given in Equation (29), the mean square value E[zIt (t)] can be evaluated
analytically since the form of the power spectral density is known. Let

2rM2o1 
3

&Czi[ 2(t) - i E[ZI12(t)] (55)irS

Using contour integration and after much algebra the final expression for & (Zi 2(t)z are as follows:

where for tr.. tt,
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[F4-t-Y.i + ~ -e

1+- 2ý-
+ ~~~ 2 A' ~ 5 6

and for t> t1,

E 2t

+

(57IW



with

11(t) 11+( ý)+(58)

H ~t) +~ Ot)- ý
G(-0)

KQ +(1 -4 Pt2) - +2t(1

for2

G
H1t
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and for t> t,,

W. &Z, 2 (t)] C~{~2 (t~)+i 2 t

+ (64)

In the limit for -0, these two expressions give the response to white noise.
(A) f

2.4 Computational Procedure

The steps involved in computing the mean square response is fairly simple and straight-

Vforward. For a given value of, a~ [z2 (t)] can be evaluated from Equations (56) and (57) (or
bWf

Equations (63) and (64) for white noise) once the c,'6 are given as functions of time. Referring to
Figure 3, at any specified time t, the procedure is to establish the time segment where t lies. If it falls
between t~and t.n, then &(z1 2(t)] is obtained as follows.

8[2(~ &Iz2(t)] + Z 8[z1 (t)J (65)
Tel

where the first term on the right hand side of the equation is determnend from Equation (56) while the
second term from Equation (57).

Three cases are considered where e varies with time in the form of the following functions.

Case: 1: Sinusoidal

Case 11" Ramp

CaweIII: Tringular.

These functions are shown schematically in Figure 6 and shall be referred to the case number in the
future. F'or convenience, the maximum value of e is taken to be unity and this does not affect the
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generality of the solutions. The number of time segments in TB will be specified later on after the
effect of varying the segment duration (tr-tr..i) has been investigated. The variables involved in the

Wmn
analysis are -, ý, and TB, and their influence on the mean square response are studied in some detail.

3.0 RESULTS AND DISCUSSIONS

Since Equations (56) and (57) are the principle expressions to be used to compute the mean
square value of z, (t) for specified non-stationary loads, their characteristics are first investigated in
some detail. Equation (56) determines the response or rise to a step modulated stationary exciting
force, while Equation (57) governs the decay when the applied force is withdrawn. Taking er to be
unity, Equation (56) is plotted in Figures 7 to 10 as a function of time t'-t',_1 for three values of the

Wn Wn
damping ratio (' = 0.02, 0.04 and 0.08) and four values of -, namely, - = 0, 0.5, 1 and 2. The

of 0Jr

superscript ' is used to denote that time is non-dimensionalized with respect to the undamped natural
pctiod Tn - 21r/w.. From these figures, it can be seen that for larger values of ý, the mean square of
z1 (t') reaches an asymptotic value for t'-t41 -b 0o sooner than that with smaller values of ý. Increasing
the value of cjn/Wf tends to diminish the asymptotic value, This can be explained from Figure 5 where
the normalized power spectral density is plotted versus w/n-. The energy in the exciting force near
the natural frequency cn diminishes for increasing Wn/WOf, and hence it can be expected that the value
of the mean square response will decrease as wn/Wf increases. From Equations (49) and (50), it is seen
that as t'-tr_1 -o- o,(t'-t4_) - 0 and 0(t'-t4-1 ) -- 0. Hence Equation (56) can be written as (taking
Er = 1):

W 2 .n3
1 +(1-4ý2) - + 2S

2 Wf3(66)

I+ (on 2)2- 4t n2
Wf2 / 4 2 f

FQ [z 2 (t')] decreases as wn/wf increases. For Wn/,f >> 1,

g [ (67)r Wn

Wf

In the limit wn/Wrf P co [z 1 (t')] -+ 0.

In the computations, no significant changes in P [z, 2(t')] compared to that at w,/Iw = 0 are
detected for values of on/Wf less than 0.1. These curves are replotted in Figures 11 to 13 for fixed
with wn/wf as the variable. The oscillations observed are due to the sine and cosine terms in the
expressions for 4(t'-tr_) and 0(t'-t.r_1 ), but they are rapidly damped out for increasing t'-t>.

Equation (57) is used to compute the decay of the mean square of zl_(t') after the exciting
force has been withdrawn at time t. Using the same values of ý and wn/Wf as before, the decay to a
pulse modulated statiolqary exciting force are shown in Figures 14 to 25 for different values of the



16-

pulse duration (t-t_ - 0.5, 1, 2, 4 and 8). Since the curves are plotted with t'-t'-. as the absicca,

then t-t41 is simply measured from 0 along the axis to the time t'-t'.., when the decay curve starts.

For large values of the pulse duration, Equations (49) and (50) give

( t', -t ,_ ) - 0

T T

ast' - tr"!• o

Also from Equations (58), (60) and (62),

F(4• - t',_1)- 0

H(tr' - t- 1)• 0

Q(4; - t4-1)- 0

Equation (57) cAn be written as (taking er = 1)

Pz.Z2(t')] = •{K0,2(t'-t') + 61(t'-)) (68)
1- 

(62

which is independent of tr-t',_1 . In other words, the decay is independent of the step duration for
large values of tr-t'r 1. From the figures, it is also observed that for constant ý, the decay is more rapid
as W,, fOf decreases, especially for cases with the larger values of t'-t - . This can be shown from
Equation (68).

For wn/wr << 1,

¢2(t'-t I)
&[z1

2 (t')1 -ý 42(t'-t;) +

while for wn/Aor >> 1,

r Wn
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Also of interest in those figures are the oscillations in the decay curves. For small damping,
the oscillations are very clearly shown. The amplitudes increase with con/wr while the decay is less

rapid. This is even more significant for smaller values of t;-t;, and will be shown later to have quite
an effect on non-stationary loads.

For an input load with sinusoidal variation of e with time (Case I in Figure 6), . [z 1
2 (t')] has

been computed using Equation (65). The duration of the applied load T' is forty times the natural
period, and it is divided into eighty equal time segments giving a value Atr = tr-t'r 1 of 0.5. Figure 26
shows the response for • = 0.02, 0.04 and 0.08 with wo,/cof = 0. Also plotted in the same figure is the e
versus time curve for comparison purposes. Similar to Figures 7 to 10, the rise time is seen to be
smaller for the larger values of ý. Shown in the figure is the delay r, which is the time where the maxi-
mum value of . [zI 2 (t')I lags behind the applied force, and the amplitude function 5 defined as

= 1- •[jzi 2 (t')]m8x.

The effect of changing the number of time segments has been studied, and it is found that if
At' < 1, the differences in the computed results are not very significant. Figure 27 shows the response
curves for three values of At, and it is seen that the curves with At; = 2 and 0.5 are quite close. In all
subsequent computations, A6t' is taken to be 0.5.

The effect of wI,/cor on & [z, 2(t')] are shown in Figures 28 to 31 for wn/wf = 0.1, 0.5, 1
and 2 with " = 0.2. The oscillations in the response curves increase with con/co, and the peak to peak
values reach a maximum at wn/cof = 1. These oscillations arise mainly from the second term of
Equation (65) where previous results (Figures 14 to 25) show that for increasing values of w,/w,,
the decay to a pulse modulated input has fairly large amplitude oscillations and diminishes rather
slowly with time. The summation in Equation (65) for a large number of segments help to accentuate
this effect, thus resulting in large regular oscillations.

To illustrate the effect of the duration of the applied force, results with T, = 10 are pre-
sented keeping all other variables the same as before. Figure 32 shows P[z1

2 (t')] versus t' for
W0n/wf = 0, " = 0.02, 0.04 and 0.08. Comparison with Figure 26 shows that the delay r is shorter
while 5 increases. Comparing Figures 33 to 36 with Figures 28 to 31 gives the effect of T', on the
mean square response. Decreasing the value of T6 results not only in a smaller peak value of ' [z 1

2(t')],
but also decreases the peak to peak value of the oscillations.

The delay r is a function of " and T%. Its variations with T' for " = 0.02, 0.04 and 0.1 are
shown in Figure 37. The delay increases with T' in steps of half the natural period. For " 0.04,
and 0.1, computations up to Tý = 60 show that r does not change from the values 1 and 2 which
correspond to those reached at T6 = 10 and 18 respectively. It thus appears that r has reached the
maximum for these two values of '. For " = 0.02, computations have not proceeded for sufficiently
large values of Tý to determine the maximum 7. Figures 38 to 42 show the variations of 8 with TB'
for w,/cof 0, 0.1, 0.5, 1 and 2 with " as the parameter. The results indicate that 6 increases with
decreasing " for any fixed won/ol while increasing T6 results in smaller 6. For large values of T6, 6
tends to an asymptotic value and the approach to this value is more rapid as ý increases. By increasing
Wn/wf, 6 is also increased as shown in Figures 43 to 46 where 5 is plotted against T' for fixed "
with ,on/wf as the parameter. These curves again indicate that for larger values of ý, 6 approaches its
asymptotic value more rapidly.

Similar to Figure 27, the effect of At; on (, [zt 2(t')J is plotted in Figure 47 for Case II
with " 0.08 and three values of At, (0.5, 2 and 4) are considered. The same conclusions are arrived at
as before, that is, for At, < 1, the differences in the response curves are very small for different At;,
and hence a value of 0.5 is again used throughout the computations.

The results for Case II (Th = 20) and Case III (T' = 40) are shown in Figure 48 which
serves to illustrate the effect of " at won,/wf = 0. Figures 49 to 52 give the response curves for these
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two cases. The value of is 0.02 and n/%,= 0.1, 0.5,1 and 2. The effect of TB is demonstrated in
Figures 53 to 57 where I• = 5 for Case II and T• - 10 for Case II1. These results are very similar to
those for Case 1. The most significant differences between Case I and Case III are the smaller values of
the 9 (z, 2(t')1"';" for the latter case. This is to be expected since e reaches its maximum and decreases
at a much faster rate than in Case I.

4.0 CONCLUSIONS

A method for predicting the response of a wing to non-stationary buffet loads has been t
developed and applied successfully to a number of hypothetical examples. For buffet maneuvers in an
aircraft, the fluctuating loads change continuously and hence the analysis presented herein which
models the load by a time segmentation technique, is to be treated as an approximation. However,

this approximation has been found to be fairly good since a study of the effect of the duration of time
segments shows that if it is below a certain value, there is little change in the results when smaller time
segments are taken. In wind tunnel buffet tests, it is possible to control the incidence of the model by
pitching it in a prescribed manner. The buffet load can be made to vary with time in the form of a
step function. In this case, the method of representing the load described in this report can be consid-
ered to be exact.

The form of the power spectral density of the input load used in this study is similar to that
encountered in the theory of isotropic turbulence, and analytical expressions for the mean square
response of the wing displacement has been derived. The effect of varying the ratio -of the undamped
natural frequency to the half power frequency c.,/Iw- on the response of the system has been investi-
gated and it is shown that if w,,/wI, is small, the maximum value of the response is greater than that
obtained for larger values of won/trf This is due to the distribution of energy in the input load since a
large value of w,/t-" implies that little energy is distributed near the undamped natural frequency. It
should be noted that for white noise, equal energy is distributedL at all frequencies, and wj/W. in this!Lose is equal to zero.

The duration of the applied load T'D and the form of tile time history of the load have also
been studied. Detail results are presented for a sintusoidal variation of the force with time. ('oniputa-
tions have been carried out showing the effect of danping and w,,1w, on thi delay r and amplitude
function IS of the response curve. It is found that for larger values of ý, r rvaciv% a constant value less
than those obtaimnd for smaller '. Also, the time I'l it takes to reach this comst'Wt value is much
shorter for larger values of ý. For fixed wjwfrt decreasing " increases 6, while for fixed ', increasing
tonI , increases 6. Results for itiput Ioads expressed as raunp and trialtgular functions are also pre-
senttcd, For the triangular input, fth results are quite similar to those for the sinusoidal cas; the aliost
significant difference being the smaller values obtained in the rospon-se curves.
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