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\\\A method for predicting the response of a wing to non-stationary
buffet loads is presented. The wing is treated as a cantilever beam with
known mass distribution. Using generalized co-ordinates, the vibration of
the wing is governed by the second order mass-spring-damper oscillator
equation. The buffet load on the wing is expressed as an integral of the
sectional force, which is a function of the spanwise location and time. The
non-stationary load is represented by the product of a deterministic time
function and a statistically stationary random function. The time history of
the applied load is segmented into a number of time intervals. Analytical
expressions for the mean square response of the wing displacement are
derived using a power spectral density for the random part of the applied
load, similar to that used in the theory of isotropic turbulence. The effects
of damping, ratio of the undamped natural frequency of the system to the
half power frequency of the power spectral density, length of time segment,
and duration of applied load on the response of the wing have been investi-
gated for three examples of the load versus time histories. N

RESUME

La présente communication porte sur une méthode de prévoire
Ia réaction d'une aile soumise & une charge non-stationnaire de buffeting. On
considére que V'aile est une poutre en porte-i-faux dont la rdpartition de la
masse esh connue.  En faisant usage & des coordonnées généralisées, la
vibration de l'aile est gouvernée par I'équation de 'oscillateur masse-resort
amortie du deuxiéme ordre. La charge du buffeting sur V'aile est exprimée
comme une intégrale de la force par unité de surface de la section et qui est
une fonction du temps et de la position suivant I'envergure. La charge
instationnaire est veprésentée par le produit d'une fonction déterminé du
temps et une fonction stationnaire statistiquement aléatoire. L'évolution
chronologique de la charge appliquée est fractionnée en un certain nombre
d'intervalles de temps. On dérive des expressions analytigues de la véponse
efficace du déplacement de l'aile en utilisant, comme dans la théorie de la
turbulence isotropique, une densité spectrale développée en puissances pour
Ia partie aléatoire de la charge appliquée. On a étudié pour trois exemples
de la charge en fonction de 1'évolution chronologique les offots sur la réponse
de 'aile de I'amortissement, du rapport de la fréquence propre non amortie
du systéme sur la fréquence 4 demi-puissance de la densité spectrale dévelop-
pée en puissances, de la longueur de l'intervalle de temps et de la durée
d’application de la charge.
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THEORETICAL ANALYSIS OF THE TRANSIENT RESPONSE
OF A WING TO NON-STATIONARY BUFFET LOADS

1.0 INTRODUCTION

In recent years, increased attention has been given to the investigation of buffet characteristics
in order to meet the design requirements of future aircraft. This arises from the demand for greater
maneuverability and gust requirements in the transonic flight régime. Furthermore, the advent of the
supercritical wing held promise for expanding the buffet onset boundary at transonic speeds.

Historically, the term buffeting was first introduced in connection with the structural failure
that occurred to the tail of a Junkers monoplane in 1930. This led to wind tunnel testing of tail vibra-
tions excited by the separated flow of the wing. The complexities of the buffet phenomenon, which
involves the solutions of the vibrations of the wing surface and the unsteady aerodynamics around it,
made the problem not easily amenable to theoretical analysis. Most of the earlier investigations in-
volved wind tunnel tests to predict buffet onset and to provide some indications of buffet intensities.
A complete account of the earlier work on the study of buffeting is given by Pearcy (Ref. 1).

The use of statistical theory in the investigation of buffeting was pioneered by Liepman
(Ref. 2) who examined the problem of the lift force exerted on a two-dimensional thin airfoil moving
in turbulent air. Later, he extended the method to wings of finite span (Ref. 3). The analysis was
generalized by Ribner (Ref. 4) using a model of turbulence represented by the superposition of plane
sinusoidal shear waves of all orientations and wavelengths. These analyses assumed the exciting force
to be statistically stationary, so that well known statistical concepts developed in other branches of
science could be applied. Experimental studies involving model testings in wind tunnels and flight tests
were carried out mainly-by NACA using strain gages developed for measuring the wing root bending
moment. These investigations were reported in detail by Huston and Skopinski (Refs. 5, 6), Huston
(Ref. 7), and Skopinski and Huston (Ref. 8). After this period of intense studies in the fifties, rescarch
in this subject was continued into the sixties at a slower pace. Aside from wing buffeting, work on
dynamic response of launch vehicles to transonic buffeting was carried out by Cole (Ref. 9), Cole,
Robinson and Gambucci (Ref. 10), and Coe (Refs. 11, 12). In the seventies, the rapid advances in
transonic aerodynamics generated numerous studies on the transonic buffet characteristics of wind
tunnel models as well as of actual aircraft. Hollingsworth and Cohen (Ref. 13) reported comparisons
of flight tests with wind tunnel data for the F-4 aircraft. Mayes, Lores and Barnard (Ref. 14) studied
the transonic buffet characteristics of a 60 degrees swept wing fighter aircraft. The flight and wind
tunnel tests on the F-8D aircraft was carried out by Damstrom and Mayes (Ref. 15), and the buffet
studies of the F-8 supercritical wing aircraft was reported by DeAngelis and Monaghan (Ref. 16).
Detailed investigations of the Northrop F-5A using an extensively instrumented aircraft to study the
dynamic buffet pressure distributions on the wing surfaces and the responses during-a-series of
transonic maneuvers were reported in References 17 and 18 by Hwang and Pi. A first generation
method for predicting the buffet loads and responses was described by Mullans and Lemley (Ref. 19),
while Cunningham et al (Ref. 20) used fluctuating pressure data obtained for a rigid wind tunnel model
as the forcing function to calculate the aircraft dynamic response and presented results for the F-111A.
In general, methods employing wing fluctuating pressure data are found expensive due to the work and
time involved in model construction. Butler and Spavins (Ref. 21) used a more direct approach in pre-
dicting buffet response in flight. The technique was based on a method proposed by Jones (Ref. 22)
who suggested using a nondimensional representation of the overall aerodynamic excitation and damp-
ing parameters determined from model testing in a wind tunnel. Preliminary results for a combat
trainer aircraft showed good agreement between predicted and measured response data.

All the prediction methods for the dynamic response of a wing to buffet loads assume the
exciting force to be statistically stationary. This assumption is valid if at a certain buffet condition,
the aircraft flight path is unchanged within a long analysis time. In wind tunnel testing, statistical
stationarity requires running time to be very long compared to some characteristic time, for example,
the natural period of the first bending mode, assuming the first bending mode to be the dominant one.
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However, in actual flight during buffet maneuvers, the condition of stationarity may not be met, or in
wind tunnel testing, transients have to be considered if the running time is very short or the model is
pitched during a test. To analyse the response of a wing under such conditions, nonstationary tech-
niques to predict the dynamic response has to be developed. A theory of non-stationary response of a
linear dynamic system has been given by Caughey (Ref. 23) and extended by Barnoski and Maurer
(Ref. 24), and Holman and Hart (Ref. 25). Using some of the concepts developed in these earlier
studies a method is given in this report to compute the non-stationary response of a wing for specified
power spectral density and time history of the exciting force. With this method, it is possible to
investigate the continuous excursion of an aircraft into the buffe. :igime. Information such as the
maximum rms response and the time delay between the maximun, response and the applied force can
be computed for known structural and inertial properties of the wing as a function of the duration the
aircraft spent in the buffet régime,.

2.0 ANALYSIS
2.1 Differential Equation of Wing Vibration

Figure 1 shows n schematic of the wing which is treated as a cantilever beam fixed at y = 0.
The differential equation of beam bending relates the time and space derivatives of the displacement 2
to the load distribution on the beam which may include inertia forees, external or applied components,
as well as internal components. The equation can be written as:

o [ 3’:(y.t)) ayd) <
W (lul ayi m(y) ot + Fy.t) )
Let

a2y d) = wiylg(t) @)

where w) (¥) is the mede shape function. Here 2(y,8) is confined to a single normal mode appropriate

to vibration in the first fundamental beading mode, and the subseript 1" is used to denote this mode,
Normally, Equation (2) is written as 8 sunumation of all the possible imodes, but in almost all wing
buffeting tests, most of the energy in the power spectring of the buffet bending moment is concentrated
in the vicinity of the natural frequency of the fivst mode. Usually, the fivst mode is well separated from
the higher modes, and as a tesult, the response due to the bigher mode is small and Bquation (2)
suffices in desceibing the vibrating system. To find 2(y,t) at any point on the wing, it is necessary to
dotermine 2 (¢) first. When the wing is subjected to a time dependent load, z;{t) s governed by the
usual simple second order muss-spring<dampey oseillator equation in generalized co-ordinates.
Equation (1) can now be written as:

Mg, + Cz) + Kz, = L(t) 9

where the dots denote differentiation with respect to time.

The generalized mass M and stiffuess K are defined as:

b
M = fmiy)wi(yMy 4
[}
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b d*w ()’
K= fEI{—1 d 5
{ dyg y (5)

Included in the term F(y,t) in Equation (1) are two aerodynamic forces, namely, a fluctuating
lift force and a damping force associated with the fluctuating angle of attack (2/V) induced by the
relative velocity of the wing. If the fluctuating sectional normal force coefficient ¢, (y,t) is known, the
generalized force L(t) can be evaluated as:

b
Lit) = qf c(y)w (y)ey(y.tidy (6)

while the generalized damping coefficient C is

b
C = 5 J o Welywi)dy m

M

In the above equation, ¢, . (y) is the effective slope of the sectional lift curve. Define the undamped
natural frequency w, as:

2 K 3
w, = gi (8)
and let
[, .._(:." - {9)
2vMK

Using the above two equations, Equation (3) can be written as
u . 2 1
£ + Pwyz; + wy'zy = v Lit) (10)

Equation (7) gives the acrodynamic darvoing coefficient. When structural damping is to be
ineluded, it can be added directly to C to give the (otal damping coefficient (Refs. 22, 26). Anothey
approach of introducing structural damping is discussed by Sealan and Rosenbawn (Ref. 27) and
Davies and Wornom (Ref. 28). The damping is assumed to be proportional to the displacement but in
phase with the veloeity of a harmonically osciilating system. The method applies strictly to harmonic
motion and to the complex exponential form of solution. For tandom motion, great caution has to be
exercised in using such a forni of damping. Let the fluctuating sectional force be written as:

F(y.t) = qe(y} eu(yit) wi(y) (11)

I




and from Equation (6),

b
L(t) = S F(y.t)dy (12)
0

Ir the above equation, the buffet load L(t) on the wing is expressed as an integral of the sectional force
expressed as a function of the spanwise location and time. If the sectional force is assumed to be inde-
pendent of position along the span, the overall load is obtained by multiplying it by the wing span.
However, the exciting force thus obtained will be overestimated since fluctutions at one chord station
will not be in phase with fluctuations at another station.

Assume the time average value of F(y,t) to vanish, that is, F(y,t) = 0. The auto-correlation
function of L(t) is defined as:

.
Tm 1 Lt (13)

R =
L(t) M 2'1’\ _T

Substituting Equations (11) and (12) into (13), Ry () can now be expressed us:

bb
RL(T) b ffli;:(y,y;;f)dy,dy; (14)
[V

where Ri(yy.v2ir) is the space-time correlation function of the sectional force, whose mean is tuken to
Lo zero. Define a crosscorvelation coefficient p(y,.y2 i) such that

:;'w-i‘: v~ ." . R \J%
Re(yrvin) = [Fy ) Fiyad)] - oty vqir) (15)

where lz‘z(vh.::). i"(y;) are the mean square vatues of Fiy.b) and F(y,.t) respectively. Onee
Ry, w¥7:7) is known, then from Equation (14) the meuan square value of the load L(t) can be obtained
since

[E—

L) = R (0) (16)

For some special types of flow, Ri(y,.y2:7) hes the sume shupe at different values of y and
depends only on ¢ = y; - y,. From Equations (14) to (16), .

PR s by

b .
L3t = Pyt fdyS o(fdt . ' (17)
0 -y

If p(t) is equal to a constant and has a value unity over the interval 0 < y < b, then
Equation (17) becomes
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L3(t) = F¥(y,t) * b2 (18)

which gives the mean square value of the load for perfect correlation. If p(£) drops rapidly, then
b-y

-y
tion length A. From Equation (17},

f  p(£)df hardly depends on y. Since this has the dimension of length, it can be termed as the correla-

L) = Fi(y,t) A°b (19)

Since the sectional force is correlated only for a short distance, then A is small and hence L3(t) is
smaller than that obtained from Equation (18) for perfect correlation. In actual cases, the form of the
correlation function Rp(y;,y,;7) depends on the wing geometry (swept or unswept), presence of lead-
ing edge flaps and other special characteristics in the design of the wing. Howevey, in the preliminary
stage of design, it is helpful to obtain a rough estimate of the buffet load. In order to do so, some
approximate form of the correlation function is needed since the exact form will not be known for the
wing until it has been constructed and tested experimentally. Although it is not within the scope of
this report to discuss this subject in great detail, two other forms of Rg(y;,y,;7) are briefly considered

and the resulting values of L2(t) are evaluated to give some idea of the form of the fluctuating load on
the wing.

For a straight wing with large aspect ratio, the influence of tip vortices on the fluctuating
load is unimportant. The buffet load will be predominantly determined by the fluctuating pressure in
the separated flow region. In Reference 2, Liepman considered isotropic turbulence to illustrate the
random excitation on a thin wing moving through turbulent air. If it is assumed that the buffet load
has a similar form of power spectrum, the correlation function can be expressed as:

2¢ (20)

Rp(£,0) = F(3) e™tfT (1 ) _€_>

where ¢ is the mean chord and -I':z(—t) is constant and independent of y. Substituting into Equation (17)
gives

L&) = Fo(y)e(1- e )bg (21)

Another form of the correlation function that is of some interest is given by

Rp(£,0) = F(t) e™8t (22)

where 8 is the spatial decay constant which is determined empirically. This form of the correlation
function is similar to that given by Mullan and Lemley (Ref. 19) based on data obteined from wind
tunnel tests of a 10% scale model of the F-4E aircraft. For highly swept wings, they found that wing
tip vortices and snag vortices have an important influence on the fluctuating pressure on the wing. The

buffet load for this correlation function, after substituting Equation (22) into Equation (17) and per-
forming the integrution, is
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5= o 2 1 ~5b/T
L) = P == 5 (- e (23)

ol

2.2 Response to Non-Stationary Input

For a given buffet maneuver, the mean square loading on the wing versus time may be repre-
sented schematically as in Figure 2. The points A and B correspond to the onset and exit of buffeting
respectively. The duration of time the aircraft spends in the buffet régime is denoted by Ty;. The load
is non-stationary and time varying properties, such as the mean square of the response, can only be
determined by instantaneous averaging over an ensemble.

The load L(t) can be represented as:
L(t) = (t)-f(t) (24)

where y(t) is a deterministic function of time and f(t) is stationary (Ref. 29). Furthermore, it is
assumed that f(5) is Gaussian such that the response is Gaussian as well. The non-stationary input can
be represented by a time segmentation technique whereby the time Ty the aircraft experiences buffet.
ing is divided into a number of time segments. At any segment, L(t) is expressed as:

m

L(t) = E‘ Ye(t) £, () (25)

where the subscript r denotes the rth time segment and the deterministic function v,(t) may be con-
sidered as a shaping function written in the following form:

Telt) = €5,(t) (26)

where 8,(t) = u(t-t,_;) - u(t-t,). Here u(t) is a unit step function. €, is a constant at each time seg-
ment and represents the intensity of the generalized input load. Figure 3 illustrates the variation of ¢
with time and hence represents the load intensity as a function of time. The formulation as described
in the ebove manner gives an approximate description of a continuously varying load. However, such &
vepresentation can be exact in practice, for example, in wind tunnel testings where the modeol angle of
incidence advances in steps with time so that the buffot load can Le reprosented by Equation (26).

To determine 2(t), the response zlr(t) due to the rth time segment is first ovaluated since

i}

Blai0)] = 2 Efndo)] (27)

where m is the time segment where t is located, that s, t,, | < t <t and E denctes the expected
value. Knowing the load L(t), Equation (10) may be solved for z"(t). Intraduce a frequency response
function H(w) as

1
Mlw,? - w? + i2fww,]

H(w) = (28)




1

H(w))? =
M2[(wnZ_ w2)2 + 4{2002(.0“2]

(29)

R S X Py

The covariance Ca121(t1:42) can be expressed in terms of the power spectral density of the applied load
SLL("’I ,(02) as.;

o« 90

wyty~waty)
Cl]zl(tl't2) = f f SLL(wl,wz)H(wl)H*(wz)e dwldwz

—00 -9

where H*(cw,) is the conjugate of H(w,). If 2/(t) has zero mean, then

Czlzl(tlit’Z) = RZ]Zl(tl'tz) (31)

where R,,l 21 (t1,t2) is the auto-correlation function. The mean square response can simply be obtained
by setting ty=ty=t, that is,

In Bquation (20), let £,(t) = 0. Since Ry (t;.ty) = E[L(t;)L(t;)], it may be expressed in the
following form after using Equation (26) for L(ty) and L(t,):

m m

Rip(tyty) = '231 aé:l Yo )y (BB ()6, ()]

Expressing E(£, (t,)f,(t,)] = Ry, r,(4):82), Equation (33) can be rewritten as

mom

Ruultita) = & 3 % (t)n(6)Re, g, (4 80)

If Ry y (t).ty) is known, then from the generalized Wioner-Khinchine relations (Ref. 29),

1 - ity - wtg)
Su(w,,wz) - Z;I'—ff f RLL(tlItQ)o dtldtz

- - .

Combining Equations (34) and (36) yields:




m

1 M o
SLL(W“WQ) = — ¥ ¥ f
4,'.2 r=l3=] L

o ~l(w1t l-wztz)
I (b )va(ta)Re ¢ (br082) @ dtydt,

(36)

If £,(t) and f,(t) are stationary, then Rfrfs(tl ) = Rfr t5{t1 -$) = R,‘rfs('r), that is, the corre-

lation depends only on 7 =t -t;. Since
* fwr
R ¢ (1) = _f@ S¢ p(wle dw

and substituting into Equation (36) gives

m M o
Spp(@ie) = 2B S S (@) Alw-wp) A (w-wp) dw

where

1 llw—wyty
Ar((A)‘wl) = 5;{ 7r(t1)e dtl

and

. 1 = “Hw-wyty
Ajww-wy) = -27rf vty e dt,

From Lquation (30), the mean square value of 2, (t) is given as:

w0 i(Wl"wz)'

E 23] = J Suu(wpen) Hw) H (w))e dw;dw,

Substituting Equation (38) into Equation (41) yields

m M

m
0) 2 = YR 2 e Y ¥ [ Q.. .
E () L E[220] = ¥ E T S ) Litw) Litw) do
where

fwyt

L(tw) = § Afw-wy)Hlw)e  dw,

(37)

(38)

(39)

(40)

(41)

(42)

(43)
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and

oo -lwzt
I (tw) = Al{w-w;)H'(wy)e  dw, (44)

I(t,w) is the time dependent frequency response function. Equation (42) gives the general formulation
for amplitude modulated stationary inputs and is a function of the spectral density Smt(w) and cross
spectral density Sf:fs(“’)'

To evaluate I(t,w), consider the time segment denoted by t,_; <t <t (Figure 3). It can be
shown that in Equation (39)

€, 1 w-wiitp_y Hw-wpt,
Aw-wy) = -2-; ré(w-w) + o, -@) e -e (45)

Substituting this expression into Equation (43) gives

€, fwty o H(wl) fwy(t-t)
L{t,w) = — te — ¢ dw
(be) = o 2o i(W-wy ) !
wteop = H(wp) gttty
-e [ e dw; (46)
~e (w-wy)
o H(w)) iwyt-t) o H{w;) iwjt-t,_p
The integrals [ - e dw;and [ ———e dw; can be evaluated by
- j(w-wy) ~w i(w-wy)

contour integeation. The function H(w,) (w-wy)™! has poles at 0, = w, 09 = wy +i{ w, and
03 =~ Wy +i§ w,, where wy is the damped natural frequency and is defined as:

wg = J1-¢8 w, (47)

Considering the first integral, the integration path for t > t, is taken above the real axis as
depicted in Figure 4a, while for t < t, the integration is below the real axis. Similar paths of integra-
tion are taken for the second integral. Upon substitution of these integrals into Equation (46), the
final form becomes:

lwt lwte ) iw
h(bo) = GHW) - {ultrti) [0 we (Vltton) ¢ o= dltty)

lwt lwt, iw
~ut-t)le -e (wt-t)+ o $(t-t,) (48)

[
|
}
I.




“fwyt Wy
U(t) = e cos wyt + § — sin wyt
Wy

“fwyt

$(t) = e  sinwyt (50)

In buffet maneuvers or in wind tunnel testing of a pitched model whose incidence changes
with time like a step function, the loading on the wing can be approximated by Equation (25) with
f.(t) being the same in all time segments. The only changes in L(t) being the intensity. This may be a
fair approximation since buffeting is primarily due to the fluctuating pressure forces of the separated
flow on the upper wing surface. The frequency structure of the separated flow may not change by a
large extent as the incidence varies. If it is assumed that there is no correlation between different
segments, then from Equation (42),

B[2,0)] = /Sy (o) do
where after some algebra, II,(t.c.oJ)I2 is given as follows:
fort, | St<t,,

IL(tw) = ¢ 2 H(w)? {1— 2y(t-t,_y) cos w(t-t._;)

w 3
- 2 -w—d o(t-t,.y) sin w(t-t ;)
w2
+ YA(t-t,y) + — q)z(t—t,_l)}
Wy
fort > ¢,
L (tw)? = ¢ 2 H(w)? - lw’(t-tﬂ) + Y(t-t,)

2 2
W w
+ = 3(t-t,_y) + —= o2(t-t,)
wy? wy?
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- 2 cos w(t-t,_,) [wu:~t,.l W(t-t,)

(.02
§ = os(t-t,-,w(t-t,)]
O)dz

+2 i sin eo(t,t, 1) [Vt 1 J0(t-)

- ¢(t-t,_1)w(t-t,)]] (63)

2.3 Evaluation of Mean Square Response for a Given Power Spectral Density of the Input

Equation (51) can be integrated to give the mean square response, provided the form of the
power spectral density Sfm(w) of the input is specified. Cole (Ref. 26) gives a form of the spectral
density which has been found to adequately describe the buffeting input to launch vehicles. In the
present notations, this can be written as

SO
Sury(w) = === (54)
W
1+({=
Wy

S, g, (W) w .
o is plotted versus — ;
o wy

where wy is the half power frequency and 8, is a constant. In Figure 5,

wl\ 0)“
for different values of -(:;- For _J = (), Sm!(w) = constant = S, which is the power spectral density
£ f
wn
for white noise. As - increases, the energy of the exciting force near the natural frequency w,
f
diminishes and this will have an appreciable effect on the response of the system.

Consider the rth time segment and using Equation (62) or (63) for II‘Z(t,w)I2 together with
the expression for [H(w)I? given in Equation (29), the mean square value E[zlr (t)] can be evaluated
analytically since the form of the power spectral density is known. Let

B T g | g scaa €T R o e wde me
e o P o b ik e 4 oy o =

M2, 3
———— E[z; (t)] (65)
7S, h

0

8(z, 2] =

Using contour integration and after much algebra the final expression for & [zltz(t)] are as follows:

.

e AN e g s

where fort,.| SKt<t,,
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2
el’
&lz}t) = o YRRt )] - 200t -

Wy, 3 ~welt-t,_y)
Fit-t.) + 25(—)'e
f

and fort > ¢,

2
el‘
Slaf ] = —— {RIVAE-ty) + YAt

+ [03(t-t,_ )vo(t-t,)]

w,? ~Wilte-tey)
[(Wit-t,_ V(t-t,)) 2F(t~;‘t-;_1)"'4$'—30

Wy

b

[ Wy et )

2Q(‘r"‘-r-|)-4§;f‘ e

(B(t-t,_)o(t-t,)]

1-¢?

* [Vt Dot )-g(b-t, W(t-t,)]

ZH(t,-t.¢) 4¢ w,? “Wilty-tey)
+

A
1-82 V148 o2
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with

5 ‘-‘)n2 ¢ w“Z
1+(1-48%) =2 Y(¥) + —== —— &(t)

o] VIR e

F(t) =

22 2

wll w“
G=f1+—] -4 —
wf2 w,»z

wﬂ2 wllz
H(t) = (14— Jot) - 20— V1-82 y(t)
[0V} Wy
t {

2 3
Wy

wl\
K=1+Q1-4)—+2t—
0)(‘2 (o)f3

wz 2
QW = (14— o - —2—aw)

w? Vi

w

Equations (68) to (62) can be simplified considerably for 52 = 0, namely,
t

F(t) - ¥it)
G-1
H(t) = o(t)
K-1

2
Q(t) > U(t) - B o(t)

1-¢2
Substituting these functions into Equations (56) and (b7) gives:

fort,_  St<t,

PA(t-t. )

8Lz )] ~ e [1-0(t-4)- T

DA R LI A U a1y
P JC AN 74 g/a:4:¢£»=:4w%€$ .

(68)

(59)

(60)

(61)

(63)




-14 -

and fort > t,,

&z 2(0)] = € {3 (t-t,-y) + Y2(-t,)
1
+ [0t y) + ¢3(t-t,)]
1-¢?

ot-t,_)o(t-t, )
1- ¢

= 20(t-t) (-t (-t ) +

20(t-t) [ o
+
-3 |VA-p

¢(t-t:—l »(tr-tt—] )_ ¢(t“tx-l )W(tr‘t’t— 1 )

+ -t ot -t y) (64)

w

n
In the limit for ;—- = 0, these two expressions give the response to white noise.
f

2.4 Computational Procedure

The steps involved in computing the mean square response is fairly simple and straight-
Wy
forward. For a given value of -0-; 8z ,f(t)] can be evaluated from Equations (56) and (57) (or
f

Equations (63) and (64) for white noise) once the ¢, s are given as functions of time. Referring to
Figure 3, at any specified time t, the procedure is to establish the time segment where t lies. If it falls
between t,,., and t,,, then &[z,%(t)] is obtained as follows:

m-)

&lait) = &z 0] + 2 8Lz )] (65)

where the first term on the right hand side of the equation is determined from Equation (56) while the
second term from Equation (57).

Three cases are considered where ¢ varies with time in the form of the following functions:
Case I : Sinusoidal

Case II: Ramp

Case III: Triangular,

These functions are shown schematically in Figure 6 and shall be referred to the case number in the
future. For convenience, the maximum value of ¢ is taken to be unity and this does not affect the
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generality of the solutions. The number of time segments in Ty will be specifie;d late'r on aftex_' the
effect of varying the segment duration (t,-t,_;) has been investigated. The variables involved in the
w
analysis are ;2 ,{, and Ty, and their influence on the mean square response are studied in some detail.
£

3.0 RESULTS AND DISCUSSIONS

Since Equations (56) and (57) are the principle expressions to be used to compute the mean
square value of z,(t) for specified non-stationary loads, their characteristics are first investigated in
some detail. Equation (56) determines the response or rise to a step modulated stationary exciting
force, while Equation (57) governs the decay when the applied force is w1thdrawn Taking €, to be
unity, Equation (56) is plotted in Figures 7 to 10 as a function of time t'-t;_; for three values of the

wn wn
damping ratio ({ = 0.02, 0.04 and 0.08) and four values of;—, namely,(—d-— =0, 0.5,1 and 2. The
: f )

superscript ' is used to denote that time is non-dimensionalized with respect to the undamped natural
pmod Ty = 2/w,. From these flgures, it can be seen that for larger values of {, the mean square of
zl(t ) reaches an asymptotic value for t’ -t,_ 1 = °° sooner than that with smaller values of {. Increasing
the value of w,/w, tends to diminish the asymptotic value. This can be explained from Figure 5 where
the normalized power spectral density is plotted versus w/w,. The energy in the exciting force near
the natural frequency w, diminishes for increasing Wp Jwy, and hence it can be expected that the value
of the mean square response will decrease as Wy /w; increases. From Equations (49) and (50), it is seen
that as t’ -—t:r 1= oo, Y(t' t.r 1) 0 and o(t' t, 1) = 0. Hence Equation (56) can be written as (taking
=1):

Wy? w,’

1+ (1-a¢h) — +2¢ —";
2,0t Wy Wr
&z (t)] (66)
r wnz 2 w.2
n
1+ - 43
wfz wfz

& [zlrz(t')] decreases as wy/w;¢ increases. For w,/w >> 1,

2
&[2)2(t")) —»c—} (67)

n

We

In the limit w,/w; = o, &[zlz(t')] - 0.

In the computations, no significant changes in & [zlz(t )] compared to that at w,,/w; = 0 are
detected for values of w/wy less than 0.1. These curves are replo tted in Figures 11 to 13 for fixed ¢
with w,/w; as the variable. The oscillations observed are due to the sine and cosine terms in the
expressions for Y(t'-t,_;) and ¢(t'-t;_,), but they are rapidly damped out for increasing t'-t,_,.

Equation (57) is used to compute the decay of the mean square of z, (t') after the exciting
force has been withdrawn at time t Using the same values of { and w,/w; as before, the decay to a
pulse modulated stationary exc1tmg force are shown in Figures 14 to 25 for different values of the

ey
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pulse duration (t,-t;_; = 0.5, 1, 2, 4 and 8). Since the curves are plotted with t'~t,_, as the absicca,
then t -t;_, is limply measured from O along the axis to the time t'-t,_; when the decay curve starts.

For large values of the pulse duration, Equations (49) and (50) give
\b(t; - t;_l) -0
8lt; - t_1) >0

ast, -t

-+ 00
r~1 .

Also from Equations (58), (60) and (62),
Nﬁ—gq)~o
H(t, - t,_,)—=0
Qt; - t,-) >0

Equation (57) can be written as (taking €, = 1)

wnz wn
1+— -2t —
1 (.sz we
&[z;2(t)] = 5 Y-t + o2(t'-t)) - (68)

which is mdependent of t, t . In other words, the decay is independent of the step duration for
large values of t t.r 1- From the figures, it is also observed that for constant ¢, the decay is more rapid

as Wy, /Wy decreases especially for cases with the larger values of t.-t,_,. This can be shown from
Equatxon (68).

For w,/w; <<1,

P2t -t))

&lz, 2(t)] = Y-t + -
1-¢?

while for w,/w; >>1,

&(z,2(t)] » = - YA(t'-t)
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Also of interest in those figures are the oscillations in the decay curves. For small damping,
the oscillations are very clearly shown. The amplitudes i increase with w,/w; while the decay is less
rapid. This is even more significant for smaller values of t,~t,_, and will be shown later to have quite
an effect on non-stationary loads.

For an input load with sinusoidal variation of ¢ with time (Case I in Figure 6), & [z,z(t )] has
been computed using Equation (65). The duration of the applied load Tg is forty times the natural
period, and it is divided into eighty equal time segments giving a value At, = t.-t._; of 0.5. Figure 26
shows the response for ¢ = 0.02, 0.04 and 0.08 with w,/w; = 0. Also plotted in the same figure is the €
versus time curve for comparison purposes. Similar to Figures 7 to 10, the rise time is seen to be
smaller for the larger values of {. Shown in the figure is the delay 7, which is the time where the maxi-
mum value of & [z, 2(t")] lags behind the applied force, and the amplitude function § defined as

5§ =1- (‘5[Z|2(t’)]max‘

The effect of changing the number of time segments has been studied, and it is found that if
At < 1, the differences in the computed results are not very sxgmfxcant Figure 27 shows the response
curves for three values of At, and it is seen that the curves with At, = 2 and 0.5 are quite close. Inall
subsequent computations, At is taken to be 0.5.

The effect of w,/w, on & [2,%(t')] are shown in Figures 28 to 31 for w,/wy = 0.1, 0.5, 1
and 2 with { = 0.2. The oscillations in the response curves increase with w,/w¢, and the peak to peak
values reach a maximum at w,/w,; = 1. These oscillations arise mainly from the second term of
Equation (65) where previous results (Figures 14 to 25) show that for increasing values of w,/wy,
the decay to a pulse modulated input has fairly large amplitude oscillations and diminishes rather
slowly with time. The summation in Equation (65) for a large number of segments help to accentuate
this effect, thus resu!ting in large regular oscillations.

To illustrate the effect of the duration of the applied force, results thh Tg = 10 are pre-
sented keeping all other variables the same as before. Figure 32 shows & [zl (t')] versus t’ for
wy/wp =0, ¢ =0.02, 0.04 and 0.08. Comparison with Figure 26 shows that the delay 7 is shorter
whﬂe 8 increases. Comparing Figures 33 to 36 with Figures 28 to 31 gives the effect of Tj; on the
mean square response. Decreasing the value of TB results not only in a smaller peak value of & [zl (tH1,
but also decreases the peak to peak value of the oscillations.

The delay 7 is a function of { and Ty. Its variations with Ty for { = 0.02, 0.04 and 0.1 are
shown in Figure 37. The delay increases with TB in steps of half the natural period. For { = 0.04,
and 0.1, computations up to TB = 60 show that 7 does not change from the values 1 and 2 which
correspond to those reached at Ty = 10 and 18 respectively. It thus appears that 7 has reached the
maximum for these two values of {. For { = 0.02, computations have not proceeded for sufficiently
large values of Ty to determine the maximum 7. Figures 38 to 42 show the variations of § with T
for w,/we = 0,0.1, 0.5, 1 and 2 with { as the parameter. The results indicate that § increases with
decreasing { for any fixed w,/w; while increasing Ty results in smaller §. For large values of Ty, &
tends to an asymptotic value and the approach to this value is more rapid as { increases. By increasing
w, /wy, § is also increased as shown in Figures 43 to 46 where § is plotted against Ty for fixed ¢
with w,/w, as the parameter. These curves again indicate that for larger values of {, § approaches its
asymptotic value more rapidly.

Similar to Figure 27, the effect of At, on & [zlz(t )] is plotted in Figure 47 for Case 11
with { = 0.08 and three values of At, (0.5, 2 and 4) are considered. The same conclusions are arrived at
as before, that is, for At <1, the dlfferences in the response curves are very small for different At,
and hence a value of 0. 5 is again used throughout the computations.

The results for Case II (T = 20) and Case III (Ty = 40) are shown in Figure 48 which
serves to illustrate the effect of { at w,/w; = 0. Figures 49 to 52 give the response curves for these
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two cases. The value of ¢ is 0.02 and w,/w; = 0.1, 0.5, 1 and 2. The effect of T} is demonstrated in
Figures 53 to 57 where Ty = 5 for Case Il and T}, = 10 for Case 1Il. These results are very similar to
those for Case . The most significant differences between Case I and Case III are the smaller values of

the & [2;2(t')],,,, for the latter case. This is to be expected since € reaches its maximum and decreases
at a much faster rate than in Case 1.

4.0 CONCLUSIONS

A method for predicting the response of a wing to non-stationary buffet loads has been ;
developed and applied successfully to a number of hypothetical examples. For buffet maneuvers in an ‘
aircraft, the fluctuating loads change continuously and hence the analysis presented herein which '}
models the load by a time segmentation technique, is to be treated as an approximaiion. However, e
this approximation has been found to be fairly good since a study of the effect of the duration of time "-f"
segments shows that if it is below a certain value, there is little change :n the results when smaller timne s
segments are taken. In wind tunnel buffet tests, it is possible to control the incidence of the model by il
pitching it in a prescribed manner. The buffet load can be made to vary with time in the form of a b

step function. In this case, the method of representing the load described in this report can be consid-
ered to be exact.

The form of the power spectral density of the input load used in this study is similar to that
encountered in the theory of isotropic turbulence, and analytical expressions for the mean square

response of the wing displacement has been derived. The effect of varying the ratio of the undamped
natural frequency to the half power frequency w, /wy on the response of the system has been investi-
gated and it is shown that if w, /wy is small, the maximum value of the response is greater than that

abtained for larger values of w, /w;. This is due to the distribution of energy in the input load since a
large value of w, /eo; implies that little energy is distributed near the undamped natural frequency. It

should be noted that for white noise, equal enexgy is distributed at all frequencies, and w,/wy in this
case is equal to zero.

L dis
vy DT,

AR AN

The duration of the applied load T} and the form of the time history of the load have also
been studied. Detail results are presented for a sinusoidal variation of the force with time, Computa-
tions have been carried out showing the effect of damping and w, /wy on the delay 7 and amplitude
function § of the response curve. It is found that for langer values of §, 7 reachiss a constant value less
than those obtainad for smaller §. Also, the time Ty it takes to reach this constant value is much
shorter for luger values of §. For fixed w, fuwy, decreasing § increases 8§, while for fixed {, increasing
Wy fwy inereases 6. Results for input loads expressed as ramp auad trisngular functions are also pee-
sented. For the triangular input, the results are guite similar to those for the sinusovidal case; the most
significant difference being the smaller values obtained in the response curves.

O R i, 4
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