
PRELIMINARY REFERENCE MANUAL FOR THE

GREE PROGRAMMING LANGUAGE

A language designed
in accordance with the
Ironman requirements

SEP1 i D79
Honeywell, Inc.

Systems and Research Center , L

2600 Ridgway Parkway, Minneapolis, MN 55413 A
and

Cii Honeywell Bull
68 Route doVersailles
78430l Louveciennes. France

DWMUCh TATEMNT
April 15, 1978 Awved for pubbc veleo*

Efltributims Ulinmited

9. EXCEPTION HANDLING 56
9.1 Exception Declarations 56
9.2 Exception Handlers 57
9.3 Raising Exceptions 57
9.4 Suppressing Exceptions 59

10. REPRESENTATION SPECIFICATIONS 60
10.1 Packing Specifications 60
10.2 Length Specifications 60
10.3 Enumeration Type Representations 61
10.4 Record Type Representations 62
10.5 Change of Representations 63
10.6 Configuration and Machine Dependent Constants 64

11. OVERALL PROGRAM STRUCTURE AND COMPILA'ION ISSUES 65

11.1 Compilation Units 65
11.2 Recompilations and Scope Rules 66

11.3 Algorithm Modules 67

11.4 Libraries 68

11.5 Compilation File 68
11.6 Conditio-al Compilation 68

11.7 Generic Program Units 70

APPENDIX A. SAMPLE INPIiT-OL'TPUT DEFINITIONS

APPENDIX B. SYNTAX SUMMARY

APPENDIX C. iNDEX

III

1. INTRODUCTION

This report describes the Green language. Designed in accordance with the Ironman require-
ments of the Depa tment of Defense, the Green language represents a new attempt to com-
bine classical language features with features often found only in specialized languages.
These include facilities for handling exceptiona! conditions, parallel processing, represen-
tation specifications for data, encapsulated definitions, low level input-output, and access

to system dependent parameters.

1.1 Design Goals ~ii

The Green language wcs designed with three ovcrriding concerns: a recognition of the
importance of program rliability and maintenance, a deep concern for programming as a
human activity, and efficiency.

The need for languages that promote reliability and maintenance is well established. Hence
emphasis was placed on program readability over program writability. For e- ample. the
Green language requires that program variables be explicitly declared and that th.2i.r type be

b specified. Automatic type conversion is generally prohibited. As a resuit, translators can in-
sure that the types of objects satisfy their intended use. Furthermore, error prone notations i
have been avoided, and the language syntax avoids the use of encoded forms in favor of
more English-like constructs. Finally, the language offers strong support for separate compi-
lation of program units.

The concern for the human progranimer was also stressed during the design. Above all, an
attempt was made to keep the language as small as possible, avoiding special cases and elab-
orate features that often hinder rather than assist programming. The structure of the lan-
guage minimizes the number of underlying concepts, and an attempt was made to integrate II
all features in a consistent and simple way, The fact that the form or meaning of a proposed
construct was difficult to express in a systematic way was grounds for rejection of the
construct.

No language can avoid the problem of efficiency. Languages tnat require overly elaborate
translators or that lead to the inefficient use of storage or execution time force these in-
efficiencies on all machines and on all programs. Every construct in the Green language
was examined in the light of present implementation techniques. Any proposed construct
whose implementation was unclear or required excessive machine resources was rejected.

Perhaps most importantly, none of the above goals was considered something that could be
achieved after th fact. The design goals drove the entire design process from the beginning.

A
j

Ii

I

I

1.2 Language Summary

A program in the Green language is a sequence of higher level program units, which can be

compiled separately. Program units may be subprograms (which define executable
algorithms), definition modules (which define collections of entities), or paths (which define
concurrent computations). The facility for separate compilation allows a program to be de-
signed, written, and tested in independent parts. This facility is especially useful for large
programs and the creation of libraries.

A subprogram 's the basic unit for expressing an algorithm. A subprogram may have para-
meters, which specify its connections to other program units. The Green language distin-
guishes three kinds of subprograms: procedures, functions, and exception handlers.

A procedure subprogram is the logical counterpart to a series of actions: for example, it
may read in data, update variables, or produce some output. A function subprogram is the
logical counterpart to a mathematical function for computing a value; unlike a procedure,
a function can have no side effects. An exception subprogram is the logwal means for
handling a special situation that can occur dynamically during program execution, e.g. an I
arithmetic overflow, an invalid assertion, or a user defined exception situation.

A definition module is the basic unit for defining a collection of logically related entities.
Portions of a definition module may be hidden from the user, thus allowing access only to
the logical properties expressed by the definition module. For example, definition modules
may be used to define a common pool of data an!] types, a package of related subprograms,
or a collection of new encapsulated types.

A path is the basic unit for defining concurrent computations. Paths may be implemented
on multiple processors or with interleaved execution on a single processor. Communication
between paths is handled by associating boxes with each path. The boxes allow for synchro-
nization between paths and for transmission of data.

Each program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a list of statements, which define the execution
of the program unit,

The declarative part associates names with declared entities. A name may denote a type, a
constant, or a variable. A declarative part also introduces the names and parameters of other
subprograms, paths, and definition modules to be used in the program unit.

Statements describe actions to be- performed. An assignment statement specifies that the
current value- of a variable is tu be replaced by a new value. A subprogram call statement in-
vokes execution of a suhprogram, after associating any arguments provided by the caller
with the corresponding formal parameters of the subprojram.

2

If and case statements allow the selection of an enclosed statement list based on the value of
a condition or expression at the head of the statement. An assertion statement states that
some correctness condition must hold whenever control reaches that point in a program. An
exception statement explicitly raises a special situation requiring the action of an exception
subprogram.

The basic iterative mechanism in the language is the loop statement. A loop statement
specifies that a list of statemonts is to be executed repeatedly until an iteration specification
is completed or a loop exit statement is encountered.

Certain statements are only applicable to paths. An inner statement specifies that a set of
paths may begin execution. A connect statement specifies that a pith is ready to c-,nneCt
with another path through one of its boxes. A local path request specifies that the path is
ready for connection from another path.

Whenever a rendezvous is achieved between a local path request and a connect statement,
any specified data transfer takes place, and both the local path and the connecting path may

continue.

Every element in the language has a type, which defines its logical properties and the oper-
ations that can be performed on elements of the type. There are two basic classes of types:
scalar types and composite types.

The scalar types INTEGER, BOOLEAN, and CHARACTER are predefined. Scaled types
provide a means of performing exact numerical computation, without the restriction to
integer values. Real types provide a means of performing floating point computations, which
are necessarily approximate. Enumeration types provide a means for users to define problem
dependent types with discrete values.

Composite types allow definitions of structured collections of related elements. The com-
posite types in the language are array structures, record structures, and accesses to record
structures that are allocated dynamically. A family of record structures may be defined by
associating a record type with a variant part.

The concept of a type is augmented with the concept of a subtype, whereby a user may con-
strain the set of allowed values in a type. Subtypes may be used to define subranges of scalar
types, arrays with a limited set of index values, and records with a particular variant.

Representation specifications may be used to specify tie mapping between data types and

features of an underlying machine. For example, the user may specify that an array is to be
represented in packed form, that objects of a given type must be represented with a speci-

fied number of bits, or that the components of a record are to be represented in a specified
storage layout.

Finally the language includes facilities for conditional compilation and for generic program
unit!:.

1.3 Sources

In his initial preface to the Pascal report, Niklaus Wirth stated "the choice of what is to be
omitted from a new language is in practice much more critical than the choice of what is toa
be included. The decision to omit a feature requires not only familiarity with this feature
(and knowledge how to live without it) but the courage to face the inevit.ablp criticism of
its absence in the new language in spite of its presence in another existing language."

This proolem existed in this design, although to a much lesser degree than usual because of
the Ironman requirements. These requirements often simplified the design process by per-
mitting us to concentrate on the design of a logical system satisfying a well defined goal,
rather than on the definition of the goals themselves.

Another significant simplification of our design work resulted from earlier experience
acquired by several successful Pascal derivatives developed with similar goals. These are the
languages Euclid, Lis, Mesa, Modula, Sue, and CS4. Many oi ttm key ideas and syntactic
forms developed in these languages have a counterpart in the Green language. We may say
that whereas these previous designs could be considered as genuine research efforts, the
Green language is the result of a project in language design engineering. in an attempt to
develop a product that represents the current state of the a-t.

Sc 'cil ! i anguagcs -caw as Algol 5S a,.d Sirula and also recent research laguages
such as Alphard and Clu influenced this language in several respecs,, although to a lesso
degree than the Pascal family.

I
?ip

= .

.I

-. . - .- - - -

2. LEXICAL ELEMENTS

This section defines the lexical elements of the language.

2Charactersgrueasflo:

All lexical elements may be composed from the 64 character subset of ASCII. These
characters are grouped as follows;

(a) Alphabetic characters
A B C D E F G IT I J K L M N O P Q R S T U VW X Y Z

(b) Numeric characters
0 1 2 3 4 5 6 7 8 9

(c) Special characters
, =$ % & ' , - .! :;< = ? [\]

(d) The underscore character

and the space character.

2.2 Identifiers i

An identifier is formed by a sequence of alphabetic and numeric characters, the first being
alphabetic. An underscore may be inserted bet-veen parts of an identifier. An identifier must
fit on a single line, and all characters are significant. An identifier that has been declared is
generally referred to as a name, with a prefL' , designating its use, e.g. variable-name or J
type ._name.

Examples:

COUNT X LINE-COUNT GET-SYMBOL A
SNOBOL_4 X1 PAGE-COUNT STORE-NEXTITEM

2.3 Numbers

There are three classes of numbers: integers, scaled numbers, and real numbers. An under-
score may be inserted between parts of a number, but is not considered significant.

Integers are formed by a sequence of numeric characters.

Examples: -

12 0 1977 123456 123-456

• =5

A

A scaled number is written as an integer or as a sequence of numeric 'characters with a
medial decimal point.

Examples:

12nr 0.0 123.456 10-000.1 1200

A real number is formed by appending the letter E and an exponent to an integer or a scaled
number. An exponent is an integer Gptionally prefixed by a + or - sign.

Examples:

12.OE10 OEO 1E-6 3.14159_26535E0

Non decimal integers with base 2,4,8, or 16 are written as a sequence of numeric characters
followed by a and a base. For hexadecimal numbers (base 16), the alphabetic characters A
through F may be used with their conventional meaning, provided that the number begiii,
with a numeric chracter.

Examples:

0110011-2 1777--8 2FEEEt16 OFFF 16

2.4 Character Stnngs

A character string is formed by a sequence of characters enclosed by quote marks. Strings
of length one also denote literals of character types. If a string contains a quote mark, the
quote mark must be written twice. Each string must fit on a single line. Multiple line strings
may be formed using the concatenation operator &.

Examples:

S"A" . A SMALL STRING"

"FIRST PART OF A STRING THAT" &
"CONTINUES ON ANOTHER LINE."

2.5 Comments and Pragmats

Comments may be placed within programs. A stand alone comment start: with ths charac-
ters -- and is terminated by the end of the line. This form of comment ma not appear
within an expressiun or statement. An embedded comment is enclosd by left and right
square brackets. Embedded comments may not cross line boundaries. Comments are totally
ignored by the translator; their sole purpose is the enlightenment of the human interpreter
of the program. For readability of this manual, comments will be written with both upper
and lower case letters.

Pragmats (for pragmatics) are used to convey information to the translator. They start with
the keyword pragmat and are terminated by the end of the line. A pragmat may not appear
within a simple statement or within a declaration.

6

Examples of comments:

end [GETSYMBOLi,
a stand aione comment

-- and its continuation.

Examples of pragmats:

pragmat NO-LIST suppress listing

pragmat LIST restore listing

pragmat OPTIMIZE TIME optimization specification

pragmat INCLUDE COMMONTEXT include text file

pragmat DEBUG set debugging mode

2.6 Attribute Qualifiers

Attribute qualifiers denote attributes of program constructs. An attribute qualifier is formed
by prefixing one or more occurrences of the character ' to an identifier. Their use is
described m ith the corresponding language constructs. Since attribute qualifiers always
contain a ' character, their identifiers need not be reserved.

Examples:

DATE'SIZE REAL'PRECISION S' STEM'CLOCK A' 'LAST

2.7 Reserved Keywords

Language constructs may contain reserved keywords. These words may not be used as
identifiers, and are listed below. For readability of this manual, the keywords appear with
lower case letters in boldface; in actual programs they may be entered with upper case
ASCII letters.

abs declare if or scale
access definition import others separate
algorithm delay in out select

alignment div inline send
all inner packing subtype
and interrupt parameter
array else is path
assert elsif pragmat then
at end loop precision type

exception private
exit mod procedure

begin until
bits new raise use

box for none ranqe
.function no i teceive

null record when

case repeat while
connect generic of return
constant goto only reverse xor

A

2.8 Spacing Conventions

Spaces may be inserted freely between lexical elements. Except for commerts and pragmats,
an end of line is equivalent to a space. At le,1t one space must appear between two
identifiers (reserved or not) that are not separated by a special character.

2,9 Syntax Notation

In the remaining chapters, a simple variant of Backus.Naur form is used to describe the
context free syntax of the language. In particular,

(a) Lower case words, possibly containing medial underscore, denote syntactic categories,
e,g. adding-operator

(b) Boldface words denote keywords in the language, e.g. array

(c) Square brackets enclose optional items, e.g. return [expression)

(W) Braces enclose items iepeated zero or more times. For example, a list of identifiers is
defined as:

identifier-list identifier identifier)

8=

3. DECLARATIONS AND TYPES

This section describes the types in the language~ and the rules for declaring constants and A
variables.

3.1 Declarations

A declaration associates a name with a language construct. There are several kinds of

declarations.

declaration
element-declaration I type-declaration

I subtype-..declaration access -.type -.decl a ration
I subprogram declafat ion path -declaration
I definition -.declaration Igeneric -1nstantiation
I vai iant- part I null;

A null declaration introduces no new names; it may be used, for example, to define a record
variant with no components. Declarations for elements, types, subtypes, and access types4
are described here. The remaining declarations are described in later sections.

3,2 Element Declarations

Element declarations introduce constants and variables.

element.-.declaration
variable-..decl aration I renaming-..declaration

I constant-declaration I deferred -constan t-.dec la ration

variable -declaration =

identifier-list: type 1: =expression)

renaming-declaration
identifier: type == varidble;-

constant-declaraticin::=
identifier: constant [typei ression;

deferred conttant-declaration :=

identifier: constant type;

A variahle declaration asbociates one or inore identifiers denoting new variable names with
a typp. The declaration may specify an initial value for the variables. Each initialization is
eqiuivalent to an assignme it statement performed immediately after the declaration.

9

I
I

A renaming declaration arsociates a local name with a variable. The local name can be used

as a shorthand for the variable, e.g. in references to an array or record structure.

A constant declaration associates a name with a value specified by an expression. The value
is computed when the constant declaration is elaborated. The type of the constant may be I
omitted when the value is a literal whose type is known.

A deferred constant declaration specifies the name and type of a constant whose value is
computed in specially restricted contexts.

Examples;

ITEM-1, ITEM _2 INTEGER;
SORT-COMPLETED BOOLEAN :- FALSE; i
OPTfON-TABLE array (0 N) of OPTION;

ANCESTOR PERSON == JOHN. FATHER.MOTHER;

ACCURACY constant = 1E-30; I
LIMIT constant INTEGER 10-000;

NULL-ENTRY constant ENTRY:

3.3 Type and Subtype Declarations

A type specifies a set of properties for elements of the type. A type declaration associates a
name with a type.

type-declaration type identifier type -definition;

type-definition type I private [parameter]

type
simple-type-definition [constraint]
array-tvpe i record-type

simple-type -definition scalar-tvpe ityne-denotation

i tvpe-denotation = type-name I subtype-name I attribute

Constraint
scalar_.constraint I array -constraint I record..constraint

subtypc_.declaration =

subtype identifier type-denotation [constraint];

10

A subtype declaration associates a name with a parent type whose properties may be limited-

by some constraint. The use of private as a type definition is explained in the section on
definition modules.

3.4 Scalar Types

Scalar types describe discrete values and the real numbers. Discrete types may be used for
indexing. The scalar type names INTEGER, BOOLEAN, and CHARACTER are predefined
discrete types. Other types may be declared by the user.

scalar-type discrete-type I real-type (range)

discretptype scaled-type I enumeration-type

scalar.conitraint Q range (range)

range : : - simplecexpression .. simple .oxpretsiun

A scalar constraint iq specified by giving a range that describes a subset of values of the
parent type, The range L ., R describez the subset of values from L to R inclusive, A scalar
type given L.s a range is equivalent to giving the parent type of the exprcs-ions defining the
range, with the range as a constraint.

The functions SUCC and PRED are predefined on all discrete types for which there is an
implied ordering. They return the next higher or lower value in the range of values for the
type. In addition, for an ordered discrete subtype or type T, the attributes T'FIRST and
T'LAST denote the minimum and maximum values of the type.

3.4.1 Integer types

The predefined type name INTE(.GER denote0s a subset of the whole numbers. The range of
integer numbers is implicitly limited by the representation adopted by an individual imph.
mentation. Derived types may be obtained by imposing a range constraint.

Examples:

type PAGE.NUM - INTEGER;
type LINE-SIZE = (1 . MAXLINE.-SIZE);

subtype SMALLINT - INTEGER range (-10. 10);
subtype COLUMNPrR - LINLSIZE range (1 .. 10);

: 11

- . := -~-~ Z -- ~-~ . . .

U--

3.4.2 Scaled types

Scaled types provide a means of performing exact numeric calculations on non.integer

values. Corresponding to every scaled type, there is a constant scale factor. All qaantities
of the type are an integer multiple of the scale factor. The scale factor is specified in the
type declaration and has a value which is either an integer or the reciprocal of an integer.

t scaled-type = fcsle simple -expression

The value of the expression defining the scale must he known at translation time. Within

the scope of the type, thc scale factor of a scaled type T can be accessed with the attribute

T'SCALE.
Examples:

type TICK - scae 1 //60 range (0.. 3600);
type VOLT - scale 1 / /1 000 range (0 .1.5),
type JOULF - scll 1000 range (0.. 1 000_000);

3,4.3 Real types

Real types provide a means of performing floating point comp utations, which are
necessarily approximate. The relative precision of a real number is specified in the type
declaration, and is used to bound the errors inherent in floating point computation.

real -type - precision oimple.expro$1ion

The value of the expreasion defining the precision must be known at translation time. With.in the scope of a real type T, the prtcision of the type can be accessed with the attribute

T'PRECISION.

Examples:

type LONG.-REAL - precision 1E-40,
type COEFFICIENT - precision 1E-10 range (-1EO .. EO);

3.4A Enumeration typen

An enuumeration type defines a stt of value-s by listing the, values ,of the type. These values
are un:,rdered if the separator is us.cd; they are listed In increasing order if the separatur

is used.

enumcration-typ:
(eriumoration.vaur I elnumeratiun vi lt)

i Oenumeratiun vuluo { < enumerstion value))

enumeration -value id,,rtifiir (haracle

12

ExamIles:

type SUIT = (CLUBS - DIAMONDS . HEARTS <SPADES);
type HEX-LETTER = ("A" I "B" I "C" I "D" I "E" I "F");
type DAY , (MON I TUE I WED I THU I FRI I SAT I SUN);
subtype WEEK-DAY w DAY range (MON .. FRI);

subtype REST-DAY = DAY range (SAT .. SUN);

3,4,6 Boolean and character types

The enumeration type name BOOLEAN is predefined. It contains the two unordered values
TRUE and FALSE,

The enumeration type name CHARACTER is a standard library defined type. The allowed
characters and their ordenng are defined by a given implementation.

3.5 Array Types

An array is a collection of elements of the same element type. The elements of an array are
designated by indices.

array.type s= ray (index (, inuex) of type

index range..denotation i *

,ange.denouation range I type-denotation

array-constraint (range. denotation {,range.denotation})

The type of an array is given by the number of its indices and the type of Its elements. An
index has a specified range, which is not part of the type of the array. The index * denotes
an arbitrary range of any discrete type.

When an arTay type name has been defined in a type declaration, an array constraint may be
associated with the name in order to specify the actual ranges of the indices.

For an array type T, the attributes 'RANGE, T'FIRST, and T'LAST denote the range of
the first index, itq lower bound, and its upper I)ound. Similarly, the attributes T' 'RANGE,
T' 'FIRST, and 'I" 'LAST serve the same role for the second index, and so forth.

"3I
= =-=2 1_2 .. ;:.=.-'22... .. 3 3-

Examples:

type T = array 1*,*) of BOOLEAN; 4

A T(1 .. 10, 1 .. 100); .
B array (1 .. 10, 1 .. 100) of BOOLEAN;

A'FIRST [value is 1]
A' 'LAST (value is 1001

3.5.1 Dynamic arrays

The range of each index for an array must be known at the time of array allocation. If the
range of an index is riot computable at translation time, the array is considered as a dynamic
array, Dynamic arrays may also appear in records denoted by access types.

3.5.2 Array aggregates and strings

An array aggregate denotes a value for an array, i.e. is a constructor for an arrP.
Indices are deaioted by selections and element values by expressions.

arrayagregatc character._string
[type-.name] (elernent-specification {, element.specification))

elementspecification selection: expression

selection = selected-value {I selected-value}

telected-value :
number enumeration -value range-denotation I others

A selection specifies a set of individual values of a discrete type. A range denotation given in
a selection itands for all values in the range. The keyword others denotes all other elements
not specified in pwvious selections. Selections are also used in case statements and record
variants,

A character string is considered as an array aggregate. A string of N characters for N 1 is
an array of a character type. Its range is) . , N,

Multi-dimensional array aggregateo are treated as arrays of arrays.

14

- - -

Examples:

type TABLE = array (1 10) of INTEGER;
type LINE = array (1. MAX-LINE-SIZE) of CHARACTER;

A: TABLE := (I I 2: 1, others: 0);

BLANK-LINE: constant LINE = (1 MAXLINESIZE: .. ;

3,5.3 Sets

The predefined type name SET denotes one.dimensional boolean arrays.

type SET = array (*) of BOOLEAN;

Boolean valued operators are applicablE to boolean vectors, i.e. one dimensional boolean
arrays. These operators perform the curresponding operatiors on an element by element
basis. Array aggregates may he used 1z denote set values.

Examples:

type WEEK = SET (DAY); I set type]
(TUE!THU: TRUE, others: FALSE) sw 2 days]

(X and Y) = X [test if X is a subset of Y]

X (E) = TRUE [test if E is an element of X)

3.6 Record Types

A record type defines a structure witi- .veral components. The names and types of the
components are introduced in the element deci.rations of the component list. A record type
may include a variant part and hence define a family of structures.

record-type : record component-liit end record

component-list (element-declaration I [varant-part)

variadt part . case discri minant of (variant ' end case;

discriminant : : variable-naine

variant :: when selection component-list

15

An element declaration defining a record component may specify an initial value for the
component.

Example:

type DATE =

record
DAY (1.. 31);
MONTH: MONTH-NAME;
YEAR - (0..2000);

end record;
3.6.1 Constant components, unassignable components, and variant parts

A record component declared as a constant serves to denote a constant valued component
that has the same value for all records of the type.

A record component declared as a deferred constant is an unassignable component. Its value
may only be set by a complete record assignment.

A record type with a variant parf specifies a family of record structures. A variant part is
discriminated by a previously declared component called the disccrpdninant (or tag field).
Each variant defines the components for the corresponding value osche discriminant. The
discriminant must be declared as a deferred constant and hence is unas.ignable.

Example:

type PERIPHERAL =

record
STATUS: (OPEN I CLOSED);
UNIT : constant (PRINTER ! DISK I DRUM);
case UNIT of

when PRINTER => LINECOUNT: (1 .. PAGESIZE);
when others =

CYLINDER :CYLINDERINDEX;
TRACK : TRACKNUMBER;

end case;
end record;

3.6.2 Record aggregates and record constraints

A record aggregate denotes a value for a record, i.e. is a constructor for a record. The value
is constructed by giving the values of its components.

16

record-aggregate = [type-name] (component specification
{,component.specification }) I

component-specification =

component-name {lcomponent-name }: expression I

record -constraint = record -aggregate

If a record type contains a variant part, the selected component names must correspond to

the specified value of the discriminait.

If a previously declared record type contains several variants, a record constraint may be
used to constrain record variables or subtypes to a specified variant. The record constraint

specifies the value of the selected variant. It is expressed in the form of a record aggregate
where values are provided only for discriminants.

Examples of record aggregates:

(DAY: 4, MONTH: JULY, YEAR: 1776)
(STATUS: CLOSED, UNIT: DISK, CYLINDER: 9, TRACK: 1

Example of record constraint:

subtype DISK-DEVICE PERIPHERAL(UNIV: DISK);

A=
3.7 Access Types

Normal record variables declared in a program are accessible by their identifier. They exist
during the lifetime of the declarative part to which they are local and are hence said to be
static. In contrast, a variable of an access type is used to designate a record that is allocated
dynamically.

access-type-declaration " access type identifier type;
=

Access to a dynamic record is achieved via an access variable which may be set by an
allocation statement or by assignment of another access variable. The value of an access
variable that does not designate a dynamic record is denoted by none. -,

Each access type declaration implicitly defines a collection of dynamically allocated records
that can be referenced by variables of the access type. ;iven record may be designated by
more than one variable of the ac,.ess type. r ,mponent- Al the records of an access type may
belong to the same access type.

A representation specification (see section 10) may be used to specify the storage space to
be (statically) reserved for the collection of records associated with an access type.

17

-:io --E- ,......- - - - -.

Examples:

access type PERSON
record

NAME STRING;
AGE INTEGER;
MOTHER : PERSON;
FATHER PERSON;

end record;

access type LIST-ITEM ==
record

VALUE INTEGER;
SUCC LIST-ITEM;
PRED : LISTITEM;

end record;

3.8 Type Confonity

Each type, subtype, variable, and constant has a base type, which is the fundamental
property used to check type conformity.

Declarations of distinct type names always denote distinct base types, even if their
definitions are identical. Type constraints do not alter the base type. The base type of a
subtype is that of its parent type. The base type of a variable or constant is that of the type
appearing in the declaration.

Declarations involving unnamed types obey the following rules:

(a) If the type is given as an enumeration or as a record, the base type is distinct from any
other enumeration or record type, even if their definitions are textually identical.

(b) If the type is given a5 a range, the base type is that of the expressions defining the
range.

(c) Two real or scaled types have the same base types if their precisions or scale factors are
the same.

(d) Two array types have the same base type if they have the same number of dimensions
and if their elements have the same base type and constraints.

If a type A is defined in terms of another type name B

type A = B;

then A and B are two different types that share the same logical properties but not
necessarily the same representation. Explicit converiions between related types like A and B
are possible and must be written as typed expressions.

18

URT

3.9 Declearative Parts

Each program unit may contain a declarative part specifying its declaiations and other local
information.

declarative -part [[import-clause] (declaration }
{representation.specification (body }

body = ubprogram-body definition-module-body I path-body

An identifier declared within a program unit has a scope, which consists of the unit in which
the identifier is decidrcd and all inner units that do not redeclare the same identifier. An
identifier is said to be "local" to the unit in which it is declared, and "global" to all inner
units that do not redeclare the sane identifier.

An import clause is used to import identifiers of definition modules. Representation
specifications define particular type representations. The bodies of subprograms, definition
modules, and paths declared in the declaration list appear at the end of the declarative part.
These constructs are defined in later chapters.

19

4. VARIABLES AND EXPRESSIONS

4.1 Variables

A variable denotes a stored value of a given type. It may be a name denoting a scalar value,
an array, or a record. Alternatively, it may denote an element of an array, a slice of an array,
or a record component.

variable
variable-name I array -element Islice Irecord-component

I.array .element i variable (expression {,expression B)

slice variable (rangcdenotation)

record. com ponen t = variablecomponent -name variableall

For array elements, the expressions denote index values. Fnr array slices, the specified range
denotes a contiguous sequence of index values.

Record components may denote either components of static record variables or components
of dynamic records designated by access variables. The qualifier all denotes all components
of a dynamic record. A record component within a record variant ca-n only appear in
contexts where the particular variant is known.

Examples:

PRESSURE APPOINTMENT.DAY
MATRIXdI,J+l) STACK(TOP).NAME
TABLE(1 .*. N) NEXT.SUCC.VALUE

4.2 Scalar Values and Attributes

A scalar value denotes a value of a scalar type. In addition, scalar values are used to denote

attributes of declared entities.

scalar-..value :: number enumeration -value I attribute

attribute denotation atrrbute~qUalifiei

denotation: =

name variable i path-denotation I box-denutation

20

__ - - -
-is

An attribute qualifier specifies a property of some denoted program construct. An attribute
qualifier for a type is also an attribute qualifier for all variables of the type. Specific
attribute qualifiers are described with the corresponding language constructs.

Examples of attributes:

X'PRECISION [the relative precision of a variable]
INDEX'FIRST [the lower bound of 3 range]
DATE'SIZE [the number of bits in a record]

4.3 Expressions

An expression is a formula that defines the computation of a value.

expression
simple-expression [relational -operator simple-expression]
simple pexpression is (not] range-denotation

simple-expression [simple-expression adding-operator] term

term := term multiplyingopetatut fdcto

factor (unary-operator] primary

primary = variable I scalar-value array-aggregate
record-aggregate function-call I (expression)

i qualified. expression none

function-call subprogram-call

The type of an expression depends on the type of its components, as described below.

Examples of primaries:

VOLUME [variable)
4.0 [number]
(1 ., 10: 0) [array aggregate]
SINE(X) [function call]
(LINE COUNT + 10) [parenthesized expression]
REAL(I J) Jqualified expression]

21

j

E),mrples of expressions;

VOLUME [primary]

-4.0 [factor]
not DESTROYED (factor]
LINE-COUNT mod PAGE-..SIZE (term)
B*B - 4E0*A*C [simple expression]
(INDEX = 0) or ITEM.-HIT (simple expression]
PASS..WORD(1 5) - "JAMES" (expression)
X Is 1 10 (Lxpression,

4.4 Operators

The operators in the language are grouped into four classes

relational...operator I I

odrlliin OIJcfator + -Ior xor I&

multiplyingj cperCator * IImod Idiv Iand

Lnary -opffrator + not 1abs

These' operators hiave! a precedence tha specifies the order of evaluation within an
expression. U~nary operators ore applied first, multiplying operators second, adding
operators third, and relational operators lask. Sequences of operators of the same precedence
aire vvaluuted from left to right.

'l'hv se and neaning of the operators are given) below. All binary operators apart from is
and * must he applied to operands of the same type. In particular, to perform arithmetic
on two numeric values of differing types, one of the values must be explicitly converted to

thLype of tlit other.

4.4.1 lielaltsunal operutors und is

r TIhe relational operators and is all return boolean vidues.

Operator Opeuti on Opvrand Types Result Type

iD (not] i nge any scalai type boolean
membeorship and corresponding

range

/equality and any typie boolean
inlefuality

test for any ordered boolean
relative Ily1p

ru ring

22

Li __ _ _ __j

Note that equality and inequality are defined for any two objects of the same type.

4.4.2 Adding operators

AUl adding operators return a result of the same type as the operands.

Operator Ooerption Operand Types Result Type

-addition arid numeric same numneric type
subtrartion

or xor inclusive and boolean, boolean.
exclusive boolean vector boolean vector
disjunction

& concatenation one-dimensional one-dimensional
arrays, skies, array of element
array elements, type

and characters

The operator & concatenates the elemnts in one array wo those in another array. For
strings, this oppration results in conventional string concatenation.

4.4.3 Multiplying operators

Operator Operation Ouerand Types Result Type

*multiplication numeric numeric

/real division real real

iiscaled integer scaled
division

div integer integer integer
division

mod modulus integer integer

and conjunction boolean, boolemn,
boolean vector boolean vqctor

23

The operator *denotes mathematical multiplication. It takes two integer or real operands
of identical type ard gives a result of the same type. In addition. a scaled operand can be A

multiplied by an integer to give a result whose type is the same as the scaled operand.

The operator / denotes mathematical division and is defined only for real types, Theresulting type is the same as that of its operands. -A

The operator d denotes mathematical division and is defined only for opead opers otype. The result is of scaled type, where the particular scale factor depends upon the

operands.

The operators div and mod denote integer division with truncation and the remainder afte.

integer division. These operators are defined only for integer operands.

Exam ples:

I INTEGER 1,

J INTEGER 2;
K INTEGER 3;

M : scale 1 / 3 4 // 3;
N scale 1//3 =5//3;

X precision 1 E-6 1E0;
Y precision 1 E- 6 2E0;

Expression Value Type

I s J 2 same as I and J
J M 8//3 same as M
X / Y 0,EO same as X and Y
K div J 1 same asKandJ
K mod J 1 same asKandJ
M + 1//3 5//3 sarne as M
N + K/13 8//3 tame ai N

4.4.4 Unary operators

Unary operators are applied to a single operand.

Operator Operation Operand Type Result Type

4 -identity and numeric same numeric typc
negation

not negation boolean, boolean,
boolean vector boolean vector

abs absolt..,c numeric same numeric type

]value

24

4.5 Qualified Expressions --

A qualified expression is used to convert an expression to another type, to state the type of
an expression explictly, or to constrain an expression to a given subtype.

quallfied-expreision -
typed _expresion constralned_ .expresion

iyped-expression : type-name(expression)

constrined -expresslon - subtype.nsme(expresslon)

4.5.1 Type conversions

For numeric expressions, a typed expression may specify a numeric type that is different
from the typp of the expression. In this cae the value of the expression is converted to the
named type. The nearest value of the required type is the value after conversion, If two
values are equidistant from the expression value, then the larger value is chosen.

Typed expressions can also be used for type conversions between related types with
identical logical properties. No other type conversions are permitted.

Examples of numeric type conversion:

REAL(2*1 l value Is converted to resl
INTEGER(1.61 [value is 21
INTEGER(-05) lvdlue Is 01

Example of conversion between related types:

I type A-FORM - B-FORM;
X A-FORM;
Y B.FORM;

X A.FORM(Y);

4.5.2 Type specification of values

The same element may appear in two enumeration types. In these. cues, and whenever the
type of a literal or aggregate is not known from the context (e.g. an actual parameter of an
overloaded procedur, a typed expression may be used to state the type explietly,

25

Examples:

type MASKING-CODE - (FIX I DEC I EXP I SIGNIF);
type INSTRCODE - (CLA I DEC I TNZ I SUB);

PRINT (MASKINGCODE(DEC) I; --. DEC Is of type MASKING-CODE
PRINT (INSTR-CODE(DEC)1; -- DEC Is of type INSTRCODE

4.5.3 Constrained expressions

An expression of a given type may have values that are not necessarily in one of its sub.
types. A qualified expression with a iubtype name specifies that the value of an expression
must belong to the subtype. If it does not, an exception condition is raised.

Examples:

subtype SMALLINT - INTEGER range (-10 10); ,
VALUE :INTEGER;
INDEX : SMALLINT;

READ (VALUE);
INDEX A SMALLINT(VALUE);

2 I

: Ii

ii

"26

5. STATEMENTS'

Statements cause actions to be performed, Statements in a list of statements are executed in
sequence until a transfer statement is encountered.

A statement may be simple or compound. A simple statement contains no part that consti-
tutes another statement

statement-list (label I statemet J
soateinent = s rnple-statement I cu.'Pound-staternent

I tranifer_.taternant

simple-statement ' assignment-ststemenl I allocation -statement
s zubprogram.call -stateont , assert _tatement ii

I synchroni.'aion.statement inline..statemont -i
I null i:1

compound -statement if.statoment I case-statement
lop.statemont I select -statelnent block

trjnSfer.-statement - loop-exit..statoment
I retlirn-,taternpflt I exception -statement
I goto-itatemont

label --ildentifier--- -

Executjun of a niull statenent results in no action. Synchronization and select statements
are described in the section on parallel processing, Inline statements are described in the
sec-lion on suhprugrams. xception stats'ments are described in the section on exception
harilling. The remaining statements are described here.

5.1 Aisiglnmelt ,Htfat.ecnAt5

An assignment statement replaces the current value of a variable with a new value speci.
ficd by an Cx)ression.

dM iun itril .stateient w' ar idib " . 'xpressiun;

The variabh und th(. expression must be orf the same parent typ and the value of the ex.
iprPsion must sattFCy any constraints applicable to the variablo. If tho constraints cannot be
rheckv(d during translation, an (xectution-titne check shall be provided by the translator,
This c h,ck will result in an exception condition if the expression value does not satisfy the

onstraint. If the exception is suppressed the translator will omit the checks.

27

Examples:

KEY-VALUE : = MAX-VALE- 1;
SHADE ,, BLUE:

Examples of constraints:

, J INTEGER range H 10);

K INTEGER range (0 20);

I J; - identical rangesK J: -- tcompatible ranges

J K; -can only be checked during executin

-A

5.1.1 Array and slice assignments

For an assignment to an array or an &-ray slice variabie, the expression must denote a valuu =
with the same number of elements. For slice assignments where thep array namne of the slice
variable also appears in the expression, overlapping of index ranges is forbidden.

Examples:

A array (0 .. 30) of CHARACTER;
B array j1 .. 31) of CHARACTER;

A = ;.. sam e num ber of elem ent sAll.. 10) : = AX .. 20) non overlapping ranges
AD 5) "JAMES", same numbr of elements

5.1.2 Record assignments

If a record variable has been declared with a record constraint, the variant assigned m~ust
have a discriminant value prscribed Iby the constraint,

Examples o

DISK-l, DISK2: PERIPHERAL (UNIT : DISK);

DISK_! - (STAI"US:OPEN, UJI'qT:DlSK, CYL.INDER-1I, TRACK:l1);

DISK_2 - DISK- 1;

5.2 Allocation Statements
An allocation statement specifie the dynamic creation of a record to be designated by an
accs variable.

28 g

All . 6 "JAES" -- amenumbr o eleent
5.1. Recrd asignent

allocation-statement
variable new record.-aggregate;

I variable : = new typed -expression;

Storage for a record is allocated with the collection associated with the access type. The
name of this access type must appear explicitly after the keyword new in either case. The
value of the record aggregate or typed expression is assigned to the new record, and the
access variable is made to designate the new record.

Examples:

ELEMENT := new LIST-ITEM (VALUE: 0, SUCC: none, PRED: none);
DOUBLE new PERSON (ME. all);

5.3 Subprogram Calls

A subprogram call invokes execution of a subprogram body. The call specifies the associa-
tion of any actual parameters with formal parameters of the subprogram declaration. An
actual parameter is either a variable or an exprcssior-

subprogram-call-statement : : = subprogram..call;

subprogramcll : subprogramniname
[(parameter.association {,parameter.association })]

parameter-association :
input-assocation output- association I access associatioon

input-association = [formal-parameter : = I expres~ion

oiitputassociation (formal parameter = : variable

access-asociation : (formaL-paiameter -=] variable

formal p.rameter : identifier

Actual parameters may be passed in positional order (positional parameters) or by explicitly
naming the corresponding formal parameters (named parameters), For positional para-
meters, the actual parameter corresponds to the formal parameter with the same position
in thi formal parameter list, For named parameters, the corresponding parameter is ex-
plicitly giver in the call, Named parameters may be given in any order.

Positional parameters and named parameters may be used concurrently with positional
parameters occuring first at their normal position, i.e. once a named parameter is used the
rest of the call must use only named parameters.

t

29

Examples:

RIGHT-SHIFT; -.

SEARCH-STRING (STRING, CURRENT-POSITION, NEWPOSITION);

PLOT (CURVE SINE,
LOWER-BOUND N1,
UPPER-BOUND = N2);

REORDERKEYS (NUMOFITEMS, KEYARRAY RESULTTABLE);

5.3.1 Actual rirameter associations

There are three forms for specifying actual parameters.

(a) Input parameter association.
The corresponding formal parameter must have the mode in, and acts as a local con-

stant whose value is provided by the actual parameter prior to execution of the sub-

program body.

(b) Output parameter association.

The corresponding formal parameter must have the mode out, and acts as a local

variable whose value is assigned to the actual parameter upon return from the sub-

program body.

(c) Access parameter association.
The corresponding formal parameter must have the mode access. Within the sub-

program body, the formal parameter enables read and write access to the corres-

ponding actual parameter.

Constantnesb for the in mode must be interpreted transitively. For example, the elements

of an input array parameter may not be updated, and an input parameter may not be up-

dated by calls to other subprograms.

5.3.2 Omission of actual parameters

An input parameter may be omitted from the list of actual parameters if the subprogram

declaration specifies a default value for the corresponding formal parameter. In such cases

any remaining actual parameters muat be named. Similarly, an output parameter may be

omitted if the value returned is not used in the calling program.

1

~30

Example:

ACTIVATE: procedure (TASK : in TASK-NAME;
AFTER in TASK-NAME NO-TASK;
DELAY in REAL : OEO;
PRIOR in BOOLEAN = FALSE);

ACTIVATE (X);
ACTIVATE (X. AFTER =):
ACTIVATE iX. DELAY 5E0*MINUTF, PRIOR TRUE),

5.3.3 Restrictions on subprogram calls

The type of each actual parameter must agree with that of the corresponding formal para-
meter. To prevent aliasing (i.e. multiple access paths to the same variable), the same variableI
name cannot be used for more than one actual output or access parameter.

5.4 Return Statements

A return statement terminates execution of a subprogram or a path. For functions, a return
statement must include an expressi)n whose value is the result of the function.

return-statement : = return [expression]; iv!

Examples: A

return;
return KEYVALUE (LAST-. INDEX);

5.5 If Statements

An if statement allows the selection of a statement list based on the truth value of ore or
more conditions.

if-statement : =
if condition then statement-list -!

{elsif condition then statement-list
[else statunient-list] =

end if.: I

condition : =

exprcssion (and then expression. I
expression or else expressioni

Execution of an if statement results in evaluation of the conditions one after the other
(treating a final else as elsif TRUE) until one evaluates to true; then the corresponding
statement list is executed. If none of the conditions evaluat-- to true, none of the state-
ment lists is executed.

31

-A

J'at

72

Examples: 4

if (MONTH DECEMBER) and (DAY 31) then
MONTH JANUARY;
DAY I1
YEAR YEAR + 1;

end if;

if INDENT then
CHECKLEFT-MARGIN;
LEFT-SHIFT:

elsif UNDENT then
RIGHT-SHIFT,

else
CARRIAGE-RETURN,
CONTINUE-SCAN,

end if;

5.5.1 Short circuit conditions

A condition may appear as a sequence of boolean expressions separated by and then. In
such case, evaluation of the expressions proceeds from left to right until one evaluates
to false. The final value, true or false, is the value of the condition. Similarly, for expres-
sions separated by or else, evaluation stops as soon as an expression evaluates to true.

Examples:

if (NEXT /= none; and then (NEXT. AGE <18) then
MINOR TRUE,

end if;

if (I = 0) or else (Al) HIT-VALUE) then
return;

end if;

5.6 Case Statements

A case statement allows the selection of a statement list based on the value of an expres-
sion at the head of the case statement

case-statement • : =

case expression of {alternativej end case;

alternative = when selection => statement-list

32

Execution of a case statement results in execution of the statement list whose selection
contains the value of the expression. A given selection value may appear in only one alter-
native. Selection values must be provided for all values of the type of the expression. Note
that it is always possible to constrain an expression to a given subtype or to use the selection
others to cover any remaining values.

Examples:

case SENSOR of
when ELEVATION => RECORD-ELEVATION (SENSORVALUE);
when AZIMUTH => RECORD-AZIMUTH (SENSOR-VALUE);
when DISTANCE => RECORD-DISTANCE (SENSOR.VALUE);
when others => null;

end case;

case TODAY of
when MON => COMPUTE-INITIAL -BALANCE;
when FRI => COMPUTECLOSINGBA LANCE;
when TUE. THU => GENERATE-REPORT (TODAY);
when REST-DAY => null;

end case;

case BIN-NUMBER ((I mod 4) + 1) of
when 1 => UPDATE-BIN (1);
when 2 => UPDATE-BIN (2);
when 3!4 =>

EMPTY-BIN (1);
EMPTY-BIN (2);

end case;

5.7 Assertion Statements

An assert statement introduces an assertion that must hold whenever control reaches that
point in the program.

assert-statement = asert [condition] ; 4
Examples:

assert (Y2 - Y1) < EPSILON;
assert (INPUT-CHARACTER is "A" .. "Z");
assert [There exists an I such that A(I) > 0),

The asserticn may be formulated as a condition or as a comment. The condition is treated as
a comment whenever checking of assertions is suppressed. Otherwise, the condition is
evaluated and an exception is raised if the condition does not hold (see section 9).

33

5.8 Loop Statements

A loop statement specifies that a statement list in a basic loop is to be executed repeatedly.
Execution is terminated when either the iteration specification of the loop is completed or
when a loop exit. statement within the basic loop is executed,

loop staternent = [iterationspecificationi basic.loop;

basic-loop loop stattment.list repeat
r

iteiation-specification
while condition I unil condition

I for Ioop-paiameter in [reverse] range-denotation

loop-parameter : : = identifier

In a loop statement with a for clause, the loop parameter is implicitly declared as a local
each execution of the basic loop. The loop statement is terminated if the while expression[is false or the until expression is true.

In a loop statement with a for clause, the loon parameter is implicitly declared a., a local
variabie whose type is that of the elements in the range denotation. On successive loop
iterations, the loop parameter is soccessively assigned values from the specified range. The
values are assigned in increasing order unless the keyword reverse is present, in which case
the values are assigned in decreasing order. Within the basic loop, the loop parameter acts as
a constant whose value may not be changed.

Examplcs:

while (BID(I). PRICE < CUT-OFF. PRICE) loop
RECORDBID (BID(I) .PRICE);
I l=-1 ;

repeat;

until BUFFER II) loop
I = + 1

repeat;

for I in BUFFEP'RANGE loop
BUFFER (h = BLANK,
SQUARE (I)

repeat;

I,

31

5.9 Loop Exit Statements

A loop exit statement causes explicit termination of a loop. It may contain a condition, in _

which case termnination occurs only if its value is true.

loop...exit...statement :=exit [when condition]; -

A loop exit statement may only appear in a basic looip.

Examples: ~

for I in 1 .. MAXIMUM..NUM.ITEMS loop
GET-NEW-JTEM fNEVYITEM);
MERC.E-JTEM (NEW..JTEM4, STORAGE-.FILE),4
exit when (NEW-ITEM =TERMINAL-.ITEM),A

repeat;

5.10 Blocks

A block introduces a new declarative part for a list of statements. Execution of a block

results in elaboration of the declarative part followed by execution of the statement list.

block
declare declarat ive-part begin statement. st end;

Identifiers declared in a declarative part follow the same scope rules as those for sub-
programs and definition modules, as described in later sections.

5.11 Goto Statements

The execution of a goto statement results in an explicit transfer of control to another

statement

goto-statemrent = goto idientifier,

The statement t~o which control is transfered must be labeled with the corresponding identi-
fier. The designated statement must be within the same local scope as the goto statement.
Transfer of control into a compound Autement is not allowed.

Example:

<COM PARE

if A(:' ELEMENT then
if LEFT (1) =0 then

I LEFT (1,
goto COMPARE,

end if,

end if;

L _5

6. SUBPROGRAMS

This section and the following sections describe the rules for defining higher level program
units. These include procedure and function subprograms, definition modules, parallel
paths, and exception subprograms. Separate compilation of program units and generic
program units are discussed in the section on overall program structure.

A subprogram is an executable program unit that is invoked by a subprogram call
statement. Its definition is given in two parts. a subprogram declaration defining its calling
conventions, and a subprogram body defining its execution.

6.1 Subprogram Declarations

A subprogram declaration specifies the name of a subprogram, its nature, its formal param-
eters, the type of any returned vahle, and, possibly, a translation mode indicating whether
it is separately compiled or generic.

subprogram-declaration
namer: Itranslation-model subprogram.nature formal-part;

subproqram -nature ::= procedure I function I exception

formal part

[(parameter-definition {;parameter._definition f] [return type)

parameter-definition
Identifier -lit: modetype [:-expression]

mode inl' out I accest

namer , d ntificr I chara.;ter_-tring

translation..1mi ::- qeparate i .eneric..clause

Examples:

TRAVERSE-IREE procedure;
RIGHTINDENT procedure (MARGIN: out LINEPOSITION);
COMMON-PRIME finction (N,M: INTEGER) return INTEGER;

6.2 Formal lParian2tr.i

'The formal parameter. of a subprogram are considered local to the subprogram. A param-
e!tar may have one of three modes.

36

-_ _ __ _ --- ------ _

in The parameter acts as a local constant whose value is set equal to that of the cor. ___

responding actual parameter upon call to the subprogram.

out The parameter acts as a local variable whose value is assigned to the corresponding -
ectual parameter upon return from the procedure. i

acces The parameter acts as a variable and may be used for read and write access to the
corresponding actual parameter.

If no mode is explicitly given, the mode in is assumed.

For in parameters, the parameter definition may also include a specification of an expres-
sion that is implicitly assigned to the parameter if no explicit value is given in the call.
This expression may either be an expression computable at translation time or a variable.

Examples:

PRINT-HEADER. procedure (PAGES in INTEGER; A
HEADER in LINE := BLANKLINEA
CENTER in BOOLEAN := TRUE);

ACTIVATE: procedure (TASK in TASK-NAME;
AFTER in TASK.NAME .= NO.-TASK;
DELAY in REAL :z OEO;
PRIOR in BOOLEAN : FALSE);

6.3 Subprogram Bodies

A subprogram boly specidies the execution of a subprogram.

subprogram body
[inline) subnrogram.nalure namer formal-oarl;
declarative-part [begin statement -list] end;

Upon each call to z: subprogram, the correspondence between actual and formal param-
eters is establis!hed (see section 5.3), the declarative part is elaborated, and the statements
of the body are executed. Upon successful completion of the body, return is made to the
caller.

Subprogram bodies marked as inline are expanded in line at each call. Tlhe text of each
actual parameter replaces the corresponding formal parameter. Identifiers other than actual
parameters are interpreted in the scope of the subprogram declaration. Thus the meaning of
a subprogram is not changed by the prefix inline. Inline subprograms cannot be separately
compiled.

37

If a subprogram body appears in the same declarative part as its declaration and is not -

referenced in previous subprograms, the subpiogram declaration may be omaitted. In such a
case the body acts as a substitute for the subprogram declaration, A subprogram body with-

out a statement list is used when the statement list is separately compiled (see section i
Example:

procedure PUSH (E: in ELEMENT-TYPE; S: access STACK);

beginA
if SINOEX - SIZE then

raise STACK-OVERFLOW;
elpe

S.INDEX :- S.INDEX + 1;
S.SPACE fS. INDEX) E;

end if;
end tiVUSH];

6.4 Function Subprograms

A function is a subprogram that computes a value. A function declaration may only have in
paramrteprs and contains a return clause Fpecifying the type of its returned value, The state.
ment list in the function body must include one or more return statements specifying the
returned value.

Side effects to variables accessible ast the function call are not allowed. In particular, vari-
ables that are global to the function body may nol. be updated in the function body.

If a function parameter belongs to an access type, the parameter mu~t be viewed as pro-
viding access to the complete collection of dynamic records. As a consequence, within the
function body there can ho no alteration to any component of a record designated by an
access variable.

Example:

function DOT-PRODUCT MXY: REAL.VECTOR) return REAL, _
SUM: REAL :- OEO;

begin
assert (X'FIRST a Y'FIRST);
assert (X'LAST =Y'LAST); -
for I in X'RANGE loop

SUM =SUM + X(I)*Y(I)
repeat,
return SUM;

e~nd 1DOTh.PRODUCTJ

1 6,5 Overloading

Functions and procedures of h~ given name may have multiple definitions, each having

parameterb of differing types. In these cases the redefinition of a named function or

* procedure does not hide any previous definition. On subprogram calls, the actual definition

used iA; that whose formal parametor types match those of the actual parameters.

6,5.1 Overloading of operators

A Lunction named by a character string is used to define an additional mneaning for an opera-
tor. The overloading of operators is identical to overloading of tunctlons and procedures,

except that the character string must be one of the operators in the language. Overloading
apliles to both unary and binary operators. Overloading does not change the precedence of
an operator, Overloading of the concatenation operator & ib not allowed.

Examples;

* function (X,Y; MATRIX) return MATRIX;
function (XVY: VECTOR) return VECTOR,

6.6 Code Insertion~s

A machine code insertion can Ix- achieved by a call to an inline procedure whose body only
contains inline statenients,

inline..stateryient :;- inline record-aggregate;

Each machine instruction appears as an inline record aggregate of a record type defining
the corresponding instruction. Such record definitions will generally be available in a library
definition module for each machine. A procedure that contains an inline statement must
contain only inline statements, Insertions of code written in other programming languages
must be bracketed by special lpragmats.

Ex am ples:

M: MASK;
Iviline procedure SET-MASK;

Import INSTRUCTION-360;
begin

infine SI-FORMAT (CODE: SSM, B: M'8ASE, 0; M'DISP),
end,

inline procedure (1007,
begin

pragmat FORTRAN BEGIN
FOHTFIAN toixil

prageist FORTRAN END)
and;

39

7. DEFINITION MODULES AND SCOPE RULES

Definition modules allow the specification of groups of logically related entities. In their

simplest form they ca;u represent pools of common data and type declarations,

In addition, definition modules can be used to describe packagves of related subprograms aind
encapsulated data types, whose inner workings are concealed from their users,

Scope ruled, the rules defining the entities that are' visible at a given program point, are

explained in thisi section for definition modules and other program units.

7.1 Specification of Definition Modules

The specification of a dcfinitior, module generally includes its declaration aind the specifica-
tion of a definition module body. Its declaration may be omitted unless it containi a trans-
lation mode specifying the module as separately compiled or generic.

definition-decleation
identifier: (trainslation _modo] definition;

definition. - cdule__body :
definition identifier; declarative _part
[private declarative -part)
[algorithm declarative -parti
Ilbegin statement -list] and;

A variable declared in any of these declarative parts is said to be "own" to the definition
module. Own variables remain allocated for the life time of the definition module.
Elaboration of the declaration of the definition module resulte in the allocation of Its own
variables, the assignment of any initial values, and the execution of the btatement list
initializing thc definition module.

Varialeii that ore' declared within local subprograms of the definition module are not
own. Hence they do not retaina their values from one call to the next.

ExUtiiie of dr-finition declarations:

PLOTTING DATA definition,
TABLE MANAGER definition,
1-0-PACKAGE definition,

40,

7.2 The Visible Part

The first declarative part of a definition module is called its visible part. The entities
declared in the visible part are accesible to program units that import the definition name.
A definition module containing only a visible part may be used to represent a group of
common variables or a common pool of data and types.

Example of group of common variables:

definition PLOTTING-DATA;

PEN-UP' BOOLEAN;
CONVE FSiON_-FACTOR: REAL;

XOFFSET, YUFFSET,
X.MIN, XMAX,
YMIN, YMAX: scaled 1//100 range (0 30);

GRID-VALUE: array (1 .. 600) of
record

XCOORD: REAL;Y-COORD: REAL;

end record:
end [PLOTTING-DATAJ;

Example of common pool of data items and types:

definition WORK DA iA;,A
type DAY-LENGTH = INTEGER range (0 .. 24);
type DAY-(MON I TUE I WED I THU I FRI I SAT I SUN);

WORK.HOURS array (DAY) of DAY-LENGTH;
NORMAL-HOURS; constant array (DAY) of DAY-LENGTH

(MON.. THU: 8, FRI: 7, SAr I SUN: 0);end (WORK-DATA],

7.3 Algorithm Part

The visible part of a definition may contain subprogram or path declarations. In such cases,
their bodies may be groiuped in an algorithm part, the declarative part after the keyword
algorithm. The algorithm part may also irclud,, local declaraticris and local program units
needed by these bodies,

41

-I4

In contrast to the entities declared in the visible part, the entities declared in the algorithm
part are not accessible outside the definition module. As a consequence, a definition module
with an algorithm part can he used for the construction of a package, where the logical oper-
ations accessible to the user are clearly isolated from the hidden internal entitieo,

Example of a package:

definition RATIONAL-NUMBERS; -

type RATIONAL
record

NUMERATOR ;INTEGER;
DENOMINATOR. ji .INTEGER'LAST);

end record;
ECIUIV function MX Y RATIONAL) return BOOLEAN;
ADD function MX Y RATIONAL) return RATIONAL,
MULT function (X, Y RATIONAL) return RATIONAL;

algorith~m
procedure SAME-DE NOMINATOR(XY: accest RATIONAL);

begin
(reduces X d110 Y to the same denominator)

end;

function LOU IV(X,Y: RATIONAL) return BOOLEAN,
IJ,V; RATIONAL;

begin
U X
V Y
SAME-DENOMINATOR (UV),
return (UNUMERATOR V.NUMERATOR);

end;

function ADD
function MUL ...

end;

7.4 Private Part

The structural details of some declared types may be irrelevant to their logical use outside
a definition module. This may be accomplished by stating in the visi'lle part that a type is
private. Types declared private in the visible part must. be redeclared .n full in the private
part of the definition module.

42

For a private type, the only information available for external program units importing the
definition module is the private type name. As a consequence, the only external operations
permitted on variables of a private type are assignment and comparison of elements for
equality or inequality.

If a type is declared as private parameter, not even assignment and comparison are per-
mitted. Hence variables of such types may only be passed as parameters to subprograms
declared in the visible part of the same definition module.

A constant value of a private type may be declared as a deferred constant. Its actual value
must be specified in the private part by redeclaring the constant in full.

In the example below, an external subprogram importing LO_..PACKAGE may obtain a file
name by calling ASSIGN and later use it in calls to READ and WRITE. Thus, outside the
definition module, a file name obtained from ASSIGN acts as a kind of password. Its in-
ternal properties (e.g. being a numeric value) are not known, and no other operations
(such as addition) may be performed on a file name.

In general, private types may be used to define encapsulated data types. An example is given
in Section 11.7.

Example:

definition IOPACKAC-E,

U type FILE-NAME = private;
NOFILE: constant FILE-NAME,

ASSIGN: procedure (F: out FILE_NAME);
READ procedure (ELEM: out INTEGER; F: in FILENAME);
WRITE rrocedure (ELEM: in INTEGER; F: in FILENAME);

private
type FILE-NAME= INTEGER range (0 .. 50);
NO- FILE: constant FILE__NAME=0;

I algorithm
type FILE-DESCRIPTOR = record ... end record;[DIRECTORY: array (FILE-NAME) of FILE_-DESCRIPTOR;

procedureASSIGN
procedure WRITE.
procedure READ,...

end;

43

7.5 Example: A Table Management Package4

The following example illustrates the use of definition modules in providing high ievel pro-

cedures with a simple interface to the user.

definition TABLE-MANAGER;
type ITEM

record
ORDER-NUM INTEGER;
I rEM4COOE INTEGER;
ITEM-TYPE :CHARACTER;

QUANTITY :INTEGER;
end record;

NULL-ITEM: constant ITEM-
(ORDER-NUM: 0, ITEM-CODE: 0, ITEM-TYPE: ",QUANTITY: 0);

INSERT procedure iNEW-ITEM :in ITEM);
RETRIEVE :procedure (FIRST-ITEM :out ITEM);
TABLE-FULL :exception,

algorithm I
SIZE. c0llltdrt INTEGER - 2000,
subtype INDEX - INTEGER range (0 SIZE);

type iNTFRNAL-ITEM r

record 7
CONTENT: ITEM;
SUCC : INDEX;
PRED INDEX,

end record;

TABLE: array (INDEX) of INTERNAL-ITEM;
FIRST -.BJSY-ITEMI: INDEX :=0;

FIRST-FREE -ITEM: INDEX :~1;

function FREE-LIST.EMPTY return BOCL1EAN;
function BUSY-LIST-EMPTY return BOOLEAN;..

procedure EXCHANGE tFROM in INDEX. TO in INDEX),

procedure INSERT iNEW.-ITEM; in ITEM),
begin

if FREE -LIST-EMPTY then
raise TABLE-FULL,

end if,

remaning code for INSERT!

end;

procedure RETRIEVE.

exception TABLE-FULL

!cdefo intialization of the~ table linkagesi

end!TALEMANAGER!, 4

The problem is to define a table management package for inserting and retrieving items. The
items are inserted into the table as they are posted. Each posted item has an order number.
The items are retrieved according to their order number, where the item with the lowest
order number is retrieved first.

From the user's point of view, the package iq quite simple. There is a type called ITEM
designating table items, a procedure INSERT for posting items, and a procedure RETRIEVE
for obtaining the item with the lowest order number. There is a special item N .LLITEM
that is returned when the table is empty, and as exception TABLE-FULL that may be
raised by INSERT.

The details of implementing such packages can be quite complex, in this case involving a
two way linked table of internai itcav. A !ocal housekeeping procedure EXCHANGE is
used to move an internal item between the busy and the free lists. The initial tahle linkages
wte ' tablished by the initialization part.

A sketch of a definition module implementing such a package is given above. Only the
visible part of the package is exposed to the user.

7.6 Scope Rules

A scope denotes a regioln of text in which an identifier is known with a singie meaning. Sub-
programs. blocks. paths. and definition modules introduce new scopes. Local scopes are also =
-tefined by for loops, record types, and variant parts. i

An identifier of an outer scope may he redeclared in a given inner declarative part unless it is
used in that declarative part or unless it is a type name. The inner redeclaration has the
effect of hiding the oiter declaration. Overloading, i.e. redeclaration of a subprogram with Vi
different parampter types, is possihle even within the same declarative part and does not
hide previous subprogram definitions (see section 6.5).

The rules defining the meaning of identifiers within a given scope depend on the presence
(or absence) of an import clause in the corresponding declarative part. j

importcldiUS: import none, import Lonly" i tern item j,

item i Identifier ii rnaring clause- renaming-clause J)I

lelldlr y.n -c l1a1is ew-name -- old.name

45

8. PARALLEL PROCESSING

This section specifies the constructs for allowing control paths to operate in parallel. The
coi~trol paths may be implemented or, m~ultiple processors or with interleaved execution on
a single processor.

8.1 Path Declarations

A path declaration introduces the names of one or more parallel paths and specifies the
information needed to commiunicaite with other paths. It may also contain a translation
inode specifying whether the path is separately compiled or generic. Commumnication
between paths is handled by associating boxes with each path.

path...decIaru6,n

identification: Itranslatiuo-modej path iiwx.part;

box-part ::- [(box..detinition Ibox-definition Dlj

box-definition
dentification: box-.mode box [type) !trup~'ue

boxM0,e ..= in. I out

identification -I
identifier ((range-denotation {, range-denotation))] V

A box may be specified with a type and a mode in or out, which indicates that the box is
used for receiving data from other paths or for sending data to other paths. If no type is
specified for a box, it is used only for synchronization and must have the mode in. The
interrupt clause will be dcscribcd in section 8.7i.

A path or box identification may specify a family of identical paths or boxes, each denoted
by one or more indices from a specified range.

Examples:

KEYBOARD-DRIVER :path (LINE in box LINE-IMAGE);

DECODER :path (CHAR. in box CHARACTER);

CONTROLLER :path(START-READ in box;
START-WRI~rE in box;
STOP-READ in box;
STOP-WR I E :in box);

SCHEDULER :pathi STARTOl 3) in box;
STOP :in box);

TERMINAL11 . N) :path(MFSSAGE :in box LINE-IMAGE;
RESPONSE :out box LINE-JMAGe):

47

8.2 Path Bodies

A path body describes the execution of a path. The body will generally contain statements
that control the execution of other paths. Within the path body, the out boxes of a given
type behave like local variables, and the in boxes of a given type behave like unassignable
local variables.

path-body i:=

path path-name hox-part;
declarative-part begin statement-list end;

Example:

path KEYBOARD-DRIVER (LINE: in box LINEIMAGE);
begin

loop
receive LINE;
for I in 1. 80 loop

cunnect DECODER (CHAR :=LINE()
exit when LINE(l) ""1

repeat;
repeat:

end [KEYBOARDDRiVER]

8.3 Synchronization Statements

Synchronization statements specify the communication between paths.

synchronization-statement ::= do-inner-paths-statement
I local request- statement I connect-statement

A do inner paths statement initiates execution of one or more paths. A local path request
specifies that a local box in the path is ready for connection fron. :nother path. A connect
statement specifies that the p.-th is ready to connect Aith a box in another path.

A rendezvous is achieved when a path is ready for a connection to one of its local boxes and
when another path is ready to connect to the same box, Whenever a rendezvous occurs, any
specified data transfer takes place, and both the local path and the connecting path continue
execution.

8.3.1 Initiating paths

The execution oi paths is initiated with a do inner paths statements.

do-inner-patlis-statement :.= inner;

48

When control reaches the statement, the path declarations of the local declarative part are
elaborated, and all declared paths may begin executio)n. Execution at the inner statement
is suspended until all inner paths have completed their execution. 1

8.3.2 Local request statements

.4 local path request allows for local synchronization and possible Hat"j Lransmission.

Iocai _tequest -statement :- l3CdI request c-e:

ocal-r.equest-ciause : send bok-..denn!31ion
Irece~ve box .denotation I delay expressio.)

box-denotation :zbox..name[(expression*, expression

A send or receive request must belong to the statement list of the path owning the denoted
boxes. A receive request can only be associated with an in box; a send request can only be
associated withi an out box.

For a box denotation specifying a family of boxes, the ey-pressions denote index values for
one membor of the family. Delay requcsts will be described in section 8.6.

8.3.3 Connect statenmentb

A connect statement specifies that a path is ready to connect with a box in another path.

cornnect-staternentA
connect path-denotation (box-denotation I-expression)
connect patdenotation ibox..denotation variablei

path~dt notation path-name I (expression i. expressionl

An expression or variable is given after a box denotation to denote 4 transfer of data. The
type of the expression or variable must be identical to that of the box denotation. The
specified box muist belong to the specified paRth.

For a path denotation specifying a family of paths, the exp~ressions specify the index values
for one member of the prath family.

i:~j 49

4

8.3.4 Rendezvous of local requests with connect statements

There are three rendezvous possihilitie'

ti) If the box has not been declared with a type (and thus has the mode in), the local
request must be a receive request and the corresponding connect statement must only
specify the box.

(2) If the box has been declared with a type and has the mode in, the local request must
be a receive request and the corresponding connect statement must specify an expres-
sion value for assignment to the box.

(3) If the box has been declared with a type and has the mode out, the local request must
be a send request and the corresponding connect statement must specify a variable to
which the value in the box is assigned.

In each case, a rendezvous results in a synchronization of path execution. In the second anid
third cases, a rendezvous also results in the transfer of data.

If a send or receive request is issu-d before a corresponding connect statement, execution of
the sending or receiving path is suspended until a corresponding connect statement is issued.
Similarly, if a connect statement is issued before a corresponding send or receive request,
the connecting path is suspended.

There may be several connecting paths waitinr for rendezvous on a given box. In this case
the first issued connect statement is used for the rendezvous. The remaining connect state-
ments will be processed on a first in, first out basis by subsequent local requests on the same
box.

I

Examples of send or receive requests:

11) receive STOP,

2) receive LINE,

13) send RESPONSE,
I

Exam I hs of asso('ated connect stateniunts in other paths.

j1) connect SCHEDULER (STOP);

t2i connect KEYBOARD DRIVER jLINE - NEWLINE),

(3) connect TERMINAL(1) (RESPONSE ANSWERi.

50

8.4 Select Statements

A select statement allows a choice of one or more statement lists based on their corres-
pocnding when Conditions and local request clauses.

select .-.statement

select selected-h ox ' 1selecteid-_box of
-when crrdtion) local _raC,,LeSt ...clause= &tatemnent-ist

end select.

st:lectccdIox bocx-denotatioc 1 multipl_-bux-selection

All boxes nwnitionel InI the list of setetd bouxes must lhe different. Each of these boxes

must alppeacr in exactly one' of the- local request clauses. The conditions must only contain
\'arialbles that arc' local to thle path.

A local rc'tjtccst clause is said to hcc openu if its corif- ponding when condition is true, and
closeLd iotl rwis(. A weal r'qJUcst clausec with no condition is considered open.

]xcutic~li of a sehict stalenivnt l)roc'e-(,is as follows;

uc) :Ali wtacnuc onda lions. arc eValuaLed t.1 dI-etinic wh ich c ucac requeszt claUSes are open.

thi If there are opeca c buses, the se-lect statemenet achieves, a rendezvous when any one of
its local requeICst clausesS IS mIatched,(1)5 a connect statemen01t issued from another path.

Whenl rec a .lcVOtas Oil jawedv(the statement list associatcd with the corresponding
Ii cal reqwta.; tclauseW i UxL tuted.

W)I If there- arc no ojoaci clauses. the selec-(t stateiment has no effect.

Icc uccacral. sei wa I al path Iccxxs mtay have bceen connected before a select statement is
icc U 111ri.-rd. A5 a rcsr; t wavi-railIoical reimcccst i--lauIses may be in inched with con nects. In this

aXVca1tt Vf sclvtt stetiocc risults IIII nextecutinnistiyaoi I exof

path CONJIRCII ER i START -READ in box.a
StFAHT AHIlE crn box.
STOP-READ in box.
S1U) Oil ilL in box).

RtAU& Il It-JTLOLI 0
begin

icoop

se lect 5c AR)H REAHII STAR-i WRITE I STOP-READ of
when R! AULFItS 0 receive START -WRiTE=

receive SIOPAVRITE,
when receive ST A RT REFA D

HREA iDE RS REAE-t S 1,

when receive STOP REIAL)-
llf AI)LRS READLRS 1 .

endl slect,

crlpat

8.4.1 Multiple box selections

A multiple box selection specifies a range of boxes in a given indexed box family.

multiple-box.-selection ::=
boxname (box-index j .box-index ,

box-index :i= all dentifier in range-denotation

An ider.tifier of a multiple box selection may only appear in the when clause whose local
request clause mentions the box family name. This when clause has the sarne effect as the
spt of when clauses obtained by substitution of all values of the range to the identifier. For
example the select statement

select B (all I in U. V) of
when CMI receive B(I=_, S(I

end select,

has the oane t-e'aning as the following expanded select statement:

select B(U ' ((B'VI of
when Ci(J) receive B(U) > S(U;-

when CV) receive B(V= S(V);
end select,

8.5 Example of Parallel Processing

The following example defines a buffering path to smooth variations in .he speed of output
between a producing process and the speed of input to some consuming process. For
instance, the path for the producing process may contain:

loop
GET (CHAR, DEVICE := UNITAt;
connect BUFFERING INCHAR := CHAR);
exit when (CHAR : ENDOFTRANSMISSION);

repeat;

and the path for the consuning process may contain:

loop
connect BUFFERING (FETCH);

connect BUFFERING (OUT-CHAR -: CHAR);
PUT (CHAR. DEVICE := UNIT-_):

exit when (CHAR END.OFTRANSMISSION};
repeat;

52

The buffering path contains an internal buffer of characters. The characters are processed
in a round robin fasihion. The buffer has two indices, an IN_-NDEX denoting the space
for the next input character, and an OUT-IJNDEX denoting the space for the next output
character.

Example:

path BUFFERING (FETCH in box;
N.CHAR in box CHARACTE R;

OUT-CHAR :out box CHARACTER);

BUFFER-SIZE conrtant -- 100;
type BUFFEPINDEX =(1 .BUFFER-SIZE);
BUFFER: array (BUFFER.JNCEX of CHARACTER;I

IN-INDEX, OUT-INDEX: BUFFER-INDEX := 1;

COUNT: (0 BUFFER -SIZE) :- 0;

begin
loop select IN-CHAR IFETCH of

when COUNT<BUFFER-SIZE roceive IN-CHAR
BUFFER(IN..JNDEX) : IN-.CHAR;
IN__INDEX :~(IN-INDEX mod BUFFERS'-IZE) 4 1;
COUNT :~COUNT +- 1,

whet, COUNT ',0 receive FETCH -
OUT.CHAR :-BUFF E ROUT-1 NDE X);
OUT.-.iDEX :~(OUT-INDEX mod BUFFER-SIZE) + 1,
COUNI : COUNT - 1;
send OuTCHAR;

end select
repeat:

end :BUFFERING!;

8.6 Delay Rcqursts

A delay clause is irnilicitiv assiociated with ai "box" l'Iinked to the iysteni cloc:k. 'Ilic. ex-
prePSSion Inl the delay clAISe SpecTifies anl interval of time, afte-r whili i implicit path issues.
a conne-ct statement to the *'Ioy. ".As at result, the path with the delay clause, is suspentled
for the (lesignl;t.A, Lin inturval.

For select statemnints wit iL! d elay claus, ailoth 'r bIox inl the I sL of ,vloct opjtions may hie
connected d uring the- delay interval. If this i)ccu rs, thet delay is can-elle I and the con nected
select. opt ion is prot (sse(I

53

All real time values may he expressed in terms of translation timie constants defined in a

standard library module for the particular object machine. Those values are given in the
basic time unit of the clock. Such constants will include declarations for HR (for hours),
NIN (for minutes), and SEC (for seconds), If the pragmat SIMULATION has been specified,
then time is managed hy a simulated time clock.

Example:

path REFFRESH-POSITION;
import only POSITION. SPEED;
LAST-TIME, THlS-TIME: INTEGER,

begin
LAST-TIME SYSTEM CLOCK;
POSITION 0;
loop

delay 10'tSEC;
TIS TIME -SYSTEM CLOCK;
POSiTION POSITION 4SPEEDfiTHIS-TIME - AST_1IME).
LAST-TIME THIS-TIME;

repeat;
end;

8.7 Interrupts

A box definition may have an inteIrrupt clautie specifying an uxlprebsion giving a particular
Interrupt level.

ifltIrript-C1 aWSP : Interrupt cxpresson

Interrupt boxes must have the mode in. with no associated type. An interrupt box ig

Imlicitly linked to a h.Ardware interrupt, whose nafme becomes that of the box.

An occurrence, of a hardware interrupt acts as a connect statemnent to the interrupt box of a
path. As such, a receivio re(Itue~t With an1 Interrupt box results in a suspension of the path
until the interrupt OCCUrs. An inter-cupt linked with a box is automatically unit -ked when
:he path executes a receive request on the box.

IF III a select stalvinent Containing ka local rtequest for an interrupt box, the interrupt is masked
if cc 'tihtr I ox I., ccn noc ted heforo JWe initerrapt occurs.

Examrple:

path CARD -RFADER INTERHUPr (ATTENTION in box,
DONE- in box intarrupt 4).

begisn[receiva ATTENTION,j
F' select

when receive DONE connect CH AJFIVERIFINISHI,
when delay 2 !3[C connect CR DRIVE RIEMPTYI,

endl(select,
repeat,

end,

54

_______--.

8.8 Path Attributes and Predefined Path Functions

There are several attributes and predefined functions associated with paths.

For a path P, the attribute P'PRIORITY gives the path priority. The predefined procedure
SET-PRIORITY takes an integer argument and sets the priority of a path to the integer

vaiue, Before such a call, all paths have the same standard priority.

When a path of a family F needs to reference its own index, for example tc pass it to
another path, it may use the attribute F'INDEX for that purpose. Similarly F"INDEX, may
be used for the second index of a doubly indexed family, and so forth.

For a box B, the attribute B'COUNT gives the number of external paths that have issued a
connect statement to the box hut have nnt yot hen serviced.

For a path P, the attribute P'CLOCK gives the cumulative processing time on the path. The
real time system clock may be accessed with the attribute" SYSTEM'CLOCK, where
SYSTEM is a predefined name denoting the system. The path execution clock may be set to
zero with the predefined procedure RESET.CLOCK of no arguments.

8.9 Scheduling of Multiplh Paths

There may be multiple paths that are ready to be executed by the system i)rocessors. In
choosing the paths to he processed, paths with the highest priority are processed first.
Paths of the same priority level are)rocessed on a first in, first out basis.

8.10 Low Level Input.Output Operations

A low level input-output operation is an operation acting on a physical file. Such an
operation is handled by using one of the two Frvdofined proce.dures SEND- CONTROL and
RECEIVECONT'tOL.

The SEND-CONTROL procedure may be used to send control information to a given
physical file, Seiding control information to a physical file may result in starting a data
transfer.

The RECEIVE .ONTROL prucedure may be used to monitor the execution of an input-
output olperation by requesting monitor information from the physical file.

For such olerations thi kind and formats of required control information %ill depend on
the machinc and i)hy.ical file charactrristics. I len'c these procedures will he predefin,,d
operations declare'l in a standard definition module for a givvn implementation.

'an lle

type DEVICE-ADDRESS - INIEGER;
type I-O .RANGE - (0 31)
type 1-OSTATUS - SETH -0 -RANGE),

RECEIVE-CONI,)L. proceduro (DEVICE: in DEVICE ADDRESS,
RESULT out I 0 STATUS!

5i 55

9. EXCEPTION HANDLING

This section defines the facilities for dealing with exceptional situations that cause a
suspension of normal program execution.

The environments whose execution can be prematurely terminated by an exception are
blocks, subprograms, and paths. Exceptions are introduced by exception declarations.
Exception handlers are subprogram bodies to which control is passed when an exception
occurs.

9.1 Exception Declarations

An exception is declared as a subprogram whose subprogram nature is exception. The I
declaration identifies the scope in which the exception may be raised and processed by a
corresponding handler. An exception subprogram may only have in parameters.

Several exceptions are predefined in the standard prelude. These include

OVERFLOW For exceeding the maximum allowed value of a number

ZERO-DIVIDE For dividing a number by zero

RANGEERRDR For exceeding the declared range of a variable

ILLEGAL-DATA For a data type error on input

INVALID-ASSERTION For violating an assertion

UNINITIALIZED For accessing the value of an uninitialized variable

TERMINATE For prematurely terminating the execution of a path or a subprogram

OTHER-EXCEPTIONS For dealing with any exception for which no explicit
handleT is given in the current scope.

L. iamples of exception declarations:

SINGULAR exception;
ENDOF._FILE exception;

CANCELREQUEST exception (CODE: REQUESTCODE);
STORAGEOVERFLOW exception (ZONE, SIZE: INTEGER);

56

9.2 Exception Handlers

The processing of an exception is specified by giving a subprogram body for handling the
exception. An exception may be processed by different handlers in different scopes. Speci-
fically, in any block, subprogram, or path that is within the scope of an exception declara- _4

tion, a local body may be provided to handle the corresponding exception.

When a handler is invoked following the corresponding exception, execution of the handler
replaces the remainder of the execution of the block, subprogram, or path where the
handler is provided.

Since the handler acts as a substitute for the corresponding unit, any statement that is legal
within the unit may be used within the handler. For example, a handler within a function
has access to its parameters and may issue a return statement on behalf of the function.

Examples:

excaptiom SINGULAR;
begin

PRINT ("MATRIX IS SINGULAR");
end;

exception CANCEL-REQUEST (CODE: REQUESTCODE);
begin

if CODE = ABORT then
raise TERMINATE;

else
DISPLAY ("REQUEST CANCELLED");

end if,
end;

9.3 Raising Exceptions

An exception is implicitly raised when an operation leads to a predefined exception
situation, or is explicitly raised by an exception statement.

exception._statement
raise [subproqram..call ifor path.namel

An exception statement raises the exception named by the subprogram call. The call may
specify input parameters to be passed to the corresponding handler If no subprogram call
is given, a raise statement reraises the most recently raised exception. Ai; exception
statement can also be used to raise an exception in another path.

57

Examples:

raise;
raise SINGULAR;
raise CANCEL-REQUEST (CODE CURRENTREQUESTCODE);
raise TERMINATE for PRINTER;

9.3.1 Dynamic association of handlers with exceptions

When an exception is raised, normal program execution is suspended and one of the follow-
ing events takes place.

(a) If the suspended block or subprogram does not contain a local handler for the
exception, execution of the block or subprogram is terminated and the same exception
is reraised in the outer block or in the calling subprogram.

(b) If a local handler has been provided, execution of the handler i'eplaces execution of the
remainder of the block or subprogram.

For example, consider the following program structure.

procedure P;
Q procedure;
R procedure;
ERROR : exception;

procedure Q,
exception ERROR; [handler E21
begin

end;
begin

R;
. [exception possibility (2) 1

end;

procedure R;
begin

[exception possibility (3) 1
end;

exception EPROR; (handler Eli

end;

begin IN
... [exception possibility 0)

end [P),

58

The following cases may arise

(1) If the exception ERROR is raised in the statement list of the outer procedure P, the
handler El provided within P will be used to complete the execution of P.

(2) If the exception ERROR is raised in the statement list of Q, the handler E2 provided
within Q will be used to complete the execution of Q. Control will be returned to the
point of call of Q upon completion of the handler.

(3) If the exception ERROR is raised in the body of R called by Q, execution of R is
terminated and the same exception is raised in the body of Q. The handler E2 is then
used to complete the execution of the body of Q as in case (2).I. Note that case (3) results in a dynamic binding, since the exception in R resuits in passing

control to a local subprogram of Q that is not visible in R.

Note also that if a local handler were given within R for the predefined exception
OTHER_.EXCETI"FLONS, case (3) above would cause execution of the handler for
OTHEREXCEPTIONS rather than direct termination of R.

9.3.2 Raising exceptuns in other paths

A path can raise an exception in another named path. A

If the other path is active, its execution is suspended and a handler may be dynamically
invoked as described above. If the other path is not currently active, processing of the
exception is deferred until the path becomes active,

If no handler exists in the other path, the same exception will be reraised in the outer

subprogram or path at the rejoin point after the inner statement that initiated the path.

9.4 Suppressing Exceptions

Exception conditions may be suppressed within a given scope by including in its declarative
part a pragmat of the form:

pragmat SUPPRESS identifier lst)

.ach designated exception is suppressed within the scope. As a result, no checks are
provided to insure that the exceptions do not arise. This facility may be especially useful
for the predefined exceptinns, since detection of some of them may be expensive unless
aided by special hardwrare. Snould they arise, the results may be unpredictable.

Examples:

pragniat SUPPRESS (RANGEERROR,SUJSCRI TERROR) "
pragmat SUPPRESS (INJ jALID.ASSERTION)

A

'51i s59

10. REPRESENTATION SPECIFICATIONS A

Representation specifications specify the mapping between data types and features of the
underlying machine that execute programs. Representation specifications may be more or
less direct: in some cases they completely specify the mapping, in other cases they provide
criteria for choosing a mapping.

Representation specifications must appear immediately after the declaration list of a declar- -

ative part, and may only be applied to types declared in the same declarative part. If pre-
sent, they apply to all objects of the type. In the absence of an explicit specification for a
given type, the representation will be determined by the translator. j

A

representation -specification =
packing-speci fication
length-specification A_
enumeration _type_.rcpresertatic.'
record-type-representation

10.1 Packing Specifications

A packing specification indicates that storage minimization should be the main criterion for
selecting the representation of a record or array type. In the absence of a specification, the
translator will generally minimize access time to record components or array elements.

pack ing-specif ica.ton

for type-name use packing;

For array types, packing specifications are allowed only if the element type is not itself a
composite type.

Examples:

for MATRIX use packing;
for FILEDESCRIPTOR use packing;

10.2 Length Specifications

There are three forms of length specifications. All forms include an expression whose value
is expressed in bits. Attributes may often be used to simplify the writing of these expres-
sions.

length specification " -
for type-name use expression,

J for path.name use expression;
I o access-typeunarne use 2xpression,

60

The first form indicates that objects of the type should be represented with a specified
number of bits. This number must be known at translation time, and must be at least equal :
to the minimum needed for the representation of variables of the type. A length specifi-
cation may be used to achieve a biased representation.

Examples:

type BIASED = INTEGER range (10_000.. 10-255);

for COLOR use ONEBYTF"
for ELEMENT use INTEGER'SIZE; I
for B IASED use 8. i

The second form of length specification may be used to indicate the amount of stack space
to be allocated to a given path. This amount must be known at translation time.

Example: [tbe constant PAGE is expressed in bits]

for PRINTER use 4*PAGE;

The last form of length specification is used to specify the amount of stack space to be
reserved for the collection of dynamic records designated by variables of a., access type.

Example: [a collection of 2000 persons]

for PERSON use 2000 * PERSON'RECORDSIZE;

10.3 Enumeration Type Representations

An enumeration type representation specifies tie internal codes for the elements of an
enumeration type.

enumei ation_ type-representation

for type-name use array -aggregate;

The array aggregate used to specify this mapping is an array aggregate of type

array (type-name) of INTEGER

All enumeration values must be provided with distinct integer va'Thes, and these values must
be known at translation time. The integer values specified for the representation of an
ordered enumeration type must satisfy the ordr relation of the type.

An actual array parameter whose index is an enumeration type with a non-contiguous
representation cannot be associated with a formal array parameter whose index is specified
by *.

61

-- - = "a m msg---- a-- h- w .. a. ... ,
=

.... -.:....- = =i . . ,

Example:

type MIX-CODE = (ADD SUB MUL I LDA I STA STZ);

for MIXCODE use
(ADD:1, SUB:2, MUL:3, LDA:8, STA:24, STZ:33);

10.4 Record Type Representations

A record type representation specifies the storage representation of records, i.e., the order,
position, and size of record components.

record-type -representation : =

for type.name use record [alignment expression;]
jcomponent.representation jend record;

component -representation
variable.riame at expression bits range.denotation;

An alignment clause specifies that records must be allocated at addresses that are exact
multiples of the number of bits specified.

The position of a component is given by the position of the storage unit containing the first
bit oi the component (at clause) and a bit range (bits clause).

For a given machine, the size of a storage unit is defined by the configuration dependent
constant SYSTEM'STORAGE._UNIT. The first storage unit of a record is numbered 0.
The fhst bit of a storage unit is numbered 0. The ordering of bits in a storage unit iz imple-
mentat on defined.

A component representation must define a storage field large enough for the component.
An implementation may place restrictions on how fields overlap storage boundaies.

All expressions appearing in a record type representation must have values that are known
at translation time. Translators must check that record components of a given variant do not
overlap.

A component representation may also be used to specify the address and width of a variabe.

Example:

62

typePROGRAM-STATUS-WORDI9 SYSTEM-.MASK atray (0. 71 of BOOLEAN;
PROTECTIONKEY (0. 15); I~
MACHINE-STATE array (A IM I W 1P) of BOOLEAN;
INTERRUPT-CtAUSE IIITER RUPTION-CODE;
ILC (0.3);
cc (0..3);

PRO'SRAM-MASK array (FIX I'DEC! EXP! SIGNIF) of BOOLEAN;

end record; i

for PROGRAM-STATUS-WORD use
record alignment 64;

SYSTEM-MASK at 0bits 0.. 7;

PROTECTION-KEY at 0bits 8.. 11;
MACHINE-STATE at 0bits 12.. 15;-
INTERRUPT-CODE at 0 bits 16.. 31;
I LC at 1 bits 0.. 1;*
CC ati1 bits 2.. 3

edPROGRAM-~MASK at 1 bits 4.. 7;
INST-ADRESSat 1 bits 8. 3 1;

10.5 CagofRepresentations

Only one representation can be defined for a given type. As a consequence if an alternate
representation of a given type is desired, it is necessary to define a second type which is
logically equivalent (has the same properties) but has a different representation.

Example:

-- PACK ED-DESCR IPTOR and DESCRIPTOR are two different
-- types with identical properties

type DESCRIPTOR=
record

end;

type PACKED-DESCRIPTOR - DESCRITOR;

for PACKED-DESCR IPTOR use packvig;

Change of representations may be accomplished by assignment with explicit type conver-
sions. Such conversions are legal for types declared as logically equivalent.

Examples:

D DESCRIPTOR;
P PACK ED-DESCRIPTOR;

P :PACK E DDESCR IPTOR (D); -- pack
D DESCHIPTOR (P); unpack

10.6 Configuration and Machine Depcndent Constants

Configuration dependent constants are expressed as attributes of the predefined name
SYSTEM. Similarly, translator options may be interrogated with boolean attributes of the
predefined name OPTION. Other implementation dependent properties of specific program
constructs may be interrogated using appropriate attribute qualifiers.

Examples:

SYSTEM'STORAGE-UNIT OPTION'SPACE
SYSTEM'MEMORY-SIZE OPTION 'TIME
SYSTEM'XNAME OPTION LIST

REAL'RAOIX SMALLINT'IMPLEMENTtD- RANGE
INTEGER'SIZE TABLE'ADDRESS

X. COMPONENT'POSITION !position of COMPONENT in storage units]
X. CONIPONENT 9FIRST..81T ifirst bit of bit range]
X. COMPONENT'LAST-BIT [last bit of bit range]

64

11. OVERALL PROGRAM STRUCTURE AND COMPILATION ISSUES 1

This section describes the overall structure of programs and the facilities for separate com-
pilation. Iii general, a program is a collection of one or more compilation units, which are
subprograms, definition modules, or paths. Exception bodies may not be separately com-
piled, since their use is local to a given scope. Compilation units may be grouped ii" libraries
to be reused by several different programs.

This section also describes generic program units, the facilities available for conditional

compilation, and the treatment of configuration dependent features.

11.1 Compilation Units

The body of a subprogram, path or definition module declared with the translation mode
separate is called a compilation unit and is compiled separately. This means that its text
may be submitted to the translator separately from the reet of the nr,.gram text.

Algorithm modules, another form of compilation units v ill .-scribed later.

conpiation_.unit = body I algorithm-module

Declarations of separately compiled units may only appear within the outermost declarative
part of a subprogram, which itself is scparately compiled. The main program is implicitly
declared in the standard prelude as

MAIN : separate procedure;

Examples of separately compiled units:

procedure MAIN;
1. : constant = 100,

S : separate defirition;
A separate procedure IX: in INTEGER),

begin

end [MAINI;

definition D;
I.IMIT constant INTEGER - 1000,
TABJLE " rray (l . LIMIT) of iNTEGER,

end (Dl,

65

procedure A (X: in INTEGER);
import D;
Y INTEGER;
C separate procedure;

begin

end A];

11.2 Recompilations and Scope Rules

The scope rules applicable to separate subprograms and paths are identical to those of
normal subprograms and paths. For example, a separate subprogram C declared in a sub-
program A has access to the identifiers declared in A, exactly as if C were declared as a
normal procedure.

The rules of recompilations follow the scope rules: a compilation unit must be recompiled
whenever another unit which it sees is recompiled, since the visible infomiation may have
been changed. As a consequence, recompilation of the enclosing unit A requires a recom-
pilation of inner separate subprograms or paths like C.

In addition, if a compilation unit C imports a definition D, it must be recompiled whenever
D is recompiled.

A different rule applies to separate definition modules. A separate definition module does
not have access to the local entities of the procedure where it is declared, unless it explicitly
imports the name of the procedure. As a consequence, a separate definition must only be
recompiled when any of the units it imports is recompiled.

The declaxation of a separate definition modi.le plays the same role as that of a normal
definition module; it identifies the point where the definition must be instantiated. A
separate definition may be compiled before the procedure where it is declared, provided
it does not import the name of the procedure. This possibility is essential for library def-
inition modules.

In the previous example:

(a) Within procedure A, the identifiers 1, and D de,:Idred in M,%[N are visible. The identi-
fiers LIMIT and TABLE imported from the definition rn'dule D are also visible.

(b) Within definition D, the identifiers L and A declared in MAIN are not visible since D

does not import MAIN. Thus D may he compiled either hefore or after MAIN.

(c) Recompilation of MAIN requires recompilation of A

(d) Recompilation of D requires recompilation of A

66

11.3 Algorithm Modules

Changes in a subprogram body or within the algorithm par of a definition module do not
affect units that import the definition, since these units only have access to the visible part.

As a result, to minimize recompilations, a definition module may be compiled in two
units: a definition module containing only its visible and private declarative parts, and an
algoritlim module containing its algorithm and initialization parts.

Similarly a subprogram may be compiled in two units: a subprogram body containing only
the declarations needed by inner compilation units, and an algorithm module containing
local declarations and the statement list of the subprogram.

An algorithm module bears the same name as the subprogram or definition module of which
it is a part. Recompilation of the algorithm module of a separate definition does not necessi-
tate recompilation of units importing the definition. Similarly, recompilation of the
algorithm module of a separate subprogram does not necessitate recompilation of separate
procedures and paths that are declared within the subprogram.

algorithm module : - =

algorithm identifier, declarative -part
[begin statement-list) end;

For example, consider the definition module RATIONAL_.NUMBERS of Section 7.3 de-
clared as a separately compiled unit:

RATIONAL.NUMBE RS : separate definition;

The first compilation unit contains all the information needed by other program units that
import the module.

definition RATIONAL-NUMBERS:
type RATIONAL

record
NUMERATOR INTEGER;
DENOMINATOR (1.. INTEGER'LASi,,

end record;
EQUIV function IX,Y. RATIONAL) return BOOLEAN,
ADD function (X.Y: RATIONAL) return RATIONAL;
MULT function (X,Y: RATIONAL) return RATIONAL;

end;

Note that the ahovc unit does not contain the function lodies. "'hesu arc in the separate
algorithm module:

67

algorithm RATIONAL-NUMBERS:
procedure SAMEDENOMINATOR(X,Y: access RATIONAL);
begin

[reduce, X and Y to common denominator]
end;

function EQUIV(X,Y: RATIONAL) return BOOLEAN:
UV: RATIONAL;

begin
U X;
V :Y;
SAME DENOMINATOR (UV);
return (U.NUMERATOR V.NUMERATOR);

end;

function ADD .

function MULT ...

end;

11.4 Libraries

Libraries can be constructed with separately compled subprograms, definition modules,
and algorithm moduleE. For standard user packages, wuch as an application level input-
output package, splitting of definition modules into two parts (one corresponding to the
user interface, the other containing the bodies) should be systematically used.

11.5 Compilation file

Compilers must preserve the same degree of type eafety for separately compiled unit's as
for other units. Consequently, a compilation file containing information on previously corn- -

piled units must be maintained by the translator. This information includes symbol tables
and information pertaining to the order of previous compilations.

A normal submission to the translator will inc!ude the text of the compilation unit and the
compilation file, The latter is used for checks and nay he updated by the current
compilation.

11.6 Colditiollul Co lpilatiol,

Statements appearing in a case statement wiji not be compiled if the case discriminant is
known at translation time wid if they are not in the alternaiive selected by the discriminant
value,

Similarly an if statt-nent with condit ions known at translation time may h,, used to achieve
condit ionpl compilation.

'7 '

Conditional compilation of declarations may be achieved in a similar fashion with a variant
part whose discriminant is known at translation time. Only the declarations of the trans.
lation time chosen variant will be compiled. A variant part that appears in contexts other
than a record declaration can only be used for conditional compilation; its discriminant
must always be a translation time constant.

Variant parts and translation time case statements can be used for compiling program
portions that depend on the object machine configuration. In such cases the discriminant
will be a translation time constant relating to the configuration.

In the example below, vanant parts and translation time case statements are used to produce
two alternative programs that differ only on the value of a constant CHOICE, which is set
to one of two values before compilation.

Example of conditional compilation:

CHOICE: constant (A ! B) = A;

procedure ALTERNATE (X REAL.),
case CHOICE of

when A => U REAL;
when B - . V LONG-REAL:

end case,
begin

case CHOICE of
whon A=- U -X;
when B = V := LONGREAL(X);

end case;

and [remaining statemeits of ALTERNATE)

Example of resulting choice:

procedure ALTERNATE (X REAL);
U: REAL;

beginIU : ,
[ren, !ning statcnient of ALTE R NATE I

end;

69

11.7 Generic Program Units

Generic program units are program units with translation time parameters specified by a
generic clause. Instances of generic program units are declared by generic instantiations. A1

goneric..clause =generic [Iidentifier-list)

generic-..instantiation
identifler: now generic-nature gefleric...fame

(generic..-.association~ {, generic..-.association II

generic -nature function jprocedure I definition I path .

generic -association

qeneric..parameter -.name ==expression

I eneric-Darameter-name ==name

The identifier list of the generic clause defines the generic parameters. They may appear
anywhere in the body of the generic program unit.

In order to create an instance of a generic program unit, replacements for the generic para-
meters must be provided by generic associations. Either a translation time expression or the
name of a p~reviously declared entity may he suhstituted for a generic parameter. This sub-
stitution is performed in the text of the generic program unit for each generic instantiation,

Instances of generic prograrti units may be used as program units. Note that when several
instances of the same generic definition module are imported in the same scope, renaming
clauses are usually necessary to resolve name conflicts. Within a generic program unit, the

type of a variable V may be denoted by the attribute V'TYPE.

Gen~eric program units may not be separately compiled.

Examples of generic declarations:

STACK =generic (ELEM, SIZE) definition;

SWAP generic (ELEM procedure (UV access ELMfA.I

Examples of generic instantiations:

SrACKJN~T new definition STACK(ELEM =-INTEGER, SIZE -- 200);
STACK-BOOL new detinition STACK(ELEM. =BOOLEAN, SIZE= 100);

EXCHANGE new procedure SkNAPIELEM INTEGER),

EXCHANGE new procedure SWAPIELE1M R EAL);

luI

Example of a generic definition module;

definition STACK;
PUSH procedure (E: in ELEM);
POP procedure (E: out (ELEM);
STACK-.ER~ROR :exception IMODE: (OVER I UNDER))

algorithm
SPACE urray 01 SIZE) of ELEM,
INDEX (0..SIZE) 0;

procedure PUSH (E: in ELEM);
begin

if INDEX = SIZE then
raise STACK-ERROR(OVER);

end if;
I NDEX =INDEX +4 1;
SPACE(INDEX) E I

end [PUSH);

procedure POP (E out ELFM);
begin

if INDEX = 0 then
raise STACK-.ERROR (UNDER),

end if:
E :=SPACE(INDEX);
INDEX =INDEX - 1;

aid (POP];

exception ST.ACK-ERROR,
begin

raise TERMINATE;
end [STACK-ERROR];

end [STACK),

71

APPENDIX A. SAMPLE INPUT OUTPUT DEFINITIONS

The general facilities offered by the Green language enable the construction of application
level input output facilities without additional language constructs. Thus standard appli-
cation level packages may be developed for major application classes, current or future,
without affecting the core language as seen by the users.

V_ The two examples provided below are meant to indicate the principle of construction of
such packages and to illustrate the general form of user interfaces.

The first example, CHARACTERFILEHANDLING corresponds to the treatment of
charactei files. The type FILE itself is private (i.e. its name is known but its properties
are not directly accessible to the user). The visible part of the definition module declares
procedures for standard file operations (creating, opening, closing) and for the procedures
GET and PUT. The algorithm part contains the bodies of these procedures, It may also
contain local procedures anti paths performing the necessary low-level input output oper-
ations. The initialization part creates and opens the standard files INPUT and OUTPUT.
Notice the use made of named and optional parameters in these calls of CREATE.

definition CHARACTERFILEHAND LING,

type FILE = private;

INPUT, OUTPUT . FILE;

type FILEACCESSMETHOD = (SEQUENTIAL ! INDEXED I DIRECT);
type FILERECORDFORMAT= (FIXED I VARIABLEI
type ACCESS-RIGHT (INPLTMODE I OUTPUT-MODE I UPDATEMODE);

CREATE procedure (NAME array () of CHARACTER:

nECORDLENGTH INTEGER = 80;
KEY-LENGTH INTEGER 0;

BLOCK-LENGTH INTEGER = 320;
ACCESS-METHOD FILE__ACCESSMETHOD:= SEQUENTIAL,
RECORD FORMAT FILERECORDFORM,1AT,- FIXED,
F out FILE);

DELETE procedure iF FILE);
OPEN procedure (F FILE, A . ACCESS_.GHTI,
CLOSE procedure (F FILE)

GET procedure tF FILE; BUF access array (a of CHARACTER):
PUT procedure (F FILE. RUF accoss array (*I of CHARACTER),
'other filt handling p:ocvduresC

A-I

private
type FLE..;J

algorithm

[internal tables and bodies of above procedures])-

begin

CREATE(NAME ' SYSIN"; F ': INPUT);
OPEN(INPUT, INPUT-MODE);

CREATE(NAME :-"SYSOUT"; F =: OUTPUT);,
OPEN(OUTPUT, OUTPUT-MODE);

end (CHARACTER. _F ILE..HANDL ING);

The second example is an interface definition module for Pascal-like Input-Output. TheA
corresponding algorithm module may be compiled separately and need not be shown to the
user.

definition PASCAL-1-0.
import F ILE-CHARACTER-HAND LING,

LINE-LENGTH: constant = 120;
subtype FIELD-WIDTH =INTEGER range (0 .. LINELENGTH ;

READ: procedure (V out CHARACTER; F :in FILE : INPUT);
READ: procedure (V: out INTEGER; F in FILE INPUT);
READ: procedure (V: out REAL; F :in FILE :~INPUT);

WRITE: procedure (E: in CHARACTER;

W: in FIELD-WiDTH := 1;
F in FILE -OUTPUT),

WRI TE: procedure (E- in BOOLEAN,
W: in FIELD-WIDTH := 5;
F: in FILE :=OUTPUT);

WRITE: procedure (E. in INTEGER;
W: in FIL.D-WIDTH := 10,
F: in FILE := OUTPUT):

WRITE: procedure (E: in REAL,
W: in FIELD.WIDTH A20;

W1l. in FIELD_.WIDTH :=0;

F: in FILE AOUTPUT);

WRITE; procedure iE in array I)of CHARACTER,
F: in FILE OUTPUT).

end)PASCAL-1OI

licre again the use of optional piarameters, and also of overloading permits. the user to
fc~nnulat&' calls to these))rocod(ures in a way wvhich is very simnilar to Pascal. Thus calls 'ould
h(%vritten as follow~s:

WRITE())' . RITE(2E101, 'ARITE(A 8), kR;TE (''THE END"),
A-2

3.9 Declarative pars 5. Statements ~
declai at ive..-part imrport -clausel declaration Istatewent - list x label! statement

representation -.specification 1 il body

statement - simple .statementI I coinpound...staement
body - subprogram-..body I def-nrion mnodule..-body Ipath-body i transfer..-statement

simple -statemenlt =assignment-.statemenst allocaton..stlatement

4.1 arialeisubproqram...call -statement I assert..statementl
4.1 Vriabes Isynchsiorsiation..Stemens i nl:ne-.statement

I null;
variable=

sarrable..rame I array..elemert Islice 1 record -component compound -.starcment - Lstatement I cose...statement

array~~~ ~ ~ ~ ~ -eeet=vraliexrsin epesooot) statementr select -.statement I block

arra eleent= va 'ale (xprssio ,epresiontransfer .statement uop.eit -statement

slice =variable ifrange..-denotation.i rerirn slazenet Iexception -statement

I goto -statement
record-componentm variable component -name I variable all lae 21fln~ir>
4.2 Scaler values and attributes

scaiar -.value - number I enumeration -value Iattribute 5.1 Assignment statements

altibute denctaton attribute .c1o.ilifier ass.gnmenl - statement - variable feptescin.j

dlerictarion
name .var iable .path -dtenotation Ibox -denotation 5.2 Allocation statements

dtlOCalicii;.statle-rent
4.3 Expressions iariab'e new ecord-.aggregate -

I variab:e newv tued -.expression.

simple..enprassion ;;elational - operator simple-expressin,

1srmpile..espressioe is (not" range-denotation 63 Subp-cogram calls

simple expiession = simple .. eipressrn addirg-.opieiatoi I term subprogrami -call -starerreni - sabprogram..call.

term iterm mult iplying. operator 1 factor subprogram ca! i subpiogram .ranse

factor I rnarycoperator I primary

paramerer -association

pi imars s ariable Iscalar valire I array .. agg'egate input ..associsori ourput..associatioe access -.association
I ricord aggregate lunar nir call rxresoi

Ihh Idifed, expresilonI none lo.I.ascaoi - uial .paia-eter,- enpressiori

funclion..Call subprogiam _ca o~uspult.-ass ociaror . lorini parametr I a,-abe

aiccess ..assocar-or formal. parameter at-b)
4.4 Operators

formal Isaramete' identIifie
relalioiial -operator -I C '. 2 >'

5.4 Return statements
addirs -operator or I eon

return statement :return jenprersicrir
inritin operator i mod Idir I and

Liriary 01Iw are i I not I abs 5.5 1! statements

i. statement
4.5 Osried expressions if cone-lon then statement ...lst

I vsed curdi'r'i then staremnent listt
Sjnai Iip ri es stress i @ lse statementl ... :st

tested . eprewssio i coirstianeefexpression erd if,

typed, expression tylpe - name lenpiressooI condition

expression I ard then expression I
cynsrared expression -subtype-..name (expression) expression ;orr else eeon I

B-2

APPENDIX B. SYNTAX SUMMARY A

2.9 Lexical elements 3.4.3 Real types

identifier-list :: identifier identifier real-type =precision smple -expression .

3.4.4 Enumeration Types
3.1 Dadarations

dnumerdt'onitmlp -

declaration - leirrueaton value enLmeration -value

elenent ldeclaration tI enumeir!,on-vaiue 1, . enumeration-.value
i sublvyiecdeciafation access -type_- declaration'
i subprowarndeclaaion I pathceclarationvahur 2- identifier j character I

Ieueainvli :-tnedcra'f idnife aces charactecaraio
I definition declaration I encr,c instantiation

I variant-part null;

3.5 Array types

3.2 Element declarationt array -type , array index index Of type

element .declaration ,,ex - inlqtj _decoratiOn I *

vatriabl -declarahon renamig dci i Cj o

I coistant - declaialIOr delerred. consiant deCiaiaron ,ange -denotaton 16,1ge

vat~~rg .deiiorarla aon - anl ciw- (rge ye.denotatio flvatLable...declaration - Juday _.cunsira-'ii lianyae..denion Ol ..,urye..denoiaiuon i'I)=

ientifier iist type I exl)iession'
.

renamng declaratcl - 3.5.2 Arras aggregates and strings

dent'iher type 7- i. -" rable. a

array. aggregate " character .strrg

constant-decaralton " i lrype..name. ieiment_.speciticdtioi I cleme t _I.c-hcat,on i)

identifier constant Irypel - expression.

ee Cii.icjQlaur 5VeiCr.Ov:i expr~SioI
delefted -constant _declarat ion

identi er constant type. selection selecred .'else setecled..siu . .

selected value

3.3 Tvpe and subtype dclarations number I enumeratio0_ salue range deno'ation others A

type...declaiatiori type identifier typs., defini ion.
3.6 Record types

rvPe.definitlion type i private Itarameterl

record-type - recorld componenltrisi end record.

type

simple .type-delnt on :Constraint: component list element declare on I variantpatl .

array-type 1 record-type

"adni . tra, case discm-rant of dva,-in end case,
limple . type-defindton scalar -type I type _denotat.on

d-scnnaiii va.ati,'trai'le

typecdenoaton : type- name I suhtype- name i attribute
sa,d ! when sItectli.- comrnly)e,. 1.r;

cc .5tr afuint

scalar -constraint arra - constra it . record _co.srr art

3.6.2 Record aggregates and record constraints

subtyoe _deciarat . n

s " ype identifier type -denotation constani . recoill .agg 9liat - Ilvpr_ lame Icomlicruel speCificat'or,

componewe . spec Icarm t ;

3.4 Scaler types

comllneW it mPciiCdi.tii

scalar type - discrel lty)e ceal trle ini [Urriri ,-i iarii cmyllonelii i;Jnhi i'xlieyyiui-

dlCiee-type - scaled type i enunielarron type iecord. verdi art c.(d agyicqate =

scalar constraint z range (range!

3 7 Access types
rang- = simple expression simle . e |l l

'
%i

)
i

access yl i l (l#,(I.ul ii - access type Ivtl type

3.4.2 Scaled typesl

scated, type = scale simleie-expression B-1

3.42= - 7l- dr-- as - - --

.6 Case statements 7.1 Specification of definition modules

cate -statement defi',.ioi - declaiation
q

case expiesson of jalternative 'end case, ideniier 1 translationmodel definition.

alternative when selecion -> statement list definition module. body

definition identifier declarative- part
5.7 Assertion statements Iprivate declaratrve -partl

assert -statement - assert Iconditioni . lalgortthm declarat~yeepartl
[begin statementlistj end;

5.8 Loop statements

loop _-statement i jiteration _sperficat'on' hatic !oop 7.6 Scope rules

basrc -loop - loop statemet I.s' repeat import clause - import none; I import jonlyI item j item t.

iter ation - soeitit.at~n - item identifier I (renamings-clause I .reiaming.clause 1)
white ciondiion until (o'i id-! io'

- for "O p i i.-a ra le, in [reverse) r a-19. (Ii ut1 1 , -t 1i am s claU;e new. rname - old -name

8.1 Path declarations

5 9 Loop exit statements path dcpclaralinir

.deiiw,fication itranslat-on -modei path box -part.

,op uxr saui',': exit 'when ci:.tu.

tin a iiai 'box l.t ,On box deflionl'll

5 10 Blocks

lio. reti-ti.oi
-udciititcat.oi box modebox type IInterupt clause)

decar usaa'. angin Sal uriri .1 orend. box ninth in I out

5 11 Goto statements ,rt r , Carl :

i(t.ti-t --*Aurr i u.')utatuo'u riqe de otathon iil

i 5 IA! i 1'4'i'.l goto .1' i-' lt

8 2 Path bodret

6 1 Subprogram declarations
Ilath _l}uuly

siiltiuqi()glarn l~Ptial. -lJ O path at'. .:ame tio. pars.

ralne' trartlatuc : ' od hi s':btrn ra 'rune f- -al pari. i1uclaiv . trai begin sta'rr "eu t list end.

.ilr)rirqia-i nah,.ti procedure tunetion I exception

8 3 Synchronization statements
i(i1 iit~a rai

, i ,)rir i''eT i , 'ir , li4d i'q't), i d i on *,r. I I return typel "sAIV,11iiioiialzi' ,l (ii ' paths statement

I ocal_,ir i is1 _stale.irit I connect statement

liararni D' d,1-0 uonsifsslm l
,
i'litl. iOif ' i |lii5~~

Id 'll ' hSI -,o le ' ex ,"so .

8 3 1 Initiating paths
mod, 0 l

"

in: I out a ccess

it, -:iei pihs ut iii'b inner

;larus.i d!-i MOh separate '''CriC 8 3 2 Local request statements

6 3 Subprogram bodies
Iora! cr -us! cildus' send lr)x denotation

s.rtl~r rrqildii ~rirrl- ! receive ix) ues';laoim di lay expression4
I inline! 1ssu r-gquair 't du'for i. tpar!,dta

fir im.t.:c I begin stslumu:! is I end Ix d'ritat on tow irair, I (extF) Sslo, l .i xtiresrson -I1

6.6 Code insertions

inhne icir aqqcvqate

B-3
ci

8.3.3 Connect statements 10.2 Length specificions

connect -statement . length specification

connect path.denotation (box -denctaton - expressionj i, for rypenamc use expression
connect path denotation (box.-denotation I variable!). for path. name use expresscn.

i1 for a:ccps type -namel utft expre.ss-on

path-denotation - path-name I (expression expression !)1 -1
10.3 Enunneratiton type representations t

8.4 S:eltaUtements :
enumeration_. type-representation 7 3

selectstatenient :: f, type-name use array-aggiegate.

elect se'ected_box selectedbox }of
. when lcondition! local - request -clause - statement -ist 1

end select, 10.4 Record type representations

selected-box - box - derotation I mult-ple box select on record- type representation "

for type name use record Ialignment expression.:
!component ._c-pfesentation end record;

8.4 1 Multiple box selections

'rnrn nnen representation -

multiple . box - selector vaiiable.name at expression bits range _denotat'on.

box name (box, index j box index -

be'_,,ndex - all identiher in age - denotator 1 1 Compilation units

comp.latior. unt - bOdy I algoI,thmimodule A
8 7 interrupts

.. tiiir. flt rl.-o - intetrupt xii'ssn 11.3 Algorithm modules

algor thin module-
9.3 Raising exceptions algorithm ,de:it !,i clclaraht .part

begin statement _sr end;
exception- statement

raise (suhproqram call Ifof alo. ame

11.7 Generic Program units

10. Representation specifications genirrc clause - generic i ,ldertif -hl) i

iLpiese iriat- ' specdicaton - generic - instlanlatoli.
odek ig sprci.ton iditfier new gerer: nature gere.ic_ name
lergth. sp.ec-tcal.nn (geriec -association gentric- asociaton !)J

eflimieit.Oi1 t 'et)reft't)I-
"icori typ i,.1e . tat n generic atu function procedure I definition path

ge nerc . assoc ator

10 1 Packing specifications gener-c. parameter _r.ame express:on
gener,c_parameIv -iamvi name

for tyc .. ianle use packing.

B-gI

BA

A

- --

APPENDIX C. INDEX -A
Access association (see Access Clock 8.6, 8.8

parameter) Code insertion 6.3, 6.6

Access parameter 6.2, 5.3, 5.3.1 Comment 2.5, 2.8, 5.7
Access type 3.7, 5.2, 10.2 Compilation facilities 11.
Access type representation 10.2 Compilation file 11.5
Access variable 3.7, 5.2, 10.2 Compilation unit 11.1
Actual parameter 5.3.1, 6.3 (see Component list 3.6

also Subprogram call) Component representation 10.4
Adding operator 4.4,2, 4.3, 4.4 Compound statement 5.
Algorithm module 11.3 Condition 5.5, 5.7, 5.8, 5.9, 8.4 -

Algorithm part 7.3 Conditional compilation 11.6
Alignment clause 10.4 Configuration constant 10.6
Allocation statement 5.2 Connect statement 8.3.3, 8.4,
Alternative 5.6 8.6, 8.7, 8.8
Array aggregate 3.5.2, 4.3, 10.3 Constant declaration 3.2
Array constraint 3.5 Constant record component 3.6.1
Array element 4.1 Constraint (see type constraint)
Array type 3.5, 3.8. 5.1.1, 10.1
Assert statement 5.7 Declaration 3.1 (see alo
Assignment statement 5.1 Declarative part and Scope)
At clause 10.4 Lpclarative part J.9, 5.10, 7.1,
Attribute 4.2. 2.6, 3.4, 3.4.2. 3.4.3, 7.6, 8.2, 8.3.1, 9.4, 11.1, 11.3

3.5, 8.8, 10.4, 10.6 Deferred constant 3.2, 3.61, 7.4
Attribute qualifier 2.6 (see also Definition declaration 7.1

Attribute) Definition module 7., 11.2
Definition module body 7.1, 3.9

Backus-Naur form ? 9 11.1, 11.7
Base type 3.8 Delay request 8.6. 8.3.2
Based number 2.3 Discrete type 3. 1
Basic loop 5.8 Discriminant 3.6.1, 11.6
Bits clause 10.1 Division .1.1.3
Block 5.10 Do inner paths statement 8.3.1
Body 3.9 Dynamic array 3.5.1
Boolean type 3.4.5, 4.4.
Boolean vector 3.5.3, -1.4.2, 4.4.3, Element declaration 3.2

4.4.4 Element specification 3.5.2
Box definition 8.1 Enumeration type 3.4.4, 3.4.5,
Box denotation 8.3.2. 8.3.3, 8.4 3.8, 4.5.2
Box index 8.4.1 Enumeration type representation 10.3
Box mode 8.1 Equality 44.1
Box part S.1, H.2 Exception condition 9., 4.5.3,

5.1, 5.7
Case stati ment 5.6. 1 1. 6 Ex(eption declaration 9.1, 9.3.1
Character 2.1, 3.1.5, 2.4 Exception handler 9.2. 9.3.1, 9.3.2
Character set 2.1 Exce'ption statement 9.3
Character string 2.4 Exception subprogram 9.1, 9.2. 9.3

(see also Array agrre.ate) Expression 4.3. 5.1, 5.3, 5.4. 5.5.
Character type 3.1.5 5.6, 6.1, 8.3.2, 8.3.3, 8.7,

10.2, 10.4

Factor 4.3 Loop exit statement 5.9
For clause 5.8 Loop parameter 5.8
Finnal paameter 6.2 (see also Loop statement 5.8

Subprg,,rui dtclaration aiid
Sul -ram body) Mvultiple box selection 8.4.1

Furictia j 4.3 Multiplying operator 4.4.3,
Function suh;'rogrum 6.4, 4.3, 6.5, 9.2 41.3. 4.4

11.7"

Guneric association 11.7 Nameu 2.1
Generic iim'.antiation 11 .7 Named parameter 5.3
Gui-ri' jiraicr 1].7 Namer 6i.1, 6.3, 6.5.1
(lirir program uni11t 11.7 Notation (see Syntax notation)
Global variable I see scupic) Null declaration 3.1
Unto Stitliflilt 5.11 Null statement 5.

Number 2.3. 4.2
ienirller (SI'I It~io~fn handleri Nuneric typei 3.4, 4.4. 4.5.1
I Ivki'.1 i- 111!a L nijilr 27

Ojw it~lit-st clause 8.4

Idiontifiher 2.2 Operator I.A, 6.5.1
H'.wlit"5 11A; Orderedc v. po 3.4i, 3 .4.4, 3.4.5

Index 3.5, 4 1 paranintert

fli~~tl~Y .11.1Oultput jiarametcr 6.2, 5.3I

Initi0al value 3.2 a1,5.3.2
11n1in1' sUatinmilit 6.6 Overloadiig 6.5
Inlir' subhprogram 6.3 Own variable 7.1

Input uttliltI low leII6.1o1 l-aranicivr assiatn.
IIijLflu I~ tjLit f19 high -1 1. 1 5.1 5:A.2

5.,3. 1, 15':1. 2, 6. 1 Patnt ty; -3.3. 3A!, 3.8, 1

lintegtir 2.;1, :;A. !w ,illso) SLtl; eand la.s' tylu'w
ljihitr Lyp, 3A.]I. 2.:1 Path body 6.2, 3.,9, 7 1,

liitirrLillt .? .7aPth dilclaratin 8.1, 7.3, -

ira-nti,, S w ' i, tiiof' .). 8:..1

K yv.-ord 2.i Paithi 'x i lii 9.:1.2, ..

si' il iii 2 Iiiiit .. LBt alm

'i Is I I I m It P;1 , " I .,rS i- u i g

6a a 2.5 2 M. 6.6.

),iwd rulm-0 Oik -jw-o h.1.2,Prirvdt), ul1:4'.

r

Predefined exceptions 9.1, 9.3 Short circuit condition 5.5.1

Prelude 9.1 Side effect 5.3.1, 6.4

Primary 4.3 Simple expression 4.3
Private part 7.4 Simple statement 5.

Private type definition 7.4, 3.3 Simple type definition 3.3
Procedure subprogram 6.1, 6.5, Slice 4.1, 5.1.1

11.3, 11.7 Spacing convention 2.8

Program 11. Statement 5.
Statement list 5., 5.5, 5.6,

Qualified expression 4.5, 4.3 5.8, 5.10, 7.1, 8.2, 8.4
Storage unit 10.4

.Auise statement 9.3 String (see Character string)
Range 3.A, 3.b, 4.4.1 (see also Suhprogramn body 6.3, 3.9,

Range denotation) 7.3, 9.2. 11.1
Rang - denotat-im 3.5. -1.3, 8.1. Subprogram call 5.3, 6.2,

8.4.1 6.3, 9.3
Real number 2.3, 3.4.3, 3.8 Subjru.,ram d,,laration 6.1,
R(A, type 3.i1.3, 2.3, 3.8 6.3. '1.2, U).1

Rtltcmivui rcqILIst 8.3.2, 8.3..t .SubprOgra i nature 6.1
Recompiiation rul. 11.2 .Subtylpe 3.3, 3.- 1.5 3

R,'cord agregatv 3.6 .2, .13, 5.2 Suhtype' de(laratlon , 1

K u',rd (o1l, Po nt 4.1. S~li)prcssd excptit;,

Record constraint 3.6.2 Sv.-ihron/ation 8.3. 6.1, 8.4

lb,,,-,,r t wviu 3,6. 3.8, 5.1.2. 10.1. Syntax notation 2.9
10." ise :)Is() Arvcss tylw)

,'curd tyi,,' r(l, c,,'Mntli' 10.1.10.1 Terl .1.3,

Relaiioi;ul o erator 1.1.1, 4.3, 1.4 '.rmisler statement 5.
lt Ral u1-inlr 2.3, 3. 1.3, 3.8 Iratslation mood' 6.1, 7.1, 8 1 -

Rmimmg clause 7.6 TransIatr olJ ioli 10.6 (s,.e also _

H',mminig d,,claraiion 3.2 Pragmat)
"'i ,d ti.r) us 8.3, 8.3.4, 8.4 Type conformlity 4.8, .1.4,

r I ato 'liani 19.5 5.1, 5.3.3
lto(prl'S'!A1 .l ' '% yI(, onstraint 3.3, 3.'4, 3.'.1,

I t. 3t,8, 3.) 3.5, 3.6.2. 3.8. 4.5.3,
|(,,torn ,t,'cnwnI 5.41, G..1 5.1 .

"'iii ~tl. l ve r, rioi) ,.5.1,3. ,

S(alin (,I rain l 3..1 -. 1 0 . 1.N ,5

, ala i I, . ,2 2 1.: 'lNi,d,' lara n J.3
S;, idair vt'!ur 4.2 Tl'yp d('1111tatlll J.3

Scai,.,' . .. Tyvrd cxprc:smo'n'4.5.1, 1.5.2, 5.2
. I :d ' i 1 1 2 ., '
h, I llm, ?S..9. S :.1 . 1. M.(. lliiar oplutrat r-1.I. 1, .1.3, 4A.A

" ' "1"' ; 9 ;, IlL 7 .1. I ll;,v ,lgii;ihl ' it.,- rtl 1. l:1,l l . .1

:,,,q=~V~t ,,wi', S " l, V lld, I I .- I.. 5.1..-,.2,

J S, , , : i I (). I
, -5 2 1 h V ;I) u:n; 1l 3.6. 1 , . 1.] 1 1.I

,'mld 1,. UlJ t t; : 2 b1 \ l n ' ialt 7.2d , 1 .

XI

f4

