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1. INTRODUCTION

This report describes the Green language. Designed in accordance with the Ironman require-
ments of the Department of Defense, the Green language represents a new attempt to com-
bine classical language features with features often found only in specialized languages.
These include facilities for handling exceptiona! conditions, parullel processing, represen-
tation specifications for data, encapsulated definitions, low level input-output, and access
to system dependent parameters.

1.1 Design Goals

The Green language wers designed with three overriding concerns: a recognition of the
importance of program reliability and maintenance. a deep concern for programming as a
human activity, and efficiency.

The need for languages that promote reliability and maintenance is well established. Hence
emphasis was placed on program readability over program writability. For example. the
Green language requires that program variables be explicitly declared and that theoir type be
specified. Automatic tvpe conversion is generally prohibited. As a resuit, translators can in-
sure that the types of objects satisfy their intended use. Furthermore, error prone notations
have been avoided. and the language syntax avoids the use of encoded forms in favor of
more English-like constructs. Finally, the language offers strong support for separate compi-
lation of program units.

The concern for the human progranimer was also stressed during the design. Above all, an
attempt was made to keep the language as small as possible, avoiding special cases and elab-
orate features that often hinder rather than assist programming. The structure of the lan-
guage minimizes the number of underlying concepts, and an attempt was made to integrate
all features in a consistent and simple way. The fact that the form or meaning of a2 proposed
construct was difficult to express in a systematic way was grounds for rejection c¢f the
construct. N

No language can avoid the problem of efficiency. Languages that require overly elaborate
translators or that lead to the inefficient use of storage or execution time force these in-
efficiencies on all machines and on all programs. Everv construct in the Green language
was examined in the light of present implementation techniques. Any proposed construct
whose implementation was unclear or required excessive machine resources was rejected.

Perhaps most importantly. none of the above goals was considered something that could be
achieved after the fact. The design goals drove the entire design process from the beginning.
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1.2 Language Summary

A program in the Green language is a sequence of higher level program units, which can be
compiled separately. Program units may be subprograms (which define executable
algorithms), definition modules (which define collections of entities), or paths (which define
concurrent computations). The facility for separate compilation allows a program to be de-
signed, written, and tested in independent parts. This facility is especially useful for large
programs and the creation of libraries,

A subprogram :s the basic unit for expressing an algorithm. A subprogram may have para-
meters, which specify its connections to other program units. The Green language distin-
guishes three kinds of subprograms: procedures, functions, and exception handlers.

A procedure subprogram is the logical counterpart to a series of actions: for example. it
may read in data, update variables, or produce some output. A function subprogram is the
logical counterpart to a mathematical function for computing a value; unlike a procedure,
a function can have no side effects. An exception subprogram 1s the logical means for
handling a special situation that can occur dynamically during program execution, e. g an
arithmetic overflow, an invalid assertion, or a user defined exception situation.

A definition module 1s the basic unit for defining a collection of logically related entities.
Portions of a definition module may be hidden from the user, thus allowing access only to
the logical properties expressed by the definition module. For example, definition modules
may be used to define a common pool of data and types, a package of related subprograms,
or a collection of new encapsulated types.

A path is the basic unit for defining concwrrent computations, Paths may be implemented
on multiple processors or with interleaved execution on a single processor. Communication
between paths is handled by associating boxes with each path. The hoxes allow for synchro-
nization between paths and for transmission of data.

Each program unit generally contains two parts: a declarative part, which defines the logical
entities to be used in the program unit, and a list of statements, which define the execution
of the program unit,

The declarative part associates names with declared entities. A name may denote a type, a
constant, or a variable. A declarative part also introduces the names and parameters of other
subprograms, paths, and definition modules to be used in the program unit.

Statements describe actions to be performed. An assignment statement specifies that the
current value of a variable is to be replaced by a new value. A subprogram call statement in-
vokes execution of a subprogram, after associating any arguments provided by the caller
with the corresponding formal parameters of the subprogram.




If and case statements allow the selection of an enclosed statement list based on the value of
a condition or expression at the head of the statement. An acsertion statement states that
some correctness condition must hold whenever control reaches that point in a program. An
exception statement explicitly raises a special situation requiring the action of an exception
subprogram.

The basic iterative mechanism in the language is the loop statement. A loop statement
specifies that a list of statements is to be executed repeatedly until an iteration specification
is completed or a loop exit statement is encountered.

Certain statements are only applicable to paths. An inner statement specifies that a set of
paths may begin execution. A connect statement specifies that a p:ith is ready to connect
with another path through one of its boxes. A local path request specifies that the path is
ready for connection from another path.

Whenever a rendezvous is achieved between a local path request and a connect statement,
any specified data transfer takes place, and both the local path and the connecting path may
continue.

Every element in the language has a type, which defines its logical properties and the oper-
ations that can be performed on elements of the type. There are two basic classes of types:
scalar types and composite types.

The scalar types INTEGER, BOOLEAN, and CHARACTER are predefined. Scaled types
provide a means of performing exact numerical computation, without the restriction to
integer values. Real types provide a means of performing floating point computations, which
are necessarily approximate. Enumeration types provide a means for users to define problem
dependent types with discrete values.

Composite types allow definitions of structured collections of related elements. The com-
posite types in the language are array structures, record structures, and accesses to record
structures that are allocated dynamically. A family of record structures may be defined by
associating a record ty pe with a variant part.

The concept of a type is augmented with the concept of a subtype, whereby a user may con-
strain the set of allowed values in a type. Subtypes may be used to define subranges of scalar
types, arrays with a limited set of index values, and records with a particular variant.

Representation specifications may be used to specify the mapping between data types and
features of an underlying machine. For example, the user may specify that an array is to be
represented in packed form, that objects of a given type must be represented with a speci-
fied number of bits, or that the components of a record are tc be represented in a specified
storage layout.

Finally the language inciudes facilities for conditional compilation and for generic program
units.
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1.3 Sources

In his initial preface to the Pascal report, Niklaus Wirth stated “‘the choice of what is to be
omitted from a new language is in practice much more critical than the choice of what is to
be includud. The decision to omit a feature requires not only familiarity with this feature
(and knowledge how to live without it) but the courage to face the inevitable criticism of
its absence in the new language in spite of its presence in another existing language.”

This proolem existed in this design, although to a much lesser degree than usual because of
the Ironman requirements. These requirements often simplified the design process by per-
mitting us to concentrate on the design of a logical system satisfying a well defined goal,
rather than on the definition of the goals themselves.

Another significant simplification of our design work resulted from earlier experience
acquired by several successful Pascal derivatives developed with similar goals. These are the
languages Euclid, Lis, Mesa, Modula, Sue, and CSd. Many of the key ideas and syntactic
forms developed in these languages have a counterpart in the Green language. We may say
that whereas these previous designs could be considered as genuine research efforts, the
Green language is the result of a project in language design engineering. in an attempt to
develop a product that represents the current state of the art.

Seveldl exisiing languagos sdein us Algol 68 and Simiula and also recent research languages
such as Alphard and Clu influenced this language in several respects, although to a lessel
degree than the Pascal family.
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2. LEXICAL ELEMENTS

This section defines the lexical elements of the language.

2.1 Characters

B (154 ks s nt A R L

All lexical elements may be composed from the 64 character subset of ASCIl. These
characters are grouped as follows:

T

7

(a) Alphabetic characters
ABCDEFGHIJKLMNOPQRSTUVWXYZ

{(b) Numeric characters

3 (c) Special characters
3 !"#(3%&'()*4— [, < =2>2@ [ \N]~

[} LA |

(d) The underscore character

and the space character. -

2.2 Identifiers

An identifier is formed by a sequence of alphabetic and numeric characters, the first being
alphabetic. An underscore may be inserted bet:veen parts of an identifier. An identifier must
fit on a single line, and all characiers are significant. An identifier that has been declared is
genevally referred to as a name, with a prefix designating its use, e.g. variable__name or
type._name.

Examples:

COUNT X LINE_COUNT GET_SYMBOL
SNOBOL_4 X1 PAGE_COUNT STORE_NEXT_ITEM

2.3 Numbers

There are three classes of numbers: integers, scaled numbers, and real numbers. An under-
score may be inserted between parts of a number, but is not considered significant.

Integers are formed by a sequence of humeric characters.
Examoles:

12 0 1977 123456 123456

1
E |
3
3
E |
3
3
3
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A scaled number is written as an integer or as a sequence of numeric characters with a
medial decimal point.

Examples:
1zn 0.0 123.456 100001 1200

A real number is formed by appending the letter E and an exponent to an integer or a scaled
number, An exponent is an integer cptionally prefixed by a + or —sign.

Examples:
12.0E10 0€Eo 1E-6 3.14159_26535E0

Non decimal integers with base 2,4,8, or 16 are written as a sequence of numeric characters
followed by a # and a base. For hexadecimal numbers (base 16), the alphabetic characters A
through F may be used with their conventional meaning, provided that the number begins
with a numernic character.

Examples:
011001182 17778 2FEEEX#16  OFFFZ16
2.4 Character Strings

A character string is formed by a sequence of characters enclosed by quote marks. Strings
of length one also denote literals of character types. If a string contains a quote mark, the
quote mark must be written twice. Each string must fit on a singlc iine. Multiple line strings
may be formed using the concatenation operator &.

Examples:

AT TR ASMALL STRING”
"FIRST PART OF A STRING THAT" &
" CONTINUES CN ANOTHER LINE.”

2.5 Comments and Pragmats

Comments may be placed within programs. A stand alone comment start: with th> charac-
ters -~ and is terminated by the end of the line. This form of comme~t may not appear
within an expression or statement. An embedded comment is enclosd by left and right
square hrackets, Embedded comments may not cross line boundaries. Comments are totally
1ignored by the translator; their sole purpose is the enlightenment of the human interpreter

of the program. For readability of this manual, comments will be written with both upper
and lower case letters.

Fragmats (for pragmatics) are used to convey information to the translator, They start with
the keyword pragmat and are terminated by the end of the line. A pragmat may not anpear
within a simple statement or within a declaration.
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Examples of comments:
end [GET_SYMBOL;J,

- a stand aione comment
—-— and its continuation.

Examples of pragmats:

suppress listing

restore listing
optimization specification
include text file

set debugging mode

pragmat NO_LIST

pragmat LIST

pragmat OPTIMIZE TIME

pragmat INCLUDE COMMON_TEXT
pragmat DEBUG

2.6 Attribute Qualifiers

Attribute qualifiers denote attributes of program constructs. An attribute qualifier 1s formed
by prefixing one or more occurrences of the character " to an identifier. Their use is
described with the corresponding language constructs. Since attribute qualifiers always
contain a ' character, their identifiers need not be reserved.

Examples:

DAYE'SIZE REAL'PRECISION SYSTEM'CLOCK A 'LAST

2.7 Reserved Keywords

Language constructs may contain reserved keywords. These words may not be used as
identifiers, and are listed below. For readability of this manual, the keywords appear with
lower case letters in boldface; in actual programs they may be entered with upper case
ASCII letters.

abs declare if or scale
access definition import others separate
algorithm delay in out select
alignment div inline send
all inner packing subtype
and interrupt parameter
array else is path
assert elsif pragmat then
at end loop precision type

exception private

exit mod procedure
begin until
bits new raise use
box for none range

function noi teceive

null record when

case repeat while
connect neneric of return
constant goto only reverse xor
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2.8 Spacing Conventions

Spaces may be inserted freely between lexical elements. Exceot for commenrts and pragmats,
an end of line is equivalent to a space. At least one space must appear between two
identifiers (reserved or not) that are not separated by a special character.

2.9 Syntax Notation

In the remaining chapters, a simple variaunt of Backus-Naur form is used to describe the
context free syntax of the language. In particular,

(a) Lower case words, possibly containing medial underscore, denote syntactic categories,
©.g. adding_operator

(b) Boldface words denote keywords in the language, e.g. array
(c) Square brackets encluse optional items, e.g. return {expression)

(d) Braces enclose items 1epeated zero or more times, For example, a list of identifiers is
defined as:

identifier _list : ;= identifier { identifier}
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3. DECLARATIONS AND TYPES

This section describes the types in the language and the rules for declaring constants and

variables.

3.1 Declarations

A declaration associates a name with a language construct. There are several kinds of

declarations.
declaration ; : =
element_declaration

subtype _declaration

definition _declsration

type _declaration
access _type_declaration

generic_instantiation

|
{ i
| subprogram _declaration | path_declaration
I i
J f

valiant_part null;
A null declaration introduces no new names; it may be used, for example, to define a record
variant with no components. Declarations for elements, types, subtypes, and access types
are described here. The remaining declarations are described in later sections.
3.2 Element Declarations
Element declarations introduce constants and variables.

element _declaration : : =

variable _declaration |
| constant_declaration |

renaming.declaration
deferred _constant_declaration

variable _declaration : : =
identifier _list: type [: = expression] ;

renaming_declaration : : =
identifier: type == variable;

constant_daclaraticn : : =
identifier: constant [type] - - ression;

deferred _conctant _declaration : : =
identifier: constant type;

A variable declaration associates one or more identifiers denoting new variable names with

a type. The declaration may specify an initial value for the variables. Each initialization is
equivalent to an assignme 1t statement performed immediately after the declaration.
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A renaming declaration acsociates a local name with a variable. The local name can be used
as a shorthand for the variable, e.g. in references to an array or record structure.

A constant declaration associates a name with a value specified by an expression. The value
is computed when the constant declaration is elaborated. The type of the constant may be
omitted when the value is a literal whose type is known,

A deferred constant declaration specifies the name and type of a constant whose value is
computed in specially restricted contexts.

st i i

3.3 Type and Subtype Declarations

=

Examples: %
=

= |

ITEM_1,ITEM _2  : INTEGER; i
SORT_COMPLETED : BOOLEAN :» FALSE; %“‘
OPTION_TABLE : array (1. .N) of OPTION; =
E

ANCESTOR : PERSON == JOHN.FATHER MOTHER; 3
E |

ACCURACY © constant = 1€-30; 3
LIMIT : constant INTEGER = 10..000; 4
NULL_ENTRY . constant ENTRY: 3

A type specifies a set of properties for elements of the type. A type declaration associates a
name with a type,.

type —declaration o= type identifier = type_definition;
type _definition .= type | privete (paramater)
ype: =
simple__type_definition {constraint]
i array _tvpe i record__type
simple _type_definition ::= scalar_type | type_denotation
type_denotation ;= type_.name | subtvpe_name |  autribute
constraint
scalar_constraint | array_constraint | reccrd._constraint E

subtype ..declaration @ : =
subtype identifiar = type_clenotation [constraint] ;

Wt ot tb
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A subtype declaration associates a name with @ parent type whose properties may be limited
by some constraint. The use of private as a type definition is explained in the section on
definition modules.

3.4 Scalar Types
Scalar types describe discrete values and the real numbers. Discrete types may be used for

indexing. The scalar type names INTEGER, BOOLEAN, and CHARACTER are predefined
discrete types. Other types may be declared by the user.

scalar_type :: = discrete_type | real_type | (range}
discrete_type :: - scaled_type | enurneration _type
scalar_constraint . : = range (range)

range = simple_expression .. simple _oxpression

A scalar constraint is specified by giving a range that describes a subset of values of the
parent iype. The range L. . . R describes the subset of values from L to R inclusive, A scalar
tvpe given w8 a range is equivalent to giving the parent type of the expressions defining the
range, with the range as a constraint.

The functions SUCC and PRED are predefined on all discrote types for which there is an
implied ordering. They return the next higher or lower value in the range of values for the
type. In addition, for an ordered discrete subtype or type T, the attributes T'FIRST and
T'LAST denote the minimum and maximum values of the type.

3.4.1 Integer types

The predefined type name INTEGER denotes a subset of the whole numbers. The range of
integer numbers is imphcitly limited by the representation adopted by an individual imple.
mentation. Derived types may be obtained by imposing a range constraint,

Examples:

type PAGE_NUM = INTEGER;
type LINE_SIZE (1. .MAX_LINE_SIZE);

subtype SMALL_INT = INTEGER range (-10..10);
subtype COLUMN_PTR = LINE_SIZE range (1 .. 10);
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3.4.2 Scaled types

Scaled types provide a means of performing exact numeric calculations on non-integer
values. Corresponding to every scaled type, there is a constant scale factor, All guantities
of the type are an integer multiple of the scale factor. The scale factor is specified in the
type declaration and has a value which is either an integer or the reciprocal of an integer.

scaled_type :: = scale simple_expression

The value of the expression defining the scale must be known at translation time. Within

the scope of the type, the scale factor of ascaled type T can be accessed with the attribute
T'SCALE.

Examples:

type TICK = gscale 1//60 range (0 .. 3600);
type VOLT = scale 1//1000 range (0 .. 1.5);
type JOULE « scole 1000 rangs (0 .. 1_..000_000);

3.4.3 Real types

Real types provide a means of performing floating point computations, which are
necessarlly approximate. The relative precision of a rcal number is specified in the type
declaration, and is used to bound the errors inherent in floating point computation,

real _type :: = precision cimple_exprossion

The value of the expression defining the precision must be known at translation time. With.

in the scope of a real type T, the precision of the type can be accessed with the attribute
T'PRECISION.

Fxamples:

type LONG._REAL = precision 1E-—-40;
type COEFFICIENT =~ pracision 1E—10renge (- 1EQ .. 1EQ);

3.4.4 Enumeration types

An enumeration type defines a sel of values by listing the values of the type. These values

are unordered [ the separator ! s uscd; they are listed in incressing order if the separator
- {n used.

gnumeration _type @ . =
{enumeration..valun { ! enumaration _valuo })
i lenumerstion volue { < enumerstion.. value })

enumeration _value v identifior ! characier

ol wﬂ.p el 0l gl
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Exam)les:

type SUIT = (CLUBS < DIAMONDS <. HEARTS << SPADES);
type HEX_LETTER = (VA" | “B” | “C" | D" | "E" | “F");
type DAY @ [MON | TUE | WED 1 THU | FRI I SAT | SUN);

subtype WEEK _DAY
subtype REST_DAY

DAY range (MON .. FRI);
DAY range (SAT .. SUN);

3.4.6 Boolean and character types

The enumeration type name BOOLEAN is predefined. 1t contains the two unordered values
TRUE and FALSE.

The enumeration type name CHARACTER is a standard library defined type. The allowed
characters and their ordenng are defined by a given implementation.

3.5 Array Types

An array s a collection of elements of the same element type. The elements of an array are
designated by indices.

array..type :: = creay (index {, inuex }) of type

index : : = range_denotation i *

range..denotation @ [ = range { type_denotation

array _constraint : : = (range. denotation {range_denotstion })

The type of an array is given by the number of its indices and the 1ype of its clements. An
index has a specified range, which is not part of the type of the array. The index * denotes
an arbitrary range of any discrete type,

When an array type name has been defined in a type declaration, an array constraint may be
associated with the name in order to specify the actual ranges of the indices.

For an array type ‘I, the attributes T'RANGE, T'FIRST, and T'LAST denote the range of
the first index, its lower bound, and its upper bound. Similarly, the attributes T' 'RANGE,
T' 'FIRST, and T’ "L AST serve the same role for the second index, and so forth.
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Examples:

type T = arrsy (»#) of BOOLEAN; , o :

A T{1..10,1..100);
8 : array (1..10,1.,100) of BOOLEAN;

A'FIRST [value is 1)
A''LAST {value is 100]

3.5.1 Dynamic arrays

it o 0

The range of each index for an array must be known at the time of array allocation. If the
range of an index is not computable at transiation time, the array is considered as a dynamic
array. Dynamic arrays may also appear in records denoted by access types.

i

3.5.2 Array aggregates and strings

.

An array aggregate denoles a value for an array, i.e. is a constructor for an arrs-
Indices are dennted by selections and element values by expressions.

arrgy _aygregate . . = character_string
| [type..name) (element_spacification {, element_specification })

element_specification : : = selection: expression
selection : : = setected_value {| selected_vslue}

selacted _value : : =
number | enumeration _value |  range_denotation | others

A selection specifies a set of individual values of a discrete type. A range denotation given in :
a selection stands for all values in the range. The keyword others denotes all other elements

not specified in previous selectinns. Selections are also used in case statements and record
variants,

A character string is considered as an array aggregate. A string of N characters for N = 1 is :
an array of a character type. Its range is 1. . . N,

Multi—dimensional array aggregates are treated as arrays of arrays.




Examples:

type TABLE = array {1..10) of INTEGER;
type LINE = array (1.. MAX_LINE_SIZE} of CHARACTER;
A: TABLE := (1t 2: 1, others: O);

BLANK_LINE: constent LINE = (1. MAX_LINE_SIZE: = ");
3.5.3 Sets
The predefined type name SET denotes one-dimensional boolean arrays.

type SET = array (*) of BOOLEAN;
Boolean valued operators are applicable to boolean vectors, i.¢, one dimensional boolean
arrays. These operators perform the corresponding operatior:s on an element by element
basis. Array aggregates inay be used *.c denote set values.

Examples:

type WEEK = SET (DAY}; I set type)
{TUE!THU: TRUE, others: FALSE) set © 2 days)

(Xand Y) = X {test if X is a subset of Y]
X (E) = TRUE (test if € is an element of X])

3.6 Record Types
A record type defines a structure witk :veral components. The names and types of the

components are introduced in the element deciusations of the component list. A record type
may include a variant part and hence define a family of structures.

record_type : : = secord component_lict and record
component_list : . = {element_declaration } [variant_part]
variant_part : : = case discriminant of [variant} end case;
discriminant : : = variable _name

variant : . = when selection =~ component_list




An element declaration defining a record component may specify an initial value for the
component,

Example:

type DATE =
record
DAY oL 30,
MONTH: MONTH_NAME;
YEAR : (0. 2000):
end record;

3.6.1 Constant components, urassignable components, and variant parts

A record component declared as a constant serves to denote a constant valued component
that has the same value for all records of the type.

A record component declared as a deferred constant is an unassignable component. Its value
may only be set by a complete record assignment,.

ST T TR T I ST T TN AT 4 MR MUY "7 S L I

A record type with a variant part specifies a family of record structures. A variant part is
discriminated by a previously declared component called the discnminant (or tag field).
Each variant defines the components for the corresponding value of :he discriminant. The
discriminant must be declared as a deferred constant and hence is unas.ignable.

Example:

type PERIPHERAL =
record
STATUS: (OPEN | CLOSED);
UNIT : constant (PRINTER ! DISK ' DRUM);
case UNIT of
when PRINTER => LINE_COUNT: (1.. PAGE_SIZE};
when others =>
CYLINDER :CYLINDER_INDEX;
TRACK : TRACK _NUMBER;
end case;
end record;

3.6.2 Record aggregates and record constraints

A record aggregate denotes a value for a record, i.e. is a constructor for a record. The value
is constructed by giving the values of its components.




record_aggregate :: = {type_name] (companent_specification
{,component_specification })

component_specification :: =
component_name {lcomponent_name }. expression

record_constraint : : = record_aggregate

If a record type contains a variant part, the selected component names inust correspond to
the specified value of the discriminart,

If a previously declared record type contains several variants, a record constraint may be
used to constrain record variables or subtypes to a specifiea variant. The record constraint
specifies the value of the selected variant. It is expressed in the form of a record aggregate
where values are provided only for discriminants.

Examples of record aggregates:

(DAY: 4, MONTH: JULY, YEAR: 1776)
(STATUS: CLOSED, UNIT: DISK, CYLINDER: 9, TRACK: 1,

Example of record constraint:
subtype DISK_DEVICE = PERIPHERAL(UNIT: DISK);
3.7 Access Types

Nermal record variables declared in a program are accessible by their identifier. They exist
during the lifetime of the declarative part to which they are local and are hence said to be
static. In contrast, a variable of an access type is used to designate a record that is allocated
dynamically.

access_type_declaration : ' = access type identifier == type;

Access to a dynamic record is achieved via an access variable which may be set by an
allocation statement or by assignment of another access variable. ‘The value of an access
variable that does not designate a dynamic record is denoted by none.

Each access type declaration implicitly defines a collection of dynamically allocated records
that can be referenced by variables of the access type.  iven record may be designated by
more than one variable of the acr:ess type. © 'mponents st the records of an access type may
belong to the same access type.

A representation specification (see section 10) may be used to specify the storage space to
be (statically) reserved for the collection of records associated with an access type.
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Examples:

access type PERSON ==

record
NAME : STRING;
AGE : INTEGER;

MOTHER : PERSON;
FATHER : PERSON;
end record ;

access type LIST_ITEM ==

record
VALUE : INTEGER;
SUCC : LIST_ITEM:
PRED : LIST_ITEM;
end record;

3.8 Type Conformity

Each type, subtype, variable, and constant has a base type, which is the fundamental
property used to check type conformity.

Declarations of distinct type names always denote distinct base types, even if their
definitions are identical. Type constraints do not aiter the base type. The base type of a
subtype is that of its parent type. The base type of a variable or constant is that of the type
appearing in the declaration.

Declarations involving unnamed types obey the following rules:

(a) If the type is given as an enumeration or as a record, the base type is distinct from any
other enumeration or record type, even if their definitions are textually identical.

(b) If the type is given as a range, the base type is that of the expressions defining the
range.

(c) Two real or scaled types have the same base types if their pracisions or scale factors are
the same,

(d) Two array types have the same base type if they have the same number of dimensions
and if their elements have the same base type and constraints.

If a type A is dofined in terms of another type name B
type A = B;
then A and B are two different types that share the same logical properties but not

necessarily the same representation. Explicit conversions between related types like A and B
are possible and must be written as typed expressions.
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3.9 Declerutive Parts

Each program unit may contain a declarative part specifying its declazations and other local
information,

declarative_part : : = [import_clause] {de=laration}
{representation _specification } {body }

body : : = subprogram _body | definition _module_body [ path_body

An identifier declared within a program unit has a scope, which consists of the unit in which
the identifier is declared and all inner units that do not redeclare the same identifier. An
identifier is said to be *‘local” to the unit in which it is declared, and “‘global’ to all inner
units that do not redeclare the same identifier.

An import clause is used to import identifiers of definition modules. Representation
specifications define particular type representations. The bodies of subprograms, definition
modules, and paths declared in the declaration list appear at the end of the declarative part.
These constructs are defined in later chapters.
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4. VARIABLES AND EXPRESSIONS

4.1 Variables
A variable denotes a stored value of a given type. It may be a name denoting a scalar value,
an array, or a record. Alternatively, it may denote an element of an array, a slice of an array,

or a record component.

variable @ :=
varigble-name array _element | slice recerd_component

array _element :: = variable{expression {.expression })
slice  ::= variable{rangc _denotation)
record._component ' =  variable.component_name i variable.all

For array elements, the expressions denote index values. For array slices, the specified range
denctes a contiguous sequence of index values.

Record components may denote either components of static record variables or components

of dynarnic records designated by access variables. The qualifier all denotes all components
of a dynamic record. A record component within a record variant can cnly appear in
contexts where the particular variant is known.

Examples:

PRESSURE APPOINTMENT DAY
MATRIX (1, J+1} STACK(TOP}.NAME
TABLE(1 .. N) NEXT.SUCC VALUE

4.2 Scalar Values and Attributes

A scalar value denotes a value of a scalar type. In addition, scalar values are used to denote
atttributes of declared entities.

scalar _value :: = number ! enumeration_value attribute

attribute : : = denotauon attribute _quatifier -

denotation
name : vanable I path _denotation box _denotation




An attribute qualifier specifies a property of some denoted program construct. An attribute
qualifier for a type is also an attribute qualifier for all variables of the type. Specific
attribute qualifiers are described with the corresponding language constructs.

Examples of attributes:

Xx'PRECISION [the relative precision of a variable)}
INDEX'FIRST (the lower bound of 3 range]
DATE'SIZE [the number of bits in a record]

4.3 Expressions

An expression is a formula that defines the computation of a value.
expression =
simple_expression [relational _operator simple _expression)

! simple__expression is [not] range _denotation

simple _expression :: = [simple_expression adding_operator) term
term .= {term multiplying_operatut] factor
factor :: = (unary_operator] primary
primary ::= variable | scalar_value | array_aggregate
| record _aggregate ! function_call i {expression)
i qualified _expression | none
function_call ::= subprogram_call

The type of an expression depends on the type of its components, as described below,

Examples of primaries:

VOLUME [variable)
4.0 [number)
(1..10: 0) {array aggregate]
SINE(X) [function call]
(LINE_COUNT + 10) {parenthesized expression)
REAL(l ) lqualified expression)
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Examples of expressions:

VOLUME

-4.0

not DESTROYED

LINE_COUNT mod PAGE _SIZE
B*B - 4EO*AXC

{INDEX =0} or ITEM_HIT
PASS_WORD{1 .. 5) = “JAMES”
Xis1 .. 10

4.4 Operators

[primary]

[factor]

[factor]

(term]

(simple expression)
{simple expression]
[expression)
[expression)

: The operators in the language are grouped into four classes

relational ._operator 1= o=
adching  operator s+
multiplying  cperator e ¥
unary _oparator Lo +

are cvaluated from left to right,

the type of the other.

4,141 Helational operators und is

These operators have a precedence that
expression. Unary operators sre applied
operators third, and relational operators last

or | xor | &
/{ | mod | div | and

not | abs

specifies the order of evaluation within an
first, multiplying operators second, adding
. Sequences of operators of the same precedence

Opurand Types

f The relational operators and is all return boolean vidues.
3 Operator Operytion
15 (notl 1ange

membuwrship

! =/ equality and
3 i inequality
i c o test for
= relative

orderning

any scalar type
and corresponding
range

any type

any ordered
tyire

The use and meaning of the operators are given below. All binary operators apart from is
#nd * must bhe applied to operands of the same type. In particular, to perform arithmetic
on two numecric values of differing types, one of the values must be explicitly converted to

Result Type

boolean

boolean

boolean

Ai




Note that equality and inequality are defined for any two objects of the same type.

4.4.2 Adding operators

All adding operators return a result of the same type as the operands.

Qperator

or xor

The operator & concatenates the elements in one array o thos
strings, this operation results in conventional string concatenation.

Qoeration

addition and
subtrartion

inclusive and
exclusive

disjunction

concatenation

4.4.3 Multiplying operators

Operator

/1

div

mod

and

Operation
multiplication
real division

scaled
division

integer
division

modulus

conjunction

Operand Types
numeric

booiean,
boolean vector

one-dimensional
arrays, siices,
array elements,
and characters

Operand Types
numeric
real

integer
integer
integer

boolean,
boolean vector

Result Type
same numeric type

boclean,
boolean vector

one-dimensional
array of element
type

e in another array. For

Result Type
nuMaric
real

wcaled
integer
integer

boolesn,
boolean vactor

Ml




AT

The operator * denotes mathematical multiplication, It takes two integer or reul operands
of identical type and gives a result of the same type. In addition, a scaled operand can be
multiplied by an integer to give a result whose type is the same as the scaled operand,

The operator / denotes mathematical division and is defined only for real types. The
resulting type is the same as that of its operands.

The operator / / denotes inathematical division and is defined only for operands of integer
type. The result is of scaled type, where the particular scale factor depends upon the
operands.

The operators div and mod denote integer division with truncation and the remainder afte:
integer division. These operators are defined only for integer operands.

Examples:
| : INTEGER = 1;
J :  INTEGER = 2,
K . INTEGER = 3,
M : scele V//3 :=4//3;
N : sceleV//3:=6//3;
X :  precision 1E—6 : = 1EQ;
Y . precision 1€-68: = 2EQ;
Expression Value Type
I *J 2 same as | and J
J+« M 8//3 same as M
X/Y 0.5E0 same 85 X and Y
K div J 1 same as K and J
K mod J 1 sama as K and J
M+ 1//3 5//3 sarne as M
N + K//3 8//3 same as N

4.4.4 Unary overators

Unary operators are applied to a single operand.

g b W i

Operator Oparation Operand Type Result Type
+ - identity and numeric $8Me numeric type
naqgation
not negation hoolean, boolesn,
hovlean vector boolean vector

abs absoli. numeric same numeric type
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4.5 Qualified Expressions

A qualified expression is used to convert an expression to another type, to state the type of
an expression explictly, or to constrain &n expression to a given subtype.

qualified_expression :: =
typed _expression | constrained_expression
typed_expression : . ® type_name({expression)

constrained _expregsion :: v subtype..nsme(expression)
4.5.1 Type conversions
For numeric expressions, a typed expreasion may specify a numeric type that is different
from the type of the expression. In this case the value of the expression is converted to the
named type. The nearest value of the required type is the value after conversion, If two
values are equidistant from the expression value, then the larger value is chosen,

Typed expressions can also be used for type conversions between related types with
identical logical proporties. No other type convorsions are permitted.

Examples of numeric type conversion:

REAL(2#%1) {value is converted to res!)
INTEGER(1.6) [value is 2]
INTEGER(~-0.6) lvalue is 0)

Example of conversion between related types:
type A_FORM = B_FORM;
X . A_FORM;
Y . B8_FORM,
X .= A _FORM(Y);

4.6,2 'T'ype specification of valucs

The same element may appear in two enumeration types. In these cases, and whenever the
type of a literal or aggregate is not known from the context (e.g. an actual parameter of an
overloaded procedure), a typed expression may be used to state the type explictly,




Examples:

type MASKING_CODE = (FIX | DEC | EXP | SIGNIF);
type INSTR_CODE = (CLA | DEC | TNZ | sus);

PRINT (MASKING_CODE(DEC)); ~--DEC is of type MASKING_CODE
PRINT (INSTR_CODE(DEC)); ——DEC is of type INSTR_CODE

4.5.3 Constrained expressions

An expression of a given type may have values that are not necessarily in one of its sub-
types. A qualified expression with a subtype name specifies that the value of an expression
must belong to the subtype. If it doecs not, an exception condition is raised.

Examples:
subtype SMALL _INT « INTEGER rangs (=10 . 10);
VALUE : INTEGER;
INDEX : SMALL_INT;

READ (VALUE);
INDEX :» SMALL_INT(VALUE);
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5. STATEMENTS
Statements cause actions to be performed, Statements in a list of statementa are executed in
, sequence until a transfer statement is encountered.

A statement may be simple or compound. A simple statement contains o part that consti-
tutes another statement

stetement_list : : = { [ label ) statemet }

stateinent ; : = simple__statement | cuionound_statement
| transfer _staternsnt

simple_statement - = assignmeni_statement | altocation_statement
| subprogram_.call _statement | assert_statement
| synchronization_statement | infine..statemont
| null ;
compound_stotement : : = if_statement |  case_statement
| loop._statemont |  selectstatement |  block

transfer_statement @ . = joop_exit..statoment
| return_statemnnt | exception .statement
| goto_statement

fabel @ = <alwdentifier -

Execution of a null statement results in no action. Synchronization and select statements
are described in the section on parallel processing. Inline statements are described in the
section on subprograms. Exception statements are deacribed in the section on exception
handling. ‘The remaining statements are described here.

5.1 Assignment Statements

An assignment atatement replaces the current value of a variable with a new value speci-
ficd by an cxpression.

assignment_statement = varighle . = axpression;

The varigble und the expression must be of the same parent type and the value of the ex-
pression must satisfy any constrainis applicable to the variable. If the constraints cannot be
rhecked during translation, ap execution-time check shall be provided by the translator,
This check will result in an exceeption condition if the expression value does not satisfy the
¢ onstraint. If the exception is suppressed the translator will omit the checks,
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Examples:

KEY_VALUE := MAX_VALWUE-1,;
SHADE ' = BLUE;

Examples of constraints:

1 J : INTEGER range (1 .. 10);

K : INTEGER range (1 .. 20);

1 D= J, --—identical ranges

K D= J: - - compatible ranges

J S K; --—can only be checked during execution

5.1.1 Array and slice assignments

For an assignment to an array or an array slice variabie, the expression must denote a valuc
with the saine number of elements. For slice assignments where the array name of the slice
variable also appears in the expression, overlapping of index ranges is forbidden.

Lxamples:
A : array (0., 30) of CHARACTER,;
B . array (1..31) of CHARACTER;
A =B, ~-- same number of elements
A1, 100 = A(11.20), ~— non overlapping ranges

A1 .. 6) = "JAMES"; —— same number of elements

5.1.2 Record assignments

If & record variable has heen declared with a record constraint, the variant assigned ruust
have a discriminant value prescribed by the constraint.

Exaraples:
DISK _1, DISK_2: PERIPHERAL (UNIT : DISK);

DISK_1 := (STATUS:OPEN, UNIT:DISK, CYLINDER:1, TRACK:1);
DISK_2 = DISK_1;

b.2 Allocation Statements

An allocation statement specifies Lhe dynamic creation of a record to be designated by an
access variable,
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allocation_statement =
variable new record _aggregate;
| variable new typed..expression;

Storage for a record is allocated with the collection associated with the access type. The
name of this access type must appear explicitly after the keyword new in either case. The
value of the record aggregate or typed expression is assigned to the new record, and the
access variable is made to designate the new record.

Examples:
ELEMENT = new LIST_ITEM (VALUE: 0, SUCC: none, PRED: none);
DOUBLE =  naw PERSON (ME. all);

5.3 Subprogram Calls

A subprogram call invokes execution of a subprogram body. The call specifies the associa-
tion of any actual parameters with formal parameters of the subprogram declaration. An
actual parameter is either a variable or an expression.

subprogram _call _statement 1= subprogram_call;

subprogram —call = subprograni_name
[(parameter _association {,parameter_association }} )

parameter _association L=

input_assocation | output_ association | access _association
input_association = [formal _parameter c=1 expression
output_association = {formal parameter =] variable
access_association .= [formal _parameter n= ] variable
formal _pcrameter c o= identifier

Actual parameters may be passed in positional order (positional parameters) or by explicitly
naming the corresponding formal parameters (named parameters). For positional para-
meters, the actual parameter corresponds to the formal parameter with the same position
in the formai parameter list. For named parameters, the corresponding parameter is ex-
plicitly giver in the call, Named parameters may be given in any order.

Positional parameters and named parameters may be used concurrently with positional
parameters occuring first at their normal position, i.e. once a narned parameter is used the
rest of the call must use only named parameters.




Examples:
RIGHT _SHIFT;
SEARCH_STRING (STRING, CURRENT_POSITION, NEW_POSITION);
PLOT (CURVE := SINE,

LOWER_BOUND
UPPER_BOUND

N1,
N2);

RE_ORDER_KEYS (NUM_OF_ITEMS, KEY_ARRAY == RESULT_TABLE);
5.3.1 Actual parameter associations
There arc three forms for specifying actual parameters.

(a) Input parameter association.
The corresponding formal parameter must have the mnde in, and acts as a local con-
stant whose value is provided by the actual parameter prior to execution of the sub-
program body.

{b) Output parameter association.
The corresponding formal parameter must have the mode out, and acts as a local
variable whose value is assigned to the actual parameter upon return from the sub-
program body.

alslingivtldud bt Sl el Bl bl i kR

(c) Access parameter association.
The vorresponding formal parameter must have the mode access. Within the sub-
program body, the formal parameter enables read and write access to the corres-
ponding actual parameter.

Constantness for the in mode must be interpreted transitively. For example, the elements
of an input array parameter may not be updated, and an input parameter may not be up-
dated by calls to other subprogrums.

5.3.2 Omission of actual parameters

An input parameter may be omitted from the list of actual parameters if the subprogram
declaration specifies a default value for the corresponding formal parameter. In such cases
any remaining actual parameters must be named. Similarly, an output parameter may be
omitted if the value returned is not used in the calling program.

t



Example:

ACTIVATE: procedure (TASK o in TASK_NAME;
AFTER ; in TASK_NAME = NO_TASK;
DELAY : in REAL :=  0EO;
PRIOR : in BOOLEAN - := FALSE);
ACTIVATE (X},
ACTIVATE (X, AFTER : = Y)
ACTIVATE (X, DELAY : = SEQO*MINUTE, PRIOR : = TRUE};

5.3.3 Restrictions on subprogram calls

The type of each actual parameter must agree with that of the corresponding formal para-
meter. To prevent aliasing (i.e. multiple access paths to the same variable), the same variable
name cannot be used for more than one actual output or access parameter.

5.4 Return Stateinents

A return statement terminates execution of a subprogram or a path. For functions, a return
statement must include an expression whose value is the result of the function.

return_statement : : =  return [expression];
Examples:

return;
roturn KEY_VALUE (LAST_INDEX);

5.5 If Statements

An if statement allows the selection of a statement list based on the truth value of one or
maore conditions.

if _statement D=
if condition then statement_list
{elsif condition then statement_list}
[else statument _list]
end if:

condition L=
expression { and then expression }
| expression {or else expression}

Execution of an if statement results in evaluation of the conditions one after the other
(treating a final else as elsif TRUE) until one evaluates to true; then the corresponding
statement list is executed. If none of the conditiocns evaluat~< to true, none of the state-
ment lists is executed.
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Examples:
if (MONTH = DECEMBER)and (DAY = 31) then
MONTH = JANUARY;
DAY = 1
YEAR = YEAR+1;
end if;

if INDENT then
CHECK_LEFT_MARGIN;
LEFT_SHIFT;

elsif UNDENT then
RIGHT_SHIFT;

else
CARRIAGE_RETURN,
CONTINUE _SCAN;,

end if;

5.5.1 Short circuit conditions

A condition may appear as a sequence of boolean expressions separated by and then. In
such case, evaluation of the expressions proceeds from left to right until one evaluates
to false. The final value, true or false, is the value of the condition. Similarly, for expres-
sions separated by or else, evaluation stops as soon as an expression evaluates to true.

Exampiles:

if INEXT /= none;and then (NEXT. AGE < 18) then
MINOR = TRUE;
end if;

if (I =0}orelse (A{l} = HIT_VALUE) thsn
return;
end if;

5.6 Case Statements

A case statement allows the selection of a statement list based on the value of an expres-
sion at the head of the case statement

case_statement L=
case expression of {alternauve} end case;

alternative : .= when selection =>  statement_list

I i
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Execution of a case statement results in execution of the statement list whose selection
contains the value of the expression. A given selection value may appear in only one alter-
native. Selection values must be provided for all values of the type of the expression. Note
that it is always possible to constrain an expression to a given subtype or to use the selection
others to cover any remaining values.

Examples:

case SENSOR of

when ELEVATION => RECORD_ELEVATION (SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY of
when MON = COMPUTE_INITIAL_.BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE. . THU => GENERATE_REPORT {TODAY},
when REST_DAY = nult;

end case;

case BIN_NUMBER ({I mod 4) + 1) cf
when1 =>  UPDATE_BIN (1);
when?2 => UPDATE_BIN (2},
when 314 <>
EMPTY_BIN (1);
EMPTY_BIN (2);
end case;

5.7 Assertion Statements

An assert statement introduces an assertion that must hold whenever control reaches that
point in the program.

assert.statement @ : = assert [condition]
Examples:
assert (Y2 - Y1) < EPSILON;
assert (INPUT_CHARACTER s "A" .. ""2");
assert [There exists an | such that A{l) > 0);
The asserticn may be formulated as a condition or as a comment. The condition is treated as

a comment whenever checking of assertions is suppressed. Otherwise, the condition is
evaluated and an exception is raised if the condition does not hold (see section 9).
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5.8 Loop Statements
A loop statement specifies that a statement list in a basic loop is to be executed repeatedly.
Execution is terminated when either the iteration specification of the loop is completed or
when a loop exit statement within the basic loop is executed.

loop_statement  : : = [iteration_specification} basic_lonp;

basic _loop :: = loop statement_list repeat

n

iteration _specification
while condition | uniil condition
| for loop_patameter in [reverse] range_denotation

loop_parameter ::= identifier

In a loop statement with a for clause, the loop parameter is implicitly declared as a local
each execution of the basic loop. The loop statement is terminated if the while expression
1s false or the until expression is true.

In a loop statement with a for clause, the loop parameter is implicitly declared as a local
variabie whose type is that of the elements in the range denotation. On successive loop
iterations, the loop parameter is successively assigned values from the specified range. The
values are assigned in increasing order unless the keyword reverse is present, in which case
the values are assigned in decreasing order. Within the basic loop, the loop parameter acts as
a constant whose value may not be changed.

Examples:

while (BID(1} . PRICE < CUT~OFF . PRICE) loop
RECORD_BID (BID{!) . PRICE):

I =1

repeat;

until BUFFER {lI) = """ loop
| HEEE

repeat;

for | in BUFFER RANGE loop

BUFFER (I .= BLANK;
SQUARE (I} B L
repeat;
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5.9 Loop Exit Statements

A loop exit statement causes explicit termination of a locp. It may contain a condition, in
which case termination occurs only if its value is true.

loop_exit_statement D= exit {when condition];
A loop exit statement may only appear in a basic loop.
Examples:

forlin 1., MAXIMUM_NUM_ITEMS loop
GET_NEW_ITEM (NEW_ITEM);
MERGELITEM (NEW_ITEM, STORAGE_FILE);
exit when (NEW_ITEM = TERMINAL _ITEM),
repeat;

5.10 Blocks

A block introduces a new declarative part for a list of statements. Execution of a block
results in elaboration of the declarative part followed by execution of the statement list.

block c=
dec'are declarative_part begin statement_list end;

Identifiers declared in a declarative part follow the same scope rules as thcse for sub-
programs and definition modules, as described in later sections.

5.11 Goto Statements

The execution of a goto statement results in an explicit transfer of control to another
statement

gotG_statement .= goto identifier,

The statement to which control is transfered must be labeled with the corresponding identi-
fier. The designated statement must be within the same local scope as the goto statement.
Transfer of conlrol intv a compound slatement is not allowed.

Example:

<< COMPARE ™
if A(1) TELEMENT then
if LEFT (1), =0 then
| = LEFT (13;
goto COMPARE;

end if;

end if;
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6. SUBPROGRAMS

This section and the following sections describe the rules for defining nigher level program
units. These include procedure and function subprograms, definition modules, parallel
paths, and exception subprograms. Separate compilation of program units and generic
program units are discussed in the section on overall program structure.

A subprogram is an executable program unit that is invoked by & subprogram call
statement. Its definition is given in two parts: a subprogram declarstion defining its cailing
conventions, and a subprogram body defining its execution.

6.1 Subprogram Declarations

A subprogram declaration specifies the name of a subprogram, its nature, its formal param-
eters, the type of any returned value, and, possibly, a transiation mode indicating whether

it is separately compiled or generic.

subprogram _declaration .=
namer: [translation _mode] subprogram_nature formal _part;

subprogram _nature ::= procedure | function | exception

formal_ part : .=
[(parameter _definition {; parameter__definition'}) [return type)

parameter_definition ::=
Identifiar _list: mode type [ := expression)

mode ::= [in} | out | access
namer .:= iduntificr | chara;ter _string
translation_.mufe 1= weparate | generic. clause

Examules:
TRAVERSE _TREE : procedure;
RIGHT INDENT . procedure (MARGIN: out LINE_POSITION:;
COMMON _PRIME  : function (N.M: INTEGER) return INTEGER;

6.2 Formal Param~ters

The formal parameters of a subprogram are considered local to the subprogram. A param-
eater may have once of three modes.
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in The parameter acts as a local constant whose value is set equal to that of the cor.
responding actual parameter upon call to the subprogram.

out The parameter acts as a local variable whose value is assigned to the corresponding
sctual parameter upon return from the procedure.

access The parameter acts as a variable and may be used for read and write access 1.0 the
corresponding actual parameter.

If no mode is explicitly given, the mode in is assumed.
For in parameters, the parameter definition may also include a specification of an expres-

sion that is implicitly assigned to the parameter if no explicit value is given in the call.
This expression may either be an expression computable at translation time or a variable.

Examples:
PRINT_HEADER. procedure (PAGES : in INTEGER;

HEADER : in LINE := BLANKLINE;
CENTER : in BOOLEAN := TRUE);

ACTIVATE: procedure (TASK in TASK_NAME;
AFTER in TASK_NAME = NO._.TASK;
DELAY in REAL := QEOQ;
PRIOR in BOOLEAN := FALSE);

6.3 Subprogram Bodies
A subprogram boly specifies the execution of a subprogram.

subprogram _body ::=
{inline) subprogram._nature namer formal_part;
declarative _part |[begin statement _list) end;

Upon each call to ¢ subpregram, the correspondence between actual and formal param-
eters is estailist.ed (see section 5.3), the declarative part is claborated, and the statements
of the body are executed. Upon successful completion of the body, return is made to the
caller.

Subprogram bodies marked as inline are expanded in line at each call. The text of each
actusl parameter replaces the corresponding formal parameter. Identifiers other than actual
parameters are interpreted in the scope of the subprogram declaration. Thus the meaning of
a subprogram is not changed by the prefix inline. Inline subprograms cannot he separately
compiled.
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If a subprogram body appears in the same declarative part as its declaration and is not
referenced in previous subprograms, the subpiogram declaration may be omitted. In such a
case the body acts as a substitute for the subprogram declaration. A subprogram body with.
out a statement list is used when the statement list is separaiely compiled (see section
11.3).

Example:

procedure PUSH (E: in ELEMENT_TYPE; S: access STACK);
bagin
if S.INDEX - SIZE then
raise STACK_OVERFLOW;
olte
S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) := E;
end if;
end {PUSH];

6.4 Function Subprograms

A function is a subprogram that computes a value. A function declaration may only have in
parameters and contains a retum clause specifying the type of its returned value, The state-
ment list in the funciion body must include one or more return statements gpecifying the
returned value,

Side effects to variables accessible at the function call are not allowed. In particular, vari-
ables that are global to the function body may not. be updated in the function body.

If a function parameter belongs to an access type, the parameter must be viewed as pro-
viding access to the complete collection of dynamic records. As a consequence, within the

function body there can be no alteration to any component of a record designated by an
access variable.

Example:

furction DOT_PRODUCT (X,Y: REAL_VECTOR) return REAL;
SUM: REAL := OEQ;

begin
asert (X'FIRST = Y'FIRST);
assert (X'LAST = Y'LAST);
for 1| in X' RANGE loop

SUM = SUM + X(H»Y (1)

repeat,
return SUM;

end [DOT_PRODUCT)
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6.6 Overloading

Functions and procedurcs of « given name may have multiple definitions, each having
parameters of differing types. In these cases the redefinition of a named function or
procedure does not hide any previous definition. On subprogram calls, the actual definition
used iv that whose formal parametar types match those of the actual parameters.

6.5.1 Overloading of operators

A {unction named by a character string is used to define an additional meaning for an opera-
tor. The overloading of operators is identical to overloading of tunctions and procedures,
except that the character string must be one of the operators in the language. Overloading
applies to both unary and binary operators. Overloading does not change the precedence of
an operator, Overloading of the concatenation operator & is not allowed.

Examples:

“w': function (X.Y: MATRIX) return MATRIX;
%' function (X.Y: VECTOR} return VECTOR,

6.6 Code Insertions

A machine code insertion can be achieved by a call to an inline procedure whose body only
contains inline statements,

inling_statement ::= inline record._aggregate;

Each machine instruction appears os un inline record aggregate of a record type defining
the corresponding instruction. Such record definitions will generally be avallable in a library
definition module for each machine. A procedure that contains an inline statement must
contain only inline statements, Insertions of code written in other programraing languages
must be bracketed hy special pragmats,

Examples:

M: MASK;
InHins procedure SET_MASK;
import INSTRUCTION_360;
begin
inline SI_FORMAT (CODE: SSM, 8: M'BASE, D: M'DISP),
end,

inline procedurs A1O0T,
begin
pragmat FORTRAN BEGIN
[FORTHRAN tuxt}
pragmst FORTRAN END
ond;
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7. DEFINITION MODULES AND SCOPE RULES

Definition modules allow the specification of groups of logically related entities. In their
simplest form they can represent pools of common data and type declarations,

In addition, definition modules can be used to describe packages of related subprograms and
encapsulated data types, whose inner workings are concealed from thelr users,

Scope rules, the rules defining the entities that are visible at a given program point, are
explained in this section for definition modules and other program units,

7.1 8pecification of Definition Modules

The specification of a definition module generally includes its declaration and the specifica-
tion of a definition module body. Its declaration may be omitted unless it contains a trans-
Iation mode specifying the module as separately compiled or generic.

definition--decleration : : =~
identifier: {trunsiation_made]| definition;

definition_modulz__body :: =
definition identifier; declarativa_part
[private declarative_part)
[algorithm declarative _part)
{begin statament _list] and;

A variable declared In any of these declarative parts is said to be “own’ to the definition
module. Own variables remain allocated for the life time of the definition module,
Elaboration of the declaration of the definition module results in the allocation of its own
varfables, the assignment of any initial values, und the exccution of the statement list
initializing the definition module.

Varlables that are declared within local subprograms of the deflinitfion module are not
own. Hence they do not retain their values from one call to the next,

Exumpies of definition declarations:

PLOTTING DATA  : definition,
TABLE MANAGER : definition;
I_O_PACKAGE . dafinition,

40

iy



e ‘HH‘”“\: !

7.2 The Visible Part

The first declarative part of a definition module is called its visible part. The entities
declared in the visible part are accessible to program units that import the definition name.
A definition module containing only a visible part may be used to represent a group of
common variables or a common pool of data and types.

Example of group of common variables:
definition PLOTTING_DATA;

PEN_UP: BOOLEAN;
CONVERSION-FACTOR: REAL;

X_OFFSET, Y_UFFSET,
XLMIN, X_MAX,
Y_MIN, Y_MAX: scaled 1//100 range (0 .. 30);

GRID_VALUE: array (1 .. 500} of
record
X_COORD: REAL;
Y-COORD: REAL;
end record;
ond [PLOTTING_.DATA]| ;

Example of common pool of data items and types:

definition WORK DA A;
type OAY_LENGTH = INTEGER range (0 .. 24);
type DAY » (MON 1 TUE | WED | THU | FHI | SAT | SUN);

WORK..HOURS : array (DAY) of DAY _LENGTH;
NORMAL_MHOURS : constant array (DAY} of DAY _LENGTH =

(MON .. THU: 8, FRI: 7, SATISUN: 0);
ond (WORK_DATA],

7.3 Algorithm Part

The visible part of a definition may contain subprogram or path declarations. In such cases,
their bodies may be grouped in an algorithm part, the declarative part after the keyword
algorithm. The algorithm part may also include local declarations and local program units
needed by these bodies.
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In contrast to the entities declared in the visible part, the entities declared in the algorithm
: part are not accessible outside the definition module. As a consequence, a definition module
) with an algorithm part can be used for the construction of a package, where the logical oper-
ations accessible to the user are clearly isolated from the hidden internal entities,

Example of a package:

definition RATIONAL_NUMBERS;
type RATIONAL =
record
NUMERATOR : INTEGER;
DENOMINATOR: {1..INTEGER'LAST):

end record;
EQUIV . function (X, Y ; RATIONAL) return BOOLEAN;
ADD . function (X, Y : RATIONAL) return RATIONAL;
MULT  : function (X, Y : RATIONAL) return RATIONAL;
algorithm
procedurs SAME_DENOMINATOR(X,Y: access RATIONAL);
x beqbn

[reduces X ana Y to the same denominator)
end;

function EQUIV (X,Y: RATIONAL) return BOOLEAN;
U,V: RATIONAL;

begin
U = X
Vo= Y;

. SAME_DENOMINATOR (U, V),
N return (U.NUMERATOR = V.NUMERATOR);
. end;

function ADD . ..
function MULT ...
end;

7.4 Private Part

The structural details of some declared types may be irrelevant to their logical use outside
a definition module. This may be accomplished by stating in the visihle part that a type is

private. Types declared private in the visible part must be redeclared :n full in the private
part of the definition module.
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For a private type, the only information available for external program units importing the
definition module is the private type name. As a consequence, the only external operations
permitted on variables of a private type are assignment and comparison of elements for
equality or inequality.

If a type is declared as private parameter, not even assignment and comparison are per-
mitted. Hence variables of such types may only be passed as parameters to subprograms
declared in the visible part of the same definition module.

A constant value of a private type may be declared as a deferred constant, Its actual value
must be specified in the private part by redeclaring the constant in full.

In the example below, an external subprogram importing 1_O. PACKAGE may obtain a file
name by calling ASSIGN and later use it in calls to READ and WRITE. Thus, outside the
definition module, a file name obtained from ASSIGN acts as a kind of password. Its in-
ternal properties (e¢.g. being a numeric value) are not known, and no other operations
(such as addition) may be performed on a file name.

In general, private types may be used to define encapsulated data types. An example is given
in Section 11.7.

Example:
definition | _O_PACKACE,

type FILE_NAME = private;
NO_FILE. constant FILE_NAME,

ASSIGN : procedure (F: out FILE..NAME);
READ : procedure (ELEM: out INTEGER;F: in FILE_NAME};
WRITE . procedure (ELEM: in INTEGER; F: in FILE_NAME);

private
type FILE_NAME = INTEGER range (0 .. 50);
NQO__FILE: constant FILE_NAME = 0;

algorithm
type FILE_DESCRIPTOR = record . . . end record;
DIRECTORY: array (FILE_NAME) of FILE_DESCRIPTOR;

procedure ASSIGN - .
procedure WRITE . ..
procedure READ . ..
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7.5 Example: A Table Management Package

The following example illustrates the use of definition modules in providing high ievel pro-
cedures with a simple interface to the user.

3 definition TABLE_MANAGER;

E type ITEM =

| record

= ORDER_NUM : INTEGER;
ITEM_CODE . INTEGER;
ITEM_TYPE : CHARACTER:
QUANTITY  : INTEGER:

E end record;

5. NULL_ITEM: constant ITEM =
3 : (ORDER_NUM: 0, 1TEM_CODE: O, ITEM_TYPE: ” ", QUANTITY: 0);

INSERT . procedure (INEW_ITEM : inITEM);
RETRIEVE . procedure (FIRST_ITEM . out ITEM);
TABLE_FULL : exception,

algorithm
SIiZE. constant INTEGER - 2000,
subtype INOEX = INTEGER range (0 .. SIZE};

i B e o

type iNTERNAL _ITEM =
racord
A CONTENT : ITEM;
4 succ INDEX;
= PRED S INDEX;
end record;
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TABLE: array (INDEX) of INTERNAL_ITEM;
FIRST .BUSY _ITEM: INDEX := 0;
FIRST_FREE _ITEM: INDEX := ¥;

.; function FREE_LIST__EMPTY return BOCLEAN; . ..
function BUSY _LIST_EMPTY return BOQLEAN; . ..

il (il !

procedure EXCHANGE (FROM: in INDEX; TO  in INDEX); . ..

fh

procedure INSERT (NEW __ITEM: in ITEM],
begin
if FREE _LIST_EMPTY then
raise TABLE_FULL,
: end if,
iremaining code for INSERT)
end;
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procedure RETRIEVE . ..
exception TABLE__FULL

e Lol ol

begin “
Icade for intialization of the table linkagesj 3
end ITABLE MANAGER!, 44 5
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The problein is to define a table management package for inserting and retrieving items. The
items are inserted into *‘he table as they are posted. Each posted item has an order number.
The items are retrieved according to their order number, where the item with the lowest
order number is retrieved first.

From the user’s point of view, the package is quite simple. There is a type called ITEM
designating table items, a procedure INSERT for posting items, and a procedure RETRIEVE
for obtaining the item with the lowest order number. There is a special item NULL_ITEM
that is returned when the table is empty, and as exception TABLE_FULL that may be
raised by INSERT.

The delails of implementing such packages can be quite complex, in this case involving a
two way linked table of internai 1tems. A l!ocal housekeeping procedure EXCHANGE is
used to move an internal item between the busy and the tree lists. The initial table linkages
are 25tablished by the initialization part. ’

A sketch of a definition module implementing such a package is given above. Only the
visible part of the package is exposed to the user.

7.6 Scope Rules

A scope denotes a region of text in which an identifier is known with a single meaning. Sub-
programs. blocks. paths. and definition modules mtroduce new scopes. Local scopes are also
defined by for loops, record types. and vanant parts.

An identifier of an outer scope may he redeclared in a given inner declarative part unless it is
used in that declarative part or unless it is a type name. The inner redeclaration has the
effect of hiding the outer declaration. Overloading, i.e. redeclaraiion of a subprogram with
different parameter types, is possible even within the same declarative part and does not
hide previous subprogram definitions (see scection 6.5).

The rules defining the meaning of identifiers within a given scope depend on the presence
(or absence) of an import clause in the corresponding declarative part.

import_clause ::  import none, i import jonly] item ! ,item ;,
item o= dentifier {irenaming _clause < renaming_clause ;) j
renamung_clause o0 - new._name == old_name
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8. PARALLEL PROCESSING

This section specifies the constructs for allowing control paths to operate in parallel. The
control paths may be implemented or: multiple processors or with interleaved execution on
a single processor.

8.1 Path Declarations

A path declaration introduces the names of one or more parallel paths and specifies the
information needed to ccmmunicate with other paths. It may also contain a translation
mnde specifying whether the path is separately compiled or generic. Communication

between paths is handled by associating boxes with each path.

path .declaration .=
identification: [transiativn—mode] path bux_part;

box_part ::= [{box_detinition { ; box _definition }}]

box_definition ::=
identification: box.mode box {type] linterrupt_clouse!

box_mode = in | out

identification ::=
identifier {{range_denotation {, range_denotatian }}]

A hox may be specified with a type and a mode in or out, which indicates that the box is
used for receiving data from other paths or for sending data to other paths. If no type is
specified for a box, it is used only for synchronization and must have the mode in. The
interrupt clause will be described in section 8.7.

A path or box identification may specify a family of identical paths or boxes, each denoted
by one or more indices from a specified range.

Examples:
KEYBOARD_DRIVER : path (LINE: in box LINE_IMAGE);
CECODER . path (CHAR: in box CHARACTER);
CONTROLLER . path(START_READ :in box;
START _WRITE . in box;

STOP_READ - in box;
STOP_WRITE :in box);

SCHEDULER : path(START{1 . .3} :inbox;
STOP . in box};

TERMINALIT . N) . path(MESSAGE s inbox LINE _IMAGE;
RESPONSE : out box LINE _IMAGE);
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8.2 Path Bodies

A path body describes the execution of a path. The body will generally contain statements
that control the execution of other paths. Within the path body, the out boxes of a given
type behave like local variables, and the in boxes of a given type behave like unassignable
local variables.

path _body ::=
path path_name box_part;
declarative_part begin statement_list end;

H

: Example:

H path KEYBOARD_DRIVER (LINE: inbox LINE_IMAGE);

begin
loop

raceive LINE;

foriin1..80loop
_ connect DECODER (CHAR :=LINE(1) );
..E exit when LINE(1) = "'?"';
= repeat;

' repeat;

end (KEYBOARD_DRIVER]:

8.3 Synchronization Statements

Syrchronization statements specify the communication between paths.

synchronizat:on_statement ::= do.inner—_paths_statement
| local _request_statement | connect_statement

A do inner paths statement initiates execution of one or more paths. A local path request
specifies that a local box in the path is ready for connection fron. znother path. A connect
statement specifies that the pcth is ready to connect with a box in another path.

A rendezvous is achieved when a path is ready for a connection to one of its local boxes and
when another path is ready to connect to the same box, Wheriever a rendezvous occurs, any
specified data transfer takes place, and both the local path and the connecting path continue
execution.

ate o My g S

8.3.1 Initiating paths
The execution oi paths is initiated with a do inner paths statements.

do__inner__paths_statement :.= inner;
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- When control reaches the statement, the path declarations of the local declarative part are
elaborated, and all declared paths may begin execution. Execution at the inner statement
is suspended until all inner paths have completed their execution.

8.3.2 Local request statements

A local path request allows for local synchronization and possible dati transmission.
locai_request _statement ::= loacal_requast_cliuse;

local _reqyuest _clause = send box_denntation
i receive box._denotation - | delay expression

box_denotation ::= box_namef(expression: ,expression )
A send or receive request must helung to the statement list of the path owning the denoted
boxes. A receive request can only be associated with an in box; a send request can only be

associated with an out hox.

For a box denotation specifying a family of boxes, the ex¥pressions denote index values for
once member of the family. Delay requests will be desceribed in section 8.6.

8.3.3 Connect statements
A connect statement specifies that a path is ready to connect with a box in another path.

connect _statement .. =

connect path__denotation {bcx_denotation (.= expression]);
connect path _denotation (box_denotation [=: variablej};
path_denotation = path_name [(expressioni ,expression - })

An expression or variable is given after a box denotation to denote u transfer of data. The
type of the expression or variable must be identical to that of the box denotation. The
specified box must belong to the specified path.

For a path denotation specifying a family of paths, the expressions specify the index values
for one member of the path family.
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8.3.4 Rendezvous of local requests with connect statements
There are three rendezvous possihilitipe:

(1) If the box has not been declared with a type (and thus has the mode in), the local
request must be a receive request and the corresponding connect statement must only
specify the box.

{2) If the box has heen declared with a type and has the mode in, the local request must
he a receive request and the corresponding connect statement must specify an expres-
sion value for assignment to the box.

(3) If the box has been declared with a type and has the mode out, the local request must

he a send request and the corresponding connect statement must specify a variable to
which the value in the box is assigned.

In cach case, a rendezvous results in a synchronization of path execution. In the second and
third cases. a rendezvous also results in the transfer of data.

If a send or receive request is issucd before a corresponding connect statement, execution of
the sending or recciving path 1s suspended untl a corresponding connect staiement is issued.
Similarly, if a connect statement is issued hefore a corresponding send or receive request,
the connecting path is suspended.

There may be several connecting paths waiting for rendezvous on a given box. In this case
the first issued connect statement is used for the rendezvous. The remaining connect state-

ments will be processed on a first in, first out basis by subsequent local requests on the same
box.

Examples of send or receive requests:
1) receive STOF,
i{2) receive LINE;
{31 send RESPONSE,
Exanmples of associated connect statements in other paths.
1) connect SCHEDULEK (STOP);
121 connect KEYBOARD_DRIVER (LINE = NEW_LINE),

(3) connect TERMINAL(1) {RESPONSE =: ANSWER),
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B.4 Select Statements

A select statement allows a choice of one or more statement lists based on their corres-
ponding when conditions and local request clauses.

select._statement 1=
seloct selected _hox {!selected _box : of
“when [condition] local _request _clause =% statement _list }
end select,

selected _box - box _denctation | multiple_box_sclecuon

All boxes mentioned in the list of selected boxes must be different. Each of these boxes
must appear in cxactly one of the local request clauses. The conditions must only contain
variables that are local to the path,

A local request clause is said to be open if its corresponding when condition is true, and
closed otherwise, A focal request clause with no condition is considered open.

Fxecution of a scleet statement proceeds as follows:
() Ali when conditions are evalualed to determine which local request clauses are open.

(b I there are open clouses, the select statement achieves a rendezveus when any one of
its local request clauses is matched by @ connect statement issued from another path.
When a rendezvous 15 arhieved, the statement list associated with the corresponding
local request clause 1s executed.

(¢} If there are no open clauses, the seleet statement has no effect,

In general, several local path boxes may have been connected before a select statement is
encountered. As a result several local reguest clauses may be matched with connects, In this
case, execution of o sclect stetement results in (non-deterministically) executing any one of
the matehed select nptions,

Example:

path CONTROULLER (START _READ :inbox.
STAKT WRITE . inbox.
STOP _READ cin box;
STOP _WHITE  :inbox).
HEADEHS INTEOLR 0

begn
loop
select STAKT REAN ' START WRITE | STOP_READ of
when Rt ADERS O recrive START _WRITE =.-
receive STOP _VWRITE;
when receive START READ =.-
HEANDERS READERS ¢ 1,
when receive STOP _READ -
RIADERS READERS 1.
end select.
repeat,
end, 5)
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8.4.1 Multiple hox selections

A multiple box selection specifies a range of boxes in a given indexed box family.

muitiple_box _selection =
box_name {(box_index { ,box_index})

box_index ::= all identifier in range _denotation

An identifier of a multiple box selection may only appear in the when clause whose local
request clause mentions the box family name. This when clause has the same effect as the
set of when clauses obtained by substitution of all values of the range to the identifier. For

example the select statciment

select B (all | in U .. V) of
when C(1) receive B(l)=> S(I);
end select;

has the sarne meaning as the following expanded select statement:

select B(UY 1t (B(V) of
when C{U) receive B{U] => S(U);

when C(V) receive B{V} => S(V);
end select;

8.5 Example of Parallel Processing

The following example defines a buffering path to smooth variations in the speed of output
hetween a producing process and the speed of input to some consuming process. For
instance, the path for the producing process may contain:

loop
GET{CHAR, DEVICE := UNIT_A);
connect BUFFERING {IN_CHAR := CHAR};
exit when (CHAR = END_OF_TRANSMISSION);

repeat;
and the path for the consuming process may contain:

loop
connect BUFFERING (FETCH);
connect BUFFERING (DUT_CHAR =: CHAR);
PUT (CHAR. DEVICE := UNIT_B);
exit when (CHAR = END_OF _TRANSMISSION};

repeat;
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The buffering path contains an internal buffer of characters. The characters are processed
in a round robin fashion. The buffer has two indices, an IN_INDEX denoting the space
for the next input character, and an QUT_INDEX denoting the space for the next output
character.

Example:

path BUFFERING (FETCH cin box;
INLCHAR :in box CHARACTER;
OUT_CHAR : out box CHARACTER);

BUFFFER _SIZE: conctant = 100;
type BUFFER_INDEX = (1 .. BUFFER_SIZE);
BUFFER: array (BUFFER_INDEX) of CHARACTER;

IN-INDEX. OUT_INDEX: BUFFER_INDEX := 1:
COUNT: (0 ..BUFFER _SIZE) - 0,

begin
loop
select IN_CHAR ! FETCH of
when COUNT <BUFFER_SIZE receive IN_CHAR =.-
BUFFER(IN_INDEX) = IN_CHAR;
IN_INDEX := (IN_INDEX mod BUFFER_SIZE) + 1;
COUNT = COUNT + 1
wheri COUNT > Q receive FETCH ==
OUT.CHAR = BUFFER{CUT_INDEX);
QUTLINDEX = (OUT.INDEX mod BUFFER_SIZE) + 1t;
COUNT i~ COUNT - 1;
send OUT_CHAR;
oend select;
repeat;

end :BUFFERING!;

8.5 Delay Requests

A delay clause is impliotly associated with a “box™ hnked to the system clock. The ex-
pression in the delay clause specifios an interval of time, after which an implicit path issues
a connect statement to the “hox™. As a result, the path with the delay clause is suspended
for the designated time interval.,

For select statements with ¢ delay clause, another box in the hist of select options may be
connected during the delay imterval, If this occurs, the delay is cancelled and the connected
select option is processed.
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All real time values may he expressed in terms of translation time constants defined in a
standard library module for the particular object machine. These values are given in the
basic time unit of the clock. Such constants will include declarations for HR (for hours),
MN (for minutes), and SEC (for seconds). If the pragmat SIMULATION has been specified,
then time is managed by a simulated time clock.

Example:
path REFRESH _POSITION;

import only POSITION, SPEED:
LAST_TIME, THIS__TIME: INTEGER;

begin
LAST _.TIME .  SYSTEM'CLOCK;
POSITION -0
loop
delsy 10+5SCC;
THIS TIME = SYSTEM'CLOCK:
POSITION - POSITION + SPEED#(THIS__TIME - LAST_TIME),
LAST_TIME := THIS_TIME;
repeat;
end;

8.7 Interrupts

A box definition may have an interrupt clause specifying an e¥pression giving a particular
mnterrupt level,

interrupt_—clause ::- interrupt axpression

Interrupt boxes must have the mode in. with no associated type. An interrupt box i%
implicitly linked to a hardware interrupt, whose name becomes that of the box.

An oceurrence of # hardware interrupt acts as a connect statement to the interrupt box of a
nath. As such, 2 reccive request with an interrupt box results in a suspension of the path
until the interrupt occurs. An intercupt linked with a box is automatically unn. ked when
the path executes a receive request on the box.

In a select statoment containing a local request for an interrupt box, the interrupt is masked
il another box is connected hefore e interrapt oceurs.

Example:
path CARD _READER INTERRUPT (ATTENTION in box;
DONF: in box intarrupt 4},
beyin
loap
Y. racaive ATTENTION;
solect
when receive DONE > connect CR _DRIVER(FINISH),
when delay 2+56C -~ connect CA DRIVERIEMPTY),
end select,
repeat,
end.
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8.8 Path Attrihbutes and Predefined Path Functions
There are several attributes and predefined functions associated with paths.

For a path P, the attribute P'PRIORITY gives the path priority. The predefined procedure
SET_PRIORITY takes an integer argument and sets the priority of a path to the inccger
vaiue, Before such a call, all paths have the same standard priority.

When a path of a family F needs to reference its own index, for example tc pass it to
another path, it may use the attribute F'INDEX for that purpose, Similarly F"INDEX, may
be used for the second index of a doubly indexed family, and so forth.

For a hox B, the attribute B'COUNT gives the number of external paths that have issiued a
connect statement to the hox but have nnt yet heen serviced.

For a path P, the attribute P'CLOCK gives the cumulative processing time on the path, The
real time system clock may be accessed with the attribute SYST EM'CLOCK, where
SYSTEM is a predefined name denoting the system. The path execution clock may he set to
zero with the predefined procedure RESET, CLOCK of no arguments,

8.8 Scheduling of Multiple Paths

There may be multiple paths that are ready to be exccuted by the system processors. In
choosing the pathe to he processed, paths with the highest priority are processed first.
Paths of the same priority level are processed on a first in, first out basis.

8.10 Low Level Input-Output Operations

A low level input-output operation is an operation acting on a physical file. Such an
operation is handled by using one of the two rredefined procedures SEND_ CONTROL and
RECEIVE _CONTROL.

The SEND_CONTROL procedure may be used to send control information to a given
physical file, Sending control information to a physical file may result in starting a data
transfer.

The RECEIWVE _CONTROL procedure may be used 1o monitor the execution of an input-
output operation by requesting monitor information from the physical file,

For such operations the kind and formats of required contral information will depend on
the machine and physical file characteristics, Henee these procedures will be predefined

operations declared in g standard definition module for a given implementation.,

Example:

typs DEVICE_ADDRESS = INTEGER;
type 1..(}. .RANGE = (0 .. 31);
type (_O_STATUS = SET{ .0 RANGE),

RECEIVE_CONTI.OL: procedure (DEVICE: in DEVICE ADDRESS;
RESULT outt O STATUS!,




9. EXCEPTION HANDLING

This section defines the facilities for dealing with exceptional situations that cause a
suspension of normal program execution.

The environments whose execution can be prematurely terminated by an exception are
blocks, subprograms, and paths. Exceptions are introduced by exception declarations.
Exception handlers are subprogram bodies to which control is passed when an exception
occurs,

9.1 Exception Declarations
An exception is declared as a subprogram whose subprogram nature is exception. The
declaration identifies the scope in which the exception may be raised and processed by a

corresponding handler. An exception subprogram may only have in parameters.

Several exceptions are predefined in the standard prelude. These include

OVERFLOW For exceeding the maximum allowed value of a nurnber
ZERO_DIVIDE For dividing a number by zero

RANGE_ERROR For exceeding the declared range of a variable

ILLEGAL_DATA For a data type error on input

INVALID_ASSERTION For violating an assertion

UNINITIALIZED For accessing the value of an uninitialized variable

TERMINATE For prematurely terminating the execution of a path or a subprogram
OTHER_EXCEPTIONS For daaling with any exception for which no explicit

handle; 1s given in the current scope.

L.:amples of exception declarations:

SINGULAR : exception;

END_OF_FILE : exception;

CANCEL _REQUEST : exception {CODE: REQUEST_CODE);
STORAGE _OVERFLOW :  exception (ZONE,SIZE: INTEGER);
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9.2 Exception Handlers

The processing of an exception is specified by giving a subprogram body for handling the
exception. An exception may be processed by different handlers in different scopes. Speci-
fically, in any block, subprogram, or path that is within the scope of an exception declara-
tion, a local body may be provided to handle the corresponding exception.

When a handler is invoked following the corresponding exception, execution of the handler
replaces the remainder of the execution of the block, subprogram, or path where the
handler is provided.

Since the handler acts as a substitute for the corresponding unit, any statement that is legal
within the unit may be used within the handler. For example, a handler within a function
has access to its parameters and may issue a return statement on behalf of the function.

Examples:

exceplion SINGULAR;
begin

PRINT (“"MATRIX ISSINGULAR");
end;

exception CANCEL _REQUEST (CODE: REQUEST_CODE):
begin
if CODE = ABORT then
raise TERMINATE;
else
DISPLAY (“REQUEST CANCELLED");
end if;
end;

9.3 Raising Exceptions

An exception is implicitly raised when an operation leads to a predefined exception
situation, or is explicitly raised by an exception statement.

axception._statement @ : =
raise [subprogram_calll {for path_name] ;

An exception statement raises the exception named by the subprogram call. The call may
specify input parameters to be passed to the corresponding handler. If no subprogram call
is given, a raise stalement reraises the most recently raised exception. An exception
statement can also be used to raise an exception in another path.
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Examples:

raise;

raise SINGULAR;

raise CANCEL _REQUEST (CODE : = CURRENT_REQUEST._CODE);
raise TERMINATE for PRINTER;

9.3.1 Dynamic association of handlers with exceptions

When an exception is raised, normal program execution is suspended and one of the follow-
ing events takes place.

(a) If the suspended block or subprogram does not contain a local handler for the
exception, execution of the block or subprogram is terminated and the same exception
is reraised in the outer block or in the calling subprogram,

(b) If alocal handler has been provided, execution of the handler veplaces executicn of the
remainder of the block or subprogram.

For example, consider the following program structure,

procedure P;
Q : procedure;
R : procedure;
ERROR : exception;

procedure Q,
excoption ERROR; [handler E2]
begin

end;
begin

R;

... [exception possibility {2) ]
end;

procedure R;
begin

[exception possibility (3) ]
end;

exception FRROR: [handler E1)
begin

end;
begin {P)

. lexcepticn possibility {1) ]
Q;
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The following cases may arise

(1) If the exception ERROR is raised in the statement list of the outer procedure P, the
handler E1 provided within P will be used to complete the execution of P.

(2) If the exception ERROR is raised in the statement list of Q, the handler E2 provided
within @ will be used to complete the execution of Q. Control will be returned to the
point of call of @ upon completion of the handler.

(3) If the exception ERROR is raised in the body of R called by Q, execution of R is
terminated and the same exception is raised in the body of Q. The handler E2 is then
used to complete the execution of the body of Q as in case (2).

Note thai case (3) results in a dynamic binding, since the exception in R resuits in passing
control to a local subprogram of Q that is not visible in R.

Note also that if a local handler were given within R for the predefined exception
OTHER_EXCEPTIONS, case (3) above would cause execution of the handler for
OTHER__EXCEPTIONS rather than direct termination of R.

9.3.2 Raising exceptiens in other paths

A path can raise an exception in another named path.

If the other path is active, its execution is suspended and a handler may be dynamically
invoked as described above. If the other path is not currently active, processing of the

exception is deferred until the path becomes active,

If no handler exists in the other path, the same exception will be reraised in the outer
subprogram or path at the rejoin point after the inner statement that initiated the path.

9.4 Suppressing Exceptions

Exception conditions may be suppressed within a given scope by including in its declarative
part a pragmat of the form:

pragmat SUPPRESS {identfier _Listy
kach designated exception 1s suppressed within the scope. As a result, no checks are
provided to insure that the exceptions do not arise. This facility may be especially useful
for the predefined exceptions, since detection of some of them may be expensive unless
aidled by special hardware. Snould they arise, the results may be unpredictable.

Examples:

pragmat SUPPRESS (RANGE_ERROR,SUSCRIFT_ERRQR)
pragmat SUPPRESS (IN /ALID._ASSERTION)

%
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10. REPRESENTATION SPECIFICATIONS

Representation specifications specify the mapping between data types and features of the
underlying machine that execute programs. Representation specifications may be more or
less direct: in some cases they completely specify the mapping, in other cases they provide
criteria for choosing a mapping.

Representation specifications must appear immediately after the declaration list of a declar-
ative part, and may only be applied to types declared in the same declarative part. If pre-
sent, they apply to all objects of the type. In the absence of an explicit specification for a
given type, the representation will be determined by the translator.

representation _specification D=
packing_specification
] length _sgecification
i enumeration _type_.representatics
| record_type_representation

10.1 Packing Specifications

A packing specification indicates that storage minimization should be the main criterion for
selecting the representation of a record or array type. In the absence of a specification, the
translator will generally minimize access time to record components or array elements.

packing_specification R
for type _name use packing;

For array types, packing specifications are allowed only if the element type is not itself a
composite type.

Examples:

for MATRIX use packing;
for FILE_OESCRIPTOR use packing;

10.2 Length Specifications

There are three forms of length specifications. All forms include an expression whose value
is expressed in bits. Attributes may often be used to simplify the writing of these expres-
sions.

tength specification L=
for type_name use expression;
|  for path_name use expressicn;

| for access_type_name use 2xpression;
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The first form indicates that objects of the type should be represented with a specified
number of bits. This number must be known at translation time, and must be at least equal
to the minimum neceded for the representation of variables of the type. A length specifi-
cation may be used to achieve a biased representation.
Examples:

type BIASED = INTEGER range (10._000 .. 10._255),;

for COLOR use ONE_BYTE-

for ELEMENT  use INTEGER'SIZE;

for BIASED use 8B;

The second form of length specification may be used to indicate the amount of stack space
to be allocated to a given path. This amount must be known at translation time.

Example: {the constant PAGE is expressed in bits]
for PRINTER use 4*PAGE;

The last form of length specification is used to specify the amount of stack space to be
reserved for the collection of dynamic records designated by variabies of a:. access type.

Example: [a collection of 2000 persons)
for PERSON use 2000 * PERSON'RECORD_SIZE;
10.3 Enumeration Type Representations

An enumeration type representation specifies tie internal codes for the elements of an
enumeration type.

enumer ation_ type_representation
for type_name use array _aggregate;

The array aggregate used to specify this mapping is an array aggregate of type

array (type_name} of INTEGER
All enumeration values must be provided with distinct integer values, and these values must
be known at translation time. The integer values specified for the representation of an
ordered enumeration type must satisfy the order relation of the type.
An actual array parameter whose index is an enumeration type with a non-contiguous

representation cannot be associated with a formal array parameter whose index is specified
by *.
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Example:

type MIX_CODE = (ADD ' SUB ! MUL I LDA I STA ' §TZ);

for MIX_CODE use
(ADD:1, SUB:2, MUL:3, LDA:8, STA:24,STZ2:33);

10.4 Record Type Representations

A record type representation specifies the storage representation of records, i.e., the order,
position, and size of record components.

record._type _representation o=
for type_name use record {alignment expression;]
'{componenx_representatlon }end record;

component _representation D=
variable _name at expression bits range.__denotation;

An alignment clause specifies that records must be allocated at addresses that are exact
multiples of the number of bits specified.

The position of a component is given by the position of the storage unit containing the first
bit o1 the component (at clause) and a bit range (bits clause).

For a given machine, the size of a storage unit is defined by the configuration dependent
constant SYSTEM'STORAGE _UNIT. The first storage unit of a record is numbered 0.
The first bit of a storage unit is numbered 0. The ordering of bits in a storage unit iz imple-
mentat.on defined.

A component representation must define a storage field large enough for the comnponent.
An implementation may place restrictions on how fields overlap storage boundaries.

All expressions appearing in a record type representation must have values that are known
at translation time. Translators must check that record components of a given variant do not
overlap.

A component representation may also be used to specify the address and width of a variabie.

Example:




type PROGRAM_STATUS_WORD =

record
SYSTEM_MASK © array (0.. 7} of BOOLEAN;
PROTECTION_KEY : (0..15);
MACHINE _STATE . array (A I MIWIP)of BOOLEAN;
INTERRUPT_CAUSE : INTERRUPTION_CODE:
e :  (0..3);
CcC : (0..3);
PROGRAM_MASK : array (FIX 1DEC 1 EXP 1 SIGNIF) of BOOLEAN;
INST_ADDRESS: ADDRESS;

end record;

for PROGRAM_STATUS_WOQORD use
record alignment 64;
SYSTEM__MASK atObitsd .. 7;
PROTECTION_KEY atObits8.. 11;
MACHINE_STATE at 0 bits 12 .. 15;
INTERRUPT_CODE atObits16 .. 31;
ILC ati1bits0. 1;
CC atibits2. 3;
PROGRAM_MASK at 1 bits4 .. 7;
INST_ADDRESS at1bits8.. 31;
end record;

[ ———
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10.5 Change of Representations I

Only one representation can be defined for a given type. As a consequence if an alternate
representation of a given type is desired, it is necessary to define a second type which is
logicaily equivalent (has the same properties) but has a di{ferent representation.

Example:

——~ PACKED..DESCRIPTOR and DESCRIPTOR are two different
—— types with identical properties

type DESCRIPTOR =
record

end;

type PACKED _DESCRIPTOR = DESCR!?TOR;

for PACKED_DESCRIPTOR use packiag;

sl Lol U Ll

Change of representations may be accomplished by assignment with explicit type conver-
sions. Such conversions are legal for types declared as logically equivalent.
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Examples:

D . DESCRIPTOR; —
P :  PACKED_DESCRIPTOR; ;
P := PACKED_DESCRIPTOR (D); —— pack :
D .= DESCRIPTOR (P); —— unpack

10.6 Configuration and Machine Depzndent Constants

Configuration dependent constants are expressed as attributes of the predefined name
SYSTEM. Similarly, translator options may be interrogated with boclean attnbutes of the
predefined name OPTION. Other implementation dependent properties of specific program
constructs may be interrogated using appropriate attribute qualifiers.

Examples:
SYSTEM'STORAGE_UNIT OPTION'SPACE
SYSTEM'MEMORY_SIZE OPTION'TIME
SYSTEM'NAME OPTION'LIST
REAL'RADIX SMALLINT'IMPLEMENTED _RANGE
INTEGER'SIZE TABLE ADDRESS
X. COMPONENT'POSITION Iposition of COMPONENT in storage units)
X. COMPONENT'FIRST _BIT {first bit of bit range)
X. COMPONENT'LAST_BIT [1ast bit of bit range]




11. OVERALL PROGRAM STRUCTURE AND COMPILATION ISSUES

This section describes the overall structure of programs and the facilities for separate com-
pilation. In: general, a program is a collection of one or more compilation units, which are
subprograms, definition modules, or paths. Exception bodies may not be separately com-
piled, since their use is local to a given scope. Compilation units may be grouped in libraries
to be reused by several different programs.

This section also describes generic program units, the facilities available for conditional
compilation, and the treatment of configuration dependent features.

11.1 Compilation Units
The body of a subprogram, path or definition module declared with the translation mode
separate is called a compilation unit and is compiled separately. This means that its text
may be submitted to the translator separately from the reet of the nr gram text.
Algorithm modules, another form of compilation units v il! ~scribed later.
compilation_.unit :: = body | algorithm _module
Declarations of separately compiled units may only appear within the outermost declarative
part of a subprogram, which itself is scparately compiled. The main program is implicitly
declared in the standard prelude as
MAIN : separate procedure;

Examples of separately compiled units:

procedure MAIN;

i. : constant = 100;
D separate defirition;
A . separate procedure (X: in INTEGER),
begin
end [MAIN];
definition D;
LIMIT - constent INTEGER = 1000,
TABLE - array {1, LIMIT) of INTEGER,
end {D];
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procedure A (X: in INTEGER);

import D;

Y INTEGER;

c separate procedure;
begin
end (A]:

11.2 Recompilations and Scope Rules

The scope rules applicable to separate subprograms and paths are identical to those of
normal subprograms and paths. For exaraple, a separate subprogram C declared in a sub-
program A has access to the identifiers declarad in A, exactly as if C were declared as a
normal procedure.

The rules of recompilations follow the scope rules: a compilation unit must be recompiled
whenever another unit which it sees 1s recompiled, since the visible information may have
been changed. As a consequence, recompilation of the enclosing unit A requires a recom-
pilation of inner separate subprograms or paths like C.

In addition, if a compilation unit C imports a definition D, it must be recompiled whenever
D is recompiled.

A different rule applies to separate definition modules. A separate definition module does
not have access to the local entities of the procedure where it is declared, unless it explicitly
imports the name of the procedure. As a consequence, a separate definition must only be
recompiled when any of the units it imports is recompiled.

The declaration of a separate definition modile plays the same role as that of a normal
definition module; it identifies the poinl where the definition must be instantiated. A
separate definition may be compiled before the procedure where it is declared, provided
it does notl import the name of the procedure. This possibility is essential for library def-

inition modules.

In the previous example:

(a) Within procedure A, the identifiers 1. and D dcclared in MaIN are visible. The ident.i-
fiers LIMIT and TABLE imported from the definition module D are also visible.

(b) Within definition D, the identifiers L and A declared in MAIN are not visible since D
does not import MAIN. Thus D may be compiled either hefore or after MAIN.

(¢) Recompilation of MAIN requires recompilation of A

(d) Recompilation of D requires recompilation of A




11.3 Algorithm Modules

Changes in a subprogram body or within the algorithm pari of a definition module do not
affect units that import the definition, since these units only have access to the visible part.

As a result, to minimize recompilations, a definition module may be compiled in two
units: a definition module containing only its visible and private declarative parts, and an
algorithm moduie containing its algorithm and initialization parts.

Similarly a subprogram may be compiled in two units: a subprogram body containing only
the declarations needed hy inner compilation units, and an algorithm module containing
local declarations and the statement list of the subprogram.

An algorithm module bears the same name as the subprogram or definition module of which
it is a part. Recompilation of the algorithm module of a separate definition does not necessi-
tate recompilation of units importing the definition. Similarly, recompilation of the
algorithm module of a separate subprogram does not necessitate recompilation of separate
procedures and paths that are declared within the subprogram.

algorithm _module : : =
algorithm identifier; declarative _part
{begin statement_list] end,

For example, consider the definition module RATIONAL_NUMBERS of Section 7.3 de-
clared as a separately compiled unit:

RATIONAL..NUMBERS : separate definition;

The first compilation unit contains all the information needed by other program units that
import the module.

definition RATIONAL_ _NUMBERS;
type RATIONAL =
record
NUMERATOR : INTEGER;
DENOMINATOR :  {1..INTEGER'LASI,,
and record;
EQuUIV . function (X,Y. RATIONAL)} return BOOLEAN,
ADD . function (X.Y: RATIONAL) retusn RATIONAL,;
MULT : function (X,Y: RATIONAL) return RATIONAL;
end;

Note that the above unit does not contain the function bodies. These are in the separate
algorithm module:
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algorithm RATIONAL _NUMBERS:
procedure SAME_DENOMINATOR(X,Y: access RATIONAL);
begin
{reduces X and Y to common denominator)
ond;

function EQUIV(X,Y: RATIONAL) returrn BOOLEAN;
U,V: RATIONAL;

begin
U =X 2
V = Y ,

SAME OENOMINATOR (U,V);
return (U NUMERATOR = V.NUMERATORI;
end;

function ADD. ..
function MULT ...
end;

11.4 Libraries

Libraries can be constructed with separately compiled subprograms, definition modules,
and algorithm modules. For standard user packages, such as an application level input-
output package, splitting of definition modules into two parts (one corresponding to the
user interface, the other containing the bodics) should be systematically used.

11.5 Compilation file

Compilers must preserve the same degree of type tafety for separately compiled units as
for other units. Consequently, a compilation file containing information on previously com-
piled units must be maintained by the translator. This information includes symbol tables
and information pertaining to the order of previous compilations,

A normal submission to the translator will include the text of the compilation unit and the
compilation file. The latter is used for checks and rnay be updated by the current
compilation,

11.6 Conditional Compilation
Statements appearing In a case statement will not be compiled if the case discriminant is
known at translation time and if they are not in the alternative selected by the discriminant

value.

Similarly an if stateiment with conditions known at translation time may he used to achieve
conditional compilation,
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Conditional conpilation of declarations may be achieved in a similar fashion with a variant
part whose discriminant is known at translation time. Only the declarations of the trans-
lation time chosen variant will be compiled. A variant part that appears in contexts other
than a record declaration can only be used for conditional compilation; its discriminant

must always be a translation time constant.

Variant parts and translation time case statements can be used for compiling program
portions that depend on the object machine configuration. In such cases the discriminant
will be a translation time constant relating to the configuravion.

In the example below, vanant parts and translation time case statements are used to produce
two alternative programs that differ only on the value of a constant CHOICE, which is set

to one of two values before compilation,
Example of conditional compilation:
CHOICE: constant (A | B) = A;
procedure ALTERNATE (X : REAL);
case CHOICE of

when A => U . REAL;
when B = > V : LONG_REAL;

end case;
beyin
case CHOICE of
when A = U = X;
when B = V := LONG_REAL{X):
end case;
[remaining statements of ALTERNATE]

end;
Example of resulting choice:

procedure ALTERNATE (X REAL);

U: REAL;
begin

U = X,

{rerianing statement of ALTERNATE ]
end;
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11.7 Generic Program Units

Generic program units are program units with translation time parameters specified by a
generic clause. Instances of generic program units are declared by generic instantiations.

generic _clause : : = generic [ { identifier_list) )
generic_instantiation : . =

identifier: new generic_nature generic_name
[ (generic_association 1, generic_association }} ] ;

generic _nature : - = function i procedure | definition | path
generic_association : : =
generic_parameter _name == expression
| generic_parameter _name == name

The identifier list of the generic clause defines the generic parameters. They may appear
anywhere in the body of the generic program unit.

In order to create an instance of a generic program unit, replacements for the generic para-
meters must be provided by generic associations. Either a translation time expression or the
name of a previously declared entity may be sukstituted for a generic parameter. This sub-
stitution is performed in the text of the generic program unit for each generic instantiation.

Instances of generic program units may be used as program units. Note that when several
inslances of the same generic definition module are imported in the same scope, renaming
clauses are usually necessary to resolve name counflicts. Within a generic program unit, the
type of a variable V may be denoted by the attribute V'TYPE.

Generic program units may not he separately compiled.

Examples of generic declarations:

STACK
SWAP

generic (ELEM, SIZE) definition;

generic (ELEM) procedure (U,V access £ LEM);

Examples of generic instantiations:

STACK_INT new definition STACK(ELEM == INTEGER, SIZE == 200;;
STACK_BOOL new detinition STACK(ELEM == BOOLEAN, SIZE == 100);
EXCHANGE : new procedure SWAP(ELEM == INTEGER):;

EXCHANGE new procedure SWAP{ELEM : = REAL);

yr

- - BT R
o =yt e Y N
MumwﬂﬂWmmw .‘\M.‘Auwmm d

it B

]
i
i
3
!

™




Example of a generic definition module:

definition STACK;
PUSH : procedure (E: in ELEM);
POP . procedure {E: out (ELEM);
STAZK_ERROR : exception (MODE:

algorithm
SPACE : array {1 .. SIZE)} of ELEM;
INDEX : (0..SIZE) := 0,

procedure PUSH (E: in ELEM);
begin
if INDEX = SiZE then
raise STACK_ERROR{OVER);

end if;

INDEX : = INDEX + 1;

SPACE(INDEX) : = E;
end [PUSH]);

procedure POP (E: out ELEM);
begin
if INDEX = 0 then

{OVER !

raise STACK_ERRQOR(UNDER);

end if;

E : = SPACE(INDEX);

INDEX : = INDEX —1:
end (POP];

exception STACK_ERROR;
begin

raise TERMINATE;
end [STACK_ERROR];

end [STACK],
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APPENDIX A. SAMPLE INPUT OUTPUT DEFINITIONS

The general facilities offered by the Green language enable the construction of application

level input output facilities without additional language constructs. Thus standard appli-
cation level packages may be developed for major application classes, current or future,
without affecting the core language as seen by the users.

The two exampies provided below are meant to indicate the principle of construction of
such packages and to illustrate the general form of user interfaces.

The tirst example, CHARACTER_FILE_HANDLING cormresponds to the treatment of
character files. The type FILE itself is private (i.e. its name is known but its properties
are not directly accessible to the user). The visible part of the definition module declares
procedures for standard file operations (creating, opening, closing) and for the procedures
GET and PUT. The algorithm part contains the bodies of these procedures. It may also
contain local procedures and paths performing the necessary low-level input output oper-
ations. The initialization part creates and opens the standard files INPUT and OUTPUT.
Notice the use made of named and optional parameters in these calls of CREATE.

P

definition CHARACTER_FILE_HANDLING:

type FILE = private;

ol sl i Uil SR

INPUT, OUTPUT : FILE;

{lnlati;

type FILE_ACCESS_METHOD = (SEQUENTIAL ! INDEXED ! DIRECT}:
type FILE_RECORD_FORMAT= (FIXED ! VARIABLE);
type ACCESS_RIGHT (INPUT_MODE t OUTPUT_MODE ! UPDATE_MODE);

CREATE : procedure (NAME : array (=) of CHARACTER:
RECORD_LENGTH . INTEGER := 80:
KEY_LENGTH : INTEGER = Q;
BLOCK _LENGTH : INTEGER := 320:

ACCESS_METHOD : FILE._ACCESS_METHOD:= SEQUENTIAL,
ARECUORD_FCRMAT : FILE_RECORD _FORMAT. - FIXED,
F © out FILE);

T

OCELETE . procedure (F . FILE!):
OPEN © procedure (F . FILE; A . ACCESS_I..GHTY,
CLOSE . procedure {F - FILE):

il
"

GET o procedure (F - FILE; BUF - access array (i of CHARACTER):
PUT . procedure (F : FILE; BUF : access array (*) of CHARACTER):

iother file handling p:ocedures’

i D Al i
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private
type FILE=[ ... ],

dlgorithm
[internal tables and bodies of above procedures)
begin
CREATE(NAME := “'SYSIN'; F =: INPUT);
QPEN(INPUT, INPUT_MODE);
CREATE(NAME := “SYSOUT": F =: OUTPUT),
OPEN(OUTPUT, QUTPUT_MODE);
end ([CHARACTER_FILE_HANDLING];

The second example is an interface definition module for Pascal-like Input-Output. The
corresponding algorithm module may be compiled separately and need not be shown to the
user.

definition PASCAL 1 _Q;
import FILE_CHARACTER_HANDLING,

LINE_LENGTH: constant = 120;
subtype FIELO_WIDTH = INTEGER range (0 .. LINE_LENGTHj;

k READ: procedure (V: out CHARACTER; F : in FILE := INPUT);
: READ: procedure (V: out INTEGER; F - in FILE = INPUT);
4 READ: procedure (V: out REAL; F : in FILE = INPUT);

WRITE: procedure (E: in CHARACTER:
W: in FIELD _WiDTH := 1;
F: in FILE = OUTPUT);

WRITE: procedure (E: in BCOLEAN;
W: in FIELD_WIDTH := 5;
F: in FILE = QUTPUT);
WRITE: procedure (E. in INTEGER;
W: in FIt _D_WIDTH := 10,
F: in FILE := QUTPUT);

WRITE: procedure (E: in REAL;
W oin FIELD_WIDTH := 20;
W1 in FIELD_WIDTH := 0;
F: in FILE = OQUTPUT):

WRITE:  procedure (E 1n array {#) of CHARACTER;
F:in FILE = QUTPUTY).

end [PASCAL_I_O;

Here again the use of optional parameters, and also of overloading permits the user to
formulate calls to these procedures in a way which 1s very similar to Pascal. Thus calls could
be written as follows:

WRITE{1), WRITE(ZEO); WRITE(A = B), WRITE ("THE END"’);
A-2
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3.9 Declarative parts

declaiative _part = [import _clause| { declarationt
« tepresentation _specification ! bady ;

body = subprogram_body | defimtion.module_body | path_body

4.1 Variables

vanable =
varigble _name | array.-element | shce i record_component
array _element - = vanigble (expression «expression I

slice : = variable (range_denotation)

record _component = vaniable component _nzame I variable.all

4.2  Scalar values and attributes
scalar _value = number | enumeration_value | attribute
alttribute

denctation attribute .qualitier

denctation -

ngme . variable path _denoctation | vox_denotation

4.1 Expressions
expresion
simpte _expr2ssion irelational _operator simple _expression:
1 simple_expression ¢ (not! range _denotation

simple _expression = {simple _expressign adding _operator| term

term = jterm multiplying. operator] factor

factor .= |ungry operator| primary
prmary ¢ vanaple | scalar _value | array _aggregate
| record. aggreqate i functian call Tlexpressiont
1 quahitied. expression | none
funclion _call - subprogram _cai:
44 Qperators
relational _operator R < i <= | > o>
adding .operator : 1 - | or | =or | &
mutiptying  operator | [ | mod | div | and
unary  gpe:ator v = | not | st
45 Qual:hed expressions
Qua' ied expressinn
tyieg _expiession i constramned __expressson
typed. expression  * type_name {expression)

conslrgined expressicn - subtype _name (expression)

5. Statements

i

staternent _1ist - = 3 {labell statement !

statement ;= simple _statement | compound_statement
i transfer _statement

simple_statement = assignment_statement  ;  aflocation _statement
{ subprogram_calt _statement | assert_statement
| synchionization_statement :© inf:ne_statement
| nult;
compound _statement .= if _statement | cese_statement
| loop.statement | select_statement |  block

transier _statement

1oreturn_ staicnment i
I goto_statement

label = & dentifer D>

'vop_exit_statement
exception _statement

5.1  Ausignment statements

ass:gnhment _ statement - variable express.on.
€.2 Alloceuon statements
ailocation _statement =
variabie  new iecord_aggregate
| variabie . new tyurd _expression.
63 Subprogram calis
subprogram _call . stalerment = subprogram _call,

subprogram .call * subprogram .rame
| {parameter _asi0Calion ¢ parameter _associatior i )

parameter _association -

npul_associauon Quipul_assotiation access _assoCration

mput_association . = jlormal _parameter - | expression

outpul..association - |tormal _parameter = | variabie
access _association = formal. parameter - =] vaniabie
torma! paramete: “adent:fier

5.4 Return statementy

teturn s1atement = return [expressioni

55 H statements

1l _statement
if cond tion then statement _list
{ eluf conditn then statement hist !
“else statement _list!
end f.

condition
exnression | 8NGO then expression )
expression i or elta express:on |}

st o vl

i uallal
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APPENDIX B. SYNTAX SUMMARY

29 Lexical elemants

denufier _List ;= identifier { identifier

3.1 Declarations

declaration . -
element _declaration | type_declaration
subtype _dec:aration | access_type._ declaration
subprogram _declaration | path_declaration
definiion _declaration | genenc_instantiation
' onuli;

variant _part

3.2 Element declarations

element_.declaration - =
vanabi- _declaration
| constant_declaratior

aming declaratior
delerred _constant dezlaraton

vatiable _declaration © -
wdentifier _iist: type | = expression!

renaming_declaration -
wentihier type - vanable.

constant _deciaration
identifier: constant [typei - expression.

defetred _constant _declaration =
dent:fier  constant type,

3.3  Type and subtype declarations

type _declaration wpe identifier = type_ definition

tyoe _definition "z lype i oprivate [parameter|

type @ =
simple _type _definiion jconstraint®

array -type | record_type
simple _type_definition scalar _type | type _denotat.on
type _denotaton © - type_name | subtype_name | attribute

ccrstrarnt =

scalar —constraent . arra - . constraint .

subtype _declarat . n -~
s ype dentifier - type _denotation iconstraintl |

3.4 Scalsr types
scalar . type - diwscrete type T real type

trange

ducrete _1ype - scaled .tvpe | enumeianon type

g

scalar  constrant - = range {range!

range = simple . expression CSIMpiE | eXpression

34.2 Scaled typas

scated . type = scale simple_expression

tecord _constraint

3.4.3 Resl types

real_type = precision simple _expression

3.4.4 Enumeration types

enumeration_type =
{enumeration _value i ' envmeration _value }}
| {enumeratron_value ! <. enumeration _value ;}

enumeration _value - dentifier  {  character 3
3.5 Array types %
=
i
. : El
array _type < array inndex | .index 11 of type 3
3
=
=

T rgnge _denotation ! =
E]
1ange._denotation = raage type ._denotation j
=]
airay _constraint . - (range _dengtlation | unyge .denolauon ;) =

3.5.2 Arrav aggregates and strings

array. aggregate - character _strng
i ltype_name, leiement_sgecihication { clement _sicCificaton i}

Bl s

ciement _spec-fication = seection CxXPression
selection selected value | - setecled ..valus -

selected . value

aumupet | enumeration _valug fange _dengtation :  others

36 Record types

record_type - record component_iist end record;
component st { element _declarar-on 1 '_vanam_paflf
case disciiminant of | vanant ! end case;

varignt . part

discriminant var.db!r_ name

varign? when setection component  List

3.6.2 Record aggregates and 1ecord constraints

recurd agygregate - llvpe . name’ 1cemponent specrhcation

1 .companent _spec-fication Vi

componci:t peoihicdt.on =

[omporert ngme 3 component Game ) cxpression ,

recotd . constiamnt recird  dgaregate

b

37 Access types

access 1y declaraticn - access type :dentihier == 1ype
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5.6 Case statements

cate _statement
case expression of salternative 'end case,

altecnative = when selection - > statement. hist

5.7  Assertion statements
assert _stalement - - = assert |condition] ;

5.8 Loop statements
loop _slatement - = [iteration _specificat-on; hasic _!ocop
bas:c _foop - loop statement bst repest
teraior _specihicatton - -
while condition untit condition

for S00Np  paramelerin lveveuel range donotation

oo parametes dernd e

$9 Loop exit statements

inop et atement exit ‘when condita:
510 Biocks
ok

declare cwclaraine (4! begin statvmind st end.

511 Goto statements

Joto o statemennd Qoo 1f-nilitivn

6 ! Subprogram declsrations

subprogram | declaraton
name: translation nodel sibprogram nature tormal part,

CIDPrOGraT Natue procedure - tunction | exception

tonmal a3t

tiparameter  cind cange patametee defin tion f | Treturn typel

paramele: gefuvt:on

ideatf oo hisl modde type 3 expresaeni
mode - and I out . access
13Iner sented v T Cratad ter vinng
itansiat.on modh separate QUi Crduse

63 Subprogram bodies

s.ahprrogram bordy
Linhine! subpragram cature mamer fnemal part

"i3t] end

Aeclatatae part [begin ctateme::!

6.6 Codeinsertions

il statement inline 1eConl  aygiegate

7.1 Specificauion of definition modules

defin.tion . dectaration
identifier- [translation_mode| definition,

defimuion module_ body " -
definition 1dentifier_declarative . part
{private declarative _part]
lalgorithm declarative _part!
[begin statement _hist] end;
7.6  Scope ruies
import clause * amportnone; ; import {only] item { .item .

item identifier | (renaming_clause | renaming_ctause })}

renaming clause new . name : old _name

8.1 Path declarations

path  declaratuon
identificat:on ltranslat:on_ mode| path box _part,

hox  parey tihox defuninion . box definition M)

box detuntion
dentification box  mode box ttypel [:ntercupt. clause]

box mode  an | out
wdenti.catieon
Wentifier §range (reot1ation « range _denotation il
8 2 Path bodies
path _body

path path. name box part,
declarative part begin statement List end:

8 3 Synchronization statements

Sy nChiomzatinn statement do 1mner paths  statement
| .ocal _rvequest _statement | cannect statement

8 3.1 Imuating paths

do comer pathy Statemeny inner

8.3 2 Local request statements
local request <tatemeny locy reguest _clause .

focal request clause sond box denotation
! recewve box denciaton i delay expression

box  denotat-on tiox  name ! lexpression ¢ expression 1!



8.3.3 Connact statemants

conngct_statement .. -

connect path _denotation (box _denctation [ = expressionj};

connect path _denotation {box ._denotation | = variablej}.

path _denotation .= path_name [ {expression ; ,expression *}]

8.4 Select statements
select _statement ;=
select selected _box ! seiected_box jof
- when |[condition! local. request —clause = -

end select,

selected_box = box_denotation | multple_ box _selection

8.4.1 Muttiple box selections

multiple . box _selection
box _name {box . index | .box .index :}

box _index = all idenuhier insarge . denotation

87 Interrupts

PAternn clanice - anterrupt exprpcnn

9.3 Raiing exceptions

exception. statement

taise [subprogram calt]l {for path . name’

10. Representation specifications

representation speciticaton -
packing specif.cstion
length . spec:ficatrorn
vnNuMeran.on type representat-on
cecord type representation

10.1 Packing specifications

packing spacitical

for typu .. name use packing,

statement_list !

10.2 Length specifications
length specificatuion ¢

for 1ype __name use expression:

| for path..name use expressicn,

| for access_ type _name use express:on

10.3 Enumerstion type teprasantations
enumeration_ type _representation . =

fo- type_name use array _aggregate;
10.4 Record type representations
record_.type _representanion = =

for 1ype _name use record ;alignment expression

{ component._tepresentation ; end record:

comnpnnent . representation

variable _name st expression bits range _denotation,

11.1 Compitation units

commlation. vt - body 1 algonthm _module

11.3 Atgorithm modules

algor thm. module -
algonthm deat:fier declarative .part
Ibegin statement _I'st’ end;

11.7 Generic program units

generic clause * © genenc | hident.for _tist}

genenc _nstantiation
wdentifier new gerer:c nature geae i€ _name

| 19ener.c_assoc-al-on 1.genenc_association :‘)I.
genenc nature function |, procedure | defimtion
genenc._.association -

gener:c. parameter _rame == express:on
| generic_parameter _name - : name

et

i
I
)

path




Access assoclation (see Access
parameter)
Access parameter 6.2, 5.3, 5.3.1
Access type 3.7, 5.2,10.2
Access type representation 10.2
Access variable 3.7, 5.2, 10.2
Actual parameter 5.3.1, 6.3 (see
also Subprogram call)
Adding operator 4.1.2, 4.3, 4.4
Algorithm module 11.3
Algorithm part 7.3
Alignment clause 10.4
Allocation statement 5.2
Alternative 5.0
Array aggregate 3.5.2, 4.3, 10.3
Array constraint 3.5
N Array element 4.1
' Array type 3.5, 3.8. 5.1.1, 10.1
Assert statement 5.7
; Assignment statement 3.1
: At clause 10.4
Attribute 4.2, 2.6, 3.4, 3.4.2, 3.4.3.

{ 3.5.8.8,10.4, 10.6
i Attribute qualifier 2.6 (see also
- Attribute)

Backus-Naur form 2 9

{ Base type 3.8

Based number 2.3

Basic loop 5.8

Bits clause 10.1

Block 5.10

Body 3.9

Boolean type 3.4.5, 4.4

Boolean vector 3.5.3, 1.14.2, 4.4.3,
4.4.4

Box definition 8.1

Box denotation 8.3.2, 8.3.3, 8.4

Box index 8.:4.1

Box mode 8.1

Box part 8.1, 8.2
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Case stattment 5.6. 11.6
Character 2.1, 3..1.5, 2.4
Character set 2.1

i Character string 2.4

r (see also Array aggregate)
] Character type 3.1.5

3
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Clock 8.6, 8.8
Code insertion 6.3, 6.6
Comment 2.5, 2.8, 5.7
Compilation facilities 11.
Compilation file 11.5
Compilation unit 11.1
Component list 3.6
Component representation 10.4
Compound statement 5.
Condition 3.5, 5.7, 5.8, 5.9, 8.4
Conditional compilation 11.6
Configuration constant 10.6
Connect statement 8.3.3, 8.4,
86,87 88
Constant declaration 3.2
Constant record component 3.6.1
Constraint (see type constraint)

Declaration 3.1 (see also
Declarative part and Scope)

Declarative part 3.9, 5.10, 7.1,
7.6,8.2,831,9.4,11.1,11.3

Deferred constant 3.2, 3.6.1, 7.4

Definition declaration 7.1

Definition module 7., 11.2

Definition module body 7.1, 3.9
11.1,11.7

Delay request 8.6, 8.3.2

Discrete type 3.4

Discriminant 3.6.1,11.6

Division 4.4.3

Do inner paths statement 8.3.1

Dynanuc array 3.5.1

Element declaration 3.2

Element specification 3.5.2

Enumeration type 3.4.4, 3.4.5,
3.8,4.5.2

Enumeration type representation 10.3

Equality 4.4.1

Exception cordition 9., 4.5.3,
51,57

Exception declaration 9.1, 9.3.1

Exception handler 9.2, 9.3.1, 9.3.2

Exception statement 9.3

Exception subprogram 9.1, 9.2, 9.3

Expression 4.3, 5.1, 5.3, 5.4, 5.5,
5.6,6.1,8.32, 8.3.3, 87,
10.2.10.4
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Factor 4.3

For clause 5.8

Forimal parameter 6.2 (sce also
Subprogram declaration and
Sut - gram body)

Functio 14.3

Function subprogram 6.4, 4.3, 6.5, 9.2
11.7

Generie association 11.7
Generie instanuation 11.7
Generle parameter 11.7
Generwe program unit 11,79
Global variable (sce scopr)
Goto statement 5,11

Hindler (see Exceplion handler)
Heswdecamad numiner 2.5

Identifier 2.2
Hoalateinent 5.5, 11.6
Import clause 7.6, 4.9, 7.2
Index 3.5, 4.1
Inequahity 4.4.1
Insual value 3.2
Inline statement 6.6
Intine subprogram 6.3
Input association
(see Input parameter)
Input-output (low level) 3.10
Input-output fhagh tevel) 114
Input parameter 6.2, 5.3,
01,032,608
Integer 2.8, 3.4
Inteser type 3001, 2.8
Interrupt 8.7
Interrupt claise 8.7
Heration specification ok

Koavvord 2.9

Pt 0011

[amngth cpecitnation 1O 2

Fasieal elements 2

vrres 11

f.oenl requiest stidement 84,2,
TR 2 D W0 |

Pl vaniablis fse Sean )

Loop exit statement 5.9
Loop parameter 5.8
Loop statement 5.8

Multiple box selection 8.4.1
Multiplying operator 4.4.3,
4.3.4.4

Name 2.1

Named parameter 5.3

Namer 6.1,6.3,6.5.1

Notation (see Syntax notation)
Null declaration 3.1

Null statement 3.

Number 2.3, 4.2

Numeric type 3.4, 4.4, 4.5.1

Open regnest clause 8.4

Operator 4.4, 6.5.1

Ordercd type 3.4, 8.4.4, 3.4.5

Output assoeialion (see OQutput
parameter)

Output parameter 6.2, 5.3
2.4.1,5.3.2

Overloading 6.5

Own variable 7.1

Packing specificatio 1105

Parameter assoviatic
5.4.1,5.3.2

Parameter definition 6.1

Parent type 3.3, 3.4, 3.8, .- 1
e also Subty pe and Rase type)

I'ath body 8.2, 4.9, 7 4,
11.1,11.7

Path declaration 8.1, 7.3,
R4

Path denotation 8.3

Path exception 45,2, 9.3

Path priority 5.8 (see also
Schedubug

Path schedulmg cooe Seheduling

rigimat 2.5, 2 K, 6.6,
B, 0

Procodonce rules 4.4

Posttiomal parncvoter 5.3

Preciaon 5100
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Predefined exceptions 9.1, 9.3

Prelude 9.1

Primary 4.3

Private part 7.4

Private typc definition 7.4, 3.3

Procedure subprogram 6.1, 6.5,
11.3,11.7

Program 11.

Qualified expression 4.5, 4.3

Raise statement 9.3
Range 3.4, 3.8, 1.-1.1 (sec also
Kange denotation)
Range derotation 3.5, 1.3, 8.1,
5.4.1
Real number 2.3, 3.4.3, 3.8
Realb type 3.1.3, 2.3, 3.8
Receive request 8.3.2, 8.3.4
Recompiiation rules 11.2
Record ageregate 3.6.2, 3.5, 5.2
Fecora component -1
Record constraint 3.6.2
Record tvpe 3.6.3.4,5.1.2.10.1.
10,4 (see also Aeeess type)
Re-cord type representation 10.1,10.4
Relational operator 4.44.1, 4.3, 4.4
Rueal number 2.3, 8.1.3, 3.8
Renaming elause 7.6
Rengning declaration 3.2
Poadezvous 8.3, B34, 8.4
Representation change 1905
Hepresentation specitication
10, 3.8, 3.9
Return statement 509, G

Scalin constraint 3.4
Scalar typeeacb, 20,400
Seadar value 4.2
Seujers camber 205,001, 404
Seajed vepe 301 200R
Sehedaling 8.9, 82030, K1 8.
Seope g bog oL 16T
2. 051,04 112
Do s e Setegie)
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Sedese el valuae 200 2
Seliction 352 46 06
Send reguest B 028,30
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Short circuit condition 5.5.1
Side effect 5.3.1, 6.4
Simple expression 4.3
Simple statement 3.
Simple type definition 3.3
Slice 4.1, 5.1.1
Spacing convention 2.8
Statement 5.
Statement list 5., 5.5, 5.6,
A5.8,5.10,7.1, 82,84
Storage unit 10.4
String (see Character string)
Subprogram body 6.3, 3.9,
7.3.9.2.11.1
Subprogram call 5.3, 6.2,
v.3, 9.3
Subprogram declaration 6.1,
6.3, 7.2, 9.1
Subprogram nature 6.1
Subtype 3.4, 3.5, 4.5 3
Subtype declaration .
Suppressed exception o
Svnchromzation 8.3, 8.1, 8.4
Svntax notation 2.9

Term 4.3

Transter statement 5.

Translation mode 6.1, 7.1, 8.1

Translator option 10.6 (see also
Pragmat)

Type conformity 5.8, 4.4,
5.1, 5.3.3

Twype constraant 3.3, 3.4, 3.1.1,
3.0, 8.6.2, 3.8, 4.5.3,
5.1, 0.6

Type conversion 4.5.1, 3.8,
40101, 1005

Ty declaration 3.3

Type denotation 3.3

Typed expression 4.5.1, 1.5.2, 5.2

Lhary operator 14, 13, 4.4
I nosapnable record component 3.6.1
Uil eliusee D K
Vanable L4008 5.0, 0.2,
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NVaoanable declhnation 302
Vit 360, 3o 20 1), 1.6
Viathle gt 7.2, 113
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