
N
A0 A073 653 AMHERST SYSTEMS INC BUFFALO NY F/B 9/2

IMAGE PROCESSING SYSTEM SOFTWARE. VOLUME II. PROGRAMMING MAP4UAL—ETC(U)
.AIN 79 E B EBERL. P T GLINSKI F30602—Y B—c— oo77

UNCLASSIFIED AMfERST—0077—V04 —2 RAflC—TR—7 Q—SP—VflI -~~~ M

Q!I~IPfl
_ _ _ _ _

_ _•
11.111

I

-

I.O~~ L L ~
_ _ _

L L ~J2.2
uJl~~~

11 1.1 ‘
~a ~ I.8

~~~~~~~~ III II~ imi ’

MICROCOPY RESOLUTION TEST CI4T
NATIO iAL BUREAU or smNDAR~~- I9A3.

~ -



___________________________________ ____________________ — - — . -

Q~LEYEL~j
RADC.TR-79-32, Vol ll (of two)

Jun 1979

IMAGE PROCESSING SYSTEM SOFTWARE
Programming Manual
Amh.rst Syst.ms, Inc.

-4z .
Dr. Edward G. Eberl
Mr. Phfllp 1. Glinskl

• -
-3

..x1 -

• 

[APP*ovEo FO~ PUSUC 1EIIASI; DISTRISUTION UNUM~~~ J

D D C
~ r~-i

UU ou:,uUtb
B

ROME AIR DEVELOPMENT CENTER
Air Forc• Systems Command
Griffi ss Air Forcs Base, New York 13441

‘-H 79 09 10 002 

~~~~~~~~~~~~~~~~ ---~~~~ -~~~~- - -~~~ .- ~~~~ - - -~~~~~~~~~ - --U ~~~~ 


This report has been reviewed by the RADC Information Office (01)
and i. releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public , including foreign
nations

RADC—TR~-79-.52, Vol II (of two) has been reviewed and i. approved for
publication.

APPROVED: -

ANTHONY R. FANELLI
Proj ect Engineer

• -

APPROVED: ~~~~

HOWARD DAVIS
Technical Director
Intelligence & Reconnaissance Division

FOR THE CO)~(ANDKR

JOHN P. RUSS
Acting Chief , Plans Office

If your address has èhanged or if you wish to be removed from the RADC
mailing lis t, or if the addressee is no longer employed by your organize—
tion, please notify RADC (IRRE) Crlf f is. APB NY 13441. This will assist
us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

-

- — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—,--- - •

~~

-‘— “
~~~~ ~~

—,--‘-,—

~~~~~~~~~

--.—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

UNCLASSIF IED 
_______________

SECURI T Y CLASSIF ICATION OF TIll S PAGE (I+7ten Data Enlo~ed) 
-

~~~~~~ 
~~F%~~ Il E ~~~~U~ &I DAI E

R E A D INS TRUCTI ON S
~JJj I’ I V I ~ I UUI..UM I~ I M I l~ II~ BEFORE COMPLETING FORM

• L. • ~*ee*—— --- 2 . GOVT A CCESSIO N NO. ..~~~. REC IPIENVS C A T A L O G NUMBER

RADC TR— 79- 52,. j~~ 1~~~(of two) (ci
- •

- ~~~~~~~~~~~~~~~~ RE D

(~
IMAGE PROC ESSING ~ YSTEM SOFTWAR E~ \‘~- / / 4 ,~-~ t:_~._~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
0 4 M 1 • — —rogramm ng anua ,

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
g1D~~~~~~~~~~ Iu Wr~~

_ _ _ _ _  
JAmher st — 

~~~ ~2~/
7 AUTHOR(.)

•

T C O N T RA C T OR G t S A W T UMBER(.)

/ ‘‘ Dr.~ Edward G./Eberl \ F30602 78—C--0077 / ‘

- _-‘~ Mr. ~Philip T./Clinski \
- r

9. PERFo RM ING O R G A N I Z A T I O N NAM E AND ADDRESS b PR O C k A M ELEMENT . PROJECT . T A S K
A R E A & WOR K UNIT NUMBERS

Amherst Systems, Inc .
132 Cayuga Road ~~~ - 62 7 02F . / (~~Y f i

Euffalo NY 14225 —~~7 / ;~ 6!~~~O86 • g’

It . (.ONTROLLING OFFICE NAME AND ADDRESS ~~~~~~ f ’ ~~~~-o’~~TE
—__________

Rome Air Development Center (IRRE) (f /
s) JUn ~~~~~~79 J

-

G r i f f i s s AFB NY 13441 • 13. NUMB ER OF PAGES
- 222

IA. MON ITOR ING A G E N C Y N A M E & AOO RESS(II dill 4~r.nt f,o~n Co , . t , o I l I, gO / f • r e) t5 • S E C U R IT Y C L A S S . (of II~~o 0p0r?)

• Same /.
‘
\ ~ ~~~~

UNCLASSIF IED
7> /
/ 15& O E C L A S S I F I C A T I Q N D O W N G R A D I N G

N/A
SCHEDULE

16 DISTHIB uT UO N ST A T E M E N 1 ~o f the. Report)

• Approved f or public release; distribution unlimited .

I? . DISTRIBUTION S T A T E M E N T (of the abstract entered /n Stock 20. ii dIfferent t~oo Ropo r t)
-

Same

_____ _ D DC -
IB. SU t I’ L EU EN -r A RY NO’~ ES j~ f? (i~3 [F Un. 11
RADC Proj ect Engineer : Anthony R. Fanelli (IRRE) SEP 11 1979

19 K E Y W O R G S /Conhjno.- on ~eve roe ssde -I necessary and iden t I fy by bfr,cb n,,mber) t~1~~It.31J1~j1t•~
Image Processing B
I n t e r a c t i v e Processing
Computer Programming

WB. I T R A C T f(’ onlIn.~e on re~~e,.. side IS r,ece~~sa,y •nd /def l t l ly 5,. bl.~rk ,,orol,er’

This document is the fina l report describing the effort by Amherst Systems,
Inc . to convert a portion of the RAD C image processing software to RSX—I1M
to allow execution on DEC PDP 11/45 computer located at WPAFS OH, AFAL. A
section of this report is written in the form of a user ’s manual for person—
nel engaged in the operation of converted software. A companion document
is the programmer ’s manual which describes the new material incorporated into
the system.

FORMOD I JAN ‘3 1413 UNCLASSIFIED
SECURITY C L A S S I F I C A T I O N OF THIS PAGE ~Then Data Enter.,? ;

-A - f
• c-, — - —

~• • • - / ~~~~ ~~~~~~~~ . —
— . 5

.-- - - - . - - - .J____.__ - .w.oz-;~~t~ -
-—

r
- ~~~~~~~~~~~~~~~~~~~~~~~~ - -~ • .

~

- . .

~~

- -
~

.. — — o~~~~~~—

UNC LAS SIFIED
SECURITY CLASSIFICATION OF 1S4 1$ PAGE(*?s.n 0.5. Ent.r.d)

UNCLASSIFIED

9ECU RITY CLA DIFICAt ION OF THIS PAGE(WII.R Sala EnIs rsd)

_ _ _

ij_

- —-.~~~~~~~— --- ----~~--—- .—.—-- - - ,--- -— - - -~~-~~~- -

TABLE OF CONTENTS ’ -

SECTION /
1 SOFTWARE SYSTEM DESIGN, T. . — 1-1

1.1 Overall System Organization 1—1
1.2 The System Frames 1—2
1.3 File System - 1—2
1.4 Error Processing 1—5

2 PROGRAMMER ’S MANu AL -
•

2-1

2.1 7 Subroutine Calling Conventions 2—1
2.2 Graphics Display Interactions 2— 3
2 .2.1 Request File Specification 2—4
2 .2 .2 Request a String of Signed Double Word Integer Numbers. 2—4

2.2.3 Request a String of Signed Word Integer Numbers 2—5
2.2.4 Request a String of Signed Byte Integer Numbers 2—5
2.2.5 Request a String of Floating Point Numbers 2—5
2.2.6 Output a Character String 2—6
2.2.7 Input a Character String 2—6
2.2.8 Specialized Graphic Displays 2—6
2.3 File System Services 2—8
2.3.1 Request Block Format 2—8
2.3.2 Creating Files 2—10
2.3.3 Retrieving Files 2—11
2.3.4 Accessing File Data 2—12
2,3.5 Check for File Existence 2—12
2.3.6 Delete Functions 2—13
2.3.7 Closing Files 2—13
2.3.8 Extend a File 2—13
2.4 Core Resident Buffers and Parameters 2—14
2.5 •

Error Reporting 2— 14
2.5.1 Fatal Error Reporting 2—15
2.5.2 Recoverable Error Reporting 2—15
2.6 Utility Routines 2—15
2.6.1 Converting Double Word Binary to Decimal ASCII 2—15
2.6.2 Converting Single Word Binary to Decimal ASCII 2—16
2.6.3 Converting Floating Point to ASCII 2—16
2.6.4 Convert Radix 50 Packed Characters to ASCII 2—17
2.6.5 Save and Restore General Registers 2—17
2.6.6 Save and Restore Floating Point Registers 2—18
2.6.7 Square Root of a Double Word Integer 2—18
2.6.8 Square Root of a Single Word Integer 2—18
2.6.9 Partitioning Core 2—19
2.7 Misc. Macros 2—19
2.7.1 Partitioning Core Buffers 2—20

I

4

- _ _ _ _ J

- t ~~~~
. -

-

TABLE OF CONTENTS (CONT.)

SECTION

2.7 .2 Move a Specified Number of Bytes 2—20
2.7.3 Definition of System Parameters 2—21
2.7.4 g Definition of Floating Point Registers 2—23

• 2.7.5 / Inserting File Header Text 2—23
2.7.6 Pushing and Popping Stack Items 2—24
2.8 - Adding New Options 2—25

3 FORTRAN 4-PLUS INTERPAC~J
‘° ‘ 3-1

4 PROGRAM DESCRIPTIONS. 6—1
— 7W ,

Appendix

A IPS SUPPORT FILES A—l

B IPS START—UP PROCEDURE B—i

C SOURCE ASSEMBLY PROCEDURE C—l

D ERROR MESSAGES D—1

E DATA FILE DESCRIPTIONS B-I

F EXECUTIVE OPTION REQUIREMENTS F—i

G TASK BUILD PROCEDURE G—i

~~ te
U~Y ~a~f Sec~k. a
‘- I~

•.
~~~• • - ~~~ a

r~~~_~~

OY ...__
~~

_

Dis •~ : ~~ a;~d1,#~J

_ ii

~~~~~ 

---.--

~~

-

~~~~~~

- 

~~~~~•~~~-- - - -- - -~~~~~~~~~~~~~~~ - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -,. - -
- ,

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~~~~~~~~~~~ ~—‘--— ----—o—’—.~ ’o. .—o — o — ’ ’ ’ R i ~~’~ ~~oI~~ -”~~~ ~~~~~~~~~~~~~~~~~~~~ 
-
~ ~ IIuuIII,~

SECTION 1
SOFTWARE SYSTEM DESIGN

1.1 OVERALL SYSTEM ORGANIZATION

The image processing software is written to be executed on a PDP 11 computer as

a program under the RSX—11M operating system. The image processing system is

divided into 13 fra mes, each frame consisting of several related function options.
Each frame is a unique task with its own control section. The control section

allows selection of options within the frame and selection of a different frame .

Options within a frame are overlayed using the RSX—llM autoload feature. If

another frame is selected , the current frame execu tion is discon tinued and the
selected frame is loaded into memory and executed. Linked to each frame is a
resident library containing commonly used IPS subroutines. The resident library

is only loaded otice and is simultaneously memory resident with the frame task.

The executable IPS software requires 17 files for system operation. They are 1 4
frame tasks , the Error Message f i le , the Master Option List file, the resident
library task, and the device task. A complete set of command fi l ø s  e’,rist which
aid in the rebuilding of tasks from the source programs.

The IPS Software calls upon the services of RSX—11M to accomplish several funct ions.

Frame options are overlayed using the autoload feature of the task bui1..~sr. Data

files on disk and tape peripherals are accessed through the file control services

(FCS) of RSX—llM. Several other functions, such as time of day access, and

communication with peripheral devices (as the Tektronix Terminal), are accomplished

via the services of RSX—llM.

The system software can reside on any disk in the hardware configuration that is

recognizable to RSX—11M. Data space must exist beyond that required for IPS

Software to allow for the storage of IPS Data files.

The IPS Data files are created within the RSX—llM file structure. All software

uses the RSX—llM file specification (device, unit, file i~ame, extension, and

version) when referencing a file. However, due to the desirability of maintaining

compatability between the original IPS file format under DOS and the new RSX—I1M

version, all filenames should not exceed 6 characters and file version numbers

1—1 

~~ - - - - -~~
- .

~~~~- -~~~~~~~ • -~~~~~~~



~~~~“~ 0~~~~” ~~~~~~~~~~~~~~ ‘ :‘ n ’~~~~~~~ ’~~~~~ r~~~~ 
- ‘~~‘ ‘ ‘. ~~

.
~~~~~~~~~ -o.I.o’- ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~y—’,- -n-y--’--- ,o~-- 9!°~-’oI --

should not be specifed. The difference between the old DOS IPS and the new RSX—

llM IPS is then transparent to the user.

1.2 THE SYSTEM FRAMES

There are 13 frames in the IPS Software. Each frame is a unique, executable

4
- task. A frame contains several functionally related options. Each frame has

the capability of transferring control to any other frame installed in the
system.

When a frame task begins execution, control is transferred to “FSTRT”. “FSTRT”

initializes the frame. The terminal number and task name are stored in common.

The Error file and Master Option file are checked for their existence. If

either is missing, a fatal error results. If the Log file exists, th~ Log is

assumed to be on and it is appended to. Otherwise, the Log is considered to be

off.

Control then transfers to “RSTRT” which is the frame restart routine. The stack

pointer is reset and the display is rebuilt with the option list. This routine

is be be entered whenever the frame is to be restarted. This occurs upon a

fatal error.

“CTLOOP” is the Control Loop of the frame. “CTLOOP” inputs a user command and

then takes appropriate action. There are four unique inputs which are recognized.

If “EX” is entered, the frame exits to RSX—llfl. If a decimal number is entered,

this number identifies a selected option. A call to the selected option entry

point is executed. When the option is finished, control is returned to “CTLOOP”.

If a blank line is tsnte ted. the master option list is displayed and a new frame

number entered. Control is then transferred to “STRTSK”. If an “F” is entered

followed by a number, it is considered a new frame number.

“STRTSK” is the Start Task Routine. This Routine accepts the new frame number and

starts execution of the indicated frame task. The current frame task is exited

and the Log File is closed only if it exists.

1.3 FILE SYSTEM

The image processing file system is designed with the RSX—llM file structure. It is

1—2

_ _ _ _ _ _ _ _ _ _ _ _ _

-

~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ =-
‘ ‘

~~~~~~~~~~~~~~~~~~~~~ 
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --

• essentially an interface between the option rOptines which access the files and

the RSX—llM file functions which maintain the files and their associated directories .
Special considerations have been incorporated into this interface to achieve

rapid data access and to provide high—level file functions tailored to image

processing needs.

All files are created as contiguous files. The contiguous file format allows

several logical blocks of data to be transferred between disk and memory in

one access. This has the effect of greatly reducing data—transfer time.

The internal structure of the data files is organized into fixed length records.

The record length, as veil as the number of records, is dependent upon the type

of data stored within. Each file begins with a 256—word header, in which are

stored various parameters describing the data. Detailed descriptionsThf these
- 

- parameters can be found in Appendix E.

The data records immediately follow the header beginning in the first available

logical device block after the header. Records immediately follow one another

in consecutive order with no intervening spaces. This, of course, means that

for certain record sizes, one or more records may cross device block boundaries

at one or more points in the file.

A file is created or retrieved by calling the appropriate file system routine

with an accompanying parameter list called a “request block”. The format of

this block is as follows:

• DESCRIPTION

0. RSX—llM File Descriptor Block

96 Filename Prompt Address

97 Filename Prompt Length Address

98 Record Length

99 Number of Records in File

100 Linked Flag —

101 Contiguous Records Requested

l0~ Record Number Requested

103 1/0 Status Block

1—3

I
_____- -~~~~~~~~~~~~~~~~~~~~~~~ -- 

—.--—- - - --- -~ • - , - . -

.-•-- — • . -~~~- - - - -



r ~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - “-

104 Buffer Size (Bytes)

105 Buffer Address

106 Blocks in Header

107 First Record in Buffer

108 Last Record in Buffer

109 Default Filename Block

The request block describes the file to be created or retrieved and the buffer

space to be used for data I/O. This buffer space must be dedicated to the file

until it is closed, at which time it is available for other use.

If the first word of the request block contains an address of a character string,

the string is printed at the keyboard display as a query for a device and a file

name. The user entry is then placed in the request block. If the chSracter string

address is not present, the file specification appearing in the request block

is used. In either case, the file is created or retrieved as specified. The

number of records and record length must be provided by the calling program for

create operations and are returned by the filing system for retrieve operations.
The options request data records by placing the number of the desired record into

word 102 of the request block. The file system routines then read this record into

memory for the option. Due to the typically sequential access of image files

during processing, the file system is designed to anticipate the next records

that will be requested by the options. Therefore, instead of reading just one

record , the entire buffer specified in the request block is filled with records
that immediately follow the requested record. The result is that the next request
does not require a disk access since the record has already been obtained in a

previous access .

A si.ailar procedure is followed when writing data onto a file. For this operation ,
the specified buffer is filled prior to transfer to its disk file. However, se-

quential file output is not only assumed in this case, it is expected. Due to

the complexities involved in providing random access when records can cross logical

block boundaries, this capability has not been included. For options that require

such access, a read/write mode is available. In this mode the buffer contents

are transferred to the file and then the records beginning with the requested

record are read into memory. This eliminates the problem of preserving the over-

lapping record data.

1—4

___________ •ijI1~

— -•-,-.. —
~~~~~~~~~~~~~~~~~~~~~

Certain options require that several consecutive records be in memory simultan~ously .

This is accomplished by specif ying the number of records in word 101 of the request

block. The file system then insures that the requested block of records are

available in memory. Since the buffer space recp~ired to load a block of records

is computed when the file is opened , this information must be provided at that

time . An error condition occurs if sufficient space is not available.

1.4 ERROR PROCESSING

A centralized error reporting scheme is incorporated into the system. An error

condition detected by any routine in the system Is reported by a call to the Error

Reporting Routine with a parameter which specifies the message to be listed .

Two types of errors are included. The first type is an error condition in which

remedial action by the user allows the interrupted process to continue. Such

errors are called Recoverable Errors. The second type of error condition results

• in a system state from which a r.~~overy cannot be made. Such an error is terin.’ i

a Fatal Error. There are two entry  points to the error routine~ “ERREC ” for

Recoverable Errors and “ERFAT” for lat a l  errors . If an error is recoverable ,

a normal subroutine return is executed . If the error is fatal. , control is trans—

ferred to the Frame Restart Routine. This terminates the current option and

requests a new option number.

1—5

I

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.- - . _- - - ,- ..


~

~~~~~~~~~~~~~~~~~~ 
- -

~~
—--

~~ ~~~~~~~ ~~~~~~~ -~~~~~~~~~~~~~
--- 

~~~~~~~~ ~~~~~~~~~~~~~~~ 

- ---

~~~

--------‘ —‘----
~

--—— —--—-- -— --- 
~~

-‘ ‘: -

FRAM E ENTRY POINT

FSTRT

m i t  a?i~zat ion

RSTRT
-) Frame

Res tar t

CTLOOP
Frame

Control Loop

1 CTLOOP
STRTSK

Start Requested
Frame Task -

FLOW DIAGRAM OF A SINGLE FRAME TASK

1—6

I 
~~—• ~~~~ ~~ .- - • - -— - . ,, -



r 
- 

~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~

‘ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~

SECTION 2

PROGRAN1IER’ S MANUAL

This section is intended as a progranBuing guide for developing new software for

the image processing system. A variety of services are offered by the executive,

the fi le system and several ut i l i ty  programs . A large number of these services
can be conveniently referenced via a set of system macros .
Although in some cases the programmer may find tha t direc tly inser ting the code
is just as convenient ag using a macro, this should be avoided. By consistent

use of the macros, modif ications or updates can be made to an entire system by
simply changing a few macros. Without the use of macros, a time—consuming search

must be made of all routines in the system for occurrences of the code sequences
being changed .

In th~ remainder of this section , several programming conventions and callable sub-

routines are discussed . Sufficient information is provided in each case to

• properly use these subroutines. Further details may be found in the program

documentation in Section 4. For this purpose , the name of the Program in which

the subroutine is contained is given here .

2.1 SUBROUTINE CALLING CONVENTIONS

All subroutine calls follow the general format given below :

MOV #l$, R5
JSR PC, (subroutine name)

- • 
1$: BR (offset to first instruction following the parameter list)

Parameter list

This format has two advantages. First , by including the branch instruction, the

offset  (lower byte) of the branch gives the number of parameters. For routines

that accept variable length lists, the number of parameters passed can ieadily

be determined.

2—1

I
— ~~~~~~~~~~ —~~~~~~~ -~~~ —--.~~~~~ _- ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -..-—~~~~ ...- •,— _ — - - —  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~


— ~~— _________ —
.. — —-— -- —

~~~~~
- —

~~
- -

~~~~ 
—----

~~~~

--

~
-—— — 

~~~~~
—

~

—

~~~
--

~~
-- —

~~~

-—

~~
— —

~~~

—--

The second advantage is that RSX—llM FORTRAN uses this calling format. Therefore,

if the parameters are referenced in the list by their addreames , the routine is
FORTRAN callable.

A general system macro has been provided to generate the proper subroutine calls.

The format of this macro is as follows:

call name, P1, P2 , P3, P4 , P5 , P6 , P7 , P8, P9 , PlO

which expands to

MOV R5,—(SP)

MOV #X$$A, 1(5

:1 JSR PC , name
MOV (SP)+,R5
.PSECT .ARGS

X$$A:.W ORD #Of Parameters

WORD P1

.WORD P2

.WORD P3

.WORD P4

.WORD PS

.WORD P6

.WORD P7

.WO RD P8

.WORD P9

. WORD PlO

.PSECT

The number of parameters is optional within the range of 0 to 10. If no parameters
are specified , only the JSR PC, name statement is generated.

The CALL macro should be used in all cases where a specialized macro is not
available. In the subroutine descriptions to follow, the proper macro to be used
in each case is discussed .

2—2



________ ~

2.2 GRAPHICS DISPLAY INTERACTION

The graphics display is the prime means of communication with the system. This

communication is accomplished via frame displays and user/system dialogue.

Since this is a storage display, it must be erased and rebuilt from time to time

to avoid overwriting of information. This rebuild action Is under the control
of the program “TELEIO” which together with “PLOT” and “TTYIO ” contains the display
I/O subroutines . Therefore , it is imperative that the user reference these
subroutines for all display operations.

Since this is an interactive system , the programmer must frequently make requests
of the user and accept his responses. These services are provided by the system
at two levels . The higher—level routines are those which output a message and
input the user ’s response . These consist of routines to request file ~pecifica—

tions and numeric input . The lower level routines simply output or input character
st rings . These should not be used if a highe r—level routine will satisfy the
requirement.

Character strings consist of ASCII characters . Embedded carriage returns and line

feeds are permitted . For normal user communications the line length should
not exceed 40 characters. If a longer message is desirable , it should be sec-
tioned into two or more lines with embedded carriage returns and line feeds.
It should be noted that one complete message should not be output in sections
by making several calls to the output routines. The initial lines of text
may be lost if the display is rebuilt prior to completing the output. If the
complete message is formatted with carriage returns and line feeds , then the
output routines can insure sufficient display space for the entire message.

(Only the routine “TTYOUT” detects imbedded line feeds. Input routines which

issue a prompt, such as “TTYIN” do not. Therefore, inputs with multiple line

prompts should be preceded by a call to “TTYOUT” which will output the first N—i

lines of the prompt. This will insure Proper Display Rebuild).

The available communication subroutines and their associated calling sequences

are discussed below. The “CALL” macro is used in all cases to form tht subroutine

calling sequence.

2—3

L~~~1 1 ~ :~: ~~~~~~~~



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~
=,-•— 

—~~~~~•-— • -~~ -~~ - -  — - r ~~

- - -

2.2.1 Request File Specification

CALL GETNAN , EXBUF , CHR , LEN , FRB , IND (Ref. program TTYIO)
where

EXBUF - EXECUTIVE COMMON

- 

I 
Cu R ADDRESS OF PROMPT

LEN = ADDRESS OF LENGTh OF PROMPT

FRB ADDRESS OF FILE REQUEST BLOCK

IND — ADDRESS OF BLANK LINE INDICATOR

The file name is input from the keyboard and parse l . The parsed file name informa—
tion is returned in the file request block specif ied.  If the input cannot be parsed ,
the input request is repeated. The device defaults to that assigned to pseudo device
“IP”. The UIC defaults to that which the user is presently running under. The
verRion number defaults to one .

2.2 .2  Request a String of Signed Double Word Integer Numbers

To input decimal numbers :
CALL DBLDEC , EXBUF, diR LEN, CNT, BlIP , IND (x;ND is optional)

(Ref. Program TTYIO)
To input octal numbers :

CALL DBLOCT, EXBUF, CHR, LEN , CNT, BUF , IND (IND is optional)
(Ref. Program TTYIO)

where
CHR Address of the output character string
LEN Address of the length of the character string
CNT — Address of a location containing the count of numbers to input .

This count must be satisfied exactly or an error message is
printed and a request is made to retype the line .

BUF — Address of buffer  in which to return the numbers in the order
entered . This buffer must contain sufficient space to store
all the numbers indicated by the second parameter. Double
word values are returned low order first followed by high
order.

IND = (Optional parameter) Address of a location in which to return
an indicator. A negative one is returned if a CTBL/Z if found
to be the first character entered by the user. Otherwise, a
zero is returned.

2—4 

~~~~~~~~. 
- -

- - -~~~~~~~~~
-
~

~~~
.-- - . - 

~

-

~~

— --— - -
~~~ 

This routine is designed to allow one or more numbers to be entered on one or

more lines by the user. For multiple line input where the total number of

lines is determined by the user, the call to DBLDEC should be contained within a

loop. This call should use the optional fourth parameter “IND”. The loop is

exited when IND —1 , which occurs when the user indicates the end of input by

responding with a CTRL/Z.

2 .2 .3 Request a String of Signed Word Integer Numbers

To input decimal numbers : -

CALL SNGDEC , EXBU F, CHR , LEN, CNT , BUF , IND (IND is optional)
(Ref. Program TTYIO)

The parameters and their descriptions are identical to that given for DBLDEC except

that word values are returned in the buffer.

2.2.4 Request a String of Signed Byte Integer Numbers

To input decimal numbers :

CALL BYTDEC , EXBUF , CHR , LEN , CNT , BUF , IND (IND is optional)
(Ref. Program TTYIP)

To input octal numbers :

CALL BYTOCT, EXBUF, CHR, LEN, CNT , BUF, IND (IND is optional)
(Ref. Program TTYIO)

The parameters and their descriptions are identical to that given for DBLDEC

except that byte values are returned in the buffer.

2.2.5 Request a String of Floating Point Numbers

CALL FLTENT , EXBUF , CHR , LEN , CNT , BUF , IND (IND is optional)

The parameters and their descriptions are identical to DBLDEC except two—word

floating point numbers are returned. Numbers are accepted in either of the

following formats:

1967”. 66

1. 967866E04

where both entries represent the same number

2—5

— — -- — - - - -—
.—‘

~~-~~~‘ --a-r

~~~~~~ - - - - -—- —-—----- -.---- ----
~~

- ‘ —--~r----.--~~~~ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _  ---—- - - ------—- . - -----—-—- —-- ——- ----—- — — —5-—-- ~ _ __5_5__ — —5——’ -‘-—--‘---5-’-



— -

~~~~~~~~~

-
. ~~~~

.5 —-——5- .5 ~ - -- — -------- —-—---—.~~~-,--—-, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
— — ----5-— --- -- - —5- -—. ~~— .5---—,

2.2 .6 Output a Character String

CALL TTYOUT , EXBUF, diR, LEN
(Ref. Program TELEIO)

where
CHR = Address of the output character string. TTYOUT will append a

final carriage return and line feed.

LEN — Address of the length of the character string

2.2.7 Input a Character String

CALL TTYIN, EXBUF , CER, LEN
(Ref. Program TELEIO)

where

EXBUF Executive Common
CHR — Address of the output character string
LEN = Address of the string length

If an “ALT MODE” key is e:.~ered, input terminates and the equivalent of a
fatal error is executed .

The input string is returned in the 80 byte buffer TTYBF$, located in “EXBUP” .
The input string length is returned in IOSLN$, located in “EXBUF”.

2.2.8 Specialized Graphic Displays

Certain functions require that the graphics terminal be used for special display

purposes. To gain control of the display, the following instruction should be
executed :

CLR REBLD$

This disables the display rebuild software. The display can then be manipulated
by using the graphic plot subroutines below in addition to any of the other
terminal I/O subroutines. After the specialized display mode is no longer required ,
the following instruction should be executed to enable the display rebuild
software:

MOV #1, REBLD$

The current frame is then redisplayed by the following call:

MOV #EXBUF, RI
CALL BLDISP

(Ref. Program BLDISP)

2—6

_ _

—~~~ —5- 5-

Another special display feature is available to the programmer. This allows

specialized displays to be presented and user/system dialogue to be maintained.
To accomplish this , the add ress of a programmer— supplied routine that builds
the specialized display must be placed in the global location “DSPDR$”.

1. CLR REBLD$
2. Call the routine that presents the special graphics display .

space must be reserved along the left display margin for
dialogue . This routine mus t leave the alpha cursor positioned
at the top of t i e left margin.

3. MOV #1, REBLD$

The dialogue can now be maintained with the system. When the dialogue reaches the

bottom of the left margin , the control software will call the routine whose
address appears at “DSPDR$” to rebuild the display. Dialogue then continues.

Upon exiting the special display mode, the “BLDISP ” routine should be called and
the address “BLDISP” should be replaced in “DSPDR$” to allow normal frame rebuild .

The following is a collection of routines to allow graphic plots to be constructed
on the display terminal . The display manual should be consulted for complete
descriptions of the various plotting operations. The calling sequences ar~ as

follows (all subroutines are in program PLOT) :

To put the display in alpha mode:

CALL ALPHA , EXBUF

To put the display in graphics mode :

- I CALL GRMODE , EXBU F
To clear the display screen:

CALL C1,EAR, EXBUF

The display is left in alpha mode with the cursor at the top of the left margin.

To put the cursor in the home position (top left margin):

CALL ROM I , EXBUF

Follow i~:g this call the display is in graphics mode :

2—7

- — - -. —-5,- — - - --5- - —5-: —5- ——5-- 5__ -5--—-- 5-___ - -- - - -

‘

~

‘

~~~~~~~~ 

~~~~~~~~~~~~ 

:~~~~~~ ‘ ——- —~~~ -- — -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

To draw a light or dark vector:
CALL PLOT , EXBUF , X , Y

where

EXBUF Executive Common

X — The address of a location containing the X display coordinate

Y = The address of a location containing the Y display coordinate

A dark vector is drawn if the call is immediately preceeded by a call to “CRMODE”.

Successive calls to “PLOT” draw light vectors between the specified consecutive

: 1  points.

To output a graphics string:

CALL TTYGRF, EXBUF, CHR, LEN
where

EXBU F = Executive Common
CHR — Address of the output character string

V LEN = Address of length of string

TTYGRF outputs all character codes in a write—through mode. No control character
processing is performed by the driver.

2.3 FILE SYSTEM SERVICES

Extensive services are provided to the programmer for manipulating files . These
services include create and retrieve functions . Acct ’tnpanying the create and
retrieve operations is the ability to read and/or write a file. A specialized

parameter list called a “request block” has been developed for the create and
retrieve functions.

2.3.1 Request Block ~“ormat

The request block is generated via the macro “F.REQ ” and takes on two general
forms — one for the create j unction and one for the retrieve function. For the

create function the macro is invoked as follows :
F.REQ CRE , LBL, CER , CLN , EXT, RECS , LNG , ACES , FTYP , RTYP , NAME

2—8

-___ : 5-



_ _ _  ~~~
— -—-~~~~~~~~~~

- 
~~~~~~~~~~~~ 

—— —-- ——5- — — - -- -—-—---—--——

The macro call for g.’nerating the request block for the retrieve function is:
F.REQ RET , LBL, CHR, CLN , EXT, ACES , NAME

This expands in the same manner as for the create call with the exception that the
parameters RECS, LNG , FTYP , and RTYP , which are not specified , are automatically
set to zero. The definition of each of the parameters is as follows: (values

of symbols as RD , WR , or CONTIG are defined by the Equate Macro)
LBL = One to three characters to be used as the f irst part

of the parameter labels .
CUR — Address of the character string to be output to request the file

specification. A zero value imp lies that there is no character
st ring and that the file specification is completely provided
in the request block. Therefore , no user interaction will result.

CLN — A idress of the length of the above character string.
EXT — Fiic extension which indicates the file type with respedt to the

data contained therein . If this argument is left blank or if
the program clears the location associated with this argument ,
then the filing system uses the extension specified by the user.
If the extension is specified via the macro argument or the pro—
gram, then the user—entered extension is ignored.

RECS — The total number of records to be in the file.

LNG — The length of each record in bytes (odd values are
acceptable)

ACES — File access type:

RD — Read

WR = Write
MO — Modify (read and write)
FTYP — File type with respect to structure:
CONTIC Contiguous
LINKED= Linked (currently not implemented)
RTY P — Record type :
FLEN = Fixed length
VLEN = Variable length (currently not implemented)
NAME — File name . If the name is to be entered by the user at execution

time or if the name is to be inserted by the program, this para—
meter should be left blank. If the name is known at programming
time , it should be inserted. If temporary files are to be
created , the .TMP extension should be used . This file will be
deleted when the file is closed.

2—9

~~ II_____ _
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -5— -5-— ~~~~~~i55- ‘~~ A5--L t ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - --



- ‘~~~~~
5-

~~~~~~~~~~~~ 
5- -5 —-5- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .5--::

All request block parameters should be referenced by their respective labels.
Futu re system changes or additions may result in a different order or number of
parameters. Therefore, if in a given instance one parameter must be referenced
relative to another , then the values defined by the macro “EQUATE” nhould be
used. These values are simply indexes into the request block relative to the

f i rst parameter in the block. They are referenced via the last three characters
of the label of their respective parameters. For example , if the buf fer length
pa rameter must be referenced with respect to the buffer address parameter , then
the prog rammer would use .

• LBLBUF+SIZ—BUF

as the relative address

2.3.2 Creating Files

Two file system subroutines are available for creating files. The only difference
between them is that one creates the file and then opens it for access while the
othe r simply creates the file. The request block parameters must be initialized
pr ior to either call as discussed above. The one parameter which is of no

concern at this point is the record number requested (LBLREC). This is used

by other file functions . Special note should be taken of the file system feature
which requests the file name from the user. This option is enabled or disabled
as explained for the character string address (LBLCHR).

To create a file and open it for access :
P .CRE ADR , ALTRET

(Ref. Program is FILE1)
where

ADR — Address of the applicable request block.
ALTRET — Address of an alternate return to be taken if the user responds

with a carriage return to the request for a file name . This
pa rameter is optional and need not be specified . When it is not
specified a carriage return alone is reported as a recoverable
error.

To create a file (file is not opened) :
F.CR!$ ADR , ALTRET

(Ref . Program is FILE1)

2—10

_ _ _ _ _ _ _ _ _ _ _ _ _ -


~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - - -  -

where the parameters are as defined for the F.CRE macro.

Both of the above macros generate the appropriate subroutine call to the file
system. After each call RO contains the memory address of the file header.

If any data is to be inserted into the header, it should be done at this point
(the file access must be set for write or read/write). The first file access

(see 2 .3.4 belov) causes the header to be written into the disk file and to be
removed from memory . For the F.CRE$ call, the header is provided for reference

only (the header is written into the file prior to return).

It should be noted that the buffer  specified in the request block following an
— P .CRE call is Initialized for data I/O and should not be modified. This buffer

is not used for the F.CRE$ call. Instead , the header is loaded into a buffer

• in the executive common. This buffer is overwritten by the next P.CRE$, F.RET$,
OR F .CHK call.

2.3.3 Retrieving Files

Piles are retrieved in a manner similar to that explained for the create option
above . Again two options are available , di f fe ring only by the “open” operation .
The request block is prepared as instructed above . In this case , the number

of records , the record length and the file and record types are return parameters.
The instructions for the other parameters are the same . The option is also
available to have the file system request the file name from the user.

To retrieve a file and open it for access:
F.RET ADR, ALTRET

(Ref. Program is FILE1)
where the parameters are identical to those in the F.CRE call above .

To retrieve a file (file is not opened) :

F.RET$ ADR,ALTRET
(Ref. Program is PILE 1)

where the parameters are identical to those in the F.CRE call above.

Operations with reference to the file header and the specified buffer are as

explained for the create operations. In this case, the header is provided only

for reference following the F.RET$ call. The buffer  is used by F.RET but not by

F RETS.

2—11

IL - -
—. - - - - - -5- 5 - —  - - — - --‘- ----,

~- 
-5--- - —--‘---•--•—-— •—- - - , -- --5----- 5-— 5-— -5—-— —5---—-- —.--.5--5-.- ,--- •- -~-5--’5• —‘—5-- -



_ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 5 -
- 5 - -- - - - - 5- .- 5-

2.3.4 Accessing File Data

Following a create or a retrieve function that also opens a file , the f ile may
be accessed via the file system. Prior to each c.i I for a record or group of

records , the record requested parameter “LBLREC ” should be set to the desired
record. The first  record in a file is record 1. The calling sequence to request

a record or group of records is:
F.PTR ADR, END

(Ref. Program is FILE2)

where

ADR = Address of applicable request block.

END = Address of a location to which control is to be returned if
one or more of th..~ records requested is non—existent. If
omitted , the f iling system will report a fatal error (El.1O)
when a non—existent record is encountered .

Following each call to F.PTR, memory addresses of the first byte of each record

requested are found on the stack. For example, if the programmer requests one

record (parameter LBLCON), the address of the first byte of that record is found

on top of the stack. If three records are requested , then three addresses are

returned . In this case the address of the first of the three records is found

on top followed , in order , by the other two . The number of consecutive records
can be set ao any number but must not exceed the value specified at the time that
the file was opened.

2.3.5 Check for File Existence

Certain operations simply require that a file’s existence be verified or that its

parameters be retrieved. The following routine perfotms these funct~~ ns. The

request block is initialized as for ~~~~ ret rieval. The call is:
F.CHK ADR, NOFILE

(Ref. Program is FILE1)

where
ADR — Address of the applicable request block.

NOFILE = Address of an alternate return if the file does not exist.

I f the file exists , its number of records and record length are returned in the

request block. Also , RO contains the memory address of the file header. As

2— 12

_ _ _ _ _ _ _



- -.-— ---..~ ,____.-___i.~ 5- ’ 5- -~~ ~~~~~~~ - ‘ ‘ _ - -~~~~~~~~~

with F.CRE$ and F.RET$ , the executive buffer is used instead of the buffer
specified in the request block. Therefore , the desired header information
should be extracted prior to any similar operation.

2.3.6 Delete Functions

The delete function used is the standard RSX—llM delete macro . The following will

delete a file:
DELET$ #FRB

where:

FRB = Address of f ile request block

2.3.7 Closing Files

All files that have been opened must be closed following processing. Two calls
are provided for this function . First , a single file may be closed via the

following call:

F.CLOS ADR
(Ref. Prog ram FILE3)

where

ADR = Address of the app licable request block.

A second available call will close all files that are currently open:

F. SHUT
(Ref. Program FILE3)

-j If control is returned to the executive due to a fatal error occurring during

program execution, any open files will be automatically closed. Any such files

that were open for write or modify access will be marked in the fifth word of

the header as having been prematurely closed. Subsequent accesses to these

files dill cause the filing system to warn the user of the file state and allow

him to select an alternate file.

2.3.8 Extend a File

A function is provided to allow the length of a contiguous file to be extended.

This function should only be used when necessary because it must create a new

file, copy the old file to the new and delete the old file. This can be a time—

consuming process if the tile is large. When required, it is called as follows:

2—13

5-__-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~ 

5-~~~~~~ •~~~~ - - ~~ s - . .~~~~~~.-5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- 
-—-  

~~~~~_
-—5-

~~~ 

. - -  •
~

5- -. ---‘— -5-- -5-—5--5- - -—---.--— 5----  -— -;,

~~~

-—-—- —---5-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - -

F. EXT ADR , EXTADR
where -

ADR = Address of the request block for the file

EXTADR — Address of a location containing the size of the
extention in 256 word blocks.

Note: The file must be in a closed state.

2.4 CORE RESIDENT BUFFERS AND PARAMETERS

Certain buffers  and parameters are made available within the executive common ,

thus avoiding the need to define them in each overlay . The main working buffer
for file I/O begins at the address stored at location “FRCOR$”. The size of

this buffer  in bytes is stored at location “FRLEN$.”
INNAM : .ASCIZ /ENTER INPUT IMAGE NAME=/

and

OUTNAN: .ASCIZ /ENTER OUTPUT IMAGE NANE=/

Since the f requency of access of other file types is much lower, character

strings have not been provided .

2.5 ERROR REPORTING

A centralized error reporting scheme has been adopted in the system. Errors are

reported by the programmer via a subroutine call accompanied by the desired

error class and error number. Two classes of errors are provided — fatal and

recoverable. Fatal errors are those which make it impossible for the program

to continue. When such an error call is made , the error reporting routine
prints the specified message and passes control to the executive . Therefore,

the programmer should not provide any return code.

Recoverable error s are those from which a recovery can be made , such as tI~
user retyping an input parameter. In this case , control is returned to the
calling program after the error is printed .

Within each error class exists a list of error messages. Each message is referenced

by its corresponding number. The programmer simply passes the number of the error
to the error reporting routines. The list of errors can be found in Appendix D.

2—14



r - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~,r- . _ r  ~~~~~~~~~~~~~~~~~~~~~~~~~~~ —

2.5.1 Fatal Error Reporting

ER.FAT NUN
(Ref. Program EXEC)

where
NUN = The error number within the fatal ertor class.

2.5.2 Recoverable Error Reporting

ER.REC NUM
(Ref. Program EXEC)

where

-
- NUN = The error number within the recoverable error class.

2.6 UTILiTY ROUTINES

A variety of utility routin~-s are available to support the programmer. The function

of and access to each routine is discussed below :

2.6.1 Converting Double Word Binary to Decimal ASCII

A routine is available to convert double word binary numbers to decimal ASCII

character strings. Two modes of access are available. One mode passes all

parameters in general registers and the other mode passes them in a parameter

list following the subroutine call. The ASCII string is returned within twelve

by tes , right jus tified , with leading zeroes blank. The minus sign, if present,

~.s right justified with the number. After conversion the number of non—blank

characters returned is available at the location “DIGCNT”. The register mode

call is as follows :
CALL DI2DAR

(Ref. Program CB2DA)
-

The following registers must be loaded prior to the call:

R2 = Address of the buffer in which to return the ASCII string.

R3 — High order part of double word value.

R5 = Low order part of double word value.

Ri — Address of Executive Common (EXBUF)

2—15

I

-- --— - -5 - - — - - -5- — 5---- -—
-• —--5-5 -5- ‘- - —5- - -- --— _ _——:~ - - -5-5- - ——5------ —- —-

- —---- 5-- - -- - 5-- -
~~~~~~~~~~~~~~~~~~~~~~~~~

5- 

~~~~
_ -
~~~~~~~~~~~~~~~

_ _ 

-j Parameter list mode:

CALL DI2DA, DBLLNT, BUFADR, EXBUF
(Ret. Program CB2DA)

where

DBLINT Address of double word integer (low order part first).

BUFADR = Address of a twelve—byte buffer in which to return the
ASCII string.

EXBUF Address of Executive Common

2.6.2 Converting Single Word Binary to Decimal ASCII

Single word binary conversion is also available. As with double word conversion ,
two modes are available for passing parameters. One is via general registers and

the other is via a parameter list following the subroutine call. The ASCII

string is returned within seven by tes , right justified , with leading zeroes

blank. The minus sign , if present is right justified with the number. After

conversion, the number of non—blank characters returned is available at the
location “BKIND$”. The register mode call is as follows:

CALL SI2DAR
(Ref. Program CB2DA)

The following registers must be loaded prior to the call:

R2 = Address of the buffer in which to return the ASCII string

1(4 — Binary value to be converted .
Rl — EXBUF

Parameter list mode:

CALL SI 2DA , SNGINT , BUFADR , EXBUF
(Ref. Program CB2DA )

where
SNGINT — Address of single word integer.
BUFADR — AddLess of a seven—byte buffer in which to return the ASCII string.

EXBUF = Address of Executive Common.

2.6.3 Converting Floating Point to ASCII

Two conversion methods are available which correspond in function to the FORTRAN

“F” and “E” formats. The “F” format returns a number with the decimal point

2—16

-

~~~~~~~ • - - - -:-~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-_ - - - 5 - -.~~-- - — -- 5 --

~~~~~~~~~~~ - - - -: -~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ -~~~~~~~~~~~~~~~~~~:- -



~ --5- —.~ • .~~~~5-- - ----—- —-5-.—

- Tb_ ___ __ —S-— — .V
~~ 5-5-v.~~ar.prn5-~~s.rr.-.yjY’~~’ — - 5 - r t

fixed in its proper position. The “E” format returns a number with a decimal

point plus a power of ten. The calling sequences follow (due to the .BYTE

parameters, the CALL macro may be inconvenient):

• F format conversion:

CALL FPASCF, EXBUF, W, D, ARG , BUF
(Ref. Program FPASC)

where

EXBUF Address of Executive Common.

W — Address of the width of the field of characters to be returned.

D — Address of the number digits desired to the right of the decimal
point .

ARC — Address of the two—word floating point number.

BUF — Address of the buffer In which the characters are to be returned.

B format conversion

CALL FPASCE , EXBUF , W, D, ARC, BUF
(Ref. Program FPASC) -

(The parameters and their descriptions are identical to those for FPASCF.)

If the format is unacceptalbe, all characters in the return buffer are set to

*‘s. in “E” format , two *‘~~ are returned for the exponent if It Is greater than

99. Either error condition causes the “C” bit in the processor status register

to be set. This bit is otherwise cleared.

2.6.4 Convert Radix 50 Packed Characters to ASCII

This routine converts radix 50 packed characters to ASCII. The call is as follows:

CALL RAD2AS , RAD5O, ASCII , COUNT
(Ref. Program RAD2AS)

where 
-

RAD5O — Address of the first word in the radix 50 packed string of words.

ASCII Add ress of a buffer in which the ASCII string will be returned.

COUNT Add ress of the number of radix 50 packed words.

2. 6.5 Save and Restore General Registers

This routine saves and restores general registers RO through R5 using the stack.

No parameters are passed.

2—17

~ 

-



- - 5 5--- — -- --~~~~ 
-
~~~

- - -5-—
p

Saving registers:

SAVREG
(Ref. Program SAVER)

Resto ring registers:
RSTREG

(Ref. Program SAVER)

2.6 .6 Save and Restore Floating Point Resisters

This routine saves and restores the floating point registers ACO through AC5,

the floating point processor interrupt vector, and the floating point status

register using the stack. No parameters are passed.

Save PPU stac.us:

SAVFPS
(Ref. Program SARFPS)

2.6.7 Square Root of a Double Word Integer

This routine calculates the square root of a double word integer. All registers

are unaffected by this routine. The call is:

CALL DPSQRT, DBLINT
(Ref. Program SQRT)

where

DBLINT — Address of the double word integer (low order first).
Upon return the square root is found in the first word of
the double word. The second word is zero.

2.6.8 Square Root of a Single Word Inte1(er

This routine calculates the square root of a sing le word integer. All registers

are unaffected by this routine. The call is:

CALL SQRT, SNGINT
(Ref. Program SQRT)

where

SNGINT — Address of the single word integer. Upon return this
location contains the square root.

2~=l8

— -5—
•
-— - —

~~~~~~~~ ~~~~~- - -_ - — _
- ..•

~~~~~~~~~~~~~~ -
——~~~~~~~~~

- _ - —

2.6.9 Partitioning Core

This routine partitions the FRCOR$ L.uffer into specified fractional parts and

loads the address and size of each partition into their corresponding file

request blocks. The call is (a ma~ ro is not provided):

NOV #1$, 1(5

JSR PC, P ARCOR

• 1$: BR .+(n+l)*4

• WORD EXBUF

.WORD DENOM

— .WORD NUMER1

.WORD BUFAD1

.WORD NUMER2

.WORD BUFAD2

.WORD NIJMERn

. WORD BUFADn
where

EXEUF — Address of Executive Common.

DENOM — The denominator of the fractional partitions. Each partition
is expressed as a fraction of the total; therefore, the de—
nominator is the same for all partitions.

NUMER 1-NLJMERn— The numerators for expressing the size of the 11 partitions.

BUFAD1—BUFADn— The a addresses of the buffer address parameters in the re-
spective request blocks.

2.7 MISC. MACROS

This section discusses a number of macros which may be useful to the programmer.

Use of these macros is at the option of the programmer with the exception of the

EQUATE macro. This macro should always be used when the services it provides are

required .

2— 19

—— —

~

—— ____________

- -

1

2.7.1 Partitionini Core Buffers

This macro partitions the specified core area into two equal—length buffers and

deposits the sta rt address and size of each in their respective request blocks .
The user specifies the core space which is to be partitioned. The “FRCOR$”

buffer is used as a default value.

CORD2 ADDR1, ADDR2, NOTLOW

which expands to
EQUATE (macro as defloed below)

NOV FRCOR$, 1(4
NOV FRLEX,$, 1(3 (included only if NOTLOW is blank)

CLC

ROR R3
BIC #1, R3

NOV 1(4, ADDR1
MOV R3, ADDR1+SIZ-BUF

ADD R3 , R4
NOV R4 , ADDR2
MOV R3, ADDR2+SIZ-BUF

where

ADDR1 = The address of the buffer address parameter within the first
request block.

ADDR2 — The address of the buffer address parameter within the second

-
• . request block.

NOTLOW — A dummy value. If specified, the programmer must provide the
corL- area to be partitioned and its size in words in registers
1(4 and 1(3, respectively. If this parameter is left blank, the
values “FRCOR$” and “FRLEN$” are loaded into R4 and 1(3, respectively.

SIZ and BUF— As defined for the EQUATE macro below.

2.7.2 Move a Specified Number of Bytes

This macro generates code to move a specified number of bytes from one location
to another.

BYTMOV FROM, REG1, TO, REG2 , CNT, REC 3
which expands to

.ENABL LSB
NOV #FROM, REC1
MOV #TO , REG 2

2—20

___ — -5 --— -- - - —~~~~~~~~~ — - - -—— --5-- - - —~~~~~~~~~~~~~~
--
~~~~~~ -- • - -5

~~~~~~
-—-- —-_

-- -~~~~---- — —-— —-~~~~ ~~~~~
—.-5

~~
-
~-- -~~ — —--—---~~~~~~~~~~~~~~

MOV #CNT, REG3

1$: MOVB (REG1)+ (REC2)+

SOB REC 3,l$

.DSABL LSB
- • where

FROM — Address of first byte to be moved

TO — Address to which the first byte is to be moved.

CNT — The number of bytes to be moved.

REd , REG2
and REG3 — General Registers.

2.7.3 Definition of System Parameters

This macro defines the system parameters via equate statements.

EQUATE (no parameters)

which expands to (all numbers are octal except where a decimal point appears)

CRE — 0

RET 1

RD - FO.RD

WR - FO.WRT

MO - F(~.MFY

CONTIC— 1
LINKD= -l

FLEN 0

VLEN 1

CR — 15
LF — 12
CHR = 140

CLN — CHR+2

LEN - CLN+2

CNT - LEN+2

ALC - CNT+2

CON - ALC+2

REC — CON+2

STS = REC+2

SIZ — STS+4
BUF — SIZ+2

2—21

~~~~~~~~
- 

~~~~~~~~~~~~~~~~~~
- - _ _

_______________________ —~~—-~

-

- - —--- --.---- —.

~

—-----,—-- -.5-.—--
~~.—— —uuu11~

FUD = BIJF+2

FST FHD+2

LST FST+2

DFN LST+2
FNB = F.FNB

NAN - FNB+N.FNAN

EXT = FNB+N.FTYP

DEV = FNB+N .DVNM
UNT — FNB+N.UNIT

LUNS — 5

LINMAX= 33

HDRSIZ= 62

where the following pertains to specifying a request block:

CRE — Specifies the create function
RET = Specifies the retrieve function
RD — Specifies read only access

WT = Specifies write ~ Ly access

MO — Specifies read and write access
CONTIG = Specifies a contiguous file

LINXD — Specifies a ~inked file
FLEN — Specifies a f ixed length record
VLEN — Specifies a variable length record

The following define ASCII codes:

CR = ASCII carriage return
IS — ASCII line feed

The following positions of the parameters within the request block relative to

the beginning of the block:

CHR — Prompt Address

CLN = Prompt Length Address
LEN — Record Length

CNT — Number of Records

ALC = Allocation Flag

CON — Contiguous Records Requested

REC = Record Number Requested

STS — I/O Status Block

SIZ = Buffer Size

2—22

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- ; BUF = Buf fe r Address
FUD = Blocks in Header
FST — First Record in Buffe r

LST = Last Record in Buffer

—
DFN — Default File Name Block

FNB — File Name Block
NAN - File Name

EXT File Type

0E V Device Name

UNT — Unit Number

The following refers to frame displays :
LINMAX = Number of lines of dialogue to allow before rebuilding the display.

The following refers to the header established by the file system within the buffer

specified in a request block:
I1DRSIZ Size of file I/O bu f f e r header in bytes .

2.7.4 Definition of Floating Point Registers

This macro defines six mnemonics for use in referencing the floating point

processor registers.
REGS (no parameter list)

which expands to
ACO 20

A d — 21
AC2 = 22
AC3 — 23

AC4 = 24
AC5 = 25

where

ACO through AC5 = Floating point register mnemonics.

2.7.5 Inserting File Header Text

This macro is used to insert a character string into a file header. The memory
address of the beginning of the header is expected to be in 1(0. Up to three
separate character strings can be specified for transfer into the header.

2—23

- - -- . - - -

- - — -—-5- _ _

~~~~~~~ -

5-~~ ---~ -—- ~~~~~~~~~~~~
-
~~~~
- ;

~~~~
------

~~~~~
-

HDRTXT ADR1, ADR2 , ADR3
which expands to

ADD #384., 1(0

MOVB ADR1, Ri
MOVB (rl)+ , (R0)+

BNE .-2

DEC RO
MOV ADR2 , 1(1

MOVB ‘Rl’+ ‘RO’+ This code is generated
‘ / ‘ ‘ / only if ADR2 is not blank

BNE
DEC RO
MOV ADR3, Ri

— This code is generated
MOVE (Rl)+ , (R0) + only if ADR3 is not blank

BNE .—2

Note that any addressing mode is legal for ADR1, ADR2 and ADR3. For example,

if the label “MSO” is attached to a character string its add.ess is specified

by “#MSO”.

2.7 .6 Pushing and Popping Stack Items

These two macros simply push or pop up to six items to or from the stack. If

any parameter is omitted , its corresponding line of code is not generated.

To push items onto stack:
PUSH A, B , C , D , E , F

which expands to
MOV A , -(SP)

MOV B , — (SP)

MOV C , —(SP)

MOV D , -(SP)
MOV E, -(SP)

MOV F , -(SP~

To pop items from stack:
POP A , B , C , D , E , F

which expands to

2—24

_ _ _ _ ~~~~~~-—--- -.~~~~~~~~~~~~~~~~~~~~ -

-5---

- — - - ——- - --—~~~~- - - — ---- - -—-~~~~~ -—-5 - - - — - 5 - — -- ._-

MOV (SP)*, A

MDV (SP)+, B

MOV (SP) + , C -

NOV (SP)+, D

NOV (SP)+ , E
NOV (SP)+ , F

2.8 ADDING NEW OPTIONS

Adding a new option to any frame of the IPS software is straightforward if the

user is familiar with RSX—llM. There are three steps:

1. Write the program module for the new option. All the subroutines described

in this manual are available to the user. The module should be \~ritten as

a subroutine which expects the following call:

JSR PC, NAME
Where name represents the name of the option . The option is to be assembled
with the following command :

MAC NANE=MACS, NAME

Then loaded into t~ e IPS library :
LBR IPS/IN—NANE

2. The FR}IXX.MAC module , where XX is the desired frame number, is to be

updated. The option entry point and option label are to be added. The

FRIOCX .MAC module is then assembled :
MAC FRMXX—MACS , COMMON, FRNXX

Then loaded into the IPS library:

LBR IPS/RP=FR}OCX/-EP

3. The frame overlay descriptor , FR~1XX.ODL, must be modified to contain the
new option module name. This is usually added as a new branch to the overlay

t ree . The frame may now be task built as follows :
TKB @FRMXX

The frame with the new option is now complete.

(NOTE : In the above procedure , all needed files are assumed to be on the system
de fault device . If this is not the case , add th e appropriate device names to the
file names.)

2—25

r~i ~~~ :~~~~~~~~~~~~~~
‘
~~~~~~~~~~~~~~~~

5- ’
~~~~~~~~~

5 - ’

~~
-.~~~~~~~~~~~~~~~~~~~ __ _

~~~~~~~~~~~~~~~~~~ - _ . - - - _-~
.---—-___- :--- -•

SECTION 3
FORTRAN 4-PLUS INTERFACE

Included in the IPS software is a library of Fortran 4—Plus subroutines which
interface a user program to the IPS files. The Library is called IOIPS.OLB.

It is to be attached to a user program at task build time as follows

TKB TASK = OBJE:r, DKN:IOIPS/LB

where DKN : is the device the Library resides on. The Task Builder option , “MAXBUF,”
must be set to 512 bytes .

The Library contains the f ollowing subroutines :

RETIPS — Retrieves an existing IPS file
CREIPS — Creates a new IPS f i le

CLSIPS — Closes an IPS file.
RDUIPS — Reads f rom an IPS file (unformatted)
WRUIPS — Writes to an IPS file (unformatted)

RDFIPS — Reads from an IPS file (formatted)

WRFIPS — Writes to an IPS file (formatted)
FILNAN — Inputs a file name from the user terminal
HDTXT — Inserts header text into the header
IPSEX — Exits from Fortran Task and alloys entry into another IPS frame
CLEAR — Clears the Tektronix screen

A o.~ta iled descr iption of each subroutine follows.

3—1



____________________  - - 
____  

~~~~~~~~

Name : CLEAR

CALL CLEAR

Purpose : Clears the Tektronix screen and sets the cursor to the home position

Arguments:

NONE

4 , .
p -

3—2

1±±1IITI

~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1 II .:..



- -

Name : i t(EIPS

CALL CREIPS (LFN , NAME , REC , LEN , H EAD , ERR )

Purpose: Create IPS f i le

Description:

“CREIPS ” creates a file called “NAME” with the number of records and record
length as specified by “REC’ and “LEN ’s . “HEAD” is written into the header block.
The logical file number “LFN ” is associated with the file. An er ror code is
retu rned in “ERR ” . Once a f i le is created , read and write operations may be

performed.

Arguments:

LFN = Logical f i le number (integer). This number is identical to the
logical unit number and must be unique. It must not be assigned
to any other file.

NAME = File name descriptor as an ASCII string terminated by null.

REC = Number of records in the file (integer).

LEN .- Number of bytes per record (integer)

HEAD = Header block of file (512 byte array)

ERR = Error return code: (integer)

O = N o Error . 
-

—l = Error

Example:

Call CRE TE’ S (1, ‘DKl .TEST .IMG ’, 10, 10, IHEAB , IERR) .

The f i le  ‘DKI:TEST.IMG ’ is created as 10 records, 10 bytes each. The contents

of the array IHEAD is written as the IPS header block. No data is actually

written into the records. Only space is reserved for them.

3—3

-- -. -. - — -



—5--—.- 

~

5-— -_- .. ,_

~~~~~~~

. - - -,,

~

-,-,...——- - . r— -~~~~~~~~~~~~

Name: CLSIPS

CALL CLSIPS (LFN , DSP , ERR)

Purpose: Close IPS f ile

Desc r iption:

“CLSIPS ” terminates I/O processing of the file associated to logical file number

“LFN”. All pending data is written to the file. No further reads or writes

may be performed until the f i le is retrieved by “RETIPS ” . The file may be

deleted by specifying the appropria te “DSP” option. An error code is returned

in “ERR”.

Arguments:

LFN = Logical file number of tile to close (integer).

DSP = Disposition of the file (integer)

O indicates to save the file
—l indicates to delete the file

ERR = Error return code (in teger)
O = No Error

— l = Errt. .

Example:

CALL CLSIPS (1, 0, IERR)
FILE #1 will be closed and saved.

3—4

- - - - -- - 5- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— 
-5-—.—’,.’.---. — 5- _ _  

~~.—-—--,.i-,-._ ___. .~~~~~~• •5-5- 5- ~~~~~~~~~~~ 
—5-- — 

‘~~~~~~~~~~~~~~~ - — —---- r - ~~W — _-_ .--_~~.- . .~ -- __ ;.1_..

Name : FILNAM

CALL FILNAM (PROMI’T , NAME , DEVDEF , EXTDEF)

Purpose: Enters a filename from the keyboard and inserts defaults.

Desc ription:

“FILNAM” outputs a prompt to the terminal and inputs a character s t r ing which
is interpreted as a filename. If device or extension are omitted, default
values will be inserted into the filename.

Arguments:

PROMPT = ASCII string to be output as a prompting message
NAME = Array where edited filename is returned ab ASCII

string terminated by a null (must be dimensioned as 40
bytes minimum) -

DEVDEF = ASCII string iden tif ying default device (must be followed
by a colon)

EXTDEF = ASCII string identif ying default  extension (must be
preceded by a period) .

Example:

CALL FILNAM ( ‘ ENTER FILENAME ’ , NAME , ‘DKl :’, ‘ .1MG ’)

This call will issue the prompt ‘ENTER FILENAME ’ to the terminal. The user
then types in the filename. This routine will check the name for validity ,
insert defaults  if necessary, and return the name in the array “NAME ” .

3—5

_ __ _ _ _  C -

~

. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —~~~~-~~~~~~~~-


—

Name : HDTXT

CALL HDTXT (TEXT , HEAD)

Purpose: Inserts text into header array

Arguments:

TEXT = Character string terminated by a null

HEAD — 512 byte header array

Example:

CALL HDTXT (‘TEST IMAGE FILE’, HEAD)

This call inserts the text ‘TEST IMAGE FILE ’ into the header array “HEAD”.

3—6

r -
. -

-- --- —- ~ -- ~~~~~~~~~~~~~
—. _ _ _ _ _ _ _ _ _ __ _ _ _— — -5---- - - —-5 - — _

5--- . _ _ . .—= -=---~- -_.—~~-_
~
w._ 5-.— -_5- — - - - — — - — 5 - . — -. .—-- --—-—---—-——--- — - - . -5--- —5-- - 5 - — - - -

Name : IPSEX

1 Purpose: Exit from Fortran frame to IPS frames
II

Description:

“IPSEX” allows a Fortran program to return to an IPS frame, thereby providing
continuity to the system. The master option list is displayed and the operator

- may enter any desired frame number.

Arguments:

NONE

3—7

L ~~
_ _~:r:L _ :

_ _ _ _ _ _ _

— — -~~~ -—-—--—-

r - ---- - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ -——--.-- .

Name: RDFIPS

CALL RDFIPS (LFN , DATA, SIZE, REQ, CON, ERR)

Purpose: Read records from IPS f i le and format

Description:

“RDFIPS ” inputs data from an IPS file identified by logical file number “LFN”.

The data input begins with record “REQ” and ends with “REQ+CON—l”. The read

is fo rmatted since each byte cf the input r ecord is co~,ied to a word in the array

“DATA”. This is convenient for image files because each pixel may be referenced

as a Fortran integer variable . An error code is returned in “ERR” .

Arguments:

LFN = Logical file number of f i le to read (integer)

DATA = Array containing data records (integer)

SIZE = Number of words in array “DATA” (integer)

REQ — Requested record number (integer)

CON = Number of contiguous records to transfer (integer)

ERR = Error return code (integer)

0 No Error

—l — Error

— 2 — End of File
— Array too small for requested record

Example:

CALL RDFIPS (2 ,IDATA , 30 , 5, 3, IERR)

Reco rd numbers 5, 6 , and 7 are read into the array “I DATA”. Each byte of the

records is mapped into the lower byte of each word of the array “IDATA ”. ~ ince

3 contiguous records are read, each record must be less than or equal to 10

bytes long.

3—8

~~~~ —~~ -—-~~~~~~~~~~~~~~~~~ - 5 - - -~~~~~ -— — -—-_-- -— - - - —  


-- — - 5 - . - . - - _~~ _ 5-—— -—-.—,—---_-5---- -- 5----——---.— -- .

~~~~~~

Name : RDUIPS

CALL RDUIPS (LFN , DATA , SIZE , REQ , CON, ERR)

Pu rpose: Read records from IPS f i le  (no formatt ing)

• Description:

RDUIPS inputs data from an IPS file identified by logical file number “LFN” . The
data input begins with record “REQ” and ends with “REQ+CON—l” . The read is a
byte for byte copy f rom the IPS file to the array “DATA” . An error code is
returned in “ERR” .

Arguments:

LFN = Logical file number of file to read (integer)

DATA = Array containing data records (byte)
SIZE = Number of bytes in arr ay “DATA” (integer)
REQ Requested record number (integer)

- 
- 

CON = Number of contiguous records to transfer (integer)

ERR = Error return code (integer)
No Error

— 1 = Error
—2 = End of File
—3 = Array too small for requested records

Example:

CALL RDIJIPS (1, DATA , 10, 3, 1, IERR)

Record number 3 is read into the array “DATA” fro m LFN #1. The size of “DATA”
is indicated as 10 bytes. Therefore, the record size must be less than or

equal to 10 bytes.

3—9 

— - - - - -~~~--~~~~~~~.



r ~~~~~~~

— 5 - --——- —5-— --

Name: RETIPS

CALL RETIPS (LFN, NAME, REC , LEN , HEAD, ERR)

Purpose: Retrieve IPS f i le

Description:

“RETIPS” retrieves an existing file called “NAME”, assocites the file with the

logical file number “LFN” , and prepares the file for I/O. The IPS header block

is returned in “HEAD”. The number of records and record length are returned in

“REC” and “LEN”. An error code is returned in “ERR ” . Once a f i l e  is retrieved ,

read and write operations may be performed . Only an existing and closed file

may be retrieved.

Arguments:

LFN — Logical File Number (integer) . This number is identical to
the logical unit number and must be unique. It must not be
assigned to any other file.

NAME — File name descriptor as an ASCII string terminated by a null.

REC — Number of records in the file (integer).
LEN — Number of bytes per record (integer).
HEAD — Header block of file (512 byte array) . -

ERR — Error return code (integer)
0 —  No error

—1 — Error

Example:

Call RETIPS (1, ‘DK2:GRAY.IMC’, IREC, ILEN, IHEAD , IERR)

The file “DK2:GRAY.IMG’ is opened and may be referenced as LFN #1. Appropriate

data is extracted from the IPS file and returned in IREC , ILEN , IHEAD , and IERR .

3— 10 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -


-• i,
~
--
~
-- —-

~~~
- 

- 

~~~~~~

5- 5- 5-
~~~~~~~~~~~~~~~~

Name: WRFIPS

CALL WRFIPS (LFN , DATA , SIZE , REQ , CON , ERR)

Purpose: Write formatted records to IPS file

Description:

“WRFIPS” outputs data to an IPS file identified by logical file number “LFN ” .
The data output beg ins with record “REQ” and ends with “REQ+CON—l” . The write

• is fo rmatted since each word of the array “DATA” is copied to a byte in the output
file. This is convenient for image files because each pixel may be referenced as

a Fortran integer variable. An error code is returned in “ERR” .
I

- 
- 

Arguments:

LFN = Logical file number of file to write (integer)

DATA - Array containing data records (integer)

SIZE — Number of words in array “DATA” (integer)

REQ = Requested record number (integer)

CON = Number of contiguous records to transfer (integer)

3 ERR = Error return code (integer)

O No Error

—1 = Error

—2 — End of File

—3 = Array too small for requested records

Example:

CALL WRFIPS (1, IDATA , 20, 10, 4, IERR

This call copies 4 records, beginning with record 10, to the file identified

by LFN #1. Each record must be less than or equal to 5 words each since “IDATA”

is dimensioned to be 20 words long.

3—il 

--
I 

~~

_______________________ - - 5--- ---- 



- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Name : WRUIPS

CALL WRUIPS (LFN , DATA , SIZE , REQ , CON , ERR)

Purpose: Write records to IPS file (no formatting)

Description:

“WRUIPS” outputs data to an IPS file identified by the logical file number

“LFN”. The -data output begins with record “REQ” and ends with “REQ+CON—l” .

The write is a byte for byte copy f rom the array “DATA” to the IPS file record.

An error code is returned in “ERR ” .

Arguments:

LFN Logical file number of file to read (integer)

DATA — Array containing data records (byte)

SIZE — Number of bytes in array “DATA” (integer)

REQ = Requested record number (integer)

CON — Number of contiguous records to transfer (integer)

ERR — Error return code (integer)

0— N o Error

=1 — Error
— 2 — E n d of File
—3 — Array too small for requested records

Example:

CALL WRUIPS (1, DATA , 26 , 13, 1, IERR)

The contents of byte array “DATA” are cop ied to the file identified by LFN #1.

It is a byte for byte copy to record #13.

3—12

- - - . — - - . --
- - - a - — - -

-- - - -5— •-- - - -—- - -• - - ~~~~~~~~~:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- - 5-- -- -

- - __~~~~~ 5-~5- - -~5-~ 5-5- -5--—
-

5- — _ _ ___p ______ -_ _ , , -
~

-
~~~~~~~~~

— 5--
~~~



~~~~
= - 

~~~~~~~~~~~~~~~~~~~~~~~~ 

-

- . - - -
- .. ‘~~~~e ‘ -

~~~~ r inr =.~~~ n,r—.---- • —‘~--z ~~—- --.- ,‘-~~. - - ~~~~~~~~~~~~~~~~~

SECTION 4

PROGRAM DESCRIPTI ONS

A desc ription of each program in the system is contained on the following pages .

These programs are one of two types. The first type is designed to be called

by the executive (CTLOOP) and therefore the calling sequence is listed as one or

more entry points. These routines return control by executing an “RTS PC”

instruction.

- 

r The second program type consists of one or more callable subroutines. The sub—

routine calling sequences are detailed complete with calling parameters and

descriptions sufficient for the progranmier to call upon their services.

4—1

~~TII~ ~~~~~~ _ _  _



_ .-- . 
~~~~~~~~~~

_ •
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—5------- - - - - -

• •

Program Name: ARSLCT

Purpose:

To create an image file from a specified rectangular area within an existing

image file.

Description:

This routine creates an image from a user—specified area within an existing image.

Specification of the area is obtained through the keyboard via the subroutine

“SNGDEC” . All of the available free core buffer  area is used for reading the

existing image , extracting the specified area and writing the new image onto the

disk.

Subroutines. Called:

ERREC , F.C , F .P , F.R , F.S , PARCOR , RAD2AS , SI 2DA and SNGDEC

Calling Sequence:

Entry is from the Executive at:

ARSLCT

4-2

-- - —-- —-- — 5- —  —--5— --5-- - •---• —- ~~~-—-~ -~~~~~~~-- -. -— 5-— =~~~5-~~~~~ 5-~~~~5--=5- —-- -



-~~ 
------ — —-—--- -—-- 5- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program Name: AS2RAD

Purpose:

To pack an ASCII character string into RADSO.

Description:

An ASCII character string is packed into RAD5O. Upon detection of an illegal
character , the error flag ‘BKIND$’ is set , and the subroutine returns to the
calling program.

Subroutines Called:

RSTREG and SAVREG

Calling Sequence:

MOV #].$, R5

JSR PC , AS2RAD
1$: BR .÷lO.

.WORD Address of Executive C ommon

.WORD Address for ASCII string

.WORD Address for output RAD5O string

.WORD Address of number of ASCII characters

General registers are not altered .

4—3

-- - -•- ~~~~5- — I- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----—--~--—~~~~~-.-~~~~~

• -- - — — .-
~~~

——--—--—— - • — —‘-.---- - --. 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-
~~~~~~~~~~~ ~‘~IIII~~

Program Name: BLU ISP 
-

Pu rpose:

To display the frame task option menu on the Tektronix display.

Desc ription:

The option menu pointer is retrieved from Common . The screen is cleared , and
the cursor is posidoned at the top center of the display. The t ime of day is
read and the current tick count is used as a random number to jitter the starting
point of the menu to prolong screen life. The option list is then output on
successive lines.

Si,broutines Called:

ALPHA , CLEAR, GRMODE, HOME , PLOT , RSTREG , SAVREG and TTYOUT

Cailint Sequence

JSR PC , BLDISP

Ri must contain the address of the Executive Common

4—4

-— ——~~~-~ -~~~~~~~~ •- - -“5- - - -- . — --— —--- ._r-— --~~-- - -- - --- — ~~~~~~~~~~~~~ -- • • 
•



~~~~r 
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~TITT ~~~~~~~~~~~~~~~~~~~

Program Name: CB2DA

Purpose:

To convert single or double word binary numbers to decimal ASCII.

Description:

Two modes of parameter passing are offered for complete flexibility. They can be

passed in general registers or in parameter lists. For efficiency this routine

was programmed to use the floating point processor. The MODF instruction is

extremely convenient , especially for double precision numbers. The number of

non—blank characters converted is returned in common variable BKIND$.

Subroutines Called:

RSTFPS , RSTREG , SAVFPS and RSTREG

Calling Sequence:

Convert double word to ASCII:

JSR PC, DI2DAR 
-

R3 must contain high order part of number

R4 must contain low order part of number

R2 must contain the address of a twelve—byte buffer
for the output string

Ri must contain the address of Executive L~inmonor ,
MOV #l$, R5
JSR PC, DI2DA

1$: BR
• .WORD Address of double word number (low order part first)

. WORD Address of a twelve—byte return buffer

.WORD Address of Executive Common

Convert single word to ASCII

JSR PC , SI2DAR 
-

R4 must contain the single word integer

R2 must contain the address of a twelve—byte buffer
for the output string. 

-

Ri must contain the address of Executive Common

4—5 

— a - —

-
- -~~~~ • — - — - — — — - - ——  ~~~~~~~~~~ - • - —  -- • - — — - -~~~~— — - ~~~~--—--~~— -- -5—-— - - 5- — • -  —— - - - - -~~~~~~—- —~~~~~~ -5- -~~~~~~ — •5-~~~~-5-- —~ -



5 -• • •~
5-

~
=

~ 5-5-~ 
- - ~~~~••1~~

Program Name: CB2 DA (Con tinued)

or ,
MOV #l$, R5

- JSR PC, SI2DA
1$: BR .+8.

.WORI) Address of a single word number

- .WORD Address of a twelve—byte return buffer

1 .WORD Address of Executive Common

General registers are not altered.

4—6

_  _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~



- 5-~~~ 5-~~~~~~~~~~~~~~~~~~~~~~~~~~
- 

5- - 
~

— =—--- - .- - -
~ 

_____ _ ,
~~~~~

, • . - - -

Program Name: CHCUR

Pu rpose:

To captu re the position of the Tektronix cross hair cursor.

Description:

This routine turns on the Tektronix cross hair cursor and waits for the user to

select a position. After a position is selected and a character is struck this

program accepts the input byte stream. This byte stream is then converted to

the coordinate values uiiich are placed in the parameter list. The character

st ruck by the user is also returned.

Subrou tines Called :

3 ALPHA , TTGRIN , RSTREG and SAVREG

Calling Sequence :

MOV #l$, R5
• JSR PC, CUCUR

1$: BR .+l2

.WORD Address of Executive Common

WORD Address of character struck on keyboard

. WORD Address of X coordinate value

.WORD Address of Y coordinate value.

General registers are not altered .

4—7

-

-

- 5--

5- - - ~~~
--

~
--

—5- —— ——-— --—5- -5--.—--- —5- — --5-- —5--- ————-.-----——-—----- --

• . - - • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ —- 5- ” ~~~~~~~~~~~~~~~ ~~~~~~ ‘‘
“ 5 - 5 -

Program Name: CLCV

Purpose:

To remove all points from a binary image that are not part of a closed curve.

Description:

• First the input file is copies to the output file. All further operations are

then p .rformed on the output file. The neighborhood of each pixel of value

255 is examined to determine if it is a p.~rt of a closed curve. If only one or

no neighbors are 255 , then the center pixel is changed to zero. If more than

one neighbor is 255 , then the surround is checked for an “edge, no edge , edge,

no edge” condition . If the condition exists, the point is not changed. If it

does not exist , the point is changed to zero.

Subroutines Called:

ERFAT, F.C, F.P, F.R, F.S and R.AD2AS

Calling Sequence:

Entry is from the Executive at:

CLCV

4—8

- ~~_~~~i _
-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

________  
-



Program Name: CMPRES

Purpose :

To compress and expand matrices.

Description:

This program contains two subroutines. The first removes row and column elements
of either a matrix or a vector according to a calling parameter list. The
second subroutine inserts zeroes into row and column elements of either a matrix
or vector, also according to a calling parameter list.

Subroutines Called:

RSTREC and SAVREG

Calling Sequence:

Expand a matric or vector:

- : MOV 11$, R5
JSR PC , EXPAND

1$: BR .+lO.
.WORD Add ress of address of list of row and column elements

at which to insert zeroes
.WORD Address of address of matrix or vector

.WORD Address of number of rows in matrix

.WORD Address of number of columns in matrix.
Compress a matrix or vector:

MOV #l$, R5
JSR PC , cMPR.ES

1$: BR .+lO.
.WORD Address of address of list of row and column elements

to remove
.WORD Address of address of matrix or vector
.WORD Address of number of rows in matrix
.WORD Address of number of columns in matrix.

General registers are not altered.

4—9 

5 - -

~~~~~~~~~ -‘- -- - - - - -----~~~~~~~
- — - - --— - - - ~-—-~~~~~~~ - - - - -— —- -— - - —- -~~~~~~~~~~~~~~ -- - - - — — --- - - — — ‘ - - • --—- - I - -~~~~~~~~~

-
-
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-—5---- — -5-5-5-5- 5 - 5 - - ’5-~~~~~~ 5 - _  . _. - -5- —-

Program Name: COMBIM

Purpose

To compute the average , a scaled d if f e rence or the absolute difference
of two images .

Descr iption:

Two input images are combined point by point according to the entry point
selected. The average is formed by adding the points and dividing by two.
The scaled difference is the difference between the points plus 255, all of which
is divided by two . The absolute difference is simply the absolute value of the
di fference between the points .

Subroutines Called:

ERFAT , F.C , F.P , F .R , F.S , PARCOR and RAD2AS

Calling Sequence:

Entry is from the Executive at:

AVE — Average images

SCADIF — Scaled difference

ABSDIF — Absolute difference

4—10 

•~~~~~~~~_ _ 5-~~~~~~~•~~~~~~~~~ • _-5_~~~~ ~~~~~~~~~~~~~~~~~~ L~~~~~~~_--‘- -
5-



- - -5---  .—---- ~~~~~~~ -- 5- —
-- 5- — ’—-. —~----‘—“- - 

—5- -- — --- — —5- -5---- —- -- -5-—

Program Name: COMPIL

Purpose:

To compile logical and ar i thmetic  statements into executable machine code .

Description: -

Two ent ry points to this routine are available. One accepts a logical expression
f rom the keyboard and compiles it into machine code. This was written for the
Boolean logic option. The second entry point allows several complete statements
to be entered. Three statement types are recognized. The f irst  is simply an
arithmetic assignment statement , the second is like a FORTRAN logical IF statement
and the third is a modification of the IF called an IFGO. This is simply a logical
IF that  when satisfied , the arithmetic assignment is evaluated and all following
statements are skipped.

Both entry points return the compiled code in the same format: the compiled
• code , a list of symbols used in the statements, the location within the code

of the values represented by the symbols and the ASCII string consisting of the
user entered statements.

Subroutines Called:

AS2RAD , ERFAT , ERREC , RSTFPS , RSTRLG, SAVFPS , SAVREG , TTYIN and TTYOUT

Calling Sequence:

To compile assignments, IF and IFCO statements:
MOV #l$, R5
JSR PC. COMPIL

1$: BR .+6

.WORD Address of a working buffer address

.WORD Address of size of buffer in words

To compile a logical expression only:

MOV #l$, R5
JSR PC , C1fl’ILB

1$: BR
.WORD Add ress of a working buf fer  address
.WORD Address of size of buf fer  in words

The buffer supplied to the two subroutines should be made as large as possible

to p revent overflow . Upon return the buf fe r  contains the following :

4—11

_____________ -5 ~~~- -- 5- 

-— -



—--- -5 -—--—— - - —

Program Name: COMPIL (Continued)

Word Defi nition

1 Number of words used in buffer.

2 Add ress of compiled code relative to word 1.

3 Add ress of symbol table relative to word 1.

4 Address for symbol values relative to word 1.

• 5+ Input ASCII character string t ’rminated with a null.

Symbol Table

Compiled Code

Symbol Values

SYMBOL TABLE FORMAT

Word DEFINITION

1 Number of symbols

2 Status word for symbol 1

3,4 RAD5O pack of symbol 1

5 Status word for symbol 2

6 , 7 RAD5O pack of symbol 2

Status word for symbol N
RAD5O pack of symbol N

4—12 

~~~~~~~~~~ --~~~~~~~~~~~~~~~~~~ • -~~~~~~~ •~~~~~~ •~~~~~~~~~~~~~~~~~~~~~~ _-~~~~~~_


~
- —---—_--.

~

-- — - -- - --- ---5-,-—-- -— - — -_ - - -

Program N ame: COMPIL (Continued)

STATUS WORD FORMAT

Bit 0 0 = Symbol is not used as an independent variable
1 = Symbol is used as an independent variable

Bit 1 0 = Symbol is not used as a dependent variable

1 Symbol is used as a dependent variable

Bit 2 0 Non—neighborhood symbol
1 Neighborhood symbol

The compiled code is called as follows :

JSR PC,(adr. of code)

Prior to this call , the values of all variables used only as dependent variables
must be defined. This values are placed in the buffer area identified by word 4
of the return buffer. The first four words of this area are reserved lor special
subroutine addresses . The f i rs t three should be filled with the entry point
addresses of the EXP, LN and LOG routines respectively. The fourth is a special
routine that retrieves image points whose positions are relative to the current
point. This routine must be provided f i the code that is entered references it.
The routine is called as follows :

JSR R5, (adr. of neigh . ref. routine)

— . WORD Image number
WORD Row offset from current position
.WORD Column offset f rom current position

(NOTE : This capability is not currently used by the system. It is planned
for use in future work)

Following the four special addresses appear the symbol values in the order of
appearance within the symbol table. All values are in two word floating point.
Independent variable values will be set upon return .

When “CMPILB” is called the logical result is returned in Rl. The returned
value is either a 1 for true or a 0 for false.

4—13

~~~- -~--



___________ _____________ ___

Program Name: CREFLT

Purpose:

To generate a f i l ter file .

Description:

This routine allows a f i l ter  to be generated as a function of the row and column
position within the filter array or as a function of the Euclidean distance
from the upper left corner of the array. The function is defined by the user
at the keyboard. The routine “COMPIL ” is called to accept this input and
to compile the function into machine code.

Prior to generating the filter file, user specified cross sections of the
specified filter function are displayed on the graphics display. These cross
sections must be perpendicular to the X—Y plane.

In addition to allowing a f i l ter  f i l e  to be generated , the specified function
can be stored in a separate file. This allows it to be recalled in th~ future
for further filter generation.

Subroutines Called:

BLDISP , COMPIL, ENABLR, EXP , ERFAT , ERREC , FLTENT , FPSQRT , P .CL , F.C ,
F.P, F.R, GETCON, LN, LOG, RAD2AS , SI2DA , SNGDEC , TTYIN , and TTYOUT

Calling Sequence:

Enter is from the Executive at:

CREFLT

— 4—14

I
- - — -~~--“-- —- - -_ ——— -- —----_— - - —-- -“ - - - - • -  — 5- — - —~~~~~ - - - --—-—-- - -5 ---~~—— - - - - -- -’-- - - — - -



________ - - —~~~~~~~~~~~~ ——~~——“---—-~~~---—-- - ‘
~~~ T~

’
~~~ 

--  “-

~~
--—-- - -

~~~
--

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- —- --

~~

—--—-—--—‘— —-—---- -
~~~~.

Program Name: CRESFS

Purpose:

To create and edit spectral and vector set files.

Description:

This routine performs one of two functions based upon the entry point selected.
One entry point deals with spectral sets and the other with vector sets.
Similar operations are performed by both routines. File names are entered at
the keyboard which are then stored in a file. For spectral file sets , class

symbols and data reduction factors are also accepted and stored .

A second operating mode can be entered in which the file name lists can be edited

and/or displayed.

Subroutines Called:

BLDISP , CLEAR, DSABLR , ENABLR , ERREC , F.CL , F.C , F.P , F R , F.S , GETNM, LNPRNT ,
LPCLOS, RAD2AS , RSTREG , SAVREG , SI2DA , SI2DAR , SNGDEC , TTYIN , TTYGRF , and

TTYOUT.

Calling Sequence:

5- Entry is from the Executive at:

CRESFS — spectral set file operations
CRESET — vector set f i le operations

4—15

- - - - 5- - - - -~~~~~~~ - -

--- —-—- -— • - .•- —--‘-rn• rn—

~

- J



.5-- 5-——— 
~~ 1 ~~~~~~~~~~~~~~~~~~~ 

- 5-—

~~~~~
- --—.--

~~~~~~~~~~

-—

Program Name: CREVEC

Purpose:

To create vector files and to add m~~surements to existing vector files .

Desc ription:

This routine creates two types of vector files. A design vector file is created

from a spectral set in which regions have been described. In this case each
vecto r can be identified as belonging to a particular class. A test vector file

is created from all points within the spectral set. Since the vectors are not

created on the basis of regions , an identifying class symbol cannot be
assigned .

Only spatial measurements can be added to an existing vector file. These

measurements consist of basic statistics compu .ted over neighborhoods of each

point.

Subroutines Called:

BEGFND , CFREQ , CMEAN , CSDEV , DI2DAR , ERREC , ERFAT , F.CL , F.P , F.R ,
F.S , FINDPT , CHICK , GLOW, CMEAN , GMEDN , GRANGE , GSDEV , RAD2AS , SI2DA , SMINIT ,
SNGDEC , SNGLPT , TTYIN , TTYGRF and TTYOUT

Calling Sequence:

Entry is from the Executive at:

CREVEC — Create test vector t ile
CREDES — Create design vector file

4—16



-

~
- -

~ 

~~~~~~~~~~~~~~~~~~ 

I rogram Name: CRLOG

Purpose:

To create and initialize logic tree files.

Description:

This routine creates a logic tree file. The directory, the logic tree and the

class symbol pages are all initialized according to the current vector set.

The overall result is a logic tree consisting of only the senior node . All
class symbols are assigned to that node.

Subroutines Called:

ERFAT , F.C, F.CL, F.P, RSTREG and SAVREG

Calling Sequence;

MOV #l$, R5
JSR PC , CRLOC

1$: BR .+8. -

.WORD Address of the address of a working buffer

.WORD Address ot the size of the buffer

.WORD Add ress of a four word file specification
(Device (RAD 5O), unit and file name (RAD5O))

4—17

- - - - --5- .
--5-- - -

~~~~~~
--- - - —-— I

— L 
- -  - - - 



1

Program Name: CTFILE

Purpose

To create an input file from values entered via the keyboard .

Description:

The values for each pixel within the image are obtained through the keyboard .
The values are then stored in a disk file.

Subroutines Called:

F.CL F.P, F.S, SI2DA , SNGDEC , and TTYOUT

Calling Sequence:

Entry is from the Executive at:

5- CTFILE

4—18

I

~~riIi_~ - — — - ----—-- - - 5- *~~~~~~
_ _ _ _ _

~~ — —- ________ —•— -—-— —5-- - —5-5- — -.5-—---—’ —-—5--



-- 
•..~~~~~r- -

Progr am Name: CTLOOP

L urpose:

To cont rol execution of each Frame Task.

Description:

This routine is the main control loop fo r each Frame Task. It is entered from

• 1 the task restart routine . The routine processes all option and frame selections ,

and also allows insertion of conmients into the log file. An exit route to the

H RSX—llM Executive is also provided.

Subroutines Called:

CLEAR , ERREC, LOGIT, STRTSK, TTYIN , TTYOUT

Calling Sequence:

The routine is entered from the task restart routine following a task start

or fatal e~ ror by:

JMP CTLOOP

R4 must contain the address of the Executive Common

It is reentered from option processing subroutines by executing an

RTS PC

Option subroutines need not save the general registers.

4—19

a - — 94



- •~~~•~ --- -r-- - -—~~~~~~~’—--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •_•5- ~~•— ~
_ • •_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
•
~~~~~

-••
~~

• -

Prog ram Name: DECIM

Pu rpose:

To reduce an image in size by discarding pixels.

Descr~ption:

The image is reduced by retaining every Nth row and every Mth column . The

result is stored in a disk file.

Subroutines Called:

ERREC, F .C , F .P , F.R , F.S , PARCOR , RAD2AS , SI2DA and SNGDEC

CallinE Sequence:

Ent ry is from the Executive at:  -

DECIM

4—20

5- - - •~~•~~~~4•_~_~~ —5--.
~~~~~~~~~~~~~~~~~~ 

i- —— - -

-__ -~—_±IIJZ II _
_ _ _ _ _

-~ —~~~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ __
_

~~j
-

~~~ 
——

~~~~~~~~~~ ~~~~~~~~~~~~~
5---

~~~~~~~~~~ 
-

Program Name : DECIMG

Purpose:

To c reate a thematic map from a c1assA .~ ted set of vectors .

• 
- Description:

A thematic map is created to present the classification of vectors in an image

fo rmat . The f i rs t  step in the process is to insure that each terminal node in

the tree is associated with only one class. Also, the vector file must contain

positional information with respect to rows and columns. The classification of

each vector is determined and a grey level is assigned to the pixel value associated

with the position of the vector. Grey level assignments are made by the user on

the basis of class.

Subroutines Called:

CLLF, DZ2DAR , ERFAT , ERREC , F.C$, F.P , F.R, F.R$, F .SH , CETNAN , GETNOD , CETSYM ,

LNPRNT , LPCLOS , OPLF , RAD2AS , SI2DAR and SNGDEC

Calling Sequence:

Entry is from the Executive at:

DECIMG

4-21 

‘
• 

-

~

: 
_ _ _ _ _ _ _ __ _ _

— -•-- --.—-_-—-.--- - - -_-- - -—---5-- ---5------- ------- -—-_-- -- -5--- - — 5 - -  .___5-_,__ _-._ -_—_ ‘--- - — • -



5-

: ~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~

--
~~~~~~ - - - 

-
~~~~~~~~~~~~~ —~~~=-~~~~-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~

----
~~~

-
~~~~~~

— —

Program Name: DELETE

Pu rpose :

To delete a file from a disk peripheral. 
-

Description:

The file specification is obtained from the user. The file is tht~ L deleted

using the FCS Delet$ Macro. A loop is contained in the program to allow several
names to be entered. For successive names the previous file name extension is

used if none is entered.

Subroutines Called:

ERFAT, ERREC and GETNAN

Calling Sequence:

Entry is from the Exeuctive at:
DELETE

4—22

-- - ——
~~~~ 

—— - -——- -——S -.__ - ---5-—-.- - ——-5— -—~~ — 5-——---- - — -5-- --
— . ——-- 5- --

r
-- - -—

~~~~~~~~~~~~~~~~~

-— --- -- 

~~~

- - ----—--- - - — - - - - -

Progr am Name: DENH ST

Purpose:

To compute and display histograms of images and regions within images.

Desc ription:

The histograms computed are based upon the density values within the image
and the maximum, minimum and average difference between each point and its
eight neighbors. These are computed for complete images and for specified
regions within images. The routine “FINDPT” is used to determine which
points are within the regions . After the histogram is computed , the routine
“HISPLT ” is called to display it on the graphics display .

• Af ter the histogram is displayed several options are available. Most of
these deal with such things as zooms , change tick mark spacing, etc. One
option determines the percentage of the total number of points that lie
within a user specified range. Another allows a cumulative histogram to be
displayed .

In addition to above options , a density profile of any given row can be
displayed in histogram format . Display options similar to those discussed
above are also available for this function.

Subroutines Called:

ALPHA, BEGFND , BLDISP , CLEAR, DELDEC , DI2DA, DI2ImR, ERPAT , ERREC, PPASCF, P.CL ,
F.P , F.R , FINDPT , GRMODE , HISPLT , HOME , OPTION , PLOT, R.AD2AS , RSTREG ,
SAVREG , SI2DA , SI2DAR , SNGDEC , TTYC1&F and TTYOUT

Calling Sequence:

Entry is from the Executive at:

INHIS — Calculate image histograms

REGHIS — Calculate region histograms

LINPRF — Display single line density profile

4—23

—— --


~~~~~~~ ‘ 
- : ~~~~~~~~~~ 

~~
1
~~~~~~~~~~T~~~~1 ~i~~~~~~~~~~~~ — -- -_--—=-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

------ -- 

~~~~~~~~

—— -- —

Program Name: DICOMD

Purpose: To record images on film via the DICOMED Image Recorder.

Description:

The user is prompted to enter recorder resolution, Polarity transfer function

and blow up factor . Next , the recorder is initialized and the output loop is
- : entered . Each line is read from the disk file and prepared for output. The

line is then printed the number of times equal to the blow—up factor . When the

operation is complete the user is informed, the file is closed , and control

returns to the executive .

Subroutines Called:

ERFAT , ERREC , F.P , F.R , F.S , RSTREG , SAVREG , SNGDEC , TTYOUT

Calling Sequence:

Entry is from the executive at :
DICOMD

4—24

S- --.-~~~~~~-— --~-
_

1l I-,
____ —• ——-_ ~~~~~~~ ‘ -- ~~~~~-— —

— — —

~~~~~~~~~ 

__ _ 
“-“ ——-- s— t, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —5-- .~—.— ——--- —=- “ —‘‘ ‘ 5 -’ ’r ,’

Program Name DIFFAC

Purpose: -

To create a scaled, weighted combination of two images.
Description:

Each point in the two input images is multiplied by a factor.  The combination
is then formed according to the signs of the weights. The result is then scaled
over the range of zero to 255.

Subroutines Called:

ERFAT , ERREC , F .CL ,F.P , F .R , F.S , PARCOR , RAD 2AS , SI 2DA, SI2DAR ,
SNUDEC and TTYOUT

Calling Sequence:

Ent ry is from the Executive at:

DIFYAC

4— 25 

_ _ 5 -~~~~~~~- __•i -- ~~~~~~~~~~~~~~ -— - - 5- -~~~~~~~ - —— ~~~~~~~-—p~~~~~~~ — —  ~~~~~~~~~~-—— ~~~~~ —- -~~~~~~~



— 5-

~~~~~

’

~~~~~~

’5-’5- - —- - —--5-—’—— - - -

Program Name : DIGIN

Purpose: To input DICOMED Dig itizer image to disk

Description:

The user is prompted to enter the digitizer resolution . The digitizer is
initialized and the input loop entered . As a line is digitized it is transferred
to the image file . Wheu the operation is comple te the user is informed , the
file is closed , and control returns to the executive .

Subroutines Called:

ERREC , F.CL , F.P , F .R , RSTREC , SAVREG , SNGDEC , TTYOUT

Calling Sequence:

Entry is from the executive at:
DIGIN

NOTE: This option is not fully implemented .

4—26

~~~~~—-  ~
__
~j I~ ---— -- -~~~~~

_ _ _ _ _ _ _

r
— - -.-- -.- —

~~~~~~~~~~~~~~~~~~~~~~~~~~~

— ---

Program Name: DIRCTY

Purpose:

To print directories of disks on the line printer or graphics display.

Desc ription:

The di rectory is searched for all matching files and their file ID ’s are saved
A AI a temporary work file. Then the system index file is opened and the file
creation date is extracted from each file header. Each file is then opened to
extract block count , record count , record length and header text . The work file 

5-
-

is then sorted alphabetically, first by extension and then by name . The work
file is then dumped in either short or long format to the line printer or terminal.

Sub routines Called:

BLDISP , CLEAR, ERFAT , ERREC , GETNAM, LNPRNT , LPCLOS , RAD2AS , SI2DA, SNGDEC , TTYIN
and TTYOUT

• Calling Sequence:

Entry is from the Executive at:

DIRLNG — List long directory
DIRSRT — List short directory

4—27

_ _ _  
___ 

t



Program Name: ELCHNG

Purpose:

To replace specified density values or ranges of values with new values .

Description:

The type of operation , individual values or ranges , is dete rmined by the en try

point .  In either case , the values and ranges along with the replacement values

are specified by the user. A table of 256 en tries is then created which defines

a transfer function over the grey value range of 0 to 255. This table , along

with the input and output files, is passed to TRN1’TN for processing.

Subroutines Called:

ERREC, F.C , F.P , F.R , F.S , RAD 2AS , SNGDEC , TRNFTN and TTYOUT

Calling Sequence

Entry is f rom the Execu tive at:

ELCUNG — Change individual elements

TRSHLD — Change ranges of elements

4—2 8 

~::~i jiIi1~~~ __ _ •±~~_~~~~~~
__  ~j



r 

- -.---———— ---.•-----5-_- - 5-1

Program Name: ERNES

Purpose:

To output a selected error message to the terminal.

Description:

This routine searches the file ERRMESFIL.IPS for an error message based on the

error number and entry point (either recoverable or fatal). If the request

is valid, the message is ~utput to the terminal. Recoverable errors result in

a return to the calling program. Fatal errors result in an exit to the executive.

Subroutines Called :

F.S, RSTREG , SAVREG, TTYOUT

• Calling Sequence:

To output a recoverable error message:

NOV #l$, R5

JSR PC, ERREC
1$: BR

.WORD Address of Executive Common

.WORD Address of error number

To output a fatal error mess4ge:

NOV 111$, R5

JSR PC, ERFAT

1$: BR .46 -

.WORD Address of Executive Common

WORD Address of error number

General registers are not modified.

4—29

5- - - - --- -

~~~~~~ - 

-1ij __
- - - _i~

__ __5-..- - - —~~~~~ -------—- ~ -—- — - -_— - - -5- - - - - 5-
~~~~~~~~~~~~~~~~ - - - - - ~~~~~~~ 

-5-—.



r ~~~~~~~~~~ -~~~--~~-- — ~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -

Program Name: EVALUL

Purpose:

To apply Boolean logic to a vector set.

Description:

This routine is called by EVALDR to apply Boolean logic which resides at a given
node in the logic t ree . The logic file is opened , the logic is extracted and the
file is closed. The vector set is then opened and the logic is applied to each

vector. The vector set is then closed upon completion.

Subroutine Calls:

CLLF , CLOVEC , EXP , GETVEC , GTLF , LN , LOG , OPLF , OPNVEC , RSTFPS , RSTREG ,

SAVFPS , SAVREG

Calling Sequence:

JSR PC, EVALBL
Prior to entry, the first nine words of the “FRECOR ” buffer must be set to:

WORD DESCRIPTION

0 Logic node number
1 Logic file devic~ (RAD5O)
2 Logic file unit number
3,4 Logic file name (RAD5O)

Vector file device (RAD5O)
6 Vector f i le  unit  number
7,8 Vector file name (RAD5O)

9 Node number at which logic evaluation
began (used only by EVALDR)

These values are not modified.

4—30

- 

-i~__ _~-5_ __ __ -.



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — 5-—— • _ _
_ _5-

~~~~~~~~~~~~~
_5 -: —

- -— - - -

Program Name: EVALDR

Purpose:

To control the overall logic evaluation operations .

Description:

This routine accesses tht~ logic file to determine which logic evaluation routine

should be called at each node in the tree. That routine is then called.

Three modes of operation exist. The first mode evaluates the logic at the current

node only. The second mode evaluates logic at the current node and all nodes

below the current node. The last mode evaluates all logic in the tree’beginning at

the senior node.

Subroutine Calls: - -

CLLF , CLLOCF , EVALBL , EVALFP , ERFAT , GETNAN , GETNOD , CTLOCF, OPLF and OPLOCF

Calling Sequence:

Entry is at :
EVALDR - OVERAL EVALUATION

EVACRE - AFTER LOGIC CREATION

EVASEL - AFTER SELECTING LOGIC FILE

4—31

—‘5--’.
• - ~~~~~~~~~~~~~~~~~~~~~~~~~ 5 - • 5 - 5 -~~~

5-••
~
.’——•• ____________

Program Name: EVALFP

Purpose:

To apply Fisher pairwise logic to a vector set.

Description:

This routine is called by EVALDR to apply Fisher logic which resides at a given

node in the logic tree. The logic file is opened , the logic is extracted and

the file is closed. The vector set is then opened and the logic is applied to

each vector. The vector set is then closed upon completion .

Subroutine Calls:

CLLF , CLOVEC , GETVEC , GTLF , OPLF , OPNVEC

Calling Sequence:

JSR PC , EVALFP
Prior to entry , the first nine words of the “FRECOR ” buffer must be set to:

WORD DESCRIPTION

0 Logic node number
1 Logic file devic.- u~AD5O)
2 Logic f i le uni t . Ilber

3,4 Logic f i l e name (RAD5O)
5 Vector f ile dev ice (RAD5O)
6 Vector f i l e unit number
7,8 Vector file name (RAD5O)
9 Node number at which logic evaluation

began (used onl y by EVALDR)

These values are not modified.

4—32

• ——i-- -— - — - 5 --- — —~~~
-.- -5-—

~-—.—-5-5- -—---

- Wr ~~~~r~~~~~~~~~ ~~~~~~~~~~~~~~~~~~
~

-

I”
Program Name: EXP

Purpose:

To compute the exponential va]ue for a given power.

Descrip tion:

This routine raises “e” to the power indicated by the calling argument. The

computational method is discussed in Hart[l]. Upon under or overflow, the error

flag ‘EKIND’ is set and the argument is unchanged.

Subroutines Called:

SAVFPS, SAVREC , RSTEPS , RSTREG

Calling Sequence:

MOV #l$, R5
JSR PC , EXP

1$: BR .+6

.WORD Address of Executive Common

.WORD Add ress of single precision FP argument

General and floating point registers are unmodified.

4—33

L±1i~1ETTTTIITT ITTT1~ I~~I~IJ 1~~

- -:
~ ~~~~

‘
~~~~

‘5-
~~~
’’ “—

~~~~~~~~~~
5- 5 - 5 - ”

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program Name: FDBCRT

Purpose:

Allocate file descriptor blocks for the Error, Log and Master Option files.

Description:

This module reserves and initializes two file descriptor blocks. The first is

used by the user Log File. The second is shared by the Error file and the

Master Option File. Record deblocking buffers are also allocated. The FDB

addresses are global symbol s, allowing their values to be stored in the Executive

Common.

4—3 4

5- -— ‘ 5 - ~~~~~~~~~~ 5-’ ~~~‘5- - — - . ._ ‘
-
~~~~~~~~~~~

—_—- - -— 
~~~~~~

5- 5 - T~~~~~
T 5 - --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - — —-5-

Program Name: FILE1

~~~pose:

To create and retrieve data f iles

Description:

This program has five entry points. Two entry points exist for creating files

and two exist for retrieving files. One entry point in each case allows the file

to be created or retrieved without opening it for access. The other entry point

opens the file for access as well. A fifth entry point simply checks for the

existence of a file. If it is not found, an alternate return is taken.

A list is maintained within EXEC of all open files. Therefore, as each file is
opened, the address of its request block is inserted into this list.

All file operations are performed within the RSX—llM file structure. The RSX—llM

FCS Macroes are used for accomplishing the desired tasks.

Subroutines Called:

ERFAT , ERREC , GETNAM, RDIT , RESTRT, RSTREG , SAVREG , TTYIN , TTYOUT , WrIT

Calling Sequence:

To create a file
NOV 111$, R5
JSR ‘C , F.C$

1$: BR .412.

. WORD Address of Executive Common

.WORD 0

.WORD 0

.WORD Address of File Request Block

.WORD Addr -ss of Null Input Indicator

4—35

- - •
-

5- - - - -
—

~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- —-- --5-- - —-- ~~~~~~~~~~~ —- - ------— - —-—- - - - - - - - -- -- -—-—---— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-• -- - --- - -~~ -- - -- — - —

(FILE1 cont.)

To create and open a file

JSR PC , F.C

The argument list is identical to F.C$

To retrieve a file

JSR PC , F.R$

The argument list is identical to F.C$

To retrieve and open a file

JSR PC, F.R
The argument list is identical to F.C$

To check for a file ’s existance

NOV #l$, R5
.JSR PC , F.CH

1$: BR .412.

.WORD Address of Executive Common

.WORD 0

‘1 .WORD 0

.WORD Address of File Request Block

.WORD Address of Return Indicator
Set to 0 if file is found
Set to —l if file is not found

4—36

~



~ —--— -5-- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5-

~~ 5- 5-~~~~~~~~~~~~~~~~~~~

(FILE 1 cont .)

The File Request Block includes the following data, which is usually generated

by the F.REQ macro.

Location Description

FRBFDB Start of RSX—llM File Descriptor Block

FRBCHR - Address of promp t for f ilename request
FRBCLN Address of length of prompt

FRBLEN Record length
- -

FRBCNT Number of records in file

FRBALC Linked/Contiguous f lag
FRBCON Number of con tiguous records required in memory

FRBREC Requested record number

FRESTS Disc I/O Status Block

FRBSIZ Buffer size (bytes)

FRBBUF Buffer address

FRBFHD Number of device blocks in file header

FRBFST First record currently in buffer

FRBLST Last record currently in buffer

FRBDFN Default file name block for device and file extension

4—37

5-~~~~~~~~~~~~
_ _--—..-•--

—- -• ~~~~~~~~~~~~ •~~~~~~~~~ --—~~~~-- -- ----- - --~~~~~~~~~~~~~~~~~~~ - — . -~~~~~

— - - - —-.- - -‘—5- - - — - - -~~~~~~~~~~~~~~~~~~~~~~~ -‘—5-—-—

II

Program Name: FILE2

Purpose:

To access data within a file.

Description:

This routine accesses data within files that are opened by the routines in FILE1
program.

When a request is made fur a record or group of contiguous records, the associated

buffer header is examined to determine if the data has been loaded into memory

by a previous operation. If it is in memory, it ’s address is simply returned
-

• to the calling program. If not, the file access mode is checked to determine

what operations are to be performed . If the access is “read only”, the requested

data is read into memory. If the access is “write only”, the data is written

onto the disk and the position for the desired record(s) is established in memory.

If the access is “read/write”, the curren t buffer contents are wri tten on to the
disk and the desired record(s) are then read into memory. In all cases where

data is read into memory, an amount of the data equal to the size of the buffer

is read into memory. This is done in anticipation of future requests for the next

records in sequence. This reduces overall data transfer time.

Subroutines Called:

ERREC, ERFAT, RSTREG, SAVREG

Calling Sequence:

NOV 111$, R5
JSR PC , F.P

1$ BR
.WORD Address of Executive Common

.WORD Address of File Request Block

. WORD Address of Nonexistant Record Indicator

4—38

- - - 5-

— —-5-—— -- -- -— -~~~~—---—•- —~~~~-~~~~~~~~~~~~~~ -~~~—--- ----—

--~~~~~~ .-‘—-~“ ‘~~~~~ ‘ ‘ - -.- --- --—---~---.~~~~~~~~~~ .---.
5-
~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

- 
~1III]I~

(FILE2 con t)

This program also includes three service routines which are used by FILE1 and

FILE2.

To write the data defined by the FDB:
JSR PC, WrIT

NO must contain the FDB address

To read the data defined by the FDB:
JSR PC , RDIT

RO must contain the FDB address
I!’

To set up the FDB to read or write the data currently in the buffer :

JSR PC , COMPU
RO must contain the address of the File Request Block.

4—39

_ _ _ _ _ _ _ _  • • :  :



r - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program Name: PILE3 -

Purpose:

To close files.

Description:

Two entry points are available for closing files. The first closes individual
files and the second closes all files that are currently open. In either case ,
the associated file request block addresses are removed from the open file list

within the Executive Common~.Files with a .TMP extension are deleted.

Subroutines Called:

COMPU, ERFAT, ERREC , RDIT , RSTREG, SAVREG , WrIT

Callin~ Sequence:

To close a file:
NOV #l$, R5 

-

JSR PC, F.CL
1$: BR .+6

.WORD Address of Executive Common

.WORD Address of File Request Block

To close all open files:

NOV 111$, R5
JSR PC , P.S

1$: Isk~ .46

.WORD Address of Executive Common

.WORD 0

4—40

~~~~~~~~~~~~ 
- •

— -a-— 5-
~

— — *5-SI’5-• __
~~~~ —~~ _1•~~l•~ _~~  ~~~~~~~~~~ ~~~~ ~~••_ ~4••_t~~_ — - —



- 
-— -—--—-— — -- ~~~~~- — -~~~

Program Name: FILE4

Purpose:

To extend the length of a specified file.

Description:

The file is retrieved and its current size is obtained. The requested extension

is then added to this size and a new version number is created under the same

name. The old file is copied into the new file, and old file is deleted.

Subroutines Called:

ERFAT , ERREC , RSTREC and SAVREG

Calling Sequence:

MOV #1$, R5

JSR PC , F .E

1$: BR .44

.WORD Address of File Request Block

.WORD Address of desired file extension in disk block.

4—41



~~~~~~~~~~~~~~~~~~~~ • - - —
~~-~~ ~~ ~~~~

- - — — - —
~~~~

-- 
~~~~~~~~

Program Name: FILL

Purpose:

To restore breaks in lines in a binary image.

Description:

This routine scans a binary input image for non—edge points (0 grey value) whose

eight surrounding points meet an “edge, non-edge, edge, non—edge” condition.

When this condition is discovered the point is replaced with a value of 255.
The result is non—connected edge points separated by one pixel are connected .
Two different procedures are followed depending upon which entry point is selected .
Either the operation is performed on only data appearing in the input image or
on the current state of the union of the input and output images.

Subroutines Called:

ERFAT, F.C, F.?, F,R, P.S and RAD2AS

Calling Sequence:

Entry is from the Executive at:

REGFIL - Regular fill in

ADPFIL - Adaptive fill in

4—42

—---
_ _ _ _ _ _ _

-~~~~~~~~~ - - - - 5- ---—--5--—

• Program Name: FINDPT

Pu rpose:

To determine the interior points of a region defined by a region file.

Descr iption:

This program determines the points interior to and on a region boundary . A
boundary , as opposed to being a line of zero width , is actually one or more
pixels wide depending upo.: the orientation of the line within the array . As

• a result , this “thick” boundary greatly complicates the task of finding the
• region points.

The problem is attacked by taking one row at a time and determining its inter—
section with the boundary lines. These are called intersection intervals. The
beginning of a row is assumed to be an exterior point and is therefore a point
of reference. When the row reaches an intersection interval the points then
are considered interior points. After the interval is passed, the status of the
points depends on the interval characteristic . If the intersection interval
is not at the end of a boundary line segment, then as the row passes through the
interval, it goes from outside the region to inside or vice—versa. Therefore
the interval is an “in—out ” or “change” interval.

The intervals at the vertices of the line segments are somewhat more complicated .
In this case , the characteristic of- the interval is “change” if the boundary
lines meeting at the vertice approach it from opposite sides of the row in
question, if they approach the vertice from the same side , the in terval is a
“no change” interval. This means that points on the interval are within the
region but points on either side of it are either both inside or both outside
the region .

Horizontal lines in the boundary are essentially one long intersection interval.
Such an interval’s characteristic is determined by the lines which meet its

• end points. A rule similar to the vertice rule above is followed . If the lines
at each end approach from opposite sides of the row its characteristic is
“change ”. If they app roach from the same side it is “no change”. Successive
horizontal lines are combined into one long interval.

For each row that crosses the region , the above procedure is followed to determine
the interior points. One subrou tine (BEGFND) must be called to initialize the
operation. Successive calls to FINOPT then return the row and column values
f ound within the region . Each call returns one point .

Another subroutine (SNGLPT) determines if a given point is in the region . The
procedure for making this determination is the same as the above . -

4—43

-— --~~—--—- • --

V.,
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_____________________________________________________ 

- -—,..~~~,-——-- - — — 5-’

Program Name: FINDPT (Continued)

Subroutines Called:

ERPAT, F.CL, F.P, F.R, RSTFPS, RSTREG, SAVFPS and SAVREG

Calling Sequence:

To retrieve the region file and initialize the working buffer for use by FINDPT
and SNGLPT:

NOV R5,-(SP)

NOV #l$ ,R5

JSR PC,BEGFND

1$: BR 2$

.WORD Address of the request block for the region file .

.WORD Address of an alternate return to be taken when the
user responds to the request for a region file name with
only a carriage return.

2$: MOV (SP)+ ,R5

Upon return from BECFND the buffer  specified in the request block is still in
use even though the region file has been closed . This buffer Is used until
all calls to FINDPT and SNCLPT have been completed for that region.

To obtain the coordinate of the next point found within the region:

NOV R5,-(SP)

MOV #l$ R5

JSR PC ,FINDPT

1$: BR 2$

.WORD Address of the request block for the desired region

.WORD Address of an alternate return when there are no further
points remaining in the region.

2$: MOV (SP)+,R5

The coordinate values are returned on the stack with the row on top followed
by the column.

4—44

~~~~~~~~~~ -— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --—-- - -5- -- - ~~~~~~~—•~~~ - - -—- - - -


Program Name: FINDPT (Continued)

To determine if a particular point is within the region:

NOV #l$, R5

~SR PC,SNCLPT

1$: BR 2$

.WORD Address of the request block for the desired region

. WORD Row coordinate value

.WORD Column coordinate value

.WORD In/Out Indicator (O Out , l In)

2$:

4—45

-- -5 - - -- 5 - . - •
~~~~ 1

- --—~~~~~ - - - 5 - -  -——-.--- - - 5 - -_ - ----- — - - -  -• - —- —- - -~~~~~~~
--- - • -.



r ‘ ‘

~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘~~ ~~~~~~~~~~‘ ~~~~~~~ 
- 

-

Program Name: FISODP

Purpose:

To compute the Fisher direction, the discrlminant plane vector and five thresholds.

Description:

This routine computes the above mentioned values for a given class pair. The
records in the mean—covariance file (MCFILE .MC) associated with the two classes
are passed as parameters . One class pair is treated per call.

Subroutines Called:

CMPRES , ER.FAT, EXPAND , FPSQRT , F.P, GETIX , INVMAT , LINDEP , MDOTV , RSTREG , SAVREG
and SETIXD

Calling Sequence:

Prior to calling “FISHER ” the following call must be made:

H 
JSR PC ,SETFIS

this routine expects the following globals to be provided :

BOTCOR — Address of the beginning of a working buffer

TOPCOR — Address of the end of the working buffer

The Fisher values are calculated by the following call:

JSR PC ,FISHER

- 
- 

This routine expects the following globals to be provided:

MCBLK — Addres~. of request block for file MCFILE.MC

MCREC — Record number parameter in request block for MCFILE.MC

MVEC — Buffer containing the measurements from which to create
the logic. The first word is the number of measurements
and each word thereafter contains a measurement number.

PAGEA — Record number in NCFILE.MC corresponding to the first class.

PAGEB — Record number in MCFILE.MC corresponding to the second class.

VECDIM — Dimension of the vectors .

Upon return , the computed values are found at the addresses gi in the
following global locations :

DP — Address of discriminant plane vector

FISH — Address of Fisher vector

THRESH — Address of five thresholds.

L ~~~~~~~~~~~~~~~~~~~~~~~~ •~~~~~~~~ i --



— -
~~

-—---— - —~~ --.~~~~~~~~~~ • ~~~~
... 

—

FISODP (Continued)

All values are in single precision floating point. See documentation of logic

1 tree file (Appendi~ E) for the 
formats of the return values.

- 
- General Rcg isters are not modified.

‘~

5-.

4—47 

—-- — - - - --~~~~~~~~~~~~~~~~~~~~~~ --



A0 A073 053 AMI€RST SYSTEMS INC BUFFALO NY F/s 9/2
IMAG€ PROCESSING SYSTEM SOFTWARE . VOLUME II. PROGRAMMING MANLJAL~ .4TC(U)
.aiw 79 E S EDERL. P T Gj.INSaI F3O602—75—C—0077

•JNCLASSIFIFF) £MIIFRST—fl077—Vfll —2 csn r—yp— ,q~c,~vn. _ , I.

I
____ ___________________

U~
I __

toj  
_ _

_ _ _

• I _NI
-- p 

-



_ _ _  

L 
~~~ ~ 2.2

L~ M12.O *

L I
J~~.8

1.25 IMI~
4

MICROCOPY RESOLUTION TEST CH4~T
NATKN~A1 BUREAU OF STA~DARDS-i963-

-
~

Program Name: PLTMUL

Purpose:

To form the product between a filter file and a file of another type.

Description:

The product between the files is formed on a point—by—point basis. The second

file can have byte, integer, double integer or floating point values. However,
it must be an array type of file such as an image or a Hadamard transform of
an ima~,t~.

The output file is created in the same size and format as the second input file.
If at any point overflow occurs, the output takes on the largest positive

or negative value whichever is appropriate. A count of overflows is maintained

and is reported to the user at the end of processing.

Subroutines Called:

DI2DA, ERPAT, F C , F.P, F.R, F.S, PARCOR, RAD2AS, RSTFPS, ~I~VFPS and TTYOUT

Calling Sequence:

Entry is from the Executive at:

FLTMUL

4—48

_________________________ —----—

Pro&ram Name: FPASC

Purpose:

To convert from binary floating point to an ASCII character string.

Description:

Two types of conversion are provided, both of which follow FORTRAN conventions.

The first is similar to the FORTRAN “F” conversion. That is, the binary value is

converted to its equivalent decimal number with a decimal point. The field width

and the number of places to the right of the decimal point must be specified.

The second type provides the FORTRAN “E” type conversion. That is, the binary

value is converted to a decimal number multiplied by a power of ten. The field

width and the number of places to the right of the decimal point must be specified

in this case also.

Subroutines Called:

SAVFPS, SAVREG, RSTFPS and RSTREG

Calling Sequence:

Fixed Format Conversion :

)IOV #l$, R5
JSR PC, FPASCF

1$: BR .+14
.WORD Address of Executive Common
.WORD Address of field width
.WORD Address of number of digits to the right of the decimal point
.WORD Address of single precision floating point number
.WORD Address of the buffer for the converted number

The field width minus the number of decimal digits must be greater than 1.

Exponential Format Conversion:

MOV #l$, R5
JSR PC, PPASCE

1$: BR .+14

(The parameter list is identical to that for FPASCF)

The field width minus the number of decimal digits must be greater than 5.

4—49

Program Name: FPW

Purpose:

To control the overall process of creating Fisher pairwise logic.

Description:

This routine monitors the processes reqi.~ired for the creation of Fisher logic.

It performs the following functions:

1. Allocate buffer space for the various operations.

2. Retrieve the mean and covariance file.

3. Call “FISHER” to compute the Fisher vectors for
each class pair.

4. Insert the resulting logic into the current logic file.

Prior to execution, this routine expects that a logic tree node has been selected

for the logic and that the appropriate means and covariances have been computed

and stored in the file “MCFILE.MC”.

Subroutines Called:

ADDNOD, ADDSYM, CLLOGF, ERPAT, FISHER, F.CL, F.P, F.R, GETMEA , GETNOD, GETSYM,
GTLOGF, LOADER, OPENLY, OPLOGF, RSTREG, SAVREG, SETFIS, TTYIN

Calling Sequence:

Entry is at:

FPW

4—50-

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- .- 

~~~~~~~~~~~~~~~~~~

.

-
-
~~~~~~~~~~~~~

-‘-
~~~~~

-
~~

-

~~~~~

- .- - ,---.- — ---- —-—- V --.-- —

Program Name: FPSQRT

Purpose:

To compute the square root of a floating point number.

Description:

The square root of a single or double precision floating point number is computed .
The precision is determined from the status register within the floating point
processor. An initial guess at the final value is made based upon the half of

the exponent value . This results in only three Newton iterations required for
single precision and four iterations required for double precision.

I
Subroutines Called:

SAVFPS, SAVREG, RSTFPS, and RSTREG

Calling Sequence:

MOV 111$, R5
JSR PC, FPSQRT

1$: BR .+4
.WORD Address of the single or double precision floating

point argument

The result is returned in the subroutine argument. The general and floating

point registers are not changed.

4—51



• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - . -.~~~~—,—-..• -- 
~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~

•-‘
~
---—

~
-- .- ,

~

.---•-

~1
Program Name : FRAMES

Purpose: To generate the file MSTROPTON.LST.

Description :

This program converts the file MSTROPTON.SRC to the IPS compatible file
• MSTROPTON .LST .

Subroutines Called:

NONE

Calling Sequence:

This routine is executed via the RSX RUN command.

4—52

:~: ~~~~~~~~~~~~

Program Name: FRM~0C

Purpose:

To provide the individual frame option lists and dispatch tables

• Description:

FRZVOC actually represents a set of similar modules, where XX is replaced by the

various Frame numbers. A separate file is maintained for each Frame . There

are currently modules numbered FRMO1 through FR1113, representing the thirteen
Frames in the system. The modules consist entirely of data, including the text

to be displayed by the BLDISP routine, and a dispatch table for procesCing the

various option overlays.

The option list menu is stored at global label OPMENU. It contains the frame

header text pointer and option text pointers in the following format.

OWENU : .WORD N ;Number of Options
.WORD HDR ;Address of Frame ID Text
.WORD LHDR ;Address of Text Length
.WORD 01 ;Address of Option 1 Text

.WORD LOl ;Address of Length of Text

.WORD 02 ;Address of Option 2 Text

.WORD L02 ;Length of Text

.WORD ON ;Address of Option N Text

.WORD LON ;Address of Text Length

The option dispatch table is stored at global label OPDISP. It contains the

entry points for the options in the order specified in the menu.

4—53


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- 
—-.-• • —---

~
-
~~ 

•
~~

--‘• ,-• 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

.—- .—-- —-.,

(FRMXX cont.)

OPDISP: .WORD ROUT1 ;F~atry for Option 1

.WORD ROUT2 ;Entry for Option 2

.WORD ROUTN ;Entry for Option N

All data storage for the Executive Connuon is also allocated and initialized by

assembling each module with the COMMON file as a prefix file.

Subroutines Called:

None

Calling Sequence:

The initialization code in the Executive Common is executed by specifying it as

the entry point of the program, as follows.

.END FSTRT

No other modules may specify entry points.

4—54

IlL ________—

•~~~~~~~ •~••.- - -~~~~~. . -~~~

Program Name: CETBOL

Purpose:

To create Boolean logic.

Description:

This routine directs the overall creation of Boolean logic. The logic is entered

at the keyboard as a logical/arithmetic expression, it is accepted and compiled

into machine code by the routine “cMPILB”. Following its entry the user is given

the option to reject it and make a new entry.

Aftet the logi’ has been accepted, it is stored in the logic file and two subnodes

are added to the current node. The class assignments for each subnode are obtained

from the user.

Subroutines Called:

ADDNOD, ADDSYN , CLLOGF, CLOVEC, CMPILB, ERREC , GETNOD, GETSYM , GTLOGF , LOADER ,

OPLOGF , OPNVEC , OPTION, RAD2AS, SI2DA , TTYIN and TTYOUT

Calling Sequence:

Entry is at:

GETBOL

4 5 5

—

~~~~~~~W rrrw —~~ 
- —-. •~~~~~~~~~~~~~ -~~~ 

-

-—--~—-~~ - -
•
~~

-- - -— -•- - 
~~~~~~

-
~~

—---•-
~
-. •—•- ••-•- • - •

- -S -

_____ ,_ .~~~~~~~~~

Program Name: CETCON

Purpose:

To plot cross sections of a filter on the graphics display.

Description:

This routine is an overlay to the “CREFLT” routine which creates filter files.

The function is passed to this routine as machine code. If any undefined

constants exist in the code, this routine requests them from the user. The user

-
— is also queried to obtain the end points of a line in the X—Y filter plane

through which a perpendicular plane is inserted to obtain a cross section of the

function. The cross section is then displayed on the graphics display; The
H user is then given the following options:

1. Accept the filter function;

2. Reject the function and go back to “CREFLT”
to get another;

3. Display another cross section;

4. Exit to the executive.

Subroutines Called:

ALPHA , CLEAR , CREFLT, DSABLR, ERREC, FLTENT , FPASCE , GRNODE, PLOT, RAD2AS,
RSTPPS, SAVFPS, SNGDEC, TTYIN, TTYGRF , TTYOUT and WHICH

Calling Sequence:

JSR R5, GETCON

4—56

4

r~
-

~~~

-

~

-

~

- 

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
-• -~~~~~~~~~~

-
~~

-
~~~~

-— - -
~~~

- -
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

• Program Name: GETDAY

Purpose: Access date as an ASCII string

Description:

This routine reads the date through RSX—ll, converts it to ASCII, and returns

it to the user supplied buffer. The format is:

MO-DY-YR

where: MO month

DY~~~day
YR~~~year

SLbroutines Called:

RSTREG, SAVREG

Calling Sequence:

MOV #l$, R5
JSR PC, GETDAY

1$: BR

.WORD Address of Executive Common

WORD Address of 8 byte field where
ASCII date returned.

General Registers are not modified.

4—57 

•. .
~~—~ •- 

~~~~~~~~~~~~~~~~~~~~~~ —•• S •~~~ — .— . - - —-— - • • .- ~~•_  _ - • — - - - •- S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I.

—

F -

• • • •

~ ~~

-
~~~~~~~~~~~~~~~~~~~~~~

Program Name: GETIM

Purpose:

Access time of day as an ASCII string.

Description:

This routine reads the time through RSX—1l, converts it to ASCII, and returns

• it to the user supplied buffer.

The format is:

HR : MN : SC

where: HR = Hours relative to midnight

MN = Minutes

SC Seconds

Subroutines Called:

RSTREC , SAVREG

Calling Sequence:

MOV #l$, R5
JSR PC, GETIM

1$: BR .+6

.WORD Address of Executive Common

.WORD Addre~~. of 8 byte field where ASCII time returned.

General registers are not modified .

4—58



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5~

~~~~~~~~~~~~~~~~ 
~~~~~~~~~~— 

—
~~~~~~~~~~~~~~~~~~~~~~ -~ —

-
• 

Program Name: GETIX

Purpose:

To retrieve a specified element of a given matrix.

Descripti~p~

This routine obtains a matrix element specified by its row and column position.
The matrix may be stored in either single or double precision floating point

format. As a result, one of two luitialization routines must be called prior

to requesting any elements.

Subroutines Called:

None

Calling Sequence:

To initialize for single precision:

JSR PC, SETIXF

To initialize for double precision:

JSR PC, SETIXD

To retrieve a matrix element:

MOV 11$, R5

JSR PC, GETIX

1$: BR

.WORD Address of a location containing the row number

.WORD Address of a location containing the column number.

Prior to calling GETIX, the following global parameters must be set:

DIMEX — Number of columns in the matrix

MATEX — Core address of the matrix.

The core address of the element is returned in R3 and the element itself is

• returned in AC3. All other registers are unaffected.

4—59

• —~~ ‘. ~~~ SJfr~~~.~~~~~~~~~~~~ ••~~~~~~



Program Name: GETMEA

Purpose:

To obtain the measurement numbers from the user for Fisher logic creation.

• Description:

This routine requests measurement number input from the user. The numbers are

accepted as one line of input where the numbers are assumed to be separated by

commas. Ranges of measurements are allowed which must be indicated by the

limits of the range separated by a dash.

Subroutines Called:

ERREC, RSTREG, SAVREC, TTYIN

Calling Sequence:

MOV #l$,

JSR PC, GETMEA

1$: BR .+4

.WORD ADR

where

ADR Address of a buffer in which to return the
• measurements. The first word of this buffer

contains the number of measurements.
• Measurement numbers are sorted in increasing

order.

All registers are preserved.

4—60

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
S~~~~~~~~~~~~~

_ _ • _ _ __
~~~~~~~~~



r ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

I 
_ _
Program Name: GETNM

Purpose:

To input file name information into a buffer. This routine emulates the DOS

version of the “GETNAM” subroutine.

Description:

A prompt is issued to the terminal requesting a filename. When the filename is

entered, it is parsed and its validity checked. If invalid, a new name is re—

quested. The file name is then placed into the user supplied buffer with the

following format:

• Relative Address Within Buffer Length Item Format

Byte 7 1 Byte Unit # Binary

Byte 8 2 Bytes Device RAD5O

Byte 14 4 Bytes Filename RAD5O

Byte 18 2 Bytes Extension RADSO

This format is identical to that of the DOS link and filename block.

Subroutines Called:

AS2RAD , ERFAT, ERREC , GETNAN, .PARSE, RSTREG, SAVREG

Calling Sequence:

MOV #l$, R5

JSR PC, GETNM
1$: BR .+6

.WORD Address of message

.WORD Address of 12 word return buffer

4—61



• ~~—~~
=• -

~~~~~~~~ 
__9- - - • _ -,~~~-

— -~ ~~~~~~~~~~~~~~ — ~~~~~ S~~~~
_

__

-

Program Name: CTFILE

-j Purpose:

To create a checkerboard test image.

Description:

This routine creates an image file of 512 rows and 512 columns. The first row

is created with grey value 0 in the first 32 columns, 1 in the next 32 and up

to 15 in the last 32. This row is then copied into the image file 32 times.

The next row sequence begins with value 16 in the last 32 columns and increases

• by one every 32 columns until reaching the beginning of thc row. This row is

then copied into rows 33 thru 64 of the file. This alternating process continues

until all rows are complete.

Subroutines Called:

ERFAT, ERREC , F.CL, F.C and F.P

Calling Sequence:

Fl Entry is from the executive at:

CTFILE

4—62


~~~~-•~ ---——-•_ ~~~ -~~S-

• Program Name: HADMAR

Purpose:

To perform a scaled Hadamard transform on a one-dimensional array of double

prc’cision integers.

Description:

This routine computes the Hadamard transform in the classical manner of log N

steps where N is the number of elements. The sum and difference operations are

performed between two buffers. The first buffer is the input array and the

second is a working buffer. If N is odd , the result appears in the working

buffer. In this case, it is copied back into the array buffer. After the Nth

step, the elements are rearranged in sequency order. If during any step of

the computation overflow occurs, the array is divided by two. The number of

division . is returned in a scale word.

Subroutine Calls:

RSTREG and SAVREG

Calling Sequence:

MOV 111$, R5

JSR PC, HADMAR

1$: BR .+l0.

.WORD Address of a working buffer

• . WORD Address of a location containing the number of e1em~ats in the
array

.WORD Address of array to be transformed

.WORD Address of a scale word

The result is returned in the input array . The scale word contains the number

of times that the array was divided by two.

All registers are not modified.

4—63 

- - - - ________



• 
• 

~~~~~~ ,.
S_ ~ •__ __ _ _

S_ __ ••S__•_ _ _ • _ _ _ _ _ _ • _.__S_S _•__ _
_ __ _ -~~-

Program Name: HADXFM

~~~pose:

To perform a Hadamard transform on a two—dimensional array.

Description:

This routine applies the one—dimensional Hadamard transform routine (HADMAR) to

a two—dimensional array. This is accomplished by first applying it to the rows

and then applying it to the resulting columns. The input array can either be

an image or a Hadamard transformed image. The output is then a Hadamard trans-

formed image or an image, respectively. When the output is a Hadamard transform,
• • the option is provided to create an image which is a scaled version of the trans—

form. A histogram of the transform is displayed on the graphics display to aid

in selecting boundaries for scaling.

Subroutine Calls:

ALPHA, BLDISP, CHCUR , CLEAR, DSABLR, ENABLR, ERFAT, FPASCE, F.CL, F.C, F.C$,
F.P, F.R, F.S, GRIIODE, HADMAR, PLOT, RAD2AS , RSTREG, SAVREG , SNGDEC and TTYOUT

Calling Sequence:

Entry is from the Executive at:

HADXFM

4—64



- -

Program Name: INVMAT

Purpose

• To invert a matrix.

Description:

This program inverLs a square matrix of four—word floating elements. The result

- ‘ Is returned in the same buffer.

Subroutine Calls:

GETIX, RSTREG and SAVREC

Calling Sequence:

MOV #l$, R5

JSR PC, INVMAT

1$: BR .+8.

.WORD Address of a location containing the address of the matrix

.WORD Address of a location containing the address of a working
buffer

.WORD Address of a location containing the dimension of the matrix

General registers are n~ t modified .

4—65



“~~
‘ r- ~~’~ j  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘
~~~~~~~ 

- -
~~~

——-‘-

Program Name: KEYARA

Purpose:

To create a region file based on keyboard input.

Description:

This routine creates a region file based upon user keyboard entries. The entries

can be the actual •,ordinate values or the upper left coordinate value of a rec-

tangular region and its dimensions. A third option to enter cursor coordinates

from an image display has bet~n included. The current effort, however, does not

include the display software.

Subroutine Calls:

ERFAT, ERREC, F.C, F.P, F.R, F.R$, F.S, OPTION, RSTREG, SAVREG

Routines that are not included in the current effort but that are required for
cursor coordinate input are expected to have the following calling sequences:

Display an Image

JSR R5,DISP1

BR .+6

.WORD Address of image file request block (file must not be open)

.WORD Blow up factor (integer)
Positive values blow up the image and negative values shrink
it.
Values of —1, 0 and 1 cause every image point to be displayed.

The following g].obals must be set prior to the call:

SROW — First row in image to be displayed

SCOL — First column In image to be displayed

OUTROW First row on display to be used

OUTCOL = First column on display to be used

4—66

— ----- 5----— . —- •• •— --- - —~~~--S------_S•--- - -



—S —5—-.-’ ———-5--- — •-•-_ •__ —.—_ •5—_._•,-- •_-
_

- -‘- • 
- - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— — - -  — - -  — — -  •

(KEYARA cont.)

Image Display Cursor

Enable Cursor

JSR R.5,ENABLC

BR .+4

• .WORD Address of subroutine to call when coordinates are captured

(when ~tsrsor interrupt occurs)

Disable Cur&or

JSR R5,DSABLC

Clear Image Display Graphics

JSR R5,CLRGRF

Draw Lines on Display

JSR R5,DRWLNE

BR .+4

.WORD Address of a parameter list

Parameter List:

.WORD Row cootdinate of point 1

.WORD Column coordinate of point 1

.WORD Row coordinate ot point 2

.WORD Column coordinate of point 2

Calling Sequence:

Entry is from the Executive at:

START

4—67

• •-~~~~~~~~~~-- - • • - -

~~~~~ • —•


--—-- -5-—-— -~~~~~ -
~~~~~~~~~~~~~~~~~~~~~~~

_ 

(KEYARA cont.)

The Image display cursor routine calls the following subroutine when a coordinate

is captured.

JSR R5,TAKCRD

BR .+6

. WORD Row coordinate value

.WORD Column coordinate value

Both row and column display values begin at zero, i.e., pixel at row 1, cclumn 1

is displayed at display point 0,0.

4—68

5-
~~—-~~--5-- -- - -— -~~~~~ - -



Program Name: LINDEP

Purpose:

To f i nd linear dependent rows of a matrix.

Description:

This routine generates a list of dependent rows in a specified square matrix.

• The matrix is expected to be in four—word floating point format.

Subroutine Calls:

GETIX, RSTREG and SAVREG

Calling Sequence:

MOV 1/1$, R5

JSR PC, LINDEP

1$: BR .+8

.WORD Address of a location containing the address of the matrix

.WORD Address of a location containing the address of a buffer in
which to return the numbers of the dependent rows

.WORD Address of a location containing the dimension of the matrix

The return buffer  consists of the number of dependent rows in the first byte and

the numbers of the dependent rows in the remaining bytes.

Registers are not modified.

4—69

I
— 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ ~~~~~


F-

Program Name: LINES

Purpose:

To create a binary image where only the edges of objects in an input grey level

image appear.

Description:

This routine finds the edge points of objects by comparing the averages of arrays

of points surrounding each pixel. If the averages exceed a user specified thres—

hold the output binary point is set at 255. If it does not exceed the threshold

the output value is zero. The array averages are computed by calling the “SMOOTH”

routine. The smoothed image is stored in a temporary file for processing.

A second option called “AREA EDGE DETECTION MAX” builds upon the first option.

This routine considers neighboring row and column positions that have also exceeded

the threshold. The position that exceeded the threshold by the greatest amount
in the row is then set to 255. The same action is performed on the column.

Subroutines Called:

F.C, F.C, F.P, F.R, RAD2AS, SI2DA, F.SHUT, SMOOTH, SNGDEC, TTYIN and TTYOUT

Calling Sequence:

Entry is from the Executive at:

LINES — Area edge detection

MLINES — Area edge detection max.

4—70

r -

— - - --~~~~~ -- -_ _ _ _ _ _ _ _ _

c- 5- T ’ -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ -
-—

Program Name : LNPRNT

Purpose: —

To print specified character strings on the line printer.

• Description:

This routine initializes and opens the line printer output file. Character strings
H terminated by a null are then accepted and listed in the line printer file.

A second calling point is available to close and spool the line printer file to
the line printer.

Subroutines Called:

ERFAT, RSTREG and SAVREG

Calling Sequence:

To print one or more ASCII character strings:

MOV #l$, ES
JSR PC , LNPRNT

1$: Bk 2$:

.WORD Address of ASCII character string

.WORD Address of 2nd string (optional)

.WORD Address of last string (optional)
2$:
To close and spool the file to the line printer :

JSR PC , LPCLOS

Registers are not modified.

4—il

-- ~~~~~~~~ •~~~~~~~~~~~~~~~~~~
- —

~~~~~~~~ - - -~~- • - —- - — -~~~~~~~~~ —5- — - - - —-—-— ~~~~~~~ ~~~~~•~~~~--— - —~~-~~~-• • - — — -



— - -- - —-5- - — — - 5 - -

Program Name: LOG

Purpose:

To compute the natural log or the common log of a number.

Description:

This routine computes the natural log of a floating point number. The method

used is described by Hart.(l). The common log (base 10) is computed from the

natural log by multiplying by the constant Log10
(e).

Subroutines Called:

RSTFPS, RSTREG, SAVFPS, SAVREG

Calling Sequence:

To compute the common log:

MOV 1/1$, KS
JSR PC, LOG

1$: BR .+6
.WORD Address of Executive Common

.WORD Address of Single Precision FP number

To compute the natural log:

MOV #l$, R5

JSR PC, LN

• 1$: BR .+6

.WORD Address of Executive Common

.WORD Address of single Precision FP number

In both of the above cases, the result is returned in the subroutine argument.

Upon an error , the flag BKIND is aLt and control is returned to the calling

program.

General and floating point registers are not altered.

4—72

--



5 - - —  —~~— —5- - ~~~~~~~ ——- - • • - • •—--_-.- 5-

~~~~ram Name: LOGGER

Purpose:

• To log messages and terminal I/O into the Log File.

Description:

This routine logs text in a disk file n~ined LOCFILIPS.TTN. The entry point

‘LOGIT’ allows for logging of?
~ specified message, with time appended, Into the

Log File. The entry point ‘LOGGER ’ will log interactive terminal I/O in the

Log File. Terminal input is logged with a 6 space indentation. Terminal out-

put is logged with a 3 space indentation.

- - Subroutines Called:

ERREC , GETIM, RSTREG, SAVREG

Calling Sequence:

For entry point LOCIT:

MOV //1$, ES
JSR PC, LOGIT

1$: BR .+lO

.WORD Address of Executive Common

.WORD Address of message

.WORD Address of message length

For entry point LOGGER:

JSR PC, LOGGER

where Rl contains the address of Executive Common.

General registers are not modified.

4—73 1 1

~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ —--



~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
— - - —---_. .-• _ _ -

~~~~~~~~~

Program Name: LOGOVR

PurpOse

To start, stop or print the log.

Description:

This routine controls the operation of the automatic log routine ‘LOGGER’. When

H the log is started, the log file ‘LOGFILIPS.TTN’ is created. ‘N’ in the file

name will take on the value of the terminal number from which commands are being

entered. When the log is stopped , the file may be spooled to the line printer

by the user. The file is then deleted.

Subroutines Called:

ERREC , .PRINT, TTYIN and TTYOUT

Calling Sequence:

Entry is from the executive at:

LOGOVR

~~~~~~~~~~ - — - -~~~~ ~~~~~~~~~~~~
- _ _

- -~ - ~~~~~~~~~~~~~~~ ~~~~~~~~ • - —~~ _ •

Program Name: LOGMOD

Purpose:

To provide a high level access to the logic file.

Description:

This routine contains subroutines to open, close and access the logic file.
Included are routines to add, delete and retrieve logic tree nodes and class
symbols.

Subroutines Called:

ERFAT , F.CL, F.E, F.P and F.R

• Calling Sequence:

Open the logic file for multiple page read access:

- ;
MOV #l$, R5
JSR PC, OPLF

1$: BR .+8

.WORD Address containing the address of the I/O buffer

• WORD Address containing the length of the I/O buffer

.WORD Address of the logic file name

Upon return MAXCON contains the maximum number of pages that may be accessed

at one time.

Open the logic file for single page read access :

MOV #l$, KS

JSR PC , OPENL F
1$: BR .+8

WORD Address containing the address of the I/O buffer
.WORD Address containing the length of the I/O buffer

.WORD Add ress of the logic f ile name

Open the logic file for single page modify access:

MOV #l$, KS
JSR PC, OPLOGF

1$: BR .+8

.WORD Address containing the address of the I/O buffer

.WORD Address containing the length of the I/O buffer

.WORD Address of the logic file name

4—75

- ~~~~~
n--- — .

~

—- - - •— -

-~~ -5.5 • —-S-5-•
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5- _ _ . _ _~~

LOGMOD (Continued) -

Close the logic file

JSR PC, CLLOGF
Close the logic f ile

JSR PC , CLLF
Set a pointer to one page of the opened logic file.

MOV #l$, KS
JSR PC , GTLCCF

1$: BR .+6

.WORD Address containing the append count

.WORD Address containing the page number to retrieve

- i The logic file may be opened by using any of the previously defined open subroutines.

The append count is the number of pages to add to the file if the requested page

does not physically exist.

Upon Return:

R3 contains the address of the logic page

FLOGP contains the first page number resident

LLOGP contains the last page number resident plus one

Set a pointer to the requested logic pages located in the opened logic file.

(The logic file must be opened previously via a call to OPLF.):

MOV 111$, KS

.TSR PC, CTLF

1$: BR .+6

.WORD Address containing the number of pages to read

.WORD Address containing the starting page number

Upon return:

R3 contains the address of the first logic page

FLOGP contains the first page numb&r resident

LLOGP contains the last page number resident plus one

4—76

— —~~~ -----~~~~ - —5 —5--- — ______



~~~~~~ - ~~~~~~~~~ 
~~~~~~~ —-—-—— - — ---~~~—- - -~~— --c— — - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
---T-

~
-:--’ - --5-------

~
-5-.1

LOGMOD (Continued)

Add one level of nodes to a lowest node in the logic tree block of the opened

logic file. (The logic file must be opened via a call to the subroutine OPLOGF.):

MOV R5~~ (SP)
NOV #l$, P5
JSR PC, ADDNOD

1$: BR .+lO

• .WORD Address containing node number where nodes are to be added

.WORD Address containing the number of nodes on the new level
(/ / of branches)

.WORD Address to transfer control upon error

MOV (SP)+, R5

The error return is executed i f :

1. The specified node does not exist

- c 2. The specified node is not a lowest node

Delete one level of logic nodes associated with a superior node from the logic tree

block of the opened]~ gic file. (The logic file must be opened via a call to

OPLOGF.):

MOV R5 ,—(SP)
MOV 111$, KS
JSR PC, DELNOD

1$: BR .+6

.WORD Address containing the superior node number

.WO RD Address to transfer control upon error
NOV (SP)+, KS

The error return is executed if:

1. There is m.re than one level of nodes below the superior node

2. The specified superior node is a lowest node or

3. The specif fed superior node does not exist.

4-77

- -- -5~~~~~~ —-~~~~~~~~~~ - - - -

- c----,--s: - -~~~~~-y-—~~~~~~~~~~ .--s ---,--- -
• - — ~~~~ —-~ •--

•--
5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

— -——5

LOGMOD (Continued)

Retrieve a node from the logic tree block of the opened logic file. (The logic

file may be opened via any of the previously defined open subroutines, but if

the node information is to be modified , the subroutine OPLOGF must be used to

open the file.):

4 MOV R5 —(SP)

MOV #l$, KS

JSR PC, GETNOD

1$: BR
.WORD Address containing the node number to retrieve

.WORD Address to transfer control if the node is inactive.
(Error Return)

NOV (SP)+ , RS

Upon Return:

Rl contains the address of the logic node

Upon Error Return:

If Rl—O the logic page is not defined for the node, otherwise
the node is inactive.

• Retrieve a class symbol entry from the class symbol block of the opened logic file.

(The logic file may be opened via any of the previously defined open subroutines,

but if the information is to be modified, the subroutine OPLOGF must be used to

open the logic file.):

MOV R5,— (SP)

MOV Ills, KS

JSR PC, GETSYM
• 1$: BR .4-6

.WOED Address containing the node number entry

.WORD Address to transfer control upon error

NOV (SP)+, KS

4—78

_ _ _ _ _ _
-5--—- -5--—-—- ——-5----—•-- - - - -5- - - -- — .5----- -5-- - - _ _5_5_~~~~~___5 •____ • ---~~~~~~~~~~~

-~~~ - S - -5--—— --

LOGNOD (Continued)

Upon Return :

R2 contains the address of the second byte in the entry , i.e.
the number of symbols. The class symbols follow in successive
bytes.

Upon Error Return:

An entry associated with the requested node does not exist in
the class symbol block.

Delete a class symbol entry from the class symbol block of the opened logic

file. (The logic file must be opened via a call to OPLOCF.):

NOV R5, —(SF)
MOV 111$, R5

JSR PC, DELSYN

1$: BR .4-6

.WORD Address containing the notI~ number of the entry

.WORD Address to transfer control upon error

NOV (SP)+ , R5

An error occurs if the subroutine fails to find an entry associated with the

node number located in the parameter list.

Add a symbol entry to the class symbol block of the opened logic file. (The

logic file must be opened via a call to OPLOCF.):

MOV R5,— (SP)
MOV #1$, ES
JSR PC, ADDSYM

1$: BR .+6

.WORD Address containing the address of the class symbol
ent ry

.WORD Address to transfer control upon error

NOV (SP)+, R5

4—79

-5-5--— —-5---- — — ~~~~~~~~~~~~
-

-5-


~~~~~
—- - ---- -- 5-—--

~~~~
-

—

~~

— ——,— -- - - - -- - - - -— - - ~~~~•55555~~555-

~~~~~~~~~~~~~~~~~~~~ 
-~r~~~~~~~i~~~~5 - — 5-~~~~~~ ••~ --5-

LOGMOD (Continued)

The class symbol entry is described as follows:

Description

0 Node number

1 Number of symbols

2 First symbol (ASCII)

- 
- Last Symbol

An error occurs if there already exists an entry in the class symbol logic

block for the node.

4-80 

5- -5-5



- - -5-— -~
-

~ - • —  -—-— -- -5

r - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~
_
~~~~~~~ 5 _

Program Name: LPHDCP

Pu rpose

To list grey value or binary images on the line printer.

Description:

This routine lists grey value or binary images on the line printer. A three

digit number is printed for each pixel value within the user selected portion

of the image . For binary images binary 1 is printed as an asterisk and a

binary 0 as a blank . If the number of columns is greater than the width of

the line printer , the output is generated in several sections.

Subroutines Called:

ERREC , F.CL, F.P, F.R, LNPRNT, LPCLOS, RAD2AS , SI2DA, SI2DAR, SNGDEC,

and TTYOUT

Calling Sequence:

Entry is from the executive at:

EDGPRN — List binary image

GRYDMP - List grey value image

4—81

—
- - 5—-—— - —— —

U. - -t p-,

5-—- —•- -——- ------—-•-——-—- - .——-—- --


~~~~~~~~~~~~~~ -5~~~~~~~--- -
~~~~~~ 

_ _—5 ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- --~~~~--~~
-:-— —- - — ~~

Program Name: MI’OTV

Purpose:

To compute the dot product between a matrix and a vector.

Descript ion:

This routine forms the dot product between a matrix and a vector. The elements

of each must be in floating point . Single or double precision values are accepted .

The processor must be set to the desired precision prior to entry. The column

dimension of the matrix must equal the dimension of the vector.

Subroutines Called:

CETIX , RSTREC and SAVREG

Calling Sequence:

NOV #18, KS

JSR PC , MDOTV

1$: BR .+12

.WORD Address of the address of the matrix

.WORD Address of the address of the vector

.WORD Add ress of the address for the result

.WORD Address of the number of columns in the matrix

.WORD Address of the number of rows in the matrix

Registers ACO, AC1 and AC3 are modified.

4—82

-5--- - - 5- -~~~~~~~~~~~~~~~~~ ----— —~~~~~~~~~~ - -— —- -- U -- 5- - —- - -
~~~

-
~~~~~~~~~~~~~~~~~

-— - —
~~~~~~~~~~~~~



-——-55--—

- Program Name: MENCOV

Purpose :

1 To compute the mean vector and covariance matrix.

-
~ Description:

• The mean vector and covariance matrix Is computed for each class in the current

data sot. Only those vectors which are located at Lile current logic tree node
- will be used for the calculations. The output is stored in the file “MCFILE.NC”.

If the file exists, it is deleted and recreated .

Subroutines Called:

CLLOFG, CLOVEC , ERFAT , F.CL , F.C, F.D , F.P , GETSYM , GETVEC , LOADER, OPENLF ,

OPNVEC , RSTREG , SAVREG and SNGDEC.

Calling Sequence:

Entry is at:

MENCOV

4—83 

- -5- - —- -5 -— ~~~~-5- --~~~~~~~~~~ —-  - - -5  -5---~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~~~~~~~~~~~~~ -—


-~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~
-5- — -5

Program Name: MESAGE

Purp

To genei ate the file ERBNESFIL.IPS

DescriPtiOfl

This routine converts the recoverable error
message file ERRMESREC.SRC and the

fatal error message file ERRMESFAT.SRC to the IPS acceptable format in file

ERRNESFIL.IPS. The two input files may be changed using tbe text editor.

Subroutines Called:

None

~~ j~n Sequence

This routine is executed via the RSX RUN command. Entry is at:

MESAGE

4—84


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~-5-- - — - -  5-- -- —5-5--5~~~~ —- --- --5—5-

4

Program Name: MODREP

Purpose:

To remove image noise points.

Descr iption:

This rout i ne determines the modal value of the pixels within a 3 by 3 neighborhood

of each image point. If the center point differs in value by more than a specified

amou~ i , it is replaced with the modal value.

Subr-wtines Called:

ERFAT, F.C, F.P, F.R, F.S, RAD2AS , RSTREC and SAVF EG

Calling Sequence:

Entry is from the Executive at:

MODREP

4—85

— - -5— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 
-

- 5 -  -- -~~~~~— - —~~~~~~-~~ 
- 

~~~~~~ -5-—~~~~~ ——- --- -5 ~~~~~ —-


—- - 5 - -—
‘u,

~~~gram Name: NORNLZ

~~p~ose:

To normalize an image.

Description:

The normalization process is performed in one of two ways. Either the image grey

values are expanded to the full 0 to 255 range or the values are normalized

over a user specified range. The function performed is dependent upon the entry

point.

Subroutines Called:

ERREC , F.C, F.P, F.R, F.S, RAD2AS , RSTREG, SAVREG , SI2DA and SNGDEC

Calling Sequence:

Entry is from the Executive at:

NORMLZ — Normalize over 0 — 2SS range
RNGCHG — Normalize over the user specified range.

4-86

- - 5 - - - - —  1

—--5- -‘-5-— 

~~~
_ _ __.._ _~~~~~ — _~ >_____. - -

-5- -

Program Name : ODDLD

Purpose:

To remove noise points or lines from an image.

-Y bcscription:

- s This routine performs one of the two noise L~ moval functions based upon the entry

point selected. Both operations, however, make their decisions based upon the

state of the 3 by 3 neighborhood about each pixel. The odd dot entry point searches

-
U for pixels that differ from one or more or the average of their eight neighbors.

The “dif f e r ” criterion and the number of neighbors are user specified.. Those

pixels which, satisfy the condition are replaced with the average of those neighbors

with which they differ.

The odd line entry point functions in a slightly different manner. The point is

rep laced with the average only if two neighbors which themselves are adjacent

cannot be found that are within the user—specified threshold.

Subroutines Called:

ERREC , F.C, F.P, F.R, F.S , RAD2AS , SI2DA , SNGDEC, TTYIN

Calling Sequence:

Entry is from the Executive at:

ODDLIN — Odd line entry

ODDDOT — Odd dot entry

1:

4—87 -
~~~~

—5 - —5- - --~~~ - ‘  ~~~~~~~~~~~~~~~~~~~~~~~

5-~~~~~~—-— - - - - 5  - 
— -- U 

~~~~~~~~~~~~~~~ 

‘—5--

- -
— 5555- • _ , ,~~5-55_5~~~5- S_5_5-5-55-555 -5555 -55- U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 55-5’-5~~5•5--5-5-55-

Program Name: OPT1t~N

Purpose:

To display option lists and accept selections.

Description:

This routine simply lists a specified option list (not frame option lists) on

the graphics display and accepts the user’s input. The return address is then

selected on the basis of this input. The number of options is determined by

the length of the parameter list.

Subroutines Called:

ERREC and SNGDEC

Calling Sequence:

MOV KS, — (SP)

MOV IllS, R5
JSR PC , OPTION

1$: BR 2$
.WORD EXBUF - Address of Executive Common

.WORD Address of Prompt

.WORD Address of Length of Prompt

.WORD Address of Option 1

.WORD Address of Option 2

.WORD Address of Option N

2$: MOV (SP)+, R5

KS must be pushed onto the stack prior to the JSR, so that the “option” subroutine

is compatible with the “call” MACRO.

4—88

~~~~~~~~~~~~~~~~~ ~~~~~~~



- ‘ — — — —  --- -- -~~-•---- - ----‘——--- - - -5—---~ - - --

Program Name: PARCOR

Purpose:

To partition the free core buffer.

Description:

This routine divides the Free Core Buffer into a number of fractional parts.

the addresses and sizes of these parts are then p]aced directly into request

blocks.

Subroutines Called

SAVREG and RSTREG

Calling Sequence:

NOV #l$, R5
JSR PC , PARCOR

1$: BR 2$
.WORD EXBUF — Address of Executive Commoii

.WOR1) Denominator of Fraction

.WORD Numera tor 1

.WORD ADR of BUF ADR Parameter in File Req Block

.WORD Numerator 2

.WORD ADR of BUF ADR Parameter in File Req Block

.WORD Numerator N

.WORD ADR of BUF ADR Parameter in File Req Block

2$:

Registers are not modified .

4—89

i~



— - - — --55—-- - — ______ “

Program Name: PLOT

Purpu:~~~

To provide routines for generating graphic plots on the Tektronix display .

Description:

Several subroutines are contained within this program which together allow graphic

plots to be easily generated.

U Subroutines Called:

ERFAT , ERREC , RSTREG , SAVREG and [TYGRF

Calling Sequence:

To select alpha mode:

MOV #15, R5
- 

- JSR PC , ALPHA
1$: BR .+4

.word Address of Executive Common

To select graphics mode:

NOV 111$, R5
JSR PC, GRMODE

1$: BR .4-4
. WORD Address of Executive Common

To clear screen:

NOV #l$, R5
JSR PC, CLEAR

1$: BR
.WORD Address of Executive Common

The display is left in alpha mode with the cursor at the upper left margin.

To position the cursor at the “home” position:

NOV #l$, R5
JSR PC, HOME

1$: .WORD .+4
.WORD Address of Executive Common

The display is left in graphics mode.

4—90 



- —•
~~

-—:‘---‘—--

~
-—‘

~

--- - ‘ — —----‘-‘--~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
5-5- -— . 5-. ---- — 5-5 - - - • ,$~~5 5 5 ’  

—5,

(PLOT cont.)

To plot a vector:

NOV IllS, R5
JSR PC, PLOT

1$: BR .+8
.WORD Address of Executive Common
.WORD Address of X coordinate
. WORD Address of Y coordinate

The routine draws a dark vector if the call is immediately preceeded by a call
(PLOT cont.)

4—91

~~~~1I__ _ _i
~~~~~~_~~-55-~~~~~~~~~



- -  -— 55 -5-

Program Name: PTEDGE

Purpose:

To find object edges in grey value images.

Description:

This routine is designed to find points which are the edgeb of objects. This is

accomplished by comparing each point to user specified neighbor points. If the

difference exceeds a user specified threshold , the output point is set to 255.

Otherwise the output value is 0.

Subroutines Called:

ERFAT, P.C, F.P, F.R, F.S, RAD2AS , SI2DA and SNGDEC

Calling Sequence:

Entry is from the Executive at :

PTEDGE

4—92

k - — — -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- ----5 - 
5- ’,

4

Program Name: PWLINR -

Purpose:

To accept and apply user—specified piecewise—linear transfer functions.

Description:

This routine allows the user to specify the transfer function by entering co-

ordinates at the keyboard. These coordinates describe the end points of the linear

- 
sections. The transfer function can be saved in a file for future use.

‘~-~

The newly specified transfer functiun or a previously existing one caq be

applied to an image via this routine.

Subroutines Called:

ALPHA , BLDISP , CLEAR , ERREC , F.C , P.R, F.P, F.S, GRMODE , OPTION , PARCOR , PLOT,
R.AD2AS, SNGDEC , TRNFTN , TTYGRF, TTYIN , and TTYOUT

Calling Sequence:

Entry is from the Executive at:

PWL INR

4—93

-- —-5 -5—--—- - —- ---5 —5- —--- - ----‘---—-— - 5 - - - — - 5 -  —- 5——. —--—-- ‘-—-- --- -A--- - ~~~ ~~~~~~~~~~~ 
- - s -5

~~~~~~~~~~~~
-

~~~~~~
5- 

-5— --—-5 —



~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _  

- —5-- ----- -- - -

Program Name: RAD2AS

Purpose:

This routine converts a string of RADSO packed characters to an ASCII string.

Subroutines Called:

RSTREG and SAVREG

Calling Sequence:

NOV #15, P5

JSR PC, RAD2AS

1$: BR .410
.WORD Address of RAD5O string

.WORD Address for ASCII ouptut

.WORD Address of number of words in RAD5O string

4—94

-11 --
--

— ~~
—

~~-. ~~~
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Program Name: RANDSP

Purp:~~~ To output a grey level image to the R.ANTEK Display.

Description: The user enters the starting row and column of the ima - - - - and the

blow—up factor. The image file is accessed and the DMA transfer to the RANTEK

begins. Upon completion, the file is closed and control returns to the

executive .

Subroutines Called:

F.CL, F.P, F.R, RSTREG , SAVREG, SNDGEC , TTYOUT

Calling Sequence:

- Entry is from the executive at:

RANDSP

NOTE:- This option is not fully implemented.

4—95

5- -~~~~~~~~~~ -5 -- 
-- -

~~~~~ 
5-

~~~ ~~~~~~~~~~~~~~~~~~~



rr 
~~~~~~~~~~~ 

“---—-5-— --
_ _

-5-
5_

~~~_c—— ~~~~~~~~~~~~ 
—5---—-— 

—5 
‘c—— 555 ~~~~~~~~~~~~~~~~~~~~~~~~~~ 

‘—“-.55 .5------- —

~1

- Program Name : RENANE

Purpose

To rename a file

Descripti~ p

This routine d.lows a file to be renamed. 
The old file name and new name ar*.~

obtained from the user . No change in the extension is allowed .

Subroutines Called:

ERFAT , ERREC and GETNAN

U Cal1in~ Sequ~~~~~

Entry is from the Executive at:

RENANE

4—96

_ _ _-5 -- 5- - 
— —--— _

~~~~~~~~~~~ . _ - ~~~~~~~~


r ~~~
—-—

~~~~

--“—-- -

~~~

-“

~

—- _‘

~~~
—

Program Name : RG STAT

Purpose :

To compute and list region statistics.

Description:

This routine computes and lists on the graphics display or line printer the
mean, standard deviation , mode , and population of a selected region of an
image file or sets of regions and images as described by a spectral set file.

Subroutines Called:

BEGFND, BLDISP , CFREQ , CSDEV, CLEAR, ERFAT, ERREC , F.CL, F.P, FINDPT, CMEAN ,
GSDEV, CMEDN, GMODE, LNPRNT , RAD2AS, RSTREG, SAVREG, SI2DA, SMINIT , SNGDEC , TTY GRF ,
TTYIN.

Calling Sequence:

- Entry is from the Executive at:

RGSTAT — Operate on spectral set

SPSTAT — Operate on single region/image pair

4—97

--_L 
- 5 - - - -  —a- - - - -  - — - - -—----- --- — 5- —--—



-5 -5-5-5 -5 5 5-_ -_ —

Program Name: RSTRT

U
I Purpose:

Restart a Frame Task

Description:

This routine restarts a Frame Task. The stack pointer is reset, the display

address is reset to the BLDISP routine, and the display is rebuilt if necessary.

The routine then j umps to the main control loop.

Subroutines Called:

ALPHA, BLDISP,

Calling Sequence:

The routine is entered following a Frame Task :.iartup or a fatal error by executing

a

SMP RSTRTT

R4 must contain the address of Executive Common

4—98



~

- — -- 
5- 5 - ’~~ - - - — - 5- -  ‘ . -  -5-—-5-— 5--~~~~

-
~~~~~~

-
~~~~~~~~~~~~~~~

.

Program Name: RTIOMC

Purpose:

To compute the ratios of two images on a point by point basis.

Descr iption:

This routine makes two passes through the file. On the first pass, the range
of values is obtained by multiplying each image point to be normalized by 256
and dividing the result by the reference image point. On the second pass,

these values are then normalized between 0 and 255.

Subroutines Called:

ERFAT , F.C , F.P, F.R, F.S, PARCOR , RAD2AS , and TTYOUT

Call ing Sequt-~nce:

En try is from the Executive at :

U RTIOMG

4—99 

::~: ±:i. 
_ _ _ _



—55 ~~~- ---- —-—- —~~~----- -
- ..~~~~~~~~~~ -----~ --- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

U - 
- - - - -

U Program Name: SARFPS

Purpose:

To save and restore the status of the floating point 
processor.

Description:

The FPP’s registers and status register are saved on and 
restored from the stack:

Subroutines Called:

None

Calling Sequence:

- 
- To save the FPP status:

JSR PC , SAVFPS

To restore the FPP status:

U 
JSR PC, RSTFPS

U 

4—100 

-~~_-~~ -~~~ -5 —- - --5- -5
~~~~~~~~~~~~~~~~~~~~ -55-- -----~~~~~~

-
_ _ _ _ _-5 —-5- — - 5 — ———

-“—-5- ~~~~~~~~~~~~~~
‘
~~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~

--“
~~~~~~~~~ “-~~~~~~~ 

- ---- .5--.—

Program Name: SAVER

Purpose:

To save and restore the goneral registers RO — R5

Description : - 
- 

U

The general registers RO — R5 are saved on and restored from the stack.

Subroutines Called:

- - None

Calling Seq~~nce :

To save registers:

JSR PC, SAVREG

To restore registers:

JSR PC, RSTREG

4—101

- — —  - 5-- -5
’ .~~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-5 - 5 - -- .- .—-- - -  ~~~~~~~~~~~~~~~~~~~~~ ~~—-~---——— --



-- 
——---—---—- -- -—-——- -

Program Name: SELNOD

To obtain the node number from the user and to call the appropriate logic

routine .

Description :

This routine requests the desired node number from the user and stores it in the

global location “LOGNOD”. Control is then passed to the logic creation routine

associated with the entry point chosen.

Subroutines Called:

ERREC and SNCDEC

Calling Sequence:

Entry is from the Executive at:

SELNOD — Fisher logic

SELBOL — Boolean logic

4—102 

- - -5- _ _

_ -i-_ — - z1~i-1-TIi± -~~~~~~~~ --—-----~~~~-~~~~~~~ - - — -~~~~~~~~~—-~~~~~~~ -5- -



- -  -— - -5w—
----5-— - 5-

~~~~~~~~~~~~~~~~~~ -5- --

Program Name: SELOCF

Pur~ose:

To retrieve or create a logic file.

Description:

The existence of the current vector set is checked as described by global

“VECTNN.” A fatal error is reported if none exists. The logic file name is

requested next. If the file exists , the class symbols in the vector file set

and the logic file are compared to insure compatibility. The vectors are all

reset to node 1 in the logic tree. The logic evaluation routine is then called

to apply any existing logic to the vectors.

If the file does not exist, a new one is created . The class symbols are ex-

tracted from the vector file and placed in the logic file.

Subroutines Called:

ADDSYM, CLLOFG, CLOVEC, CRLOG, ERFAT, F.CH, CETNM , GETSYM, CETVEC , GTLOCF,

LOADER , OPENLF , OPNVEC , RSTREG , SAVREG , and TTYOUT.

Ca1ling Sequence:

Entry is at:

SELOGF

4-103

r - -~~~~~~~ - -

U- -

—--- - -5 - - - - - -~~~~---~~ -— -

• - — - - - ~~~ ~~~~‘~5-”

--- - - - - 5

Prog~~n_Name: SELVEC

~~~pose:

To obtain the vector set f i l e  name for  f u t u r e  logic operat ions .

Description:

This routine requests the vector set file name f rom the  user and stores it in

the global variable “VECTNM”. The vector set is opened to obtain the vector

dimension, the vector measurement format indic~ttor and the vector header format

indicator. These are stored in global locations “VECDI M”, “VECMFI” and “VECHFI ”

respectively.

Subroutines Called:

GETNM , OPNVEC and CLOVEC

Calling Sequence:

- Entry is at:

SELVEC

4—104

-5-- -- -— — -5- - 

__ 5~
p
~i~ - - - -~~~~~~~~~ 

—---
-—--5



-U,----- ‘5- ’ ”
~~~~~~~~~~

— —--—--——- ’ 5 - ’

U

~~j~ame : SHIFTI

Purpose :

To shift an image vertically and horizontally.

Descriptiofl

This routine shifts - image by a user specified row and column amuunt . The

shift is accomplished by a circular rotation of the rows and columns in the

image.

Subroutines Called:

ERREC , F.C, F.P, F.R, F.S, PARCOR , RAD2AS , SI2DA and SNGDEC

Call ing Sequence :

En try is from the Executive at:

SHIFTI

4—105

~~~~~~~~~



~
- -- - -—- -  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-—- -— - - - -- - — - - - — -5— - - - —-—--5 - ——--.- . -----

P~~gj arn Name: S IMSMO

Purpose :

To obtain a user specified box size and then call the smoothing routine .

Descri~ t ion:

This routine obtains the input and output files and the dimensions of the
smoothing array. These parameters are then passed to program “SMOOTH”.

Subroutines Called:

BYTDEC , F.C, F.R, F.S, RAD2AS , SI2DA , SMOOTH and TTYOUT

Calling Sequence:

Entry is from the Executive at:

S1MSMO — M by N smoothing array

BOXSMO — Square smoothing array

4-106

- ±±5-_-5 - - -~~~~~~~~~-5~~~~~~~ - -- 5 -- ~~~~~~
S _I -5

- - U

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—-- - —-— ~~-~z~~~

P~~&ra
n Name: SMOO }1

Purpose:

To smooth an image.

Desc ript ion:

The smoothing operaticir. is performed by computing the average value of the points
in a specified neighborhood about each point and replacing the center point with
t his value. Edge points are effectively extended outward to satisfy “missing ”
neighborhood points for edge points.

-~~ Subroutines Called :

ERFAT , F.P , RSTREG and SAVREC

Calling Sequen~e:

MOV #1$,R5

JSR PC ,SMOOTH

1$: BR 2$

.WORD Address of input f i l e  request block

.WORD Add ress of output file request block

.WORD Address of number of rows in smoothing array

.WORD Address of number of columns in smoothing array

2$:

The files are assumed to be open.

4—107 

-~~~~~~~~~~~~~~ —- - -- -5- - — - -



—— - - -- 5---- -- _--w--5- --
~~~~~~- 

— - - --5-—- — -—-—--5 -~~~~~~~~~~~~~~~~~

Program Name: SPANEZ

Purpose:

To compute the mean , var iance , standard deviation , median , mode , high , low and
range of a set of numbers.

Description:

The statistics are computed on a frequency table that is constructed by this
routine. The frequency table is the number of times that each grey value
occurred in the data passed to “CFREQ”.

Subroutines Called:

RSTFPS , RSTREC , SAVREG , SAVFPS and SQRT

Call ing Sequence:

To initialize the frequency buf f e r , the sum and the sum of squares pri.or to
calling CFREQ, CMEAN and CVARI:

MOV #l$, R5

-
-

JSR PC ,SMINIT

1$: BR 2$

.WORD Address of data value (byte value at an even location)
to be supplied by CFREQ, CMEAN or CVARI. Also this is
the address where the computed values are returned from
GMEAN , GVARI , CSDEV, GMEDN , GMODE, GUlCH , GLOW and GRANGE

.WORD Address of a 256 word buffer for the frequency table.

.WORD Address of the number of data values.

.WORD Address of mode flag. This is an optional parameter.
It must be supplied if CMODE is used.

2$:

The mode flag is set by CMODE to the number of modes
minus one.

To tally a byte of data into the frequency table:

JSR PC ,CFREQ

To add data to the current sum:

JSR PC,CMEAN

4—108

-5-- —.-—---- ---—---—-5— - — —-5 ~~~r~i~ r 5 - -~~~~ -—~~~~~ -~ --~~~~ -~~~~
-5-- --- --U U 5 - - - —-5-- -

-5 - -~~~~~ 5-’5-~~ ’~~~~” 5 - -
~~ T ’ ’ 5-

~
‘ — — -- - 5

Program Name: SPAMEZ

To add data to the sum and the square of data to the sum of squares:

JSR PC ,CVARI (or CSDEV)

To calculate the mean of the data:

JSR PC ,CMEAN

CMEAN must be called f irst

To calculate the variance of the data:

JSR PC ,GVAR I

CVAR I must be called first

To calculate the standard deviation of the data:

JSR PC ,GSDEV

CVARI must be called f irst

To calculate the median of the da ta:

JSR PC,GMEDN

CFREQ must be called first.

To calculate the mode of the data:

JSR - PC,GMODE

CFREQ must be called first.

To calculate the high data value:

JSR PC,HICH

CFREQ must be called first.

To calculate the low data value:

JSR PC,LOW

CFREQ must be called first

To calculate the range of values:

JSR PC,RANG E

CFREQ must be called f irs t

4—109

- ---5 -- - -

- ----5

~

— -5--5— -,4
-_ --- — — - - - 5 - --- - -- --- -p- --—~-----

---—--5- __ _~~~ ___ _-5~~~__ _5-_ _ ___ _ _ 5

-5-5-5-5 - -,-_-_ -,
-

-
~~~~~~

Program Name: SPBIAS

~~~pose:

To add a constant to an image.

Description:

This routine simply adds a user specified constan t to each point in an image .

Subrout ine Calls:

DI2DAR , F.C, F.P, F.R, F.S, PARCOR , RAD2AS , SI2DA , SNGDEC and TTYOUT

Call ing Sequence:

Entry is from the Executive at:

SPBIAS

4—110

- -— — -5-- -~~~~ 5-- -- - —-5-- -, —~~~~~~ - -- -


~~~j i ~~~
5-
~~~ ’ ~~~~~~

5-

~~~~~~~

5- 
—---——----~~~~

Program Name : SQRT

Purpose:

To compute the square root of a number.

Description:

This routine computes the square root of a double or single precision integer.

The value is computed using Newton’s method with an initial guess of (2**lS)_l.

Subro utine Calls :

-

‘ RSTREG and SAVREG

Calling Sequence :

Double prec ision argument:
MOV #1$, R5
JSR PC , DPSQRT

1$: BR .+4

.WORD Address of the double precision integer (low order part first)

The square root is returned in the low order word of the argument.

Single precision argument:

MOV 111$, R5

JSR PC, SQRT

1$: BR

.WORD Address of single word integer

The square root is returned in place of the argument.

Registers are not modified .

4—111

_ _ _ _ _ _ _ _ _ _ _ _ _ _  _5-5- .
~~~

5-
~~~~~~~~~~~~~ _ . -



_ _ _ _  

- - -- -s-- --~
-
~ 

-
~~~ 

-
~~~~~~~~ 

_ _ _ _ _

~~~~~~~~Name: STRTSK

Purpose:

To request execution of a new Frame Task.

Descrip tion:

This routine requests the RSX—llM Executive to initiate the new Frame Task specified

by the argument list. The task name is constructed using the two ASCII characters

supp lied , pre f ixed by an F and f ollowed by a TTn where n represents the terminal

number of the initiating task. The six character name is converted to RAD5O and

requested. If the task cannot be initiated , a recoverable error is declared
—

and a return is executed . If the request is for the currently active task, a

jump is executed to the task res tar t point . When a new task is successfully

started , the log file is closed if it is active and the calling task is terminated.

Sub routines_Called :

AS2RAD , ERREC, RSTREG , SAVREG

Ca1 I in~ Sequen ce:

MOV #l$, P5

JSR PC , STRTSK

1$: BR .+6
.WO RD Address of Executive Common

.WORD Address of 2 ASCII characters to be used in building the
task name (may be a byte boundary). A leading 0 is required
for single d igit Frame numbers.

4—112

L_ _j1~~:
--

~~~~~~~~~~~

--—



---5 
,----

~~
—

~~~~~~
——-— -

r - — - - - ~— ———--— —— ~~~~~~~~~~~~ ~~~s_ ~’~~ ’~~~~~~~~~
— - --•-:- —

~
- —s- r - ’ ,’- --— - —- -- - — - - — --~~~--— ~~-‘~~~~5-

p~ p g r ~~~~~~~e: TAPE

Pu~~)se:

To perform various tape operations.

D r ~ppo

This routine reads and writes image files from and to magnetic tape. The images

are stori~I on tape as one row per record. The last record is followed by an

end—of—file mark. Record size is limited to the range 18 to 2048 bytes.

A skip file option and a rewind option are also avai lable.

Subroutine Calls:

ERFAT , ERREC , F.CL , F.C, F.P , F.R , SNGDEC and TTYOUT

CaUing Sequence :

Entry is from the Executive at:

TIN — Read tape file

TOUT — Write tape file

SKIPF — Skip tape file

REWF — Rewind tape

4—113

~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~
-5— - - - — —-S- - - - —_ -— - - 5 - - -

~~~~~~



- - -,
55-

~
- - ’- ~~~~~~~~~~~~~~~~~~~ ~ -5~~’s-5- -5-5 5 5 

- 
~~-
‘:—

~~~~
-
~:-: --

—-5— —

Program Name: TEKDSP

Purpose:

To display a binary image on the Tektronix display

Description:

This routine displays a binary image on the Tektronix where binary “one” points

are displayed as a dot (period) and binary “zero ” points are displayed as a

blank position. The user can specify that an array of dots be used for a point

and he can also speci f y the spacing between dots. Both have a “blow up” cffect .

Subroutine Calls:

ALPHA , BLDISP , CLEAR , ERREC , F.P , F.R , F.S , CRNODE , HOME , PLOT , RAD2AS ,

SI2DA , SNGDEC , TTYIN , and TTY OUT

Cal
~Jj~

Sequence:

En try is from the Executive at:

TEKDSP

4—114

______ --
_________ -

~~~~~~~~~~~~ 

________ S.—________

Pro&ram Name : TELEIO

~~~~ose:

U To provide graphics display I/O.

U Description :

This routine allows character strings to be printed on the graphics display and

to be accepted from the keyboard. The input routine first outputs a prompt and

then accepts input from the keyboard .

The rebuilding of the option frames is also controlled by this routine.

Subroutine Calls:

ERFAT , ERREC , LOGGER , RSTREG , and SAVREG , BLDISP

Call ing Sequence:

To output a character string with appended carriage return and line feed:

MOV 111$, R5

JSR PC , TTYOUT
1$: BR .+8.

.WORD Address of Executive Common

.WORD Address of output string

.WORD Address of length of output string
- r To input a character string

MOV #l$, R5
JSR PC , TTYIN

1$: BR .+8.
U

.WORD Address of Execu tive Common

. WORD Address of operator promp t

.WORD Address of length of prompt

The input string is returned in the TTYBF in the Executive Common, and the string

length is stored at offset IOSLN relative to the base of the Common.

If an “ALT MODE” key is struck , the equivalent of a total error is executed.

4—115

- -5- _ — — -~~~~~~~~~~ -

— -—S —
-5—

~~~~~~~~;__- - -- ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ - 

~~

- --- ----— -- - - - ----5—

(TELEIO cont)

To output a graphics character string:

MOV 111$, R5
-

_ 

JSR PC , TTYCRF

1$: BR .+8.

.WORD Address of Executive Common

- 
.WORD Address of output string

.WORD Address of length of string

To input the position of the graphics cursor:

MOV 111$, R5
JSR PC , TTCRIN

1$: BR

.WORD Address of Executive Common

The five byte cursor data string Is returned in TTYBF$ in the Executive Common.

Display rebuilding is enabled when the flag REBLD$ in Executive Common is set. 
U

4—116 

~~~~~~~~~~~ 
U

_ _ _

—

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~- - r ~
- -  ‘-_‘~~~~- -~~~

-—- - --— —— -- — — — -  - - - --— - --- - ~ - 
-- 5--

Pr2Mam_Name : 1~ARA

To report that the image display options are not implemented.

Descr iption:

This routine simply pr ints  “OPTION INOPERATIVE!!!” when called. Control is

then returned to the executive .

Subroutine Calls:

TTYOUT

Calling Sequence:

JSR PC ,DISP1(ENABLC , DSABLC, CLRGRF or DRWLNE)

4—117

— -5--- --5- _______________________
_ _ _ _ _ _ _ _ _



----55---- — - --5 -~~~~ - -~~~-~~——-— ——-- 5— —5 - -——— 

— — ~~~~~~
--- .-.-- -- -~~~~~~~~~

_s-
~~~

.-
~
-—---— s~~~~~~ -

_ _ - -

Program Name : TRNFTN

~~~~ose:

To apply an image transfer function .

Descr~~~~on:

This routine applies a specified transfer function to an image. This function

is in the form of a 256 byte look—up tilh !e. The input image grey value is

used as an index into this table to determine the output value.

Subroutine Calls:

F.P, RSTREG and SAVREG

Call ing Sequence:

MOV 1/1$, R5
JSR PC , TRNFTN

1$: BR .+8.

.WORD Address of input file request block

.WORD Address of output file request block

.WORD Address of transfer function in memory .

Registers are not modified.

4—118

- -_ - - - -—55 --- — --5 -

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—-5- - — - - - 5 -  - _  _ _ _

~~~~~~
- 5 -

~~~~~~~~

-- - _ _ _ _ _



- 
-- - 

— ---— —-5- -- - -

~~~jp~am N ame: TTYIO

Purpose:

To provide high level terminal I/O.

Description:

This routine provides terminal I/O functions that request parameters from the

user and accept his response. These parameters include file specifications and

numerical input (octal and decimal). Floating point numerical input is accepted .

Subroutine Calls:

ERFAT , ERRE C , RSTFPS , RSTREG , SAVFPS , SAVREG , TTYIN and TTYOUT

Calling Sequence:

Output a message and input a file specification (the file name is checked for

legality)

MOV #l$, R5
JSR PC , GETNAN

1$: BR +12. -

.WORD Address of Executive Common

.WORD Address of message

.WORD Address of length of message

.WORD Address of f ile request block

.WORD Addre .s of blank line indicator

The file name is input from the keyboard and parsed using the RSX—llM command

string interpreter. The parsed file name information is returned in the file

request block specified . If the input cannot be parsed , the input reques t is
repeated .

4—119

_ _ _ _

-— ~~~~~~~~~~~~~~~~~~~~~~~ _ — - -- - — . -
~~~~~~~~~~~~~

-.-s- _
~~ - 

(TTYIO cont)

Output a message and input a string of signed double word integer decimal

numbers.

MOV I/ls, R5
JSR PC , DBLDEC

1$: BR Offset to end of parameter list

.WORD Address of Executive Common

.WORD Address of prompt

.WORD Address of length of promp t

.WORD Address of location containing the maximum count of numbers
to input. This count must be sa t is f ied  exactly or an error
message is printed and a request is made to retype the line .

.WORD Address of array for numbers. This array must contain
sufficient space to store all the numbers indicated by the
second parameter. The numbers are entered on the keyboard
separated by commas and preceeded by a minus or plus sign .
The absence of a sign is interpreted as a plus sign. Zero
is returned for a given number if its corresponding field
is empty (comma only).

.WORD Address of location containing CTRL—Z indicator (optional
argument) When specified this argument indicates that the
line terminator is not a CTRL—Z, a zero will be returned
in the indicator, If it is a CTRL—Z, then a —l is returned .

Output a message and input a string of signed single word integer decimal numbers.

MOV /11$, 1(5

JSR PC , SNGDEC

1$: BR Off set to end of parameter list
(The parameter list and description is identical to DBLDEC
except that single word values are returned.)

Output a message and input a string of signed single byte decimal numbers.

tuiV ffl~~,R)

JSR PC. BYTDE C

1$: BR Offset to end of parameter list
(The parameter list and description is identical to DBLDT’C
except that single byte values are returned)

Output a message and input a string of signed double word integer octal numbers.

U MOV 111$, R5
JSR PC , DBLOCT

1$: BR Offset to end of parameter list
(The parameter list and description is identical to DULDEC.)

4—120

I
~~~~~—-5 - _ - - _ - —~~

55- -- - - - --- -- - -- --~~~
- - ----- -~~~---~~~~--~~- - “5-------- -- --5- -~~~~~~~ -— -~~ - — -

(TTYIO cont)

Output a message and input a string o signed single word integer octal numbers.

MOV #15, R5

JSR PC, SNGOCT

1$: BR Offset to end of parameter list
(The parameter list and description is identical to DBLDEC
except that single word values are returned.)

Output a message and input a string of signed single byte integer octal n
umbers.

MOV #l$, R5

JSR PC , BYTOCT

1$: BR Offset to end of parameter list
(The parameter list and description is identical to DBLDEC

except that single byte values are returned.)

Output a message and input a floating point string of numbers. These numbers

- - can be in “F” or “E” format.
MOV #15, R5

JSR PC , FLTENT

1$: BR Offset to end of parameter list
(The parameter list and description is identical to DBLDEC

except single precision floating point values are returned.)

General and FPP registers are not modified.

4—121

5--
—

~~~~ 
- - - - _ ---  _C -__

~
___ ._ _ .,~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- _ -5-.-

-5- - — -5-5 - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ - - J



Pr~~ ram Name: VECFNS

Puçp9se:

To prov ide sequential access to vectors in a vector set.

Desc rip t ion:

This routine provides services to open a set of vector files listed in a vector

set file , to access the files ~ind to close the files. The access is on a vector

by vector basis. The vectors are returned sequentially . Only one vector tile

is open at a time .

- :  Subroutine Calls:

ERFAT , F.CL, F.P, F.R , F.R$, RSTRE C and SAVREC

Cal1in~~~e~ ience:

Open vector set:

MOV //1$, R5 
-

JSR PC , OPNVEC

U 
1$: BR .+12.

.WORD Address of the address of an I/O buffer

.WORD Add ress of the length of the buffer

.WORD Address of a four word vector set file specification (device ,
unit , and f ilename )

.WORD Address of location containing open access (=read , l r e ad/wr ite)

.%4ORD Address of a three word buffer for return parameters .

Word 0 = Vector  dimensionali ty

Word 1 = Measurement format indicator (from file header)

Word 2 = Vector header format indicator (from file header)

- :  Retrieve next sequential vector:

MOV #15, R5
JSR PC , CETVEC

1$: BR .+4

.WORD Return address when no further vectors remain

U 
4—122 

- -  -5-- 1



—s- -—--—-T~
5- ---5------- 

~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- -- 5 --

~~~~~ 
----— --—- - ____

VECFNS (Continued)

The memory address of the vector is returned in RO.

Close vector set:

JSR PC , CLOVEC

4—123

-

~~Ir —- ——— 
~~~~. ~~~ —- 

_
- -—- —-,—-—--——-—-—--_-U.---

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-
~ Program Name : WTDSMO

~~~~ ose :

To perform a weighted smooth.

Description:

This routine performs thc smooth by opera ting on a user speci f ied neighborhood
of each point . Each neighbor is multiplied by a weight which is stored in a

- weight array . This array is equal in dimension to that of the neighborhood .
The sum of the products is then divided by the sum of the weights, the sum of the
weight absolute values or a user—~ntered number. The form of this divisor is
specified by the user.

Subroutine Calls:

BYTDEC , ERFAT , F.C, F.P , F.R, F.S , OPTION , RAD2AS , SI2DAR , SNCDEC , TTYIN ,

-~ and TTYOUT

Call ing Sequence:

Entry is from the Executive ~ t:

WTSMO — Weighted smooth

ABSWS — Absolute value weighted smooth

4—124

--- -— --- - - - - - - — ~~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ______________________



-~~~~~~~~ — . - —,“~~~~~~~-. --- -~~~~~~~~~ -- -- - -5— -5 — -- 5- - 55

— — — - - — - - - - 
- 

—

APPENDIX A

IPS SUPPORT FILES

The Image Processing System has support files associated with it. These files

aid in the building of the Executable system. The files provide three essential

funct ions:

1. Assemble all source code into object libraries.

2. Build all the frame tasks.

3. Start— up the Image Processing System.

The description of each of these support files follows.

(NOTE: In all examples, the set UIC is assumed to be that which contains all

of the 1PS files.)

A-i

-5 

--5 -5--- -5 ——-.-- -~~~~ ---~~~~~~~ -- - —~~~~~~~~~~-5 ~~~ -.—- ~~~~~~~~~ --~~~~~~~~~~~~~~~ --~~~~~~~~~~ - - - --5 - - -



Filename: DEVICE. CMI)

Func t ion : Task builds DEVICE common block.

Issuing Forma t: TKB @ SR:DEV ICE

Desc ript ion:

The following devices are used:

SR: — support command file

SY: — task image and symbol table of Device

A—2 H



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
U 

- . . — 

-~~—- --
-~~~ -~~-~~‘- -~~~~~~~~~~ --~~ - -5— ~~~— --

- - Filename : FRAMES.TSK

Function: To build the IPS compatible master option list file from the text

Edited master option list tile .

I 

I ssu ing~ Format : RUN TK:FRANES

Si
The file MSTROPTON .SRC must be present on the system device SY. This file may

be mod ified using the text editor. The Program “FRANES” will convert this file

to an IPS compatible file called MSTROPTON .LST.

The source code FRANES.MAC must be assembled and then the object file task built

- to produce FRANES .TSK.

A- 3

-- — U - -_ 
— 

~~~~~~~~~~~~~~~~~ ,-~~~~_ 
.&_-5___

- -- --5—-- - - —--- ~~ —- - - --
~~--- —. —~~~-- -—- -

—--5—— — — -5 - -- - - -. — -5---- ---5—~ -—-~~~~~
.--5-,.5—.--- -5—------ - 5 - - - - -— --- ----- -~~~ ----5 - - --------- ---

Filename : FRMXX .CMD

Function: Task build a single frame which is determined by the frame number

“XX ” in the filename . (Example: FRNO1.CMD)

Issuing_Format: TKB @ SR:FRNXX.CMD

Descr~pt ion: 4
I -

The following pseudo devices are ,ised

SR: — support command files

LY: — object library 1PS.OLB

TK: — frame tasL

MP: — frane memory allocation map
(Spooled to LP:)

A-4

- - --

~
-
~~
—‘
~~ iii I1II1I T~~~ ~~~~ 1 ~~~~~~~~~~~~~~ ~~T L.. ~~~~~~~~~ - - - ~~

-
~

-
—--5

Filename : FRMI(X.ODL

Function: Overlay descriptor file for a single frame .

Issuing Format: None. It is referenced by the FRNXX .CND file only.

Description:

- The following Pseudo device is used :

LY: — object library IPS.OLB

A-S

L. ~~~~~~~~~~~~~~~~~~~~~~~~~~~

:-:

~~~~~~~~~~~~~~~~~~~~~~~~ 1II I.~.



- -- - -  -5. - - -—- - - - --,-- -5— ,--- - --- -——----5- -----.---- - -- - - -

-

- Filename : IPSBLD.CMD

-4 Function: Task builds IPS start—up task.

Issu~~ g Format: TKB @ SR: IP SBLD

Description :

The following Pseudo devices are used:

SR: — support command files

LY: — object library LPS.OLB and IPSRES.OLB

OB: — object module IPS.OBJ

SY: — symbol table [1 ,54] RSX11M.STB

MP: — memory allocation map (spooled to LP:)

TK: — task IPS.TSK

The source code IPS.MAC is assembled into an object module as follows:

MAC OB :IPS , LI:IPS SY:[l,1IEXENC/ML , SR : [11,2] MACS . COMMON , IPS

A-6 

- -5  -~~~~~~~~~~~-~~~~~~~--- --— -- ---- -~~~ _ _



— TT~~~~~-----~~ 
-

Filename: IPS.CMD

Function: Creates library IPS.OLB

Issuing Format: @SR:IPS

Description:

The following Pseudo devices are used:

SR: — suppor t command f iles and source f iles
OB: — object f i les  (temporary storage only)
LI: — assembly listing (spooled to LP:)

LY: — object library IPS.OLB

A-7 

—-5-.—-- -- -~~~~-



-5— —‘—-5 
-
—-- - -.----~-3—~~~ 

‘--5 
—

Fi1enam~~: IPSRES .CND

Func t ion :  Creates resident library IPSRES .OLB

Issui~~~~Format :  @ SR: IPSRES

Description:

The following Pseudo devices are used:

SR: — support command files and source files

OB: — object files (temporary storage only)

LI: — assembly listing (spooled to LP:)

LY: — object library IPSRES.OLB

A- 8



- - - — -- -----55--.-

Filename : IPSTASK.CMD

Function: Task Builds frame s 1 to 13

gj~~ niat : @SR:IPSTASK

Description:

The f ollowing Pseudo dev ices are used:

SR: — support command f i les

LY: — object l ibrary IPS.OL B

TK: — all frame tasks

MP: — all frame memory allocation maps. (spooled to LP:)

A- 9

-- -— ~~~~~~~~--~~
m-.-- -  - - 

_
~~~__ i_ 

- ~~~ -—- - - -- -—- -—- - -~~~~~~~~~~ -- ~~

- - - -

Filename : IPSRES .TKB

Function : Task builds resident library IPSRES.OLB

Issuing Format: TKB @SR:IPSRES.TKB

Description:

The fol lowing devices are used:

SR: — support command file

SY: — task image and symbol table of IPSRES

A- 10

55-— — - - - -

--~~~~~~~~~~~~~~ - 5— - -~~ -- ~~~~~ —~~~~~~ --——- -—— —--- --- --- - *--~~ . - —~~~~~~~~~~ - — -—~~ - - - ---—U--——

-- _ _ - -- - - -—--~-~—-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-- - -

Lilename : MESAGE.TSK

Function: To build the IPS compatible Error file from Text edited error files

~~~~~~ 
Format: RUN TK:MESACE

Descrip tion:

The f i les ERRNESREC .SRC and ERRNESFAT.SRC must be present on the system device

SY:. These two files may be modified using the Text Editor . The program

“MESAGE” will merge these two files into one IPS compatible file called ERI~NESFIL.IPS.

The source code MESAGE.MAC must be assembled and then the object file task

built to produce MESACE.TSK.

A-li

-
-i

~~_:_ ~~~TT ±T 1~1~1.1_ ~~~~ I i - -T-:-:~1~~iJ~ ~~~~~~~~~~~~~~~~~ ~~~. i d

r - — -

~~~~~~~~~~~~~~~~~~~~~~ 

________________________________
-5 --5— ~t-55__-5_~~~~5 ~~~~~~~~~~~~~~~~~~~~~ —“~ - —.- -.~- —- —~~~~~ _ - _ -,--~~ .-. -_- - _________________________________- ~- - - - -5- - -  -

Filename: SETIPS.CMD

Funct ion:  Allows user to assign Pseudo devices to Physical devices.

~~suing }’orI~at: @SR:SETIPS

~~~~~ i tion:

The tollowing Pseudo device is used :

SR: — support command files

/

-
- --

- -

-

A-12

U -~~~~~~~~~ —

- - ‘~~~~T~~~ T ~~ —

‘
-5’

Filename: SETUP.TTO

Function: installs all uninstalled frames and assigns the task name FXXTTO.

IssuinA Format: @SR:SETUP.TTO

Description:

This command file assumes that the TEKTRONIX DISPLAY TERMINAL is physical device

TTO :

The followin~’ devices are used:

SR: — support command f i les

A-] 3

_________ ____________________________

— ——-5-— ——-5—- —~~~~~--”--- - - A

.-._———-_- _55——-------—.--. -
——---5

APPENDIX B
IPS START—UP PROCEDURE

Before the system may be run , the following must be established .

1. The UIC must be set to that which the system is stored under.

2. The start—up task “IPS ” must be installed.

3. Library and device partitions must be created and installed.

4. The Frame tasks must be resident on device TK:.

5. The Resident library , Device partition , Erro r f ile, and

master option file must be resident on the system device SY:.

Items 1 through 4 above are established at system boot time via the c.omn~and f ile
“STARTUP.CMD”. The specific commands are

SET/UIC = [11 ,2]

INS IPS/TAS K~ tPST O

SET /MAIN = IPSRES:1260:400:COM

INS IPSRES
SET IMAIN = DEVICE :7600 :200 :DEV
INS DEVICE
ASN DK1:=TK:

The above command list assumes all IPS software is on directory [11 ,2] and that

all frame tasks are on device DK1:. If that is not the case , the “SET” and “ASN”

commands should be changed appropriately. U

The follow in g files must be resident on the system device:

IPSRES.TSK

DEVICE. TSK

ERRNESF IL. IPS
MSTROPTON.LST

SETUP .TTO

This start—up sequence assumes that the Tektronix Terminal is device TTO:. If this

is not the case, the f i les “STARTUP .CMD” and “-SETUP .TTO” must be modified.

B—i

__5 —--5 — -~~ -


~~~~
‘ — “

~~~~ ~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -—-55-5 ~~~~~

- APPENDIX C
SOURCE_ASSEMBLY_ PROCEDURE

-55-—

There are three types of source modules . They are :

1. Frame modules

-~ 2. Overlay modules

3. Library modules

Frame modules form the base to each frame task. They are assembled as follows

(with the exception of Frame 12):

MAC FRMXX = MACS , COMMON , FRMXX

“MACS” is the Macro file and “COMMON” is a common data block.

U 
Frame 12 is assembled differentl y since the upper 4K words of the task are mapped

into the “DEVICE ” partition . Frame 12 is assembled as follows:

MAC FRMI 2 = MACS ,COM12 ,FRM12

The Frame object modules are stored in the library “IPS ” as follows :

-
- LBR IPS/IN = FRMXX/—EP

Overlay modules form the functional part of each frame (such as option overlays). 
U

- 
These mod ules are assembled as follows:

dAC OVERLAY = MACS , OVERLAY

They are inserted into the “IPS ” library as follows:

LBR IPS/IN=OVERLAY

C—i

I 
----- -5- - - -  - -—-5 -  _ - - _ - -5- -_*__- - --- 

- _ _ •-_ -5—.- _-



~~~~~~.- - - - ~~~r~~ 
-1’~

- - -

Library modules are commonly referenced subroutines. They are written w i t h Re—

entrant and position independent code. They are assembled as follows :

MAC LIB = MACS , COMSYM , L1B

They are inserted into th e resident lib i5t ry “TPSRES ” as follows :

LBR IPSRES/R P = L IB

C— 2

1

~~~- ~~~~—U - -
— __ __

~
___ __

~~~~~~

__

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—--5-

r - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -

~~~

--

~~~~

------ - - - .

APPEND i X D

E RROR M ES SAC ES

The system error file ERRMESFIL .IPS contains the error messages for all error

- ions that might occur during norma l system execution. This file contains

100 ~ixed length records of 40 bytes each. The first 50 records. are recoverable

errors. The last 50 records are fatal errors . The record number is directly

r e l a t e d to the error number to pr~Ivide for randor~ access of the error messages.

The relation ship ~s as follows :

For recoverable errors:

Record Number = Recoverable E r r o r Number + 1

For fatal errors :

Record Number = Fatal Error Number + 51

The file ERRNESFIIS.IPS is created by the IPS support program MESACE which obtains

the error messages from ERRMESREC.SRC and ERRNESFAT .SRC . These two files consist

of variable length records and hence is compatible with the Text Editor.

D-l

- w —~~~---~~ -~~~
-

-

~ RECOVERABLE ERR OR MESSAGES — E RRME SREC. SRC

EO.0 SPECJF. F I L E CANN OT BE CREATED
EO. 1 FILE HAS INCORRECT DATA TYPE
E0.2 INCORRECI FILE SPECIF . FORMAT
EO.3 INPUT STRING SYNTAX ERROR
EO.4 [LLL (AL F RAM E NUMBER
EO .5 ILLE GAl. OI ’TJON NUMBER
EO.6 INPUT S I R I N G TOO LONG
EO.7 PREV IOUS PREMATURE FILE CLOSE
i-:0.8 REF. PICTURE ELEMENT NONEX I STANT
E0.9 DUPLICATE F ILE NAM E
EO. 1O I NCORRECT PARAMETER VALUE
E O . l l NONEX I STANT P I C T . ELEM ENT REF.
E O. l2 I NCOR RI -CT NUMBER OF ENTRIES
EO. 13 INCORRECT FILE FORMAT
EO .14 ILLE GAL FILE NAM E
E O . l 5 S P E C I F . F I L E IS NONEX I STANT
E O . I G ILLEGAL DEVICE
E0 . 17 INCORRECT
EO. 18 TOO MANY PARAMETERS

-~~ EO. l 9 ILLEGAL CHARACTER
-

L O.2O PARENTHESES DO NOT BALANCE
EO.2 1 ILLEGAL OPERATOR
E O . 2 2 OPERAND M I S S I N G
E O .2 3 AR ITHMI -:T 1C OPERAND EXPECTED
EO.24 LOGICAL OPERAND EXPECTED
EO .25 OPERATOR M I SSING
EO.2 6 A R I T I I . STATEMENT INCOMPLETE
EO.27 LOGICAL ARGUMENT INCOMPLETE
EO .28 ILLEGAL OR INCOMP . STATEMENT
E O . 2 9 INSUFFICIENT NU MBER OF POINTS
EO .30 FLOATING POIN T OVER/UNDER FLOW
EO.3l ILLE GAL SYMBOL
EO .32 ILLEGAL LIMITS
EO .33 ILLEGA L MEASUREMENT
EO .34 D I D NOT USE ALL CLASS STh.
EO.35 LOG F I L E ACCESS ERROR

D— 2

-- _ _- J

FATAL ERROR MESSAGES — ERRMESFAT .SRC

El.O HARDWARE LRROR ON TRANSFER
El.l CORE SPACE EXHAUSTED
El .2 FILE D iMENSION ERROR
El.3 DUPLICATE FILE NAME
E l . 4 ILLEGAL DEVICE
El.5 DEVICE FULL
E1.6 TEMPORARY FILE ERROR
E l . 7 SYSTEM TABLE OVERFLOW
E 1.8 BAD UID OR DIRECTORY FUl l.
E 1.9 DISPLAY COORDINATES ILLEGAL
EL 10 NONEXISTANT RECORD REFERENC E
E l .l l CORE SPACE EXHAUSTED
E 1. 12 PROTECTION CODE VIOLATION
El.13 FILE OPEN
EL.14 LENGTH OR NO. OF REC)RDS ZERO
El .l5 IMAGE DIMENSION INSUFFICIENT
E1 .I6 ZERO ENTRIES
E1.17 ILLEGAL FILE NAME
E1.l8 A REQUIRED FILE iS NONEXIS.
El.19 INCORRECT FILE FORMAT
El.20 FILE HAS INCORRECT DATA TYPE
El.21 RE~~~D SEQUENCE ERROR
El . 22 LOG FILE CREATE ERROR
E 1.23 LOG FILE OPEN ERROR
E l . 2 4 FAIL U RE ON “OPEN ” OPERATION
El.25 INCORRECT NO. DEP. VARIABLES
El.26 LOG ARC . OR TO 0
El.27 NEIGHBOR OPERATIONS ILLEGAL
El.28 UNEX PF CTE I) END OF FILE
E 1.29 ILLEGA L LOGIC FILE OPERATION
El.30 CLASS SYMBOLS INCONSISTEN t
El.3l NODE DOES NOT EXIST

-: El . 32 NODE NOT LOWEST NODE
El.33 SYMBOLS ALREADY EXIST AT NODE
E1.34 ILLEGAL REGION
El .35 MULTIPI .E SYMBOLS AT A LOW NODE
El.36 NO CLASS SYMBOLS IN VECTOR FILE
EI.37 LP SPOOLER FILE ACCESS ERROR
E1 .38 MEASUREMENT iS NONEXISTM~T

D—3

------5- —--- 5 — - - -

F A0 A073 653 AMI&RSI SYSTEMS INC BUFFALO NY F/G 9~2

- — -

IMAGE PROCESSING SYSTEM SOFTWARE. VOL.UME II. PROGRAMMING MANIJAL—ETCIU)
JUN 79 E 6 EBERL. P T GLIN SKI F3060 2—78—C—0077 I

(JNCLASSIFIFD £Ml.ERST—OO77—VOt—2 •sn r—yR—vc ~k)—vnI ~~ I
~~~~

7~ eSa

ENJD
DAIF

I O—’~1 9
DX

I
I

--- 
- -



I f~ 
Ia.. ~~ 1012.5

l.V L
_ _ _ _  ‘~ L 110)2.2

~ ~ao ~~~~
0)12.0LI ~

I~I I.8

I .25 1.4 liii 0 .o
II _____ = IHII~~~

MICROCOPY RESOLUTION TEST C14T
• NATI O~~L BUREAU OF STA~DARD~-1963~~.

—•

• • ~~~~~~



APPENDIX E
DATA FILE DESCRIPTIONS

Several different file formats are used within the system to store various data

types. Each type is identified by a different filename extension. The descrip—

tions of each type are found on the following pages.

Certain items in the file headers are common to all types. These items are

H found in the first and last 64 words of the header. The first 64 words are as

follows :

Word Descrip tion

0 Reserved for future use

1 Filename extension (RADSO)

2 Total number of records in file

3 Record length in bytes
4 File close indicator

O File was normally closed

1 File was prematurely closed

5—63 Reserved for future use

The last 64 words of the header are used to store the descriptive text. This

text can contain embedded carriage returns and line feeds and is terminated

with a null.

- - 

E— 1 

—-

I



____ T 
~~~~~~~~~~~~~~~~~ 

-

~~~~~~~
--:

~~~~~~
-
~~
-

~
_ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _

File Type: Function File

Extension: .FCT

~p~çial Header Parameters:

Word Description

64 Set to negative one to show non—array file

65 Function indicator: set to 1 for one—
dimensional function. Set to 2 for two—
dimensional function.

Data Format:

This file type is used to store the compiled code associated with a filter

function. The entire buffer returned by the compiler routine “COMPIL” is stored
as one record in this file. Consult “COMPIL” documentation for detailed in-
formation. The file format follows (only one record in file):

Description

0 Number of words in this record
1 Offset to compiled code relative to word 0
2 Offset to symbol table relative to word 0
3 Offset to symbol values relative to word 0
4 Filter function in the original

ASCII string format

Symbol table

Compiled Code

Symbol values

E—2

File Type: Filter File

Extension: .FLT

Special Header Parameters:

Word Description

64 Array format indicator. Set to 3
to show two—word floating point.

Data Format:

This file type is used to store filter arrays . The elements of the array are

in two—word floating point format. One row of elements is stored in one re~ .~rd.

The number of records is equal to the number of rows in the filter array.

E— 3

I

~~~~~~~~~~~~~~~~~ _



Fi1e~~~p!: Hadamard Transform File

Extension : .HAD

Special Header Parame t~~~s:

Word Description

64 Ar ray Element Format Indicator
1 Word Elements
2 = Double Word Elements

Data Format

This file type is used to store Hadamard transform arrays. The elements of the

array are dS indicated above. One row of elements is stored in one record .

The number of records is equal to the number of rows in the Hadamard array.

E—4

~



Fi1ejy~~ : Image File

Extension: .1MG

Sp~çial Header Paraw~ ters:

Word Descripti~rn

64 Set to zero to indicate integer
byte array elements.

Data Format:

This file type is used to store images. One row of picture elements is stored

in one record. ‘[‘he number of records is equal to the number of rows in the

image.

E— 5

_ _  _ _ _  _ _  ~~~~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~—‘~

-
~~~ — .- . .- . - 

-—- —-— -

File ’Lyp~ : Logic Tree

Extension: .LOG

Special Header Parameters: Not~e

Data Format :

This file type is used to store logic trees and their associated logic. Each

record in the file is called a page where record 1 is page 0. The records

are always 512 bytes in length. The formats of the various page types are

detailed on the following pages.

E—6

~

A

.

Direc~~~~~~~~~~ _-~~~~~~~O_ (Rec . l)

Word Description

0 N umber of active entr ies in d i rec tory

• 1 Number of curr~•nt ly active pages in file

Low byte : Logic t i ~~~ ’ node number i f entry
is asso.- iated with logic.
This is set to zero for non—
logic entries

Entry High byte: Entry identifier:

1 One—Space Logir (to be
added)

2 = Two—Space Logic (to be
added)

3 Fisher Pairwisè Logic
4 = Boolean Logic
5 = Reserved for future

logic type .
6 Logic Tree
7 Class symbols

3 Page number of block described by this
entry

Number of pages in this block

Entries continue in the same format as
entry 1.

Page 1 (Rec. 2) Reserved for Future Use

E— 7

- -_ _
~~~ 

-

~~~~~~

-

~~~~
-‘_-----

~~~~~~~~ ~
•_-.‘-

~~~~~~~~~~
_ _ _

— s t.., ~ sAaa. .,,



-~--.~~- .--~.-—~- “~
‘.‘

~~~
-. —.— ~~ ~~~~~~ • . _ _ •.,__.

1

Lo1ic Tree B l o c k - P 2 (Rec . 3)

(Addi t ional Logic Tree Pages arc created as required.)

O Current page number

• 1 Number of active entries

2—9 Reserved for future use

10—509 Fifty, ten byte node entries *

510—511 Not used

* Node Ent Format

Description

O Node number. Zero if entry is inactive

1 Node level in tree

2—5 Reserved for future use

6 Node number of immediate senior nu.le

7 Number of nodes on next level below this
node. Zero indicates that the current node
is a terminal node.

8 Node number of first node below

9 Node number of the next node on the current
level which has the same immediate senior
node. Zero indicates that the current
node is the last node on this level.

Note: Node numb . rs begin at 1 and are assigned consecutively as
requested by the logic creation routines.

Nc~c~e ~evo1s also begin at 1 with the senior node and increase
consecut i vely at each lower level.

E—8

__ s_, ~s,.a —

• ~~~~~~~~~ -~~-— _ _— .-—~~~- _•---, -~ -_ -•_,~.--- _- •~~—~~~~•~~~-— - - — •— ~~~~ -~ -~~~~ -~~ -~~-~ -—— -- __--_. -

Class Symbol Block — Page 3 (Rec. 4)

(Additional Class Symbol pages are created as required)

Description

O Number of entries on this page

1—511 Class Symbol Entries.* Each entry
is of variable length. There is
no space between entries.

* Class T~~ °~
Entry Forma i

• 0 Node number in logic tree with which the
symbols are associated.

• 1 Number of symbols in this entry

2 1st class symbol

3 2nd class symbol

Las t class symbol

E—9

&

L — — a-. , ~~~~~~~~~~~
. - _

.~~ -

~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ —~~~~~~~~~~ ———— - — 
_ _  .

~~~~ 
... •

-
.. ~~~~~~~~~~~~_

r -

~~~~~ 
- - - - - - • —

~~~~~~

‘

~~~~~~~~

-

~

- - ---- -

~ 

- . - —

~~~~---- ..— —,—-- --—

~

Fisher Pairwise Lo1ic

A set of Fisher logic corresponding to one node in the logic tree may occupy

several consecut ive logic f i l e pages. The logic consists of a header

block which is stored in one or more pages and the logic components which

are also stored in one or more pages. in both cases when extending beyond a

page , continuation takes place at the beginning of the next page. The logic

components begin at the top of the first page after the header.

Header Format

Word Description

0,1 Reserved for futu re use
2 Number of bytes in this header (always

even)
3 Offset from top of header to the general

• information region
4 Offset from top of header to the class

symbol region
5 Offset from top ol header to the criterion

descr i , ion region
6 Offset from top of header to the measure-

ment description region
IMinlmum vote count

8 IN umber of the highest dimension with
General ~which the logic was created (not necessarily
Information I the dimensionality of the vectors)

9,10 Region 1,Reserved for fuiure use
11 ‘

~4umber of classes
12 Low Byte: Node number to which the class

is associated

•
. Class

Symbol
Region High Byte:Class symbol

A one word entry appears for each class
plus one extra entry for the reject
category.

E— 10

~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ • • - ,•-• - • - - -~~~~~~~~~~ .~~~~~~~~~~~~~~~~ ,~~~~~~--_-. .•—•~.-,-~~~~~~~~~~ - ~~~~~~~~~~ -., ---~~~~~ -•• • - • • — -



~ -~~~~ r ~~~~~~- --~~~~-- - •‘-- - ~~~ , -.- -~~~~~~
- ~- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_-,•,- -—•-_ - -__ — —.— _ --—-,-.- —

(Fisher Pairwise Logic cont.)

Measurement f~ ’~mber of measurements used .
Description I Measurement numbers used

Region (one byte per entry)

Low Byte:  Logic type. This e nt r y  allows
logic other  than Fisher to be
used for ~i given class pair .
This is currently set to 3 to
indicate Fisher logic

High Byte:Number of thresholds used. The
• Criterion current  version only uses the

Descr iption distance between the class means.
Region Therefore , this is set to 1.

Page number of logic relative to the first
page of the header
Number of pages in logic
Relative byte of the s tar t  of the logic
within the page

(The above four word entry format is
repeated for each class pair in the set
of classes on which t i e  logic was created .

E—l 1

• 
_

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~
. • • ••

~~~~~~~~
.— 

~~~~~~~~~~~~~~~~~~ 

~~~~~~~ T IT1~~



Fisher C ri ter i o n  Format

Description

o FV
1

- FV
2 

Fisher vector in two—word floating
• . point format. NDIM is the largest

- . dimension with which the logic was
created . This is not necessauily the

FV N D IM d imens ionality of the vectors.

DV
DV~ This is the discriminant vector for

the above Fisher vector. This is not
currently used , but is stored for
future use.

DV NDIM

H
62
6
3 

Two—word floating .~int threshold
6
4 

values.*
0
5 )

(The above is repeated for each class
pair.)

* Five thresholds are computed and stored for each class pair. Only
threshold three is currently used by logic evaluation . The other
thresholds are stored for possible future software additions. The
thresholds are computed as follows:

Let • be the estimated mean of class i projected onto the Fisher
directio~i d , i.e..

T- -
= d * 1 = 1,2

1

where is the mean of class i.

Then the thresholds are :

e1 ~~~~ 
—~~~/2

02 ‘
~~ 2 +A/3

E—12

__________ 

I

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _______


‘
~~~~‘~~

‘:-“
~~~~~~~ ~~~

““
~ ~~~~~~~~~~~~~~~~~~~ ~~

•
~~~ 

(Fish er Criterion Format conc.)

03 ~~~~ 
+~~ /2

94 P1 
— 

~~~

95
= ‘
~ l

+ ~ /2

• where

t

E— 13

—- ~~~~~~~~~~~~~~~~~~~~~~
-_ . • • - ...-

~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ - _ - _ .~~~~~~-—



—~~ .‘ —-

Boo1eanj~~~ic Forma t

Word Des cri,ption

0 ,1 Reserved for  f u t u r e  use
2 Number of bytes in logic
3 Low Byte: Node number of false node

High Byte: Node number of true node
4 Address of compiled code relative to word 0
5 Address of symbol table relative to word 0
6 Address of symbol values relative to word 0
7 Input ASCII character str ing terminated with a null

Symbol Table

Compiled Code

Symbol Values

Sy~bol Table Format

Definition

0 Number of ay:nbols
2 Status word for symbol 1
3,4 RAD5O pack of symbol 1
5 Status word for  symbol 2
6,7 RAD5O pack of symbol 2

Status  word for last symbol
RAD5O pack of last symbol

I

E— 14

—— —- —~aa -



r -_ • - . mr’~— r - , -~ , _ _ - - - ’ -  ~~~~~~~~ ‘~~~ ~~~~~~~~~~~~~~~~~~~~~~ ~, ~~~~~~~~~~~~~ 
— — - ----- — - _

Status Word Format

Low Byte :  This is .ilways set to 1. Other
values returned by the compiler
are not accepted by the logic
creation routine. (See COMPIL
for  other values.)

High Byte: Set to the measurement number
• (binary) which the symbol repre-

sents.

Calling the Compiled Code

The compiled code is called as follows:

L JSR PC,(adr. of code)

Prior to this call, the values of all measurements for the current vector
- • 

must be provided. These values are placed in the buffer area identified by

word 6 of the Boolean logic. The first four words of this area are reserved for

special subroutine addresses. The first three should be filled with the entry
• point addresses of the EXP, LN and LOG routines respectively. The fourth is a

S~~t• . ial routine for image neighborhood operations. This feature ot the compiler

will not occur in the logic. Therefore, this word is not used.

Following the four special addresses appear the measurement values in the order

of appearance within the symbol table. All values are in two—word floating

point. The logical result is returned in Rl as 1 for true or a 0 for false.

E— 15

—a-—- ~~-

-. -
- - -~~__ ._— - - -  — --~~~~~~~~~~—-_ -..— - • - — •  

---- - -- ~~~~~~~ - • - - -  __._~~~~.- -- - - - ~~~~~~~~~~~~~ --_-~~~~~ --~~~~~~~~ - .•- •



- --~~- • -~~~~--_~~—- - - • -~~~-~~ _ _ _ _ _ _ _ _ _ _ _ _ _

File Type: Mean—Covariance File

Extension: .MC

Special Reader Parameters: None

Data Format:

This file type is used to store the mean vectors and covariance matrices

from which Fisher logic is created. One record exists in the file for each class.

The record format follows:

Word Description

O Class symbol in lover byte . Upper byte unused.

1,2 Two—word floating point count of the number
of vectors used in computing the mean and
covariance

3 MV

MV1
• MV2 Two—word floating point mean

vector. NDIM is the number of
dimensions in the vector set.

MV

~mni
Upper Triangle of covariance matrix
This is stored by row beginning with the
diagonal element.

E— 1 6

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
~~~~~~~~~~

— _ — ——_—_
~~~~~

- _ - .
~~~~~~~~~~~

_ - - .-

j

r -

~~~~ 
• 

~~~~~~~~~~“ ‘ “  -— -- —
~~~~ —— • ~~~~~~~~~~~~

File Type: Region File

Extension: .REG

Special Header Parameter: None

• Data Format:

This file type is used to store region boundary description. The coordinate

pairs of the vertices are stored one each in a four byte record. Each record

contains the row coordinate value in the first two bytes and the column co—

ordinate value in the last two bytes. The last record contains the same co-

ordinate pair as the first record. This forces a closed boundary.

B—l i

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •—. • -~~~~~~~~~ -~~~~~~ -~~~~ .•—• - -•



~~~~~
•.—_-‘- •— --

~~
‘--•-——---—-.-•- ~~~~~~~~~~~~

File Type: Spectral Set File

Extension: .SPC

Special Header Parameters:

Word Description

64 Always 0
65 Number of image file names
66 Number of region file names

Date Format:

This file type is used to store the description of a set of spectral images. Also
included are names of region files from which vectors can be created. The record
length is 14 bytes where each record contains an image file specification or one
region file specification. Image file specification8 appear first, followed by
the region file specifications. The formats are as follows:

Spectral Set File Record Format

Image File Names:

Description

0 Device name (R.AD5O)
1 Unit No.

2—3 File Name (RAD5O)
4 Extension (RAD5O)
5 User ID
6 Not Used
7 Not Used

Region File Names:

Word Description

0 Device Name (R.AD5O)
1 Unit No.

2—3 File Name (RAD5O)
4 Extension (RAD5O)
5 User ID

• 6 Class Symbol
7 Data Reduction Factor

E-l8

_ _ _

~~~ p_._• • S.~~~~~- 
-.--- • -.-•—•- - • - • -•



~ 
~~~~~~~ ~~~ ——~——~~ —,. ~~~~~~~~~~~~ - •~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-u —.--- - ———-— •— . - - .
~~

—

File Type: Vector Set File

Extension : .VCS

Special Header Parameters: None

Data Format:

This file type is used to store the description of a set of vector files. The

record length is 14 bytes where each record contains one vector file specification

as follows:

Word Description

0 Device Name (RADSO)
1 Unit No.

2—3 File Name (RAD5O)
4 Extension (RADSO)
5 User ID
6 Not Used
7 Not Used

E— 19

F. - - -

~~~~~~

- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

_ _ - -

. _—_~~~~~~~~~ -- -~~~ •~~~~~~~~ -~~~~-- --~~~~~~~~~ -—-

-

~~

—---

~~~

-

~~~ 

- -
~~~~~~~~~~ 

- ---- -

~~ ~~~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~~
-

~~
--- -

• File T1pe: Vector File

• Extension: .VEC

i al Header Parameters

Wore D~~~~~~~~ion

64 Meas. Format m d .
0 integer Byte
1 Integer Word
2 (Not used)
3 Flt . Pt. (Single precision)
4 (Not used)

65 Vector Header Format indicator
Bit 0: 0 = Perm . and Temp . Sym.

Space not Allocated
• 1 = Perm and Temp . Sym .

Space Allocated
Bit 1: 0 = Row and Column ~ot present

1 = Row and Column present
66 Total number of meas. per vector
67 Number of vectors per record
68—69 Total number of vectors
70 Row dimension of original image
71 Column dimension of original image
72 Vector length in bytes (always even)

Number of spectral measurements

Data Format:

This file type is used to store measurement vectors. Each vector file corresponds
to one image file from which the vectors were extracted . Depending upon the total
number of vec tors, one or more vectors may be stored in a record. This is done
to keep the record count to single precision. When more than one vector is stored
per record , the records are packed with no intervening space. The format of the
vector is as follows:

Word Description

0 M
Measuremen ts (see header word
64 for format)

NLow Byte: Node number
High Byte: Not used
Low Byte: Temporary class symbol
High Byte: Permanent clas~ symbol
Row number in image at which vector was found
Column number in image at which vector was found

E—20

t

~_ -

_______________________ - -
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

-
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .~ .

-,
~~-~~~- - —  .— —r---~~~ -- .~~

APPENDIX F

EXECUTIVE OPTION REQUIREMENTS

The following executive services are required by the Image Processing System.

-: These options must be included at system generation time.

1. User oriented terminal driver

(specifically IO.RPR, TF.BIN, TF.RAL, TF.RNE, IO.WAL) .

2. Alter priority directive.

3. Get task parameters directive.

4. Get partition parameters directive.

• 5. Memory management directives.

• 6. Checkpointing.

7. Dynamic memory allocation/compaction.

8. 8K common partition reserved for library.

9. Remaining memory in system controlled partition.

10. ANSI magtape support.

F—l 

~~~~~~~~~~~~~~~~~


• —------.-.-——.~.

• ; APPENDIX C

TASK BUILD PROCEDURE

There are four types of t asks in the system. They are :

1. Resident Library Tusk

2. Frame Tasks

3. Start—up Task

4. Device Partition Task

The resident library task and symbol table must exist before the frame tasks

may be built. The resident library partition must exist , then the following

command wil l bui ld the task:

TKB @ SR:IPSRES.TKB

All 13 frame tasks may be built with the following command :

@SR:IPST A SK

The s t a r t — u p task is called IFS and is assembled as follows:

MAC OB:IPS, LI:IPS=[l ,flEXEMC/ML,SR:(ll,2IMACS,COMMON,IPS

It is task bui l t as follows :

TKB @SR:IPSBLD

The device task maps the upper 4K words of fr;une 12 into the I/~ page. The

device task is built as follows :

TKB @SR:DEV1CE

C- 1

• I
_ _ _ _ _ _ _ _ _

~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _  _ _  _ __ _  __ -- . •-~~~~~ -~~~-•“-



F -

~~~~

- - - - - - - . - • - - --

~~

- --- - - — - -- --- - - •

-
~~~~~~ ~~~~ -V -.

- ~~~~~~~~~~~~~~~~~~~~~~ • - —- 
r

MISSION
of

Rome Air Development Center
~~~ P1~C.n6 and • exeau.teA 4e6eakch, deve2opmen.t, te~~ and
6eLec.ted acqu2~.Lt~on p4og ’tam6 tn 6uppon.t 06 Command , Contto~ConmIwtij~a.t~on4 and 1nteZUgen~e (C

3TJ a~tLvi...t~ts , Tedui4caL
and eng~c.nee~~ng 4tLppo/ c.t ~a~tk~n aiteaa o~ teth~t~ a.t ~ompe~tena
to p~tou4ded -to ESV Pkog itaa 0~~~ee4 (P04) and o~the ’t ESV
etement~. The pn.LncA.paL te~h~2ca2 nt~ -ton akeaa a~e
commwu.co~~ono, eLec2tomagne.t4~c gw~dance and conttof L, owt-
ut.W~n~t 06 gn.ou.nd and ae/toopace obj w~*A, hvte2~~gence da ta
coUectLon and hand Ung, ~iA6on.ma.tLon oy o tem .techno!ogy,
.tonoáp he/t2c. p ’top agatJon, 40114 4*4.~E. oc2enceo, isic/tov*ue
phy4~tc4 and eLet,.t/torgic iteLLab412ty, mq2nto2nabif i..tg and
c~~~ Ub~Ut&.

- ~- —~~ - •-- ~~~~~~~~~~~ ---~~~ ~~~

