AD=AD73 653

UNCLASSIFIED

AMHERST SYSTEMS INC BUFFALO NY F/6 9/2

IMAGE PROCESSING SYSTEM SOFTWARE. VOLUME II. PROGRAMMING MANUAL=--ETC(U)

JUN 79 E 6 EBERLs P T GLINSKI F30602-78-C-0077
AMHERST=0077=VOL=2 RANC=TR=TQ=52=V0| =2

22

22 s we

1 g2 ;
ualq-a e
il PY:
w g -
‘t.l‘-" "é
e
== |
1.6

. \
MICROCOPY RESOLUTION TEST CHAR
NATIONAL BUREAU OF STANDARDS-1963-

e

tr :

T
. ..«W

HYVMLIUS WHLSAS UNISSHO0Ud HOVKWI

Rk

II ‘oA ¢

01073653

g 4

RADC-TR-79-52, Vol Il (of two)
Final Technical Report .
June 1979

IMAGE PROCESSING SYSTEM SOFTWARE
Programming Manual

Ambherst Systems, Inc.

Dr. Edward G. Eberl
Mr. Philip T. Glinski

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED |

-3

DDC

l]:L‘DEéU Utk

g ROME AIR DEVELOPMENT CENTER
&= Air Force Systems Command
Griffiss Air Force Base, New York 13441

79 09 10 002

S R

This report has been reviewed by the RADC Information Office (OI)
and is releasable to the National Technical Information Service (NTIS).
At NTIS it will be releasable to the general public, including foreign

nations.

BADC-ik—79-52, Vol II (of two) has been reviewed and is approved for
publication.

ANTHONY R. FANELLI
Project Engineer

APPRbVED: /2&4,;4&9\4"Exzy’9

HOWARD DAVIS
Technical Director
Intelligence & Reconnaissance Division

/»‘/@f# v

JOHN P. HUSS
Acting Chief, Plans Office

APPROVED:

FOR THE COMMANDER:

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organiza-
tion, please notify RADC (IRRE) Griffiss AFB NY 13441. This will assist

us in maintaining a current mailing list.

Do not return this copy. Retain or destroy.

e A s

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) ¥
5 READ INSTRUCTIONS
Q4 REPORT DOCUMENTATION PAGE B T
F / L. x SER 'Z GOVY ACCESSION NO.| 3. _RECIFIEN‘I"S CATALOG NUMBER
j !)/’» RADC TR—79—52,, Vol !,{iof two) /i Lj y
& A._nt.z.mm; e ,- o RED

\ IMAGE PROCESSING §XSTEM SOFTWARE f/ l,f — lz

Programming Manual Rl a
e \././)Amherst w E?ZZ—‘ZQA'}‘Z

-

7 AUTHOR(s) B CONTRACT OR GRANT NUMBER(s)
) LG A TR

Dr.| Edward G. /Eberl | 147 /| F30602-78-c-0077 &=
Mr.EPhilip T./Glinski \ R S ~
shp;:;;,:u;;;;{iélzg}?iﬁmE AND ADDRESS 10. :ggi'QanOERLKEhJSI'dYYNI’UmOB.JEE'CJT TASK

’ . o
132 Cayuga Road 62702F ///u A
Buffalo NY 14225 /{/}{ 62441086 X, { /
11. CONTROLLING OF FICE NAME AND ADDRESS 7 412 REROATD4TE
Rome Air Development Center (IRRE) /// [Junemm979 |
Griffiss AFB NY 13441 / \Zz.zéwmaen OF PAGES T
14. MONITORING AGENCY NAME & ADDRESS(if dlllqrenl from Conuol”n‘ Olhce) 15. SECURITY CLASS. (of this report)
Same / / 7 /, ; UNCLASSIFIED

/ 2 5a. ECE“CIE.DASEIEFICAT'IETDT)WNGRA“D‘WJG""]
N/A .

6. DISTRIBUTION STATEMENT /of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fron: Report)

Same

DDC

18. SUFPLEMENTARY NOTES

RADC Project Engineer: Anthony R. Fanelli (IRRE)

SEP 11 1979

I
11—
!

l::L:JLSU‘U‘Lb

19. KEY WORDS /Continue on reverse side :f necessery and identify by biock number)

Image Processing
Interactive Processing
Computer Programming

C

20 AB:ITRACT (Continue on reverse side I necessary and identily by black number)

This document is the final report describing the effort by Amherst Systems,
Inc. to convert a portion of the RADC image processing sof tware to RSX-11M

to allow execution on DEC PDP 11/45 computer located at WPAFB OH, AFAL. A
section of this report is written in the form of a user's manual for person-
nel engaged in the operation of converted software. A companion document

is the programmer's manual which describes the new material incorporated into
the system.

oD 2N, 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE ‘When Data Entered;

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

UNCLASSTFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

[
.

-
-t
S WN -

N

« e ® . A @ ¢ o
e o o o o o o o
oNOUVMEBWN -

ONOUVMEWN -

e o o o o
.

.
.

.
.
N =

e ® o o
« e o e o

VoL WN =

NRNNNODNONNNNNNNNNODNNNNNNNDNNDNNNNNNNDNNNDNNNDNDNDNDNNNDNDDND
NN LVMULULEWLWWLWWLWWWWWWINDNDNDNNNDNNDND

[

- ==

S
{

SOFTWARE SYSTEM DESIGN”’Q

-—

Overall System Organization

The System Frames .
File System . . .
Error Processing.

PROGRAMMER'S MANUAL)’7)

,/"éﬁbroutine Cailing Conventions. .
Graphics Display Interactions . . .

Request
Request
Request
Request
Request

Output a Character String . .
Input a Character String. .
Specialized Graphic Displays.

File System Services. .
Request Block Format.
Creating Files. . . .
Retrieving Files. . .
Accessing File Data .

Check for File Existence.

Delete Functions. . .
Closing Files . .
Extend a File . . . 5
Core Resident Buffers and Parametete.
Error Reporting .
Fatal Error Reporting .

o

Recoverable Error Reporting .

Utility Routines. .
Converting Double Word Binary to Decimal ASCII.

. o

File Specification. . .
a String of Signed Double
a String of Signed Word Integer Numbers
a String of Signed Byte Integer Numbers
a String of Floating Point Numbers.

TABLE OF CONTENTS:

—

Hord Integer Numbers.

® o o o o e o

e o o o

Converting Single Word Binary to Decimal ASCII.
Converting Floating Point to ASCII.
Convert Radix 50 Packed Characters to ASCII
Save and Restore General Registers.
Save and Restore Floating Point Registers .
Square Root of a Double Word Integer. .
Square Root of a Single Word Integer.

Partitioning Core .
Macros.

Misc.

o

Partitioning Core Buffers .

.

.

e o o

S WH

NN

1
OO ULLULWL

|
[

NNII\)NNNNNNN
(=]

|
-
N

o s s SRS

> et o a0

TABLE OF CONTENTS (CONT.)

\
1
SECTION
2.7.2 Move a Specified Number of Bytes. . . .
2.7.3 Definition of System Parameters
2.7.4 { Definition of Floating Point Registers.
2.7.5 / Inserting File Header Text.
2.7.6 { Pushing and Popping Stack Items .
2.8 Adding New Optioms. , . . .
3 FORTRAN 4-PLUS INTERFACE, g NS
4 ~ PROGRAM DESCRIPTIONSg . . « « « « .« .
Appendix
A IPS SUPPORT FILES . . . « « « « « « .
B IPS START-UP PROCEDURE.
Cc SOURCE ASSEMBLY PROCEDURE . . .o
D ERROR MESSAGES. .« ¢« ¢ &« « ¢ o o« o o o
E DATA FILE DESCRIPTIONS. + « .
F EXECUTIVE OPTION REQUIREMENTS
G TASK BUILD PROCEDURE. . . « « ¢ « o &
ATOESS
N7I5
11
o g
8y A
| DISTRISCCA/MYARABLITY COEY
Dis . —Ths,';d
]
i1

s s s s e s

ek iy et e

D-1
E-1

7-1

-

G-1

bttt i Aad S e

SECTION 1

SOFTWARE SYSTEM DESIGN

1.1 OVERALL SYSTEM ORGANIZATION

The image processing software is written to be executed on a PDP 11 computer as

a program under the RSX-11M operating system. The image processing system is
divided into 13 frames, each frame consisting of several related function options.
Each frame is a unique task with its own control section. The control section
allows selection of options within the frame and selection of a different frame.
Options within a frame are overlayed using the RSX-11M autoload feature. If
another frame is selected, the current frame execution is discontinued and the
selected frame is loaded into memory and executed. Linked to each frame is a
resident library containing commonly used IPS subroutines. The residént library

is only loaded ounce and is simultaneously memory resident with the frame task.

The executable IPS software requires 17 files for system operation. Thev are 13
frame tasks, the Error Message file, the Master Option List file, the resident
library task, and the device task. A complete set of command files axist which

aid in the rebuilding of tasks from the source programs.

The IPS Software calls upon the services of RSX-11M to accomplish several functions.
Frame options are overlayed using the autoload feature of the task buil.c¢r. Data
files on disk and tape peripherals are accessed through the file control services
(FCS) of RSX-11M. Several other functions, such as time of day access, and
communication with peripheral devices (as the Tektronix Terminal), are accomplished
via the services of RSX-11M.

L 4

The system software can reside on any disk in the hardware configuration that is
recognizable to RSX-11M. Data space must exist beyond that required for 1PS
Software to allow for the storage of IPS Data files.

The IPS Data files are created within the RSX-11M file structure. All software
uses the RSX-11M file specification (device, unit, file name, extension, and
version) when referencing a file. However, due to the desirability of maintaining
compatability between the original IPS file format under DOS and the new RSX-11M

version, all filenames should not exceed 6 characters and file version numbers

1-1

should not be specifed. The difference between the old DOS IPS and the new RSX-

11M IPS is then transparent to the user.
1.2 THE SYSTEM FRAMES

There are 13 frames in the IPS Software. Each frame is a unique, executable
task. A frame contains several functionally related options. Each frame has
the capability of transferring control to any other frame installed in the

system.

When a frame task begins execution, control is transferred to "FSTRT". '"FSTRT"
initializes the frame. The terminal number and task name are stored in common.
The Error file and Master Option file are checked for their existence. If
either is missing, a fatal error results. If the Log file exists, the Log is
assumed to be on and it is appended to. Otherwise, the Log is considered to be
off.

Control then transfers to "RSTRT" which is the frame restart routine. The stack
pointer is reset and the display is rebuilt with the option list. This routine
is be be entered whenever the frame is to be restarted. This occurs upon a

fatal error.

"CTLOOP" is the Control Loop of the frame. 'CTLOOP" inputs a user command and
then takes appropriate action. There are four unique inputs which are recognized.
If "EX" is entered, the frame exits to RSX-11M. If a decimal number is entered,
this number identifies a selected option. A call to the selected option entry
point is executed. When the option is finished, control is returned to 'CTLOOP".
If a blank line is enteced. the master option list is displayed and a new frame
number entered. Control is then transferred to "STRTSK". If an "F" is entered

followed by a number, it is considered a new frame number.

"“STRTSK" is the Start Task Routine. This Routine accepts the new frame number and
starts execution of the indicated frame task. The current frame task is exited
and the Log File is closed only if it exists.

1.3 FILE SYSTEM

The image processing file system is designed with the RSX-11M file structure. It is

1-2

i 2 b o e

essentially an interface between the option routines which access the files and

the RSX-11M file functions which maintain the files and their associated directories.
Special considerations have been incorporated into this interface to achieve

rapid data access and to provide high-level file functions tailored to image

processing needs.

All files are created as contiguous files. The contiguous file format allows
several logical blocks of data to be transferred between disk and memory in

one access. This has the effect of greatly reducing data-transfer time.

The internal structure of the data files is organized into fixed length records.
The record length, as well as the number of records, is dependent upon the type
of data stored within. Each file begins with a 256-word header, in which are
stored various parameters describing the data. Detailed descriptions”of these

parameters can be found in Appendix E.

The data records immediately follow the header beginning in the first available
logical device block after the header. Records immediately follow one another
in consecutive order with no intervening spaces. This, of course, means that
for certain record sizes, one or more records may cross device block boundaries

at one or more points in the file.

A file is created or retrieved by calling the appropriate file system routine
with an accompanying parameter list called a '"request block'. The format of
this block is as follows:

WORD ; DESCRIPTION
0. RSX-11M File Descriptor Block
96 Filename Prompt Address
97 Filename Prompt Length Address
98 Record Length
99 Number of Records in File
100 Linked Flag
101 Contiguous Records Requested
102 Record Number Requested
103 I/0 Status Block
1-3

104 Buffer Size (Bytes)

105 Buffer Address

106 Blocks in Header

107 First Record in Buffer
108 Last Record in Buffer
109 Default Filemame Block

The request block describes the file to be created or retrieved and the buffer
space to be used for data I/0. This buffer space must be dedicated to the file
until it is closed, at which time it is available for other use.

If the first word of the request block contains an address of a character string,
the string is printed at the keyboard display as a query for a device and a file
name. The user entry is then placed in the request block. If the chdracter string
address is not present, the file specification appearing in the request block

is used. 1In either case, the file is created or retrieved as specified. The
number of records and record length must be provided by the calling program for
create operations and are returned by the filing system for retrieve operations.
The options request data records by placing the number of the desired record into
word 102 of the request block. The file system routines then read this record into
memory for the option. Due to the typically sequential access of image files
during processing, the file system is designed to anticipate the next records

that will be requested by the options. Therefore, instead of reading just one
record, the entire buffer specified in the request block is filled with records
that immediately follow the requested record. The result is that the next request
does not require a disk access since the record has already been obtained in a

previous access.

A siunilar procedure is followed when writing data onto a file. For this operation,
the specified buffer is filled prior to transfer to its disk file. However, se-
quential file output is not only assumed in this case, it is expected. Due to

the complexities involved in providing random access when records can cross logical
block boundaries, this capability has not been included. For options that require
such access, a read/write mode is available. In this mode the buffer contents

are transferred to the file and then the records beginning with the requested

record are read into memory. This eliminates the problem of preserving the over-

lapping record data.

y S st i, M N b

U kN e i RS A

Certain options require that several consecutive records be in memory simultancously.
This is accomplished by specifying the number of records in word 101 of the request
block. The file system then insures that the requested block of records are
available in memory. Since the buffer space required to load a block ¢f records

is computed when the file is opened, this information must be provided at that

time. An error condition occurs if sufficient space is not available.
1.4 ERROR PROCESSING

A centralized error reporting scheme is incorporated into the system. An error
condition detected by any routine in the system is reported by a call to the Error
Reporting Routine with a parameter which specifies the message to be listed.

Two types of errors are included. The first type is an error condition in which
remedial action by the user allows the interrupted process to continue. Such
errors are called Recoverable Errors. The second type of error condition results
in a system state from which a recovery cannot be made. Such an error is terme.d
a Fatal Error. There are two entry points to the error routine; "ERREC" for
Recoverable Errors and "ERFAT" for tatal errors. If an error is recoverable,

a normal subroutine return is executed. 1If the error is fatal, control is trans-
ferred to the Frame Restart Routine. This terminates the current option and

requests a new option number.

1-5

FRAME ENTRY POINT

l

FSTRT
InitggiTgation

|

ool

N
RSTRT
—> Frame
Restart

1

\
CTLOOP

Frame
Control Loop

—_—

=
| OUTPUT MASTER CALL
gg;flig FRE:zEEUMBER { OPTION LIST REQUESTED
gAND ENTER FRAMELJ, OPTION ROUTINE

B copueng

o
o CTLOOP
{ STRTSK

Start Requested
i Frame Task

FLOW DIAGRAM OF A SINGLE FRAME TASK

SECTION 2

PROGRAMMER'S MANUAL

This section is intended as a programming guide for developing new software for
the image processing system. A variety of services are offered by the executive,
the file system and several utility programs. A large number of these services
can be conveniently referenced via a set of system macros .

Although in some cases the programmer may find that directly inserting the code
is just as convenient as using a macro, this should be avoided. By consistent
use of the macros, modifications or updates can be made to an entire system by
simply changing a few macros. Without the use of macros, a time-consuming search
must be made of all routines in the system for occurrences of the code sequences

being changed.

In the remainder of this section, several programming conventions and callable sub-
routines are discussed. Sufficient information is provided in each case to
properly use these subroutines. Further details may be found in the program
documentation in Section 4. For this purpose, the name of the Program in which

the subroutine is contained is given here.

2.1 SUBROUTINE CALLING CONVENTIONS

All subroutine calls follow the general format given below:

MOV #1$, RS
JSR PC, (subroutine name)
1$: BR (oftset to first instruction following the parameter list)

Parameter list

This format has two advantages. First, by including the branch instruction, the
offset (lower byte) of the branch gives the number of parameters. For routines
that accept variable length lists, the number of parameters passed can readily

be determined.

2-1

e

o LA v

Gl

The second advantage is that RSX-11M FORTRAN uses this calling format. Therefore,
if the parameters are referenced in the list by their addresses, the routine is
FORTRAN callable.

A general system macro has been provided to generate the proper subroutine calls.

The format of this macro is as follows:
call name, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10

which expands to

MOV R5,-(SP)

MoV #X$$A, R5

JSR PC, name

MoV (SP)+,R5

.PSECT .ARGS
X$$A: .WORD #0f Parameters

.WORD Pl

.WORD P2

.WORD P3

-WORD P4

.WORD P5

.WORD P6

.WORD P7

.WORD P8

.WORD P9

.WORD P10

.PSECT

The number of parameters is optional within the range of 0 to 10. If no parameters

are specified, only the JSR EC, name statement is generated.

The CALL macro should be used in all cases where a specialized macro is not
available. In the subroutine descriptions to follow, the proper macro to be used

in each case is discussed.

2-2

...............

2.2 GRAPHICS DISPLAY INTERACTION

The graphics display is the prime means of communication with the system. This
communication is accomplished via frame displays and user/system dialogue.

Since this is a storage display, it must be erased and rebuilt from time to time

to avoid overwriting of information. This rebuild action is under the control

of the program "TELEIO" which together with "PLOT" and "TTYIO" contains the display
I/0 subroutines. Therefore, it is imperative that the user reference these

subroutines for all display operations.

Since this is an interactive system, the programmer must frequently make requests
of the user and accept his responses. These services are provided by the system

at two levels. The higher-level routines are those which output a message and
input the user's response. These consist of routines to request file gpecifica-
tions and numeric input. The lower level routines simply output or input character
strings. These should not be used if a higher-level routine will satisfy the

requirement.

Character strings consist of ASCII characters. Embedded carriage returns and line
feeds are permitted. For normal user communications the line length should

not exceed 40 characters. If a longer message is desirable, it should be sec-
tioned into two or more lines with embedded carriage returns and line feeds.

It should be noted that one complete message should not be output in sections
by making several calls to the output routines. The initial lines of text

may be lost if the display is rebuilt prior to completing the output. If the
complete message is formatted with carriage returns and line feeds, then the
output routines can insure sufficient display space for the entire message.
(Only the routine "TTYOUT" detects imbedded line feeds. Input routines which
issue a prompt, such as "TTYIN" do not. Therefore, inputs with multiple line
prompts should be preceded by a call to "TTYOUT" which will output the first N-1
lines of the prompt. This will insure Proper Display Rebuild).

The available communication subroutines and their associated calling seguences

are discussed below. The "CALL" macro is used in all cases to form the subroutine

calling sequence.

s it R e

2.2.1 Request File Specification

CALL
where
EXBUF
CHR
LEN
FRB
IND

GETNAM, EXBUF, CHR, LEN, FRB, IND (Ref. program TTYIO)

EXECUTIVE COMMON

= ADDRESS OF PROMPT

= ADDRESS OF LENGTH OF PROMPT

= ADDRESS OF FILE REQUEST BLOCK
= ADDRESS OF BLANK LINE INDICATOR

The file name is input from the keyboard and parsed, The parsed file name informa-

tion is returned in the file request block specified. If the input cannot be parsed,

the input request is repeated. The device defaults to that assigned to pseudo device

"IP". The UIC defaults to that which the user is presently running under. The

version number defaults to one.

2.2.2 Request

a String of Signed Double Word Integer Numbers

To input decimal numbers:

CALL

To input octal
CALL

where

LEN =
CNT =

BUF =

DBLDEC, EXBUF, CHR, LEN, CNT, BUF, IND (IND is optional)
(Ref. Program TTYIO)

numbers:

DBLOCT, EXBUF, CHR, LEN, CNT, BUF, IND (IND is optional)
(Ref. Program TTYIO)

Address of the output character string
Address of the length of the character string

Address of a location containing the count of numbers to input.
This count must be satisfied exactly or an error message is
printed and a request is made to retype the line.

Address of buffer in which to return the numbers in the order
entered. This buffer must contain sufficient space to store
all the numbers indicated by the second parameter. Double
word values are returned low order first followed by high
order.

(Optional parameter) Address of a location in which to return

an indicator. A negative one is returned if a CTRL/Z if found
to be the first character entered by the user. Otherwise, a
zero is returned.

g

This routine is designed to allow one or more numbers to be entered on one or
more lines by the user. For multiple line input where the total number of

lines is determined by the user, the call to DBLDEC should be contained within a
loop. This call should use the optional fourth parameter "IND". The loop is
exited when IND = -1, which occurs when the user indicates the end of input by
responding with a CTRL/Z.

2.2.3 Request a String of Signed Word Integer Numbers

To input decimal numbers:

CALL SNGDEC, EXBUF, CHR, LEN, CNT, BUF, IND {IND is optional)
(Ref. Program TTYIO)

The parameters and their descriptions are identical to that given for DBLDEC except

that word values are returned in the buffer.

2.2.4 Request a String of Signed Byte Integer Numbers

To input decimal numbers:

CALL BYTDEC, EXBUF, CHR, LEN, CNT, BUF, IND (IND is optional)
(Ref. Program TTYIP)

To input octal numbers:

CALL BYTOCT, EXBUF, CHR, LEN, CNT, BUF, IND (IND is optional)
(Ref. Program TTYIO)

The parameters and their descriptions are identical to that given for DBLDEC

except that byte values are returned in the buffer.

2.2.5 Request a String of Floating Point Numbers

CALL FLTENT, EXBUF, CHR, LEN, CNT, BUF, IND (IND is optional)

The parameters and their descriptions are identical to DBLDEC except two-word
floating point numbers are returned. Numbers are accepted in either of the
following formats:

19677.66

1.967866E04

where both entries represent the same number

2-5

2.2.6 Output a Character String

CALL TTYOUT, EXBUF, CHR, LEN
(Ref. Program TELEIO)

where

CHR = Address of the output character string. TTYOUT will append a
final carriage return and line feed.

LEN = Address of the length of the character string

2.2.7 Input a Character String

CALL TTYIN, EXBUF, CHR, LEN
(Ref. Program TELEIO)
where
EXBUF = Executive Common

CHR = Address of the output character string
LEN = Address of the string length

If an "ALT MODE" key is eniered, input terminates and the equivalent of a
fatal error is executed.

The input string is returned in the 80 byte buffer TTYBF$, located in "EXBUF".
The input string length is returned in IOSLN$, located in "EXBUF".

2.2.8 Specialized Graphic Displays

Certain functions require that the graphics terminal be used for special display
purposes. To gain control of the display, the following instruction should be

executed:
CLR REBLDS$

This disables the display rebuild software. The display can then be manipulated
by using the graphic plot subroutines below in addition to any of the other

terminal I/0 subroutines. After the specialized display mode is no longer required,

the following instruction should be executed to enable the display rebuild

software:
MOV #1, REBLD$

The current frame is then redisplayed by the following call:

MOV {#EXBUF, R]

CALL BLDISP
(Ref. Program BLDISP)

2-6

Another special display feature is available to the programmer. This allows

specialized displays to be presented and user/system dialogue to be maintained.
To accomplish this, the address of a programmer-supplied routine that builds
the specialized display must be placed in the global location "DSPDR$".

1. CLR REBLD$

2. Call the routine that presents the special graphics display.
space must be reserved along the left display margin for
dialogue. This routine must leave the alpha cursor positioned
at the top of the left margin.

3. Mov #1, REBLDS$

The dialogue can now be maintained with the system. When the dialogue reaches the
bottom of the left margin, the control software will call the routine whose

address appears at "DSPDRS'" to rebuild the display. Dialogue then continues.

Upon exiting the special display mode, the "BLDISP" routine should be called and
the address "BLDISP" should be replaced in "DSPDR$" to allow normal frame rebuild.

The following is a collection of routines to allow graphic plots to be constructed
on the display terminal. The display manual should be consulted for complete
descriptions of the various plotting operations. The calling sequences are as

follows (all subroutines are in program PLOT):

To put the display in alpha mode:
CALL ALPHA, EXBUF

To put the display in graphics mode:
CALL GRMODE, EXBUF

To clear the display screen:
CALL ClL.EAR, EXBUF

The display is left in alpha mode with the cursor at the top of the left margin.

To put the cursor in the home position (top left margin):
CALL HOMI., EXBUF

Following this call the display is in graphics mode:

To draw a light or dark vector:
CALL PLOT, EXBUF, X, Y
where
EXBUF = Executive Common
X = The address of a location containing the X display coordinate

Y = The address of a location containing the Y display coordinate

A dark vector is drawn if the call is immediately preceeded by a call to "GRMODE".
Successive calls to "PLOT" draw light vectors between the specified consecutive

points.

To output a graphics string:
CALL TTYGRF, EXBUF, CHR, LEN
where
EXBUF = Executive Common
CHR = Address of the output character string
LEN = Address of length of string

TTYGRF outputs all character codes in a write-through mode. No control character

processing is performed by the driver.

2.3 FILE SYSTEM SERVICES

Extensive services are provided to the programmer for manipulating files. These
services include create and retrieve functions. Accompanying the create and
retrieve operations is the ability to read and/or write a file. A specialized
parameter list called a "request block" hLas been developed for the create and

retrieve functions.

2.3.1 Request Block rormat

The request block is generated via the macro "F.REQ" and takes on two general
forms - one for the create function and one for the retrieve function. For the
create function the macro is invoked as follows:

F.REQ CRE, LBL, CHR, CLN, EXT, RECS, LNG, ACES, FTYP, RTYP, NAME

2-8

e

SRR

T T e ey

The macro call for generating the request block for the retrieve function is:
F.REQ RET, LBL, CHR, CLN, EXT, ACES, NAME

This expands in the same manner as for the create call with the exception that the
parameters RECS, LNG, FTYP, and RTYP, which are not specified, are automatically
set to zero. The definition of each of the parameters is as follows: (values

of symbols as RD, WR, or CONTIG are defined by the Equate Macro)

LBL = One to three characters to be used as the first part
of the parameter labels.

CHR = Address of the character string to be output to request the file
specification. A zero value implies that there is no character
string and that the file specification is completely provided
in the request block. Therefore, no user interaction will result.

CLN = Address of the length of the above character string.

EXT = Fil¢ extension which indicates the file type with respedét to the
data contained therein. If this argument is left blank or if
the program clears the location associated with this argument,
then the filing system uses the extension specified by the user.
If the extension is specified via the macro argument or the pro-
gram, then the user-entered extension is ignored.

RECS = The total number of records to be in the file.

LNG = The length of each record in bytes (odd values are
acceptable)

ACES = File access type:

RD = Read

WR = Write

MO = Modify (read ang write)

FTYP = File type with respect to structure:
CONTIG= Contiguous

LINKED= Linked (currently not implemented)
RTYP = Record type:

FLEN = Fixed length
VLEN = Variable length (currently not implemented)
NAME = File name. If the name is to be entered by the user at execution

time or if the name is to be inserted by the program, this para-
meter should be left blank. If the name is known at programming
time, it should be inserted. If temporary files are to be
created, the .TMP extension should be used. This file will be
deleted when the file is closed.

2-9

All request block parameters should be referenced by their respective labels.
Future system changes or additions may result in a different order or number of
parameters. Therefore, if in a given instance one parameter must be referenced
$ relative to another, then the values defined by the macro "EQUATE" should be

‘ used. These values are simply indexes into the request block relative to the
first parameter in the block. They are referenced via the last three characters
of the label of their respective parameters. For example, if the buffer length
parameter must be referenced with respect to the buffer address parameter, then
ki the programmer would use.

LBLBUF+SIZ-BUF

] as the relative address

2.3.2 (Creating Files

Two file system subroutines are available for creating files. The only difference
between them is that one creates the file and then opens it for access while the
other simply creates the file. The request block parameters must be initialized
prior to either call as discussed above. The one parameter which is of no

concern at this point is the record number requested (LBLREC). This is used

by other file functions. Special note should be taken of the file system feature
which requests the file name from the user. This option is enabled or disabled

as explained for the character string address (LBLCHR).

To create a file and open it for access:

F.CRE ADR, ALTRET
(Ref. Program is FILEl)

where
ADR = Address of the applicable request block.

ALTRET = Address of an alternate return to be taken if the user responds
with a carriage return to the request for a file name. This
parameter is optional and need not be specified. When it is not
specified a carriage return alone is reported as a recoverable
error.

To create a file (file is not opened):

F.CRE$ ADR, ALTRET
(Ref. Program is FILEl)

2-10

- e ——— T I T i e s e

r, ——— S—— - e i o s ” . i o ”
N ————- e e .

i where the parameters are as defined for the F.CRE macro.

Both of the above macros generate the appropriate subroutine call to the file
system. After each call RO contains the memory address of the file header.

If any data is to be inserted into the header, it should be dome at this point
(the file access must be set for write or read/write). The first file access
(see 2.3.4 below)causes the header to be written into the disk file and to be
removed from memory. For the F.CRE$ call, the header is provided for reference

} only (the header is written into the file prior to return).

It should be noted that the buffer specified in the request block following an
F.CRE call is initialized for data I/0 and should not be modified. This buffer
is not used for the F.CRE$ call. Instead, the header is loaded into a buffer

; in the executive common. This buffer is overwritten by the next F.CRE$, F.RETS,
i OR F.CHK call.

2.3.3 Retrieving Files

Files are retrieved in a manner similar to that explained for the create option
above. Again two options are available, differing only by the "open" operation.
The request block is prepared as instructed above. In this case, the number

of records, the record length and the file and record types are return parameters.
The instructions for the other parameters are the same. The option is also

available to have the file system request the file name from the user.

To retrieve a file and open it for access:

F.RET ADR, ALTRET
(Ref. Program is FILEl)

where the parameters are identical to those in the F.CRE call above.

To retrieve a file (file is not opened):

F.RET$ ADR,ALTRET
(Ref. Program is FILEl)

where the parameters are identical to those in the F.CRE call above.

Operations with reference to the file header and the specified buffer are as
explained for the create operations. In this case, the header is provided only
for reference following the F.RET$ call. The buffer is used by F.RET but not by
F.RETS.

2-11

.

r_, ,i : T . T

2.3.4 Accessing File Data

Following a create or a retrieve function that also opens a file, the file may
be accessed via the file system. Prior to each cail for a record or group of
records, the record requested parameter "LBLREC' should be set to the desired
record. The first record in a file is record 1. The calling sequence to request
a record or group of records is:

F.PTR ADR, END
(Ref. Program is FILE2)

where
ADR = Address of applicable request block.

END = Address of a location to which control is to be returned if
one or more of the records requested is non-existent. If
omitted, the filing system will report a fatal error (E1.10)
when a non-existent record is encountered.

Following each call to F.PTR, memory addresses of the first byte of each record
requested are found on the stack. For example, if the programmer requests one
record (parameter LBLCON), the address of the first byte of that record is found
on top of the stack. If three records are requested, then three addresses are
returned. In this case the address of the first of the three records is found
on top followed, in order, by the other two. The number of consecutive records
can be set ao any number but must not exceed the value specified at the time that

the file was opened.

2.3.5 Check for File Existence

Certain operations simply require that a file's existence be verified or that its
parameters be retrieved. The following routine performs these functiuns. The
request block is initialized as for €:le retrieval. The call is:

F.CHK ADR, NOFILE
(Ref. Program is FILE1l)

where
ADR = Address of the applicable request block.
NOFILE = Address of an alternate return if the file does not exist.

If the file exists, its number of records and record length are returned in the

request block. Also, RO contains the memory address of the file header. As

2-12

with F.CRE$ and F.RET$, the executive buffer is used instead of the buffer

specified in the request block. Therefore, the desired header information

should be extracted prior to any similar operation.

2.3.6 Delete Functions

The delete function used is the standard RSX-11M delete macro. The following will

delete a file:
DELETS$ #FRB
where:

FRB = Address of file request block

2.3.7 Closing Files

All files that have been opened must be closed following processing. Two calls
are provided for this function. First, a single file may be closed via the
following call:

F.CLOS ADR
(Ref. Program FILE3)

where

ADR = Address of the applicable request block.

A second available call will close all files that are currently open:

F.SHUT
(Ref. Program FILE3)

If control is returned to the executive due to a fatal error occurring during
program execution, any open files will be automatically closed. Any such files
that were open for write or modify access will be marked in the fifth word of
the header as having been prematurely closed. Subsequent accesses to these
files will cause the filing system to warn the user of the file state and allow

him to select an alternate file.

2.3.8 Extend a File

A function is provided to allow the length of a contiguous file to be extended.
This function should only be used when necessary because it must create a new
file, copy the old file to the new and delete the old file. This can be a time-

consuming process if the file is large. When required, it is called as follows:

2-13

F.EXT ADR, EXTADR

where
ADR = Address of the request block for the file

EXTADR = Address of a location containing the size of the
extention in 256 word blocks.

Note: The file must be in a closed state.
2.4 CORE RESIDENT BUFFERS AND PARAMETERS

Certain buffers and parameters are made available within the executive common,
thus avoiding the need to define them in each overlay. The main working buffer
for fiie I/0 begins at the address stored at location "FRCORS$". The size of
this buffer in bytes is stored at location 'FRLENS."

INNAM: .ASCIZ /ENTER INPUT IMAGE NAME=/
and

OUTNAM: .ASCIZ /ENTER OUTPUT IMAGE NAME=/

Since the frequency of access of other file types is much lower, character

strings have not been provided.
2.5 ERROR REPORTING

A centralized error reporting scheme has been adopted in the system. Errors are
repcrted by the programmer via a subroutine call accompanied by the desired
error class and error number. Two classes of errors are provided - fatal and
recoverable. Fatal errors are those which make it impossible for the program
to continue. When such an error call is made, the error reporting routine
prints the specified message and passes control to the executive. Therefore,

the programmer should not provide any return code.

Recoverable errors are those from which a recovery can be made, such as th«
user retyping an input parameter. In this case, control is returned to the

calling program after the error is printed.

Within each error class exists a list of error messages. Each message is referenced
by its corresponding number. The programmer simply passes the number of the error

to the error reporting routines. The list of errors can be found in Appendix D.

2-14

2.5.1 Fatal Error Reporting

NUM
(Ref. Program EXEC)

ER.FAT

where

NUM = The error number within the fatal error class.

2.5.2 Recoverable Error Reporting

| ER.REC NUM
! (Ref. Program EXEC)

where

NUM = The error number within the recoverable error class.
X 2.6 UTILLITY ROUTINES

A variety of utility routincs are available to support the programmer. The function

of and access to each routine is discussed below:

2.6.1 Converting Double Word Binary to Decimal ASCII

A routine is available to convert double word binary numbers to decimal ASCII

é character strings. Two modes of access are available. One mode passes all
parameters in general registers and the other mode passes them in a parameter
list following the subroutine call. The ASCII string is returned within twelve
bytes, right justified, with leading zeroes blank. The minus sign, if present,
is right justified with the number. After conversion the number of non-blank
characters returned is available at the location "DIGCNT". The register mode
call is as follows:

CALL DI2DAR
(Ref. Program CB2DA)

; The followi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>