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A I S T R A C T

This Interim report s~~~ariasa the research performed under Contract
No. 730602—78-C—0057 by the Polytechnic Institute of New York for Rome Air
Development Center from January 1, 1978 to January 31, 1979.

—

Recursive function theory was applied to the problem of program com-
plexity. This study was co*pleted and a technical report was issued . The
present report contains the abstract of the technical reports.

The inquiry into the number of tests necessary to verify a computer
program was undertaken. One phase of this study was completed , and a tech-
nical report was issued. The present report contains the abstract of the
technical report.

A study was undertaken of software test models and of the implementation
of associated test drivers. The present report describes this work as well
as the test drivers obtained so far . A new approach to statistical aspects
of program test ing has been taken. The assump tions and the resulting model
are described in the present report.

A new measure of complexity based upon information theory is introduced .
This measure assumes that a language feature used infrequently is more
likely to be used incorrectly than a language feature used frequently.
The measure has the advantage of being sensitive to the different levels
of nestings in either IF’S, DO’S , or procedures .

A number of different schemes are suggested for the calculation of the
measure. A method for automatic calculation of the measure at an installa-
tion is also discussed.

The relation between program complexity and the program’s information
content was also investigated . The results obtained so far are described
in this report.

Two models for the management of software were investigated. The first
one models the productivity (measured In instructions per months) , as well
as the man—months required. The second model investigates different co mi—
cation sch~~~s that can be evolved when a problem is partitio ned into
several subproblems.

The concluding section of the report describes the planned work in the
next period and lists professional activities of the personnel during the
present reporting period.
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1.0 INTRODUCTION

This interim report si~~ arizes the resear ch performed under Contract No.
F30602—78—C—0057 by the Polytechnic Institute of New York for Rome Air Devel—
opmwt Center from January 1, 1978 to January 31, 1979. The major topics
investigated and au~~ aries of the progress to date are described in Chapter
2.0; the ref erences are listed in Chapter 3. In Chapter 4 the participating
personnel are listed , as well as their activiti es during the reporting
period . In Chapter 5 an outl ine is given of the planned direction of the
research In the imeediate future. Chapter 6 rep orts on the activities of
the staf f during 1978.

2.0 S~!1l~ARY OF PROGRESS

This chapter sn~~~rizes the work performed. Upon the completion of each
task a report on the task’s results is issued. Several technical reports
which document either a ccmplet.d task or a phase in a continuing effort are
In various stages of pr paration.

2.1 ~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ ITS APPLICATION TO PROGRAM
C0I~ LEXIT! — by A. E. La s1

This study was completed and a technical report submitted in May of 1978
(revised version in October , 1978). The Abstract is presented below.

Abstract

It is desirable to have a measure of complexity for a computer program
because more complex programs can be expected to cost more to produce, to
require more t ime to test and debug, and to have more residual bugs even
after testing and debugging. Presumably a program need be complex only to
the extent that the pro blem it is solving is complex so that a way of cal-
culating problem complexity might be expected to lead to a method of
predicting progr~~~4’g and debugging costs. The purpose of this report is to
examine the extent to which certain well-defined measures of complexity in
recursive function theory might fulfill these expectation. The conclusion
reached is that the complexity defined by recursive function theory (or an
equivalent computability theory) is not too useful as a measure of progr-
ing difficulty.

Theories of computability. In the 1930’s and 1940’s mathematicians and
logicians began to realize that certain problems vhich were very precisely
stated were not just difficult but impossibi. to solve . In order to make
such a strong assertion , the exact computational procedures which were to
be allowed had to be explicitly d.scribsd. Of course, if someone than
discovered a more powerful procedure an “unsolvable” problem might veil
bacose solvable. However, although about half a dozen different models of
computation were developed, they all lead to exactly the same class of
solvable problems. This class is th. general recurlive functions in the
terminology of one of the computation models due to Godel , Ki esne, and others.
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Degrees of computability Given that certain problems can be solved and
others cannot, or that certain functions can be computed effectively while
others cannot, can one then refine this go/no—go dichotomy to a scale of
difficulties of computation for solvable problems? The answer turns out to
be yes, especially if recursive function theory is taken as the basic model.
In particular, the primitive recursive functions represent a more easily
computed subset of the general recursive functions, and the Grzegorzyk
classes partition the primitive recursive functions according to a certain
definition of “difficulty of computation”.

Relation to programaing difficulties The following question now arises:
Granted that a connection has been made between problem complexity and
difficulty of computation, can this connection be extended to the difficulty
of programsing the computation which is to solve the problem? A case is
made in this report for a “no” answer to this question.

The report reviews some theories of computational complexity, together
with some estimates of their importance to software reliability. An attempt
has been made to emphasize the practical rather than the theoretical .
Examples are shown of very complex programs (in the sense of looping, time
required , etc.) which should lead to few programsing errors because the
prøgr~~~(ng language allows a direct copying of the algorithm from a
standard text book .

2.2 ON THE NUMBER OF TESTS NECWSARY TO VERIFY A COMPUTER PROGRAM — by
G.S. Popkin and M.L. Shooman

This study was completed and a report issued in June of 1978. The
abstract is presented below.

Abstract

This report discusses various aspects of verifying that a computer pro-
gram correctly carries out some specified functions. If the program was de-
signed with the aid of a flowchart , the flowchart can be used to determine
the number of tests necessary to verify the program. If the program was
prepared without a flowchart , then either a flowchart or a directed graph
must be prepared from the program to determine the number of tests.

One way to verify a computer program is to run it with sample input data
and examine the results of correctness , i.e., test for agreement between the
program output and the results that would be produced by correct execution
of the specification on the same data. This requires prior determination via
hand computation or other independent means of the correct outputs for the
sample inputs. It is useful for us to first classify the differen t types of
tests which we will be discussing. A level zero test is defined as a test
consisting of one or more test cases which together cause every program
statement to be executed at least once.

Before defining a level one test , it is necessary to define a program
segment, which we shall do in term s of flowchart terminology . In general our
flowcharts will consist of one start and one stop terminal (ovals), pro-
cessing elements (rectangles or parallelograms), and decision elements also
called deciders (diamond shape). A se~~~nt is any flow sequence :
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a) from the START terminal to the first decider,

b) from the exit of one decider to the entry of another,

c) from the last decider to the STOP terminal,

whether or not any of these flows contain processing steps.

A subroutine La considered part of a segment if the segment contains a
call to the subroutine. Segments may overlap, i.e., a processing step may be
contained in more than one segment . If a program contains more than one TOP
terminal , then a group of segments is formed by the flow to each terminal
f rom the respective last decider.

In a level one test, all flowchart paths are force—traversed at least
once. In a level two test every program path is naturally executed at least
once • Level two and/or level three tests have formerly been called “exhaus-
tive tests ,” but new definitions (given in the following section) are more
precise and should replace the earlier usage. There are some particular
types of problems, especially those dealing only with integer variables, that
have a sufficiently limited set of input possibilities to make a level ~~ orlevel three test practical. However, in general level two and three tests
are intractable.

In this report , attention will be directed mainly to level one and
related types of tests. That is, we will discuss tests which are orien-
ted to the testing of program ae~~~nts. Drawing on the work of M. Lipow
(1), it will be shown how graphs, matrices, and zero—one integer linear
prograimning (2) can be used to determine the number of test cases needed
to perform a level one test, and the data needed to comprise those test
cases.

The approach consists of finding the maximum incomparable set , i.e.,
the largest set of program segments through which one and only one test
case should pass . The size of this set gives the minimum number of tests
necessary to execute each segment at least once , while the elements of
this set give the paths of each test.

In addition, a discussion is given of methods for estimating the number
of paths in a Loopless flowchart.

6
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2.3 SOFTWARE TEST MODELS MW THE IMPL~ (ENTATION OF ASSOCIATE) TEST
DRIVERS — by D.L. Baggi and LL. Shoosan

This study is nearing completion and a technical report is being pr.—
par ed . Parts of the work in progress will be presented below.

2.3.1 Abstra ct

In the past most software tests were constructed by heuristics and
drawing upon experience with similar software. Recently , enough prel f~ f”sry
work has been done to propose the analyti cal construction of test cases.

Thi, report begins by defining five broad classes of software tests :
Type 0, Type 1, Type 2, Type 3 and Type 4. Types 0,1, and 2 (i.e., level
0,1, and 2) were defined in the preceeding section. A Type 3 test is
defined as an exhaustive interaction of all values of input and stored
variables with all paths. In a Type 4 teat , the sequence of input and
stored variables must also be considered. Clearly Type 3 and 4 tests are
unfeasible and only tests lying between Type 1 and 2, utilizing a sampling
from the variable spac e, are realistic.

In the case of a Type 2 test one must still be able to enumerate the
paths in the program and decide on a set of test inputs which will traverse
each path at least once. This is far from a trivial problem in the case of a
large program. This report presents lower and upper bounds on the number of
paths in a program as a function of the number of deciders. These bounds
serve as a first estimate of the work involved. A decomposition algorithm is
then given which allows a graph to be cut into many smaller subgraphs. Fur-
thermore, a second algorithm has been developed which can be progr~~~ed tomachine—identify all paths of a program under test.

An implementation of a complete driver of Type 1.5, that is, of type
higher than 1, is then thoroughly described , together with the algorithms to
define paths and force execution. The algorithm has been implemented and a
driver program designed to force testing of PL/1 programs; however, it is
shown that these techniques could be extended to almost any progra~~(ng
language.

An .i~a~p1e of a program run with analytical debugging techniques will
also be considered and some evaluation of the usefulness of the system will
eventually be given in the light of the accumulated experience.

2.3.2 Introducti on

At the present state of the progr~~~lng art , there exist two techniques
for removing errors from a program during var ious stages of development,
progr am proofs and pro gram testing. Although much effort has been expended
on prog ram proofs , it is not clear whether this .ethod will become a prac-
tical and widely used technique . The present universally used technique is
to teat to remove bugs, either by code reading, by walkthr oughs, or by ma-
chine testing.

7
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In order to investigate a strategy for testing — be it manual, semi-
automatic or automatic —— it is necessary to provide some theoretical back-
ground, such as formal definitions and analytic models , to fully define the
range and scope of the test project. In general , it is indeed unclear what
really is meant by error models , debugging procedures, and other such terms .
We describe here a hietarchy of testing models. The importance of testing
cannot be exaggerated, because only a well—tested program can be assumed to
be reasonably error—free, in the prevailing lack of general techniques to
prove the correctness of procedures.

Much of the testing presently done is ad hoc and heuristic rather than
having any theoretical background. The purpose of this paper is to present
some models and analytical techniques which can be used in developing sof t—
ware test systems . It will be shown, from formal definitions of testing
types, that practical driver systems for automatic testing can be im-
plemented.

The test type to be discussed in detail is a Type 1 test, which is de-
fined as a test model in which each program path is force—traversed once.
The definition involves a discussion on how program branching points and
loops affect the number of paths. The process culminates in an algorithm for
identifying all program paths.

The possibility of implementing and automating such a testing model is
then investigated. It is shown that the technique is feasible; a system of
programs has been implemented to force execution through all possible paths
of a given program under test. This requires that the system analytically
determine all program paths f rom the code , modify the input code and drive
several, runs of the program. Study of these forced runs will result in many
program errors being caught without having to calculate and insert particu-
lar testing data; definitely, a major effort if done by hand for a complex
program. The computer output for each run contains a unique labeling of the

path traversed, related error messages and normal output1, if any , and the
amount of time elapsed during that run . The system has already proved very
valuable in program debugging on a few problems, with its fully automatic
mode of operation being the significant asset.

In the following pages we will first describe the types of teats, then
the analytical determination of paths from the program flowchart. Next we
will tell about driver systems and associated algorithms, and the results and
limitations of the system. Finally we conclude by considering advantages and
disadvantages of the model and propose future directions in the research
effort.

“Note that forced testing may result in program outputs which differ from
those produced by natural testing; however, these can be readily identified
by the tester.

8
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2.3.3 Types of Tests

We shall begin with a formal definition of various types of testing
strategies. We shall note that, in devising a classification scheme for
testing models, it is natural to desire that it correspond to an increasing
(or decreasing) hierarchy of thoroughness, and difficulty. Clearly, the
upper range of our numerical scheme should correspond to an exhaustive test.
At the lower end of the range we will require only that each instruction be
executed at least once.

We might liken the types of tests to the test procedures which an owner
might apply to test a new car he has just purchased from a d- - iler. The first
and most rudimentary check would be to compare the list of accessories or-
dered with the delivered list on the car window, and to see if these are
present and work. For example, the owner might check to see that be got an
AM/FM radio, and that it works on both AM and FM; that he received a
engine and not a straight six or a V—8 and that the engine starts, that the
hood lamp, glove box lamp, and trunk lamp were installed and work , etc.
This checklist type test would be of the lowest test level. At the other
extreme would be functional testing, for example, the use of the auto for
three months. However, in between, he would try many things during his
first week of driving: drive the car up a hill with and without the air
conditioner on , try the heater on a cool day and the air ccnditioner on a
hot one (or alternate the two functions), accelerate from rest to 60 mph,
and try a panic stop, and so on.

Thus , the philosophy f or test classification which we will use applies
to produc t testi ng in general; however, the specific details will apply to
software in particular .

a) Completeness and Continuit y Checki ng - Type 0

This type of testing requires that each instruction be exercised at
least once.

Intuition tells us that in testing a mechanism one basic principle is to
try and exercise the parts. In the case of a program , such a test is very
much expedited by a modern compiler which produces counts of the number of
times each statement is executed . Type 0 test is a necessary but not suff i
cisnt condition for thorough testing of the program. In fact , when such a
test is employed , one often finds design flaws. For example, it is sometimes
impossible to reach a section of code, and upon detailed investigation, we
find that an error was corrected by inserting a patch to bypass a block of
code; however , such block was never removed and just remains inert .

We will call this lowest level type of test a Type 0 test. Obvi~~sly,
it can be performed at the module level as well as at the system integration
level; however, it is more comnon to allow the individual coder (or tester)
freedom at the module stage to proceed as he wishes • Thus , much of our
definition of test types is more applicable to integration testing.

—— - -  

9 ~~~~~~~~

— - -— — — - - - - -  -

‘
~~~~~~~~~~~~ d1I[i 

~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

W



b) All Paths Force Execut ed — Type 1

One of the proble ms in testing a program at a level higher than zero is
the dependence between the data and the decider predicat es — expressions
which contro l the branching of an IF-THEN-ELSE or DO WHILE inst ruction — in
the program. Intuition tells us that once we have completed a check list f o r
a Type 0 test , we should next test all paths in the program. If we use a
flowchart as our program abstraction, we can def ine all paths of the chart;
however, it is unfeasible to find by manual analysis all possible executable
paths in most programs. Thus an automated tool is highly desirable.

In the solution to the problem of constructing a program testing tool,
it is convenient to define two classes of path tests: force execution—Type
1, and natural execution—Type 2. By natural execution we mean that the test-
er (human or machine) reads the decider predicates, computes whether they are
true or false based on the current values of the program variables, and
branches left or right accordingly. This concept applies as well to 3—way or
multi—way branching, because such can always be expressed by 2—way branches ;
modern IF—THEN—ELSE constructs express indeed this fact that a condition is
either true or false.

The execution time of a program is often largely devoted to the repeti-
tive execution of DO loops within the program. However, the philosophy of a
forced test is to execute all paths which only include two executions of a
program loop at most. Thus, we must invent a technique to ensure that each
DO loop is traversed no more than twice. We also know from experience that
many errors are comeitted when we exit from a loop. Thus, we define the
forced execution of a DO loop as testing the loop twice , once for the first
execution and again for the last execution. Methods of forced execution of
paths and of DO loops are discussed in Section 2.3.5.

Another question which is relevant to force tra versal methodology is
whether or not input data have to be supplied at execution. Obvious ly , data
which affect the flow of control are not needed and can be omitted ; however ,
other data types , such as operands in arithmetic expressions , may profitably
be submitted if the user is interested in such testing. Therefore, it
essentially depends whether the user of force—traversal testing merely wishes
to check the control flow and path structure for which no input data are
necessary. If he’d like to test for consistency of results, he must supply
input values. At any rate, a Type 1 driver can run without any input data
whatsoever ; and it is this fully automatic mode of operation that renders the
model so attractive. The fact that some pro gr variables may contain mean-
ingless quantities is but a natural limitation of this type of model and can
be solved only by an escalation to a higher testing model; nevertheless, the
present strategy greatly enhances the user ’s access to thorou gh testing of
pr ograms .
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Based on this discussion, a force execution of paths is cal led a Type 1
test.

c) Exaustive Testing — Types 3 and 4

Similarly, we def ine here two types of exhaustive teats. A Type 3 test
is an exhaustive test for a system where input sequence and initial condi—
tions are fixed. A Type 4 test is an exhaustive test for a system where
either the initial conditions, or the input sequence, can change during pro-
gram execution.

In Table 1 we stemiiarize the test class definitions which we have evolved,
and discuss three typical “in between” classifications.

TYPE 0 All instructions in code executed at least once (check
list).

TYPE 0.5 Many paths force executed at least once.

TYPE I. All paths force executed at least once (simulated 1002
coverage). —

TYPE 1.5 All paths force executed, some naturally executed.

TYPE 2 All paths naturally executed at least once (path coverage
1002) . This test is not unique .

TYPE 2.5 All paths naturally executed for many values of input
parameters.

TYPE 3 All paths naturally executed for all values of input pare
meters (exhaustive test).

TYPE 4 All paths naturally executed for all values of input par.—
meters , all sequences of inputs , and all combinations of
initial conditions (exhaustive test for multiprocessing ,
mu1tiprogr~~~ing, and real time systems with non—fixed
input sequence).

TAILT 1 — Classification of Teats
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2.3.4 Analytical Determination of Pro gram Paths

In this section we analyze the relationship between -the number of deci-
der predicates in a loopless program and the number of progr am paths .

First , an upper and lower bound are deter mined . Then a decomposition
procedure is explained and an example is given which shows how all possible
paths in a program flowchart can be identified from its structure .

a) Bounds on the Number of Paths in a Looplese ProLtam

The important properties of flow charts are:

(1) the number of decision elements (deciders);

(2) the number of points where two or more feed forward branches
meet (merges);

(3) the number of points where a feed forward path meets a
feedback path and creates a loop.

Por simplicity we assume that the graph has no loops and we bound the
number of paths by the number of deciders and merges. In Fig. 1(a) we show a
graph with m deciders and m merges. Each decider—merge pair furnishes two
paths and by virtue of the chain structure we see that the number of paths
for the total graph is simply the product of each subgrapb path, i.e., 2m

paths. In Fig. 1(b) we portray a structure with n deciders and one merge.
The first decider creates two paths. The next decider takes up one of the
paths as its input and creates two new paths. Thus , there are n+1 paths in
this graph. As an example of the application of these bounds, consider a graph
with 13 deciders • The number of paths in such a graph is between 14 and
8192. Fortunately, the number of paths in a program is usually close to the
lower bound.

STA1~T - ( sTA1~T~)

~ ge
Chain G~aph

I !I • I •

1 LJ ~
STOP [ST0P~ )

Ti5. 1(a). An upper bound. Fig. 1(b). A lower bound.

FIGURE 1. Graphs illustrating bounds on the number of paths in a flow chart.
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b) Manual Determination of the Number of Paths From a Flowchart

If a program is written in structured top—down form or any other modular
form, the program can easily be divided into independent subgraphs. In the
case of a nonatructured design, subdivision can still be performed with
analogous techniques.

In performing subdivisions , the elementary substructures given in Pig. 2
are encountered. In Ti8. 2(a) the number of paths in the program between
point A and stop or stops is denoted by NA. Clearly this number is the sun
of the number of paths attached to the left hand branch NB and those attached
to the right hand branch Nce In Fig. 2(b) the branch merge structure multi-
plies the number of paths seen at point B by 2. In the case of Fig. 2, we
end up with two equalities at the merge as shown.

B~~~~~~~~~~~ C

NA = NB + NA = 2NB NA = N
c

NB = Nc

Fig. 2(a). Branch. Fig. 2(b) . Branch—Merge Fig. 2(c). Merge.

- 
FIGURE 2. Elementary graph sub—structures.

We will illustrate the calculation of the number of paths in a program
with n conditional jumps. From the previous discussion, we know this number
to be in the range (n+l, 211). Let us now consider the following example:

Assume that the computer is to determine the winner of a card game in
which player A is dealt two cards: Al, A2, and similarly player B is dealt
two cards: 31, 32. If the players have any pairs, the highest pair wins,
otherwise the player with the highest card wins. If both players have the
s~~~ high card, then the winner is the player with the highest second card.Identical. I~~ds with or without pairs are ties • A flow chart for this pro-
gram is given in Figure 3. There are 13 deciders , and each branch is iden-
tified with letters A, A’, B, etc. The flowchart is decomposed in submodulesas in Figure 2. The simple algebraic relationships which can be derived are
listed in Table 2. All paths are identified and taken into account one by
one; the final computation for this structure with 13 decider, yields 100
paths.

13

~~- --—-~~- - -- •__________ - —~~_ _ _

—

::~- 
‘ - -

~~~~~~~~~~~~
- ‘

~ 
- 4  -

~ 

~~
• 

- 

- ~~~~~~~~~~~~~~~~~~~~ ~~~~~~T 
‘

~~~~ - - 

-



— —

IH~PUT A1,A2.SI.etj

TRUE FALSE
A A I~~ A2

I PAIR..A.TRu5 I tPAILA.FALSE I

~ 

;

TRUE FALSE 
~~

1PAIR~~.TRUE -I J~~AIR B.FALSE]

C TRUE FALSE 

- 
D

FALS

,

~~~E. TRUE FALSE

FALSE TRUE PRtP4T ____________

F ~~~~~~~~~~~~~~~~~ A W~N8 

~ . 
FALSE

PmeT PRINT PR NT PR~N1 ___________

FT1E..J ~~~~~WI~~~~J WINS

TRUE 
A I’AQ FALSE

1~~:~2~! ,~:.. ~~~~~~
TRUE ~~~~~~~ FALSE

Pigure 3.

I NION_8~ BI 
~ 
HI3H_5~ B2

Flowchart I I.OW~~B B2  

~ 
ILOW_5 11

or 
TRUE ______computer IC IC

solution
of a I PRINT J
card geme. VJI!!J

L
TRUE ~~/~~~~~~~~~~~ALSE 

i
%~~~~~~~~~~~F~~~SE

~~~ ow-s FALSE
ow-

PRINT I PRINT
e WtN$ ITa 1

N r1~~_
14

- -

_ _ _ _ _  

w- -
~~~

- — -
~~~~



Algebraic Relationship Number of Paths

N = NA + N A, = 2 X N A, 2 XN A,

I& X N B,

NB, 3c +ND l
~

x ( Nc +Np)

l
~

x ( 3 + ND)

ND G G ~~~
1
~~~ G’

Nli, N1 +NI, 2x N 1, ~~x (5 + 2 xR 1,)

N1, = N~~+ N 3, a 2 x N 3, I~ x ( 5 + I~ x N 3,)

+ N
~, 

= 1. + N~, x (5 + I~ x (1 +

N1 + EL, — 1 + N1, x (5 + ~ x (1 + 1 +

• NL~~= N m + N !.~~= l + NMt ~~
x ( 5 +

~~~
x (2 + l + NM,))

)
~x (5 + l~ x(3 + 2)) 100

TABLE 2. Calculation of the number of paths in the flowchart of Figure 3
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2.3.5 Driver Systems

We will now introduce the practical implementation of Type 1.5 driver
systems. Such drivers force the traversal of a given subject program through
all its paths. -

Recall that if we naturally execute a subset of all program paths, then
we refer to such a test as being between Type 1 and Type 2. Similarly, in
most cases forced execution will coincide with natural traversal of some
paths and forced traversal of the remainder; consequently, we describe the
drivers discussed here as resulting in Type 1.5 tests.

The design of drivers has evolved through several phases during the
present research on testing models. The most obvious technique for complete
path traversal is referred to here as an “upper bound” driver and is des-
cribed in section 2.3.5(a) . Such a design, as it will be shown, achieves the
goal of automated testing at a high penalty. Further considerations and re-
finements of the problem, namely, the realization of an algorithm for path
analysis, have led to the implementation of a system of programs which con-
stitute the whole driver system. These will be described in a future
technical report on this topic.

a) An “Upper Bound” Driver

The system described here was a first attempt to implement a driver to
force the execution of a PL/l program under test , from now on referred to as
the subject program.

The subject program is written in standard PL/l with no restrictions;
there are only a few precautions the progras er must take in designing his
code :

o the total number of IF—statements and repetitive DO-groups, herein
called NTESTS, must be supplied on a data card;

o each statement of the form IF cond ... must be written as
IF F (cond)

o each statement of the form DO b’limitl TO liait2 BY increment
must be written as DO I GL(limitl, liait2) TO GE BY increment

o each statement of the form DO WRILE(cond)
must be written as DO WHILE(H(coud) ) J

o functions and subroutines must be internal

The deck of the subject program is then simply inserted within the deck
of the driver program at an appropriate location. The dr iver exercises all
paths through several runs .
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The driver ’s mode of operation is simply based on the fact that the
upper bound on the number of possible paths is (see section 2.3.4 a))
The driver program will internally cons truct a binary number , called control
word , with NTESTS bits , whose initial value has all bits set to 0; this
number is increased by 1 at each run duri ng execution , until the contro l word
has all bits set to 1.

Dur ing each of the runs , function F (as well as CL , GB and H) replaces
the value of the condition with the correspond ing bit from the contro l word .
Functions CL and Cli cause a DO-group with index variable to be executed once
with the initial value of the index (bit O) and once with the final value
(bitu”l); function H causes execution of a DO WHILE group exactly once in any
case.

ZITESTSSince there are 2 possible distinct values of the control word,
there will be exactly 2~~~STS runs of the subject program; therefore coverage
of all possible paths is math ematically guaranteed , i.e. , each path will be
covered at least once. Hence the goal of automated force traversal is fully
achieved with this simple strategy .

Because the number of paths in a program is usual ly closer to the lower
bound NTESTS+]. than to the upper bound ~~~~~~~ there will be often a large
number of runs which do not represent any existing paths . For instance , the
flowchar t of Fig. 3 has 13 deciders but only 100 paths; hence 8092 runs are
wast ed with this strategy . Furthermo re, since the number of runs increases
exponen tially with the number of predicates , the running cost of such a
driver becomes prohibitive very soon, even for medium size programs .

This problem can be overcome by the derivation of the path structure of
a program from its code , that is, from static analysis. This strategy will
be described in the following sections.

b) A Type 1.5 Driver

The complete driver system is shown in Figure 4. It has a section for
static path analysis, one for code translation and one f or dynamic testing.
At the left hand side in the picture one recognizes the execution of the
driver programs from files located in the middle of the picture. An input
program to be tested , referred from now on to as the subject program, enters
the path analyzer , which determines the program paths and saves their
representation as binary path descriptors, along with a copy of the subject
program.

The copy of the subject program undergoes some modifications by the
translator program. This tr anslator program modif ies conditional branches,
loop constructs and includes the program in a large loop. This inclusion
allows repeated executions.

Eventually the modified subj ect program reaches the execution stage
through all its paths, as determ ined by the binary path descriptors , and the
output of the driver is produced .
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Execution of Pro~~ams Auxiliary Files Phase

INPUT

subject read input program
program from input file

REG~~
ath analyzer

program
binary outputs of path

______________  

path sna3.yzer created
descr. (emessages to user)

OBIG

copy of
subject
program
on disc

[ranalator
RUNTST

modified
subject modified subject
program program produced

execution of
modified sub- bugs , JCL causes operating
ject program ea~gs~ 

- system to execute
etc. modified subject
____ 

program through all

- 

its paths

FIGURE ~~. The system of the driver programs and their operation.
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c) The Algorithm for Path Analysis

Label ing of Paths: We shall use the conventism to label the “true”
branch of a conditional statement with a “1” , and the “false ” branch with
a “0” , as seen in Figure 5. In this way, it is possible to uniquely label a
path in a given program with a binary path description , as shown in Figure 6.

false true

‘ 0 1

FIGURE 5. labeling of branches.

1

0

0

1

1

FIGURE 6. Labeling of path 10011.

Al orithm for Findin& All Possible Paths: We will firs t show that
it is possible to determine all possible paths . V. will start with the path
analysis for a pr ogram without any repetitive DO constructs . Since each path
is uniquely defined by a bina ry integer , called here path descriptor , the
problem of finding each path in a given program is analogous to the problem
of finding the set of binary integers associated with the path structure of

- 
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that pr Ogram. Because sets of binary quantities can be expressed by regular
expressions, we propose an algorithm which constructs a regular expression
whose associa ted set contains the values of control binary words correspond-
ing to paths. Only the operation + (expressing union in the associated set)
and concatenation will be needed. ft. expression ii recur sively defined as
being always binary, i.e. , it contains two terms separated by +; a term is
the symbol 1, or 0, or an expression; concatenation of expressions forms an
expr ession .

The algorithm scans a PL/1 program in search of IF—THEN—ELSE constructs ,
and operates accordi ngly to the following rules :

1) each IF opens a left parenth esis, (, and initiates an expression

2) each THEN corresponds to a 1

3) each ELSE corresp onds to a 0 , and since it matches a previous THEN,
a + is inserted at that level

4) if no matching ELSE is present , it is assumed to be there and +0 is
therefore added

5) each balanced expression , consisting of 1, +, 0 , closed at its
level , causes closure with right parenthesis at that level.

2.3.6 Examples

EXAMPLE 1.

Consider the f lowchart of Figure 7. This chart is Implemented by the
program segment

IF cond THEN a
ELSE a

IF cond THEN s
IF cond THEN a

ELSE a

The algorithm constructs :

(1+0) (1+0) (1+0), with rules
12 3512 45123 5

Computation of the regular expression yields .

111,011, lol 00l ,llO OlO ,lOO ,000

i.e., the eight possible paths.
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0 1

B B

0 1

0 1

5 B

FIGURE 1. Flowchart for Example 1.

0~~~~~~~~~~~~~~~ l ~~~~~~~~~~ 0_  _

FIGURE 8. Flowchart for Example 2.
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EXAMPLE 2.

The flowchart of Figure 8 translates Into :

I? cond THEN IF cond THEN IT coed THEN a
ELSE .

ELSE IF cond TRUI 5
ELSE .

ELSE IF cond THEN IF coed THEN $
ELSE.

ELSE IF cond THEN s
ELSE s

Regular expressions :

(l(l(l+O)+O (l+0))+0(l(l+O)+o(1+O))), rules :

121212 35 312 35 31212 35 312 35

expressing the eight paths

lll ,llO ,lOl,l00,O1l,OlO,00l,000

EXAMPLE 3

The flowchart of Fig. 9 is progr ed by

IF cond THEN ~ELSE IF coed THEN a
ELSE IF cond THEN s

ELSE IF cond THEN s
ELSE s

Regular expression :

(1+0(1+0(1+0(1+0)))), rules :
12 312 312 312 33

which gives

1,01,001,0001,0000
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EXAMPLE 4

Th. flowchart of Fig. 10 is realized by

IF cond THEN DO;
IF cond THEN IF cond THEN a

ELSE a
ELSE IF cond THEN s

ELSE a
IT cond THEN a
END ;

ELSE DO;
IF cond THIN;

ELSE s
END;

Regular expression:

(l(l(l+O)+O(l+O)) (l+O)+O(1+O), rules :
121212 35 312 35 12 45 312 35

yielding

llll,lllO,llOl,llOO,lOll,lOlO,lOOl,l000,Ol,00

In Example 4 , the path structure is complicated by the presence of DO
groups within the THEN and ELSE clauses. When this occurs, construction of
the regular expression temporarily halts, and the algorithm calls itself
recursively for that DO module.

This algorithm has been tested with a program written in LISP which was
then translated into a PL/l program. -

A second algorithm solves the regular expression and finds all the ele-
ments of it. associated set ; this number is the number of all possible paths,
hence the algorithm, as-an extra bonus , enumerates all paths of a program.

The complete analyzing program embodies these algorithms. It starts by
reading in the subject program, card by card . This is stored as a character
string in main memory and is saved on an externsl file , called ORIG. Control
is then passed to the section performing the scanning and computing the set
of binary control words.

The scanning mechanism is built around two PL/l procedures, CAR and CDR,
which respectively return the head and the tail of a given string. By head
we mean: any PL/l operator (such as *,**,— , ), any PL/l separating char-
acter (such as ;, :, 0, )or any string separated by an operator, by a sepa-
rating character or by blank, or any quoted string of comeent; by tail we
mean the string without its head. Hence CAR is capable of correctly picking
up keywords in portions of statements such as ;IF(,

~ /THEN/~, L2:DO;, but will
not pick them up in THEN1— 5, ‘A STRING IF NEEDED ’ ,/*THEN A COI IENT*/ .

- -— — - — - — 
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~~~~~~~~~~0

0

FIGURE 9. Flowchart for Example 3.

0 1

o
0 1 0 1 0

B B B

0

FIGURE 10. Flowchart for Example le.
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The analyzing program produces the set of binary path descriptor s,
saved on external file REG~~~, which will control th. test portion.

2.3.7 Results 
-

In this section we shall discuss the usefulness of Type 1.5 drivers for
forced testing, comparing their use with other widely used testing strategies,
and describe the efficiency and deficiencies of the present implementation.

a) Automatic Analysis and Forced Execution

We have shown in Section 2.3.4(b) that even in a simple program like
the one of Fig. 3, path identification and enumeration is not a trivial
problem, but time consinning and error prone. In such cases , the
algorithm described in Section 2.3.5(c) has great advantages, because it
not only identifies all paths and properly labels then, but the path
analyzer program saves all binary path descriptor.. Hence it is not
necessary to spend time in designing data sets to exercise all paths (with
the result of not covering them all, as it generally happens). The driver
system takes the input program; the analyzer creates the descriptor for
each run or path, the translator modifies the code, and the modified pro-
gram runs 100 times through all its paths. -

b) Comparison Between Manual and Automatic Testing

We established a timetable to compare resul ts and time spent by testing
with input data and with the driver system. We began by saying that it took
30 minutes to design a successfully compiled program. We then tested the
program manually and automatically. *

Manual Testi*g, with Data Automatic Testing with the Driver

• design of a data set to exercise • path analyzer : 1.13 win,, 450k
some paths: 10 minutes core.

• rimming of the program through • translator : 0.27 minutes
these paths: 0.01 minutes a translated subject: all paths
• results: program iS OX e results: one bug was discovered

(The bug appeared in the form of two contradictory outputs; an erroneous
ELSE clause was subsequently f ixed in the subject program.)

It appears therefore that no particular penalty in running time has to
be paid to let a program run through all its paths. Recall in fac t that
in general the number of paths will be closer to the lover bound than
to the upper bound. Moreover, program with repetitive DO-loops may very
well run faster through the driver than with acme manual testing, because
extra saving In r”iwing is achieved by not letting loops run more than
twice. This saving may become very consistent in a program with many
nested loops.

* These operations were carried out on the I~( 360165 computer at the Poly-
technic Institute of New York , Brooklyn, NT 11201.
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Since it is not necessary to design any testing data , the progr~~~er
is saved time and effort for manual debug ging . There is, moreove r , no
guarantee that testing with data achieves th. result, as this case shows
the erroneous path was accidentall y never rea ched with testing data.

The path analyzer program, however, is not very efficient at present and
requires prohibitive amounts of computer memory, as discussed in the next
section.

c) Efficiency of the Package

The path analyzer pro gram is a literal implementation of the recursive
algorithm described in Section 2.3.5(c). As such, it is slow and inefficient
and requires a large amount of computer memory. This is due to the fact
that each time a recursive procedure which is still open calls itself
either directly or indirectly, it reallocates a new space in the main
storage. In FL/i , unfortunately, a string of maximum length is allocated
even if the string is declared as variable length. As a result , the
path analyzer wastes a large number of bytes . This wasted memory is recu-
perated only when the last recursive call terminates, at which point the
recursion stack begins to pop.

The problem has in fact been avoided by implementing the algorithm f or
path analysis In LISP, a language ideally suited for recursive function and
string (i.e., list) manipulation.. No prohibitive memory is needed , since
the pairing by pointer mechanism uses space only when needed . However, the
LISP interpreter is not widely available , and is in general very slow com-
pared to compilers for other high level languages.

One solution to the inefficiency of the analyzer we are considerin g
would be to still keep the recursive algorithm in FL/i. However, instead
of storing in the stack the character string resulting from an intermediate
computation, we would operate always only on one copy of the string and
save rather the present scanning location, i.e., a one—word pointer . Hence
we would achieve a saving of 32K—bytes versus one word, which is close to
an order of magnitude of 4. A drastic saving in memory space would be
realized , and simultaneousl y some techniques to speed up the algorithm
could be added.

The translator program is essentiall y built around stri ng manipulating
built—in procedure., and is the refore fast. No doubt, however, it could
still be further optimized.

The translated subject program will run through all its paths . In the
previous section we point out that this may be achieved at the price of a
high penalty in running time. It is worth mentioning, however, that even I.E
this wer e so, the advantage provided by an automatic mechanism which is
guaranteed to exercise all paths in a subject program outweights some possi-
ble disadvantages of extra running time.
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d) Present Restrictions on the Subject Program and Limitations of the
Driver System

Our system implements a driver system in order to force execution of a
subject program written in PL/l through all its possible paths. Almost all
PL/l can be used in the design of the subject program, with a few restric-
tions. Some depend on our computer system and some were introduced for
ease of design of the system. Some are tolerable or even welcome when they
encourage good progr~~~ ng style. Some are undesira!1e and will hopefully
be removed in the next future.

As shown in Section 2.3.3(b), the driver will force execution of paths
that could never be reached by natural execution, hence capturing non-
existent errors. This is a flaw of a Type 1 testing model and could con-
ceivably only be solved by a higher model. It is however, unclear whether
the determination of impossible paths can be solved at all. Assume that
within certain lines of code, an algorithm is called for the computation
of one of the values used in the next decider. At testing, it is unknown
whether the algorithm will terminate or not (i.e., the halting problem).
This example shows that it is in general impossible to exercise a path,
even at level 1. Our driver , in fact , discontinue. a path if it takes
longer than a certain time, thus putting a bound in order to avoid solu-
tion to the halting problem. Possibly, only those impossible paths
depending on assignments of known values to the predicate variables can
be identified, and possibly only a subset of them could be found by static
analysis. In the meantime, therefore , we shall regard this problem as not
highly important; the user can in fact quickly identify these paths from
the driver’s output.

We will now consider a few implementation restrictions. Our version of
FL/i does not allow strings, that is, subject programs with more than
32767 bytes (about 400 cards). Without modifying our local definition of
PL/1, this could again be solved by a swapping mechanism, which would call
from disk the different sections of a program under analysis or translation.

Ease in program design of the analyzer requires the exclusion, in the
subject program, of any variable or identifier named IF, THEN , ELSE, DO, END,
BEGIN, TO, BY and WHILE. Similarly , multiple clause DO—groups (clauses are
separated by coamas), and multiple closure with a labeled END —— all this is
allowed in PL/1 — have to be avoided . However , use of these PL/l features
often causes confusion, and often progra~~ers are independently encouraged
not to use them.

Moreover, although it is a minor drawback that the driver cannot handle
CO TO’s -— they can always be avoided in structured progr~~~, and almost al-
ways with profit —— it is more serious that it cannot cope , at this stage of
developmen t , with branchi ng to subroutines. A mechanism could be added in
order to allow scanning to jump to the subroutine locat ion, saving the cur-
rent scanning location , to which to return upon exit from the procedure.
This is conceptually simple but will involve some tedious read jus t ing of the
driver ’s cod.; however , we plan to do this in the near future.

- - 
- - 
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It is unclear, however, how a static path analyzer could cope with re-
cursive procedures , because the path structure of a recursive program is un-
known before execution time — in fact, no graph or flowchar t representation
exists for a recursive algorithm. Let us just mention the fact that any
recursive function can always, though sometimes painfully, be made non—
recursive; besides, recursive programs are rarely found in the real world of
programming.

Except for its inability to handle procedures, the driver system is
therefore general enough to accept any well written PL/1 program to be
tested.

2.3.8 Sinmnary and Conclusions

We conclude by describing a practical application for this implementa-
t ion of a Type 1.5 testing model.

The described driver system can be integrated into an operating system.
A program would initially be compiled to catch syntax errors and upon
successful compilation, it would be submitted to the driver system for forced
execution. Therefore, another set of errors, appearing at execution time,
could be eliminated prior to testing with real data. Alternatively, a
strategy Intermingling natural and forced execution could be implemented.

We would like to recall once more that our effort, although directed
mainly toward FL/i programs, can be extended to other programming languages
as well. We hope therefore that our driver technique. represent a step
toward automatic debugging.

As a fina l conclusion , we notice that :

1. Although the area of testing is a difficult one , we have developed
several quantitative models and approaches to aid research progress in the
field.

2. A quantitativ e way of describing and categorizing different types of
tests has been developed which may aid discussion and characteri*ation of
tests.

3. A system of algorithms to perform automatic Type 1.5 testing has
been implemented and described in detail. It was shown that such a drive r (
is- indeed feasible and advantageous. An explicit computation of the number
of paths in a graph was carried out analytically. The same example has been
submitted to the driver system and run through the driver. This illus tra-
tion can be extended to other examples and generalized. Hence, the testing
model has been defined , researched and fully implemented. Although the model
has already proved itself a useful tool, it is hoped that it will clarify
and further stimulate research in this area.
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2.4 STATISTIC1~L ASPECTS OF PROGR AM TESTING by A. E. Leemmel

In a previous report (3) several formulas were derived which relate the
probability of program error to the number and type of tests previously made
on that program. No program of any size can be expected to be perfect , if
f or no other reason than the difficulty of defining perfection. Thus, if
“error ” is suitably defined , and if only a limited number of tests can be
made on the program , there will be some f inite probability of error. This
progress si~~ ary will not discuss the general validity of applying statis-
tical theory to the area of progr~~~tng, although this topic is Important.
Rather , the interpretation of “statistical dependence between errors ” and
“program bugs” will be ew4ned .

The central result of the previous report was (see Eq. 15, ibid.):

N M

= ~1 (i— s) 
~~ 

1 — 11 (i— o
~~~~

) (1)

i=]. j=t+l i=.T+l

where P~ 
— pr obability of tester acceptance and user error

N — number of input values

t — number of input values tested
M — number of possible bugs

— probability of user selecting ith input value

f3~ — probability of the ith bug

— 
1 if the j th bug causes an error for input i

ij th0 if the j bug doesn’t effect input i

T — number of bugs causing at leas t one error .

We assume that the matrix 0’ has already been permuted so that the tested
values (first t columns) and related error—causing bugs (top rows ) come
first. This is for convenience , and causes no loss of generalit y .

It is important for us to define what we mean by a program bug. Sup—
pose that a program has N different input values , and that fai lure to give
the correct output for one input value implies nothi ng at all about possible
failure for another input value . If this situation really existed , it would
require an impossibly large number of tests to insure a reasonably small
valu, of F,. Note that throughout this discussion, the concept “one test”
means running the program f or one value of its input data , not testi ng one
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path through the program, nor testing one module of the program. To this
end the matrix a has been introduce d so as to tie together these two views of
testing. Formally , the introduction of the matrix a might be said to des-
cribe th . statistical dependence among errors for different input values .
It is implicit that the program as a whole must be tested , i.e.,  separate
modulás cannot be individually tested in this model. Several possible ways
to deE in. a bug will now be defined and compared :

I) The program has N modules and bug i means that the ~~ module doesn’t
work properly . This will cause errors only for those input value. which cause
the program to call the ~th module.

ii) The program has only one module with one input variable , and , for
example , bug 1 means it fails for all positive input values, but 2 means it
fails f or 0 input, and bug 3 means it fails for all negative input values .

iii) The program has N lines, and bug i means that the ~th line has an
error .

iv) Some combination of the above. For example, bug 1 might refer to
negative input values , bug 2 to subroutine B, etc.

These and other possible interp retations must be compared by considering
how realistically they correspond to actual programming situations , and to
the - relative difficulty of gathering data and statistics which can be
inserted into the formula (1) . To start with , (iii) seems attractive
since all programs are line or statement structured. Perhaps one might
like to consider that each line might have n possible bugs , so that N — nL.
The big difficulty with (iii) is that the error might be a aissi~g line ,
say a variable that was not initialized. If one allows for a possible
missing lines , then N - nL + m; but the effect of a missing and unknown
line on a particular input value is hard to anticipate. Somewhat the
same objections can be made to (i) . In particular , many additional possi-
ble bugs exist as incorrect linkages between modules. While (ii) may
appear to avoid the difficulties just mentioned, it requires more know-
ledge of what the true outputs should be for .11 input combinations. In
other word ., (ii ) is problem oriented instead of being program oriented ,
and this night make the gatheri ng (or simply guessing) of statistics more
difficult.

In addition to properly interpretting the bugs , Eq. (1) above should be
simplified if it is to be used in practice. In the previous report , (ibid ,
Eq. 16) a simplified version was given , but this is perhaps too simple. Work
is going on in finding a useful compromise between these extremes.
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2.5 CCIfPLEXITY MEASURES by H. Ruston , A.E. Lasmesl, and E. Berlinger
A new complexity measure A preliminary rep ort on complexity measures —

is partly completed. The report first review, and contrasts several of the -~ -

measures introduced so far. It includes: (1) the measure based upon divi-
sion of inputs into classes, ‘with each Input class resulting in a single
output (Eelleraan) ; (2) the module vector measures (MeTap , Chapin) ,
applied to deciders and loops exceeding heuristically assigned reference
values ; (3) the classification measures (Sullivan) ; (4) the topological mea-
sure. (Chen, Mccabe, Myers); (5) the measures based upon length (Halstesd,
Shocinan, La~~~e1).

In the second part a new measure based upon information theory is intro-
duced. This measure is based on those aspects of progr*~1v,g which presentdifficulty to the program. It is assumed that the less frequently an item
is usód, the more difficult it is for the prograamer to use the item
correctly.

Let p~ represent the probability of usage of the 1th type in a program-
ming language, and f1 be its frequency of usage in a nodule or program. Then
we can def ine a complexity measure for that module as

C = - ~~
‘ f1log2p1

The p~ ‘5 are the long term probabilities and can be measured over a
perio d of weeks , months, or even years , and can be constantly or inter-
mittently updated using automated techniques. The measure c itself can be
autom atically obtained.

If C~ is the complexity of the ~th module, then we can define the

program complexity as C = ~~~~ C~ .
3

A number of different schemes can be usc’ to calcul ate this measure .
For instance, all operations and operands could be counted. Operations,
such as CALLs, which include names unique to a program can be ordered accord-
ing to their frequency of usage. The module called with highest frequency
would be paired with the highest probability. A similar technique would be
used with operands .

Another technique might be to group certain operators together and
combine their probabilities . As an illustration of such grouping, there
doss not seam to be any reason to assume that addition is either more or
less complex than subtraction. Ttwss addition and subtraction may be treated
as one operator as far as the ccmplamity measure is concernsd.

4 We may wish to distinguish among levels of nesting.. A DO statement at
the second level may be more complex than one at the first level. The
hijb.r nestings could be assigned separate fr.qu.nciss and have individual
proba bilities. 
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There ar. a number of advantag ous features in this measure. Since the
measure is based on the probability of usage of each type, the measure is
sensitive to the natural tendenc y of hu ai~ to forget what they do not use.
The measure can also be made sensitive to th. different - levels of nesting..
No other measure exhibits such sensitivit ies. Furthermore, once the neces-
sary- programs are in effect at a particular installation, the calculation of
the froqusnci.., probabilities and the ensuing measure can be completely
automated.

Program complexity and Information content. The purpose of a computer
program is to convey information from the user to the computer-operating
system. The information ii that needed to specify the desired upping of in-
put data to output data . Since the operat ing system and the computer hard—
ware usually contain many co~~~n1y used functions and programs , the user’s
progr am need not conta in complete details of the desired computation. The
amount of information qpntained In a program can be calculated by several
methods , and it might well be identif ied with program complexity.

Ever since Shannon’s paper of 1948 information content of a message has 
d

been regarded primaril y as a statistical quantity. Suppose a user, or a
group of statistically similar users , feeds to computer a series of programs
a 1 a2 These programs are selected from a set of possible

progr ams {lT p ir
2 .~~ 

.1T
M

}. The information content of each program is

at least as large as

‘
~o~~~~ -1 

P~(irj)log2 I’~(”~)

The quantity H0 will be of reasonable size, but N Li astronomical and hence
there seams to be no reasonable way to calculate ~~ directly . Therm night be

indirect ways to estimate U0, and in any event it is useful concepta lly.

Mother way to calculate the information content of a program is to
~~~~~~~~~ the statistical propertie. of parts of the program such as charac-

ters , operator., operands etc. Call thes . smaller units tokens as shoim
in Pig. 11,

k Programs ~~~~~~~~~

a 1 °‘ 2~~~~-) 4- ø~3

NNIX 4 I ~ 1 ~ 1 1 1 1 1 1  F.~tokens 
- 

Fig 11. Illustration of Tokens

and consider the isquence of tokens going from th . user to the cosputel.

Define P (i I B~” ~~ as th. probability of the ~th token following a
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given block of B~ 
(n—I) 

tokens . Def ine

A~~~
1 A

F = ~ 3
(n.1) 

~ p ( i I B~~~’~ _ _ _ _ _ _ _ _ _

~ .~i j  log2 . 1  (n-i)p(i j B

where A is the number of types from which each token may be selected. Since
is monotonic non-increasing it must approach a limit (possibly 0) as

fl -. 00 Def ine F~ as this limit, that is

F~~ ~~~~~~~

Let Law be the average number of tokens in a program. It can be shown that

H0 < Lav f~~ 
-

A value for Lay F ~ exceeding H0 indicates that the program contains more
information than actually required. This additional information might be
due to coaments, muemonic label s and variable names , alternate algorit has
solving the same problem , different ways to order pro gram blocks , different
ways to allocate ~~~ory etc.

Operators and operands often alternate In a program, either because
the prog ram is written that way, or because operator and operand are so
defined as to force the alternation. In either case , a good choice for the
token in computing P~ is a operator - operand pair. Since A i. a lar ge
number, the actual calculations are greatly facilitated if the probabilities
follow a simple distribution formula such as Zipf’ s law. Work ii In pro-
gress on developing the relations between this various information measures
with the theory of Zipf ’ s law appl ied to operation — operand in evaluating
numerical examples. This work will be reported in a future rep ort.

2 • 6 MODELS FOR THE MAMAG~~~ IT 07 SOP’llIAJZ — M.L • Shoonan and A. Kershenbaum

Initial work on two models for the na$.ment of software were under-
taken. The first model consider s the development tine, T, to be the sum of
progr~~~ing tine T~ and the co unicat ion tine T0, that is,

- 
T — T

P + T C
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For N~ pro gr ers interfac ing with each other , the total number of inter—
faces is I .

- C~
) - 

N~~(N~~~~l)

If S is the total number of instructions to be developed , and T is measured
in months, then the productivity P measured in instructions pe?month is

P

One assumption is that the coemunication with each interface requires a
fraction K of T , we obtain for the co mication time Tc

KTN (N — 1)p p
c 2

Substitution gives

~~~~~ — 1 )
1 P P

2

or
N T —p ~~~(N~~- l)

I P
a. 2

If on the other hand there is a fixed coordination time for each interface ,
defined as

— 
months coord ination time

program interface

then man—months N~T became -

7T

- ..~.. ~~~~~~~ . -,~~~~~~~



The second model treats the question of decomposition of a problem into
subprob lam. (solved by distinc t individuals ) and the attendant coem”nica—
tion problems . The obj ective is to study the effect of the shape of the
system on its overall cost or complexity. As an .w ple, the decompositions
of P into case 1 and case 2 are shown in Fig 12. In case 1 coneunication
among subproblems, (i.e. the individuals solving thes e subp roblams), takes
place directly . In case 2 all co ..”(caticn takes place through a central
point P 2

A quantitative comparison of these and other more elaborate decomposi-
tions - (involving more subprograms) are being studied. The results will be
disseminated in a separate technical report.

C) H
(a) The Probl a~ P

\~~ / Case 1:
- (b) Direct coemunications

among subprobl ems

P1 P2 P3 Case 2:
(c) Coneimication via P2

Fig. 12 The Problem P and its Decomposition
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4.0 PERSONNEL AND 1~ RK AREAS

The following personnel participated in the research activities during
this reporting period:

M.L. Shootnan
H. Ruston

D. Baggi A. Laeneel
E. Berlinger R. Lipshitz
J. ICI.tainik C. Popkin

and worked in the following areas:

1. Shoomimn and Ruston: Models for estimation of time needed for the de-
velopment of software, with application to the scheduling and control-
ling a software product. Also the planning of a survey on the use of
software models.

2. Shooman and Popkin: The verification of a computer program through
testing (a technical report on this work was published during the re-
porting period).

3. Ruston, Berliuger, Kitainik: Application of information theory and
software physics to complexity measures, and the methods for evaluation
of the measures.

4. Baggi and Shoosan: Automatic test drivers and their implementation.

5. Laeneel: Application of recursive funct ion theory to program complexity
(a technical report on this work was published duri ng the reporting
period) . Application of statistical methods to program testing.

5.0 DIRECTION FOR NEXT PERIOD’S WORK

1. ~~~~~ -— Completion of a report on software test models siid the iaple-
mentation of test drivers for such models . Further work will focus on
increasing the efficiency and usefulness of the path analysis algorithm
and of the Type 3.5 driver system.

2. T a~~~.]. —— preparation of a report on statistical pro gram testing ,
taking into account errors not found as well as errors caused by im-
proper correction.

3. Ruaton and BerJ.in ger —— Application of information theory to complexity
measures and the evaluat ion of such measure s .

4. Ruston and Kitainik — Application of graph theory to complexity as.—
auras.

5. Ruston and Mohanty —— Simplification of the technique for test data
selection . The present techni que is unyieldin g and very tias—cons’ 4~g.
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6. Shooman and Pop~kin —— Further work on enumeration, classi~~cation, and
characterization of tests and their attributes. An effort will be made
to correlate practical tests now in use with the theoretical schemes
which have been established.

7. Shooman. Ruston and Cornier —— Application of Markov processes to
estimation of actual time needed to development of software (taking
the returns to previous stages into account). Such estimation will be
useful for scheduling and controlling a software project.

8. Shooman and Lipshitz —— Further work on generalizing an early effort on
modular and automatic progra ing techniques.

6.0 PROFESSIONAL ACTIVITIES

This section summarizes the professional. activities of the research per-
sonnel working on this contract.

6.1 PUBLISHED M~D SUENITTED PAPERS AND REPORTS

1. C.L. Bsu, L. Shaw, S.C. Tyan , “Reliability Applications of Multivariate
Exponential Distributions,” POLY—EE—77—036 1/EER.122, September 1, 1977
(appeared in early 1978).

2. M.L. Shooman and H. Ruston , “Software Modeling Studies—Sumoary of Tech-
nical Progress ,” Final Technical. Report , RADC—TR—78— 4 , Vol. I (of two) ,
Jan. 1978, A052615.

3. D.L. Baggi and M.L. Shooman , “An Automatic Driver for Pseudo—Exhaustive
Software Testing ,” Proceedings of the 1978 IEEE Spring Compcon Confer-
ence , San Francisco, February 28—March 3, 1978.

4. D.L. Baggi , “Implementation of a Channel Vocodder Synthesizer Using a
Fast , Time—Multiplexed Digital. Filter ,” Proceedings of the IEEE Inte r-
national Conference on Acoustics , Speech and Signal Processing , Tulsa ,
OK, April 19—12 , 1978.

5. A. Laammel , “Study of Recursive Function Theory and Its Application to
Program Complexirv ,” POLY-EE/EP-77—037/SMART 108, May, 1978.

6. G.S. Popkin and M.L. Shocman, “On the Number of Tests Necessary to Veri-
fy a Computer Program,” Poly—EE—18—047/SRS 113, June 1978.

6.2 TALKS AND SENINARS

1. H. Ruston, Seminars on Structural Design and Structured Progr~~~ing,
Cherry Bill , NJ, January 5, 1978, N.Y. City April 26—27 , 1978 , Toronto,
Canada, May 9, 1978.
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2. M.L. Shooinan, Talk on Software Reliability System , IBM System Research
Institute, March 7, 1978.

3. M.L. Shooman , “Summary of Modeling Progress,” RADC Contract Report ,
Griffiss AFB, NY , March 10, 1978.

4. M.L. Shooman , 5—Day Course on Reliability, Availability and Safety ,
Stat—A—Matrix Institute, Princeton University , April 24—28 , Nov ber 6—
10, 1978.

5. ML. Shocuzan, “Software Engineering Models,” Computer Science S.~(nar ,
Queens College , NY , May 19, 1978.

6. M.L. Shooman, “Software Reliability Models ,” Spring Lecture Series , N .Y.
Section ACM, May 18, 25 , 1978.

7. M.L. Shooman, “Future of Computers,” High School Science Day, Hofstra
University , Bemptstead , NY , June 2 , 1978.

8. D.L. Baggi, “A Test Driver for Software Testing,” Seminar, PINT , Farm—
ingdal., NT , July 6, 1978.

9. LL. Shooman , Series of four lectures and four discussion sessions on
Software Reliability, Advanced Course on Reliable Computing Systems ,
University of Newcastle, England, Ju ly 31—Augus t 4 , 1978.

10. B. Ruston and M.L. Shooman, “Software Models — Some Applications,”
Syracuse/RADC/IEEE Workshop , Minnowbrook Workshop , September 20, 1978.

11. M.L. Shooman, “Software Reliability Models ,” Martin Marietta Labs.,
Baltimore, MD, September 28, 1978.

12. M.L. Shocinan , “Reliability Analysis ,” Polytechnic Graduate Seminar Series
in Electrical Engineering , October 5, 1978.

13. M.L. Shooman , “Software Engineering Models,” Computer Science Lecture
Series . Lecture Talk and discussion leader at graduate seminar , Uni-
versity of Maryland , October 23, 1978.

14. E. Lipschitz , “Automatic Programming,” Computer Science Seminar , Poly—
technic Institute of New York , November 8 , 1978.

15. M.L. Shooman , “Engineering Reliability,” Polytechnic Executive Mana ge—
ment Seminar , Skytop , PA, November 13, 1978.

16. N. Ruston, “Software Models ,” Computer Science Seminar , Polytechnic
Institute of New York, December 13, 1978.
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6.3 SThPOS IA. TECHNICAL SOCIETIES • AND EDUCATIONAL ACTIVITIES

1. M.L. Shooman organized a group of f ive interrelated talks on Reliability
Application in Mechanical Engineering for the Polytechnic Graduate ME
Seminar , Fall , 1979.

2. 0. Ruston reorganized three core courses in the ondergraduate computer
science curricul um and developed a new course in data structures .

3. M. L. Shooman develop ed new notes and material on Software Design to his
graduate Software Engineering course.

4. A. Laaamel developed two new undergraduate microp rocessor laborato ry
courses and a graduate microprocessor course.

5. M.L. Shooman serves on the Executive Co ittee of the Computer Society ’s
Technical Coasaittee on Software Engineering.

6. Various research members (Shooinan, Rus ton , Laeamel, Baggi , Popkin) regu-
larly serve as referees for Compcou, Compsac, IEEE Proceedings on Sof t—
ware Engineer ing, and Networks , conferences and j ournals.

6.4 BOOKS AND AWARDS

1. Henry Ruston published the textbook “Progra~~4ng with P1/I,” McGraw—Bill
Book C , 1~~, 1978.

2. Martin L. Shooman contributed a chapter entitled Software Engiueerin3 to
the book - 

“Computing System Reliability ” being edited by Brian Ran4eIl
and scheduled for publicati on by Cambridge University Pr ess , 1978.

3. Martin L. Shooman received the 1977 Annual Reliab ility Award of the IEEE
Reliability Society on January 18, 1978.

4. Martin L. Shooman “Software Engineering: Reliability, Design , Nan—
agsment ,” accepted for publication by McGraw—Hill, November 1978.
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