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ABSTRACT

This paper proposes a stopping rule (Rule 2) for terminating data
collection in a queueing simulation experiment. The appeal of the rule
lies in the fact that data collected in this way can be used to compute
interval estimates with coverage rates that compare favorably with
theoretically specified rates. The rule relies on a comparison between
a priort information on the activity level (traffic intensity) p and
a corresponding sample estimator computed during the course of simulation.
Experiments wigh simulations of the M/M/c queue with ¢ =1,2,4 and
p=.7,.8,.9,.95 were conducted to evaluate the rule. The experiments
used a starting rule (Rule 1) proposed in Adlakha and Fishman (1979) to
reduce bias due to the initial conditions and also used the autoregres-
sive method to obtain interval estimates of the steady-state mean. For
p=.7, .8, .9, the coverage rates are close to the specified theoreti-
cal coverage rates and are higher than those reported in the literature
for other methods of interval estimation. The data reveal a degradation
in the coverage rate for increasing values of activity level. For
p = .95 the coverage rates are somewhat lower than those expected theo-
retically, indicating room for some improvement in technique. The sample
sizes used to obtain the coverage rates are moderate and are insensitive
to variation in the number of servers and the activity level. The rule
can be easily generalized to a wider class of queueing simulations.
Furthermore, experiments with a fixed truncation starting rule and a fixed
sample size stopping rule clearly demonstrate the superiority of using

Rule 1 and Rule 2 together. This is very encouraging, for it indicates
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a procedure now exists for controlling the detrimental effects of initial

% conditions and skewness on interval estimation in queueing simulations.
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1. Introduction

This paper proposes a stopping rule for terminating data collection
in a queueing simulation experiment. Data collected in this way are used
to compute interval estimates (for the population mean) with coverage
rates that compare favorably with theoretically specified rates. This
comparability is the appeal of the rule. Although most analysts of output
from discrete event simulations with stochastic input would agree that
interval estimates of parameters of interest are useful, prior attempts
to develop procedures for computing such useful estimates have met with
limited success. The principal impediment has been the inability of pro-
posed techniques to produce empirical coverage rates as high as the theo-
retically specified coverage rates in sampling experiments designed to
evaluate the proposed estimation techniques. A review of past perform-

ance appears in Adlakha (1979).

The reasons for these inadequacies are not difficult to find. Let
0 bea point estimate of 6 and let var(8) be a point estimate of

var(8) . Then a 1-a interval estimate of 6 usually takes the form

0 + 0/45:75- , Q being the 1-a/2 quantile of either the normal or a

t distribution. Now the writers, as well as others, have observed two
potential sources of difficulty with this interval estimate. In particular,
one customarily treats o as normally distributed when it often exhibits
positive skewness in practice. Also, cov(8, var(8)] > 0 , implying

that below (above) average & occurs with below (above) average vavr(8) .
These observations lead to the intuitive conclusions: Positive skewness
and positive correlation imply that 8 falls below 6 more than fifty
percent of the time and the interval estimate width 2Q¢6§;?33 is shorter




than normal theory suggests at least fifty percent of the time. This
asymmetry of the center of the interval estimate and its shorter-than-
expected width lead to a lower coverage rate in practice than one would )
expect for a normally distributed 6 and uncorrelated 8 and var(8) . '
To overcome the inadequacy of past suggestions, this paper presents

an approach to interval estimation that uses ancillary information avail-

able to an analyst before, during and after execution of a simulation of

a queueing system. This information consists of arrival and service rates
or their corresponding reciprocals, mean interarrival and mean service
times. The principal idea is to compute sample quantities such as sample
mean interarrival and service times and compare them with their correspon-
ding true values. When the deviations between sample and corresponding
true quantities fall within specified tolerances, one stops or terminates
the run and uses the data collected so far to compute an interval estimate.
The rationale here is that making sample quantities representative of their
corresponding true quantities may make 8 representative of 6 . If this
behavior materializes, then one intuitively expects greater success in
computing adequate interval estimates for 0 . One additional motivation
for this use of a priori information is that it is available for a wide
variety of queueing simulations.

The paper recommends a stopping rule that exploits this relationship
between the theoretical and sample activity levels in a queueing simulation.
When used with a starting rule described in Adlakha and Fishman (1979) for
beginning data collection, and with the autoregressive method of interval
estimation (Fishman 1971), the proposed stopping rule leads to coverage rates
comparable to theoretically specified ones for a wide range of activity

levels. Also, the coverage rates are higher than those reported in the
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g literature for other methods of interval estimation and require smaller sample
sizes (for comparison see Law 1977, Fishman 1978a). We demonstrate this

success by application of our proposed starting rule - stopping rule pro-

cedure to simulations of the M/M/1, M/M/2 and M/M/4 queueing simulations
with activity levels p = .7, .8, .9 and .95 . Section 2 formulates the
i ; problem to be investigated, describes the proposed stopping rule and how
it is to be used with the Starting Rule 1 in Adlakha and Fishman (1979).
Section 3 presents results on coverage rates and related performance E
measures, showing the favorable performance of the proposed starting rule - 1
stopping rule. It also includes an analysis of sampling variation in |

stopping times when using the proposed stopping rule. Section 4 compares

the proposed starting rule - stopping rule procedure with several poten- .
tially useful alternatives and demonstrates the superior performance of

our proposal.

2. Problem Formulation

Consider a simulation model of a queueing system with ¢ servers
in parallel, independent interarrival times with mean 1/\ and indepen-
dent service times with mean 1/w . Let T1 denote the elapsed time
between arrivals of jobs i-1 and 1 and let Si denote the service
time of arrival i . Assume that the simulation begins with the arrival
of job 1 to an empty queue and ¢ idle servers. Let X; denote the
ayatem time of completion {1 where system time denotes waiting time plus
service time. Assume that an ultimate objective of analysis is to compute

an interval estimate of the mean system time from a sample record of system

times. Also assume that given the choice between starting data collection
in an undercongested or a congested system, one prefers the congested one.

See Adlakha and Fishman (1979) for a discussion of this point.




Starting Data Collection

After n completions occur during a simulation run, one can esti-

n n

mate 1/A and 1w by n”) {1 ; T, and n”! ) >
= “,

These estimates are unbiased and independent of initial conditions. Now

Si respectively.

the activity level or traffic intensity for a queueing system usually is

defined as

p = arrival rate/ number of servers x service rate
= (e * w)

for which one estimate is
n In )
B, = si/(c » ) .
pn Zil] i i=1 i
Since an is usually a biased estimator of p an alternative, presum-
ably more desirable, estimator is
P By,

o, = ; (M
& E(3,)

since E(Bn) is in principle derivable for most common interrarival and
service time distributions. For example, in the case of exponential

interarrival and service times E(bn) = pn/(n-1) so that
Pp = (n-1)5,/n

In the present paper, data collection begins with system time T+l

where




Starting Rule 1: T =min(n: Sy, S, and S; hold)

and
2 {|al'n T pl e 6} ’
3 {pl,n g pl.n-l} 8
{mI = n-1} ,

8§ = specified tolerance > 0 , m = specified integer > 0, I = |(n-1)/mJ .

The quantity BI n 1S the local sample activity level,

n
5
i=ml+] . n-ml-1
2n n-ml

) T_ :
i=mI+1 |

This sample activity level applies for the M/M/c queue and requires an
adjustment in its correction factor (n-mI-1)/(n-mI) for distributions
other than the exponential. Adlakha and Fishman (1979) describe the
detailed benefits of this rule.

In words, Rule 1 requires one to use a sample activity level based
on at most m past completions. The quantity I denotes the number of
times one needs to reset Bl,n 3 t.e., the number of iterations minus one.

A little thought shows that
pr(1 = i) = (1 -q)' q i=0,0,...

where U is the probability of success on a given iteration. Then I

has a geometric distribution with mean (1 - qm)/qm and variance

(- qm)/q: . Also, the mean number of completions E(T) required to




meet Starting Rule 1 satisfies

m(1 - qm)/qm < E(T) < m/qm y

Following the Adlakha and Fishman (1979) recommendations, we choose
m=5000 and § = .0001 .

Seleoting a Stopping Rule

The stopping rule that we develop is based on a comparison of the
theoretical activity level p and the sample activity level Bn in
(1) computed during the execution of 2 simulation and where n now
counts the number of completions in the collected data. As stated earlier,
we anticipate that representing p by Sn will induce an underlying corre-
lation structure in the data that leads to a representative sample mean
Yﬁ = % Z:’] xT+i » where XT+1' v Kpy, ave the collected system
times and will produce an interval estimate or confidence interval whose
coverage rate agrees with the corresponding theoretical coverage rate.

Although the notion of a stopping rule based on a comparison of
sample and corresponding theoretical activity levels is easily appreciated,
several issues play an important role in determining the explicit form a
stopping rule should assume. These issues are:

i. What should the tolerance be for the comparison of
b, and o ?
i1. Should there be a directional relationship of Sn

to o, ?
i11. Should there be a lower bound on the size of the

sample to be obtained for estimation?
iv. Should there be an upper bound on the sample size to

avoid excessive data collection?

e * sec ot e o ol e o 4L 8 St o 2ol vy o e ., 8 B o
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We address each issue in the context of the formulated stopping procedure:

1 1. Begin the simulation in the empty and idle state.
2. Apply Starting Rule 1 to determine the first system

time XT+] to collect.

3. Collect system times XT+]. ey XT+N where

N = min(n: |p_ - p| < &%)
€3 ' n
Stopping

Rule 2

and Bn is based on interarrival and service
times for completions T+1, ..., T+n and &*
is a specified tolerance.

4. Compute a sample mean and interval estimate

X

from XT+I’ cees Koy

Tolerance Criterion

Step 3 implies that at the termination of data collection
SN € [p-6*, p+6*] . For values of SN € [p-6*, p) it is conceivable
that p. <p-6* for all n <N and that a congested state is never

experienced. Alternatively, when

psf)Nsp+6*

it is possible that p > p + &* for all n <N and that the system

fails to experience less than average congestion. Moreover, the ratio

Sn/p has a positively skewed distribution with mean 1 and is indepen-

dent of p for a fixed &* (see Adlakha 1979). This indicates that as '3

Ao v o




p 1increases pr(Bn < p - &§*) 1increases faster than pr(Bn >p+ &%),
implying that it is more likely that Snc [o-6*.p) than B, € [p, p*6*] .
It is reasonable to believe that if the choice lies between over-
estimating or underestimating the congestion, most analysts would prefer
to overestimate in queueing models. This is especially important in the
case of systems with high activity level p . To favor this behavior in

the system, we modify step 3 by the substitution:

N =min{n: p<p sp+ 6} .

Directional Criterion

Once Bn is within the specified interval [p, p+6*] , it indicates
that the desired congestion level has been reached. At this stage it
would be preferable to continue collecting data and stop only when there

is an indication that the system is leaving the congested state, <.e.,

Py < Ppuy We expect this to happen when completion n has a shorter

service time or a longer interarrival time than the average, thereby
contributing to a below average system time for the nth customer. This

will also produce a decrease in Sn . Therefore, we include an additional

- in step 3 . We anticipate that this condition

condition “Bn <P

along with the condition "p < Sn < p+ 8" will provide a sample record

with enough observations from the congested system.




Lower Bound on the Sample Size

A precise estimate of var(Yﬁ) is important for interval estmation.
As mentioned earlier, we use the autoregressive analysis approach to esti-
mate var(Yﬁ) . Based on experiments, Fishman (1971) showed that this
sample variance approximation is not reasonable when the sample size

n < 500 . To improve on this approximation, we restrict stopping time tc

n > 1000 in step 3 .

Upper Bound on Sample Size

Experience in testing starting rules in earlier work (Fishman and
Moore 1978) revealed that in the absence of an iterative procedure as in
Starting Rule 1 excessively large starting times can occur. Step 3
admits a similar possibility for stopping times, as preliminary experimen-
tation confirmed. To favor congested systems and to avoid excessively
large stopping times, we propose an iterative stopping rule with upper
bound of m* = 5000 , to be consistent with Starting Rule 1 . The upper
bound is applied as follows: If the stopping rule is not satisfied until
n = 5000 during a simulation run, these observations are discarded. Another
independent replication is generated from the empty and idle state and

Starting Rule 1 is again satisfied. Then the complete stopping rule is:

N = min(n: p < f)

o < P¥S%, B < p_ys N 21000, m* = 5000) .

A perusal of the data obtained from the initial experiments indi-

cates that for replications where 8"_] > p+8*, the empirical coverage

rates are comparable to the theoretically specified coverage rates. A

little thought shows that this is not surprisina. It is reasonable to

believe that the value of SN might play a role in determining the

PR AL T S SR
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coverage rate. The directional criterion SN > 8“_‘ does not appear
to induce sufficient congestion in the system although p s 8“ s p+é*,
because it is possible that Sn <p for n s N-2. Incontrast, the

condition BN-I > p+é* favors more congestion in the system.

The proposed procedure with lower and upper bounds is now:
1. Begin the simulation in the empty and idle state.
2. Apply Starting Rule 1 to determine the first system
time XTH to collect.
n+«0.
nen+1,.
Collect system time X

T+n °
If n <1000 go to 4.

~N OO 0 W

Compute Sn based on interarrival and system

times for completions T+1, ..., T+n .
Stopping 2 "
If p<pnsp+5* and pn_1>p+5*,N<-n
Rule 2 ;
and compute a sample mean and interval estimate from

"m‘ Vi xT+N and stop.
9. If n=m* = 5000 , discard XTH' SRR me and go
to step 1 .

10. Go to step 4 .

e ——
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Although we anticipate that the upper bound m* would keep the
sample size from becoming excessive, discarding the data on a replica-
tion when the stopping rule is not satisfied may affect the statistical
reliability of the estimate. We study the effect of this upper bound in
Section 3 . Preliminary testing indicated that &* = .01 would be a
worthwhile choice.

We study Stopping Rule 2 using the experimental design:

b= 7, 8 (9, 958,
i P S T

The objective here is to investigate the performance of Stopping
Rule 2 for varying number of servers in the M/M/¢ queue over a range

of values of o that represent moderate to high levels of congestion,

3. Results of Experimentation

To study Stopping Rule 2 , we performed 100 independent replica-
tions on each queueing model ¢ = 1, 2, 4 for each activity level

(p = .7, .8, .9, .95) . On each replication, the collected data were:

N* = stopping time, including the number of observations

in discarded replications,

Xy = sample mean system time based on N = N* (mod 5000)
observations,

SN = sample activity level at termination

Rj = sample autocovariance at lag j, J = 0,1,...,50 .

The sample mean and autocovariances were used with the autoregressive
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method to produce an estimate of var(Xﬁ) and 90 and 95 percent

interval estimates for mean system time.

Coverage Analysis

Table 1 presents the empirical coverage rates for mean system
time. The data show that the coverage rates obtained for p < .9 are
comparable to those suggested by the theory. Notice that for a given
value of c , the coverage rate tends to decrease as p increases.
This implies that higher levels of utilization in the system degrade
the performance of Stopping Rule 2 . For a given value of p , the

performance appears to be unaffected by different values of ¢ .

Since, to our knowledge, no results on the estimation of the mean A
system time u for the M/M/c queue with ¢ > 1 and o = .95 have been !
reported in the literature, we use the coverage rate for the M/M/1
queue with p = .9 obtained from earlier proposed methods as our basis
of comparison. For a sequential method developed in Fishman (1971) the
90 percent empirical coverage rates obtained were between 66 percent
and 79 percent. In an empirical testing of the batch means method,

Law (1977) obtained a 90 percent empirical coverage rate of 86 for

a fixed sample size of 12800 . With the method of batch means, Fishman
(1978a) obtained an empirical coverage rate of 90 for the 95 percent
confidence intervals with a fixed sample size of 16384 . Therefore,

we can conclude that Stopping Rule 2 provides a better coverage rate

than the methods cited in the aforementioned references. The significance
of this achievement is magnified by the fact that the sample sizes used

to obtain these coverage rates are much smaller than those used by other

methods. We discuss the distribution of the sample size shortly.
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Table 1
Empirical Coverage Rates Using
Stopping Rule 2 for Mean System Time

5 90% Coverage 95% Coverage
c 7 8 9 .95 Jd 8 9 95
1 97 9 88 77 99 94 93 82
2 97 96 90 73 97 97 92 79
4 95 95 86 73 98 97 90 83

Bias

In general one would l1ike sample means that are unbiased estimators
of mean system time . . However, because of the procedures for starting
and stopping data collection, one has reason to believe a priori that

X

N for random T and N 1is a btased estimator of wu .

Let Y. denote the sample mean of replication 1 for

i
12 7, oo 10 « Then
| 100
Tew i, Y
i=]
gives the grand sample mean over all replications for a given (c,p)

2-tuple and Y - u gives an estimate of the bias in Yis oo 00

A B D TP RGN T IR R
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Then

2 § 2
Syrvoo L, (-
is an estimate of var(Y) .

Table 2 shows the relative bias (Y - u)/u and Table 3 shows
the standardized deviate (Y - u)/#éi;: Although the significance of
the bias is well established in Table 3, its small relative impact in
Table 2 removes any substantive concern about an overriding bias com-

ponent.

Table 2
Relative Bias of the Sample Mean System Time?
(Y - u)/u
P
7 .8 9 .95
.046 .044 .057 .077
.030 .048 .076 -.051
.036 .034 .036 .056

3 The mean system time u can be computed using formulae
in Gross and Harris (1974).
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Table 3

Standardized Bias of the Sample Mean System Time

(V - ")//5.2'\!'_

15

4]
ol .8 .9 .95
4.409* 2.792* 1.874 1.314
3.605* 3.609* 2.721* -1.287
4.879* 3.243* 1.411 1.092

*Significant at the 5% level.

Vartance Analysis

When computing confidence intervals for iﬁ » one relies upon the

accuracy of the estimate of its variance. Here we examine the issue of
bias in the estimation of the variance of the sample mean as a possible
source of errorT As previously discussed, the autoregressive procedure
was employed to estimate the variance of the sample mean in a replica-

tion. Let Yi and Vi denote the sample mean and the sample variance

of the sample mean, respectively, on the ith replication. Furthermore,
let

~ ) 100 .

V=mzi]vi0

TAdditional comparisons appear in Adlakha (1979).
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and
= 100
Vegg I (v,-T?,
i=1
where
1 100
Ty bt

For Qi to be an adequate estimator of var(Yi) . V should be close to
V since V is an unbiased estimator of var(Y;) .

Table 4 presents the variance estimates V and V . The results
show an upward bias in 0 for p < .9 . This pattern is somewhat differ-
ent for p = .95, where in two out of three cases a downward bias in
Q is suggested. No doubt, this underestimate for o = .95 is responsible
for the degradation in coverage rate in Table 1 . Clearly, work remains to

be done in improving V as an estimator of var(Xﬁ) :

Correlation

Fishman (1978a) observed that a principal source of error in the
interval estimation of correlated data is the high correlation between
YN and v$r(7ﬁ) . Table 5 provides these sample correlations for the
experiments in this study. The data confirm that X, and vSr(Xﬁ)
are positively correlated. At first thought, this observation is per-
plexing, since we have pointed to correlation's being the culprit that

degrades the coverage rate. One plausible explanation lies in the

LTI T ———
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Table 4

Comparison of Estimates of var(X&)

R T L e 2
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P
c .7 .8 .9 .95
v 107 .580 13.747 64.700
1 V .060 .393 7.380 124.557
Ratio] 1.78 1.48 1.86 0.51
f—
v .099 .699 11.292 61.629
2 v .053 .345 7.060 59.568
Ratio| 1.87 2.03 1.60 1.03
v 21 .679 13.383 69.486
4 ] .080 .336 7.386 111.770
Ratio] 1.5 2.02 1.81 0.62
Table 5
sample Correlation® between Xﬁ and vSr(X&)
8]
¢ o .8 .9 .95
1 773 .803 .802 .700
2 .781 .767 671 .541
4 .794 742 702 570

AThe critical value with lgo observations at the 5%
.195 .

significance level is

it b s e
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significant bias in YN (see Table 3). This small but perceptible
upward tendency may be sufficient to make the correlation in Table 5
work in our favor. That is a tendency to overestimate u with a
positive correlation between 7& and vSr(Xh) leads to wider interval
estimates than strict normal theory would suggest. In turn, this may
contribute to the improved coverage rates. In fact, the absence of
significant bias in X, for p = .95 may be the missing ingredient

N
needed to make V more representative of var(!ﬁ) h

Recall that Stopping Rule 2 imposes an upper bound m* on the
sample size in a replication. To study the affect of this bound on
7& » we examine the sample correlations between the stopping time N*
and the corresponding sample mean X, , N = N*(mod 5000) in Table 6 .

The correlations show no significance at the 5 percent level.

Table 6

Sample Correlation® Between Yﬁ and N*

[
c 7 8 .9 95
1 -.049 .043 .047 -.100
2 .087 .106 192 .068
4 -.049 -.007 .015 .093

a
The critical value with 100 observations at the
5% significance level is .195 .
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Distribution of Stopping Time

Table 7 gives the sample quantiles of the stopping time N* .
The lower quantile values reflect the lower bound of 1000 in Stopping
Rule 2 . Although the quantiles show the distribution of the stopping
time to be positively skewed, the 95 percent quantiles range from
8722 to 17156 , indicating small probability for an excessive sample
size.

Notice that the quantiles appear to be insensitive to p and c .
Since the distribution of 8n/p is independent of ¢ , the insensiti-
vity of N* to c does not come as a surprise. The insensitivity to

p is no doubt partially due to the facts that for a fixed &* and n ,

as p 1increases the pr(p < PpsP* &*) decreases, whereas pr(Sn_] > p + &%)

increases. The effects of these conditions on the stopping time seem to
balance each other for an increase in p .
The sample mean, standard deviation and coefficient of variation of

the stopping time N* appear in Table 7 . The mean stopping times vary

between 3586 and 5027 and occur between the 60 and 70 percentiles.

The sample coefficients of variation G", are generally close to one.

These observations suggest that although the distribution of N* is posi-

tively skewed, it has a short tail to the right. Thus, encountering an

excessive stopping time is a remote possibility.

4. Comparison with Other Rules

This section compares the performance of the proposed starting-stopping
rule procedure w{th some alternative starting and stopping rules using the

experimental design which we describe shortly. We use the coverage rate of

PRy L
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“The quantities Gye and Jye denote
varfation respectively.

the standard deviation and the coefficient of
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Table 7
sample Quantiles q of Stopping Time N* for Stopping Rule® 2
Pr(W gq) = p
C 2
[\
100~ % .8 .9 9 1 2 .8 .9 .95 7 .8 .9 .95
\ 1001 | 1000 | 1000 | 000§ 1000 | 1000 |1000 | 1007 | 1002 | 1002 | 1000 | 1000
2 1003 | 100 | 1000] 100] 100 | 1009 1002 | 1007 | 1002 | 1003 | 1001 | 1002
5 1036 | 1007 | 1001 | 1009] rorr | vonv Jrovo | 1007 | 108 | 1007 | 1007 | 1009
10 1085 | 1043 | 1004 ] 1036] 1070 | 1040 ] 1036 | 1035 | 1052 | 1027 | 1082 | 103
15 1095 | 1077 | 1009 | 48] 1122 | 1075 |r086 | 1054 | 1103 | 1066 | 1062 | 1102
20 1ro | 1s | r036f 1mo3] n29 | e 63 | wer | e | nst | 1089 | naa
2 1268 | 186 | 1wes ] | 1350 | nra Jr227 | e | 1235 | 17 | naa ] nos
30 1350 | 1259 | 1255 | 1199 1658 | 1274 f1332 | viss | 1313 | 1506 | 1179 | 1335
3 1428 | 1398 | 1322 1383 1760 | 1399 |aze | 1332 | 1567 | 1831 | 1352 | 1368
40 1639 | 1589 | 1459 | 1469 | 2066 | 1666 J1550 | 1552 | 1720 | 2141 [ 1496 | 1481
as 193¢ | 1797 | 1530 | 1596 2361 | 1797 sz | 172 | 1916 | 2533 | esy | 7
50 2048 | 2048 | 1724 | 1755 ) 3053 | 2038 1930 | 2199 | 2095 | 2910 | 1858 | 2115
55 2003 | 2384 | 839 | 34| 3732 | 2197 2152 | 2727 | 2551 | 340 | 2074 | 2604
60 3167 | 2921 | 2107 | 2495 ) 3987 | 2603 | 3006 | 4130 | 3345 | ang | 2705 | 3208
65 4382 | 4035 | 2677 | 3385] 6005 | 3297 |a789 | 6077 | a3as | 612 | 2868 | 4108
70 6038 | 4979 | 3180 ] 6017 | 6279 | as10 |e6134 | 6316 | 6021 | 6065 | 6003 | 6003
75 6215 | 6328 | 3972 ] 6147 ] 6789 | 6022 ] 6573 | 6646 | 6116 | 6465 | 6060 | 6077
80 6789 | 6787 | 6101 | 6255 | 8279 | 6385 | 7219 | 7423 | 6231 | 6896 | 6265 | 6233
85 8105 | 7226 | 6387 | 6705 J11078 | 7340 prore | o088 | 6343 | 8487 | 6553 | 6678
90 1513 [n209 | 7678 | 7126 {128y | 11033 piv2? |08 | 72 | ni2za | 76ess | 7638
a5 17156 J13358 {11003 | 8722 J16056 | 11411 Rases I1isas 12829 16073 (12151 |nis2s
98 26071 |16443 | 11481 [11202 16654 | 16773 6253 | 13169 | 21204 |17096 | 21491 |16082
99 31011 17839 [ 1190z (11421 17198 [ 17625 6393 | 14027 | 22494 eru 22183 J17na
min 1001 | 1000 | 1000 | 1000 | 1000 | 1000 |1000 | 1007 | 1002 | 1002 | 1000 | 1000
max 371107 | 21470 | 16716 | 23160 | 21424 | 46851 ﬁms 37045 | 23025 17575 | 36016 | 21437
Ne 5018 | 4188 | 4453 |3586 ! e~=7 ¢ 4228 4652 | 4627 | 4295 | a7s7 | 4128 | 4026
Oye 6378 | 4330 | 4759 |34a6 | 4647 | 513 Jaon3 | 4989 | 4627 | 4376 | 5337 | 3996
vy 1.227 1 v.03 | r.07] .9 92 f1.35 |r.06 | 1.08] 1.08 92 | r.29] .99
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the mean system time as the criterion for comparisons.

Let R, and RZ denote Starting Rule 1 and Stopping Rule 2
respectively. As a variation of rule R] » consider a fixed truncation
rule that puts the M/M/c queue into the steady state and denote this
rule as FT . Similarly, as an alternative for rule R2 » consider a
fixed sample size rule and denote it as FS . Rule FS uses a sample
size equivalent to the mean stopping time of rule Rz for given ¢
and o .

Four combinations of starting and stopping rules are considered:

i. (R], RZ)
ii. (FT, Rz) = fixed truncation with Stopping Rule 2 ,

Starting Rule 1 with Stopping Rule 2 ,

iii. (R], FS)
iv. (FT. FS)

Starting Rule 1 with fixed sample size,

fixed truncation with fixed sample size.

Hereafter, allusion to system (A,B) means the experiment with starting
rule A and stopping rule B. System (-, B) refers to stopping rule B
where starting rule can be either R] or FT and system (A, <) refers
to starting rule A with stopping rule R2 or FS .

Let (Fo, FS) denote the system where simulation begins in the
empty and idle state and FS is the stopping rule as defined earlier.
Blomqvist (1970) showed that, provided certain conditions are satisfied,
for a large sample size the mean-square error of sample mean as an esti-
mator of the population mean is minimized if one starts the simulation
from the empty and idle state and no observations are discarded. However,
for a correlated sample record, as 1svthe case in most queueing simula-
tions, it is not clear that minimizing mean-square error would necessarily

provide the theoretically specified coverage rate. Therefore, we also
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compare the mean-square errors and coverage rates obtained by using
system (R]. Rz) with those obtained from system (Fo. FS) .
To study the performance of the aforementioned systems, we consider ;

the experimental design:

oly +85 <9, 96 , }
b 20
system = (Ry, Ry)s (Fp. Ry)s (Rys Fg)s (Fps Fo) .

P

C

With regard to truncation rule FT » an exploratory research
showed that a truncation of 1000 observations, starting from the
empty and idle initial state, suffices to put a system in the steady
state for the M/M/c queue with ¢ =1,2,4 and p = .7, .8, .9 .
This implies that the initial conditions hardly affect completion
1001 for these queues. However, for p = .95 , a truncation of
1000 observations was not sufficient, but a truncation of 2000
observations appeared adequate.

With regard to stopping rule FS of fixed sample size, for each

given value of p and ¢ we take a sample of size N* , the corres-

YT Ty e —
SRR O TR U RS
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ponding mean stopping time obtained from rule R2 . This makes rules
R2 and FS comparable in the sense that the mean number of observa-
tions are identical.

Table 8 presents the results for 100 replications for each value

of p and c with systems (FT’ Rz), (R], FS), (FT, FS) and the orig-

£
inal results for (R1, Rz) . A1l results are based on the autoregressive u

analysis in Fishman (1978b). Three tendencies are apparent. Firstly, the

:
l ¥
degradation in the coverage rate for all the systems as p increases. ?g
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Table 8
Coverage Rates for Alternative Systems
L 90% Coverage 95% Coverage
[ P

(s system Y | .8 .9 .95 ol .8 .9 .95
1 (R] .Rz) 97 91 88 77 99 94 93 82
(FT‘RZ) 97 94 87 80 97 95 88 84
(R‘ .Fs) 88 72 75 63 94 82 81 69
(FT'FS) 86 75 83 73 90 81 87 78
: 2 (R] 'RZ) 97 96 20 73 97 97 92 79
(FoRy) 92 96 87 68 95 97 90 80
(R; +F¢) 84 73 69 63 89 8 77 67
(FyoF) 89 78 82 66 90 83 34 76
4 ( Rl 'RZ) 95 95 86 73 98 97 0 83
(F.r .Rz) 98 98 86 75 99 98 88 80
(R' ,Fs) 82 83 78 78 9 86 82 82
(FT.FS) 84 87 77 70 86 88 82 76

This shows that high utilization in the M/M/c queue affects the performance
uniformly for each system. Secondly, the superiority in the performance

of system (R], R2) over (R]. FS) and of system (FT’ RZ) over

(FT, FS) . This indicates that, regardless of the starting criterion used,

stopping rule R2 yields better coverage rates than the fixed sample size
FS with equivalent expected cost, in terms of number of observations. | &

Thirdly, there is no apparent distinction in the performance of systems

(R], Rz) and (FT, Rz) , and of systems (R]. Fs) and (FT’ FS) -




This implies that the performance of Starting Rule 1 is as good as the
performance of fixed truncation which puts the system in the steady state.
Two subsequent statistical analyses also revealed useful insights.+
An analysis of variance together with multiple comparison procedures
based on transformed coverage rates showed that for p < .9 , system
(e, R,) was significantly better than system (-, FS) . Moreover, no
'significant difference existed between the performance of systems (R], .)
and (FT’ *} . To select the best among the four systems, the procedure

in Bechhofer (1954) was used. It indicated that system (R]. Rz) was

best for p = .7 and .9, with at least probabilities of .562 and

.956 respectively. For p = .8, (FT’ R2) was selected as best with

a correct selection probability of .458 . For p = .95 , the procedure
was indifferent between systems (R], RZ) “and (FT. Rz) . The prevalence
with which the several statistical analyses focus on R] and R2 enables
us to conclude that (R]. R2) is at least as good in general as any of the
other systems. However, the greatest attraction of (R1, Rz) comes from
the fact that FT is impractical in application unless one knows how many
observations to truncate and FS is wmpractical unless one knows how many
observations to collect to make the autoregressive analysis a useful tool.

As mentioned earlier, the Blomqvist (1970) result encourages one

to truncate no observations to minimize mean-square error. To _test the
performance of the zero truncation rule Fo » we ran the design

p=.7, .8, .9 and .95 and c =1, 2 and 4 for system (Fo. FS) and

computed coverage rates. Table 10 compares these rates with those for

Tsee Adlakha (1979) for details.
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(R]. Rz) . The superiority of (R], Rz) is clearly established, in
spite of the fact that computed mean-square errors for this system were
larger than corresponding mean-square errors for (Fo, FS) . These
observations lead to the conclusion that (Fo, FS) generates a more
accurate point estimate in terms of mean-square error but (Rl’ RZ)
gives a superior interval estimate as measured by coverage rate. In our
opinion the greater precision of (Fo, FS) for the point estimate is of
little value if we have no adequate way to estimate the precision. We
prefer to pay the penalty of a less accurate point estimate whose preci-

sion we can successfully evaluate.

Table 9
Coverage Rates for Systems (Fo. FS) and (RI. Rz)

90% Coverage 95% Coverage
P P
c system .7 .8 .9 .95 i .8 .9 .95
1 (Fo. FS) 79 82 76 57 83 89 83 60
(R,. Rz) 97 9N 88 7 99 94 93 82
2 (Fo. Fs) 89 78 n 68 93 85 78 74
(R,. Rz) 97 96 90 73 97 97 92 79
4 (Fo. Fs) 90 82 74 62 9% 85 81 68
(R‘. Rz) 95 95 86 73 98 97 90 83

———
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5. Conclusions

The objective in this study has been to devise generally applicable

methods to improve interval estimation 1in a queueing simulation. On the
basis of accumulated empirical evidence presented in this paper, we continue

to recommend

T = min{n: lal.n - p| <&, Bl.n > 61 pote ML= -1, &= .0001,

m = 5000}

as a starting rule (see Adlakha and Fishman 1979). Also, we recommend

Rule 2:
N = minfn: o < p, < p*8* By > p+6* n 2 1000, m* = 5000, &* = .01}

as a stopping rule.

The rules give satisfactory performance for multiserver queues

with moderate-to-high levels of congestion. Both rules use a moderate |

number of observations, are easy to understand and to implement.
Furthermore, experiments with a fixed truncation starting rule and a

fixed sample size stopping rule clearly demonstrate the superiority
of using Rule 1 and Rule 2 together. This is very encouraging, for it

indicates a procedure now exists for controlling the detrimental effects

of initial conditions and skewness on interval estimation in queueing

simulations.




'll"!IIlllII!lllllllIllIIlllllllIIlllllllIllIlIIllIlllllll!!!”"""”'““" —— ‘2‘

27

6. References

Adlakha, Veena G. (1979). "Starting and Stopping Rules for Data Col-
lection in Discrete-Event Simulation," Unpublished Ph.D. Disser-
tation, Curriculum in Operations Research and Systems Analysis,
The University of North Carolina at Chapel Hill.

Adlakha, Veena G. and George S. Fishman (1979). "A Starting Rule for
Data Collection in Queueing Simulations," Technical Report 79-3,
Curriculum in Operations Research and Systems Analysis, The Univ-
ersity of North Carolina at Chapel Hill.

Bechhofer, R. E. (1954). "A Single-sample Multiple Decision Procedure
for Ranking Means of Normal Populations with Known Variances."
The Annals of Mathematical Statistics, 25, 16-39.

Blomqvist, N. (1967). "The Covariance Function of the M/G/1 Queueing
System." Skandinivisk Aktuarietidskrift, 50, 157-74.

Fishman, George S. (1971). "Estimating Sample Size in Computer Simula-
tion Experiments." Management Science, 18, 21-38.

(1978a). *“Grouping Observations in Digital Simulation."
Management Science, 24, 510-21.

T (1978h). Principles of Discrete Event Simulation. New York:
John Wiley and Sons.

Fishman, George S. and Louis R. Moore, III (1978). “Starting Times for ¥
Data Collection in a Queueing Simulation I: Experiments with a
Single Server Model." Technical Report TR78-1, Curriculum in Oper-
ations Research and Systems Analysis, The University of North Caro-
lina at Chapel Hill.

Gross, D. and C. Harris (1974). Fundamentals of Queueing Theory. New
York: John Wiley and Sons.

Law, A. M. (1977). “Confidence Intervals in Discrete Event Simulation: ‘F
A Comparison of Replication and Batch Means." Naval Research Logistics

Quarterly, 24, 667-77.




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE O s N
. REPORT NUM 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
P i
79-4 IL
4. TITLE (and Subtitle) $. TYPE OF REPORT & PERIOD COVERED

A Stopping Rule for Data Collection in Technical Report

Queuei ng Simulations 6. PERFORMING ORG. REPORYT NUMBER

[7. AUTHOR(e) s ACY O NT NUMBER(S)

Veena G. Adlakha and George S. Fishman N00014-76-C~0302

(5. PERFORMING ORGANIZATION NAME AND Aoauu]

University of North Carolina
Chapel Hill, North Carolina 27514

L] ENT. PROJECT, TASK
Ab ‘*K UN:’Y NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORY DATE
Operations Research Program Ausust, 1979
Office of Naval Research 5. NUMBER OF PAGES
Arlington irginia 2221
L e T T & o 41y s Py
Unclassified

t FICATION/ DOWNGRADING
{] LE

6. DISTRIBUTION STATEMENT (of this Report)

DISTRIBUTION STATEMENT A
Distribution of this document is unlimited. Approved for public release;

Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Bleck 20, I{ different frem Repeort)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side )1 necessary and identify by block mumber)

Autoregressive method Simulation

Interval Estimate Stopping Rule

oo
20. A ACT (Continue on reverse slde If necessary and ldentity by block number)

This paper proposes a stopping rule (Rule 2) for terminating data col-
lection in a queueing simulation experiment. The appeal of the rule lies in
the fact that data collected in this way can be used to compute interval
estimates with coverage rates that compare favorably with theoretically
specified rates. The rule relies on a comparison between a priori information
on the activity level (traffic intensity) p and a corresponding sample

estimator computed during the course of simu!ation.‘tExperiments with simula-

B coiiw MBS SETIon 07 ey ReNuETE UNCLASSIFIED
VUCTRITY CCARHFICATION GF VWIS PAGE (Weon Bors Bntorsd)

BT T L oo

—




UNCLASSIFIED
SECURITY CLASMPICATION OF THIS PAGE (When Date Bntered)

tions of the M/M/c queue with ¢ = 1,2,4 and p = .7,.8,.9,.95 were conducted
to evaluate the rule. The experiments used a starting rule (Rule 1) to reduce
bias due to the initial conditions and also used the autoregressive method to
obtain interval estimates of the steady-state mean. For p = .7,.8,.9 , the
coverage rates are close to the specified theoretical coverage rates and are
higher than those reported in the literature for other methods of interval
estimation. The data reveal a degradation in the coverage rate for increasing
values of activity level. For p = .95 the coverage rates are somewhat lower
than those expected theoretically, indicating room for some improvement in
technique. The sample sizes used to obtain the coverage rates are moderate

The rule can easily be generalized to a wider class of queueing simulations.
Furthermore, experiments with a fixed truncation starting rule and a fixed
sample size stopping rule clearly demonstrate the superiority of using Rule 1
and Rule 2 together. This is very encouraging, for it indicates a procedure
now exists for controlling the detrimental effects of initial conditions and
skewness on interval estimation in queueing simulations.

and are insensitive to variation in the number of servers and the activity levell.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

i AR e A T T

"

R R R




