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ABSTRACT

This paper proposes a stopping rule (Rule 2) for terminating data

collect ion in a queueing simulation experiment. The appeal of the rule

l ies in the fact that data collected in this way can be used to compute

interval estimates with coverage rates that compare favorably with

theoretically specified rates. The rule relies on a comparison between

a priori information on the activity level (traffic intensity) p and

a corresponding sample estimator computed during the course of simulation .

Experiments wi th simulations of the M/M/c queue with c 1 ,2,4 and

p = .7 ,.8,.9,.95 were conducted to evaluate the rule. The experiments

used a starting rule (Rule 1) proposed in Adlakha and Fishman (1979) to

reduce bias due to the initial conditions and also used the autoregres-

sive method to obtain interval estimates of the steady-state mean. For

p = .7 , .8, .9, the coverage rates are close to the specified theoreti-

cal coverage rates and are higher than those reported in the literature

for other methods of interval estimation . The data reveal a degradation

in the coverage rate for increasing values of activity l evel . For

p .95 the coverage rates are somewhat lower than those expected theo-

retically, indicating room for some improvement in technique. The sample

sizes used to obtain the coverage rates are moderate and are insensitive

to variation in the number of servers and the activity l evel . The rule

can be easily generalized to a wider class of queueing simulations.

Furthermore, experiments with a fixed truncation starting rule and a fixed

sample size stopping rule clearly demonstrate the superiority of using

Rule 1 and Rule 2 together. This is very encouraging , for It indicates
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a procedure now exists for controlling the detrim ental effects of initial

condi tions and skewness on Interva l estimation In queueing simulations .

~~Is
E~iff $K~I U

p 4~~ .. .D
j.~

S f • .
•
~~~~ 

- --—U 
-. -

BY . -~~ — — —‘-*0-

ml,ErIpIa1I~~
qJ 
~~

~~~it

/ 1 _

-~~ ~ .

IlL ~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~ ~~~~~~~~~ -~~- -.“ .--- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

*



- 
_________

~~~~~~~~~~~~~~~~~ W Wr *.- - _*- - -

1. Introduction

• - . This paper proposes a stopping rule for terminating data collection

In a queueing simulation experiment. Data collected in this way are used

to compute Interval estimates (for the population mean) with coverage

rates that compare favorably with theoretically specified rates. This

comparability is the appeal of the rule. Al though most analysts of output

from discrete event simulations with stochastic input would agree that

interval estimates of parameters of interest are useful , prior attempts

to develop procedures for computing such ua.f u i estimates have met with

l imited success. The principal impediment has been the Inability of pro-

posed techniques to produce empirical coverage rates as high as the theo-

retically specified coverage rates in sampl ing experiments designed to

evaluate the proposed estimation techniques. A review of past perform-

ance appears in Adlakha (1979).

The reasons for these inadequacies are not difficul t to find . let

ö be a point estimate of 8 and let v~r(e) be a point estimate of

var(Ô) . Then a 1-ct interval estimate of 0 usually takes the form

+ Qp#~~p~(~) Q being the l -ci/2 quantile of either the normal or a

t distribution. Now the writers, as well as others , have observed two

potential sources of difficulty with this interva l estimate. In particular ,

one customarily treats ~ as normally distributed when it often exhibits

positive skewness in practice. Also, cov(~, v~r(~ ) ]  ~ 0 , Implying

that below (above) average 6 occurs wi th below (above) average v~r(6)

These observations lead to the Intuitive conclusions: Positive skewness

and positive correlation imply that 6 falls below e more than fifty

L

ent of the time and the I:erval estimate :idth ) i s sho:e

~~~~~~~~~



F —‘--~~~—--—~~~~-~~~~~-— • —-.--— ,--- -~~~~~~ -*

2

than normal theory suggests at least fifty percent of the time. This

asyninetry of the center of the interval estimate and Its shorter-than-

• expected width lead to a lower coverage rate in practice than one would

expect for a normally distributed 6 and uncorrelated 6 and v~r(6)

To overcome the inadequacy of past suggestions, this paper presents

an approach to interva l estimation that uses ancillary information avail-

abl e to an analyst before, during and after execution of a simulation of

a queueing system. This information consists of arrival and service rates

or their corresponding reciprocals , mean interarrival and mean service

times. The principa l idea is to compute sample quantities such as sample

mean interarriva l and service times and compare them wi th their correspon-

ding true values . When the deviations between sample and corresponding

true quantities fall within specified tolerances, one stops or terminates

the run and uses the data collected so far to compute an interval estimate.

The rationale here is that making sample quantities representative of their

corresponding true quantities may make ~ representative of 0 . If this

behavior materializes , then one intuitively expects greater success in

computing adequate interval estimates for 0 . One additional motivation

for this use of 
~ 

p~’i~~.i Informa tion is that It is available for a wide

variety of queuelng simulations .

The paper recosi~nends a e topp in~i rule that exploits this relationship

between the theoretical and sample activity level s In a queueing simulation .

When used wi th a atartin~; rul t~ described In Adlakha and Fishman (1979) for

beginning data collection , and with the autoregressive method of interval

estimation (Fishman 1971), the proposed stopping rule leads to coverage rates

comparable to theoretically specified ones for a wide range o? activity

• levels. Al so, the coverage rates are higher than those reported in the

_
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literature for other methods of interval estimation and require smaller sample

sizes (for comparison see Law 1977, FisIman 1978m). We demonstrate this

success by application of our proposed starting rule - stopping rule pro-

cedure to simulations of the N/Nil , M/M/2 and M/M/4 queueing simulations

with activity l evels p .7, .8 .9 and .95 . Section 2 formulates the

problem to be investigated , describes the proposed stopping rule and how

it Is to be used with the Starting Rule 1 In Adlakha and Flshman (1979).

Section 3 presents results on coverage rates and related performance

measures , showi ng the favorabl e performance of the proposed starting rule -

stopping rule. It also includes an analysis of sampling variation In

stopping times when using the proposed stopping rule. Section 4 compares

the proposed starting rule - stopping rule procedure with several poten-

tially usefu l alternatives and demonstrates the superior performance of

our proposal.

2. Problem Formulation

Consider a simulation model of a queueing system with c servers

in parallel , Independent interarriva l times wi th mean 1/\ and indepen-

dent service times with mean 1/w . Let T1 denote the elapsed time

between arrivals of jobs i-i and I and let S1 denote the service

time of arrival I . Assume that the simulation begins with the arriva l

of job I to an empty queue and c idle servers, let denote the

:~~~ e’i t :’~#~ of completion I where system time denotes waiting time plus

service time . Assume that an ultimate objective of analysis is to compute

an interva l estimate of the mean system time from a sample record of system

times. Also assume that given the choice between starting data collection

in an undercongested or a congested system, one pr~fers the congested one.

See Adlakha and Fishman (1979) for a discussion of this point.

L 

_ _ _ _ _ _ _ _ _L - 
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4

Starting LPa ta Collection

After n completions occur during a simulation run, one can esti-
1mate 1/A and 11w by n ~ T,~ and n ’ 

~ 
S1 respectively.

i~1 1*1 I

These estimates are unbiased and independent of initial conditions. Now

the activit~j tevol or traffic intensity for a queueing system usually is

defined as

p • arrival rate/ number of servers x service rate
• A/(C ’w)

for which one estimate is

n n

~~~~~~~~ 
s1/ (c’I 

Ti).m l  i’-l

Since is usually a biased estimator of p an alternative, presum-

ably more desirable , estimator is

A
p =  ~~~, (1)n E(

~n
)

since E(~~) is in principle derivable for most coninon interrarival and

service time distributions . For example, in the case of exponential

interarrival and service times 
~~~ 

pn/ (n — 1 ) so that

• (n_ l )~~/n

In the present paper, data collection begins with system time Ti~1

where

L _ _

_______ 
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Staz ’ting Rule 1: T mln (n: S , S and S hold)

and

~~I,n 
> ‘~I,n— l~

*

S3 = {mI � n— l }

15 specified tolerance 0 , m = specified integer > 0 , I = L(n-l)/mJ

The quantity 
~I n  is the local sample activity l evel ,

- • n

— 
= 

i—m I~j~~~~_ n—mI -I
~I,n n n—rn !

• c .~~i=mI+l

This sample activity l evel applies for the M/M/c queue and requires an

adjustment in its correction factor (n-mI-l)/(n-mI) for distributions

other than the exponential. Adlakha and Fishman (1979) describe the

detailed benefits of this rule.

In words, Rule 1 requires one to use a sample activity level based

on at most m past completions. The quantity I denotes the number of

times one needs to reset 
~I,n ~ 

i.e., the number of iterations minus one.

A little thought shows that H

• pr(I = i) = (1 — q~
) 1 

~~~ 
i = 0,1 ,...

where 
~~~~~ 

is the probability of success on a given iteration. Then I

has a geometric distribution with mean (1 — ~~~~ and variance

- • 

- (1 - q,1~)/q~ . Also, the mean number of completions E(T) required to

- • 
~~~~~~~~~~~~~ ~~~~~~~~~~~ -~~~-

- ‘ -  
~~

• - -S •
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meet Starting Rule 1 satisfies

mC I - q,~) /c ~ E(T ) 
~ m/Qm

Following the Adlakha and FisPmian (1979) recomendations, we choose

m 5000 and 15 .0001

Selecting a Stopp ing Rul•

The stopping rule that we develop is based on a comparison of the

theoretical activity level p and the sample activity level in

(1) computed during the execution of a simulation and where n now

counts the number of completions In the col lected data. As stated earlier ,

we anticipate that representing p by an will induce an underlying corre-

latlon structure in the data that leads to a representative sample mean

= 

~ 
‘~~ 

X14~ , where X1~1, .. ., ~~~ are the collected system

times and wil l produce an Interval estimate or confidence interval whose

coverage rate agrees with the corresponding theoretical coverage rate.

Al though the notion of a stopping rule based on a comparison of

sample and corresponding theoretical activity levels is easily appreciated,

several Issues play an important role in determining the explicit form a

stopping rule should assume. These issues are:

1. What should the tolerance be for the comparison of

an and p ?

i i .  Should there be a directional relationship of an
to

Ill . Should there be a lower bound on the size of the

sample to be obtained for estimation?

iv. Should there be an upper bound on the sample size to

avoid excessive data collection?
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We address each issue in the context of the formulated stopping procedure:

1. Begin the simulation in the empty and Idle state.

2. Apply Starting Rule 1 to determine the first system

time to collect.

‘3. Collec t system times XT+]~ 
... , XT+N where

-
~ N = min(n: I~ - ~~ ~*)

Stopp ing
Rule 2 - 

and is based on interarrival and service

— times for completions 1+1, ... , T+n and 6~
is a specified tol erance.

4. Compute a sample mean and interval estimate

from XT+l . ...,

Tolerance Criterion

Step 3 implies that at the termination of data collection

C [p..15*, p+5*] . For values of 
~N c [p..15*, p) it is conceivable

that p1,~ 
< p_15* for all n < N and that a congested state is never

experienced. Al ternatively, when

it is possible that > p + 15* for all n < N and that the system

fails to experience less than average congestion . Moreover, the ratio

has a positively skewed distribution wi th mean 1 and is indepen—

dent of p for a fixed 6* (see Adlakha 1979). This indicates that as

- S ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~
•

-~~--~~~~ ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
_T~

- 
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p increases pr(~~ < p - 6*) increases faster than pr(
~n 

> ~ + 6~)

implying that it is more likely that PN C 1o_6*,p) than aN C (p, p+6*]

It Is reasonable to believe that if the choice lies between over-

estimating or underestimating the congestion, most analysts would prefer

to overestimate in queueing models. This is especially Important in the

case of systems with high activity level p . To favor this behavior in

the system, we modify step 3 by the substitution :

N mmn {n: ~ �a ~ �~~+ a * i .

Directiona l Criterion

Once an is within the specified interval [p, p+6*] , it indicates

that the desired congestion level has been reached. At this stage it

would be preferable to continue col lecting data and stop only when there

is an indication that the system is l eaving the congested state, i.e.,

< on-i . We expect this to happen when completion n has a shorter

service time or a longer interarrival time than the average, thereby

contributing to a below average system time for the nth customer. This

will also produce a decrease in an . Therefore, we include an additional

condition < in step 3 . We anticipate that this condition

along with the condition “
p � p < p + 15*” will provide a sample record

with enough observations from the congested system.

1.
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Lower Bound on the ,~3czmp le Size

A precise estimate of var(X~) is important for interval estii.~.tion.
5 As mentioned earl i er, we use the autoregressive analysis approach to esti-

mate var(Y~) . Based on experiments, Fishman (1971) showed that this

sample variance approximation is not reasonable when the sample size

n < 500 . To improve on this approximation , we restrict stopping time t..

n~~~l000 in step3.

Upper Bound on Sample Size

Experience in testing starting rules in earlier work (Fishman and

Moore 1978) reveal ed that in the absence of an iterative procedure as in

Starting Rule 1 excessively large starting times can occur. Step 3

admits a similar possibility for stopping times, as prel iminary experimen-

tation confirmed. To favor congested systems and to avoid excessively

large stopping times, we propose an iterative stopping rule with upper

bound of m* = 5000 , to be consistent with Starting Rule 1 . The upper

bound is appl ied as follows : If the stopping rule is not satisfied until -:

n = 5000 during a simulation run, these observations are discarded . Another

i ndependent replication is generated from the empty and idle state and •

Starting Rule 1 is again satisfied . Then the complete stopping rule is:

N = min(n: p 
~

- 

~~ 
p+15*, an < 

~n-l’ n � 1000, m* = 5000)

A perusal of the data obta ined from the initial experiments m di-

cates that for replications where 
~N-l 

‘ p+6*, the empirical coverage

rates are comparable to the theoretically specified coverage rates. A

little thought shows that this is not surprising . It is reasonable to

bel ieve that the value of aN migh t play a role in determining the

~~~~
— -- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — —--5 ~~~~~ -~~~~~~~~~
S 5-5— ~~~~~~~~~~~~~~~~~ ~_- •~~•5 _- —~~~~~~~ — 5— --



- 5..-- ‘—5,-- - --~S - -

- - _~~
--

10

coverage rate. The directional criterion > does not appear
to induce sufficient congestion in the system although p 

~ 
aN ~

because It is possible that < p for n ~ tl-2 . In contrast, the
condition 

~N-l 
‘ 0+15* favors more congestion in the system.

The proposed procedure with lower and upper bounds is now:

1. Begin the simulation in the empty and idle state.

2. Apply Starting Rule 1 to determine the first system

time X to collect.1+1
3. n~ - 0 .

4. n * - n + l

5. Collec t system time XT+fl .

6. If n 1000 go to 4

— 7. Compute an based on interarrival and system

times for completions T+l , ..., T+n .
Stopp inj

8. If p - a  � p + 1 5 *  and a ~> p + 1 5 * , Ni- n
Rule 2

and compute a sample mean and interval estimate from

and stop.

9. If n = m* = 5000 , discard XT+1~
, 

~~~~~~~ 
XT+fl and go

-
~~ to stepl.

10. Go to step 4 .

it

:~~~~~~~~~ 
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Al though we anticipate that the upper bound m* would keep the

sample size from becoming excessive, discarding the data on a replica-

tion when the stopping rule is not satisfied may affect the statistical

reliabi l ity of the estimate. We study the effect of this upper bound in

Section 3 . Prel iminary testing indicated that 6* .01 would be a

worthwhile choice.

We study Stopping Rule 2 using the experimental design:

p • .7, .8, .9, .95 ,

c • 1, 2, 4 .

The objective here is to Investigate the performance of Stopplnq

Rule 2 for varying number of servers In the M/M/c queue over a range

of values of p that represent moderate to high levels of congestion.

3. Results of~~!p?rimentation

To study Stopping Rule 2 • we performed 100 independent replica-

tions on each queueing model c 1 , 2, 4 for each activity level

(p = .7, .8, .9, .95) . On each replication , the collected data were:

N* stopping time, inc luding the number of observations

in discarded replications ,

= sample mean system time based on N N* (mod 5000)

observations ,

= sample activity l evel at termination

sample autocovarlance at lag j, .1 • O,l ...,50

The sample mean and autocovarlances were used with the autoregressive

~

—-- -- --- - ~ -- - - - - -
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method to produce an estima te of var(X,~) and 90 and 95 percent

interval estimates for mean system time.

Coverage Ana l~j eie

Table 1 presents the empirical coverage rates for mean system

time. The data show that the coverage rates obtained for p � .9 are

comparable to those suggested by the theory. Notice that for a given

value of c , the coverage rate tends to decrease as p increases.

This implies that higher levels of utilization in the system degrade

the performance of Stopping Rule 2 . For a given value of p , the

performance appears to be unaffected by different values of c

Since, to our knowledge, no results on the estimation of the mean

system time ~i for the M/N/c queue with c ‘ 1 and p • .95 have been

reported In the literature, we use the coverage rate for the M/tI/l

queue with p = .9 obtained from earlier proposed methods as our basis

of comparison. For a sequential method developed In Fishman (1971) the

90 percent empirical coverage rates obtained were between 66 percent

and 79 percent. In an empirical testing of the batch means method,

Law (1977) obtained a 90 percent empirical coverage rate of 86 for

a fixed sample size of 12800 . With the method of batch means, Fishman

(l978a) obtained an empirical coverage rate of 90 for the 95 percent

confidence intervals with a fixed sample size of 16384 . Therefore,

we can conclude that Stopping Rule 2 provIdes a better coverage rate

than the methods cited in the aforementioned references. The significance

of this achievement is magnified by the fact that the sample sizes used

to obtain these coverage rates are much smaller than those used by other

methods. We discuss the distribution of the sample size shortly.

—4 
—
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Table 1
Empi rica l Coverage Rates Using

Stopping Rule 2 for Mean System Time

9O~ Coverage 95% Coverage

c .7 .8 .9 .95 .7 .8 .9 .95

1 97 91 88 77 99 94 93 82

2 97 96 90 73 97 97 92 79
4 95 95 86 73 98 97 90 83

In genera l one would like sample means that are unbiased estimators 4

of mean system time i~ . However, because of the procedures for starting

and stopping data collection , one has reason to believe ~ p~’i.’ri that

for random I and N is a biased estimator of u

Let V 1 denote the sample mean of replication I for

i~~~1 , ..., lO0 . Then

1 100
• T~ 

Z
1 1  

V 1

gives the grand sample mean over all replications for a given (c,p)

2-tuple and V - p gives an estimate of the bias in Y1, .. ., .

. --
~

-— 5. - ~~~~~~~~ - — ~~~~—— - -  

—_—- •_ ._-_
~~~~
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Then

2 100 2
S 100x99 

~I.l 
t(i 

- fl

is an estimate of var(f)

Table 2 shows the relative bias (V - p)/p and Table 3 shows

the standardized deviate (V - u) / / ~~~ Al though the significance of

the bias Is well established in Table 3, its small relative impact in

Table 2 removes any substantive concern about an overriding bias corn-

ponent.

-‘ Table 2
Relative Bias of the Sample Mean System Timea

(V - p)/p

p
C .7 .8 .9 .95

1 .046 .044 .057 .077

2 .030 .048 .076 - .051

4 .036 .034 .036 .056

a The mean system time p can be computed using formulae
in Gross and Harris (1974).

LA 
_ _ _  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _— 
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Table 3

Standard i zed Bias of the Sample Mean System Time

(V - ~~)/A~~ t
.7 .8 .9 .95

1 4.409* 2.792* 1.874 1.314

2 3.605* 3.609* 2.721* -1.287

4.879* 3.243* 1.411 1.092

*Significant at the 5% l evel .

Variance Analy ei8

When comput ing conf idence intervals for , one rel ies upon the

accuracy of the estima te of its variance. Here we examine the issue of

bias in the estimation of the variance of the sample mean as a possible

source of error~ As previously discussed , the autoregressive procedure

was employed to estimate the variance of the sample mean in a replica-

tion. Let and denote the sample mean and the sample variance

of the sample mean , respectively, on the ith repl ication. Furthermore ,

let

~ 1 lOO A
V = T~7J ~~~~V j

~AddItiona l comparisons appear in Adlakha (1979).

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_

~~~~~~~~~
-

~~
---——-—
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and - 

-

100 —

-‘ = 1 

~ 
(V - ~~ ,

where

100
vS II 1_jJo. 1

~•~ 
V i .

For V i to be an adequate estimator of var(Yi) , should be close to

V since V is an unbiased estimator of var(Y1)

Table 4 presents the variance estimates V and V . The results

show an upward bias in V for ~ � .9 . This pattern is somewhat differ-

ent for ~ .95 , where in two out of three cases a downward bias in
S 

V is suggested. No doubt, this underestimate for p • .95 is responsible

for the degradation in coverage rate in Table 1 . Clearly, work remains to

be done in improving V as an estimator of var(XN)

Correl ation

Fistinan (l978a) observed that a principal source of error In the

Interval estimation of correlated data is the high correlation between

and v
~
r(VN) . Table 5 provides these sample correlations for the

experiments in this study. The data confirm that RN and

are positively correlated. At first thought, this observation is per-

plexing , since we have pointed to correlation ’s being the culprit that

degrades the coverage rate. One plausible explanation lies In the 

_ 
_ _ _-~ S~5.~~~~ ~~~~~~~~~~~~ ~~~~~~~~~ 5.S5,~~ S~~~_55. _~~_5_5 _______ ._~~~ —--S---~
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Table 4

Comparison of Estimates of var(’RN)

.7 .8 .9 .95

V .107 .580 13.747 64.700

1 V .060 .393 7.380 124.557

Ratio 1.78 1.48 1.86 0.51

V .099 .699 11.292 61 .629

2 V .053 .345 7.060 59.568

Ratio 1.87 2.03 1.60 1.03

V .121 .679 13.383 69.486

4 .080 .336 7.386 111.770
rRatio 1.51 2.02 1.81 0.62

Table S

Sample Correlationa between and v
~
r(XN)

.7 .8 .9 .95 I J

1 .773 .803 .802 .700

2 .781 .767 .671 .541

4 .794 .742 .702 .570

aihe critical value with 100 observations at the 5%
significance level Is .195 .

I~
. -

; 
S .

-- - - - ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ ~~~~.L - . .
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significant bias in Lr~ (see Table 3). This small but perceptible

upward tendency may be sufficient to make the correlation In Table 5

work in our favor. That is a tendency to overestimate ii with a

positive correlation between and v
~
r(TN) leads to wider Interval

estimates than strict normal theory would suggest. In turn, this may

contribute to the improved coverage rates. In fact, the absence of

F. significant bias in for p • .95 may be the missing ingredient

needed to make V more representative of var(I~) .

Recall that Stopping Rule 2 imposes an upper bound m* on the

sample size In a replication . To study the affect of this bound on

we examine the sample correlations between the stopping time P1*

and the corresponding sample mean R
N 
, N • N*(mod 5000) in Table 6 .

The correlations show no significance at the 5 percent level .

Table 6

Sample Correlationa Between RN and P1*

.7 .8 

- 

.9 .95

1 - .049 .043 .047 - .100

2 .087 .106 .192 .068

4 - .049 -.007 .015 .093

a
lh critical value with 100 observations at the
5% significance level Is .195

______ -~~~ 
.~~~i._ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~
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Distribution of Stopping Time

Table 7 gives the sample quantiles of the stopping time N* •

The lower quantile values reflect the lower bound of 1000 in Stopping

Rule 2 . Al though the quantiles show the distribution of the stopping

time to be positively skewed, the 95 percent quantiles range from

8722 to 17156 , indicating small probability for an excessive sample

s ize.
Notice that the quantiles appear to be insensitive to p and c .

Since the distribution of p~.~/p is independent of c , the insensiti-

vity of N* to c does not come as a surprise. The insensitivity to

p Is no doubt partially due to the facts that for a fixed 6* and n

as p increases the pr(p 
~ 

p~ ~ 
p 0 6*) decreases, whereas pr( n_ i > 

~~ +

increases. The effects of these conditions on the stopping time seem to

balance each other for an increase In p

The sample mean , standard deviation and coefficient of variation of

the stopping time Nt appear In Table 7 . The mean stopping times vary

between 3586 and 5027 and occur between the 60 and 70 percentiles.

The sample coefficients of variation 
~N* are generally close to one.

These observations suggest that although the distribution of 14* is posi-

tively skewed, it has a short tail to the right. Thus, encountering an

excessive stopping time is a remote possibility.

4. Comparison with Other Rules

This section compares the performance of the proposed starting-stopping

rule procedure with some alternative starting and stopping rules using the

experimental design which we describe shortly. We use the coverage rate of
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Table 7 t
S~~~1e Quant Ile% q of Stopping Ti.. N for Stopp ing Ru1e 2

Pr (IP ~q) • p
C 1 2 4

~ ‘... D
100. .7 .8 .9 .95 .7 .8 .9 .95 .7 .8 .9 .95— — — — -

1001 1000 1000 1000 1000 1000 1000 1007 1002 1002 1000 1000
2 1003 1001 1000 1001 1001 1009 1002 1007 1002 1003 1001 1002
S 1036 1007 1001 1009 1011 101 1 1010 1017 1018 1007 1007 1009

10 1085 104 3 1004 1036 1070 1041 1036 1035 1052 1027 1042 1031
IS 1095 1077 1009 1048 1122 7075 1086 1054 1103 1066 1062 1102
20 1170 I llS 1036 7103 7129 1118 1163 1067 1179 1151 1089 1144
25 1268 1186 1086 1131 1350 1174 1227 1091 1235 1317 1144 1195
30 1351 1259 1255 1199 1658 1274 1332 1784 1313 1506 1179 1335
35 1428 1398 1322 1383 1760 1399 1476 1332 1567 1831 1352 1368
40 1639 1589 1459 1469 2066 1666 1550 1552 1720 2141 1496 1481
45 1934 1 797 1530 1596 2361 1797 1752 1872 1916 2533 1657 1777
50 2048 2048 1724 1755 3053 2038 1930 2199 2095 2910 1858 2115
55 2403 2384 1839 2134 3732 2197 2152 2727 2551 3480 2074 2604
60 3167 2921 2107 2495 3987 2603 3006 4130 3345 4119 2705 3208
65 4382 4035 2677 3385 6005 3297 4789 6077 4348 6012 2868 4108
70 6038 4979 3180 6017 6279 4510 6134 6316 6021 6065 6003 6003
75 6215 6328 3972 6147 6789 6022 6573 6646 611 6 6465 6060 6077
80 6789 6787 6101 6255 827~ 6385 7219 7423 6231 6896 6265 6233 

p

85 8105 7226 6387 6705 11078 7340 1014 9088 6343 8487 6553 6678
90 11513 11209 7678 7126 11281 11033 1727 11089 7712 11274 7655 7638
95 17156 13358 11003 8722 16056 11411 4995 11848 12829 16073 12151 11528
98 26071 16443 11481 11202 16654 16773 6253 13169 21204 17096 21491 16082

‘ 9 3701 ) 17839 11902 11421 17198 17625 6393 14027 22494 7 7344 22183 17114

mm 1001 1000 1000 1000 1000 1000 1000 1007 1002 1002 1000 1000
max 37107 21470 16716 23160 21424 46851 6046 37045 23025 17575 36016 21437

N 5018 4188 4453 3586 ~~~ 4228 4652 4627 4295 4757 4128 4026
6378 4330 4759 3446 4647 5713 4913 4989 4627 4376 5337 3q96
1 .27 1.03 1.01 .96 .92 1.35 1.06 1.08 1.08 .92 1.29 .99

Th. quantities a,. and denote the standard dev iation and the coefficient of
variation respective ly.

-~~~ - - - — — - - -  -- .5~~~~~~~~~~~~ - — - ~~~~~~~~~~~~ - - -S- -~~-- - -—  - S - ~~~-— -~~~~~~~~-- 
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the mean system time as the criterion for comparisons.

Let R1 and R2 denote Starting Rule 1 and Stopping Rule 2

-
í respectively. As a variation of rule R1 , consider a fixed truncation

- -

- 

rule that puts the M/M/c queue into the steady state and denote this

rule as FT . Similarly, as an alternative for rule R2 , consider a

fixed sample size rule and denote it as . Rule F
~ 

uses a sample

size equivalent to the mean stopping time of rule R2 for given c

and p .

Four combinations of starting and stopping rules are considered:

I. (R i, R2) Starting Rule 1 with Stopping Rule 2

ii. (F.~., R2 ) fixed truncation with Stopping Rule 2

iii. (R1, Fs) Star ti ng Rule 1 with fixed sample size,

iv. (FT, Fs) fixed truncation with fixed sample size.

Hereafter, allusion to system (A ,B) means the experiment with starting

- 

- rule A and stopping rule B. System (•, B) refers to stopping rule B
where starting rule can be either R1 or FT and system (A, •) refers

to starting rule A with stopping rule R2 or

Let (F0, Fs) denote the system where simulation begins in the

empty and Idle state and F5 is the stopping rule as defined earlier.

- 
- 

Blomqvist (1970) showed that, provided certain conditions are satisfied,

for a large sample size the mean-square error of sample mean as an esti-

mator of the population mean is minimi zed if one starts the simulation

from the empty and idle state and no observations are discarded . However,

for a correlated sample record, as is the case in most queueing simula-

tions, it is not clear that minimizing mean-square error would necessarily

provide the theoretically specified coverage rate. Therefore, we also

~

-- - - -

~

--- -

~
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compare the mean-square errors and coverage rates obtained by using

system CR 1, R2) with those obtained from system (F0, Fs)

To study the performance of the aforementioned systems, we consider

the experimental design:

p = .7, .8, .9, .95
c = 1 , 2, 4,

system = (R 1, R2) , (FT, R2) , (R 1, Fs) , (FT, F5)

With regard to truncat ion rule FT , an explora tory resea rch

showed that a truncation of 1000 observatIons, starting from the

empty and idl e initial state, suffices to put a system in the steady

state for the MIM Ic queue wi th c = 1 , 2, 4 and p = .7, .8, .9 .

This implies that the initial conditions hardly affect completion

1001 for these queues. However, for p = .95 , a truncation of

l0~) observations was not sufficient, but a truncation of 2000

observations appeared adequate.

With regard to stopping rule F5 0f fixed sample size, for each

given value of p and c we take a sample of size ~~ , the corres-

ponding mean stopping time obtained from rule R2 . This ma kes rules

R2 and F5 comparable in the sense that the mean number of observa-

tions are identical .

Table 8 presents the results for 100 replIcations for each value

of p and c with systems (F1, R2), (R1, Fs), (FTI Fs) and the orig-
ina l results for (R1, R2) . All results are based on the autoregressive

analysis in Fishman (1978b). Three tendencies are apparent. Firstly, the

degradation in the coverage rate for all the systems as p increases. 

~~~~ ~~~-. -- -~~~ :~~~~~~~~~ -- -~~~~ i A ! ~~~~~~
- 

~~~~~~ ____________________



.5

23

Table 8

Coverage Rates for Alternative Systems

90% Coverage 95% Coverage

o p F

c system .7 .8 .9 .95 .7 .8 .9 .95

1 (R1,R2) 97 91 88 77 99 94 93 82

(F1,R2) 97 94 87 80 97 95 88 84

(Ri .Fs
) 88 72 75 63 94 82 81 69

(FT,Fs) 86 75 83 73 90 81 87 78

2 (R11R 2) 
97 96 90 73 97 97 92 79

(FT.R2) 92 96 87 68 95 97 90 80

(R1,F5) 
84 73 69 63 89 81 77 67

(FT,Fs) 89 78 82 66 90 83 84 76

4 (R11 R~) 95 95 86 73 98 97 90 83

(F1,R2) 98 98 86 75 99 98 88 80

(R1,Fs) 
82 83 78 78 91 86 82 82

(F1,F5) 84 87 77 70 86 88 82 76

This shows that high utilization in the M/M/c queue affects the performance

uniformly for each system. Secondly , the superiority in the performance

of system (R1, R2) over (R1, F5) and of system (FT, R2) over
(FT, Fs) . Th is Indicates that, regardless of the starting criterion used ,

stopping rule R2 yields better coverage rates than the fixed sample size

F5 wi th equivalent expected cost, in terms of number of observations.

Thirdly, there is no apparent distinction in the performance of systems - -

CR 1, R2) and (FT, R2) , and of systems (R1, Fs) and (F1, Fs) .

. 5 — - - -— - _ -  —— -- .5.. -
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This implies that the performance of Starting Rule 1 Is as good as the

performance of fixed truncation which puts the system in the steady state. 
—

Two subsequent statistical analyses also revealed useful insights .t

An analysis of variance together with multiple comparison procedures

based on transformed coverage rates showed that for p � .9 , system

C . , R~) was significantly better than system (., F~) . Moreover, no
- 

significant difference existed between the performance of systems (R 1, •)

and (F1, •) . To sel ect the best among the four systems, the procedure

in Bechhofer (1954) was used. It indicated that system (R 1, R2) was

best for p = .7 and .9 , with at least probabilities of .562 and

.956 respectively. For p = .8, (F1, R2) was selected as best with

a correct selection probability of .458 . For p = .95 , the procedure

was indifferent between systems (R1, R2) and (F1, R2) . The prevalence

with which the several statistical analyses focus on R1 and R2 enables

us to conclude that (R1, R2) is at least as good in general as any of the

other systems. However the greatest attraction of (R1, R2) comes from

the fact that FT is impractical in appl ication unless one knows how many

observations to truncate and F5 is ~mpractica1 unless one knows how many

observations to col lect to make the autoregressive analysis a useful tool .

As mentioned earl ier , the Blomqvist (1970) result encourages one

to truncate no observations to minimize mean-square error. Tot~st the

performance of the zero truncation rule F0 , we ran the design

p = .7, .8, .9 and .95 and c = 1, 2 and 4 for system (F0, Fs) and

computed coverage rates. Table 10 compares these rates with those for

1See Adlakha (1979) for details. -

- 

/
5; 

— — — —
.

~ 

- ~~~~~~~ ~-~~.--..--a~~~-- 5- ~~~~5-5•’5-’5 --.5—-_

L ~~~~~~~~~~~~~~~~~~ ~- -~~~~~~~~~~



—-.5 - 
~~~~~

- - — -. 5 —~~~~

-5 - .5 — - - --------—-- ~~~---- — — - - - -.5 - - — .-

— 25

(R 1, R2) . The super ior i ty of (R1, R2) is clearly established, in
spite of the fact that computed mean-square errors for this system were

larger than corresponding mean-square errors for (F0, Fs) . These
observations lead to the conclusion that (F0, Fs) generates a more

accurate point estimate in terms of mean-square error but (R1, R2)

gives a superior interval estimate as measured by coverage rate. In our

opinion the greater precision of (F0, Fs ) for the point estimate is of

l ittle value if we have no adequate way to estimate the precision. We

prefer to pay the penalty of a less accurate point estimate whose preci-

sion we can successfully evaluate.

L Table 9

Coverage Rates for Systems (F0, F5) and (R 1, R2)

90% Coverage 95% Coverage

I, p

c system .7 .8 .9 .95 .7 .8 .9 .95

I (F0, F5) 79 82 76 57 83 89 83 60

(R1, R2 ) 97 91 88 77 99 94 93 82

2 (F0, F5) 89 78 71 68 93 85 78 74

(R1, R2) 97 96 90 73 97 97 92 79

4 (F0, Fs ) 90 82 74 62 94 85 81 68

(R 1, R2) 95 95 86 73 98 97 90 83

~~~~~~ 
:

- 
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5. Conclusions

The objective in this study has been to devise generally applicable

methods to improve Interval estimation In a queueing simulation . On the

basis of accumulated empirical evidence presented in this paper, we continue

to reconinend

Rule 1:

I mln {n: 
~~~ 

- ‘~~‘ ~
‘I,n 01,n-l ’ ml — n—i , cS — .0001 ,

m • 5000)

as a starting rule (see Adlakha and Fishman 1979). Also , we recoimiend

Rule 2:

N mlnfn: p .. p p+~~, 0n-l 
-_ p+~5*, n 1000, m* 5000, ~ .01)

as a stopping rule.

The rules give satisfactory performance for mu l tiserver queues

with moderate-to-high levels of congestion . Both rules use a moderate

number of observations, are easy to understand and to implement.
Furthermore, experiments with a fixed truncation starting rule and a

fixed sample size stopping rule clearly demonstrate the superiority

of using Rule 1 and Rule 2 together. This Is very encouraging, for it

indicates a procedure now exists for controlling the detrimental effects

of Initial conditions and skewness on interval estimation in queueing

simulations .
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tions of the N/N/c queue with c • 1,2,4 and p • .7,.8,.9,.95 were conducted
to evaluate the rule. The experiments used a starting rule (Rule ‘1) to reduce
bias due to the Initial conditions and also used the autoregressive method to
obtain interval estimates of the steady—state mean. For p .7,.8,.9 , the
coverage rates are close to the specified theoretical coverage rates and are
higher than those reported in the literature for other methods of Interval
estimation. The data reveal a degradation In the coverage rate for Increasing
values of activity level . For p • .95 the coverage rates are somewhat lower
than those expected theoretical ly, indicating room for some improvement In
technique. The sample sizes used to obtain the coverage rates are moderate
and are insensitive to variation in the number of servers and the activity leve’
The rule can easily be generalized to a wider class of queueing simulations .
Furthermore, experiments with a fixed truncation starting rule and a fixed
sample size stopping rule clearly demonstrate the superiority of using Rule 1
and Rule 2 together. Th is is very encouraging, for it indicates a procedure
now exists for controlling the detrimental effects of initial conditions and
skewness on interval estimation in queueing simulations .
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