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ABSTRACT

Ek*his paper proposes a rule for determining when to start collecting
data in a queueing simulation. The rule is designed to reduce depen-
dence between the empty (queue) and idle (servers) initial conditions and
the collected sample record. The rule is an outgrowth of earlier work by
Fishman and Moore (1978) and relies on a comparison between a priori
information on the activity level (traffic intensity) and a corresponding
sample estimate computed during the course of simulation. Experiments
with simulations of the M/M/c queue with ¢ =1,2,4 and p = .7,.8,.9,.95
reveal that the rule reduces and in most cases removes the dependence on
the empty and idle initial conditions. In particular, the rule begins
data collection when the simulation is in a congested state or in the
steady state. The rule is well behaved in that it has low probabilities
of requiring long runs before data collection is started. Although our
data suggests an association between the rule's performance and activity
level, the performance is insensitive to variation in the number of servers.
Since the rule is based upon the activity level, a parameter that frequently
can be computed from the input parameters of the simulation, the rule is
easily generalized to a wider class of queueing simulations.. A subsequent
study (Adlakha and Fishman 1979) demonstrates the appeal of the starting

rule when used with a proposed stopping rule for computing interval estimates
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1. Introduction

This paper proposes a rule for starting data collection in a queue-
ing simulation. The rule is an outgrowth of work by Fishman and Moore
(1978) who described a framework for research into the problem of reduc-
ing the effect of initial conditions on sample records collected for
statistical analysis in a discrete event simulation. Initial Conditions
refer to the states of critical variables at the beginning of a simula-
tion run. Because of the dependence among phenomena in a simulation
and the temporal nature of much of this dependence, the choice of ini-
tial conditions influences the observed time paths of these phenomena.

The suggested framework in the Fishman and Moore paper encourages the

use of ancillary information such as the theoretical activity level in

a queueing simulation to provide guidance as to when data collection

for analysis should begin in a simulation. In particular, if a comparison
between the theoretical and sample activity levels in a simulation shows
that certain conditions are met, empirical evidence in their paper shows
that the queueing simulation is in a congested state for an important

range of theoretical activity levels. Therefore, data collection initiated
at that point reflects initial conditions for a congested system rather
than for an undercongested system, as would occur if data collection starts
at the beginning of a simulation whose initial conditions include all

idle servers and empty queues. Since most simulators are inclined to
accept upward bias due to initial congestion more readily than downward

bias due to initial undercongestion, this new-found ability to induce

congestion is a major step forward in alleviating the often asserted
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problem of initial conditions: When does a simulation achieve represen-
tative state behavior of the system being studied?

Ideally, one would like to begin data collection when the system
is in the steady state. However, the very act of using information on
the sample path up to the point at which a decision is to be made about
starting data collection from that point onward necessarily creates a
conditionality and, therefore, prevents a determination of when the
steady state arises in a given run. Moreover, from a probabilists's
point of view one regards the steady state as a relative, rather than
an absolute, concept that is achieved as a limiting operation. 1In
support of these assertions, the empirical evidence in the Fishman and
Moore paper shows that the steady state is not a point of attraction
for the type of data-based rules they employ. However, the inducement
of congestion is possible.

Fishman and Moore presented an explicit rule for achieving this
congestion.* Although the rule performed well, the highly variable data
collection starting times to which it led allowed for the possibility of
excessive cost before achieving congestion. Their report concludes with
a recommendation that further search of rules to induce congestion should
consider an itcrative rule which they describe. This paper presents the
results of a considerably more elaborate sampling experiment designed to
evaluate this rule, hereafter referred to as Rule 1. By way of summary,
the results to be presented here show that the candidate rule can induce
congestion with considerably less risk of excessive cost for a variety of

queueing models and activity levels.

TIhe rule is called Rule 2 in their paper.




Section 2 formulates the problem and Section 3 describes the
experimental design and measures of evaluation. Section 4 presents an
analysis of the empirical results and recommends specific values for the
parameters of the rule. Section 5 presents an analysis of the distri-
bution of starting times and shows that the new recommended rule leads
to considerably less skewness than the rule recommended in Fishman and
Moore (1978). The implications for cost are discussed in detail. Section
6 draws overall conclusions and describes a proposed algorithm for imple-
menting the rule.

Before beginning the technical discussion, we wish to stress two
points. Firstly, the ancillary information used for decision making here
is the activity level of the queueing'system being simulated. We contend
that this quantity can frequently be computed from the input parameters of
the simulation. This computation is also possible in many, though not all,
large scale queueing simulations. Although we recognize that our results
demonstrate the value of the proposed starting rule with relatively simple
systems, we feel that its applicability with perhaps some modification to
larger scale systems is a possibility that a thoughtful simulation user
would want to consider seriously.

The second point concerns the ultimate purpose of starting data
collection in the steady state or in a congested state. In a second
paper (Adlakha and Fishman 1979), we develop a stopping rule for data col-
lection which when used with the starting rule proposed here produces
confidence intervals via the autoregressive method (Fishman 1971) whose
coverage rate is considerably higher than that reported in the original
Fishman paper. The relatively comprehensive analysis in the second Adlakha
and Fishman paper makes clear the attraction of using the suggested start-

ing and stopping rules together.
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2. Problem Formulation

Consider a simulation model of a queueing system with ¢ servers
in parallel, independent interarrival times with mean 1/A and indepen-
dent service times with mean 1/w . Let Ti denote the elapsed time
between arrivals of jobs 1i-1 and i and let S5 denote the service
time of arrival i . Assume that the simulation begins with the arrival
of job 1 to an empty queue and ¢ idle servers. Let xi denote the
system time of completion i where system time denotes waiting time plus
service time. Assume that an ultimate objective of analysis is to
infer the characteristics of the system time stochastic process from
a sample record of system times. Also assume that given the choice
between starting data collection in an undercongested or a congested

system, one prefers the congested one.

Selecting a Rule

After n completions occur during a simulation run one can esti-
n n
mate 1/ and 1/w by n~! ) T, and n”! ¥ S, respectively.
i=1 i=1
These estimates are unbiased and independent of initial conditions.

Now the activity lcvel or traffic intensity for a queueing system usually

is defined as

"

p = arrival rate/no. of servers x service rate

A cw N

for which one estimate is
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Since Bn is usuaily a biased estimator of p an alternative, presum-
ably more desirable, estimator is
PP,

R ’

P

since E(ﬁn) is in principle derivable for most common interarrival and
service time distributions. For example, in the case of exponential

interarrival and service times E(En) = on/(n-1) so that

5 = (a=1)F /0

Let S, denote the condition ISn -pl <6 for 0 <& and Sy

the condition Sn > S Then Fishman and Moore recommend that data

n-1°
collection begin with system time T+1 where

Rule 2 T = min(n: S, and 52 hold).

Condition S] is an accuracy requirement designed to guarantee that

the sample activity level Bn is acceptably close to the theoretical 1
i
P . Condition S, is a directional criterion designed to insure g
|
that data collection can begin oniy when the congestion level is increas- 5

ing. Intuitively, 52 obtains if job n has a large service time, has |

a small interarrival time or has both. %

Using this rule on an M/M/1 queueing model Fishman and Moore




conc lude:

On the basis of the accumulated empirical evidence to
date, one inclines to recommend the use of rule 2 with
§ = .0025 . Although we do not quarrel with this recommen-
dation, this advice should be regarded as a temporary measure
on at least three grounds. Firstly, we have no experience
with p > .9 . Secondly, we have no experience with multi-
server systems. Thirdly, the sample quantiles of starting
time for rule 2 and 6 = .9 in ... are cause for concern.
... although 90 percent of the starting times are less than
3099 , one percent exceeds 48334 . 1In our opinion the risk
of excessive cost is far too great to regard rule 2 as an
end in itself,

As a candidate for improved performance, they suggest beginning

data collection with system time T+1 where

* * *
Rule 1 T = min(n: S]. S2 and 53 hold).

* ~
Sy ]pl.n -p|l 58

* = A
52° PLn” PLn-l
*
S3: ml = n-1
m = integer > 0 , I =1(n-1)/my

In particular for exponential interarrival and service times one has

i !
) S, ?
R _ i = ml ,n-m - 1 () . |
Pron n n-ml
c ): Tj
J=ml+1
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In words this rule requires one to use a sample activity level based on

at most m past completions. The quantity I denotes the number of

times one needs to reset BI NS t.e., the number of iterations minus one.

A little thought shows that
pr(l = i) = (1 -qm)iq,n {2 Oluaes

where U is the probability of success on a given iteration. Then 1
has a geometric distribution with mean (1 - qm)/qm and variance
(- qm)/qﬁ . Also, the mean number of completions E(T ) required to

meet Rule 1 satisfies

m(1 - qu)/q, <E(T) < m/q

Now a user may choose m to suit one's convenience. However, from
the viewpoint of optimality, one prefers the m that minimizes m/qm :
If several m's lead to identical minima, then one prefers the largest
among them since this minimizes var(mI) = (1 - qm)(m/qm)z . In the next

section we examine the performance of Rule 1 for selected values of

§, m and p on simulations of the M/M/1, M/M/2 and M/M/4 queueing

systems.

3. Experimental Design and Method of Evaluation

To study Rule 1, we used a simulation of the M/M/c queueing system

with the experimental design:

p =
c=1,2,4
.001, .0001
m = 1000, 5000 .

Ty 8y 95 95
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To reiterate, p denotes the activity level; ¢, the number of servers:
§, the tolerance to be achieved before commencing ¢za collection; and

m, the point at which an iteration terminates.

For all simulation runs the arrival rate was fixed at unity and
the mean service time was taken as cxp . For each of the 4x3x2x2 = 48
experiments, 1000 independent replications were performed. Indepen-
dence among replications was achieved by using the last seeds of random
number streams for a replication as the initial seeds for the correspond-
ing random number streams in the next replication. On each replication

of each design point, the recorded data were:

T = starting time (number of observations to satisfy
the rule)

I = number of iterations minus one

g system time (queueing time + service time) of the
(T+1)st customer

SI.T = activity level when the rule is satisfied (computed

using (1)).

Method of Fvaluation

Let X denote a system time drawn from the steady-state distribu-
tion of system time for the M/M/c queueing system. As discussed in the
Fishman and Moore paper, xTH comes from a congested system if xT+1
stochastically dominates X . One says that the random variable W
with cumulative distribution function (c.d.f.) FH stochastically domi-
nates the random variable V with c.d.f. Fv if Fﬁl(u) - F;](u) is
non-negative and not identically zero on the open interval 0 < y <1

-1 1

where FH and F; denote the right continuous inverses of F" and

Fv respectively.
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9
The test procedures to be used relate to the hypotheses:
HO: X714, comes from the steady-state distribution of system
time X .
H]: fol stochastically dominates X .
Let Tj denote the starting time on replication j and Xj T.41
s |
the system time of completion Ij+l on replication j . Consider J
replications with sample data X‘ T.41° *o0o XJ T.41 which are indepen-
3 '
dent and identically distributed when using Rule 1 . Under HO: Xj T
y j+]
has the c.d.f.
Fx) = 1 - e~ (@-A)x for M/M/1
2 (1-p —wX _ 202 -(2w=-A)x
F(X) 1+ mo o= e vm e for M/M/2
and
y - (4p-3) _-ux y -(4w-2)x
i) Lon et -49-39( ) for M/M/4
where
e
y 2 3 .
3+9p+12p"+8p

Table 1 presents the corresponding means, variances and coeffi-

cients of variation. Moreover,
Y. = F(x )
J 3T+l
J
has the uniform distribution

G(y) = y 0<ys<l

., - hd - £
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Table 1

Parameters of the M/M/c Queue

with Arrival Rate

]‘0

R —
System Time '
‘ Parameters C i :¥l, .8 .9 .95
mean (u) 1 2.3333 4.,0000 9.0000 19.0000
2 2.745) 4.4444 9.4737 19.4872
4 3.8002 5.5857 10.6898 20.7370
variance (oz) 1 5.4444 16.0000 81.0000 } 361.0000
2 6.4278 17.2247 82.4809 | 362.6139
4 11.5072 23.5341 90.3110 } 371.1839
cgeffiﬁi:qt 1 1.0000 1.50000 1.0000 1.0000
of variation
o= ot} 2 .924 .934 .959 .977
4 .893 .870 .889 .929
L "
The empirical c.d.f. of the Yj's is
1 J
where
I(O’y](Yj) = ] if 0 < Yj <Yy
=0 otherwise.

To test H0 against all alternative hypotheses, one examines the devia-

tions

Ay) = Gyly) -y
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or functions of these deviaiions. For the Kolmogorov-Smirnov (KS)

goodness-of-fit test one uses the statistic

D = sup|Aa(y)]
y

for which critical values appear in Miller (1953) and Owen (1962).

A second test procedure uses the chi-squared test statistic
2 K
X" = JK )‘ : [a(iZK) -A(i/K - 1/K)]
which for integer K and large J has the chi-squared distribution
with K - 1 degrees of freedom under Hy - A third test procedure

uses the Anderson-Darling (AD) test statistic

2 ! 2
NE =) OI {{a(y) 1 7y(1=y)} dy

which is particularly sensitive to departures of Gd(y) from G(y)
in the tails of the distribution. Critical values of the test statistic
appear in Lewis (1961).

To test H, against H, one can use the KS test statistic

D™ = -inf A(y)
Y

Dwass (1958) describes an additional helpful measure of discrimination,

The statistic

1
U= [ Ir_o oy Aa(y)) dy
0 [ |0)
gives the proportion of GJ(y) that lies below G(y) = y . Under Hy
U has the uniform distribution on (0,1) . If H, 1is true one expects

U to be close to unity.
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4. Evaluation

Table 2 shows the D , x2 and N2 statistics for Ho against

all possible alternatives. The data show that a large number of statis-
tics are significant at the five percent level. Before we draw any
inferences, it is appropriate to consider the issue of multiplieity. By
multiplicity we mean that when one obtains independent observations of
several test statistics using, for example, the five percent signifi-

cance level, then one would expect that five percent of the statistics {

may be significant when HO is true. However, the number of signifi-

cant statistics in Table 2 1is much larger than one would expect from

random variation under Hygs and is evidence that the occurrence of

these significant statistics cannot be explained satisfactorily by multiplicity.
The data in the table provide substantial evidence to reject HO

at each design point for p < .9 . Notice that for p = .95 all values

of D, XZ and wz exceed the corresponding critical values at each

design point with the exception of design points with parameters & = .000)

and m = 5000 . This shows that H, 1is rejected for p = .95 and each

0
c, except in the case of § = .0001 and m = 5000 , for which the

general pattern tends to favor Ho . We discuss this point shortly.
Recall that our primary objective is not merely to detect a departure

from the steady-state distribution (reject HO) . In particular, we want

to check for a specific type of departure from the steady state, the i

stochastic dominance of XT+] over X . For this purpose, we use the D

and U statistics. The statistic U gives the proportion of the empiri-

g cal c.d.f. under the theoretical c.d.f. (prevalence of stochastic dominance) ﬁ

4
I |
and the statistic D~ gives the magnitude of maximum deviation. Table 3 fg

presents the D° and U statistics for Ho versus H, . The main
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observations are:

(1) For p = .7, .8 both the D° and the U statistics
support the hypothesis of stochastic dominance of xT+]

over X at all design points, with the exception of the
U statistic at one design point (p = .7, ¢ = 4, § = .0001
and m = 1000) . Also observe that the negative deviation

D is reduced as & decreases or as c increases.

(2) For p=.9 the D~ statistics support the hypothesis of
stochastic dominance at all design points, but the U

statistics generally show this behavior only with m = 5000 .

(3) For p = .95 both the D° and the U statistics fail to
support the hypothesis of stochastic dominance at all design

points.

Although Rule 1 fails to achieve stochastic dominance for p = .95 ,
the statistics in Table 2 generally favor H0 for p = .95 with
§ = .0001 and m = 5000 . Here we consider the possibility that X sto-
chastically dominates XT*] ,» 1implying that XT+1 comes from an undercon-

gested system. Formally, we consider for p = .95 the alternative hypothesis
Hy: X stochastically dominates XT+I :
To test Ho versus H2 for p = .95, we use the KS statistic

ot = sup A(y)
y
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The results appear in Table 4 . The data support N2 for all
design points with the exception of design points (p = .95, ¢ =1,
§ = .0001, m=5000) and (p = .95, ¢ =2, &= .000), m = 5000) .
At these two design points the steady state is supported. The selec-
tion of HO over H2 in these two cases is reassuring, for if "0
is more credible than Hy » we prefer that Ho also be more credible
than H2 . Achieving the steady state is acceptable, because this
assures that the initial conditions of the simulation no longer play
a role.

The empirical evidence suggests that the parameters & = .0001

and m = 5000 give the most satisfactory results over the entire range

Table 4

Testing "0 versus “2 for p= .95

0*(.0381)2
C
2 4
.1479% 22k
.1078* .0848*
.1062* 1164%
.0269 L.om*

8critical value at the 5% level.
*Significant at the 5% 1level.
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of activity level p considered in this study (.7, .95] . For
p<.9, Rule 1 with these parameter values appears to induce sto-
chastic dominaice. Though the test statistics for p = .95 fail to
support the hypothesis of stochastic dominance, the steady state seems
to be achieved for ¢ = 1,2 . As stated previously, this is acceptable.
Therefore, we recommend the values of & = .000) and m = 5000 for
use with Rule 1 .

Since data collection starts with the system time xTﬂ i 1k
is of interest to study the bias and the dispersion of XT+1 .
Tables 5 through 7 present the sample mean Yr,, . the sample
variance 82(X7+]) and the sample coefficient of variation G(XT*‘)
computed over the 1000 replications of each design point for the M/M/1,
M/M/2 and M/M/4 queueing simulations. The data show that TT+] is
greater than the corresponding theoretical mean in experiments where
Rule 1 achieves stochastic dominance, and is generally less than the
theoretical mean in other cases. To test the statistical significance
of the difference between the theoretical and sample mean for Rule |
with our recommended parameters, & = .0001 and m = 5000 , we consider

the hypothesis
Hy: 7T¢1 has the steady-state mean
against the alternative hypothesis
does not have the steady-state mean.

H4: XTH

The test statistics appear in Table 8 . The data show that YT&] is




Table 5
Sample Mean, Variance and Coefficient of Variation for
System Time xTn

18

M/MN
é Activity Level »
%
: Statistic 8 m 0.7 0.8 0.9 0.95
rﬁ tF‘
X .001 | 1000 3.416 5.002 | 9.052 | 13.412
5000 3.629 5.394 9.788 14.625
.0001 | 1000 2.905 5.022 8.839 14.558
5000 3.249 5.415 | 10.404 18.625
2(xgy) | 000 | 1000 | s.022 | 17.523 | ss.365 |124.408
5000 9.762 23.786 | 86.014 |[187.868
.0001 | 1000 6.008 18.446 | 50.249 | 160.000
5000 8.007 22.655 | 90.903 | 277.835
W(Xpyy) | 000 | 1000 .829 .837 .844 .832
5000 .861 .904 .948 .937
.0001 | 1000 .844 .855 .802 .869
5000 .87 .879 916 .895 }
Theoretical Quantities
u 2.333 4 9 19
ol 5.44 6 81 361
v 1 1 1 1

B i e VAR Bt i e e
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Table 6
Sample Mean, Variance and Coefficient of Variation for
System Time X ., '
M/M/2 |
L
, |
Activity Level o 8
- = f}
smisu:t 8 m 0.7 0.8 0.9 0.95 i
| Xy [-000 | 1000 3.453 | 5.393 9.235 | 13.403 g‘
; 5000 3.489 | 5.873 | 10.22) 14.816 ¥
.0001 | 1000 3.178 | 4.865 8.683 | 15.63
5000 3.421 5.708 | 10.452 | 18.698
az(xm) .001 1000 8.651 |18.9n | s2.532 | 138.434
?' ; 5000 8.236 | 23.631 | 85.478 | 212.97m
.0001 | 1000 6.692 |15.314 | 49.372 | 165.322
5000 8.244 | 26.280 | 86.144 | 275.240
(Xgy) |-000 | 1000 .852 .808 .785 .878 §
' 5000 .823 .832 .905 .985 :
.0001 | 1000 .814 .804 .809 .823 B
5000 839 | .s98 888 887 %
.
fssononilamsilivg 4
T 1 \
Theoretical Quantities l,{
u 2.7451 | 4.4aaa | 9.4737 | 19.4872 \
| o? 6.42718 |17.2247 | 82.4809 | 362.6139 k
g v .924 .934 .959 .977 E
‘: | 1 1
g
3




Table 7

Sample Mean, Variance and Coefficient of Variation for
System Time fol
M/M/4

20

; Activity Level »

E Statistic 0.8 0.9 0.95
Ty |-000 | 1000 4.486 6.309 | 10.407 | 16.105

5000 4.575 6.439 | 12.244 ] 17.4an

.0001 | 1000 3.826 6.050 | 10.122 | 16.712

5000 4.498 7.570 | 1.773 | 8.4

S(xpp) |00 | 1000 | 12.882 | 23.a58 | s8.120 |150.670

| 5000 13.153 | 24.898 | 94.514 | 225.918

.0001 | 1000 9.356 | 24.461 | 56.175 | 176.487

5000 13.759 | 40.273 | 95.986 | 237.959

v(Xgeq) | -001 1000 .799 .768 .733 .762

5000 .792 775 .794 .863

.0001 | 1000 .799 .818 .740 .795

5000 .825 .838 .832 .850

e 1— —
Theoretical Quantities

3.8002 | 5.5857] 10.6898 | 20.7370
1.5072 | 23.6341] 90.3110 | 371.1839

.893 .870 .889 .929

+ 44
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Table 8
Student t Statistics® for 7}*]
§ = .0001 and m = 5000

(o]
c ol l .8 j .9 .95

1 10.237* 9.401* 4.657* -7
2 7.444* 7.797* 3.333* -1.504
4q 5.959* 9.888* 3.496* -5.322*

3The entries are (7}*] - u)/T000 / G(XT*]). the critical
value at the 5% 1level is 1.96 .

*Significant at the 5% 1level.

significantly biased upward for p < .9 . This is consistent with the
stochastic dominance established for p<s .9 . For p= .95 and ¢ ='4
a significantly downward-biased condition for X}+] is indicated.

The data in Tables 5 through 7 show that for each design point,
G(XT+I) is less than its theoretical value. This observation is of impor-
tance because it indicates the probability of getting an XT+1 from the
tail distribution is not increased over the corresponding steady-state
probability and, therefore, the upward bias in X}+] is not the result
of including a disproportionate number of extreme waiting times. Figure
1 presents the sample cumulative distribution function of X141 and
the c.d.f. of X for thecaseof p= .9, c=1, &§ = .0001 and
m = 5000 . The figure explains the fact that Rule 1 concentrates the

probability of system time away from the tails.
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T Theoretical
c.d.f. (X)»

le c.d.f. (xT*,)

FREQUENCY

o + -+ + + + -+ g
0. 10. 20. 30. 40. SO. 60.
SYSTEM TIME
Figure 1

c.d.f.'s of XT" and X
p=.9, c=1, &§= 0001, m= SO00

A basic assumption inherent in the development of Rule 1 is that

the correlation between xT+l and T becomes small as & decreases.
This was first observed in Fishman and Moore (1978) and was one of the
motivating factors in considering Rule 1 . In principle, one would like
e 13
cern that a small T on a particular run would produce an undercongested

and T to be independent. Then there would be no need for con-

system for starting data collection. Table 9 presents the sample

e e g o e o
L " N
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correlation between XT*‘ and T for eack design point. Notice that
for given m , there is a tendency for the correlation to diminish as
§ decreases, albeit exceptions exist.

Under the null hypothesis: corr(xT+‘. T) = 0, the sample corre-
lation coefficient asymptotically has the normal distribution with mean. "
zero and variance 1/J for J independent replications. Let us con-
centrate on the recommended design parameters & = .0001 and m = 5000 .
Significance occurs at the five percent level at p = .9 for M/M/1
and M/M/4 and at p = .95 for M/M/1 and M/M/2 . Although room for

improvement exists for creating a rule that makes X and T indepen-

T+H
dent, the relatively small magnitudes of the significant correlations
encourages us to recommend Rule 1 at present with minimal concern.

In a study involving four factors p, c, § and m, it is of
interest to see how performance is affected by different levels of the
factors. One way to measure performance with regard to stochastic domi-
nance is to observe how D~ and U change with the alternative levels.
An analysis of variance (ANOVA) enabled us to investigate these questions.
To bring the data in closer conformity with the assumptions of ANQVA,

D and U were transformed to standardized normal variates under the
assumption that HO was true. For example, under H0 ¢'](U) is a normal

deviate where 0']

is the inverse function of the normal distribution.
ANOVA's were performed for the transformed D~ and U statistics
separately. Because of space considerations, we report the most relevant

results for fixed &= .0001 and m = 5000 only.+ They show that for the

Tcomplete details of the ANOVA studies appear in Adlakha (1979).

X * Sras e B0 K \,0‘-: g .
BERRCTIN v’ A Sl AXLT




Table 9
Sample Correlation Coefficients® between XT*I and T

24

| ﬂ ]L f Activity Level o
c 5 m
&¥ h 7 .8 .9 .95
1 .00 1000 .084* .072* .076* .282*
5000 .059 .031 J13* 21
.0001 1000 -.049 -.035 .025 114
5000 .043 .038 .108* .129*
2 .00} 1000 .044 .062* .092* .275*
5000 .028 .078* .094* .241*
.0001 1000 .044 .027 .044 .088*
5000 -.004 .073* .041 .120*
4 .001 1000 -.021 .073* .020 .176*
5000 .013 .026 L151% «2U5*
.0001 1000 .031 .041 -.008 .166*
5000 .010 -.036 .063* .053
W 1 it

*Significant at the 5% 1level.

aThe critical values with 1000 observations at the 5% and
1% significance levels are .062 and .081, respectively.
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range .7 < p < .95 performance is relatively insensitive to ¢ . This
is a gratifying result, for it suggests a generality in the performance
of Rule 1 with regard to varying the number of servers in a model. How-
ever, the analyses indicate an association between performance and p
that reinforces the visual observations in Table 3 . Although more work
is needed to remove this association, we continue to recommend Rule 1

for p < .95 because of its demonstrated success. Naturally, a rule

that performs independently of p is the ultimate goal.

5. Distribution of Starting Time

A desirable characteristic of a starting rule is that it not require
excessive amounts of computer time. The computer time required by a
starting rule is essentially composed of a program set-up time plus a
running time component that is generally proportional to the number of
observations generated. For all practical applications the set-up time
is insensitive to changes in starting rules when compared with the run-
ning time component. Therefore, it is of interest to study the starting
time T associated with our starting rule, since it is this variable
that determines the cost (in computer time) of the rule.

We are interested in studying the variation in the mean starting
time in response to changes in the parameters p, c, § and m . Adlakha

(1979) contains these results for the complete experimental design. Here

we focus on the distribution of T for Rule 1 with the recomnmended param-

eters 6 = .0001 and m = 5000 .
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We first discuss quantiles. The 100xp percent quantile of the
distribution of T is min(n: pr(T s n) =p] . Table 10 presents

the sample quantiles, which appear to be relatively insensitive to
o and c¢ . Although the 95 percent quantiles, which tend to be
about 10,000 , are comparable to those observed by Fishman and

Moore's starting Rule 2 , the higher quantiles and the maximum value

have decreased drastically. This indicates that our recommended rule
has substantially reduced the skewness in the distribution of T .

The sample mean, standard deviation, and coefficient of variation
of T also appear in Table 10 . The data show that the mean starting
time varies between 2837 and 3387 . These mean values occur around
the 65 percent quantile as compared to the 90 percent quantile for
Rule 2 in Fishman and Moore (1978) . The coefficient of variation of
T 1is approximately equal to one in each case. These observations again
suggest that the starting time distribution is not as skewed as the dis-
tribution obtained in the earlier work.

To see the influence of this reduction in skewness on the cost of

a simulation run, we consider the case of p = .9 with the cost function

for example, and let T* = 30,000 . A cost function of this type arises
when one runs out of computer time or allocated space during a simulation run

and has to run an experiment over again. One can also conceive of such a cost
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Table 10
Sample Quantiles of Starting Time for Rule 3
§ = .0001 , m = 5000
C

100n .7 .8 .9 .95 4 .8 .9 .95 g .8 .9 .95
1 46 50 67 68 47 53 60 69 55 54 66 35
2 82 74 101 96 92 83 104 133 79 100 97 78
5 154 149 192 198 169 169 184 235 168 167 176 169
10 252 279 283 318 282 262 303 357 284 303 287 328
15 336 363 377 452 377 398 396 483 397 436 418 423
20 415 469 491 556 478 477 520 603 511 563 529 527
25 523 574 635 680 568 585 627 746 631 710 691 659
30 649 684 763 828 679 744 761 882 778 818 833 803
35 m 800 877 | 1004 823 868 91 1044 906 993 1002 966
40 916 958 )} 1062 | 1169 985 1016 M2 1301 1064 172 1194 1 1118
45 1105 1196 | 1271 | 1360 1186 1186 1286 1516 1253 1412 1298 | 1370
50 1297 1366 | 1509 | 1576 1437 1464 1537 1783 1563 1737 1766 | 1621
55 1577 1679 | 1897 | 1926 1677 1809 1832 2166 1902 2067 2125 | 2006
60 1999 2068 | 2329 | 2375 1930 2238 2153 2694 2357 2109 2631 | 2468
65 2579 2664 | 2850 | 2906 2366 2835 2700 3489 2828 2696 3352 | 2955
70 3418 3384 | 3823 | 3722 3257 3613 3553 4609 3807 3450 4271 | 4103
75 4895 4628 | 5097 | 5146 4464 4887 4798 5489 5135 4662 5263 | 5184
80 5428 5382 | 5554 | 5687 5352 5406 5563 5977 5627 5448 5596 | 5579
85 5966 5806 | 6006 | 6393 5663 5822 6188 6640 6113 6013 6082 | 6215
90 6884 6683 | 7560 | 7816 6540 6752 7202 7982 7213 7150 nw§ ns
95 10498 | 10224 | 10490 110609 ] 10531 ] 10137 J 10490 ] 10877 ] 10207 | 10606 | 10398 | 10542
98 13534 | 12013 | 15306 12825 ] 12418 ] 11581 } 15306 ] 13896 ] 13985 } 12524 ] 12566 | 14193
99 15919 | 15255 { 18870 {15916 | 15751 | 13199 | 17748 } 16762 ] 15587 ] 15698 ] 14058 }1809)

min 9 2 n 6 18 9 33 17 12 7 2 8
max 27005 | 24715 | 34605 12588€ | 27391 | 26409 | 31787 | 25516 | 25768 | 21444 | 21950 |27454
-Ta 2906 2850] 3188 | 3174 2839 2877 3057 3387 3062 3035 3145 | 3149
f,‘ 3561 3332 4043 | 3627 3442 3218 3682 3696 3496 3407 3337 ]| 3656
% 1.23 1.17) V.27 § 1.4 1.2 1.12 1.20 1.14 1.12 1.14 1.06 } 1.16

“The quantities 61 and GT denote the sample standard deviation and the coefficient of
varfation respectively.
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function when computer reliability is low. For Rule 2 in the Fishman

and Moore paper, one has

E[C(T)] = ¢y * c]E(T) + czx.OZ
and for Rule 1

E[C(T)] = o * c]E(T) + czx.OOI

Since the mean starting time obtained is approximately the same with
Rule 2 and the recommended Rule 1 , a significant reduction in the
expected cost is achieved when <, is much greater than G - Avoiding

long tail starting time distributions is clearly a desirable objective.

6. Conclusions and Proposed Algorithm

The empirical evidence of this study strongly indicates that the
use of Rule 1 results in the starting of data collection when a system is
congested (for p < .90) or is at least in the steady state (for p = .95) .
Although a firm theoretical basis for this dilution of the influence of
empty and idle initial conditions remains to be developed, we believe
that the use of Rule 1 is a reasonable recommendation for a wider class
of queueing simulations other than those tested. Tpe supposition here
is that one can compute the theoretical activity level exactly. The
particular form that the activity level assumes is of course a function

of the system being simulated.
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s

There are several ways by which a user can implement Rule 1 in a «

simulation program. Essential steps are provided in algorithm START . ;

Algorithm START

Let current sample activity level

old sample activity level
number of iterations minus one
= tolerance level (given)
= iteration length (given)

number of completions

Start the simulation in the empty and idle state,
n+«0, 1«0, B+«0.

Simulate until next completion and n « n+l .

Compute A based on last n - mlI completions.

If B0, |[A-p| <8 and A>B go to step 7 .
If n=m(I+1) , B« A, go to step 2 .

f«1¢1 , B«0, 90 to step 2 .

Begin data collection at next completion.
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