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ABSTRACT

his paper proposes a rule for determining when to start collecting

• 

-

~ data in a queueing simulation. The rule is designed to reduce depen-

dence between the empty (queue) and idle (servers) initial conditions and

the collec ted sample record . The rule is an outgrowth of earl ier work by

Fishman and Moore (1978) and relies on a comparison between a priori

information on the activity l evel (traffic intensity) and a corresponding

sample estimate computed during the course of simulation . Experiments

with simulations of the MIMIc queue with c = 1,2,4 and p = .7,.8,.9,.95

reveal that the rul e reduces and in most cases removes the dependence on

the empty and idle initial conditions. In particular , the rule begins

data collection when the simulation is in a congested state or in the

steady state. The rule is wel l behaved in that it has low probabiliti es

of requiring long runs before data collection is started. Al though our

data suggests an association between the rule ’s performance and activity

level , the performance is insensitive to variation in the number of servers.

Since the rule is based upon the activity l evel , a parameter that frequently

can be computed from the input parameters of the s imula tion, the rule is

easily generalized to a wider class of queueing simu1ations .~ A subsequent

study (Adlakha and Fishman 1979) demonstrates the appeal of tI~e starting

rule when used with a proposed stopping rule for computing interval estimates

of parameters of interest. —
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1. Introduction

This paper proposes a rule for starting data col lection in a queue-

ing simulation. The rule is an outgrowth of work by Fishman and Moore

(1978) who described a framework for research into the probl em of reduc-

• ing the effect of initial conditions on sample records collected for

statistical analysis in a discrete event simulation. Initia l Conditions

refer to the states of critical variabl es at the beginning of a simula-

tion run. Because of the dependence among phenomena in a simulation

and the temporal nature of much of this dependence, the choice of Ini-

tial conditions influences the observed time paths of these phenomena.

The suggested framework in the Fishman and Iloore paper encourages the

use of ancillary information such as the theoretical activity level In

a queueing simulation to provide guidance as to when data collection

for analys i s shoul d begin in a s imula tion. In part icular , if a comparison

between the theoretical and sample activity l evels in a simulation shows

that certain conditions are met, empirical evidence in their paper shows

that the queueing simulation is in a congested state for an important

range of theoretical activity levels. Therefore, data collection initiated

at that point reflects initial conditions for a congested system rather

than for an undercongested system, as would occur if data col l ection starts

at the beginning of a simulation whose initial conditions include all

idle servers and empty queues. Since most simulators are inclined to

accept upward bias due to initial congestion more readily than downward •

bias due to initial undercongestion , this new-found ability to Induce

congestion -is a major step forward in alleviating the often asserted

#1
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problem of initial conditions : When does a simulation achieve represen-

tative state behavior of the system being studied?

Ideall y, one would like to begin data collection when the system

is in the steady state. However, the very act of us ing information on

the sample path up to the point at which a decision is to be made about

starting data col lection from that point onward necessarily creates a

conditi onali ty and, therefore , prevents a determination of when the

steady state arises in a given run. Moreover , from a probabil ists ’s

point of v iew one regards the steady state as a rela tive , rather than

an absolute, concept that is achieved as a l imiting operation . In

support of these assertions , the empirical evidence in the Fishman and

Moore paper shows that the steady state Is not a point of attraction

for the type of data-based rules they employ . However, the inducement

of congestion is possible.

Fishman and Moore presented an explicit rule for achiev ing this

congest ion. 1 Al though the rule performed well , the highly var iable data

collection starting times to which it led allowed for the possibility of

excessive cost before achieving congestion. Their report concludes wi th

a reconinendation that further search of rules to induce congestion should

cons ider an itera t ivt ’ rule which they describe. This paper presents the

results of a considerably more elaborate sampl ing experiment designed to

eva luate thi s rule , hereafter referred to as Rule 1. By way of suninary,

the results to be presented here show that the candida te rule can induce

congestion wi th considerably less risk of excessive cost for a variety of

• queueing models and activity levels.

tihe rule Is called Rule 2 in their paper.

1— .- -
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Section 2 formulates the problem and Section 3 describes the

experimental design and measures of evaluation . Section 4 presents an

analysis of the empirical results and reconmiends specific values for the

parameters of the rule. Section 5 presents an analysis of the distri-

bution of starting times and shows that the new reconinended rule l eads

to considerably less skewness than the rule reconmiended in Fishman and

Moore (1978). The implications for cost are discussed in detail . Section

6 draws overall conclusions and describes a proposed algorithm for Impl e-

menting the rule.

Before beq i nninq the technical discussion , we wish to stress two

points. Firstly, the ancillary information used for decision making here

is the activity level of the queueing system being simulated . We contend

that this quantity can frequently be computed from the input parameters of

the simulation . This computation is also possibl e in many , though not a l l ,

large scale queueing simulations . Al though we recognize that our results

demonstrate the value of the proposed starting rule with relatively simple

sys tems, we feel that its applicability with perhaps some modification to

larger scale systems is a possibili ty that a thoughtful simulation user

would want to consider seriously.

The second point concerns the ultimate purpose of starting data

o collection in the steady state or in a congested state. In a second

paper (Adlakha and Fishman 1979), we develop a stopping rule for data col-

lection which when used with the starting rule proposed here produces

confidence interva ls via the autoregressive method (Fishman 1971) whose

coverage rate is considerably higher than that reported In the origina l

Fishman paper. The relatively comprehensive analysis in the second Adlakha

and Fishman paper makes clear the attraction of using the suggested start-

Ing and stopping rules together.

~~~~~~ ~~T~~~~:: _ _ _ _ _ _ _ _ _ _
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2. Problem Formulation

Consider a simulation model of a queuelng system with c servers

In parallel , independent interarrival times with mean 1/A and Indepen-

dent service times with mean l/w . Let T denote the elapsed time

between arrivals of jobs 1-1 and I and let S~ denote the serv ice

time of arriva l i . Assume that the simulation begins with the arrival L

of job 1 to an empty queue and c idle servers. Let denote the

system time of completion i where system time denotes waiting time plus

service time . Assume that an ultima te objective of analysis is to

infer the characteristics of the system time stochastic process from

a sample record of system times. Also assume that given the choice

between starting data collection in an undercongested or a congested

system, one prefers the congested one.

i ~?u1e

After n completions occur during a simulation run one can esti-

mate 1/A and l/~ by n~ 
~ T.~ and n 1 ~ S~ respectively.
1=1 l~l

These estimates are unbiased and independent of initial conditions .

Now the i•tj t i ti~ ~~~~~~~ or traff ic intens i ty for a queuei ng system usua lly

is defined as

= arriva l rate/no, of servers x service rate

A/cw ,

for which one estimate is

n

~~= Z  S1/cI T1izl

- - • 
-
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Since is usually a biased estimator of p an alternative, presum-

ably more desirable, estimator is

A 
- fl

Pfl
_ _

~(
_
_ )  ,

since E(
~n
) Is in principle derivable for most can non interarrival and

service time distributions . For example, In the case of exponential

interarriva l and service times E(~ 
) = pn/(n-l) so thatn

( fl~ l) ?~r~/ I’l .

‘-i

.1
Let S1 denote the condition - pf � 6 for 0 < 6 and S2

the condition > . Then Fishma n and Moore reconinend that data

collection begin wi th system time 141 where

Rule ~ = min(n: S1 and S2 hold).

Condition S1 is an accuracy requirement designed to guarantee that

the sample activity l evel 
~n 

is acceptably close to the theoretical r
p . Condition S2 is a directional criterion designed to insure

that data collection can begin c~niy when the congestion level is increas-

ing . Intuitively, S2 obtains if job n has a large service time, has

a small interarriva l time or has both.

Using this rule on an M/M/l queueing model Fishman and Moore

• - - - --a - — - ---~~~~~-~~~~~~~~~- - - -“

• - 
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conclude:

On the basis of the accumulated empirical evidence to
date, one inclines to reconnend the use of rule 2 with
6 .0025 . Although we do not quarrel wi th this reconinen-
dation , this advice should be regarded as a temporary measure
on at least three grounds. Firstly, we have no exper ience
with p > .9 . Secondly, we have no experience with multi-
server systems. Thirdly, the sample quanti les of starting
time for rule 2 and 6 - .9 In ... are cause for concern.

although 90 percent of the starting times are less than
3099 , one percent exceeds 48334 . In our opinion the risk
of excessive cost is far too great to regard rule 2 as an
end in i tself.

As a candida te for Improved performance, they suggest beginning

t data collection with system time 1+1 where

J?u’~ I 1’ min(n: S~, S and S hold).

-~~~~~~~ * A• S1 : lI)I,n - 
~ 6

~I,n 
> 

~I,n-l

mI � n-l

• I m integer 0 , I L(n—l )/vn j

In particular for e,cponential interarrival and service times one has

n
S4

A - j  g mI+l ‘~ 
• 
n — ml — 1 (1) .

n n - n IT
I

j~mI+l

•

~ 

•
.: ~~~~~~~~~~ 
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In words this rule requires one to use a sample activity level based on

at most m past completions . The quantity I denotes the number of

times one needs to reset ; -i.e., the number of i terations minus one.

A little thought shows that

pr(I i) (1 — ~
) 1 q,~ I = 0,1,...

where q~ is the probability of success on a given Iteration. Then I

has a geometric distribution with mean (1 - %)/q~ and variance

(1 - %1)/q~ . Also , the mean number of completions E(T ) required to

meet Rule 1 satisfies

m(l - Q~)/q~ E(T) �

Now a user may choose m to suit one’s convenience. However, from

the viewpoint of optimality , one prefers the m that minimize s m/q~ .

if several m ’s lead to Identica l minima , then one prefers the largest

among them since this minimi zes var(mI) = (1 - q~)(m/%) 2 
. In the next

section we examine the performance of Rule 1 for selected values of

= 6 , m and p on simulations of the N/N/i , M/M/2 and P4/14/4 queueing

systems.

3. Experimenta l Oesign and Method of Fvaiuatlon

To study Rule 1, we used a simulation of the M/M/c Queueinq system

with the experimental design:

p = .7 , .8, .9, .95

c — 1 ,2 , 4

6 .001, .0001

m = 1000, 5000 . -

~~~ ~~~~
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To reiterate, p denotes the activity level ; c, the number of servers;

6, the tolerance to be achieved before coninencing data collection ; and

m, the point at which an iteration terminates.

For all simulation runs the arrival rate was fixed dt unity and

the mean service time was taken as cx p  . For each of the 4x 3x 2x 2  = 48

experIments, 1000 Independent repl ications were performed. Indepen- - •

dence among replications was achieved by using the last seeds of random

number streams for a replication as the initial seeds for the correspond-

Ing random number streams in the next replication . On each replication

of each design point , the recorded data were:

i = starting time (number of observations to satisfy
the rule)

I - number of iterations minus one

system t ime (queueing time + service time ) of the
(T+l )st customer
act iv i ty  l evel when the rule is satisfied (computed
using il)).

•~ ‘rh .i of 1~lk~luation

Let X denote a system time drawn from the steady-state distribu-

tion of system time for the M/M/c queueing system. As discussed in the

Fishman and Moore paper, X.T ,.l comes from a congested system if

stochastically domina tes X . One says that the random variable W

with cumulativ e distribution function (c.d.f.) F
~ 

stochastically domi-

nates the random variable V with c.d.f. F~ if F~~(u) - F~~(u) Is

non-negative and not identically zero on the open interval 0 u < 1
where F~

1 and F 1 denote the right continuous Inverses of Fw and

F~, respectively.

_ _ _ _ _ _ _ _  - I
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The test procedures to be used relate to the hypotheses:

H0: XT~l comes from the steady-state distribution of system

t i m e X .

H1 : XT+l stochastically dominates X

Let I
~ 

denote the starting time on replication j and x~ T +1
the system time of completion Ifl on repl ication ,j . Consider J

replications with sample data 
~ +1’ ‘~~~~ +1 which are indepen-,Tl IJ,I

J

dent and identically distributed when using Rule I . Under H0: X.
3 ’j + l

has the c.d.f.

F(x) t - e ’
~~ for M/M/l

j F(x) 1 + 
~~~~~ 

e~~ - ~~~~~~~ for 14/14/2

and 

F(x)  1 + Y (4p;3) e~~ - 

~ ~~~~~~ 
for 14/14/4

where

32p~
3+9p+l2p +8p

Table 1 presents the corresponding means , variances and coeffi-

cients of variation . Moreover,

Vi = F”1 (X
1111

~1)

has the uniform distribution

G(y) :y O~~ y~~~1

_________________________ —— — — •_•_._ - - — —•—— —
~

-e-.—
~ 

——-
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Table 1
Parameters of the 14/14/c Queue

with Arrival Rate 1.0

p

System Time
Parameters c .7 

- 
.8 

- .9 .95

mean (~
) 1 2.3333 4.0000 9.0000 19.0000

2 2.1451 4.4444 9.4737 19.4872
4 3.8002 5.5857 10. 6898 20. 7370

variance (~2) 1 5.4444 16.0000 81 .0000 361.0000
2 6.4278 17.2247 82.4809 362.6139
4 11.5072 23.5341 90.3110 371.1839

coefficient 1 1.0000 1.0000 1.0000 1.0000
of variation 2 .924 .934 .959 .977( v o/~ )

k 4 .893 .870 .889 .929

The empirical c.d.f. of the Vi’s is

= j  
~~~ 

I(0,~)(Yj) 0 � y � 1

where

I(0
~~

](Y
~

) = 1 if 0 V~ y

= 0 otherwi se .

• To test H0 against all alternative hypotheses, one examines the devia-

tions

A (y) = G~(y) 
- 0 ~ 

y < I

-• • •. ~_ L~ T - 
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or functions ot thcse dcv ,lons . lor the Kolmogorov-Smlrnov (t(S)

goodness-of-fit test one uses the statistic

0 - su p(A(y)~ Fy

for which cr i t ica l values appear In Miller (1953) and Owen (1962).

A second test procedure uses the chi-squared test statistic

K
JK )~ [A( i/ K) -A ( I /K - 1/ K))

1—1

which for Integer K and large J has the chi-squared distribution

with K - 1 degrees of freedom under H0 . A third test procedure

uses the Anderson-Darl ing (AD) test statistic

N2 J f ~[A (y)) 2/y(l-y)~ dy
0

which is particularly sensitive to departures of 6~(y) from G(y)

In the tails of the distribution . Critical values of the test statistic

appear In Lewis (1961).

To test H1 against H0 one can use the KS test stati sti c

-ln f A(y)
y

Dwass (1958) describes an additional helpful measure of discriminatio n.

The statistic

U 0
f I[_m ,O)(A(Y)) dy

gives the proportion of G~(y) that lies below 6(y) - y . Under H0
U has the uniform distribution on (0,1) . If H1 is true one expects

U to be c lose to unity .

• ~~~~~~~~ - r -1~~
• •.. • • —
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4. Eva luation

• Table 2 shows the 0 , x2 and W2 statistics for H0 against

-

= all possible alternatives . The data show that a large number of statis-
• tics are significant at the fIve percent level . Before we draw any

inferences, It Is appropriate to consider the issue of multip~icity. By

multiplicity we mean that when one obtains independent observations of

several test statistics using , for example, the five percent signifi-

cance level , then one would expect that five percent of the statistics

may be significant when H0 is true. However, the number of signif I-

cant statistics In Table 2 is much larger than one would expect from

random variation under H0, and is evidence that the occurrence of

these significant statistics cannot be explained satisfactorily by multiplicity .

The data in the table provide substantial evidence to reject H0
at each design point for p � .9 . Notice that for p .95 all values

of 0 and W2 exceed the corresponding critical values at each

design point wi th the exception of design points with parameters ~S .0001

and m 5000 . This shows that H0 is rejected for p - .95 and each

c , except in the case of 6 .0001 and in = 5000 , for which the

general pattern tends to favor H0 . We discuss this point shortly.

Recal l that our primary objective is not merely to detect a departure

from the steady-state distribution (reject H0) . In particular , we want

to check for a specific type of departure f rom the steady state, the

stochastic dominance of XT+l over X . For this purpose, we use the D

and U statistics. The statistic U gives the proportion of the empiri-

cal c.d.f. under the theoretical c.d.f. (prevalence of stochastic dominance)

and the statistic D gives the magnitude of maximum deviation. Table 3

presents the D and U statistics for H0 versus H1 . The main

__________ • 
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observations are:

(1) For p .7, .8 both the D and the U statistics

support the hypothesis of stochastic dominance of

over X at all design points, with the exception of the

U statistic at one design point (p — .7, c = 4 , 6 = .0001

and m 1000) . Also observe that the negative deviation

D is reduced as 6 decreases or as c increases.

(2) For p .9 the D statistics support the hypothesis of

stochastic dominance at all design points, but the U

statistics generally show this behavior only with m = 5000

(3) For p = .95 both the D~ and the U statistics fail to

support the hypothesis of stochastic dominance at all design

points . r
Although Rule 1 fai ls to achieve stochastic dominance for p = .95

the statistics in Table 2 generally favor H0 for p .95 with

6 = .0001 and m 5000 . Here we consider the possibility that X sto-

chastically domina tes , implying that comes from an undercon-

gested system. Formally, we consider for p = .95 the alternative hypothesis

112: X stochastically dominates X1~1 .

To test H0 versus ‘12 for p = .95 , we use the KS stati stic

+D = sup A(y)
y

- 
i_______  

~~~~L ~~~~~~~~~~~~ -_ ‘ :~~r 
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The results appear in Table 4 . The data support H2 for all

design points wi th the exception of design points (p • .95. C - 1.

6 .0001, m - 5000) and (p - .95, c - 2, 6 .0001, m - 5000) .

At these two design points the steady state is supported. The selec-

tion of H0 over H2 in these two cases is reassuring, for If H0
is more credible than H1 , we prefer that H0 also be more credible

than H2 - Achieving the steady state is acceptable, because this

assures that the Initial conditions of the simulation no longer play

a role.

The empirical evidence suggests that the parameters 6 - .0001

and m - 5000 give the most satisfactory results over the entire range

Table 4

Testing H0 versus H2 for p- .95

.0381 )a

C
6 m 1 2 4

.001 ‘1000 .1375* .1479* .1122*
5000 .0960* .1078* .0848*

.0001 1000 .1257* .1062* .1164*
5000 .0261 .0269 .0423* 

- r

aCritical value at the 5% level.
*Slgnjflcant at the 5% level .
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of activity level p considered in this study (.7, .95] - For

p .9 , Rule 1 wIth these parameter values appears to induce sto-

chastic dominance. Though the test statistics for p • .95 fail to• : - support the hypothesis of stochastic dominance, the steady state seems

to be achieved for c = 1 ,2 . As stated previously, this Is acceptable.

Therefore, we reconinend the values of 6 • .0001 and m • 5000 for

use with Rule 1 .

Since data collection starts with the system time X1,1 it

- • Is of Interest to study the bias and the dispersion of XT+J .
Tables S through 7 present the sample mean , the sample

var iance ~
2(x 1~1) and the sample coefficient of variation

computed over the 1000 replications of each design point for the Mill/i ,
• M/M12 and M/M/4 queueing simulations . The data show that XT+l is

• greater than the corresponding theoretical mean in experiments where

Rule 1 achieves stochastic dominance, and Is generally less than the

theoretical mean in other cases. To test the statistical significance

of the difference between the theoretical and sample mean for Rule 1

with our reconinended parameters’. 6 — .0001 and m - 5000 , we consider

the hypothesis

113 : X - 1 has the steady-state mean

against the alternative hypothesis

114: ‘R
T+l does not have the steady-state mean.

The test statistics appear in Table 8 . The data show that is

— .-— ‘-. _.•._—.•._-, _ - - .- -  - - • --  -- — - - ---~ 
- -

- — -~~ ~ - - — _
__

~~ ~•____,1~~ ~~~~~~~~~~~
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Table 5
Sai~ le Mean , Variance and Coefficient of Variation for

System Time

N/N/l

Activity Level p

Statistic 6 in 0.7 0.8 0.9 0.95

1+1 .001 1000 3.416 5.002 9.052 13.412
5000 3.629 5.394 9.788 14.625

.0001 1000 2.905 5.022 8.839 14.558
5000 3.249 5.415 10.404 18.625

.001 1000 8.022 17.523 58.365 124.404
5000 9.762 23.786 86.014 187.868

.0001 1000 6.008 18.446 50.249 160.000
5000 8.007 22.655 90.903 277.835

.001 1000 .829 .837 .844 .832
5000 .861 .904 .948 .937

.0001 1000 .844 .855 .802 .869
5000 .871 .879 .916 .895

Theoretical Quantities

u 2.333 4 9 19
5.44 16 81 361

v 1 1 1 1

i

_ 
_ _  

_ 1 -
•~~~~~~~~ •- -
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Table 6

Sample Mean, Variance and Coefficient of Variation for

System Time

M/M/2

Activity Level p

Statistic 6 m 0.7 0.8 0.9 0.95

.001 1000 3.453 5.393 9.235 13.403
5000 3.489 5.873 10.221 14.816

.0001 1000 3.178 4.865 8.683 15.631
5000 3.421 5.708 10.452 18.698

.001 1000 8.651 18.971 52.532 138.434
5000 8.236 23.631 85.478 212.971

.0001 1000 6.692 15.314 49.372 165.322

5000 8.244 26.280 86.144 275.240
(x 1~1) .001 1000 .852 .808 .785 .878

5000 .823 .832 .905 .985

.0001 1000 .814 .804 .809 .823
5000 .839 .898 .888 .887

Theoretical Quantities
U 2.7451 4.4444 9.4737 19.4872

a2 6.4278 17.2247 82.4809 362.6139
v .924 .934 .959 .977 F

L

_  

•. _ - -   



_ _ _ _  _ _ _ _  _ _ _  —— --- — -  —
20

Table 7
Sample Mean, Variance and Coefficient of Variation for

• System Time

H 
- 

: P4/74/4

____________________________ ___________________ __________________________

- :- Activity Level p

Statistic 6 in 0.7 0.8 0.9 0.95

.001 1000 4.486 6.309 10.407 16.105
5000 4.575 6.439 12.244 17.411

.0001 1000 3.826 6.050 10.122 16.712
5000 4.498 7.570 11.773 18.141

.001 1000 12.842 23.458 58.120 150.670
5000 13.153 24.898 94.514 225.918

.0001 1000 9.356 24.461 56.115 176.487

A 
5000 13.759 40.273 95.986 237.959

v(X1~1) .001 1000 .799 .768 .733 .762
5000 .792 .775 .794 .863

.0001 1000 .799 .818 .740 .795
5000 .825 .838 .832 .850

Theoretical Quantities

3.8002 5.5857 10.6898 20. 7370
11.5072 23.6341 90.3110 371.1839

v .893 .870 .889 .929

- —- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -—— 
~~~~~~~~~~~~~~~~~~~~~ -~~~~~~
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Table 8

Student t ~~ ti5ti~5
a for

6 — .0001 and m-5000

___________ ___________ ____________• _____________

7 .8 .~~

1 10.237* 9.401* 4.657* — .711

2 7444* 7 797* 3 333* -1.504 e
4 5 959* 9.888* 3.496’ _5.322*

aThC entries are 
~ T+l - p)/1000 / o(Xi+O, the critical

value at the 5% level is 1.96

*Signlflcant at the 5% level .

sign ificantly biased upward for p ~ .9 . This is consistent wi th the

stochastic dominance established for p � .9 . For p = .95 and c = 4

a significantly downward-biased condition for X’
T+l Is indicated .

The data in Tables 5 through 7 show that for each design point ,

~(X
1~1) is less than its theoretical value. This observation is of impor-

tance because it indicates the probability of getting an from the

tail distribution is not increased over the corresponding steady-state

probability and, therefore, the upward bias In 
~~+l 

is not the result

of including a disproportionate number of extreme waiting times. Figure

1 presents the sample cumulative distribution function of and

the c d.f. of X for the case of p • .9, c • 1, 6 • .0001 and

m • 5000 . The figure explaIns the fact that Rule 1 concentrates the

probability of system time away from the tails.

Ti ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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- Theoretical
c.d.f.

- 

,

~~~~~mP1e c.d.f. (X1~1)

z

. - -

‘I.

c~J .
a

a.  -

~ -I -I -4
0. 10. 20. 30. ¶0. 50. 60.

SYSTEM TIME

Figure 1
c.d.f.’s of and X

p - .9, c • 1, 6 • .~~ 1, in • 5000

A basic assumption Inherent In the development of Rule 1 is that

the correlation between X.1~ and I becomes small as 6 decreases.

- • This was first observed in Fishman and Moore (1978) and was one of the

motivating factors in considering Rule 1 . In principle, one would like

XT+l and T to be independent. Then there would be no need for con-

cern that a small I on a particular run would produce an undercongested

system for starting data collection. Table 9 presents the sampl e

L — - - — 
— 

— 
• 

‘- - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --
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correlation between and T for each design point. Notice that

for given m , there is a tendency for the correlation to diminish as 
- 

-

6 decreases, albeit exceptions exist.

Under the null hypothesis: corr(X1~1, T) 
- 0 , the sample corre-

lation coefficient asymptotically has the normal distribution wi th mean . -

zero and variance l/J for J independent replications . Let us con- t.
centrate on the recorrnended design parameters 6 .0001 and m 5000 -

Significance occurs at the five percent level at p = .9 for M/M/l d
and M/M/4 and at p = .95 for M/M/l and M/M/2 - Although room for

improvement exists for creating a rule that makes X1.1 and I indepen-

dent, the relatively small magnitudes of the significant correlations

encourages us to recoimiend Rule 1 at present with minima l concern .

In a study involving four factors p, c , 6 and m , it is of

interest to see how performance is affected by different levels of the

factors. One way to measure performance with regard to stochastic domi-

nance is to observe how 0 and U change with the alternative levels.

An analysis of variance (ANOVA) enabled us to investigate these questions.

To bring the data in closer conformity with the assumptions of ANOVA ,

D and U were transformed to standardized normal variates under the

assumption that H0 was true. For example , under H
~ ~~~(U) is a normal

deviate where o~ is the inverse function of the normal distribution .

ANOVA ’s were performed for the transformed D and U statistics

separately. Because of space considerations, we report the most relevant

results for fixed 6= .0001 and m = 5000 only.t They show that for the

tcomplete details of the ANOVA studies appear in Adlakha (1979).

• -‘ 
.~~~~~

_ , - 
- .- 
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Table 9

Sample Correlation Coefficientca between XT,l and I

Activity Level ,;

C 6 m 

_ _ _ _  _ _ _ _  _ _ _ _  _ _ _ _

.7 .8 .9 .95

1 .0O~ 1000 .084* .072* .076* .282*
5000 .059 .031 .113* .211*

.0001 1000 -.049 -.035 .025 .114*
5000 .043 .038 .108* .129*

2 .001 1000 .044 .062* .092* .275*

5000 .028 .078* .094* .241*

.0001 1000 .044 .027 .044 .088*
• 5000 -.004 .073* .041 .120*

4 .001 1000 -.021 .073* .020 .176*

5000 .013 .026 .151* .205*

.0001 1000 .031 .041 -.008 .166*

5000 .010 - .036 .063* .053 
• —

aThC critical values with 1000 observatIons at the 5% and
1% significance levels are .062 and .081 , respectively.

*Sjgnjficant at the 5% level .
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range .7 p .95 performance is relatively Insensitive to c . This

is a gratifying result, for it suggests a generality in the performance

of Rule 1 with regard to varying the number of servers in a model . How-

ever, the analyses indicate an association between performance and p

that reinforces the visual observations in Table 3 . Al though more work

-is needed to remove this association , we continue to reconinend Rule 1

for p — .95 because of its demonstrated success. Naturally, a rule

that performs i ndependently of p is the ultimate goal .

• 5. Distribution of Startinqjime

• A desirable characteristic of a starting rule is that it not require

excessive amounts of computer time. The computer time required by a

starting rule is essentially composed of a program set-up time plus a

running time component that is generally proportional to the number of

observations generated. For all practical applications the set-up time

is Insensitive to changes in starting rules when compared with the run-

• ning time component. Therefore, it is of interest to study the starting

time I associated wi th our starting rule, since it is this variable

that determines the cost (in computer time) of the rule.

We are interested in studying the variation in the mean starting

time in response to changes In the parameters p, C, 6 and m . Adlakha

-
• 

(1979) contains these results for the complete experimental design . Here

we focus on the distribution of T for Rule 1 with the reconmended param-

eters 6 .0001 and m 5000

____________ ————-—~~.~~—~~.——.~~~.—-*-.. ,..- ~~~ ——————— —-— 
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~~~~
__ _

- ‘ . - •~~~ r ~~~~~



-
~

26

We first discuss quantiles . The l00xp percent quantile of the

distribution of I is m$n (n: pr(T � n) — p3 . Table 10 presents

the sample quantiles , which appear to be relatively Insensitive to

p and c . Although the 95 percent quantiles, which tend to be

about 10,000 , are comparable to those observed by Fishma n and

Moore ’s starting Rule 2 , the higher quantiles and the maximum value

have decreased drastically. This indicates that our reconinended rule

has substantially reduced the skewness in the distribution of T

The sample mean, standard deviation, and coefficient of variation

of T also appear in Table 10 . The data show that the mean starting

time varies between 2837 and 3387 . These mean values occur around

the 65 percent quantile as compared to the 90 percent quant-fle for

Rule 2 in Fishman and Moore (1978) - The coefficient of variation of

I Is approximately equal to one in each case. These observations again

suggest that the starting time distribution is not as skewed as the dis-

tribution obtained In the earlier work.

To see the influence of this reduction in skewness on the cost of

a simulation run , we consider the case of p = .9 with the cost function

CCI) = C
0 

+ c1 T +

for example, and let 1* = 30,000 . A cost function of this type arises

when one runs out of computer tIme or allocated space during a simulation run

and has to run an experiment over again. One can also conceive of such a cost

L ~~~~~~~~~~ ~~~~~~~~ - • ___________• •
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Table 10
Sample Quantf les of Start ing T ime for Rule 3

4~~~ 0~01 • at~~~5O00

- 

• 

- 

2 

- 

60 55 54 66

2 82 74 101 96 92 83 104 133 79 100 97 78
5 154 149 192 198 169 169 184 235 168 167 176 169

10 252 279 283 318 282 262 - 303 357 284 303 287 328
15 336 363 377 452 377 398 396 483 397 436 418 423

20 415 469 491 556 478 477 520 603 511 563 529 527
25 523 574 635 680 568 585 627 746 631 710 691 659
30 649 684 763 828 679 744 761 882 778 818 833 803
35 771 800 877 1004 823 868 921 1044 906 993 1002 966
40 916 958 1062 1169 985 1016 1112 1301 1064 1172 1194 1118

• 45 1105 1196 1271 1360 1186 1186 1286 1516 1253 1412 1~98 1370

50 1297 1366 1509 1576 1437 1464 1537 1783 1563 1737 1766 1621
55 1577 1679 1897 1926 1677 1809 1832 2166 1902 2067 2125 2006
60 1999 2068 2329 2375 1930 2238 2153 2694 2357 2109 2631 2468
65 2579 2664 2850 2906 2366 2835 2700 3489 2828 2696 3352 2955
70 3418 3384 3823 3722 3257 3613 3553 4609 3807 3450 4271 4103 r
75 4895 4628 5097 5146 4464 4887 4798 5489 5135 4662 5263 5184
80 5428 5382 5554 5687 5352 5406 5563 5977 5627 5448 5596 5579
85 5966 5806 6006 6393 5663 5822 6188 6UO 6113 6013 6082 6215
90 6884 6683 7560 7816 6540 6752 7202 7982 7213 7150 7170 7173
95 10498 10224 10490 10609 10531 10137 10490 10877 10207 10606 10398 1054 2
98 13534 12013 15306 12825 12418 11581 15306 13896 13985 12524 12566 14193
99 15919 15255 18870 15916 15751 13199 17748 16762 15587 15698 14058 18091

mm 9 2 11 6 18 9 33 17 12 7 2 8
max 27005 24715 34605 25886 27391 26409 31787 25516 25768 21444 21950 27454
1 2906 2850 3188 3174 2839 2877 3057 3387 3062 3035 3145 3149

3561 3332 4043 3627 3442 3218 3682 3696 3496 3407 3337 3656
1.23 1.17 1.27 1.14 1.21 1.12 1.20 1.14 1.12 1.14 1.06 1.16

TM quantities 0T and denote tti sample standard dev iation and the coefficient of
variation resp ecti vely. 

~~~ - -~~~- -— -~~~~~~~~~~~~~~~~ - -~~~ -~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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function when computer reliability is low. For Rule 2 in the Fishman

and Moore paper, one has

EfC(T)) c0 + c1E(T) 4. c2x .02

and for Rule 1

E[C(T)] = c0 + c1E(T) + c2x .00l

Since the mean starting time obtained is approximately the same with

Rule 2 and the reconinended Rule 1 , a significant reduction in the

expected cost is achieved when c2 is much greater than c1 . Avoiding

long tail starting time distributions is clearly a desirable objective.

6. Concl usions and Proposed Algorithm

The empirical evidence of this study strongly indicates that the

use of Rule 1 results in the starting of data collection when a system Is

congested (for p � .90) or is at least in the steady state (for p = .95) .

Al though a firm theoretical basis for this dilution of the influence of

empty and idle initial conditions remains to be developed , we bel ieve

that the use of Rule 1 is a reasonable reconinendation for a wider class

of queueing simulations other than those tested. The supposition here

is that one can compute the theoretical activity level exactly. The

particular form that the activity level assumes Is of course a function

of the system being simulated . 

p - - - — —- — —-- •— •-~~—- • .— ~~~~~~~~~~~~~~ 
________________________ tIflIflu llIl
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There are several ways by which a user can implement Rule 1 In a

simulation program. Essential steps are provided in algorithm START

- Algorithm START

Let A current sample activity level

- 

- 

B old sample activity level

I number of Iterations minus one

6 tolerance level (given)

• m Iteration length (given)

n number of compl etions .

1. Start the simulation in the empty and idle state,

n .- 0 , I~~~0 , B ÷ 0 .

2. Simulate until next completion and n ÷ n+1

3. Compute A based on last n - ml completions.

4. If B~~ 0, IA - pi - 6  and A > B  go to step 7 -

Rule 5 If n � m (I+1) , 8 ~ A , go to step 2

6. I ÷ 1+1 , B 0 , go to step 2

7. Begin data collec tion at next completion.

•

- I

I

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

-
~~~
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This paper proposes a rule for determining when to start col lectingI
data in a queueing simulation . The rule Is designed to reduce dependence
between the empty (queue) and idle (servers) initia t conditions and the
collected sample record. The rule is an outgrowth of earlier work by Fishman
and Moore (1978) and rel ies on a comparison between a priori information on
the activity level (traffic intensity) and a corresponding sample estimate
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computed during the course of simulation. Experiments wi th simulations of
the M/M/c queue with c • 1 ,2,4 and p • .7, .8, .9, .95 reveal that the
rul. reduces and In most cases removes the dependence on the empty and idle
initial conditions. In particular, the rule begins data collection when the
simulation Is in a congested state or in the steady state. The rule Is well
behaved In that It has low probabilities of requiring long runs before data •

collection is started. Al though our data suggest an association between
the rule ’s performance and activity level , the performance is insensitive to •

variation In the number of servers. Since the rule Is based upon the activity
level , a parameter that frequently can be computed from the input parameters
of the simulation , the rule is easily generalized to a wider class of queueing
simulations . A subsequent study (Adlakha and Fishman 1979) demonstrates the
appeal of the starting rule when used wi th a proposed stopping rule for corn-
puting interva l estimates of parameters of interest.
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