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ABSTRACT

The moan in-line force and -he time dependent transverse

force acting on a circular cylinder undergoing periodic trans-

verse oscillations in an otherwise steady flow was measured

* for various amplitudes and frequencies of oscillation at several

steady flow velocities. The experiments were carried out in a j
recirculating water tunnel operating as a closed channel at

the test section. The mean in-line force has been expressed

in terms of a mean drag coefficient Cdi and plotted as a func-

tion of A/D and D/VT. The time dependent transverse force has

been expressed in terms of the Fourier-averaged drag and inertia

coefficients Cdl and Cml and plotted as functions of the rela-FI

tive amplitude A/D aiid the period parameter VT/D. The results

have shown that the mean in-line force is significantly larger

than that corresponding to steady flow about a non-oscillating

cylinder and that energy may be transferred to the oscillating

cylinder from the fluid at or near the vortex-shedding fre-

quencies for the A/D values tested.
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WOME NCLJATU RE

A amplitude of cylindcr'osci11ation

Cd mean in-line drag coofficient :
C dl Fourier-averaged. drag coefficient (Lift direction)

C Fourier-averaged inertia coefficient (Lift direction)

D diameter of~ test cylinder

F instantaneous total force acting on test cylinder

T period of oscillation

U instantaneous' velocity

U maximum. velocity in a cycle (U az2iA/T)

V mean velocity of the uniform flow

AD dimensionless amplitude ratio

DAVT dimensionless frequency parameter

VT/D dimensionless period parameter

Re Reynolds number (Rew;VD/v)

8 hase angle

V fluid kinematic viscosity

p fluid density
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I. INTRODUCTION 

Elastic structures of one or more degrees of freedom can

extract energy from the flow about then and can develop cata-

strophic flow-induced vibrations. The u-ierstanding of this

energy-extraction process is of paramount importance if one

is either to eliminate or minimize it or to design the elastic

structure such that it can withstand the oscillations under

the contemplated environmental conditions.

Even a superficial familiarity with the parameters involved

in this type of phenomenon shows that the investigation of the

flow-induced vibrations or the flow about oscillating bodies

is more than an extension of the past studies on flow about

bluff bodies at rest. In fact, the complexity of the problem

is increz sed by an order of magnitude. In view of this fact,

it is no wonder that the past decade has pX'oduced either num-

erous experimental data with the goal of obtaining ad-hoc

solutions for specific problems, while directing little if

any attention toward elucidation of the underlying mechanics

and toward generalization of the results for future applica-

tions; or numerous analytical models mort or all of which had

nothing to do with the motion of the very medium which pro-

vided the necessary energy to set the body in motion. In fact,

the fluid mechanics of the flow-induced oscillations became

so incidental to the phenomenon that the models dealt essenti-

ally with black-box-induced oscillations. To be sure, these

models heavily relied on experimental data partly to justify

9



their existence and partly to assign numerical values to

numerous variable constants inbedded in them. The ability

of these models to scale, i.e., to permit extrapolation, is

uncertain. Thus, in the final analysis one is not quite

sure whether one should use the experimental data within the

range of their application or the curves fitted to them by

the empirical models. Suffice it to say that the phenomenon

is far from understood even for the idealized conditions

encountered in the laboratory without the alarming consequences

of the real ocean environment where fauna and flora, ever-

changing ocean currents, and temperature gradients add further

complications to an already complex problem. Surely, over

design is not the answer but it may, in the next decade or so,

be the best available tradeoff with failure.

Mathematical models of flow-induced vibrations of bluff

bodies and the response of circular cylinders to vortex shedding

have been aptly described by Parkinson [1] and Currie, et al.

(21 and will not be repeated here.

It appears that among the various models considered so far,

the "wake-oscillator" model of Hartlen and Currie 13] attracted

more attention among the students of vibration analysis. we

will not elaborate here on the attempts made by others to

introduce one or more additional terms into the model origi-

nally proposed by Hartlen and Currie for such naive attempts

produced only more papers and unrealistically defined coeffici-

ents than sound information toward the'understanding of the

flow-induced oscillations both in-line with and transverse to

the ambient flow.

10



It suffices to conclude thalt despito the extensive atten-

tirn given to the study of the transverse oscillations of

bluff bodies in air and water, there has been very little or

no attempt to measure the forces acting on the bodies and to

separate the time-dependent force into suitable components.

It has, however, been firmly established that there is a band

of frequencies in the vicinity of the Strouhal frequency in

which the vortex shedding is synchronized or locked-in and

that both the intensity of the vortex shedding and the span-

wise correlation are enhanced. The synchronization or lock-in

is manifested by a rapid decrease in inertial force and a

rapid increase in the absolute value of the drag force. In

other words, the total force which is nearly in-phase with the

motion before synchronization becomes nearly out of phase at

and after synchronization.

The purpose of the present investigation is the determina-

tion of these in-phase and out-of-phase components of the time

dependent force acting on cylinders undergoing transverse

oscillations in a uniform stream and the co.relation of the

normalized force components with appropriate governing param-

eters through the use of an equation proposed herein. Evi-

dently, it is through the understanding of the forces acting

F .on oscillating bodies that one would eventually be able to

devise models to predict the strumming or the hydroelastic

behavior of rigid or elastic bodies immersedin fluid streams.

.11
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II. EXPERIMENTAL APPARATUS AND PROCEDURE

A. EQUIPMENT

1. NPS Water Tunnel

The experiments were performed in a recirculating water

tunnel (Figure 1) which had a capaci'ty of approximately 500 j
gallons. The galvanized test section, four inches wide, eight

inches high and sixteen inches long, was closed on top with a

removable plexiglass plate to eliminate the free surface

effects. A small space adjacent to the side walls was provided

to allow the passage of thin leaf arms connecting the cylinder,
in the test section, to the driving hardware above the test

section. A low RPM, high capacity, fourteen-inch-diameter-

discharge centrifugal pump was used to circulate the fluid

through the test section. The velocity of the fluid was regu-

lated by a butterfly valve arrangement situated downstream of

the test section. Velocities of 0.8 to 1.4 feet-per-second

were obtained by adjusting the vanes of the butterfly valve.

2. Motor, Flyw;hee! and Pivot Assembly

The periodic motion in this experiment was obtained

by the use of a small, variable speed, electric motor, a fly-

wheel and pivot assembly (Figure 2). The electric motor,

mounted so as to isolate its vibrations from the remainder of

the test apparatus, transmitted rotary motion through a flex-

ible belt to a flywheel. A 56 inch long, rigid bar, pivoted

at its center, transmitted the vertical component of motion

of a bearing, attached to the flywheel, to a shaft connected

12
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to the yo:e at ;...bly and cylind-r. !IorizonA. motion was

expanded at both ends of the pivot rod by the frea motion of

bear.ngs along the pivot arm. The amplitude, "A", of the

vertical periodic motion was set by adjusting the radial posi-

tion of the bearing attached to the flywheel. For these

experiments, the amplitude ranged from 0.25 to 0.75 inches.

The frequency of oscillation was regulated up to four cycles
per second by adjustment of the variable speed motor. The

system was designed and constructed to produce essentially

sinusoidal oscillations, free of secondary oscillations.

3. Test Specimen and Yoke Assembly

A one-inch diameter circular cylinder, constructed of

aluminum tubing, was used as the test specimen. The cylinder

was held in the test section by a yoke assembly which was

connected to the pivot arm by means of a vertically constrained

rod. The action of the pivot arm caused the cylinder to oscil-

late vertically in the test section, transverse to the stream

flow. The aluminum yoke assembly/force transducer (Figure 3)

was instrumented with the strain gages and accelerometers

required to monitor the forces and the acceleration felt by

the cylinder.

4. Sensors and Sensor Support

The mean velocity of the fluid was derived from the

pressure differential of a pitot tube installed in the test

section upstream of the test cylinder. One channel of a two

channel recorder was used to continuously monitor the stream

velocity during experiments. The calibration of the pitot

• 15
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tube and transducer was accomplished by means of a water bottle

and precisely measured plates which were used to produce a

known water height differential.

The instantaneous acceleration of the pivot arm was

sensed by an accelerometer mounted on a yoke assembly. The

acceleration signal was processed through a filter, tc :emove

high frequency vibrations, and was recorded on one channel of

a two channel recorder.

Instantaneous forces were sensed by four piezo-

resistive strain gages. A cantilever beam type arrangement,

forming the top of the yoke assembly, as seen in figure 3,

provided the mounting location for the strain gages. The

forces sensed by this force transducer system were recorded

on the two channel recorder. Calibration of the force trans-

ducer system was accomplished by hanging loads at the mid-

section of the cylinder, supported at the correct orientation

so as to calibrate for vertical *orces ior the transverse or

lift force measurements, and then for the horizontal, or in-

line force measurements.

B. PROCEDURE

System checkout and sensor calibration preceded the

experimental runs. Several test runs were made to verify the

proper operation of the test system, sensors, processing and

recording equipment, and to establish the test run procedures

to be used. It was verified that the mechanical system pro-

duced the required periodicity of oscillation for frequencies

17J



below about three cycles por second and amplitudes below one

inch. It was decided that the system would not be driven at

higher frequencies or larger amplitudes during the test runs

because of the presence of excessive vibrational effects be-

yond these limits. It was verified that the sensors and pro-

cessing equipment had adequate sensitivity and phase reproduction

to allow mevsurement of the required physical parameters.

The first set of experiments has as an objective, the

measurement of the mean fluid-induced force on the cylinder, in

the direction of the stream flow, (in-line force) for various

frequencies and amplitudes of cylinder oscillation transverse

to the stream flow. It was verified by experiment that there

was no in-line component of inertial force.

The physical recording of the in-line force was accom-

plished with the Honeywell recorder. Pitot differential pres-

sure was recorded simultaneously to verify the magnitude and

constancy of fluid velocity during the runs. Accelerometer

output was recorded on the two channel recorder to provide

data on oscillation period and phase angle. The flow velocity

was set at 0.84 feet per second, the amplitude at 0.25 inches,

and the data runs were taken as the oscillation frequency was

varied from zero to about three cycles per second. The charts

were annotated with run data for later correlation. The pro-

cedure was repeated for amplitudes of 0.5 and 0.75 inches and

the entire series was repeated again at a flow velocity of 1.3

feet per second.

is



Subscqucntly, thc monn in-line force, the flow velocity,

the oscillation period and amplitude, and the cylinder diam-

eter were rocorded from the charts. A mean drag coefficient

Cdi was manually calculated from this data for correlation

with the frequency parameter D/VT and the nondimensionalized

amplitude AID.

The second set of experiments had as an objective the

measurement of the time dependent forces in the direction of

cylinder motion, i.e., transverse to the direction of stream

flow. Siace, in this case, the:e was an inertial force in the

direction of interest, it was necessary to adjust the experi-

mental procedure in order to identify the instantaneous value

of the inertial force. Separation .f the inertial force from

the total force measured with the cylinder submerged, was

required to ascertain the resistive force produced by the

fluid alone.

The physical recording of the transverse force was accom-

plished using one channel of the two channel recorder. Accel-

eration was measured simultaneously on the othe- channel. The

water level in the tunnel was'alternately raised and lowered

for each run in order to allow recording of the total "Wet"

force and the inertial "Dry" force at a common frequency and

amplitude of oscillation. The acceleration trace provided

the reference for the time correlation of the wet and dry

force data. Because of the necessity to properly correlate

wet and dry phase information, extreme care was taken in veri-

fying the zeros for the acceleration and force recordings.

19



Since the time depondont force was of interest, the mean

force and a~cccration was used as the respective trace zeros.

This value was found by electrically averaging the force and

acceleration signals, and setting the resultant mean value to

a convenient position on the recording trace. The flow vel-

ocity was initially set at 0.84 feet per second, the amplitude

at 0.25 inches, and runs were taken for various oscillation

frequencies up to about three cycles per second. The procedure

was repeated for amplitudes of 0.5 and 0.75 inches and then the

entire Eeries was repeated at a new flow velocity of 1.33 feet

per second. Figure 4 shows the force and acceleration traces*

for a typical experimental run.

From traces similar to figure 4, the transverse force was

read and recorded from both the wet and dry run curves. Start-

ing from the zero acceleration time (illustrated on figure 4)

the wet and dry forces were recorded each 0.01 second, for at

least three complete cycles. This data was then punched on IBM

computer cards for evaluation.

The computer program for calculating the transverse drag

and inertia coefficients, given in Appendix A, was also used,

along with visual inspection, to determine the goodness of the

data and the accuracy of the data retrieval procedures. Com-

puted values of the mean wet and dry forces, if significantly

different from zero, indicated possible errors in the establish-

ment of system zeros or the presence of sacondary undesirable

effects from the mechanical system. After completion of this

data assessment, the drag and inertia coefficients were

20
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calculated aind recorded as a function of the period pzaramuter

V7T/D for the three values of the nondimensionalized amplitude

A/D investigated.

1 4 ;
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II. DATA ANALYSIS

The numerical calculations as %oll as measurements in

time-dependent flow yield the resultant force as a function of

time for a given set of numerical values of the independent I
parameters. Thus it is not possible without a suitable hypo-

thesis, to express the force both as a function of time and i
remaining independent parameters as one ordinarily would in a

closed form solution. Such a working hypothesis is particu-

larly necessary for the cable strumming problem since the

results are to be incorporated into the dynamics of the cylin-

der motion in the form of a forcing function. It should be

stated at the outset that there is, at present, no generally

accepted hypothesis to decompose the time dependent force into

suitable components. As it will be seen shortly, even the

existing hypotheses, such as the so-called Morison's equations,

are not applicable to periodic flows with a non-zero mean

velocity.

Stokes, in a remarkable paper on the motion of pendulums,

showed that the expression for the force on a sphere oscilla-

tion in an unlimited viscous fluid consists of two terms, one

involving the acceleration of the sphere and the other the

velocity. This analysis shows that the inertia coefficient

is modified because of viscosity and is augmented over the

theoretical value valid for irrotational flow. The drag co-

efficient, associated with the velocity is modified because of

acceleration, and its value is greater than it would be if the

23



sphere wore moving with constant velocity. In general, the

force experienced by a bluff body at a given time depends on

the entice history of its acceleration as well as the instan-

taneous velocity and acceleration. Thus, th.) drag coefficient

in unsteady flow is not equal to that at the same instantaneous

velocity in steady flow. Neither is the inertia coefficient

equal to that found for unseparated potential flow. As yet a

theoretical analysis of the problem for separated flow is

difficult and much of the desired information must be obtained

tI both experimentally and numerically. In this respect, the

experimental studies of Morison and his co-workers [41 on the

forces on piles due to the action of progressive waves have

shed considerable light on the problem. The forces are divided

into two parts, one due to the drag, as in the case of flow

of constant velocity, and the other due to the acce'eration

or deceleration of the fluid. The concept necessitates the

introduction of a drag coefficient Cd and an inertia coeffici-

ent Cm in the expression for force. In particular if F is the

force per unit length experienced by a cylinder, then

F 0.5 CdPDIJIU + C D2 dU (1)

where U and dU/dt represent respectively the undisturbed

velocity and the acceleration of the fluid.

On the basis of irrotational flow around the cylinder,

Cm should be equal to 2 (cylinder at rest, the fluid acceler-

ating; otherwise Cm - 1), and one may suppose that the value

of Cd should be identical with that applicable to a constant

24
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velocity. lowevor, numerous experimonts show that this is

not the case and that Cd and Cm show considerable variations

P !from those just cited above. Even though no one has suggested
a bettor alternative, the use of the Morison's equation gave 3
rise to a great deal of discussion on what values of the two

'coefficients should be used. Furthermore, the importance of

the viscosity effect has remained in doubt since the experi-

U mental evidence published over the said period has been quite

Inconclusive.

The drag and inertia coefficients obtained from a large

number of field tests, as compiled by Wiegel [5], show exten-

sive scatter whether they are plotted as a function of the

Reynolds number or the so-called period parameter U T/D. The

reasons for the observed scatter of the coefficients Cm and

Cd remained largely unknown. The scatter was attributed to

several reasons or combinaticns thereof suchi as the irregu-

larity of the ocean waves, free surface effects, inadequacy

of the average resistance coefficients to represent the actual

variation of the nonlinear force, omission of some other

important parameter which has not been incorporated into the

analysis, the effect of ocean currents on separation, vortex

formation, and hence on the forces acting on the cylinders,

etc.

The most systematic evaluation of the Fourier-averaged

drag and inertia coefficients has been made by Keulegan and

Carpenter (6] through measurements on submerged horizontal

cylinders and plates in the node of a standing wave, applying

25
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theoretically.derived values for 'velocities and accelerations.

Additional measurements have been made by Sarpkaya [7] of the

in-line as well as transverse forces acting on cylinders and

spheres in a sinusoidally oscillating fluid and it was found _

that the drag coefficient as well as the inertia coefficient

for a strictly sinusoidally oscillating fluid (no mean vel-

ocity) is a function of UmT/D and that the effect of the ]
Reynolds number is rather secondary and certainly obscured A

by the excellent correlation of the data with the period param- A

eter UmT/D.

On the basis of the above discussion, one would assume

that Morison's equation would apply equally well to periodic

flow with a mean velocity where u V - Umcos 8 and that Cdl
Idl

and C will have constant, time-invariant, Fourie: or least-

squares averages. This, in turn, implies that Cdl and Cml

are independent of the associated flow phenomena. There is,

however, no a priori assurance in the principles of fluid

mechanics of theory of models that this is, in fact, the case.

Thus the effect of the combination of a uniform current and

harmonic oscillations on the timc-average and oscillatory

forces acting on circular cylinders will have to be re-examined

and the limits of application of the Morison's equation be

delineated.

It is a priori evident that both u -Umcose and

u V - Umcos8 yield the same acceleration du/dt. Thus, the

force in-phase with the acceleration in Morison'; equation

26



remains unaffected by the presence of the nman flow. The

results presented heroin show that this is not the case.

Furthermore, the use of the Morison's equation as

D2
F - O.5PCd(-UmCOS0) Iv-umcose + CmPWrU du (2)

requires that the time-averaged drag force be calculated by

increasing the force calculated from the steady flow by a

factor 11 + 0.5U (/V) 3. The results presented herein show
m

that such an analysis appreciably underestimates the measured

mean forces. It suffices to state that the fluid flow Phen-

omena for bluff bodies are significantly affected by the

combination of currents and harmonic oscillations and that

the results for steady currents alone and oscillations alone

cannot be combined to yield reliable estimates of forces due

to both acting together.

The time-dependent forces per unit length in the present

study are analyzed according to the following three-coeffici-

ent equation:

O .5_dpDV 2 +-mOSt-d-2 + CmpT-- d 2w

0.5 CdDUm pco8t2-t cosT2 t (3)

which may be written as,
r---1

-vP2 2 2w

0.5PD 2 = Cd + C (UmT/D) (D/VT) sint -

Cd (U m T/D) 2(D,/V) 2ICOS#tIost (4)

27



in which Cm and Cd are given by their Fourier averages as

2 i
3 2

Cm = (2UmT/:,3D) r (Fs"no)dO/(Um2 (5)

0

and

2,2
C= -(3/4) f (FCos O)dO/ (U D) . (6)

0

Evidently, C4 , Cm , and Cd are functions of VT/D and

U T/D or A/D. They may depend also on the Reynolds number

which does not explicitly appear in the above expression be-

cause of the assumptions made in the formulation of the basic

force equation.

In the foregoing, neither the coefficient Cd is assumed

to be equal to the steady-state drag coe ficient for a uniform

flow at the constant velocity V, nor Cm and Cd are assumed to

be identical to those obtained for a strictly harmonic oscil-

lation. In fact, the results show that -d" Cd (steady) only

for U 3 W 0, and Cd and Cm are equal to those obtained for the

harmonic oscillation only for ;T/D-0.

The equation proposed above is general enough to be %ppli-

cable to both in-line and transverse oscillations. In the case

of transverse oscillations, however, the mean net force in the

direction of oscillation is zero, i.e., dO, and thus, one has

F(transverse force) 2  2 2w

C d1 (U mT/D)2 (D/T)2  T o4tjcos 4 (7

28



In the foregoing, the inertia and drag coefficients have beon

denoted as Cmi and Cdl in order to distinguish them from those

corresponding to in-line oscillations. The subscript "1"

carries the meaning of "Lift" or force in the direction trans-

verse to the stream.

Ordinarily, for a perfectly sinusoidal oscillation of the

cylinder, the coefficients C and Cdl would be given by

equations (5) and (6). However, when the oscillations are

not perfectly harmonic, it is relatively more accurate to use

the velocities and the accelerations encountered in the exper-

ments rather than assuming them to be simple harmonic motions.

It is with this objective in mind that the equations (5) and

(6) were rewritten as

C 2T 0 hsin edO

ir-D 2 U 2s in2 GdG

and 
A

21

-T2 Of _cosde)

Cdl" 2PD79 A2  A2sedo (9)

/cos~e c s d

as they would be obtained from equation (3) in the usual

application of the Fourier analysis. Evidently, had the oscil-

lations been perfectly harmonic the integrals appearing in the

denominators of the above equations would have reduced to

2w

sin2 Ve a w (10)

0
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and

fcos2 0 cos dO = 11 )

0

The equations (8) and (9) togethcr with equations (10) and

(11) .would have reduced to equations (5) and (6).

Since in the present study the periodic oscillations were

not perfectly sinusoidal partly by design in ordez to obtain

greater generality and flexibility in the experimentation and

partly due to the constraints imposed in the design of the

oscillation mechanism, it became necessary to incorporate into

equations (8) and (9) the exact form of the oscillations

encountered in the experiments. For this purpose the dry force,

which is an exact representation of the oscillations, was norm-

alized as
F-d.ry

f(e) = I _ * (-:--'u--- (12)F-ry~m~xmm)j

and then the equations (8) and (9) were rewritten as

S 2T E .f(e)dB (13)CMl ="p2D2Um

2W
f f(G)dG

0
and

27r

T2  JFf(O+w/2)dO (14)
C dl 2Dw 2A 25

f f(O + lr/2) If(e + w/2)IdO

0
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It is easy to s how that oquationn (13) and (14) reduce to

equations (8) and (9) or to equations (5) or (6) for purely

harmonic oscillations for which f(O) = sin 0. The advantage

of the use of the equations (13) and (14) is rather obvious

for all types of periodic oscillations. Furthermore, the

independent evaluation of the denominators of equations (13)

and (14) and their comparison with w and 8/3 respectively (as I

they would have been equal to had the oscillations been har-

monic) gave an indication of the deviation of the observed

periodic oscillations from a purely harmonic oscillation.

The fcrce acting on the cylinder in the in-line direction

due to the oscillations in the transverse direction is expressed

in terms of a mean drag coefficient, denoted by Cdi, given as

-i Force in the in-line direction

Evidently, Cdi, Cml and Cdl depend on D/T, U MT/D or 2wA/D,

and possibly on the Reynolds number.

The experimental data are analyzed using the computer pro-

gram given in Appendix A written according t-, the equations

(13), (14), and (15) and are plotted in terms of A/D-and

either D/VT or VT/D.
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IV. DISCUSSION OF RESULTS

The re3ults will be discussed in two parts. The first i
will be the averagc in-line force acting on the cylinder

undergoing forced periodic oscillations in the transverse

direction. The second will be the time dependent transverse

force.

Evidently, the average in-line force is coupled with

secondary oscillations due to vortex shedding. However,

such oscillations are rather small in both steady and peri-

odic flows and certainly not larger than about seven percent

of the average force. It is for this reason that only the

average of the in-line force acting on the oscillating cylin-

der is presented here.

Figures 5, 6, and 7 show the variation of the normalized

in-line force (0d) as a function of D/VT for A/D =0.25,di,

0.50 and 0.75 respectively. Each figure represents the data

obtained with two velocities, namely, V=0.84 and V=1.3. In

normalized form these velocities correspond, for the one

inch cylinder used, to the Reynolds numbers Re=VD/v m 7000,

and Re = 10,833.

Evidently, the in-line force increases with A/D since

the cylinder, undergoing transverse oscillations, presents

a larger apparent-projected area to the mean flow. This,

however, is only part of the explanation. In addition, the

vortex growth and motion are affected by the oscillation of

the cylinder which in turn affect the in-line and transverse j
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forccs acting on the cylinder. This is evidonccd by the fact

that the in-line force for a given A/D increases at first,

reachcs a maximum, and then decreases as D/T increases. A

simple minded calculation based on the steady flow drag co-

efficient for a stationary cylinder and the apparent projected

area fo the in-line force F, which may be written as

Cl - (' 1 + 2A/D)-i %hPV2 D L  s

yields values which are almost equal to the maximum values
given in figures 5, 6. and 7. it should be noted, however,

that the phenomenon is far more complex, and that such a

simple minded procedure should not generally be used, even

though the results are surprisingly good.

For the purposes of comparison, the figures 5, 6, and 7

are combined in figure 8 by drawing mean lines through the

data points. Figure 8 shows that the in-line force coeffici-

ent reaches its maximum at D/VT between 0.18 and 0.20. Ordin-

arily, the Strouhal number for a stationary cylinder would be

0.22 for the Reynolds numbers cited previously, and one would

expect that the forces acting on the cylinder will undergo

dramatic changes as the vortex shedding frequency given by

the Strouhal number coincides with the frequency of the cylin-

der oscillations. The present results show that such a syn-

chronization takes place at a frequency slightly lower than

the Strouhal frequency.

Also shown in figure 8 is the normalized amplitude of

the oscillations in the in-line force for A/D-0.5. As noted
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earlier the oscillations are quite nagligiblo relative to the

mean force and certainly under 7 per-cent. It should be noted

that the amplitude of the oscillations, like the average force

show an almost sudden increase in the vicinity of D/VT nearly

equal 0.19 and remain at that value for larger values of D/VT.

The occurrence of synchronization as well as the increase ofI the amplitude of oscillations are shown most dramatically in.

figure 9. This figure was obtained by setting the free stream

velocity at 0.84 feet per second and the A/D ratio equal to

qi 0.5. Then, beginning with the case of the non-oscillating

7cylinder, the frequency of the oscillations was gradually

increased up to about four cycles per second and the resulting

in-line force was continuously recorded. The figure shows

that the in-line force increases rapidly but with very little

oscillations superimposed on it. As soon as the state of

synchronization is reached, the amplitude as well as the fre-

quency of the force oscillations increases. ,

From an engineering point of view the significance of the J

magnitude of the in-line force is that a cylinder or cable

excited by the flow to oscillate in the transverse direction

may be subjected to in-line forces several times larger than I
assumed in its design. Furthermore, the deflections caused

by the in-line force on sufficiently flexible cylinders tend

to couple with transverse ocsillations and not only affect

the magnitude of the transverse oscillations but also the

path of the cylinder motion. Thus it is not uncommon to see

heat exchanger pipes or chimneys exhibit oscillation patterns

in the plane normal to their axis.
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The time dependent transverse force is described, as

noted earlier, in terms of a drag coefficient Cdl and an

inertia coefficient Cm given by
D2 _ OO - Cd PDU 2 cog oTransverse Forco-CmiP Dd (UmCOSO) d 7  M eeos

Figures 10, 11, and 12 show Cdl and Cml as a function of

VT/D for A/D - 0.25, 0.50 and 0.75 respectively. These co-

efficients were obtained without the 'd term in the general-

ized Morison equation (see equation 3) since the mean of the

transverse force is zero.

It is seen from these figures that important variations

in Cdl and Cml occur particularly in the vicinity of the

Strouhal frequency (hero VT/D 4.5 to 7) where the natural

eddy-shcdding at the Strouhal frequency is both enhanced and

correlated by the oscillations.

The inertia coefficient or the normalized in-phase com-

ponent of the transverse force undergoes a rapid drop as the

frequency of the oscillation approaches the Strouhal frequency

from both the upper and lower limits. In other words, syn-

chronization or lock-in is manifested by a rapid decrease

in inertial force and a rapid increase in the absolute value

of the drag force.

This fact, which has not been recognized before, shows

that the lock-in phenomenon is a phase transformer. The

total force which is nearly in phase with the motion before

synchronization becomes nearly out of phase at or after syn-

chronization. It should bd noted in passing that the success
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of many empirical models dealing with this type of oscillation

comes partly from the manipulation of the phase angle near

synchronization. It is now apparent that the fluid force to

be used in the equations expressing the motion of a cylinder

or cable should be given by the data presented herein. Such

data take care, not only of the variation of the phase angle,

but also the amplitude of the tranverse force as a function

of the normalized frequency.

Figure 13 depicts an example of the occurrence of syn-

chronization as the period of oscillation is gradually de-

creased. The upper trace shows the phenomenon as frequency

is increased from the non-oscillating case to just beyond

the synchronization frequency. The lower trace provides an

exploded view of the phenomenon near the synchronization fre-

quency. The transverse force sharply decreases as soon as

the point of synchronization is reached. Beyond that point,

the changes in the transverse force with frequency are quite

small. The phenomenon is reversible and une would obtain a

figure similar to figure 13 if one gradually decreased the

frequency. The possibility of the occurrence of an hysteresis

has not been investigated.

The drag coefficient Cdl or the normalized out-of-phase

component of the total instantaneous transverse force given

in figures 10, 11, and 12 show that Cdl becomes negative for

VT/D values between approximately 4.5 and 7 (i.e. for norm-

alized frequencies between 0.14 and 0.22). Outside this A

range the drag is positive, thus in the opposite direction
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to the motion of the cylinder. Within the range of VT/D valuca

cited above, the drag force is in phase with the direction of U
motion of the cylinder and helps to magnify the oscillations

rather than damp them out. For this reason, the region in [
which C is negative is sometimes referred to as the negativedli

damping region. The fact of the matter is that this is not

damping in the proper use of the word but rather an energy

transfer from the fluid to the cylinder via the mechanism of

synchronization. The values of VT/D at which Cdl changes its

sign depend on A/D as seen in figures 10, 11, and 12 even i

though the negative Cdl region roughly lies within the VT/D

values of 4.5 and 7. The envelopes of the two zero crossings

determine the region of self excited oscillations. A precise

determination of such an envelope and its dependence on the

Reynolds number will require experiments with additional A/D

values and other Reynolds numbers. For purposes of the present

investigation, it suffices to note that the maximum absolute

value of Cdl in the synchronization range decreases rapidly

as A/D increases. Field studies have shown that synchroniza-

tion does not occur for relative amplitudes larger than .aity.

The trend of the present data is in conformity with such

observations.

Finally, an unexpected and previously unknown observation

in connection with the variation of Cdl will be described.

For normalized frequencies (D/UT) smaller than about 0.14

the data yield positive drag coefficients. Between 0.14 and

0.22, the synchronization-takes place and the drag coefficient
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is negative as noted above. Ordinarily one would have uxpected

that the drag coefficient will remain positive and continue

to increase with increasing frequoncies beyond D/VT - 0.22 and

eventually reach a value which would be identical to that

obtained by oscillating the cylinder in a fluid otherwise at

rest. However, an interesting phenomenon takes place at fre-

quencies between approximately 0.22 and 0.27, depending on

the A/D ratio. For example for A/D-0.75, %1 increases

rapidly at D/VT - 0.26 and then decreases sharply to nearly

zero. At first it was suspected that this might be due to an

experimental error. However, the repeatability of the experi-

ments and the observation of the same phenomenon at other

relative amplitudes and velocities have shown that there is

indeed a dramatic change in Cdl at D/VT - 0.26 for A/D - 0.75,

at D/VT = 0.24 for A/D f 0.5 and at D/TT- 0.31 for A/D - 0.25.

It is further noted from the data presented herein that,

particularly for A/D = 0.25 and 0.5, Cdl becomes once more

negative in a narrower range of D/T values (D/VT from 0.345

to 0.45 for A/D - 0.25) and shown the existence of a second

region of synchronization. The D/VT value at which Cdl

acquires its second minimum value in the case of A/D = 0.25

is almost exactly twice that of the first minimum. The

occurrence of this second region of synchronization at higher

frequencies depends on the A/D value. The fact that is

demonstrated here is that there is not a single region of

synchronization and that there is at least one and possibly

more regions of frequency in which synchronization can occur.
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The nnrrowncess of the ruijions of rrocquency in thc secondI

region of synchironi2ation make's it rather difficul~t to observe

the phenomenon. in fact one may easily miss such a region by

simply not takinig smaller increments in frequency. It suf-

fices to say that a cylinder may be excited first at fre-A

quencies near the Strouhal frequency and then at the multiples

of the Strouhal frequency. However, the largest energy trans-

for from the fluid to the cylinder occurs in the first syn-i

chronization region near the Strouhal frequency.

A
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V. CONCLtI5 ONS

The experimental investigation of the transverse oscilla-

tions of a cylinder in a flow with an ambient mean velocity

has yielded the force coefficients C and C and

has shown that; "

a. The mean flow has significant effects on the force

harmonic oscillations in a fluid otherwise at rest are not

applicable to the transverse oscillations of a cylinder in a

uniform flow;

b. It is possible to excite transverse oscillations for

A/D smaller than about unity. In a region of D/VT in the

vicinity of the Strouhal frequency, the out-of-phase compo-

nent of the total force becomes negative and some energy is

L! transferred from the fluid to the cylinder. The rate at

which energy is transferred decreases with increasing rela-

tive amplitudes. Furthermore there is at least one, and

possibly more, narrower bands of frequencies at which syn-

chronization occurs.

c. Transverse oscillations give rise to an increased

drag force in t~e direction of the mean flow. This force

depends on A/D as well as on D/VT and reaches a maximum at

about D/VT - 0.18. This value corresponds to a normalized

frequency slightly below the Strouhal frequency and is well

within the synchronization region. From a practical point of

view this is a matter of concern for sound design of cables
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and other str(ctures which may be subjected to transverse

oscillations;

d. A meaningful dynamic analysis of the vortex excited

transverse oscillations may be carried out only through the

use of the force transfer coefficients presented herein.

However, it is necessary that additional data be obtained at j
other amplitudes and Reynolds numbers. Furthermore, additional

experiments may also have to consider the roughness of the

oscillating structure.
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