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ABSTRACT

Strong consistency and asymptotic normality of an estimator re-
lated to least squares estimator for parameters involved in nonlinear
stochastic differential equations are investigated by studying families

of stochastic integrals using Fourier analytic methods.
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1. Introduction

Recently there is a growing interest in the study of inference
problems for stochastic processes both continuous and discrete time
in view of the large number of applications to engineering problems.
It has been found that the class of diffusion processes is amenable
for statistical analysis. A survey of the recent work in this area
is given in Basawa and Prakasa Rao (1979). Further work on asymptotic
theory of maximum l1ikelihood and Bayes estimators for parameters of
diffusion processes is discussed in Prakasa Rao (1979a).

Dorogovchev (1976) studied weak consistency of least square
estimators for parameters of diffusion processes which are solutions
of non-linear stochastic differential equations. Asymptotic normality
and asymptotic effiency of these estimators is investigated in Prakasa
Rao (1979b). Our aim in this paper is to study limiting properties of

a process related to least squares estimator and hence to discuss the

asymptotic properties of an estimator derived from the limiting process.

We study strong consistency and asymptotic normality of this estimator.

Our approach here is entirely different from that of Dorogovchev (1976)
and Prakasa Rao (1979b). We believe that our techniques for study of

families of stochastic integrals is new and is of independent interest.
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2. Study of process related to least squares estimator

Let {X(t),t > 0} be a real-valued stationary ergodic process
satisfying the stochastic differential equation

dX(t) = flog,X(t))dt + de(t), X(0) = X5 t 20

2

where £(t) is a Wiener process with mean zero and variance ozt, o
being unknown and E[xg] < =, Suppose f(6,x) is a known real-valued
function continuous on € x R where € is a closed interval on the real
line and 8p €O is unknown. Without loss of generality, assume that
@=[-1,1].

Suppose the process {X(t), 0 < t < T} is observed at time points
t

k =0,1,...,n-1 with t, = 0 and t" =T. Let

k’ 0

el [Mgy) - Ky - f(0,X(t,))at, 12

T
(o) =
% k=0 t

~

where At, = t, ,-t, 6 <k < n-1. An estimator o, T which minimizes

QI(O) over 0 €€ is called a least squares estimator of 6. Assume that

such an estimator exists. Note that if an v minimizes Q:(e), then it
L]
PR T T
minimizes Qn(o) - Qn(eo).
We shall first study the limiting properties of the process

{Q:(n) - Q:(eo), p€ € }as the norm of division 4" Tainltk+]-tk| tends

1<k

For any fixed o,
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Q:(e)-O,T,(eo)

DR ORI |

5 E K%; [AXk-f(eo.X(tk))Atk]Z

Y4
1 2
. E iy {{ ]f(eo.x(t))dt*ﬁﬁk'f(e'x(tk))Atk}
k-

t
-1 K%; J FlageX(t))dtrac, -Flog.K(t, )at,)?

1 tk+'| 2
* E 5t {{k [f(ogsX(t))-f(e,X(t,))]dt+ac, }

tk+l
1 2
7{; {{k [f(eo,x(t))-f(eo,x(tk))]dt+A£k}

It is easy to check that
(2.0) Q'(e)-Q1(s)

-3 [fogsX(t,))-F(e,X(t,))1%t,

t
k+1
+2 ] (logaX(ty)-FoX(t))) [ (Hlag.X(6D)-Flag.(t )t
k

=Ly * 2, + 215

Assume that the regularity condition on f(x,0) stated at the end of

this section are satisfied. Since f(e,x) is continuous in x and the




process X has continuous sample paths with probability one, it follows

that
(2.1)

as An->0.

{2.2)

3
typ A [F(6g.X(t))-F(0,X(t))]%dt

Assumption (A2) implies that

q.m. ! 1
Ln 48 [ [F(oq:X(t))-F(0,(1) Jde(t)

as A, > 0 in view of stationarity of the process X where the last in-

tegral is the Ito-stochastic integral.

Let us now estimate I . In view of assumption (A4), it can be

checked that

t

k+1
(2.3) |f
%

=

=

<

<

| A

for 0 < k <

inequality:

{f(eO,X(t))-f(eo,x(tk))}dtl

Y
Lleg)f  [X(t)-X(t,)|dt
t
k
tk+1 t
L(eg)f Qe(t)-e(t,)|+f flog.X(s))|ds)dt
ty b
Yl s e
Lieg)f  le(t)-e(t, ) [dt+L(eg)f [ [U14[X(s)|}ds] dt
t L JERRY

t
L(eg)at,  sup lz(t)-e(tk)lﬂz(eo)z\tk sup [ Q+[X(s)|}ds.

t, <t<t

k

<t<t

k41 test<tin b

L(Bo)Atk sup lg(t)-g(tk)|+L2(eo)At§ sup {1+ x(t)]}
teststien test<ten

n-1. Using assumption (A4) again, we obtain the following




(2.4) 15, < T a0(5)) fLleg)-at, tki‘égtm'“t)"”“")'

+ Lz(eo)Ati sup {l+lx(t)f}’le-eol.

test<tin

Since J(-) is continuous and X(-) has continuous sample paths al-

most surely, it follows that there exists a constant C*(ao) depending

on T only such that

2
(2.5) I, < C*(eo) ZAtk- sup lg(t)-g(tk)[ + ZAtk |e-eo|
{k test<tin k }

Since o€ @ compact, it follows that

I, < Cley){)at, (1+at, )(2at, log 1/at )]/2 + Atz} a.s

3n = *\% E k k k '°9 k E k s
whenever Ay is sufficiently small by the law of iterated logarithm for
Brownian increments (cf. McKean (1969), p.14). Therefore

= 3/2 1/2
(2.6) I, O(E at,’“ log I/Atk) a.s.
uniformly in 0€@ . Furthermore the convergence in (2.1) is uniform in
0 €@ since
2 2.2 e
lf(eo,x(t))-f(e.x(t))l x Ieo-el J°(X(t)) < € J°(x(t))

and J(X(t)) is integrable pathwise on [0,T] by (A4). Here we have used
the fact that @ is compact. Hence

3
@7) L, = [ IHeK(O-#(0. k(01 + o)) aus.

uniformly in o as By > 0. We shall discuss uniform convergence of IZn

in the next section.

Relations (2.0), (2.6) and (2.7) show that, for any fixed 18




P

T
(2.8) Qw»dw@=é[ﬂ%mun4wxunfu+xmmn)ma

uniformly in 6€ & compact as 8, * 0 where I . satisfies relation (2.2).

2
Let us consider the limiting process

:
(2.9)  Rylo) = [ [floguX(t)) - Floux(e))Poat

-
%2 f; [fegsX(t)) - f(o,X(t))1de(t)

1, T

= [ v(0,X(t))dt - 2 é v(e,X(t))de(t)
0

where

(2.10) v(e,x) = f(e,x) - f(eo.x).

We study the limiting properties of the process {RT(e), 8 €@} in

the next section.

Assumptions

(A1) f(e,x) is continuous in (e,x) and differentiable with respect to

0. Denote the first partial derivative of f with respect to 6 by
fé])(o.x) and the derivative evaluated at 8 by fgl)(eo,x).

(n2) 0fiN(og,x(0)1% < -

(A3) £{1)(a,x) is Lipschitzian in o for each x i.e., there exists a > 0
such that

£ 00x)-F )] < cx)fo-0l® . xeR,0.0 €0

and

ELc?(X(0))] < .

(A4) f(0,x) satisfies the following conditions:




(i)  |f(e,x)] < L(e)(1+|x]) , 06€@, x€R; sup{L(6):0€8)} < w .
(ii) |[f(e,x)-f(e.y)| < L(8)|x-y|, 6€& , x,y, €R.
(ii1) |f(o,x)-f(4,x)| < I(x)|6-¢|, 06,0€€@ , x €R
where J(-) is continuous and E{JZ(X(O))] < ™,
(A5) 1(6) = ELF(0,X(0))-F(85,X(0)1% > 0 for o # o
Remark: Since E[XZ(O)] < », assumption A4(i) implies that
ELF(0,x(0))) < =
for all 6€€ .

3. Study of a limiting process related to least squares estimator

Let us now study the properties of the 1imiting process
(3.1) 200021 ] vlo.X(£))de(t)
< )z — v O,X t E t
T T 0

as a process in the parameter 6€@® = [-1,1] as T > », From the central
limit theorem for stochastic integrals (cf. Basawa and Prakasa Rao (1979)),
it can be shown that

1 £ 22

— [ v(e,X(t))dg(t) = N(0,E[v(e,X(0))]%

T 0

since the process X is stationary ergodic. In general, finite dimension-
al distributions of the process {ZT(e), 6€ @} converge to the finite
dimensional distributions of the Gaussian process {Z(6), 0 € ® with mean
zero and covariance function

R(61,0,) = ELv(8;.X(0))v(05,X(0))]o°.

We shall now prove the weak convergence of the process {ZT(e), 0€EG}

on C[-1,1] under uniform norm. It is sufficient to prove that

(3.2) 1im Tim P( sup [Z(0)-Z;(0)| > €) = 0.
Too 60 |6-9|<$

s




Since v(o,x) is differentiable with respect to 6 on [-1,1] by
assumption (Al),it is easy to see that there exists a cubic polynomial

g{o,x) in o such that

9(-],)() = V{‘-'],X), g(]sx) . V(],X)

and
a{" 10 = v ,0, ol = VD).
Let

h(e,x) = v(e,x)-g(6,x).
Then h(-1,x) = h(1,x) = O,hg]{-l,x) =hg]k1,x) = 0. Now

T T
(3.3) 23(0) = [ h(ox(e))de(e) ¢ [ glo.X(t))de(t).

Since g(6,x) is a cubic polynomial in o with coefficients in x which are
linear functions of v(-1,x), v(l,x),vél%-l,x) andv(g)(1,x). it is easy

to check the uniform equi-continuity condition of type (3.2) for

) } (6,X(t))de(t)
s 9, .
! g £

Let us now consider the process

(3.4) (0 = L ] hle,x(t))de(t)

3. Wr(e) = — h(e,X(t))de(t).
’ A0

Let the Fourier expansion for h(6,x) in L2([-1,1]) be given by

(3.5) h(e,x) = } an(x)e"1ne 7 x €R.
n
Lemma 3.1
2 T mine
(3.6) é h(o,X(t))de(t) = ] { 5 a (X(t))de(t)}e
n

in the sense of convergence in quadratic mean.

e au e e Al bl bl e B o L



Proof An approximating sum in Lz-norm for
T
£ h(e,X(t))de(t)

is

ne1=

A =

]N h(enx(tj_1))A€j

Jj=1

L s
and an approximating sum in L,-norm for } { [ an(x(t))dg(t)}e""‘0 is
n 0

: em o z ap(X(t;_y)ae;) -

ahm |n}5ﬂ =1

It is sufficient to prove that EIAIN'AZNMI >0as N>oand M > ». Now
2 ine
ElAyy-Aoml © = EIJE]{(h(e Xt y))- zMe" a, (X(t;_4))}acy L
8 mne 2
= El Z a (X(tJ ]))e Jl
J=1 |n|>M

|A

[ z a,((t_1))ag ) 21572
In[>M =1

by the elementary inequality
2 2\,4,2
BN ap¥l” < (1| (ECRD)?)

for any sequence of complex numbers {An} and any sequence of real

valued random variables {Y , n > 1}. Hence
2
ElA Aol < [ l {)M {Jg E(a, (X(t;_q)) 2t 1577

Since

Z] E(a, (X(t; 1)) Aty > f Efa,, (x(t)12dt = Tu, (say),
j=




b §
as N > =, it is sufficient to prove that | u2 < =. This follows from
n

remarks following Lemma 3 of the appendix under assumption (A3).

Let

T
e
(3.7) W, = - é a,(X(t))de(t).
Lemma 3.2. For every ¢ > 0,
(3.8) lim P( su [Wo(6)-Wr(s)] >€) =0
60 |e-¢r<6 ¥ ¥
for every T > 0.
Proof. In view of Lemma 3.1, for any ¢ > 0,
(3.9)  P( sup [W(6)-Wr(¢)] > ¢€)
josgfea = T T
— P( sup I z wn(e‘“ine_e‘ﬂ'i“¢)l > E)
[0-[<6 n=-w
< P( sup Z |“n| Ienine_enimti 5 8).
[o=af<s ke

Let o be chosen so that

(3.10) Y I,
n

This is possible since J /3 < « by Lemma 3 Of the appendix.
n=1
Inequality (3.9) implies that

n




P( sup [Wr(e)-Wr(s)| > €)
lo-gl<s T T

"o

P( su Y |W |nle-¢| > & ) + P( W | >5)
|9-¢f<6 n=-n0| h A |n >ng n 2

A

|A

"o .
Z P(“"nl e ??ﬁ—ﬁ') +2] P(Iwnl 2 Cn)
n=1 0 1

n=ng+
B NBE 1/3,-1
(Here ¢_ = 73 ( TR T
LY " n£n0+1 "
2 n
2mn 8 0 © M
0 n
ol e TR
n= n-n0+l &y

(since E(wn) = 0 and Var(wn) = un)

2 n
=(~21'ﬂgi % e s
€ n=1 "¢ n=n0+l n
2
= _6__ 8 53
3 cn0 - S —?'(?)
€ €

where Cn depends only on no. Choosing & such that
0

"o
we have the inequality

P( sup [We(e)-Wo(o)| > €) < 2¢
Ie-¢T<6 AR

3,41
for every 0 < 6 < (E%F-) 2 and for every T > 0. This proves (3.8).
0

Theorem 3.1. The family of stochastic processes {ZT(e), 0€EG} on

C[-1,1] converge in distribution to the Gaussian process with mean

zero and covariance function

M




R(0y40,) = ELv(0,.X(0))v(0,,X(0))]o?

as T » =

4. Strong consistency

Let us now consider the limiting process RT(e) defined by (2.9).

Any estimator éT which minimizes

T
(8.1) Relo) = [ F0.K(1))-FlogX(£)) e

T
-2 é[f(e.X(t))-f(eo.X(t))]de(t)

is called a process least squares estimator of 6.

Let Mg be the measure generated by the process X on C[0,T] when
6 is the true parameter. From the general theory of diffusion processes,
the Radon-Nikodym derivative of Mg with respect to Mo exists and is

0
given by

d gk
(3.2) dL’_e i exp{£{f(e,X(t))-f(eo,x(t))}dﬁ(t)
0

0
1. 2
4 Eé (£(e,X(t))-F(0,X(t))} dt} :

(cf. Gikhman and Skorokhod (1972), p.90). Hence

du
AR
et o G
%0
which proves that the process least squares estimator éT is the same as
the maximum likelihood estimator éT of o(cf. Basawa and Prakasa Rao (1979))

when the process X is observed over [0,T].
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Let
:
(4.3) SO [f(6.X(t))-F(o,X(t))1%dt

and W* be a standard Wiener process. Since the solution of the stochastic
differential equation given in Section 2 is stationary ergodic by hypothesis,

it follows that IT(e) + = a.s. for 6 # 6 by (A5) and the process {RT(O)}

can be identified with the process {IT(e) + Zw*(TT(e))}. Furthermore

(4.4) IT(e) + ZN*(TT(e)) + o a.S.

as T »>» for any 6 = eo. Hence 6 and eo are pairwise consistent. Note
that

(4.5) Ry(e) = I;(e) + /T2(e), e€e, T>0

where IT(e) is defined by (4.3) and ZT(B) is given by (3.1). Let

(4.6) Z;(e) = /T ZT(e).

Then ‘
(4.7) % IT(e) + I1(8) a.s. as T » = by the ergodic tﬁeorem.

In order to study the strong consistency of the estimator éT, we shall
first obtain bounds on the modulus of coninuity of IT(e) and Zf(e).
Lemma 4.1. Under the assumptions (A1)-(A5),

T
[14(6)-I1(s)] < Cqle-0] [ a(x(t))(1+]x(t)|)dt a.s.
0

where (:.| is a constant independent of T, 6 and ¢.

Proof. Note that

T
I7(0)-1(¢) = [{f(X(t),0)-F(X(t),0)}-
0

-{f(X(t),¢)+f(x(t),0)-2f(X(t),uo)Idt

B ool e i o ks o i et <
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and therefore

T
[1:(0)-17(s)| < |0-0] é J(X(t))-{L(0)+L(4)+2L(8,) HI+|X(t)] }dt

T
< Cqle-o] {;J(X(t){HIX(t)l}dt :

Remark. Since E[J2(X(0)] < = and E[X2(0)] < =, it follows that
E[J(X(0))X(0)] < ~» and hence by the ergodic theorem

%
‘T/ J(X(£))O+[x(t)] 1t 255 E[I(X(0)){(14[X(0)|}] <= as T+ =,
0

Therefore

(4.8) [1(e)-1(e)| < C*Tle-¢| a.s.

as T > » for some constant C* > 0. 1In view of (4.7) and Lemma 4.1,

it follows that

I(
(4.9) —TTL) a5 1(e) = F.[f(e.x(O))-1'(60.)!(0))]2

1im 1700
uniformly in 0 €@ as T » ». But IT(eo) = 0 and o T ° 0 a.s.

for o # 0 by (A5). Hence, for any ¢ > 0,

I;(e)

T 825 A W T+e

(4.10) inf
|9'90|Z§

for some A > 0 depending on §.
Lemma 4.2. Under the assumptions (A1)-(A4), for any T0 > 0 and any
e > 0,

T
(4.11) P(sup sup |Z3(0)] > ) <€, :g

0<T< 0

for some constant C2 > 0.

ey




Proof. Let h(e,x) and g(6,x) be defined as in Section 3 and

h(e,x) = § a (x)e™",  ec(-1,1].
n

Let

T
H; = é an(x(t))dg(t) -

Since g(6,x) is a cubic polynomial in 6 with coefficients in x, it is

easy to check, by Kolmogorov's inequality, that

T 1
(4.12) sup sup | f g(e,X(t))de(t)| = 0,(Tp?)
0<T<Ty 0

using the fact that |o|

IA

1. On the other hand, for any ¢ > 0,

T
(4.13)  P(sup sup |J (S an(x(t))dg(t)}e”iel > €)
OiTiTg n 0

1

<P( sup T| [ a (X(t))de(t)] > e)
0<T<Ty n 0

5
<IP X(t))de(t)| >
_g (05;_‘%0'{) a, (X(t))de(t)] > e )

(where Je < ¢)
To

<1 5 Var() a (X(t))de(t))
n e, 0

(by Kolmogorov's inequality for martingales)

T
1y 2
<1 = [ E(a (x(t)))dt

n n 0

15




when . is chosen to be eul/3 §) ul/3)']. Note that M = Zu;’3 < »,
n

Hence relations (4.12) and (4.13) together prove that

T
0
P(su su I%(8)| > e) < C
(sup iTipolT I 16y

for some constant C2 > 0 independent of T0 and €.

Lemma 4.3. For any vy > 1/2, there exists H > 0 such that
(4.18) 14 gtal H
: W Sup SUp  mg———— % a.s.
T+a 8  7We(1ee 1yY
Proof. Let
A =1[ sup sup |Z(e)| > H' 223, a0,
n-1 n © g2
gl L

Observe that Lemma 4.2 gives the inequality

P(Ay) = P sup  sup [Zy(o)] > H2"2q]
0<T<2""
(by stationarity of the process X(t))
o LN o
~ WY il nl¥

Hence Z] P(An) <o which implies that P(An occurs infinitely often) = 0
n$

by Borel-Cantelli Lemma. Therefore sup |ZT(9)li M 2"25Y for aly
™, T < ' & except for finitely many n with probability one and hence

1/2

lim sup sup [Z(0)| < H T/%(log T)" a.s.
T > o 0

for suitable H > 0 depending on y.

Theorem 4.1. Under the assumptions (A1)-(AS),

~

°T > 90 a.5. as T+ o
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Proof. Note that

RT(e) = IT(e) + Z;(e)

and RT(eO) = 0. Furthermore, for any § > 0, there exists A > 0 depend-
ing on § such that

inf I;(6) >Th as. asTow

|6'90|Z§
by (4.10) and with probability one, for any y >-%. there exists H > 0
depending on y such that

172

sup |Z4(e)| < H T'/%(10g A
8

for sufficiently large T. Hence

inf Rr(8) 2 2*T >0 as. as T,
|9'90'Z§

for some )\* > 0 depending on & and y. Since 5 minimizes RT(e) and

T

Rr(6g) = 0, it follows that léT-eol <6a.s.as T»o. Hence 6. > 0, a.s.

T 0
as T »> o .

5. Asymptotic normality of the estimator

In addition to the conditions (A1)-(A5) assumed in Section 2, let us

suppose that there exists a neighbourhood Ve of 89 such that

0
(A6) 16 (6,x)] < M(o)(141x1), o€ vy
and

sup {M(e):eeveo} =M< o,

We shall now obtain the asymptotic distribution of 8T under the con-

ditions (A1)-(A6). Since QT is strongly consistent, GT.eVb with prob-
0
ability one for large T. Expanding f(e,x) in a neighbourhood of 0gs we

have




£(6,x) = £(0g:x) + (6-80)F(6,x)

where |5-ool < |e-eol and hence

T
(5.1) 1p(0) = J (f(0,X(t))-F(.x(t)))2dt
0
27 (1) 2
= (6-0,) é {fy "(64,X(t))}°dt

T S
+ (o-0g)® [ L1sg (6,002 8{ o x(61)1 2 et

Observe that
(5.2) L8 @061 (o x0?)

" [fg])(g,x)-fé])(eo,x)llfé])(a.x)+f§])(ao.x)|

< 2 Mlo-0,|® c(x)(1+]x])

by assumptions (A3) and (A6). Therefore

T
(5.3) I11(6) - (o-00)° / tr{1) (0, x(¢)) 2|

2+a T
<2 Mle-eol g c(X(t))(]+|X(t)|)dt.

Let us write e-eo = T']/Zw. Then it follows that

T
2.-1¢, (1) 2 24a,-1-a
(5.4) l;t@\ IIT(e)-w T éffe (89sX(t))} dt| < MATTET

T

for some constant M] > 0 by the erogodic theorem since

E(c(x(0))(1+[Xx(0)[) < =.
On the other hand, let

vilex) = T2Le000rT™ V2, x)-p(0g,x)-477 2611 (6011
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for |y| 5-AT‘ Then vT(w.x) is differentiable with respect to y and

the derivative v%l)(w,x) satisfies
v;”(w.x)-v?)(c,x) . fé])(eo*wT']/z.x)-fé])(eo'ch'”z.x)

and hence

(5.5) VG 0] < el 2 yeg)

by (A3) for all y, zin [-AT.AT]. It can be shown that there exists a

polynomial in y with coefficients in x viz

(560 arluax) = volaraPy () + A agaip )

VAP ) + A CapnpgGh)

on ['AT’AT] such that
(5.7) 9r(Ag.x) = vT(AT,x),gT(-AT.X) = vy(-Apsx),
(5.8) g%l)(AT,x) = v%l)(AT,x) and g%l)(-AT,x) = v(])(-AT,x)

where P;, 1 < i < 4 are polynomials in JL with constant coeffiecients.

Ay
Observing that vT(O,x) = ( )(0 x) = 0, it is easy to check that

(5.9) lgp)(AT,x)l = e
(5.10) |9t (-Apx)| < clansT/Z
(5.11) TRTREATIT 0 L
and

(5.12) |9(-Apax)| < c(x)af*ere/?

.Furthermore there exists a constant Mz > 0 independent of T such that

(5.13) lgT”(w,x) g#"u x)| < e (RS T72) g




for all y,c E[-AT,AT]. But
a-1 1-a a
Ar lv-e] < 277 v-e]

since |y-z| 5_2AT. Hence there exists a constant M3 > 0 independent of
T such that

(5.14) ot ) wa)-g8 (2)| < Mye(x) T2 yoc 1

o i

SSRE A on S

i for all y, z€[-A;,A;]. Renormalizing, we get that
T2k

(5.15) lg%l)(w*,X)-g§])(;*,x)l < My (x)AF|y*-g*| o1/

for all y*,z* €[-1,1]. Let

(5.16) he(y*,x) = ve(u*,x)-g(v*,x).

Then there exists a constant Mg > 0 independent of T such that

TN I TENTIES -

(5.17) lhgl)(w*.X)-hgl)(c*,x)l 5_M§C(x)A$|w*-c*I“T'“/2

for all y*,c* €[-1,1] by relations (5.5) and (5.15). Now, applying

Fourier series methods as in Lemma 4.2, it can be shown that for every

i e > 0,

T « g P
P(l STP ]l é vilu*,X(t))de(t)| > €) < =5 AT E[c(X(0)]
V¥ < €

and hence

-1/2

"
(5.18) P(, Tux l é{f(eo+wT »X(t))-f(eg.X(t))

i

w1260 00, ()1 ()] > €)

M
< ATt (x(0)] .

€

Let us choose AT = log T. Since
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1

Lor oM (egux(e)n?at » 10g) = E0F " (0gux(00)12  aus.

oY=

as T » » by the ergodic theorem and

£ (o, x())de(t) o N(0,0%1(0g)) as T =

oY==

1
s

by the central limit theorem for stochastic integrals (cf. Basawa and
Prakasa Rao (1979)), relations(5.4) and (5.18) imply that the asymptotic
distribution of éT which minimizes RT(e) given by (2.9) can be obtained

from the process

(5.19) wzl(eo) - 2l, w< <o

where Z is normal with mean 0 and variance 021(60). Since
v = 2/1(ep)

minimizes (5.16), it follows that

(5.20) 1/2(5.-65) —L N(0,0%/1(8)).

This result is obtained under stronger conditions in Prakasa Rao
(1979b) for the least squares estimator 8n T defined at the beginning
of Section 2.

Appendix

Lemma 1 Suppose ¢(u) is square integrable on [-1,1] and ¢(.) is
Lipschitz of order o i.e., then exists ¢ > 0 such that

(1) [o(u)-0(v)| < clu-v|® .

Let ¢(u) = J ane"i"". Then for any 0 < y < a,
n

(2) Ilag 2n®" < K (aim)e?
n
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Proof. It is easy to check that
1

(3) [ 18(ush)-g(u-h)|%du = 4 I lay| 2 sin’xnh.

-1

Since ¢ is Lipschitz satisfying (1), it follows that
(4) 4 )j |a |? sin’unh < 22%*1cZp20

k k-2 k-1

for all h€[0,1]. Leth=2"and 27" <n<2
sinznnh 3_%-and relation (4) shows that

It is clear that

k-1
(5) Z ‘anlz % ZZGCZZ -2ka
n=2%"241
for any k > 2 and hence for any 0 < y < a,

k-1
k-2

(U e 1)

n=2" "+1

Summing over all k > 2, we obtain that

Hence there exists a constant K (a,vy) > O such that

(8) I s, 12027 < Ky (ary)e?

where ¢ is the Lipschitzian constant given by (1).
Remark. A slight variation of the above result is due to Szasz (1922).

The proof given above is the same as in Szasz (1922) and is given here

for completeness.

Lemma_2. Suppose h(u) i5 square integrable on [-1,1] with h(-1)=h(1)=0

and h'(-) exists and is Lipschitzian of order o« 1i.e., there exists

¢ > 0 such that

e Lo




(9) [h'(u)-k'(v)]| < clu-v|®.

Let h(u) = | ane"Inu. Then, for any 0 < y < a,

n
(10) I 13150227 < kylanme?

and

(1) g lanl2/3 5.K3(u,v)c2 3

Proof. Since h'(u) = ni J na grinu , inequality (10) follows from

n n

Lemma 1. Observe that

Z 'an'2/3 < (Zlan|2n2+2Y)]/3(Zn-(]+Y))2/3
n

| A

Kyla,y)c?(ga~(14Y))2/3

K3(G,Y)C2,.

Lemma 3. Let h(e,x) =} an(x)e""‘e and suppose there exists a > 0
n
such that

10D (0,0 (60| < clx)]o-0]°

for all g, ¢in [-1,1] where fg]henotes the partial derivative of f with

respect to 6. Let {X(t), te€[0,T]} be a stochastic process such that

ECh(e,X(t)]% < =
for every t €[0,T]. Then, for any y < a, there exists a positive constant

K4(a,y) such that

i T
) {}g ELa2(x(t))1dt}'/3 < Kylas) ¢ -‘rg E(c(x(t))dt) /3,
n

g

a o dadan cado Ll el s e L
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Proof. By Lemma 2, it follows that
Lg% < e (X)) as.
for every t €[0,T]. Hence
I Elag (XN P2 < K (am)Ele?(K())]
for all t €[0,T]. Let
1

Eol
b =T ] Elan(x(e)ee.

The inequality proved above gives the relation

;
I ugn?*% < Kyla) 1 J et xien e
n

and hence
Z u"‘1/3 < (Xunn2+2Y)]/3(zn"(H’Y))Z/3
n

i
< & am I3 (L 1 e ix(enian'3
0

T
< Kgla,m)H ‘Tg ELc?(x(t))1dt}'/3 |

Remark. Analgous argument proves that

):u:,/z < (Zun'nz+zy)1/2(zﬂ-2(]ﬂ))]/2

< o,
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1. Introduction

Recently there is a growing interest in the study of inference
problems for stochastic processes both continuous and discrete time
in view of the large number of applications to engineering problems.

It has been found that the class of diffusion processes is amenable |

for statistical analysis. A survey of the recent work in this area

is given in Basawa and Prakasa Rao (1979). Further work on asymptotic
theory of maximum likelihood and Bayes estimators for parameters of
diffusion processes is discussed in Prakasa Rao (1979a).

Dorogovchev (1976) studied weak consistency of least square
estimators for parameters of diffusion processes which are solutions
of non-linear stochastic differential equations. Asymptotic normality
and asymptotic effiency of these estimators is investigated in Prakasa
Rao (1979b). Our aim in this paper is to study limiting properties of
a process related to Teast squares estimator and hence to discuss the
asymptotic properties of an estimator derived from the limiting process.
We study strong consistency and asymptotic normality of this estimator.

Our approach here is entirely different from that of Dorogovchev (1976)

and Prakasa Rao (1979b). We believe that our techniques for study of

families of stochastic integrals is new and is of independent interest.
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2. Study of process related to least squares estimator

Let {X(t),t > 0} be a real-valued stationary ergodic process
satisfying the stochastic differential equation

dx(t) = f(eo,x(t))dt + dg(t), Xx(0) = Xg» t20

where £(t) is a Wiener process with mean zero and variance ozt, 02
being unknown and E[Xg] < », Suppose f(6,x) is a known real-valued
function continuous on @ x R where € is a closed interval on the real
line and b €© is unknown. Without loss of generality, assume that
@ = [-1,1].

Suppose the process {X(t), 0 < t < T} is observed at time points
tes k =0,1,...,n-1 with to = 0 and t,=T. Let

n=l [X(t,y) = X(t,) - fo,X(t,))at, 1°
0 Y

T
(0) =
Gok = 1

where At, = t, 4-t,, 8 <k < n-1. An estimator 8, 1 Which minimizes

01(0) over 6 €@ is called a least squares estimator of 6. Assume that

such an estimator exists. Note that if 8n 7 Minimizes Q:(e), then it
9
R T T
minimizes Q(6) - Q (8,).
We shall first study the 1imiting properties of the process

T T : 5
(Qu(0) - Q,(65), o€ €}as the norm of division A"-szinltk+]-tkl tends

to zero. Let AXk = X(tk+]) - X(tk) and ag = g(tk+]) - a(tk),o <k < n-1.

For any fixed o,




- E Z%; [Axk-f(e,X(tk))AthZ

- E Z%; [AXk-f(eo,X(tk))Atk]Z

L

= E K%; {{ f(eo,X(t))dt+A£k-f(9.X(tk))Atk}2
k-1

, ke :
% E at, {{ fog.X(t))dt+ag, -f(0.X(t, ))at, )
k

tk+l
= 1 3

t
1 k+1 2
. E 75;.{{k [f(ogsX(t))-f(oy,X(t, ))]dt+ag, }° .

It is easy to check that
(2.0) q(e)-0] () |

" [F(ogsX(t,))-Fle.X(t,)))%t,

gl E [f( eogx(tk)'f(eox(tk)]Agk -

t
k+1

+2 E {f(egX(t, )-f(o,X(t,))} { {f(8g,X(t))-f(og.X(t,))}dt
k

Assume that the regularity condition on f(x,e) stated at the end of

this section are satisfied. Since f(e,x) is continuous in x and the




process X has continuous sample paths with probability one, it follows
that

T
(2.1) e 2 [f(0g.X(t))-F(o,X(t)) ]2t

as A, > 0. Assumption (A2) implies that
T

(2.2) Loy B [ [F(0,X(t))-F(8,X(t))Ide(t)
0

as A, - 0 in view of stationarity of the process X where the last in-
tegral is the Ito-stochastic integral.
Let us now estimate I3n' In view of assumption (A4), it can be

checked that
t

k+1
(2.3) I{ {f(0g.X(t))-f(6g,X(t,))}dt]
k

Y
< Llog)f |X(t)-x(t,)|dt
t
teal t
< Llog)f  (te(t)-e(t, )|+ f(oy,X(s))|ds}dt
t t
k k
Y 5 5 SHhl
< Lleg)f le(t)-e(t,)|dt+L"(e4)f [ fO+[X(s){}ds] dt
t, L
2 t
< Lleglat, sup  Je(t)-e(t )|+L7(eglat, sup [ (1+[X(s)]|}ds.
bttt te<tsten Y

1A

Lisglat, sup  [e(t)-e(t )|+ P(eg)ats sup  {14]X(t)])

test<tin test<ten

for 0 < k < n-1, Using assumption (A4) again, we obtain the following

inequality:

pessry
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(2.4) 1y < ] 90t fLlog)-at, tk;:gtk+]|s<t)-e(tk)|

+ P(og)at?  sup IR EENE

best<ten

Since J(+) is continuous and X(-) has continuous sample paths al-

most surely, it follows that there exists a constant c*(eo) depending

on T only such that

2
(2.5) I < C*(eo){EAtk-t i:gt [e(t)-g(t, )| + EAtk}le-eol
PSS

Since o€ € compact, it follows that

I, < C(oq)(Jat, (14at,)(2at, Tog 1/at, )2 + T at?}  a.s

3n =% E k k k 109 k E k it
whenever By is sufficiently small by the law of iterated logarithm for
Brownian increments (cf. McKean (1969), p.14). Therefore

3/2 .12
(2.6) by ® O(E Atk/ tog V/ at,) as.

uniformly in 6€® . Furthermore the convergence in (2.1) is uniform in

0 €0 since
| (ageX(£))-F(0,X(£))|% < [o5-0120%(x()) < € 2(X(t))

and J(X(t)) is integrable pathwise on [0,T] by (A4). Here we have used
the fact that @ is compact. Hence

4
@7) 4y« [ TfeX(0)-F(e. x0Tt + o)) aus.

uniformly in o as b, * 0. We shall discuss uniform convergence of IZn

in the next section.

Relations (2.0), (2.6) and (2.7) show that, for any fixed T,




oo

T
(2.8)  qq(0)-q,(80) = ] [Floq.K(£))-F(6.X(61)2%t + Tppto(1) a.s.

uniformly in 6€ & compact as by > 0 where I, satisfies relation (2.2).

2n
Let us consider the 1imiting process

.
(2.9)  Rylo) = [ [f(egx(8)) - flo.x(£)) Tt
T
+ 2 [ [flogaX()) = flo,X(2))]de(t)

T
£ é ve(e,X(t))dt - 2 ,({) v(e,X(t))de(t)

where

(2.10) v(e,x) = f(e,x) - f(BO,X).

We study the limiting properties of the process (RT(e), 8 €@} in

the next section.

Assumptions
(A1) f(e,x) is continuous in (6,x) and differentiable with respect to

0. Denote the first partial derivative of f with respect to ¢ by
fél)(o.x) and the derivative evaluated at o, by fél)(eo.x).
(h2) 0fM(og, 10072 < =
(A3) fg])(e,x) is Lipschitzian in 6 for each x i.e., there exists a > 0
such that

100,06 (0,0)) < clx)lo-0l® . xeR,0.0€0
and 1

EL2(X(0))] < =.

(Ad) f(6,x) satisfies the following conditions:




(i) |fle,x)] < L(e)(1+}x]) , 6€@, x€R; sup{L(6):0€0} < = .
(i)  [f(e,x)-f(e,y)| < L(8)|x-y|, 6€E® , x,y, €R.
(iii) [f(o,x)-f(¢,x)| < I(x)|6-¢], 6,0€€ , x €R
where J(-) is continuous and E[Jz(x(o))] < o,
(A5) 1(s) = E[F(0,X(0))-F(0,,X(0)1% > 0 for o # .
Remark: Since E[XZ(O)] < «, assumption A4(i) implies that
ELF(0,X(0))]% < =

for all o6€@ .

3. Study of a limiting process related to least squares estimator

Let us now study the properties of the limiting process
1 T
(3.1) Zylo) = { v(o.X(t))de(t)
as a process in the parameter €@ = [-1,1] as T > ». From the central
limit theorem for stochastic integrals (cf. Basawa and Prakasa Rao (1979)),
it can be shown that

Ly
ﬁ

since the process X is stationary ergodic. In general, finite dimension-

4
[ v(o.x(e))de(t) £, N(0,E[v(0,X(0))1%2

al distributions of the process (ZT(e), € ®) converge to the finite
dimensional distributions of the Gaussian process {Z(e), © €®} with mean

zero and covariance function

R(67.8,) = ELv(8;,X(0))v(8,,X(0)) 1o,

We shall now prove the weak convergence of the process (ZT(e), 6€6}
on C[-1,1] under uniform norm. It is sufficient to prove that

(3.2) Vim Tim P( sup |Z;(6)-Z(6)] > ¢) = O,
Too 620 |0-¢]<6




Since v(o,x) is differentiable with respect to 6 on [-1,1] by
assumption (A1),it is easy to see that there exists a cubic polynomial

g(0,x) in o such that

9(-1,x) = v(-1,x), a(1,x) = v(1,x)

and
gé])(-l,x) = vé])(-l,x), gél)(l,x) = vél)(l,x).
Let

h(e,x) = v(e,x)-g(e,x).
Then h(-1,x) = h(1,x) = 0,h§]¥-l,x) =hg1kl,x) = 0. Now

T T
(3.3 Z3lo) = — [ no,x(0))ds(t) + [ alo.x(0)ae(e).

Since g(6,x) is a cubic polynomial in o with coefficients in x which are
linear functions of v(-1,x), v(l,x),vglk-l,x) andv(g)(l,x). it is easy

to check the uniform equi-continuity condition of type (3.2) for

.
% [ alo:x(t))de(t).

Let us now consider the process
(3.4) (6 = L ] no.x(e))de(t)
. w9=—'— he’t Et-
L A0

Let the Fourier expansion for h(8,x) in Lz([-l,l]) be given by

(3.5) h(e,x) = [ a“(x)e"ina : x €R.
n
Lemma 3.1
L T nine
(3.6) g h(o,X(t))de(t) = J { g an(X(t))dE(t)}e
n

in the sense of convergence in quadratic mean.




Proof An approximating sum in L2-norm for

T
{)’ h(e,X(t))de(t)
is

jg h(e, X(tJ ]))AE

T :
and an approximating sum in L,-norm for Y{f an(X(t))dg(t)}e"‘"e is
n 0

A i mne
2NM )n§<M (JZ a (X(tJ ])A€ ) s

It is sufficient to prove that E|A]N-A2NMI +>0as N>=and M > «. Now

2 miné
ElAyn-Aowml = ElJE]{“‘(e Xty 4))- ng- e, (X(t;_q))hagyl?

N

2
E| a (X(t: ,))e" "
jé'l n§>n §-1 JI

A

[ % {E(Z a, (X(ty 1))A£)}<]
[n[>M  §=1

by the elementary inequality
2 2\\%,2
E|§ annI 5_(§|xn|(E(Yn)) )

for any sequence of complex numbers {An} and any sequence of real

valued random variables {Y , n > 1}. Hence

17 S P Ig Ea_(X(t, {))%at,}1%12
whaml < |n§>M Pl i e

Since

N 2 T 2
jZI E(an(X(tj_])) AtJ - g E{an(x(t)} dt = Tu, (say),




2
as N > =, it is sufficient to prove that J u¥ < =. This follows from ! i
e :

remarks following Lemma 3 of the appendix under assumption (A3). :

Let l
(3.7) L a (x(e))ee(t) |
3.7 W = — a (X(t))de(t).
e R J
Lemma 3.2. For every ¢ > 0,

(3.8) Tim P( sup  [W(0)-W (o) >€) =0
el | T T\¢ j >

for every T > 0.

Proof. In view of Lemma 3.1, for any ¢ > 0, 3

(3.9)  P( sup [W_(8)-W(s)] > &)
lo-o]<s | A

P(l sul‘.) , Z wn(e‘nine_eﬂﬂN'H - e)
0=¢[<§ n=-x

«©

P( sup Z 'wnl Ieﬂine_eﬂiﬂ¢l > 8).
|6-¢]<6 n=-w

A

Let o be chosen so that

(3.10) A
n=n0

This is possible since Z u;/3 < » by Lenmma 3 of the appendix.
n=1
Inequality (3.9) implies that




P( sup |Wr(8)-Wr(s)] > ¢€)
lo-oj<s T T

n

0
< P( su T |W.|nle-¢| > &= ) + P( W.|>5)
lé’-«»i)“S n=-ng " i Inf>ng " ;

n

0 -
PN > et 2 P(IW | > ¢
nzl (¥l W) : nZnoﬂ gl > o)

|A

€
(Here BT EI7§ uy O Y ; U
0

|A

27N
(27n,6) 0 o 3
- nna A
€ n= € n-n0+l

where Cn depends only on no. Choosing & such that
0

we have the inequality
P( sup |We(0)-W (9)] > €) < 2¢
oyl e T
341
for every 0 < § < (z—f:n—) < and for every T > 0. This proves (3.8).
0
Theorem 3.1. The family of stochastic processes {Z.r(e), 0€ @} on

C[-1,1] converge in distribution to the Gaussian process with mean

zero and covariance function
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R(94.0,) = E[v(0;,X(0))v(6,,X(0))]o?

as T » o,
4. Strong consistency |

Let us now consider the limiting process RT(e) defined by (2.9).

Any estimator 6T which minimizes

g

 {
(8:1) Rylo) = [ (0. X(£))-FaguX(t))3at

2
2 [F(0.X(1))-Flo,X(£))Jde(t)

is called a process least squares estimator of 6.

Let Mg be the measure generated by the process X on C[0,T] when i

j 6 is the true parameter. From the general theory of diffusion processes,
the Radon-Nikodym derivative of Mg with respect to Mo exists and is
0

given by

d g
(4.2) o =exp{g{f(e,X(t))-f(eo,x(t))}di(t)

%

R e

Serbh iz

y 1 2
- 7 (F(e:X(8))-FlogX(2)) Pt} .
0
(cf. Gikhman and Skorokhod (1972), p.90). Hence

, du
log g = - 7 Relo)
%

which proves that the process least squares estimator eT is the same as

the maximum 1likelihood estimator éT of o(cf. Basawa and Prakasa Rao (1979))

when the process X is observed over [0,T].




-
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Let
3
(4.3) tylo) = f [f(e.X(t))-F(og.X(t))1at

and W* be a standard Wiener process. Since the solution of the stochastic
differential equation given in Section 2 is stationary ergodic by hypothesis,
it follows that IT(e) + = a.s. for o # 6, by (A5) and the process {RT(O)}

can be identified with the process {IT(e) + ZN*(TT(e))}. Furthermore

(4.4) IT(e) + Zu*(TT(e)) + © a.S.

as T >~ for any 6 = eo. Hence 6 and bg are pairwise consistent. Note
that

(4.5) Re(e) = Ir(e) + /T Z;(6), o€6, T>0

where IT(e) is defined by (4.3) and ZT(e) is given by (3.1). Let

(4.6) Z*T*(e) =/ Z...(e).

Then :
(4.7) % IT(e) + I(6) a.s. as T > = by the ergodic tﬁeorem.

I n order to study the strong consistency of the estimator 8T, we shall
first obtain bounds on the modulus of coninuity of IT(e) and Zf(e).
Lemma 4.1. Under the assumptions (A1)-(AS),

.
[17(60)-17(0)] < Cyle-¢] [ Ax(£))(1+]X(t)[)dt a.s.
0

where C] is a constant independent of T, 68 and ¢.

Proof. Note that
T
Ip(0)-17(¢) = J{f(X(t),0)-F(X(t),0)}
0

{F(X(t),0)+F(X(t),0)-2F(X(t),05) 1dt
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and therefore

T
[1p(0)-I1(0)] < [o-¢ £ I(X(£D)-(L(0)+L4)42L(05) 14| X(t) | dt

5
< Cqle-¢] é J(X(t){1+]X(t)] }dt .

Remark. Since E[J2(X(0)] < = and E[X2(0)] < =, it follows that
E[J(X(0))X(0)] < = and hence by the ergodic theorem

T
% f J(X(t))1+] x(t)|1dt 83 E[I(X(0)){14|X(0)]|}] < = as T » =,
0
Therefore
(4.8) [1(6)-1(¢)] < C*Tle-¢| a.s.

as T > » for some constant C* > 0. In view of (4.7) and Lemma 4.1,

it follows that

I:(e)
(4.9)  Te— 255 1(0) = E[F(0,X(0))-F(0,,X(0))]?

)

Too T >0 a.s.

uniformly in 0 €60 as T > =, But IT(eo) =0 and

for o # 64 by (A5). Hence, for any s > 0,

IT(e) a.s,

(4.10) inf % =23 2 asT>o

|6-04]28

for some A > 0 depending on §.
Lemma 4.2. Under the assumptions (Al1)-(A4), for any T0 > 0 and any
A 0,

T
0

(4.11) P(sup sup |Z%(e)| > €) < C
& 0<T<T T = ;Z

for some constant C2 > 0,

i




b < vt

< oo i

Proof. Let h(e,x) and g(6,x) be defined as in Section 3 and

h(e.x) = § a_(x)e" ", o e[-1,1].
n

Let

T
H; = é an(x(t))dg(t) x

Since g(e,x) is a cubic polynomial in 6 with coefficients in x, it is
easy to check, by Kolmogorov's inequality, that

T 1
(4.12) sup sup | f g(o,X(t))de(t)| = 0,(Ty*)
01T_<_T0 0

using the fact that |6| < 1. On the other hand, for any ¢ > 0,
! mig
(4.13) P(sup sup |} {f an(x(t))dg(t)}e | > €)
0§T_<_T0 n O
T

<P( sup T [ a (x(t))de(t)] > ¢)
O:T:TO n 0

T

< I PC sup |f a (X(t))de(t)] > ¢)
n  0<T<Ty O

(where Xenf_ €)

To
< 5 Var(] a,(X(t))de(t))
n 0

by Kolmogorov's inequality for martingales)

T
Yy 5y 2
<! = [ Ela (x(t)))"dt
n e, 0




e
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when ¢ is chosen to be 6“1/3 (I ulls)']. Note that M = Zu;/s < =,
n

Hence relations (4.12) and (4.13) together prove that

P(su sup |2%(e8)] > €) < C.
6 0515?0 Je) st

leo-o

for some constant C2 > 0 independent of T0 and €.

Lemma 4.3. For any v > 1/2, there exists H > 0 such that

] ] [24(6)]
(4.14) im sup sgp ;T7§'_—_-___ <H a.s.

T+«
Proof. Let
A, = [ sup sup IZT(e)] > H Zn/an], Bk,
2" ae"
Observe that Lemma 4.2 gives the inequality
P(A,)

PL sup sup IZT(e)l > H'Z"IZnY]
PRT e A

(by stationarity of the process X(t))

n-1
- __%_3_2__ 5 ‘JLZ ";_ .
THe2™eY e n“Y

o

Hence Z} P(An) <o which implies that P(An occurs infinitely often) = 0
nl

by Borel-Cantelli Lemma. Therefore sup [Z;(e)|< W' 22, for an

™, Ts 2" except for finitely many n with probability one and hence

1im sup sup |Z.(6)| < H T]/z(log 7)Y a.s.
T » )

for suitable H > 0 depending on vy.

Theorem 4.1. Under the assumptions (A1)-(AS5),

0y + 90 a.s. a8 T+ >

R O e e o i B e st il bl o
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Proof. Note that

RT(e) = IT(e) + Z;(e)

and RT(eo) = 0. Furthermore, for any § > 0, there exists » > 0 depend-
ing on § such that

inf IT(e) >Th a.s. asTorw

16'60|2§
by (4.10) and with probability one, for any y > %, there exists H > 0
depending on y such that

1/2

sup [Zx(e)| < H T/%(log T)Y a.s.
0

for sufficiently large T. Hence

inf Rp(6) > A*T >0 a.s. as T e,
l9'90|3§

for some A\* > 0 depending on § and y. Since 8T minimizes RT(e) and
RT(eo) = 0, it follows that IeT-eol <6a.s.as T>x Hence 0. > 6, a.s.
as T »> o,

5. Asymptotic normality of the estimator

In addition to the conditions (A1)-(A5) assumed in Section 2, let us

suppose that there exists a neighbourhood V9 of ) such that
0

(R6) 1£8 (0,1 < o) 141x]), o€V,
and

sup {M(e):eeveo} =M< w,

We shall now obtain the asymptotic distribution of éT under the con-
ditions (A1)-(A6). Since ST is strongly consistent, 51.ev90 with prob-

ability one for large T. Expanding f(e,x) in a neighbourhood of 0gs we

have

SPSRSSSTRVES RSN
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£(0,x) = f(0g:x) + (e-eo)f(s,x)

where 16-001 < |e-84| and hence

T
(5.1) 1.(e) = g {f(e,X(t))-f(eo.x(t))}zdt
= (0-0,)% ! £ 6 x())12dt

T -
+ (0-04)2 ! L@ xe2 18D o, x())1 236t

Observe that
(5.2) 16§ (5,05%- 681 (64042

lfé])(a.x)-fg])(eoox)l|fél)(6’x)+fgl)(°0’x)'

IA

2 Mlé-eolu c(x)(1+]x])

by assumptions (A3) and (A6). Therefore

1
(5.3) |17(0) - (0-0,)2 / t£{1 0y, x(2)) 1%t

2+0 T
< 2 Mo-65] <" [ c(X(t))(1+]X(t)])dt.
0
Let us write 0-6¢ = T'l/zw. Then it follows that

T
2.-1¢. (1) 2 2+a.~1-a

5.4 su I.(0)-v"T "[f(f 8,,X(t))}°dt| < M;ASTOT

( ) lwlgA ' T( )-v g P ( 0 (t)) l =M

T

for some constant M] > 0 by the erogodic theorem since
E(c(x(0))(1+]x(0)]) < =.

On the other hand, let

1/2

vi(osx) = T200000n T /2 ) (00x)-977 12601 (e )]
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for |y| < A;. Then vi(y,x) is differentiable with respect to y and
the derivative v(])(w,x) satisfies

V-p )(W,X)-V-p )(C’x) = fél )(90+WT-]/2,X)"fé] )(90"'::7-]/2,)()

and hence

(5.5) |v9)(w,x)-vp)(c.X)l < ¢:(X)T°°‘/2lw-clol

by (A3) for all y, zin [-AT,AT]. It can be shown that there exists a

polynomial in y with coefficients in x viz

(5:6)  arlysx) = vylApxIpy () + ATvQ’(AT,x)PZ(A%)

#vilApx gl + At (ApyGh)

(5.7) 9r(Ap.x) = vT(AT,x),gT(-AT-X) = vy(-Apx),
(5.8) g(‘)(AT,x) = v(])(AT,x) and g(])( Ay oX) = (])( AT.x)

where Pi’ 1 < i < 4 are polynomials in ﬁt-with constant coeffiecients.
T
Observing that VT(O’X) = v§])(0,x) = 0, it is easy to check that

(5.9) 88| < clxa3T/2
(5.10) ot (-Apx)| < cxnsTe/
| (5.11) la(Apx)| < clxag*®re/2

and

(5.12) |ar(-Apx) | < clonpore/?

.Furthermore there exists a constant Mz > 0 independent of T such that

(533) 160 Gx-a (e < myexne 172 g




for all y,¢ e[-AT,AT]. But
a-1 l-a a
A2 ymg| < 210 yeg

since |y-z| 5_2AT. Hence there exists a constant M, > 0 independent of
T such that
(5.14) 198 (wax)-gd (20| < Mye() T2 og)
for all y, cG[-A AT]' Renormalizing, we get that
(5.15)  [gdM(yrx)-gM ex)| < Moc(x)ASy*-g¥ 2T/

T T 3 T
for all y*,c* €[-1,1]. Let
(5.16) hp(u*sx) = ve(u*,x)-g(v*,x).
Then there exists a constant Mg > 0 independent of T such that
(517) Dm0 enx0] < Mac(x)RS yr-gr o102

for all y*,z* €[-1,1] by relations (5.5) and (5.15). Now, applying
Fourier series methods as in Lemma 4.2, it can be shown that for every
g >0,
T M4T 20r=0rr 2
P sup | [ volu*X(t))de(t)] > €) < —5 AF'T 2E[c"(X(0)]
ly*|]<1 0O €

and hence

-1/2

(5.18) P( suplé{f(eohﬂ »X(t))-f(6g,X(t))

lw|<A

2 x(t)1de ()] > e)

M

< ATE[(X(0)] .
€

Let us choose AT = log T. Since

e
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T
1 (1) 2 T 2
7 é {f '(80.X(t)))7dt > I(0g) = ELfy "(6.X(0))]° a.s.
as T » «» by the ergodic theorem and

fg’)(eo,x(t))dg(t) = R N(O,ozl(eo)) 2 Tsw

O —

)

/T
by the central limit theorem for stochastic integrals (cf. Basawa and
Prakasa Rao (1979)), relations(5.4) and (5.18) imply that the asymptotic
distribution of o; which minimizes Ry(s) given by (2.9) can be obtained
from the process
(5.19) wzl(eo) - L, w<P<w
where Z is normal with mean 0 and variance 021(60). Since

v = 2/1(0g)

minimizes (5.16), it follows that
(5.20) V25 0,) L N(0,0%/1(5,)).

This result is obtained under stronger conditions in Prakasa Rao
(1979b) for the least squares estimator 8n T defined at the beginning

of Section 2.

Appendix

Lemma 1 Suppose ¢(u) is square integrable on [-1,1] and ¢(-) is
Lipschitz of order o i.e., then exists ¢ > 0 such that

(1) [o(u)-0(v)| < clu-v|® .

Let ¢(u) =} ane"i"". Then for any 0 < y < a,
n

(2) Tla, 1202 < K (asv)c? .
n

o
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Proof. It is easy to check that
! 2
(3) [ lo(u+h)-¢(u-h)|"du = 4 Z |a | sin wnh. ﬁ
Be, ]
Since ¢ is Lipschitz satisfying (1), it follows that

(4) 4 z la, 12 sinPunh < 22+12p20

k=1

for a1l he[0,1]. Let h = 2% and 2% < n < 2 It is clear that

sin’nnh 3_% and relation (4) shows that

zk-l

n 2k'2+1

for any k > 2 and hence for any 0 < y < a,

k-1

k-2

(U e 1aN)

n=2" "+]

Summing over all k > 2, we obtain that

(7) Z 'a l2 Z'Y ZZO,CZ(-I_Z(ZY-ZG))-] ¥

Hence there exists a constant K‘(a,y) > 0 such that
(8) I 2, 1Z0%" < Ky(any)c?
where c is the Lipschitzian constant given by (1).

Remark. A slight variation of the above result is due to Szasz (1922).

The proof given above is the same as in Szasz (1922) and is given here

for completeness.
Lemma 2. Suppose h(u) is square integrable on [-1,1] with h(-1)=h(1)=0
and h'(-) exists and is Lipschitzian of order o i.e., there exists

c > 0 such that




(9) [h'(u)-h*(v)| < clu-v|®.

Let h(u) = J aneﬂlnu. Then, for any 0 < y < a,

n

(10) I 1a,1202*2Y < Ky(a,y)c?
n
and
(1) T lal®? < tta e .
n

: ' o rinu 5 %

Proof. Since h'(u) = mi } na e , inequality (10) follows from
n

Lemma 1. Observe that

z |3n|2/3 f_ (zlanl2n2+2'¥)]/3(zn°(]+¥))2/3
n

Kplas)c?(fn™(17H2/3

1A

= K3(a,y)c2, :

Lemma 3. Let h(e,x) =} an(x)e"i"e and suppose there exists a > 0

n
such that

108 (6,x)-n{(6.0)] < c(x)]6-4]®
for all g, ¢in [-1,1] where fg]henotes the partial derivative of f with
respect to 6. Let {X(t), t€[0,T]} be a stochastic process such that
ECh(6,X(t)1% < =
for every t €[0,T]. Then, for any y < a, there exists a positive constant

Kg(asy) such that

T T
) {’]I'é ELa2(x(t))1dty'/3 < K4(a.v){}£ E(c?(x(t))at)' /3,
n

L aiss
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Proof. By Lemma 2, it follows that
L, (X(£)207*3Y < k(e (X(E))  aus.
n
for every t €[0,T]. Hence
I ELaZ(x(£))In?*2Y < Ky (o, )ELCA(X(E))]
n
for all t €[0,T]. Let
iy Py g Efa,(X(t))]dt.

The inequality proved above gives the relation

;
D ugn ™" < Kpla) 3 J EL(X(ED) et
n

and hence

Lo < (g T e S
T
< /2 PO | e iaenien 'S

T
< Kgloum) (1 f ELZ(x(£))1aty'/3
0

Remark. Analgous argument proves that
Zul’z < (Xun’ﬂz+2y)1/2(2"-2(]+7))1/2
< o
Acknowledgement .

One of the authors (B.L.S.Prakasa Rao) thanks the
Departmentsof Statistics and Mathematics of Purdue University for inviting
him to spend the Summer 1979 which made the colloboration possible.

i S s s

. s oS




25

REFERENCES

[1] Basawa, I.V., Prakasa Rao, B.L.S. (1979). Statistical Inference

for Stochastic Processes, Theory and Methods, Academic Press, London.
(To appear).
[2] Dorogovcev, A. Ja. (1976). The consistency of an estimate of a

parameter of a stochastic differential equaiton, Theory of Probability

and Math. Statist. 10, 73-82.
[3] Gikhman, I.I. and Skorokhod, A.V. (1972). Stochastic Differential

Equations, Springer-Verlag, Berlin.
[4] McKean, H. P. (1969). Stochastic Integrals, Academic Press, New York.

[5] Prakasa Rao, B.L.S. (1979a). The Bernstein-von Mises theorem for
a class of diffusion processes, (Preprint) The University of Poona.

[6] Prakasa Rao, B.L.S. (1979b). Asymptotic theory for non-linear
least squares estimators for diffusion processes, (Preprint), Indian
Statistical Institute, New Delhi.

[7] Szdsz, 0. (1922). Uber den Kongvergenzexponent der Fourierschen

Reihen, Manchener Sitzungskerichte, 135-150.

Department of Statistics
Purdue University
West Lafayette, IN 47907




T ——————————

'SICURITV CLASSIFICATION OF THIS PAGE (When Date Bntered)

REPORT DOCUMENTATION PAGE L .

Mimeograph Series #79-13
4. TITLE (end Subtitle)

Asymptotic Theory for Process Least Squares Technical
Estimators for Diffusion Processes

$. TYPE OF REPORT & PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

Mime. Series #79-13
A OR GRANT NUMD 0]

- CON
ONR-NO0014-75-C-0455

7. AUTHOR(e)

B.L.S.Prakasa Rao
b NSF-MCS76-08316
H
9. P!ll';‘:‘llcc 5!2131A1’ION NAME AND ADDRESS b ::ggﬂ.kgo!.l.‘!:grv‘f.“"rub.lelg TASK
Purdue University \Wﬁ
West Lafayette, Indiana 47907 ﬂ)o\

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

7
| Office of Naval Research (EEERTTE [ —
| » 13. NUMBER OF PAGES

| Washington, D.C. 25 :
{ T oI TORING AGENCY WANE & ADORESS(IT difforent from Controliing Office) | 18. SECURITY CLASS. (of this repor) g
Unclassified |

W

[76. OISTRIBUTION STATEMENT (of this Report)
Approved for public release, distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, i different from Report)

i 18. SUPPLEMENTARY NOTES

4 4 19. KEY WORDS (Continue on reverse eide Il necossary and identily by block number)

{ Stochastic Differential Equation; Diffusion
ACT (Continue on olde I y and identify by block number)

| \
A
Strong consistency and asymptotic normality of an estimator related
to least squares estimator for parameters involved in nonlinear
stochastic differential equations are investigated by studying families
of stochastic integrals using Fourier analytic methods.

0D ':2:'5" 1473 eoiTion OF 1 NOV 6813 OBSOLETE
$/N 0102-014- 6601 | SECURITY CLASSIFICATION OF THIS PAG




