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• ABSTRACT

Strong consistency and as)inptotic normality of an estimator re-

lated to least squares estimator for parameters involved in nonlinear

stochastic di fferential equations are Investigated by studying families

of stochastic Integrals using Fourier analytic methods .

AMS (1980) Subject Classification : Primary 62M05, Secondary 60H10
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1. Introduction

Recently there Is a growing interest In the study of inference

probl ems for stochastic processes both continuous and discrete time

in view of the large number of applications to engineering problems .

It has been found that the class of diffusion processes is amenabl e

for statistical analysis. A survey of the recent work in this area

is given in Basawa and Prakasa Rao (1979). Further work on asymptotic

theory of maximum likelihood and Bayes estimators for parameters of

diffusion processes Is discussed in Prakasa Rao (l979a).

Dorogovchev (1976) studied weak consistency of least square

estimators for parameters of di ffusion processes which are solutions

of non-linear stochastic differential equations. Asymptotic normality

and asymptotic effiency of these estimators is investi gated in Prakasa

Rao (1979b). Our aim in this paper is to study limiting properties of

a process related to least squares estimator and hence to discuss the

asymptotic properties of an estimator derived from the limiting process.

We study strong consistency and asymptotic normality of this estimator.

Our approach here is entirely different from that of Dorogovchev (1976)

and Prakasa Rao (197gb). We believe that our techniques for study of

families of stochastic integrals is new and is of independent interest.

*



2. Study 0f process related to least squares estimator

Let {X(t),t > 01 be a real-valued stationary ergodic process

satisfying the stochastic differential equation

dX(t) = f(o0 X(t))dt + d~(t), x(o) X0, t > 0

where ~(t) is a Wiener process with mean zero and variance o
2t, ~2

being unknown and E[X~] < ~~~. Suppose f(o ,x) is a known real—valued

function continuous on 6 x R where 6 is a closed Interval on the real

line and 80E6 is unknown . Wi thout loss of generality, assume that 
- 

-

6 = [—1 ,1].

Suppose the process {X(t), 0 < t < T} Is observed at time points

tk~ 
k = 0,1,...,n-1 with t0 = 0 and t~ = 1. Let

QT(e) = 
n- i [x(tk+l) - X(tk

)_ f(e
~
X(tk))Atk]

2 

.

where 
~
tk = tk+l

_tkl 0 < k < n-l . An estimator 0 whIch minimi zes

Q~~( O )  over 0 E ~ is called a least squares estimator of 0 . Assume that

such an estimator exists . Note that if 0
~,T 

minimizes Q~(e) , then it
minimizes Q~

(0) -

We shall first study the limiting properties of the process

tQ~(o) - Q~(e 0), 0E~~)as the norm of division max tk+l
_t
k l tends

• l -.ck<n
to zero. Let = X(tk+l ) - X (tk) and 

~
(tk.~

) — E (tk),O < k < n—1 .

For any fixed 0,

— ~~—•--~--— —.-.- ——----— — r — - -  ---  -- S . _ ~ ~— - -~~ * -- -
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Q~(e)-Q~(e0)

= 

~ ~¼ [~Xk_f(e,X(tk))
~
tk]

2

- 

~~~~~ 

[
~
Xk

_ f(oo,X(tk))
~
tk]

2

tk+1
= ~ ~~

-
~~-— {f f(eO.X(t))dt+A~k

— f(o,X(tk))
~
tk}

2
tk_l

tkf 1
- 

~ xk- tk

tk+l
= ~~ (/ [f(eO$X (t))_f(e,X(tk))]dt+~~k}

2
k k t k

tk+l
— ~ -a-- {f [f(e o, X( t ) ) _ f ( e o, X(t k )) ]dts-A

~k }2
k k t k

It is easy to check that

(2.0) Q~(e)-Q~(e0)

= 
~ 

[f(e o~X(tk
))_f(e,X(tk))]2Atk

+ 2 
~ E

f(e O,X(tk
)_ f(eIX (tk

)]
~~k

tk+l
+ 2 

~ ~
f(sO,X (tk)_f(e,X(tk))} tk 

(f(eO,X(t))_f(OO,X(tk))}dt

= ‘in + 212n + 2I3~

Assume that the regularity condition on f(z,e) stated at the end of

this section are satisfied . Since f(e,x) is continuous in * and the

-I • - - . 
~~~~~~~~~~~~~~~~~~~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—
~~~~~~~~~~_

_ _
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process X has continuous sample paths with probability one, It follows

that

(2.1) ‘in 
a~~. J [f(o0,X(t))-f(o,X(t))]2dt

as 0. Assumption (A2) impl i es that

(2.2) 12fl ~~~ / [f(o0,X(t))—f(e,x(t))]d~(t)

as t
~n 

-
~

- 0 in view of statlonarity of the process X where the last in-

tegral is the Ito-stochastic integral .

Let us now estimate 13n • In view of assumption (A4), it can be

checked that
tk+l

(2.3) I f  ~
f(eo,X(t))_f(oo,X(tk))}dt)tk

tk+l
< L(e0)f IX( t)_X(tk)Idttk

tk+l t
L(e0)f {l

~
(t)_

~
(tk)1+f f(o0,X(s))jds}dttk tk

tk+l tk+l t
< L(e0)f I~

(t)_
~
(tk)Idt+L

2(eo)~ (f{l+IX(s)I}ds] dt
tk k tk

2 t
L(oo)Atk sup 

~
(t)_

~
(tk)Ii~

L (eo)Atk sup f {l+(X(s)I}ds .
tk<t<tk+1 tk<t<tk+l tk

~ 
L(0o)Atk sup jF (t)_

~
(tk)I+L

2(eo)~
t
~ 

sup {l+JX (t)I}
tk<t<tk+l tk<t<tk+l

• for 0 < k n-i . Using assumption (A4) again , we obtain the following

inequality :

~~~
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(2.4) 
~~ 

< 
~ 
J(X(tk))tL(eo).~

tk sup I~
(t)_

~
(tk)Itk<t<tk+l

+ L2(e0)~t~ sup { 1+ lx ( t ) l ; l I o_ o 01.
tk<t<tk+1

Since J(.) is continuous and X(.) has continuous sample paths al—
most surely, it follows that there exists a constant C*(o0) depending

on I only such that

(2.5) I3~ < C*(eO)f~~tk
. sup k(t).-

~
(t k )I + ~At~}(e_ o 0( -

1k tk<t<tk+1 k

Since 0E6 compact, it follows that

13n < C(0O){~
Atk(l+A tk)(21~tk log l/1!

~
tk) + ~ At~} a.s.

whenever 
~n 

is sufficiently small by the law of Iterated logarithm for

Brownian increments (cf. McKean (1969), p.14). Therefore

(2.6) 13 = 0(1 i~t~
”2 log 1/2 l/Atk ) a .s.n k

uniformly in eE8 . Furthermore the convergence in (2.1) is uniform in

OE O since

If(eo,X(t))—f(e,x(t))I2 < 100— ol
2J2(X(t)) < C J2(X(t))

and J(x(t)) is integrable pathwlse on [0,1) by (A4). Here we have used
the fact that 6 Is compact. Hence

(2.7) ‘ln = f [f(001X(t)-f(O,X(t)]2dt + 0(1) a.s.

uniformly in e as 0. We shall discuss uniform convergence of ‘2n
In the next section.

Relations (2.0), (2.6) and (2.7) show that, for any fixed T, . 
-

- 

~~~~~~~~~~~~~~~~~~~ 
T;--- -~ I ~~~~ II IT I T. .~TTTrTTTITI~
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I
(2.8) QI(0)_ QT(00) = f [f(e 0,X(t ) )—f( e ,X (t)) ) 2dt + ‘2 ~~~~~ a.s.

0 
n

uniformly in oE6 compact as -
~ 0 where satisfies relation (2.2).

Let us consider the limiti ng process

(2.9) R1(o) = / [f(e0,X(t)) - f(e,X(t)))2dt

+ 2 / [f(o01x(t)) - f(e,X(t))]d~(t)

I I
/ v2(e ,X(t))dt - 2 f v(e,X(t))d~(t)0 0

where

(2.10) v(o ,x) = f(o,x) — f(00,x).

We study the l imiting properties of the process {RT(o), o E8} in

the next section.

Assumptions

(Al) f(o,x) is continuous i~ (e,x) and di fferentiable wi th respect to

o. Denote the first partial derivative of f with respect to 0 by

f~~ (o.x) and the derivative evaluated at 00 by f~~ (e0,x).

(A2)

(A3) f~~ (e ,x) is Ll pschi-tzlan in e for each x i.e., there exists u ‘ 0

such that

If~~ (0,x)—f~~ (~,x)I < c(x )Je~,(
c
~ , x E R ,e,~ E€

and

E[c2(X(0))] < ~~. -

(A 4) f(0,x) satisfies the following conditions : 
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(i) f(0,x)l < L(0)(l+IxI) , 0 E 8 , X E R ; sup{L(0): 0€  61

(ii) If(e ,x)— f(o,y)I < L(e) (x—y~, eE6 , x ,y,€R.

(iii) If(e ,x ) — f ( + , x ) I  < J ( x ) f e — ~ f ,  o ,p Ee , x E R

where J(.) is continuous and E[J2(X(O))) < ~~.

(A 5) 1(e) E[f(e ,X(O))—f(o0,X(o)]
2 

> 0 for e f oo.

Remark: Since E[X2(0)] < ~~, assumption A4(i) implies that

E[f(e,X(O))]2 <

for all 0E€ .

3. Study of a limi ting process related to least squares estimator

Let us now study the properties of the l imiting process

(3.1) Z1(e)~~-~ / v (e,X(t))d~(t)

as a process in the parameter oE6 = [-1 ,1) as I -~ ~~. From the central

limi t theorem for stochastic integrals (Cf. Basawa and Prakasa Rao (1979)),

it can be shown that

1 2 2
— f v(e,X(t))d~(t) —

~~~~~ N ( O ,E[v(e,X(0))] a )
5 0

since the process X is stationary ergodic. In general , finite dimension-

al distri butions of the process {Z1(e), oE8} converge to the finite

dimensional distributions of the Gaussian process {Z(o), eEe } with mean

zero and covarlance function

R(e11o 2) = E[v(e1,X(0))v(o2,X(O))]c~
2.

We shall now prove the weak convergence of the process {Z1(o), 0E6}

on C(-i,l) under uniform norm. It is sufficient to prove that

(3.2) u r n  TThi~ P( sup 1Z1(e)—Z1(,)I > ~~) = 0.
19°’ 64-0 j8 — ~ j <6

I
I

• - --——-— - - - — ~~~~~~~~~~~~~~~~~~~~~~~~~~ .-‘ ~~~~~~- 

~ i~~
- 

~i:~~~~~~i
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Since v(e ,x) is differentiable with respect to 0 on (-1 ,1] by

assumption (Al), it is easy to see that there exists a cubic polynomial

g(e,x) in e such that

g(—1 ,x) = ~~-l ,x), g(l ,x) v(l ,x)

and

,x) = v~ ~(-l ,x), g
W(1 ,x) = v~”(1 ,x ) .

Let

h(e,x) = v(e,x)—g(e,x).

Then h(—1 ,x) = h(l ,x) = O,h~~k— l ,x) h~
1kl ,x) = 0. Now

(3.3) ZT(e) = —~~- f h(o,x(t))d~(t) + 1 
~ g(o,X(t))d~(t).

Since g(e,x) is a cubic polynomial in e wi th coefficients in x whizh are

• linear functions of v(— l ,x), v(l ,x),v~
1)(_l ,x) an d v~~(l,x), it is easy

to check the uniform equi-continuity condition of type (3.2) for

i T
— f g(e,X(t))d~(t).

Let us now consider the process

(3.4) WT(o) = ~ / h(e ,X(t))d ~(t) .

Let the Fourier expansion for h(0,x) in L2([— l ,l)) be given by

(3.5) h(0,x) = ~ a~(x)e
1Tifl8 

, xER.

Lemma 3.1

T I
(3.6) f h(e,X( t))d~(t) = I { / a~(X(t))d~(t)}e’1 ,‘~0 n O

in the sense of convergence in quadratic mean.

~~~~—— -±
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Proof An approximating sum In L2-norm for

T
/ h(e,X ( t ) ) d~(t)
0

is

N
= ~ h(e,X(t. 1 ))A~ .j=l

T
and an a pp rox ima tin g sum i n L2—norm for ~ { f a~(X(t))d~(t)}e~

11
~° is

A = 

ln~<M 
e nO (~~ a~ (X( t~~1 )~~~) -

It is sufficient to prove that E IA 1N
_A

2NM I
2 

-‘- 0 as N ~~- an d M -* ~~~. Now

E IA 1N -A 2NM I
2 

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= El ~ ~ a~(X(t. 1 ))e ’~~°A~ - f
2

j 1 lni>M 3

N 2 1 2
[ ~ { E( ~ a~(X(t. 1 ))A~ .) )~~]ln l > M j=l 3

by the elementary inequality

EI~ )mn’V’n 1
2 

~~. (flx~I(E(Y~))~)
2

for any sequence of complex numbers {X~} and any sequence of real

valued random variabl es {Y~ n > 11. Hence

EIA 1N
_A

2NM I
2 
~ ln~>M ~~ 

E(a~ (X ( t~~1))
2At .}~]

2 .

Since

j~l 
E(a~(X(t~~1))

2At
3 

-
~ / E{an(X(t)}2dt = T

~n (say),

___ ~~ .--. --.



10 7
as N -* ~~~, It is sufficient to prove that ~ < ~~. This follows from

remarks followi ng Lemma 3 of the appendix under assumption (A3).

Let

(3.7) WI~ = ~ / a~(X(t))d~(t).

Lemma 3.2. For every c > 0,

(3.8) u r n  P( sup IW I(e)-W T(+)I > c) = 0
6~0 (0— 41<6

for every T > 0.

Proof. In view of Lemma 3.1 , for any € > 0,

(3.9) P( sup IW T(e)_w T(4)l > c)
10— 41<6

= P( sup I ~ Wn (e~
r
~
ine _e•lTin 4)J >

10—4 1<6 ~~

P( sup 
~ (W ,1~ fe fl8

~e
1Tlfl4

I >

10— 41<6 n - ~
Let no be chosen so that

(3.10) ~~ IA~’~ < c2 4’~
3

n=n0

This is possible since 
~ 

< by Lemma 3 of the appendix.
n 1

Inequality (3.9) implies that

I
- ~~~~~~~~ -- ~~~~~~~~~ •_ - .  -—•—-

~~~~~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~.~~~~~~~~~~~~~~~~~~ -- ‘--
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P( sup 1W 1(0)’W1(4)I >• 10—4 1<6
no

P( sup 
~ IW n I th 1 0 4l >t )  +P( 

~ 
IW ,~I >

~~
- )

10— 41<6 n=—n o In I>n 0
n

X P(IW n I > 2~rn~& ~ 
+ 2

n~no+i 
P(PW~I > c~ )

(Here Cn 
= 

~2I7~ n n 0+1 
i/3)~1 )

2irn 6 2 n0
, 0~ r r n• ) L M + L  —

n—n + E0 n

(since E(Wn) = 0 and Var(Wn) =

= 

(2irn06) 2 
+ 

~~~ n=n0+i 
~~~~~ 

~

- 62_ C
n ~~ 

+
E

where Cn depends only on n . Choosing 6 such that
0 0

62 (_ 3 ’
~~

• C,.~ 
—

~~ < E  i.e. 0 < 6 <
0 c ~

• we have the inequality

P( su~ IW T( e) WT(4P)I > c) <
10— 41<6

for every 0 < 6 < 

~*—) ~ and for every T > 0. ThIs proves (3.8).no
Theorem 3.1. The family of stochastic processes (Z1(e) ,e 6}on

C[-l ,l] converge in distri bution to the Gaussian process with mean

zero an d covar ian ce func tion 

- - -•—-,•--—-— —.-• • a a . . - . •  ~~.•••, - -
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R(o1,o2) E [v( o 11X(0))v(o2,X(O)))a2

as I -‘
4. Strong consistency

Let us now consider the limiting process R1(0) defined by (2.9).

Any estima tor 0T which minimize s

I
(4.1) RT(o) /{f(o,X(t))-f(o0,X ( t ) ) }2dt

I
-2 f[f(e,X(t))-f(o0,X(t))]d~(t)0

is called a process least squares estimator of 0.

Let be the measure generated by the process X on C[O,T] when

o is the true parameter. From the general theory of diffusion processes,

the Radon-Nikodym derivative of M with respect to ~ exists and is‘ 1 0 00
given by

‘4 2’ d~ I• w-~
--- = exptf{f(e ,x(t))_f(eo,x(t))}d

~
(t)lie o

T
- ~ f {f(e~X(t))-f(e01X(t))}

2
dtJ

0

(cf. Gikhman and Skorokhocl (1972), p.90). Hence

dli
og~~— --~~~100

which proves that the process least squares estimator O
i is the same as

the maximum likelihood estimator 01 of e(cf. Basawa and Prakasa Rao (1979))
when the process X is observed over [O,T].
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Let
T

(4.3) 11(0) f [f(e ,X ( t ) ) — f ( e 0 X(t)) ) ’dt
0

and W* be a standard Wiener process. Since the solution of the stochastic

di fferential equation given in Section 2 is stationary ergodic by hypothesis,

it follows that + as . for 0 
~ 

o
~ 

by (A5) and the process IRT(o)}

can be identifi ed with the process {II( e )  + 2W*(T1(o))1. Furthermore

(4.4) + 2W*(T.~.(e)) a.s.

as 1 ÷ for any 0 00. Hence 0 and 00 are pairwise consistent. Note

that

(4.5) R1(o ) = IT(e) + IT ZT(e), 0 E® , 1 > 0

where ‘T~°~ 
is defined by (4.3) and Z1(e) is given by (3.1). Let

(4.6) Z~(e) = IT Z.~(e). -

Then

(4.7) 
~ ‘T~°~ ~- 1(0) a.s. as I ~~- by the ergodic theorem.

In order to study the strong consistency of the estimator o~
, we shal l

first obtain bounds on the modul us of coninuity of 11(0) and Z~( e) .

Lemma 4.1. Under the assumptions (Al)— (A5),

I
I’ (°) — ‘~~H < C1~ o-~ ( / J (x ( t ) ) ( 1+ I X ( t ) I ) d t  a.s.

T o

where C1 is a constant independent of 1, 0 and $.

Proof. Note that

T
IT(0) I1($) =

0

•(f(X(t),~)+f(X(t),o)—2f(X(t),o0) ldt

U ~~I  ~~~~~ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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and therefore

~ I° • l / J(X(t)).{L(9)+L(,)+2L(e0)}(l+IX(t)I}dt
I

< C~~o-~ ( f J(X(t){1+Ix (t)l}dt
0

Remark. Since E[J2(X(O)) < and E(X2(O)] < °‘, It follows that

E f J (X(0 ) )X(O ) ]  < and hence by the ergodlc theorem

T

~/ J(X(t)){l+IX(t)I}dt ~--~4 E [J (X ( O) ) {l+ I X( O ) I } ]  < as 1-. — .
0

Therefore

(4.8) 
~~~~~~~~~ 

C*Tje_4j a.s.

as I ÷ — for some constant C* > 0. In view of (4.7) and Leumia 4.1,

it follows that

_____ 2(4.9) 1 ~~--~~~‘- 1(e) E[f(e ,X(0))—f(o0,x(O))]

~ 
I.~.(e)

un i form ly in o € 0  as I -÷ ~~. Bu t I
~
(eo) = 0 and r! -r > 0 a.s.

for o $ o
~ 

by (A5). Hence, for any 6 > 0,

11(0)(4 .10) inf ~-.~4- ~ as I ~-
I 0e oI>6

for some x > 0 depending on 6.

Lemma 4.2. Under the assumptions (Al)— (A4), for any T~ > 0 and any

c - 0,

(4.11) P(sup sup 1Z~(e)( > c) C2 4
for some constant C2 > 0.

.-. ~~- - - - ~~~~~~~~~~~~ I

—— —‘ —~~~~~~~ . —-~~~~~ --——,. ~~ . _.~ . S- -— __~~~~ —~~~~ ‘•~~ S—--— 1~. ~~~~~~~~~~~~~~~~~~~~~
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Proof. Let h(e,x) and g(e,x) be defined as in Section 3 and

h(e ,x)  = ~ an (x)e~~
m0, o~~[—l ,l].

Let
T

= / an(x(t))d~(t)0

Since g(e,x) is a cubic polynomial In 0 wi th coefficients In x , it Is

easy to check, by Kolmogorov ’s inequality , that

I i
• (4.12) sup sup I f  g(e,X(t))d~(t)~ = 0 (To

2)
0 0<T<T0 0 p

using the fact that l e t < 1. On the other hand, for any c > 0,

I
(4.13) P(sup sup ~ 

{f  an(X(t))d~(t)}e~~
0

f > c)
o 0<I<T0 n 0

I
< P( sup 

~ I f  a~(X(t))d~(t)I > c)
0<T<T0 n 0

I

~ P( sup I f a~(X(t))d~(t)I >

~ O<I< I~~ 0

(where Ic~< c)

lo
<

~~~ 
-4 Var(f an(X(t))d~

(t))
• n cn 0

(by Kolmogorov ’s Inequality for martingales )
T0J.. f E(a (X(t)))2dt

n c ~~~0 n

~
= 
To ,

~~
‘ 1/3 3

~~ ‘LP~ 
)

C 

__________________________________________________ 
~~~~~~~~~~~~~~ - 

•---- -- --- --- - - - - -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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when 
~

. is chosen to be CM~~~
3 

(~ I~/3)
_1
. Note that N < ~~.

Hence relations (4.12) and (4.13) together prove that

I
P(sup sup lZ~(e)I > ~

) C2 -40 0<1<10 C

for some constant C2 > 0 independent of T~ and c.

Lemma 4.3. For any -
~
‘ > 1/2, there exists H > 0 such that

1Z1(e)I(4.14) lim sup sup l’2 < H a.s.
T + c o  ~ T’ (log T)’r —

Proof. Let

A = [ sup sup IZ (e)I > W 2fl/2~Y) n > 1.
n—i n ~• 2 <1<2

Observe that Lemma 4.2 gives the Inequality

P(A~) = P[ 5U~ sup 1Z1(e)I > H’2~
’2n~]

• 0<1<2n-l ~

(by stationarity of the process X(t))

_ _ _ _ _ _  — C 1
- 

~~~~~~~~~~

Hence ~ P(A,~) <~~~ which Impl i es that P(An occurs infinitely often) * 0n*l
by Borel-Cantelli Lemma . Therefore sup IZ1(e)J~. H’ ~~~~ for all

< I < except for finitel y many n with probability one and hence

u r n  sup sup 1Z1( e ) l  < H 11/2(109 1)T a.s.
0

for sui table H > 0 depending on y.

Theorem 4.1. Under the assumptions (Al )—(A5),

0
1

4 -0
0 

a.s. as T~~- oo -

L ~.~:T:I~
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Proof. Note that

R1(e) = I1(e) + Z~(o)

and RT(oo) 0. Furthermore, for any 6 > 0, there exists A > 0 depend-

ing on 6 such that

lnf 1i(o) > T~ a.s. as I
l 0 O ~(>6

by (4.10) and with probability one, for any y > ~~, there exists H > 0

depending on y such that

sup pZ*(e)p < H T~
”2(log T)’~

’ a .s.I

for sufficiently large T. Hence

inf R1(e) > x~T > 0 a.s.  as T +

I 
- 10_ e o I>6

for some A* > 0 depending on 6 and y. Since 01 minimIzes R1(o) and

R1(e0) = 0, it follows that I0f0Q I < 6 a.s. as 1 -. °‘. Hence 01 4- 00 a.s.

as 1

5. Asymptotic normality of the estimator

In addition to the conditions (Al )-(A5) assumed in Section 2, let us

suppose that there exists a neighbourhood V0 of 00 such that0
(A6) lf ~

1
~(O ,x ) I < M(0)(l+IxI), 0EV0 — 0

0

and

sup (M(0): 0EV 0 } * N <

We shall now obtain the asymptotic distribution of 0T under the con-

ditions (A1 )-(A6). Since 0 Is strongly consistent, 0 EV0 with prob-
— 

I 1
ability one for large T. Expanding f(0,x) in a neighbourhood of 00, we

have

~~~III I1~~_ • ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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f(0,x) = f(00,X) + (0—e 0)f(~,x)

where 
~-°~I ~~. 

(o-e~ 
and hence

T
(5.1) ‘~-~°) / {f(0,X(t))—f(o ,X(t))}2dt

0 0

2 T ‘1’ 2(o-o ) / {f’ ‘(e ,X(t))j dt

+ (e_e o)
2 f [{f~~)(e,X(t))}2_{f~1)(e0,x(t)))2]dt.o

Observe that

(5.2) I {f~ ~(e,x)1 2-(f~ 
)(e0,x)}

2
1

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

< 2 MIo-o0I~ c(x)(1+IxJ)

by assumptions (A3) and (A6). Therefore

1 2(5.3) I~T(°) 
- (e_e

o)
2 / {f~1~(001X(t))} dtj0

< 2 Mje-e0l
2
~~ j c(x(t))(l+Ix(t)pdt.

Let us write e_o~ = r~~
’2p. Then it follows that

(5.4) sup II I(e)_*
2I~~ff~

l)(e01x(t)) 2dtt < M 1A~~ T
_l
~
a

I 4f<A 1 0

for some constant M1 > 0 by the erogodic theorem since

E(c(x(O))(1+jX(o)~) < ~~.

On the other hand, let

v1(~,x) = T 2[f(oO+*T
2,x)~f(eO,x)_.f

u/2f~
1)(o0,x)] 

- - -

~~~~~ ITITrTI..T ~~~~~ ~~~~ ~~~~~
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for 
~ 

< A T. Then v1(qi ,x) Is differentiable wi th respect to !~ and

the derivative v~~-~(~,,x) satisfies

v~.~~(4,x)_4
1)(c,x) = f~~ (eo+*I

_h/2 ,x)_ f1~
)(eø+cT~~

I’2,x)

and hence

(5.5) Iv~~ (4 ,x)-v~- ’~(c , x ) I  < c(x)T~~
l2

I 4_CI
a

by (A3) for all p, ~in [_A T)AT]. It can be shown that there exists a

polynomial in i~ with coefficients in x viz

(5.6) g1(p, x) = v1(A11x)P1(~ -) + ATv~
)
~
(AI,x)P2(~

—)

+ v1(-A 1,x)P3(~ -) + ATv~
.l)(_A T,x)P4(~

L)

on [-A T,AT] such that

(5.7) g~(A 1Px) = vT(AT,x),gI
(_A TIx) = vT(~

AT,x),

(5.8) g~.
1
~ (A1,x) = v~~~(A1,x) and 41)(_A T,x) =

where P1, 1 < I < 4 are polynomials In ~~~~
— with constant coeffiecients.
I

Observing that VT(O,x) = v1 (0,x) = 0, it is easy to check that

(5.9) ~g~.l)(A 1,x)J < c(x)A T~~
’2

(5.10) Ig~
1
~(-A1,x ) I < c(x)A T~~

2

(5.11) 1g (A1,x)l < c(x)A~
’
~
’T~~

’2 ,

and

(5.12) g1(-A 1,x)~ < c(x)A~~
aT~

h1
~
2 

.

- Furthermore there exists a constant 142 
> 0 independent of I such that

(5.13) (4l)(4,,x)_4l) (r ,x)J

I
• _ -  - — 

-—————— -~~
-- - —-~- 
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for all ~~ € [—A 1,A1]. But

A~~
1
I*- cI < 2 I_U~q,_~Jcs

since 
~~~ ~~ . 2A1

. Hence there exists a constant 143 > 0 independent of

I such that

(5.14) ~~~~~~~~~~~~~~~ < M 3c(x)1
1’21*-CIa

for all p, ~E[-A11A1]. Renonnalizing, we get that

(5.15) I4l)(~*,x)_4
1)(C*,x)I <

for all ~~~~~~~~ E C— 1 ,1}. Let

(5.16) h~(q,*,x) =

Then there exists a constant > 0 independent of I such that

(5.17) J h ( ~*,x)~41)(c*,x)l <

for all ~~~~ E [-1 ,l] by relations (5.5) and (5.15). Now, applying

Fourier series methods as in Lemma 4.2, it can be shown that for every

C > 0,

I M T
P C sup 

~f 
v1(~p*,X(t))d~(t)J > c) < —s- A~’T~~E[c

2(X(O)]
f ip  (<1 0 c

and hence

T
(5.18) P( sup f {f(e -hi~I~~

”2,X(t))—f(e ,X(t))

— *T
112f~~ (00 X(t)))d~(t)I > C)

N<4 A~~T~~E[c
2(X(O)]

Let us choose A1 = log I. Since

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ JII~



- - -

~ / {f~~~(e0,X(t))}2dt 1(e0) E[f~’~(00,X(0))]
2

as I ÷ by the ergodic theorem and

T
— / f’ ‘(o0,X(t))d~(t) —~~~~-+ N(0,a~I(O0)) as I -~

I T o °
by the central limit theorem for stochastic integrals (cf. Basawa and

Prakasa Rao (1979)), relations(5.4) and (5.18) imply that the asymptotic

distribution of 01 which minimizes R1(e) given by (2.9) can be obtained

from the process

2(5.19) ij~ I(eo) - 24Z, <

where Z is normal with mean 0 and variance 21(0 ) Since

= Z/I(e0)

minImizes (5.16), it follows that

(5.20) T1a12(0T~eo) ~~~ N(0,ci
2/1(00)).

This result is obtained under stronger conditions in Prakasa Rao

(1979b) for the least squares estimator 
~~~ 

defined at the beginning

of Section 2.

• 
• Appendix

Lemm a 1 Suppose •(u) is square integrable on [-1 ,1] and •(•) is

L1p~cfl1tZ of order a i.e., then exists c > 0 such that

(1) ,(u)-4(v)l < clu_ v i
a

Let •(u) = ~ a~e~~
n1u. Then for any 0 < -y < a,

(2) 
~Ia n l 2n2 < K1 (cz,y)c

2 
.

— —_- — • - - - - . - - - -- ,. ~~~~~,••- —-. ~~~~••.•—• .• — - ,~——-~•• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. It Is easy to check that

1
(3) f I4(u+h)—4 (u—h)I2du = 4 

~ ta,~t~ sln
2irnh.

—1 n

Since ~ is Lipschltz satisfying (1), it follows that

(4) 4 ~ (a~ J
2 sin 2wnh < 22a+lC2h2a

for all h ([0,1]. Let h = 2— k and 2k—2 < ,~ < ak—i it is clear that

sin2~nh > and relation (4) shows that

2~~
1

(5) (a ,~
2 

.~~ 
22a~

22_2ka

for any k > 2 and hence for any 0 < y < a,

2
k_ I

(6) Ia~ I
2n2 < 22a~

22(2y_2a)k -

n=2~~
2+i

Summing over all  k > 2, we obtain that

(7) 
~~ ta~I 2n~ <

Hence there exists a constant K1 (a,y) > 0 such that

(8) 
~~ Ia~ I~n~ < K1 (a,y)c

2

where c is the Lipschitzian constant given by (1).

Remark. A slight variation of the above resul t is due to Szasz (1922).

The proof given above is the same as in Szasz (1922) and is given here

for completeness.

Lemma 2. Suppose h(u) i~ square integrable on [—1 ,1] with h(_l )sh(1).0

and h’(.) exists and Is Lipschitztan of order a i .e., there exists

c > 0  such that

~

-——— - -- - --- rn - -~~~~~ . - -~
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(9) Ih’ (u)—~’(v)I ~ c !u_v Ia .

Let h(u) = E ane~mn IJ . Then , for any 0 < y < a ,

(10) 
~~ Ia~I

2n2~
2
~ < K2(ct ,y)c

2

(11) 
~ Ia~ 

2/3 
< K3(a ,y)c

2 .

Proof. Since h’ ( u )  = ~ na~e”~~
1 
, inequality (10) follows from

Lemma 1. Observe that

~ !a~I~
’3 

< 
~~~~~~~~~~~~~~~~~~~~~~~~

<

= K3(a,y)c
2. .

Lemma 3. Let h(0,x) = ~ a~(x ) e~fh’~O and suppose there exists a > 0

such that

Ih~~~(e ,x)—h~~~(4,x)I 
< c(x)~o—~~

for all e, ~,in [-1 ,1] where f~9~Ienotes the partial derivative of f with

respect to 0. Let {X(t), tE [0,T]} be a stochastic process such that

E[h(e,X ( t)]2

for every t E[0,I]. Then, for any y < a, there exists a positive constant

K4(a,y) such that

~ 4 / E[a~(X(t))]dt~~
’3 
~ 

K4(a~v) { E(c2(X(t))dt }1’3.

£ 
_ _ _ _ _ _  j— - - - - : - - - ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Proof. By Lemma 2, it follows that

fla~(X(t))(
2n2’2 < K2(cz,y)c

2(X(t)) a.s.

for every tE [O,T). Hence

~ E[a~(X(t))]n
2
~
2’
~ K2(a,y)E[c

2(X(t))]

for all tE[O ,T]. Let
T

= 
~ / E[a~(X ( t)))dt.

The inequality proved above gives the relation

~ 
+ 

< K~(a,y) ~ 
f E[c (X( t))]dt

n 0
and hence

~~ ~~ . (Ilifl
n2+2Y)h/3(~n~~~~~)

2
~
/3

< 4/3( )(~~~(l+Y))2/3~ 
~ J E(c2(X(t))]dt)~~

3

T
~ K4 (ct~ v){  ~r f  E[C2(x(~))]~~}is~3

0

Remark. Analgous argument proves that 
-

~~~~~~~~~~~~~~~~~~~~~
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1. Introduction

Recently there is a growing interest in the study of Inference

• problems for stochastic processes both continuous and discrete time

in view of the large number of applications to engineering problems .

It has been found that the class of diffusion processes is amenable

for statistical analysis. A survey of the recent work In this area

is given in Basawa and Prakasa Rao (1979). Further work on asymptotic

theory of maximum likel i hood and Bayes estimators for parameters of

diffusion processes is discussed in Prakasa Rao (1979a).

Dorogovchev (1976) studIed weak consistency of least square

estimators for parameters of diffusion processes which are solutions

of non-linear stochastic differential equations. Asymptotic normality

and asymptotic effiency of these estimators is investigated in Prakasa

Rao (l979b). Our aim in this paper is to study limiting properties of

a process related to least squares estimator and hence to discuss the

asymptotic properties of an estimator derived from the limiting process.

We study strong consistency and asymptotic normality of this estimator.
- Our approach here Is entirely different from that of Dorogovchev (1976)

and Prakasa Rao (1979b). We believe that our techniques for study of

families of stochastic integrals Is new and Is of independent interest.

I

L. 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _  _ _ _ _ _
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2. Study of process related to least squares estimator

Let (X(t),t > O} be a real-valued stationary ergodic process

satisfying the stochastic differential equation

• dX(t) = f(00,X(t))dt + d~(t), X (O) X0, t > 0

where ~(t) is a Wiener process wi th mean zero and variance a
2t, a2

being unknown and E[X~] ~~~. Suppose f(6,x) is a known real—valued

function continuous on 0 x R where € Is a closed interval on the real

line and is unknown . Wi thout loss of generality , assume that

e= [-1 ,1].

Suppose the process {X(t), 0 < t < T} is observed at time points

tk~ 
k = 0,1 ,.. .,n—l with t0 = 0 and t,~ = 1. Let

• n-i [X(t ) - X(t ) - f(e,X(t ))~t ~
2

k=O k

where Atk = tk41
_t
k~ 

0 < k n-i . An estimator e which minimizes

QT(O) over 0 E 6 is call:d a least squares estimator of e. Assume that

such an estimator exists . Note that If efl,T minimizes Q~(e), then it

minimizes Q~
(O) - Q~(e0).

We shall first study the limiting properties of the process

fQ~(o) - Q~(o 0), oE O J as the norm of division max It k+l
_t
kl tends

l<k<n
to zero. Let = X(tk+l ) - X(tk) and = 

~
(tk+l) — 

~
(tk),O < k < n-i .

For any fixed e,



3

Q~(e)-Q~(e0)

= ~ 

~f
- 

~ ~
-¼- [

~ X k
_ f (o o,X ( t k ) )A t k )2

tk+l
= ~ ~~~~~

— {f f(eo,X(t))dt+
~~k_f(e ,X(t k ))

~
tk } 2

k— i

tk+J
- 

~ 
{f f(eo,X(t))dt+~~k

_f(eo,X(tk))Atk}
2

tk

tk+l
= ~ ~1~— if [f(o o~X(t))_f(e~X(tk))]dt+~~k}

2
k k t k

tk+l
- 

~ 
_d

~
— if [f(eO,X(t))_f(eO,X (tk))]dt+~~k}

2
k k t k

It is easy to check that

(2.0) Q~(e)-Q~(o 0)

— 
~ 

[f(e o,X(tk))_f(e,X(tk))]2
~
tk

+ 2 
~ 

[f( e O~
X(tk

)_ f(o
~
X(tk)]A~k

tk+l
+ 2 

~ 
{f(eOIX(tk)_f(e,X(tk))} tk 

{f(eo,X(t))—f(eo,X(tk))}dt

= ‘in + 212n + 213

Assume that the regularity condition on f(x,e) stated at the end of

this section are satIsfIed. Since f(e x) Is continuous in x and the

__________________________________  _____1• - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• • • . • • •

~
• 

~~~~~~~~

• ~~~~~~~~-
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process X has continuous sample paths with probability one, it follows

that

(2.1) ‘ln •~~~~ / (f(e0,X(t))-f(e,X( t))]2dt

as 0. Assumption (A2) implies that

(2.2) ‘2n ~~~ i rf(00,X(t))-f(e,x(t))]dF(t)

as ÷ 0 in view of stationarity of the process X where the last in-

tegral is the Ito-stochastic Integral .

Let us now estimate l
~fl • In view of assumption (A4)-, it can be

checked that
tk+i

(2.3) ~J ~
f(0oIX(t))_f(0o,X(tk)))dt~tk

tk+l
L(e o)f i X (t)_X(tk)Idttk

tk+1 t
• < L(eo)f {l

~
(t)_

~
(tk)~+f 

f(s0,X(s))jds}dt• tk tk

tk+l tk+l t
L(e o)f k(t)_~

(tk)Idt+L
2(e O)f [ f{l+tX(s) (}ds] dt

tk tk tk

2 t
L(eo)~

tk sup 
~
(t)—

~
(tk))+1 (eo)1~

tk sup f {l+IX(s)I}ds .
tk<t<tk÷1 tk<t<tk+i tk

L(eo)~
tk sup k(t)-

~
(tk)I+L

2(eo)~t~ sup {l+IX (t)I}
tk<t<tk÷l tk<t<tk+1

for 0 < k n-i . Using assumption (A4) again , we obtain the following

inequality :

_ -~~~~~~ —-~~~~~~~~~~~ -~~~— -
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(2.4) I
~fl < 

~ 
J(X ( tk ) ) ( L(e O ) .

~ tk sup
tk<t<tk+l

+ L2(e0)t~t~ sup {1+jX (t)I}flo—001 .tk<t<tk+l

Since J(~) Is continuous and XC .) has continuous sample paths al-

most surely, it follows that there exists a constant C*(o0) depending

on T only such that

(2.5) 
~~ 

C*(eo)(~~tk
. sup t~

(t)_
~

(t k fl + 1~t~}I e—e~

Since 0€ €  compact, it follows that

I3fl < C(e o){~~tk(l+~tk)(2~tk log i/~tk) + ~ ~~~ a.s.

whenever is sufficiently small by the law of iterated logarithm for

Brownian increments (Cf. McKean (1969), p.14). Therefore

(2.6) I3~ = O(~ ~~~~ log 
1/2 l IM k ) a.s.

k

uniformly in eE€ . Furthermore the convergence in (2.1) Is uniform in

O E O since

I f(oo,X(t))-f(o,X(t))1
2 

< lo 0-el
2
~J
2(X( t )) < C J2(x(t))

• and J(X(t)) is integrabie pathwise on EO,T] by (A4). Here we have used

the fact that 6 is compact. Hence

(2.7) tin / [f(00,X(t)-f(e,x(t))2dt + o(l) a.s.

uni formly in a as 0. We shall discuss uniform convergence of

In the next section.

Relations (2.0), (2.6) and (2.7) show that, for any fixed T,

_ _ _ _

• •• ,-— ••• I
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~~
_ ——- -•-— •• ~-
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~~ 
VI,

T 1 2(2.8) Qn(0)_ Qn (O o ) = 
/ 

Ef(e0,X(t))-f(e,X(t))) dt + 12n40(1) a.s.0

uniformly in 0E6 compact as -
~~ 0 where ‘2n satisfies relation (2.2).

Let us consider the limiting process 

2(2.9) RT(o) = 
/ 
[f(00,X(t)) - f(e,X(t))] dt

0

T
+ 2 

/ 
[f(e 0, X ( t ) )  - f(e,X ( t)))d~(t)0

I I
= j V2~~,~~t~~jt - 2 f v(e,X(t))d~(t)0 0

where

(2.10) v(0,x) = f(o ,x) — f(e0,x).

We study the limiting properties of the process {RT(e)
~ 

a EO} in

the next section.

Assumptions

(Al) f(o,x) is continuous in (e,x) and di fferentiable with respect to

0. Denote the first partial derivative of f wi th respect to a by

f(1)(O x) and the derivative evaluated at a0 by

(A2 ) EEf~~ (o 0,X(0))]2 <

• (A3) f~~ (o ,x) is Lipschitzian in e for each x i.e., there exists a > 0

such that

< c(x)lo-,~ , x E R ,e,~ Ee

and

E[c2( X (O))] < ~~~.

(A4) f(0,x) satisfies the following conditions:



•-~
_ _.
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(1) )f(e ,x)) < L(e)(1+)xl) , a E0 , X E  R ; sup{L(0): oEOl

(Ii ) j f(e ,x)—f(o ,y)I < L( e )~x—y~, OEG , x ,y, ER.

(iii) (f(o ,x)— f(~,x)l < J(x)~e—+ l , 0 ,4~E8 , x E R

where J(.) is continuous and E[J2(X ( O))) < 
~~~.

(A5) 1(o) E[f(e,X(O))—f(o0,X ( O))2 > 0 for a $ 00.

Remark: Since E[X2(O)) < ~~, assumption A4(i) Implies that

E[f(e ,X(O))]2 <

for all O E€

3. Study of a limiting process related to least squares estimator

Let us now study the properties of the limiting process

(3.1) Z1(O)E—1-. f v(e,X(t))d~(t)

as a process in the parameter eE6 = [-1 ,1) as T -÷ ~~~. From the central

limit theorem for stochastic integrals (cf. Basawa and Prakasa Rao (1979)),

it can be shown that

I 22
—

~~~ f v (o ,X(t))d~(t) —~ N(O,E[v(0,X( 0))] a )

since the process X is stationary ergodic. In general , finite dimension-

al distributions of the process {Z1(e), eEO} converge to the finite

dimensional distributions of the Gaussian process (1(e), 0 Eel with mean

zero and covariance function

R(a 1,e2) — E[v(01,X( 0))v( e2,X(O))]a2.

We shall now prove the weak convergence of the process (Zi(e),aE€}

on C(-l ,i) under uniform norm . It Is suffIcient to prove that

(3.2) u r n  liii p( SUP )21(o)-Z1(,)I > 0.
T-,m 640 lo— .k~

• •.• _ • • _ _ • • _ _ •~~~~~

~~~~~

— ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
___  ~~~~~~~~~~~ ___
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Since v(o,x) is differentiable with respect to 0 on [-1 ,1] by

assumption (Al ),it is easy to see that there exists a cubic polynomial

• g(o,x) in a such that

g(— 1 ,x) v(—i ,x) g(l ,x) = v(l ,x)

and

g(1)(~ix ) = v~~~(-l ,x), g(i)(1X ) = v~~~(l ,x).

Let

h (o ,x) = v( o ,x) -g(e ,x) .
Then h(—1 ,x) = h(1 ,x) = O ,h~ 1k— 1 ,x )  =h~

1kl ,x ) = 0. Now
I I

(3. 3) Z1(o ) = ~~ / h(o ,x(t))d~(t) + ~ j  g(e ,X(t))d~(t).
~~~ o

• Since g(o,x) is a cubic polynomial in 0 with coefficients In x which are

• linear functions of v(-l ,x), v(I ,x),v~
1)(_1 ,x) and v~~(1 ,x), it is easy

to check the uniform equi-continuity condition of type (3.2) for

I
-
~
- / g(o,X(t))d~(t).

Let us now consider the process

(3.4) W T (o) = — f h(o,X(t))d~(t).

Let the Fourier expansion for h(O ,x) in L2([— 1 ,l]) be given by

(3.5) h(0 ,x) = E a~(x)e
’
~
1”8 

, xER.

Lemma 3.1

I I
(3.6) f h(o ,x (t ) ) d~(t) = ~ { f a~(X ( t)) d~(t)}e’~’~

in the sens: of convergence in~qua rat1c mean.

— — ___________________ — • _ — _ 
~~~

•—— - — _ —• ••_ _ _ — — __________________________———_ ••—-— _—
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Proof An approximating sum in L2-norm for

I
• f h ( e , X ( t ) ) d ~ ( t )

0

is
N

A 11, = ~ h(a ,X(t. 1))M .

and an approximating sum in L2—nor m for ~~ 
{ f an(X(t))d~(t)}e~”~° is

A = 

)n~<M 
e~
”’°(Z a~(X(t~_1 )~~~)

It is sufficient to prove that E IA 1N
_A

2NM I
2 

~- 0 as N -‘- and H -~ ~~~. Now

EIA 1N-A 2NMI
2 

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= El I ~ a~ ( X ( t . i))e fl0
~~~.t

2

~=l ln i>M

N
< [ ~ { E (~~ ~~~~~~~~~~~~~~~~~~~lnI>M j=1

by the elementary inequality

EI~ 
)
~n~(n I

2 
~.

for any sequence of complex numbers (X~} and any sequence of real

• valued random variabl es 
~ n ’ n > U. Hence

EIA IN
_A
2NM (

2 

n~> M j~l 
E(a~(X(t. 1 ))2~t.}k~

2 
.

Since

~~ 
E(a~ (X ( t~~1 ))2~t~ / E(a~(X(t)}

2dt = Iu~ (say),

- -~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~~~
—--



as N -
~ ~~, It is sufficient to prove that 

~~ 
< 

~~~. This follows from

remarks followi ng Lemma 3 of the appendi x under assumption (A3).
Let

(3.7) Wn = ~ j  a~(X ( t)) d~(t).

Lemma 3.2. For every c > 0,

(3.8) u r n  P( SUP lW I(8) wT(~ )I > ~
) = 0

6+0 l6— , I<6
for every I > 0.

Proo f. In vie w of Lemm a 3.1, for any ~ > 0 ,
(3.9) PC sup lW 1( a ) — w1(

~)l >

I e — ~l<6

= P( sup I ~ Wn (e 1
~
8_ew

~~~)I > c)l o — ~l<a n -°’

< P( SUP ~ ~~~ le ‘~~—e~~” f >i o — q~l<o n=—~
Let no be chosen so that

(3.10) ~
n

This Is possible since ~ by Lemma 3 of the appendix.
n=i

Inequality (3.9) implies that

L~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _



_ _ _ _ _ _ _ _ _ _  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

PC sup IW T(0)_W T(~ )J > e)
le— , l<o

no
~ 
P( SUp 

~ lw ~InIo-,l > ~~~ 
) + P( 

~ IW ~l > 
~~ 

)
jO — , l<6 ~~—n0 lnJ>n 0

n

n=~ 
P( IW ~I > 2irn0ó ~ + 2

n~no+i 
P(IW n l > C~~ )

(Here cn = 

n..~0+1 
~i/3)

_1
)

2 n2nn~6 0 ii
, u~~~ r r fl• • ) L 1 J ~~~~ L

• n— n-n + ~0 n

(since E(Wn) = 0 and Var (W n) =

2 n(2wn06) 0 8
= 2 ~ ~~~~~~~~c n—i e n—n 0+l

— ~
2 

+ 8 ,~~3
~

Cn ~~ C

where C,.~ depends only on n . Choosing 6 such that
0 0

2 ~ 3 ’
~~

• Cn ~~ < c  i.e. 0 < 6 <  f~— 2

0 e ~

• we have the inequality

P( sup 1W 1( o ) — W 1(s) l > c) 12c

for every 0 < 6 < (
~

—) ~ and for every T > 0. This proves (3.8).

Theorem 3.1. The family of stochastic processes {Z1(o) , 0E6 } on

C [—l ,l] converge In distribution to the GaussIan process with mean

zero and covariance function

• _
~~
__ _ •_ •~~~~~~±_ •_ _ ~~~~~~~~~~ _ _ _ _ _ _
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R(o 1,o 2) = E[v(01,X( O ))v( e 21X(O))]0
2

as T -~ u. .
4. Strong consistency

Let us now consider the l imiting process R1(0) defined by (2.9).

Any estimator which minimize s

(4.1) R1(e)

I
-2

0

is called a process least squares estimator of 8.

Let be the measure generated by the process X on C[O,T] when

o is the true parameter. From the general theory of di ffusion processes,

the Radon-Nikodym derivative of ~ with respect to ~ exists and Is8 00
given by

dp T“. / ~—Q— = exptf{f(e ,x(t))-f(oo,x(t))}d
~
(t)

• 
0

- 
~~

- 
f 
{f(e3X (t))-f(o0~X(t))}

2
dtJ

0

(cf. Gikhman and Skorokhod (1972), p.90). Hence

dM
1 0 —log - 

~
2•”T’°00

which proves that the process least squares estimator is the same as

the maximum likelih ood estimator 0T of e(cf. Basawa and Prakasa Rao (1979))

when the process X is observed over [0,1). 

- •  • -•-~~~— • - - -  - _
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Let
I

(4.3) / [f(e,X(t))-f(e0,X(t)))’dt
0

and W* be a standard Wiener process. Since the solution of the stochastic

differential equation given in Section 2 Is stationary ergodlc by hypothesis,

it follows that I
~
(o) + a.s. for a 

~ 
00 by (A5) and the process (R1(o)}

can be identifI ed with the process (11(0) + 2W*(T1(o))}. Furthermore

• (4.4) 1T~°~ 
+ 2W*(T1(e)) a.s.

as 1 + for any 8 = 00. Hence 8 and 0
0 
are pairwise consistent. Note

• that

(4.5) R1(o) = I
~

(o) + fi Z.~.(e) ,  0 , I > 0

where IT(e) is defined by (4.3) and ZT(e) Is given by (3.1). Let

(4.6) Zf(e) — /Y Z . .( a ) .

Then

(4.7) 
~~~ 

i.~.(e) -. 1(0) a .s. as 1 -~ by the ergodic theorem.

In order to study the strong consistency of the estimator 01, we shal l

first obtain bounds on the modulus of coninuity of IT(e) and Zf(o).

Lemma 4.1. Under the assumptions (Al)-(A5),

I’T ( 0 )— I T($ ) I < C1 I 0 4 ~ / J ( X ( t ) ) ( l + I X ( t ) l ) d t  a.s.
0

where C1 Is a constant independent of 1, 0 and •.

Proof. Note that

= J{f(X(t),o)-f(X(t),s)}~

.{f(X(t),~)+f(X(t),o)..2f(X(t),o0) Idt

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ - • ~~~~~~~~~~~~~~~ ~ - ~~~~~~~~~~~~~~~~~~~~~~ 
_ - --
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and therefore

Io— . I / J(X(t)).{L(e)+L(.)+21(00)}{l+Ix(t)l}dt

I
< C~ e—~j f J(X (t ) i l+jX(t) I}dt

0

Remark. Since E[32(X(0)3 < and E[X2(O)) < 
~~, It follows that

E[J(X(O))X(O)] < and hence by the ergodic theorem

T
~~~ / 

J ( X ( t ) ) { l + I X ( t ) l } d t  ~ -~~ 4 E[J(X(O)){l+Ix(o)l}] < as 1-.
0

Therefore

(4.8) II T(0)_I T(+)J ~ C*T~o_q~ a.s.

as 1 -~~ ~ for some constant C~ > 0. In view of (4.7) and Lemma 4.1,

it follows that
11(0) 2• (4.9) 

~~~~~~~~ ‘ 1(e) E[f(0,X(O))—f(00,X(0))]

ii IT(e)
uniformly in G E e as I -~ ~~. But IT(e O) = 0 and y

~ 
> 0 a.s.

for o $ 00 by (A5). Hence, for any 6 > 0,

1 (a)
(4.10) inf T x as T -~~

10_ O ol>6

for some A > 0 dependIng on 6.

Lemma 4.2. Under the assumptions (Al)-(A4), for any T0 > 0 and any

L 0,
I

(4.11) P(sup SUp lZ~(e)I > 
~

) < C2 —~0 0<T.T0

for some constant C2 > 0.
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Proof. Let h(0,x) and g(e x) be defined as in Section 3 and

h(o,x) = ~ an(x)e
1TTh0, OE [- l ,l].

Let
I

= / a (x( t)) d~(t)n

Since g(e,x) is a cubic polynomial in a wi th coefficients in x , it is

easy to check, by Kolmogorov ’s inequality , that

I 1

• (4.12) sup SUP f f g(o,X(t))d~(t)I = 
~ (Ic)

0 O:~•T~TQ 0 p

using the fact that t e l < 1. On the other hand, for any c > 0,

• I• (4.13) P(sup sup I ~ if  a~(X(t))d~(t)}e~
10

l > c )
• 0 0<TcT0 n 0

• I
< PC sup 

~ If an (X ( t)) d
~
(t)I >

• O<T<To fl 0

I
~ PC sup ~f an (X ( t)) d

~
(t)I > C,)n 0<I<I~ 0

(w here 
~

Cn
< C )

T0
<

~~~ 
-4 Var(f a~(X(t))d~(t))

• fl C~ 0

(by Kolmogorov ’s inequality for martingales)
T0

~~ 

—

~~~ f E(a (X( t) ) ) 2dt
~ 

n
n

ii
•1• V
‘ 0 L 2n en

_ bo ,~~l/3 3
• — 

~ ~~~ 
)

C

t 

_____  ______________________________ _______________________________________ - 

—-~~~~~~~~~~~~~~~~ ~:z1 ~~~~~~~~~~~~~
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when Is chosen to be £,4~ ”~ (
~ i~ ,

”3 )
1
. Note that ~ ‘

Hence relations (4.12) and (4.13) together prove that

P(sup p )Z~(0)l > e) -~ C2 4 .

for some constant C2 > 0 independent of T0 and e.

Lemma 4.3. For any y > 1/2, there exists H ‘ 0 such that

IZ~
(e) l(4.14) u r n  sup sup l’2 < H a.s.

~ I’ (log T~
’

Proof. Let

A = [ sup sup fZ (8)1 H’ 2n/2~r3, ,~ > 1.• n— i n ~ I —

• 2 <1<2

Observe that Lemma 4.2 gIves the Inequality

P(A~) = P[ sup sup 1Z1(e)l > H12
th1’2nY]

a

(by stati onari ty of the process X(t))

C2 n
~ C 1

H’ 22~n~~ 
-

Hence 
n~1 

P(A~) <~~~ which impl ies that P(A~ occurs Infinitely often) = 0

by Borel-Cantelll Lemma . Therefore sup IZ1(o)l~. H’ ~~~~~ for all
8

2n l  
~ < 2” except for finitely many n wi th probability one and hence

lim SU~ Sup 121(0)1 H T~
’2(iog T)~T~~ =

for suitable H > 0 depending on y.

Theorem 4.1. Under the assumptions (A1 )— (A5),

80 a.s. as I

- - --

_  

•
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Proof. Note that

R1(o) = IT(s) + Z~(o)

and R1(e0) = 0. Furthermore, for any 6 > 0, there exists A > 0 depend-

Ing on 6 such that

inf 11(0) > TA a.s. as 1
• J O O o j >6

by (4.10) and with probability one, for any y > ~~, there exists H > 0

depending on y such that

SUP IZ~(o) l < H 11/2(109 T)T

for sufficiently large I. Hence

lnf R1(e) > x~T > 0 a.s. as T + o~I0_ 0oI~
6 —

for some A* > 0 depending on 6 and y. Since minimizes RT(0) and

R1(00) = 0, It follows that (O~.-0~1 < 6 a.s. as 1 + ~~. Hence o~. ~ Oo a.s.
asT+.o .

5. Asymptotic normality of the estimator

In additi on to the conditions (A1 )-(A5) assumed in Section 2, let us

suppose that there exists a neighbourhood V of such that00
(A6) 1f~~ (e ,~)1 M(o)(l+~x (), 0EV0 00
and

sup {M(e): OEV e } M < ~~.

0
We shall now obtain the asymptotic distribution of under the con-

ditlons (Al )-(A6). Since is strongly consistent, 01EV0 with prob-

ability one for large T. Expanding f(o,x) in a neighbourhood of Do~ 
we

have 
•

~ •II±I~. TZ~~ • :•
•
~~~~~~~~~~~~

• • •
~~~~
-

~~~~~~~~~~~~~ ~~IIli ~~~~
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f(0,x) = f(0 01X )  + ( 0 ø
0
)f(~~,x)

where I o-o
~I ~~. l 0—°~I and hence

I
(5.1) 1 (e) / {f(e,x(t))—f(o .X(t))J2dtT o 0

= (o_o
o)
2 

/ {f
(l)(00,X( t))J2dt

+ ~~~~~ J [:~~)(~,x(t))}2~{f~l)(e0,x(t))}2]dt. —

Observe that

(5.2) I{f~~ (e ,x)}2_ {f~
1)(e0,x)}2l

= If~~(e,x)_f~
1)(oO, x )IIf )(~,x)+f~

1)(e0,x)g

< 2 Mfe-e0I~ c(x)(l+lxj)

by assumptions (A3) and (A6). Therefore

T ,~~~(5.3) l1T(°) — (oe o)
2 
/ {f

~
1’(e0,X(t ) ) } 2dt~0

I
2 Mje—e 0~

2
~~ / c(X(t))(l+Ix(t)I)dt.

0

Let us wrIte 0~ 0~ = I 1”2p. Then it follows that

(5.4) Sup I1 T(0)*Tf{f~~
)(0o,X(t))}dt I ~.M141.aT

_ l_a
• (41<A 1 0

for some constant M1 > 0 by the erogodic theorem since

E(c(x(0))(1+tx(o)I) < ~~•

On the other hand , let

v1(p,x) Tl/2[f(o o+*T
1a
~
2,x)_ f(oO,x)..*T.h/2f~

1) (e0,x)]
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for 
~~ 

< A1. Then v1(q~,x) is differentiable with respect to q~ and

the derivative 41)(~,x) Satisfies

and hence

(5.5) Iv~
1)(~,x)_4~~(c,x)I ~~~~~~~~~~~~~

by (A3) for all ~p, r~in 
[_A T,AT]. It can be shown that there exists a

polynomial in 
~
p wi th coefficients In x viz

(5.6) g
1

(~~ ,x) = v1(A11x)P1 (~ —) +

+ v1(-A 1,x)P3(~
L) +

on [-A 1,A1] such that

(5.7) gi(Arx) = vT(AT,x),gT
(_A T,X) = v1(—A 1,x),

(5.8) 41)(A1,x) = v~
1
~ (A1,x) and g~.

0(-A 1,x) = v~.U(~A1,x)

where P1, 1 < I < 4 are polynomials In 
~~~~~ 

with constant coeffiecients.
I

Observing that v1(O,x) = v1 (O,x) = 0, it is easy to check that

(5.9) g~l)(A1,x)~ < c(x)A T~~
’2

• (5.10) ~g~
l)(~A1,x )~ < C(X)A;T-a/2

• (5.11) lg1(A1,xfl < c(X)44~T
a/2

and

(5.12) ~g1(-A 1,xfl < c(x)A
aT

_a
~
2 

.

- Furthermore there exists a constant 112 
> 0 independent of I such that

(5.13) lg~~
)($,x)_4l)(~,x )~ < M2c(x)A

~~ T~”~
2
I*-~I



_ _ _ _ _ _ _ _ _  - ---• ---—- -- - •,---•- - --• ---— ---•- 
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• 
• 

for all ~~ E [—A 1,A1]. But

• i 
A~~

1
l ji-~I ~~~~~~~~~

since f~- e 1 < 2A. Hence there exists a constant 113 > 0 independent of

T such that

(5.14) lg~
1
~(s,x)g~

1
~(c x)1 < M 3c(x )T~~2f 4,_rf~

for all p . CE[-AT,AT]. Renormallzing, we get that

(5.15) Ig~
l
~~~*,x)~g~~

)(c *,x)l < M 3c(x)A I**~c*IuT~~
2

for all ~~~~~~~ E [— 1 ,l]. Let

(5.16) h1(q,*,x) = v1(~p*,x)_ g1(ip*,x) .

Then there exists a constant > 0 independent of I such that

(5.17) Ih~
1)(~*,x)_h~.

fl (c*,x)I ~~~~~~~~~~~~~~~~~
for all p*,c* E [-l ,l] by relations (5.5) and (5.15). Now, applying

Fourier series methods as in Lemma 4.2, it can be shown that for every

C > 0 ,

I M I
P( sup 

/ 
v~(~p*,X (t))d~(t)~ > e) < —s- A~~T~~E[c2(X(0)]

14’ J -< l 0 c

and hence

I
(5.18) P( SUp I f(f(o0+~bV

1”2,X(t))—f(e01X(t))
141 k•AT

— *T ’2f~
1
~ (e0,X(t))}d~(t)I > ~)

11<4 A~~T~~E(c2(X( 0)) .

Let us choose A1 = log I. Since

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •——---- • ~~~~~~~~~~~~~~~~~~~~~~ -~~~- —  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - • -~~~ -•-~~~
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~ 
f {f 0 (e0,X(t))} dt -‘ i(e~) = E[f0 (00,X(O))) a.s.

as I + by the ergodic theorem and

_i_ f f~~ (e 0,X(t))d~(t) —i--’ N(O,a~I(O~)) as I -*

by the central limit theorem for stochastic integrals (cf. Basawa and

Prakasa Rao (1979)), relations(5.4) and (5.18) imply that the asymptotic

distribution of 61 which minimizes RT(e) given by (2.9) can be obtained

from the process •

(5.19) ~
2I(e ) - 2~pZ, -

~~~ < < — - •

where Z Is normal w i th mean 0 and variance a21(0
0
). Since

= Z/I(o~)

minimizes (5.16), it follows that

(5.20) T
~
’2(
~i

_e
o) ~~~~~_*

This result is obtained under stronger conditions in Prakasa Rao

(1979b) for the least squares estimator 8n,I defined at the beginning

of Section 2.

• Appendix

• Lemma 1 Suppose ~(u) is square Integrabl e on (— 1 ,1] and • ( • )  is

Lipschitz of order a i.e., then exists c > 0 such that

(1) l,(u)—s (v)( < c (u_v t
a

Let •(u) = ~ ane
hTI
~

I. Then for any 0 < y < a,

(2) flan l
2n2

~ 
K1 (a,y)c

2 
.

~i~~i::i i::~~~ ~~
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Proof. It is easy to check that

1
(3) 1 ($(u+h)-4(u-h)I 2du = 4 

~ ta,~i
2 sin2irnh.

— 1 n

Since 4 is Li pschitz satisfying (1), It follows that

(4) 4 
~ la~t 2 sln2irnh <

for all h ([0,1). Let h = and 2~~
2 

< < ~k—1 It is clear that

sin 2-gnh ~~~and relation (4) shows that

k-u
(5) 

k 2 
Ia n t < 2 a~

22
_2ka

n=2 +1

for any k > 2 and hence for any 0 < y < a,

k—l
(6) Ia 1

2n21 22ac22(2Y_2ft)k

• Summing over all k > 2, we obtain that

• (7) 
~ 

Ia~I~n~ <

Hence there exists a constant K1(a,y) > 0 such that

• (8) ~ fa~ J~n2~ < K1(a ,y)c 2

where c Is the Lipschitzian constant given by (I).

H Remark. A slight variation of the above result is due to Szasz (1922). •

The proof given above is the same as in Szasz (1922) and is given here

for completeness.

Lemma 2. Suppose h(u) is square Integrable on [—1 ,1) with h(_1 )111h(I)~0

and h’(.) exists and Is Lipschitzian of order a i.e., there exists

c > 0 such that

~~~~~~~~~
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(9) Ih’(u)—h’ (v)I Ic l u_ v i a .

Let h(u) = 
~ 

a
n

e
~~~~~

1
. Then , for any 0 < y < a ,

(1 0) 
~ Ia~I~n~

2
~ < K2(a,y)c

2

and

( 1 1) 
~ 

la ,.~l
2
~ < K

3
(a , y ) c

2

Proof. Since h’(u) = ~i ~ 
na~~e~~

1
~~~ , inequality (10) follows from

Lemma 1. Observe that

~ !a ,.,I~~
3 

~. (fla n I
2n2+21)l/3(~n

_ (l
~~~)

2hl3

K2 (a , c (~n )

= K3(a,y)c
2.

Leimna 3. Let h(0,x) = ~ a~(x)e
’
~”° and suppose there exists a > 0

such that

<

• for all e, 4in [-1 ,1) where f~~denotes the partial derivative of f with

respect to o. Let {X(t), tE[0 ,I]} be a stochastic process such that

E[h(e,X( t))2

for every t E[O,I]. Then , for any y < a , there exists a positive constant

K4(a,y) such that

~ 
(hr f E[a~(X(t))]dt}1”3 < K4(a,y) I hr / E(c2(X(t))dt}1”3.

a

———--— - • - - - • • ~~~• • • • ••~- .•~• • ••4•-- ~I=~-
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Proof. By Lemma 2, it follows that

fla~(X(t))l
2n2~

2
~ < K2(a,y)c

2(X(t)) a.s.

for every tE [O ,T). Hence

~ E[a~(X(t))]n
2
~
2’
~ < K2(a ,y)E[c

2(X(t))3

for all tE[0,fl. Let

= ~r f E[a~(X(t)))dt.

The inequality proved above gives the relation

~ 
un

+2
~
( 

~~ a” ~~ ~ 
f E[c2(X(t))]dt

n 0

and hence

~ 
<

• 
< K2

/3(a,y)(~n 
d ) “~ ~r I E(c2 (X( t ) ) ) d t }  “~

0

< K4(a,y){ ~ f E[c2(X(t)))dt)1’3
0

Remark. Analgous argument proves that

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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