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Rlossary of Notation

)
: A covariance matrix (m x m)
B(-,* beta function
1 B C sample covariance matrjx (m x m)
cof(bij) cofactor of matrix element bij
D/E "detection and estimation”
¥ E{-} mathematical expection
etr (B) exp{tr B}
HO,H1 hypotheses
5 1 identity matrix
Kv(b) modified Bessel function of the second kind
‘ Kim)(B) matrix argument (mxm) Bessel functions
' L(-) likelihood ratio
m number of sensors or data channels
A m,M mean vector (mx 1) and matrix expansion (mxn)
P ML "maximum 1ikelihood" |
n number of samples
p(-) pdf
pdf "probability density function"
q =(m+1)/2
QCF "quadratic cost function"
R risk or average cost
ROC "receiver operating characteristics"
SCF "simple cost function"
trB trace of the matrix B
u,U in-phase data vector, matrix (real part)

quadrature data vector, matrix (imaginary part)
iv
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b*, B*

(complex) data matrix (mxn)

matrix expansion of u (mxn)
n:th sample

samples up to and including X,
gamma function '

generalized gamma function (see 4-19)
data space

unit delay

set of signal parameters

set of noise parameters

likelihood ratio

threshold

sample mean vector (mx1)

a priori probabilities {

transpose of vector b, matrix B
complex conjugate transpose
element of B~}

determinant of matrix B
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1.0 INTRODUCTION
1.1 Background

The physical problem which forms the backdrop for the work
summarized in this report may be described as follows: A definite
number (m) of discrete.'passive sensors whose locations are known have
been deployed in such a way as to enable them to sense emissions due
to a source of interest if it happens to be within a certain area. It
is desired to process the data obtained from these sensors on a given
observation interval in a manner that permits statements to be made
with a high degree of confidence concerning the absence or presence of
the source and its location as a function of time.

While the technology for performing these tasks jointly is rather
mature for the special case in which the sensors are quite near each
other (within a wavelength) and of the same type, the procedures to be
followed in the general case have rarely been developed to the point of
operational capability. For example, arrays of sensors physically con-
nected to one another have loirg been used to couple source direction
with detection. Most often, however, systems -designed to deal with
multiple sensors assume the posture illustrated in Figure 1-1.

In this conceptual diagram the desired information (localization
parameters) is shown as being the result of a regression (model-fitting)
involving estimates of parameters directly related to "preprocessing" of
the received data; the phrase "with memory" indicates tracking. For
example, if the extracted parameters are bearings, then the regression
may simply be a position "fix"; use of an extended Kalman filter or
other tracking algorithm allows other information, such as velocity, to
be estimated by remembering past fixes and calculating trends. The

role of detection in this system is to help the operator to select
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sensors which have "good data" on them in the first place; usually,
"energy detection" is implied, although "SNR detection" may occasionally

be employed.

The "conditioning" function included in the figure refers to
operations such as bandpass filtering, time delays to accomplish
"steering", and transmission over a data communications link. The
entire diagram may be digital or analog, and conditioning might entail
sampling, A/D conversion, and FFT processing as well.

Having set up this figurative system as a reference, several of its
(typical) features are worth noting as a means to introduce ideas which
are pursued in this report. The development of these ideas or concepts,
as applied in the present physical problem, actually began several years
ago and is now beginning to produce results. Originally, the question
was asked, "How can the detection/estimation outcomes at one sensor
(with high SNR) be used to aid or ‘'coach' those at another sensor (with
Tow SNR)?" ihis question arose in the £0ntext of a system which in its
essential aspects is described very well by Figure 1-1, with the preprocessing

performed at different physical sites or "platforms."

Modular vs. Multidimensional
One way to describe what is illustrated in the figure is to say,
"The preprocessing is modular.”" That is, detection and signal parameter
extraction operations are performed on the data from each sensor separately,
in isolation or remote from the data received by the other sensors. This
situation existed for the excellent reason that each sensor-bearing plat-

form needed the capability to perform these functions solo. How then to

e
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join capabilities when operating in consort, was the question. At first,
the commitment to modularity was such a big factor that solutions were
sought in which preprocessing results at one platform are used in some
way to improve or to help obtain those at another. This can be done a
number of ways; however, it is clear that there are better ways to

.

approach the problem.

Consider the "data matrix" of Figure1-2. Each row consists of time
samples from a different sensor. (The samples could be spectral samples -
the idea is the same.) What the modular preprocessing in Figure 1-1 does
is treat each row of this matrix data base separately. In general, there
is information contained in the inter-relations of the samples from row
to row. Therefore, we expect that preprocessing that operates on the
data as a whole will obtain better results. That is, a multidimensional ;
approach seems to be called for alongside, if not replacing, the modular

preprocessing.

Partitioned vs. Coupled

Another description of the system in Figure 1-1 is given by the state-
ment, "The detection and parameter extraction functions are partitioned."
Unless the detector is nonparametric, or "distribution-free," in form,
then, it makes decisions entirely upon the basis of a priori information -
the "known parameter" solution --or upon what analysis or experience has
indicated the marginél distribtuion of the data should be (again a function
of a priori information only). Actual detectors hardly ever are built
this way since noise and signal power very so widely in physical problems.
Instead, detection algorithms designed for composite or variable parameter

hypotheses usually include processing designed to estimate one or more key
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parameters, or at least to choose values which satisfy certain criteria
such as "worst case." So then, in practice detectors usua:.y include
some form of estimation.

The form of estimation that detectors employ may not necessarily
be the same as that needed for parameter extraction, however, so that
functionally the partitioning shown in Figure 1:1 may still be said to
exist. The reasons for this may be explained with the help of Figure1-3
Conceptually, detection is the process of selecting the most 1ikely
hypothesis, the hypotheses being probability distribution models depending
upon such parameters as mean and variance (which in turn are related to
signal and noise parameters). Parameter extraction may be seen as the
process of fitting (or regressing) values of unknown parameters to the
data through an assumed dependency or model.

There is an obvious similarity of form between the two processes:
both conceptually, at 1ea;t, involve regressions on the data; the
parameteré varied in either p}ocess are related. The ch%e% difference
between them seems to be in the criteria which the regressions must
satisfy. However, if both tasks are to be performed, we should like
to optimally perform both simultaneously. This goal has motivated

research in what the literature calls "coupled" or joint detection and

estimation.
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1.2 Scope of the Study

This report summarizes a four man-month contractual effort to
pursue the concepts just discussed. Basically, the work described herein
is exploratory--that is to say, it was begun with rather broad and
partially defined questions in mind. Therefore, 51though some results
were obtained which are suitable for immediate simulation connected with
exploratory system development, the bulk of the study's output is in the
form of further questions which are more definite than those which

motivated the work.

1.2.1 Literature Review

In its essence, the work has been an effort to discover and to
summarize what the technical literature has to offer the engineer who
is attempting to deal with the physical problem and concepts that have

been described, synthesizing contributions from different disciplines

as required. For example, Appendix A is an early effort to apply the
techniques of analysis of variance to the multisensor problem (predating
the contract). Synthesis is required because typically only a portion
of the problem is treated in one place. The short bibliography included
with this report is an indication bf the variety of sources which

have been found to contain useful material.

B T N P T PSP PO (VTN Vommgpr

There is undoubtedly much information in the mathematics and

statistics literature which would be helpful to the signal processing

akiib b oy . Jaafidiosns

engineering community. Extracting this information is difficult because

often the engineer lacks the background necessary to ask the right

questions or to interpret the significance of what he finds.
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real data.

Under the Timited level of effort which is summarized herein,

a beginning has been made.

Literature which seems to have potential for answering the questions
we are dealing with can be recognized by the following key words:
multivariate statistical analysis
empirical Bayesian procedures
multi-parameter pattern recognition

functions of multiple arguments
multiple time series analysis

This is not to say that every article dealing with these topics is
useful--quite often the "interesting part" is rendered less useful by
simplifying assumptions and analytical conventions which do not apply
to the signal processing problem. For example, the results we seek

are for complex (narrowband) data, whereas the literature mostly treats

e ot (it i i

Literature which has not yielded guidance for the multi-sensor
problem in the sense that it is defined here include that which deals
with

_ multidimensional systems theory

analysis of variance (as applied to the life
sciences).

1.2.2 Approach Taken

While the literature review process necessarily will take an
extended period as we learn what exists and how to ihterpret it, along the
way it is desirable to test the procedures and analytical tools found
which seem promising. Thus in this report efforts to formulate a unified
approach to the multi-sensor signal processing--specifically, detection
and estimation (D/E)--are summarized as they have developed under the

contract. 9
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The structure of the report is the following: Chapter 2 is a review
of classical D/E given partly to provide a self-contained context for
the later chapters, and partly as a means for introducing a vocabulary

and a notation.

Chapter 3 expands on two basic lines of approach to combined D/E,
for the case of one channel or sensor (as they appear in the literature).
These approaches are, it seems, the closest to dealing with the sort of

questions that have been posed that we have found so far.

Chapter 4 then summarizes formulation of the multisensor D/E
problem as a "matrix data" problem, and shows how the classical and

combined D/E theories look when applied to more than one data channel.

The report "flow" can be diagrammed in the following way:

single channel m channels
separate Chapter 2
D/E (review) Chapter 4
(extension)
combined Chapter 3
D/E (adaptation)

Since only a modest level of effort was involved, a great deal of
what seems to be promising work remains to be done. In Chapter 5, the
results of this exploratory study are discussed in terms of the interpre-
tations which are provided for the design of multisensor processors.

Also, recommendations are given for applications and for further studies.

10
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2.0 MODELING AND ANALYTICAL APPROACHES

In this chapter we establish the framework for the effort
summarized in this report. First, the analytical models employed

throughout the work are described, including notation. Then the

operations of detection and estimation are defined in the usual way,
and the classical (single channel) results summarized by way of
review. Finally, the procedures to follow in the subsequent chapters

are given.

2.1 System Description

As mentioned at the very beginning of this report, presumably
there exist at least potentially in the medium being considered (e.g.
underwater) waveforms due to the source or sources of interest. We
restrict our attention to a single source, whose waveform we denote by
s(t;6) to indicate variation in time and dependence upon certain para-
meters 6. Whether this source of interest is present‘or not, the medium
is such that there exists at each of m sensors a noise waveform
n;(t,n.), i=1,2...,m; the noise parameters{n;} are in general different

in value at each sensor.

By "sensor" we shall refer in this work to whatever appropriate
transducers and conditioning may be required to acquire data, including
a certain amount of processing whose nature will be specified in
particular examples as they are brought up. The physical locations of
the sensors are taken to be different, so that observation in both
space and time is performed by the collection of sensors, whose outputs
are assumed to be available to a centralized processor. Our primary

concern is with the structure of this processor; therefore, our modelling

n




effort begins with the "data" {xi(t)} from the m channels, as illustrated

in Figure 2-1.

In effect, we are placing the "observer" inside the box

marked "centralized processor." (This, of course, is the standard
operating procedure for analysis of this type). Having been placed in
these circumstances, the observer is going to iry to perform the
| assigned system tasks as well as possible with the data supplied. Basically
the tasks (described in detail later) are to make inferences based on
f the numerical data concerning the source of interest. Depending upon
the task, certain information needs to be supplied to, or developed
by, the observer. Specifying this information amounts to modelling

the data.

g ‘ For example, in order to decide whether the source of interest
("signal") is present, we should like to know the probability distri-
butions of the data under the hypotheses

Hg : noise oniy (2-1)

H1 : signal and noise.

The appropriate probability density functions (pdf's) are written
Pi(X)EP(XIHi), i=0,1 . (2'2)

and where the functional forms of pdf's are in general different for
arguments and conditions, according to the notation used in this report.
Here also we use the notation X to refer to all the data observed on
a given interval. It is assumed that, with respect to a given bandwidth,
the data are in the form of complex numbers (in-phase and quadrature

components) and may be taken together to form a data matrix:

Sob i, L e " in
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1=3 2,...0¢ B»15 2,....0 (2-3)

X = {xik}‘
where

g™ X3(t) = ug + 3vg,. (2-4)

The "marginal® or unconditioned pdf's pO(X) and pl(x) are not
usually available; instead, one has pdf's "indexed" or conditioned by

signal and noise parameters:

py(Xle.n) = p(X]e,n) ' (2-5)
Po(XIn) = p(X|n).
If the values of the parameters 6 and n are known, then the pdf's of
(2-5) are simply "parameterized" versions of those of (2-2). If not,
then the values either need to estimated in some way or the a priori
pdf p(e,n) specified to obtain
py(X) =ﬁ0dn p(x|e,n)p(e,n) (2-6)
pg(X) = fdodn p(X|n)p(o.n).

Here 6 and n refer to collections of parameters 6= {ei}’ n = {"i}‘ By the

time the original signal waveform with parameters 6 propagates to the

various sensors over different paths, the aggregate parameter set 6 gets

expanded because some of the individual parameters (such as amplitude
and phase) are modified along the way--requiring the assumption of
different values in each channel--and perhaps some new parameters are

acquired in the process (such as doppler shift). The situation becomes

even more complex if the original parameters themselves are changing with

time, so in this work we adopt the usual analytical procedure of

considering the parameters constant over the interval of time they are

being observed.

14
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For another example in the way the processing task drives the
data modelling effort, consider that, in order to locate the source, we
should 1ike to know the locations of the sensors. Not only that, but
also conditioning and preprocessing parameters such as gains, sensor
directivities and orientations, and the values ©of any time delays
artificially introduced to the channels as a means of "beamforming."
Then, too, we have to model the functional relationships between the
source position and motion quantities and the quantities actually
sensed. Therefore, the data being used for this task must be modelled
to the extent of providing the required information a priori or means

for estimating it.

In this study we confine our scope to the tasks of detection and
signal parameter extraction, with particular attention to performance
of these tasks jointly. In all examples, we assume that the noise

samples are jointly Gaussian and that signal and noise combine additi#ely.

2.2 System Function Description

In Figure 2-1, the processor outputs were named somewhat cryptically
as "decisions" and "numbers". Although decisions based upon inferences
from the data could conceivably range from "drop a bomb" to "the source
is a fish," we restrict ourselves to the classical choice between the
hypotheses Ho and Hl concerning the presence of a signal. And, while
what the "numbers" are will continue tc be nebulous (in an effort to
maintain generality), for the most part in the examples treated they
will be estimates of parameters of the data waveforms, denoted by & and
n. Both the detection and estimation functions are to be carried out

in ways that are optimal in some sense.

15




2.2.1 Optimal Detection

A review of the well known optimal detection procedures reveals

the dependence of "optimality" upon the information postulated.

N b i L

Classically, the optimal detection problems is to find to the critical

region r such that if we

H, true if X in T, .

decide: 1 (2-7)

Ho true if X in ro = r-rl

then certain average "costs" are minimized. There are four possibilities

connected with the decison, each in concept incurring a cost. The

(s St g A og i

traditional notation is

true case decision cost
HO HO Cl-u
H0 H1 Ca (type 1 error or false alarm)
Hy HO C8 (type 2 error or miss) ﬁ
L Hy €18 ]
By defining the error probabilities as A
= .= 2-8
4 Pr{nlluo} f dXpg () (2-8) .,
1‘1 !
6 = Pritglty} [ axp () ' (2-9)
Ty 1
| and the probabilities of the occurrences themselves as
Y = 2-10
m=l-7 Pr{H1 true} . (2-10)

16
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then the average cost or “risk” is computed to be

R = lo[uca + (l-a)Cl_a]-" n-l[BCB'l- (l-B)Cl_B] (2-11)

3 _[ dx["ocapo(x) *1C pl(x)]
1
*f dx[”ocl-u”o(x) *mG "1(")]
To

1'()ccx i cl-B

+fdx[u1 (a-Cyg) Py (0 - 7 (€. €, ) po(X)]. (2-12)
r
0

For non-negative costs and situations in which mistakes are more costly
than correct decisions, (2-12) is minimized if we pick To such that
Tol. M (65 €19 P10 < 7 €a €1 o) P00 : =0
By defining a Tikelihood ratio
o = LY, (2-19)

we can write the corresponding optimal decision rule as

Hl.

“b(cu-cl-u) (2_15)

MX) 2 ve=c .
Hy "1 (% C1-9)

or more generally as

1
A(X) 3 A (2-16)

H

H
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where ) is a threshold. The procedure indicated by (2-15) is the
Bayes decision rule, while (2-16) gives the Neyman-Pearson detector
when A is chosen to yield a fixed value of a (the resulting B is

then minimum for that a). If A=1, then the "ideal observer" detector

scheme is operative and the total probability of error is minimized.

In the foregoing, use of the marginal pdf's po(x) and pl(X)
includes the cases where these functions are computed from conditional
and a priori pdf's, as shown in (2-6). Thus the likelihood ratio (2-14)

may have the form

ﬁean(XIGm)p(e,n) Eem{p(xlem)}
./de"p(xlﬂ)P(a,n) - E, {p(X[n)}

When this is the case, it can be shown that the decision rule (2-15) is the

A(X) = (2-17)

one that also mimizies the a posteriori risk or average cost given the

. data.

What if the a priori probabilities "o and 1 and/or pdf p(6,n) are
unknown? One procedure is to seek a "least favorable" (fictioné])
apriori distribution for the unknown parameters - one which maximizes
the risk, - then minimize the risk as shown above to obtain a decision
rule. This class of procedures, known as "minimax", works fine in
principle, but often it is difficult to say what the least favorable
distribution is. Moreover, the resulting decision rule is sometimes
overly conservative, depending upon how "typical" the least favorable
or "worst case" distribution is when actual data is processed. However,
it can be stated that, if the risk based on the conditional pdf's does
not depend upon the parameters, then the corresponding Bayes decision

rule is also a minimax rule.

18
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By far the most popular procedure to adopt when a priori information
is missing is to ignore it and to use the conditional pdf's to compute
the 1ikelihood ratio after estimating the unknown parameters according
to some criterion. One such criterion which is somewhat arbitrary with
respect to detection risk, but has nice estimatjon properties, ic *he
maximum likelihood criterion. Here, when ignorant of the exact
distribution of the parameters & and n, we select values for them which
make the observed data X most likely; that is 8y» ny» and n, are chosen
such that

p(x]e;.ny) >p(X]e,n)
p(X|ng) > p(X]n) .

(2-18)

(often nosnl). The resulting decision rule, while retaining the Bayes
form -- that is, 1ikelihood ratio detection -- does not necessarily
involve minimum risk or even an "acceptable" risk. However, if the
data base is satisfactory, then the quality of the estimates and also

the decision will be acceptable.

2.2.2 Optimal Estimation

‘Reviewing established parameter estimation procedures also shows
that optimality criteria can be influenced by the amount of a priori

information available.

Basic properties of estimators are summarized in Table 2-1, in
which for simplicity we speak of the observed data X and one parameter

set 8. These basic properties, shown for both the case of conditional




bias

mean
square
error (MSE)

efficiency

minimum MSE

unbiased
efficient

sufficient

TABLE 2-1

PROPERTIES OF ESTIMATORS

CONDITIONAL
b(e) = Exleié(x)} -0

= E{a-ele}

e(e)

Exle {[e00-s]3

E{(B-e)zle}

1

1+ b-(0)]?

ECECDRT

b(e) = 0

e(e) =1

p(e]x) = p[0|3(x)].
or p(6]X) = £(x)g5(x),9]

UNCONDITIONAL

B = E,  {o(X)}- Egfo}

"

E {b(e)}
E{o - o}

= £, {0 §}-efe?o)}
z E{(a-e)z}

EQ1 + b-(e

p(x) = #(0E, a6 (0.9}
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estimates (based on p(X|e)) and unconditional (based on p(X,e)), are
often extended to define more subtle properties, such as asymptotic
efficiency, when sample size and various convergence criteria are taken
into account. In this brief review we restrict ourselves to the basics |
and consider two large classes of estimators, Bayes and Maximum likeli-

-

hood (ML).

In a manner very similar to that shown above for the Bayesian
detector, when a priori parameter pdf's are available, we can construct
estimators 6(X) of the unknown parameters 6 from the data which

minimize the risk or average cost of estimation. In this case we write

the risk as

R = Ex'e{c[e,é(x)J}

- faxdo cfs 50X p(x,0). (2-19)

The necessary minimization with respect to 8 requires specifying the
cost function to some degree; also the form of the estimator thus obtained
depends upon the cost function. Therefore when talking unconditional

estimators, one has to refer to the specific class of cost function

for which the estimator is optimal.

For the so-called "simple cost function" (SCF), we use

C(6-8) = C,-(C,- € )s(6-0) (2-20a) ;
or -
. (C.,8f68
c(e-8) =} © ff (2-21)
Ccr 020 .

Using the first notation, it is easy to see that the optimal estimator
in the case of the SCF is the unconditional ML estimator, given by

p(X,8) > p(X,0). (2-21)
21




For the fidelity criteria, or quadratic cost function (QCF),

C6-8) = C,(6-0)° (2-22)

the resulting "Bayes estimator" is

o = E{6]X}, (2-23)

the a posteriori mean of the parameter. Statements that can be made

about the Bayes estimator for the QCF are the following:

(a)
(b)

(c)

(d)

it is conditionally unbiased: b(e) = 0

it has the smallest average variance among all unbiased
estimators

if the joint distribution p(X,8) is unimodal and symmetric
about the mode (i.e., mean = mode) with respect to 6, then
the Bayes estimator is the maximum a posteriori estimate.

it is the optimal estimator if the cost function (other than
QCF) is even about 6 =6 and if the a posteriori pdf p(e]|X) has
mean = mode. }

With only the conditional pdf p(X|e) available, we use the

(conditional) ML estimator,

p(X|8) > p(x]e) . (2-24)

Although in general ML estimates are biased and not unique, they have

good asymptotic features (under rather general assumptions) such as

consistency (asymptotic unbiasedness) and efficiency. Also, ML

estimators are sufficient statistics (or functions of them) when

they exist, and whgn efficient estimators exist, they are ML

estimators. On the whole, then, unless cost functions are an

integral aspect of the problem, people find ML estimation to be

the convenient route to follow.




2.3 Procedures adopted for this study

Having reviewed very briefly some classical results from detection
and estimation theory for reference, we proceed in the 1ight of our

stated objectives in the following way.

In Chapter 3 we pursue the notion that optimal joint detecticn and
estimation involves detectors and estimators that are possibly different
from those obtained separately, using two basic approaches to the task,

and developing single-channel examples to illustrate them.

In Chapter 4 the detection and estimation tasks are formulated

for data in the form of matrices in an attempt to discover

in what ways processors designed to operate on m channels simultaneously

differ from combinations of single-channel operations.
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3.0 JOINT DETECTION AND ESTIMATION

Intuitively it seems reasonable that an optimal procedure for jointly
performing detection of a signal in noise and estimation of parameters would
involve a processor structure in general different from a simple combination
of the optimal procedures for performing these tasks separately. One
might also anticipate that the joint operation would in some sense

be better as well as different - perhaps more efficient if not more accurate.

Optimality, of course, is with respect to given criteria. "Joint
operation" also is a nebulous concept without further definition. In this
chapter two approaches to joint optimal detection and estimation are pre-
sented and amplified. One is quite systematic and unified, using cost
functions to "couple" the two operations (after Middleton and Esposito).
The second is more ad hoc in nature, exploiting the common use by both
operations of sufficient statistics to achieve economical computation

(after Birdsall and Gobien).

3.1 Cost Coupled Detection and Estimation

In addition to the notations already introduced, we define the

cost functions

Coo(;;n) = cost of accepting Ho and estimating noise parameters
when HO is true

Clo(a,;;n) cost of accepting H, and estimating signal and noise

parameters when Ho is true

COI(;;B,n) = cost of accepting Ho and estimating only noise parameters
when "1 is true

Cll(e,n;e,n)= cost of accepting Hl and estimating signal and noise
parameters when Hl is true

24
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With these costs defined, we can calculate an unconditional average

cost or risk as
R = E{r(e.n) (3-1)
where the conditional risk is given by

| r(6.n) [ 0t [ry Coplhin) p(XIn) + x, Egy(aieun) p(X|o.n)
0

+/ aX[rg €10(6.a5n) P(XIn) + 5y €13(6.n30mm) p(Xloun)].
t | (3-2)

We now’wish to minimize R with respect to both the critical region Iy and
the estimators S(x) and ;(X). This is accomplished in two steps: first,

with respect to rl, then 8 and ; :

The conditional risk can be rewritten as

rlen) = [ ax Gt .n) +f axsx.nsem
I‘o 1"1

i[ dX A +f dx (B-A) , (3-3) .’ 4
4T ' .

0'"1 |
in which the identification of A and B is discerned from (3-2). Granting
that the functions A and B are everywhere positive, r is minimized if r0 .
and r, are selected so that

ry: B<A, ry: B2A . (3-4)

With the estimators yet to be specified, the corresponding conditional

and unconditional decision rules are




Cor-Cyp) P Xlewn) "1
Ag(Xi0un) = (10Cog) PXTT H<0 9/“1

A (X) = Fo.n {(COI'CHE(XIOM} "21 a}/

; En{(clo'coo) p(X|n )} Ho LI

with Ag denoting "generalized 1ikelihood ratio."

3.1.1 Differentiable cost functions

Minimization with respect to the estimators 0 and ; is carried
out by differentiating R inside the integrals, resulting in the simultaneous

constraints
3A

Py

an

E 2
on

6,n s

8.n =0 (3-7)

ﬁ! .
an sN

Looking at these requirements carefully, we find that they are equivalent

to
aC aC
Eg 7o —= P(XIn) + 1 —% p(X|e,n)} = 0 (3-8a)
o,n] 0 1
an an
aC oC
10
Eo.n]™0 = p(X|n) + ™ . p(x|e,n)f=0 (3-8b)
on on
aC aC
and E T — }0 p(X|n) + = 11 p(Xje,n){=10 (3-8¢c)
é,n] O an 1 26

Since noise (and noise parameters) are present under acceptance of hypothesis,

it is reasonable to assume that

oC oC aC aC
90 . 10 . a,-1u (3-9)
an an an on

so that (3-8a) and (3-8b) are the same equation. This presupposes,

actually, that the cost of estimating the noise parameters n is additively
26




combined to the other cost components and with the same weight under
either decision. If we further presuppose that the same weight holds

under the truth of either hypothesis, we arrive at

aC
; [vrop(XIn) +m Ee{p(xle.n)}]( =0 (3-10)

E
n

For example, a set of cost functions based on the QCF might be

& 58

2 s .3 2
c10 = cu + cN(n-n) + Ca°
s % o 2
col S cB + CN ( n-n ) + cbe
Ci =C, . + Culn-n)? + C_(8-8)° (3-11)
11 Jag = B s ;

These costs lead to the estimates

n=Efix} = xgE {nlx,no}+ " E{nlx,ul} (3-12)

. , n, C

o = ghsefelxm}. as ﬂ; <, (3-13)
2 a

and the (unconditional) decision rule

Bt it H
A_(X) = v B il {Cbe :gs(e-ﬂ) IX} A(X) ; “y (3-14)
9 € -C;_,* €,0°(X) "
a l-a a HO

or

AX) [T + = +

c -C c,-C cC-C -C
8”"1- B 1-8 "1 v8T “1-8 H, “iFs l-d

(3-15)

Immediately we see that, under this cost assignment, the noise parameter

estimate is the same as in separate D/E, the signal parameter estimate i
modified by the separate D/E 1ikelihood ratio, and the decision rule

is considerably more complicated.

¢ 6%(x) (cb-cs)s{ezlx} . "0 ¢,6%(X) :1 faCid) .

S

i o oo o coa o




EXAMPLE : Suppose a sinewave is to be detected in Gaussian noise. The

appropriate conditional pdf's may be written

p(X|a,8, N) = (erw)“ exp’- zl—ni[(“i - o)+ (v, - s)z:” (3-16)
i=1

n

- Z (0,2 + viz)!. (3-17)

3 : i=

! The parameters a, Band N are considered to be independent, with a priori

3 ; pdf's

2
{ 3 a=-a
| ‘ pla) = /2_1_ exp | - %( 00)‘ (3-18)
¢ ovlw
: B-8
| p(8) = /21_ expl - 3 (‘U_Oﬂ (3-19)
] (o] ™
-1 N Yoo
P(N) = ZYOAOKI(ZAO)] exp ) - ;a = N |° N> O, (3-20)

It can be shown that in this case

(1-n)/2
R 1 2 2T 2
PO(X) - kn [E yopn * )\0 YO] Kn-l(ZJ Ag *+ Pn/ZYo ) (3-21)
and :
1-n/2
: 1 1 2.2 " 2
pl(x) " (;;5) [7'70 Ra * 20 Y0] Kn-Z(z ot Rn/ZYO)' Ne<no®
(3-22)
with
n
2 2
Pn = 2:(u,i + vi) (3-23a)
i=1
1
Rn = Pn - FKZUDZ‘(Z“) 2] (3-23b)
: -
and k, = [(zn)'? ‘o"o"l(z*o)] e (3-23¢)




The a posteriori means are

E{ulx,HO} = *oJ xg + P 2y, *n-2 24;"‘; + Pn/ho* (3-242)

x

n-1
K
-3 2
E{ulx.nl} = ’od ;: + R /2y, ?:.—2- 2¢o + R /2y, ‘ (3-24b)

2 —

uon + no
E‘G'X) = E —-—N:—z——— 'x,"l (3-25)
No

L{‘ =+ ;lz e {nxn)

BN + nol ¥
Elsl0) = €| 7 IxH

o,
1 -3 —g— E {N|x,HI} (3-26)
. noc

We note that these expressions involve the statistics Pn. Rn. u, and v,

which are the sufficient statistics in this case. Having found these

expressions, then, we can diagram the QCF - coupled D/E processor as

‘shown in Figure 3-1.

3.1.2 Simple Cost Function (SCF)

For the SCF, minimization of R for coupled D/E cannot be carried

out by differentiation of the cost functions since they take the form

€0 = C1o * Ce - a8(n-n)s(e)

Co = €, * C, - a8(n-n)s(e)

Cop =C *+ C - 88(n-n)s(e-o)

C1 =% *Ce - a8(n-n)s(e-e) (3-27)
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To these costs there corresponds the risk

Ce + o [fro(1-0) + ca"] + ey 8 ¢ cqt]

noA/ dx po(x,n)s(e) - 'nlA/ dX pl(X,e,n)
T T'o

qu/ dx po(X,n)G(O) - ﬂlA[ dx pl(X,e,n)
% N

Co * Rp - Afdx {nos(e)pO(X.n) + nlpl(X.e.n)} .
T

in which it is understood that n=n(X) and 6=6(X). The risk is

minimum when the integral is maximum:

"1["* Py (X,bm) + "o/ ax py(X,n)

r P-Pe

‘s nlfdx pl'(x,e,n) + nof dX po(X,n);
r P-Pe

Xerg when 6(x)=0. (3-30)

using

Thus it is evident that the estimators 5 and ; in this case are not

unconditional ML estimators as in the separate D/E situation, but can be

viewed-as a kind of generalization of them.




3.2 Combined Adaptive D/E

One criticism which is often made against the Bayesian approach
in general is that the formal, optimal solution using the approach requires
information that may not be available in practical situations, such as
a priori distributions for unknown parameters. In these situations one
can simply guess a likely distribution or other needed specification and
proceed with the Bayesian derivation, not knowing whether the resulting
design will be satisfactory (mostly likely, if intelligent guesses were
made, the system will work but we do not expect it to perform like a true
optimal system). If guessing is too risky or unesthetic, then minimax
or maximum likelihood approaches can be used, corresponding respectively

to "worst case" or conditional optimization as discussed in Chapter 2.

In this section we consider aspects of another, adaptive approach.
Sometimes called the "empirical Bayes approach," the object is to take
advantage of certain properties of brobability distributions to obtain
in effect, an estimate of the required a priori information as data are
being taken. Robbins has shown that it is possible to construct decision
functions (detectors and estimators), with respect to the distributions
of unknown parameters, which asymptotically (as more and more observations
conditioned on the unknown parameters are taken) incur the minimum or

Bayes risk.

Spragins discusses "reproducing”" properties of probability distributions,

noting that the a posteriori pdf for parameters 6 on data {xi) has the

jterative formulation

Late




T T T R T Y Y

p(ane)p(e)

—

]59 (numerator)

p(e]X )

p(ean_l)p(xn[Q)
ﬁe(numerator) i (3-31)

where X, = (xl, Xpseees xn) represents n independent samples of the data.
In particular, as the number of samples becomes large, the a posteriori pdf
eventually approaches a narrow spike centered aroand the true value of 6,
provided the original (a priori) pdf p(e) is defined on an interval

containing the true value of 6.

A simple illustration of this principle is the following: suppose
samples from a Gaussian population with unit mean and variance are observed.
However, the true mean is not known,.so the following triangular a priori

pdf is postulated:

p(e) ={1-|e-%| o -3l <1 (3-32)

0, elsewhere

After n observations, the a posteriori is proportional to

ple]x ) = K gxp{- %—Z (xi-e)z} p(e;)
i
-k exp {- 3 (6- 07 - 1Y (x;-0% nle) 1
= K”exp {- % (e-l)z} [l-le- %—l] , |e- %I < 1. (3-33) |

As demonstrated in Figure 3-2, the peak of p(elxn) does indeed approach

the correct value.

What this phenomenon suggests is that we can select a priori
pdf's---that is, functional forms---which "look like" the a posteriori
r pdf after a number of fictional prior data observations. We then can

33
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expect the same functional form to be préserved, its parameters taking
on values which depend on the data and which converge eventually to the

correct values. For example, in the previous illustration we would

i choose

b 0-6,\2 :

{ p(e) = K exp{- % 0) } (3-34)

1 v % 2 .
8o being an initial guess of the true value for 6. The data then 5
generates ;

i 6-6,\2 x.-08\2

# 1

i p(e|x ) = K exp{ - '2‘( o 0) - %Z( ia) }

| 0-6 \2

i 1 n

H = K exp{- —-(————) }

{ 2 On

ofey + °(2)E"i 1 —

i with 6 = = —Zx. = x, large n. (3-35) |

g +n 60

Another concern of a computational nature is that the a posteriori

pdf not only reproduce in this sense, but also that the parameters

specifying or "indexing" the distribution remain fixed in dimension. This

property is insured if the parameters in question have corresponding to

] . them sufficient statistics in the data.

These concepts can be used to real advantage in combined detection
and estimation, as shown by Birdsall and Gobien. The (marginal) likelihz:d
function can be developed in the following way to yield an iterative or

sequential form:




UL SIS S A Sl i o

e

p(X IH,)

n! = plxnlﬂof

L(x )

P(e’ n'Hl) p(nlxn :"0)
: P(a :nlxn’H17 i P(“]Ho)

(X [0m)  (3-36)

by Bayes' rule, where L(ane.n) is the known parameter (conditional)

likelihood function. This may be written also

n
L(xn) ;IJ;L(xilxi-l)

n p(xilxi-l 9H1)
j=1 PUX %y p.Ho)

p(e ’"Ixi-l ’Hl) P(nlx.i oﬂo)

n
i];I; Wemlxi ,Hl) . p("lxi-lml' (Xil Xi_l,e,n),
(3-37)

Note especially that L(Xn) is not only now in a form for iterative computa-
tion, but-also that the choice of 8 and n to evaluate the expression

is arbitrary, leaving the designer free to pick what is convenient.

EXAMPLE: A random sample is taken from a Gaussian population whose
mean and variance are unknown. The hypothesis HO: u=0 is to be tested
against the alternative Hl: p#0. According to our present formulation

we find for H1
P( xnle -n)P(e .'ﬂ)

.l X
5 p(e.n| ") 7.dedn(numerator
-« kgWVe exp{ --;?Z(xi-e)z}p(em)
. 3
. xn-"/zexp{-;—n [nte0? 3 (xi-i)z]} plo.n)
' (3-38)
. 36




where @ stands in the place of the unknown mean and n, the unknown

variance. This form suggests choosing
-n,/2 n
p(e,n) = Kn O exp{ 2 [(e-eo)?' + né’}

for which the modes are 60 and ure

The resulting a posteriori pdf is then reproducing:

with v=n + o and

g n0 90 +»nxn
n n +n
Z(x -x nn.(x.-0 )2
_ "o % . Mot %o
"n " G\i-n ?_
0

el G

For Ho we have, analogous to (3-38),

p(nlx ) = o{zx /Zn} p(n),

suggesting that we choose the a priori pdf

p(n) = o lzexp{ n A /2n}

with the mode Ao+ The a posteriori pdf then is

-v/2 vAn
plalX,) = byn  expd-

37
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(3-39)

(3-40)

(3-41a)

(3-41b)

(3-41¢)

(3-42)

(3-43)

(3-44)




R

withva "o + n again and

2
b, =[(‘%&)(v-2)/2r("2;2)]-1. (3-45b)

The iterative form for the 1ikelihood function can now be specified as

a .b
= _N-1n 15 . 2 &
Lix |X ;) = 55 exp {Zn[(e an-l) +n *n-l]

v
2n [(en-l+°n' 20)(0p_178p) * M1 Ap1 g * )‘n]}

X L(xnlxn_l,e,n)

ap1b 1 2
3 a:bn_: exp{-z ["(en-l +0,-28(0, 5 - 0,) - (6-0, 4)
+ e(e-Zx.n) + ";rzu - (n-li?zn_l + e]} (3-46) '

Since, from (3-37) and comments following, we may use any admissible

fixed values of 6 and n to evaluate the likelihood function, we can base

the detection on n »> «:

. 2n-1b
L(x | X, ) = a:bn-:
y= E!%.’ !%Ql [V(v-l) nnxn-]](“‘3)/2
Vv %Y [(‘"1)“n-J(v'a)lz[\Wl(v-Z)/z

(3-47)

Using z, =.£n L(xnlxn_l). we can implement detection as shown in Figure 3-3.
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4.0 MULTIPLE SENSOR APPLICATIONS

What happens to the detection and estimation (D/E) structures dis-
cussed in the previous chapters, when the data is a vector or matrix?
Or, what if the signal and/or noise parameters are elements of a vector
or a matrix? These questions are related to the topic of this chapter,
which is to extend the D/E results to the situation in which data from
more than one channel or sensor are received and it is desired to process
them in a way that takes into consideration the inter-channel dependencies

that exist in general.

The techniques of the previous two chapters can be, and have been,
developed to a high degree of effectiveness by statisticans and, to
a lesser extent, by engineers. So far we have seen that optimal joint

detection and estimation procedures tend to involve the usual Bayes

. parameter estimates (or slight modifications to them) and fairly complicated

detectors. We have also seen that an empirical Bayes procedure can be

used to perform asymptotically optimum detection with sequentially

learned parameter pdf's as a by-product. The existence of these technigues
indicates that the processing system of Figure 1-1 can be improved on

a per-channel basis. In this chapter, we investigate what kinds of receiver
structures result when these techniques are generalized to handle more

than one channel simultaneously. This requifes at the beginnings developing
an appropriate matrix notation, and eventually involves delving into some
rather sophisticated mathematics in dealing with operations on functions

with matrix arguments.
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4.1 Matrix Representation of a Multidimensional, Complex Gaussian Random Process

Suppose there are m channels of data being received, so that the
collection of waveforms observed on these channels may be represented

by the vector x:

x(t) = . (4-1)

-xm(t)J 5
Further, suppose that at discrete times {tj} these waveforms are

sampled simultaneously, yielding n sample vectors {Eﬁ}WhiCh together

can be written as a matrix:

= fx, = 2 (E.)): § =1,2,...05 §#1,2,...0.
Lo (4-2)

1f these waveforms are referenced to a given frequency and phase,

X = (x5 %5 05 X )

then a narrowband (Rician) decomposition can be expressed
x(t) = u(t) cos (wt + ¢) - v(t) sin (ut + ¢) (3-3)

where u(t) and v(t) are the in-phase and quadrature components of x(t)

with respect to cos(wt + ¢). We may just as well represent x(t) as the

complex vector waveform

x(t) = u(t) + 3v(t) (4-4)

and the matrix of samples as X = U + jV. (4-5)

(An alternate formulation is shown in Appendix B).

Now if the waveforms are from stationary, jointly Gaussian random

processes with the (mxm) covariance matrix A and mean vector m = m, +jgv

are independent, then the probability density function (odf) for the

data is
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n
p(XIm,A) = T plugs v4im.A)
3=l !
= [(zn)"‘ IAI]'“ exp —% Z [(u -m) A . (u;-m,) + (v4-m ) A” (v -m )]
591
(4-6)

in which |A| denotes the determinant of A and the prime (-) indicates i
! transpose. :

i Using a'd to represent elements of A'l, we can write

Dt whwaly Ddpdtenly ends |
’2:2“: (u-m)5p [A'I(U-Mu)] "
8 2:[(0—!1")‘4!\‘1 (v 5

where tr Y means "trace of the matrix Y", the sum of the diagonal

tr (U-4 ) A‘l(u-nu) j

elements of Y. In this and the following expressions, the mean vectors

have been artifically expanded to form matrices with n identical columns, i

for example, 1

M, = (... (a-8)
Since it is true that
tr(AB) = tr(BA), (4-9)

we can write the pdf of X as

p(X|m,A) = [(2,,)'" |A|] £ exp{-% tr Al [(U-M“)(U-M“);(V-l*\,)(v-'\);_\} z

= [(Zn)m IAI] “Metr {-— A (X-M)(X - Mf} (4-10)
using etr (Y) = etrA, the asterisk to write complex conjugate transpose, and the | 4
facts that '
' (Y2°)” = Z¥ and tr Y* = tr Y. (4-11) 4
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4.1.1 Sample Mean Vector

Given the complex data matrix X, we can construct a complex sample

mean vector

2 g
w=lughswy =g Z X3 (4-12)
31

and its matrix expansion
XO = (E’E.""E)' (4-13)
Since the data vectors are Gaussian, so is u, with

E(w) =m=m + jm (4-14)

and both in-phase and quadrature parts of p have covariance matrix

EC(u,m )y, m )} = LA, (4-15)

4.1.2 Sample Covariance Matrix

We may write a sample covariance matrix for the data as
C= {cij} with
e % :

= & [ugtu-u)- + (Vv (v-v) ] o
a3 “zli (X-M)(X-M)* - %(g-m_)(g-g)*

and mean value

E{C)} = "—,"lA ; (4-17)

It can be shown that ZnA'lC has a Wishart distribution with 2n-2 degrees

of freedom, or that

n-1-q |
p(o) = 16" Setr 0 a0l (4-19)
rm(n-l)l HAl
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with
|° r (n-1) = Mn-1)/4 kﬁ;r[n% %] (4-19)

4.2 (Classical D/E for Matrix Data

The well-known single channel D/E results reviewed in Chapter 2

will now be worked formally for the case of matrix data. For definiteness
we continue to assume Gaussian conditional distributions and the decisions
required to select either HO and Hl where

Hy: m=0

Hy: m#0; (4-20) é
m, the vector of signal in-phase and quadrature components, and A the :

.noise covariance matrix, condition the data as specified by the pdf (4-10);

and are possibly unknown.

| 4.2.1 Maximum Likelihood Detection

; First we consider the conditional or MLE approach, summarized i
- briefly by (2-18). Formal maximization of the conditional pdf (4-10)
requires minimization of

f(m) = trA”1(X-M)(X-M)*. (a-21)

This minimization can be expressed as

n
2 e 37 v
m, 41 (uy-m )" A" (ug-m)) = 0
and
n
2= 3 (ym A (yym) = 0 (a-22)
- j=1




whose solutions yield m = %ZLJ =Y,
=1

1K or

M= X0 (4-23)

i This result can also be obtained by inspection if we note that

(X-M)(X-M)* = (X=X} (X-Xg)* + (M-X()(M-Xp)* ; (4-28)

clearly, this expression is minimized for M = Xo.

Under the hypothesis Hl’ the ML estimate for the covariance matrix
| A satisfies

bt

‘ alaAl | 3 {l -1iy. i }
| Il 2L - 2 el al e (xexg) = 0, (4-25) |

or, using BEA'l and (4-16),

3|B 3B
[nIBI sl + 18" & tr{~nBC}]—A = 0. (4-26)
This requires
cof(b
-1
__TET_;L. = (B
or
B"l - R =C " (4_27)

the sample covariance.

Under HO’ the ML estimate for the covariance is found to be
A 1

R =Cq =3 XX* . (4-28)

With these estimates, the 1ikelihood function becomes

A A p(xlxo’c)

L(X]M,A)
pIXIO,Cof

- feggh

-1 1 -1
To etr{ 7 CH X=X ) (X-Xg)* + 5 C; xx'}
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= Do " (X (x)# " (4-29)

and the decision can be written

Hy
Juu- + vy 2 ik (4-30)
|uu-- UgUp + WV° = VoVo™ | Hy

The comparable single-channel (m=1) test is

b d . Fei® -
Z(u + V5 %) nut- v le | -n|x| l<{0 1

so we see that powers in (4-31) are equivalent to determinants in

(4-31)

(4-30).

An implementation of (4-30) is diagrammed in Figure 4-1. The
box labelled "1/Q detector" could be implemented by an FFT, for example.
In order to appreciate what (4-30) is requiring as opposed to multiple
usage of the single channel decision statistic (4-31), we shall consider

a two-channel example (m=2).

EXAMPLE (m=2). For two channels,

gy

Ui ¥ 4

= s 1=l 425 0N (4-32)
Ui * IVp4

—

2. (35 + v34) D fngzs *+ gV
_Z (35025 * vasvas) 2o (o5 * Vi)

and

uu-+ Vv~ (4-33)

(4-34)

UO Ua 3 vO v(;
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The two-channel implementation of the detector algorithm is shown in
Figure 4-2 schematically. It is interesting to observe that this
implementation includes the two single-channel detectors (basically

power or envelope detectors, corresponding to the diagonals of XX*),

plus cross-channel detectors (basically bandpassacorrelators corresponding

to the off-diagonal terms of XX*).

The squere-law and correlator forms of Figure 4-2 indicate that
the operations required to carry out the decision rule (4-30) are

equivalent to choosing a test statistic which is a quadratic form

in the samples.

This can be shown directly, using matrix relations

given by Anderson:
[ €. 3
pe——C s fo+guurlel™
Cl
1 0
-1
= |c] _lu c+:_l. *
'} by
/7 2
1 Loy A Ly
ol a4 -
L4 c 0 I
2
] 1 u* 1 0
=dc) 2 (a-35)
1 1 ol
—p* c =& n A
/2 V2
or
A(X) =1 4 %p_* C-ly_
3 =9
=14n g*[(x-_xo)(x-xo)*] TR (4-36)
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or

(4-37)

H
Jus 1€
12/2(n-1)= mur[x0* - mu p¥]7 2 T/20n-1)
H

0
where T2 is a complex data version of the Hotelling T2 statistic, a

generalization of the square of Student's t-statistic. For m=1, the
square root can be taken; however, for m>1 in general this cannot be

done, and T2 is related to non-central F-statistics.

4.2.2 Bayesian D/E

Applying the approach to optimal (separate) D/E reviewed in
Chapter 2, we utilize a priori pdf's and costs to describe an average
cost or risk. For detection, the unconditional likelihood ratio is

here given by

py (X) i ﬁAdg\_ p(X|m,A) p(m,A)
() fanp(xin) p(A)

(4-38)

What shall we use forthe a priori pdf's p(A) and p(A,m) = p(A)p(m)?
One choice is to use the pdf's which correspond to those of ML

estimates of these matrix parameters:

p(ml) = [tz A1) Petr {3 Ay (m-ng) (m-mp)+} (4-39)
and
IAI"'I'qetr {-nﬁn'lA}

(4-40)
r,(n-1) I%; Aoln'l

p(A) =

It is at this point that a new order of mathematics (for the
engineer) enters the picture in obtaining the marginal pdf's po(x) and

pl(x). Integration with respect to m is not too formidable, yielding
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pl(xlA) =/dm p(X|m,A)p(m)

. [(zu)"‘"lAl"'llAmol] 'letr{--;_- (A+Ag) 2 (x-M) (x-Hp)+}
(4-41)

However, integration with respect to the matrix A (positive definite .

and symmetric), written

i (4-42)
dA =
f f dandaIZ'”damm’

|A]>0

is considerably more sophisticated. There does exist a body of
literature treating the calculus of functions with matrix argument,
and we shall use what we have learned of it so far. One expression
which is needed to perform the integrations being considered just now

is due to Herz:

(m)esy o o-m {_l -1-} r-q
K. (2) = 2 dR etr 2(_R+R )Z§|R| | (4-43)
R>0
This function is the m-dimensional generalization of the modified
Bessel function of the second kind, and is one of a family of "Bessel
functions of matrix argument" whose properties are analogous to the
m=1 case. By an ingenious transformation of variables, Herz shows
that (4-43) yields
2y o t :
Kr (z) = 2] dt - Kr(zlt)Kr(zzt)’ (4-44)
1 t -1
where 2 and z, are the eigenvalues of Z. This expression can be
computed numerically. The computational forms for m>2 are yet to be
developed, it seems. Nevertheless, we shall use (4-43) and the related

literature to the extent possible.
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The pdf po(x) is found to be

PolX) = kyky(X) xf'l'"(‘/znA‘lxx* ) (4-45a)

with

£
Ky = Zm[rm(n-l)(Zu)m"I% Ao|"‘1] (4-45b)

and

= L -1/2
ky(X) |Zn onx*l

" (4-45¢c)
Similarly, pl(le) is obtained as
py(XIm) = k;ky(X) xf’{"(‘lzmo'l(x-n)(x-n)*) (4-46a)
with kg(X) = |5 Ag(X-M) (x-M)*| /2, (8-46b)
The marginal 1ikelihood ratio then is
py(X|m) .
X = £y ) :o(x’ - Eﬂ{h(XIﬂ)} (8-47)
using ( \
m -1 w
PR T K_l(‘IZnAO (x-M)(x-M)J. Py

| (x-M)(x-M)*|1/2 KfT)(JznAo'lxx*)

The result (4-46), corresponding to the "known m" case, is used
because we have not been able to integrate (4-41) to get pl(x). nor to
integrate (4-46), for that matter. Therefore, for the present we must
be satisfied to say that the Bayesian D/E for known signal for the
multidimensional case appears to be analogous to that for the single

channel case, with determinants replacing powers, etc.
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As far as structure is concerned, we can make positive statements
about the computational requirements, even without knowing the precise
expressions for the likelihood functions and estimators. The sample
mean u and the sample covariance C are both sufficient statistics, it
can be shown, so that the likelihood ratio and the estimators of
m and A will certainly involve these statistics. In the previous
section we have indicated the manner in which these statistics are

computed, and this insight carries over from ML to Bayesian procedures.

4.3 Combined D/E for Matrix Data

In Chapter 3 two different approaches to joint detection and
estimation were examined. First, it was seen that *he feature of
"jointnesé" can be built into D/E cost functions and used to constraint
an optimal (Bayes) system. Typically (for QCF) the estimators for
noise parameters are the usual Bayes estimates, while those for
signal parameters are weighted by the 1ikelihood ratio. A more
complicated, generalized 1ikelihood ratio is the most distinctive

result from this approach.

Second, a less formal approach was discussed which highlights the
commonality of sufficient statistics to both detection and estimation,
and attempts in effect to bridge the gap between ML (conditional) and
Bayesian (unconditional) detection by sequential learning of a priori

pdf's in their "reproducing forms.
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K
As demonstrated in the previous sections, the mathematics required
L4 to pursue Bayesian D/E in the formal sense are very difficult for the
case of multidimensional data, although conceptually the optimal
processor has been shown in Chapter 3. Consequently, further
' attention will not be given to cost-coupled D/E_ in this report.
3 4.3.1 Reproducing pdf's for Mulitdimensional Gaussian Data
; ' Once again for H1 we write thg conditional data pdf as
;
: p(xim.A) = [(20)"a] TPetrf- LA l(emyixmef (4-49)
|
: 4 The corresponding reproducing a posteriori pdf is
p(m,A|X) = anIAI'lenl"'l'qetr{-%-A'I[An + v(mfmﬂ)(gfmﬂ){n (4-50a)
with
non
= = s —s = = *
AL = Ay + (X-Xg)(X-Xg) + —{m ) (m -u) _
=Ag* XX* - mngn* f nomomo* (4-50b)
. gt . - Ml (4-50c)
m, =V (nu + nomo) s V=N 4N, Q=5
a = [2"v1-9) g0y ¢ (v-1-q)] 1 V" (4-50d)
n m
g and the respective modes are given by
] g g
Apax =V Pns Poax = Ty (4-51)
For Ho, the conditional pdf is
p(x|A) = [(20)"|Al]™" etr{-% A‘lxx*} (8-52)

and the reproducing a posteriori is
3 -v v=-q 1 ,-1 }
p(AIX) = b [AI" I8 | etr{-z A8, (4-53a)




with
B =8, + xx*, bl = 2"v-9)  (,_q) (8-53b)
n 0 > n m'\V-a/»

£
and mode Amax v Bn. (4-54)

It is worthwhile to note that the modes--which constitute maximum
a posteriori (MAP) estimates--undergo a transition as n, the size of
the data sample, increases. For small n, they look 1ike the assumed
values (Aolno, Mys BO/"O) but asymptotically approach the appropriate

maximum 1ikelihood estimates.

4.3.2 Sequential likelihood ratio

Now we determine the components of the likelihood ratio L(Xn)
in the sequential form given by (3-37). Since we have postulated

independent samples,

L(x 41X, 3m.A) = Lix ., Im,A)

-1
50+15;+l}' (4-55)

= etrf- AN x, -m(x, -0 ¢ 3 A
Also,

p(AlX ) b |8 |9 T -
plm, A]x ¥ a:[A:1\.-q-1 '""i A8, +3A [A"w(!.!“ )(m-m_ ).]
(4-56)

so that : .
a (8 .|V VY
Mlb 'An+1' "n,

xetrf A8 B+ A AL - vinem )mem)* ¢ (vel)(mom, ) (mem, )t

v (5-n+l"")(x +1'M) . lﬂ*l'x‘ﬂ"l.]}' veEmn+ no, (4-57)

The total likelihood ratio does not depend upon m and A, so we can select

any fixed value of these parameters for evaluation of (4-57). As in
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Chapter 3, we take the simplest route of choosing A'1=0. This choice
yields

I\)-Q"’llAn'\)-q'l'l

br+120/Bna1 (4-58)

b |A

L(x IX ) =
—n+l v-q v-q
3n+1°n n+1| IBnl
The following iterative relationships may be developed:

2T (v-l q)

v+l i v+1\' T (v-2q+1/2)r(v-2
34173, (zv) rﬁ(v-q) '(Zv) r(v-q)rlv-qii7§§l (4-59a)

A1 = Ayt X41%ae” b Oy * - (vil)m +l-ﬂ+l
= An + v+1 (m 1)(m —n+l) oV = n0+ n (4-59b)
moyp = lom +x o 5)/(41) (4-59c)
_ ,-m
bn+llbn =2 Pm(v-q)/rm(v+1-q)
- o~ [(v-2q+3/2)r (v-2q+1) (4-59d)
r(v+1-q)r(v+1/2-q)
Bae1 * By * XaXpa™ (4-59)

By using a development similiar to that used to obtain (4-35),

we can write also

= N -1
1Agar] = IAnI[1 + 5T (B Xan )™, (mn'xn+1)] (4-60a)
and
1
5%

i




should this expression be easier to compute. The logarithm of (4-58),

or incremental loglikelihood ratio, is to be accumulated as shown

in Figure 4-3: n+l

(X ) =), 2xl% ). (4-61)
i=
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5.0 CONCLUDING REMARKS

In concluding this work, which has taken the shape of the beginning
or exploratory phase of a much larger effort, it is appropriate to record
various remarks which place the results in perspective and which indicate

the direction further studies ought to proceed.

5.1 Summary and Interpretation

On the basis of the study, the following comments can be made with

regard to joint detection and estimation.

a. Cost functions can be employed to link detection and estimation.
In efféct, the costs quantify the concept of joint D/E; therefore, the
optimal joint operation is "optimal" only in these sense that it
matches, or is designed to, the tasks assigned to it in the form of
cost criteria. If these criteria cannot be articulated along with other
a priori information such as pdf's for the unknown parameters, then the
procedure becomes meaningless unless the system is also designed to
acquire or learn the information required to develop the optimal

(Bayesian) system.

However, to speak in defense of Bayesian procedures, it can be shown
that systems which do not appear to have been designed with cost
functions in mind actually implement certain "default" cost functions.
For example, unconditional ML estimators implement the "simple cost

function."

For the example cost functions treated in the study, it was seen

that the parameter estimators for joint D/E are only slightly different
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from those derived for separate D/E, while the detectors tend to

become significantly more complicated.

b. If a sequential, adaptive scheme is used, making use of
sufficient statistics, then a system can be designed which performs
an unconditional decision (i.e., Bayesian). This'type of approach
implements joint D/E in the sense that it exploits the sufficient
statistics that are common to either operation in separate D/E--detection
after all is merely a test to determine the most 1ikely hypothetical
statement concerning the parameters which identify or index the

distribution of the data.

While we have not done so, there is no reason why a cost
structure cannot be superimposed upon the sequential D/E system we have
discussed in this report. The important point is that the sequential,
"empirical” procedure allows an unconditioned (Bayesian) decision to be

berformed without precise a priori information. As the amount of

data increases, the initial parameter estimates give way to learned
or a posteriori values. This behavior is reminiscent of the way in
which Kalman filters (which can be seen as Bayesian estimators under
appropriate condifions) selectively weight observations according to
their quality relative to past observations in order to maintair a

minimum mean square error fit of the data to a specified model.

Concerning multidimensional D/E processing, the following remarks

are given:

a. In going from one sensor or data channel to several, it is
evident that the processing requirements increase more than linearly

if a "scalar to scalar" comparison is made, such as in Figure 4-2.
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On the other hand, conceptually the same operations are performed, with
matrix and vector functions replacing scalars. Under the right
circumstances, it may be possible to implement a multi-sensor system

as an "add-on" to existing single channel setups. For example, in
addition to "envelope" or "power" detection arithmetic on single
channels (corresponding to covariance matrix diagonal elements),
multisensor processing requires computation of interchannel correlations
(corresponding to off-diagonal covariance elements). With the proper
data links provided, only the additional processing need be performed

at the central or master site.

b. The analysis of multidimensional or matrix data system
models, particularly when complex (narrowband) data representations
are maintained, presents a direct challenge to the engineer's
mathematical background. It appears that very useful generalizations
of "analog" functions to matrix argument exist, but very much are the
property of the mathematicans. For example, matrix equivalents of the
Laplace transform, Bessel functions, gamma and beta functions, and
hypergeometric functions have been found. With these generalizations,
the expressions for system functions and the analytical operations
performed on them look very familiar to the engineer, so that he can
apply his experience with the single channel theory almost directly.
It is not certain, however, that even the math experts know how to
compute some of these expressions; this may be the critical factor in

the usefulness of their theories.
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&
] 5.2 Applications
In this section we indicate what might be potential applications
" of some of the results obtained in the course of this exploratory
study. Since the emphasis has been on both detection and estimation, the :
formulation has been that of received data which is conditioned upon |
signal and noise parameters which are unknown. Care has been taken also g
) to maintain a complex or narrowband representation of the data. §
Ef For example, Chapter 4 deals with the case of m sensors in the

presence of Gaussian noise, and can support ‘the following interpretation.
The unknown mean components correspond to reception of a narrowband

source at m locations:

(mu)i kiS(t-Ti) COS(¢+wTi) ik f

(m ).

-v’i

kiS(t-'ri) S'in(‘¢»+m'r,i ).

The {ki}, representing attenuation/spreading loss, and the {ri}, standing
for propagation delays, contain information about the location of the

I source. From estimatior. of the complex mean vector.in this case,

further inferences could be made concerning the {ki} and the {1i},

a;suming that the usual problem of ambiguity is handled appropriately

{ for sensors separated by more than a wavelength. Because the mean

? vector estimate (u in the ML approach) is multivariate Gaussian with
covariance matrix A/n, the covariance matrix estimate would be used

in the inference procedure. In general, because of the noise structure
or possibly due to broadband components of the source itself, the co-

variance matrix is not diagonal--i.e., the noise received at the different

sensors are correlated.
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In the formulation used, in the usual analytical manner the unknown
parameters were assumed fixed during the oBservation period. This need
not be a great restriction on application to long observation periods
in which the parmeters can be expected to change. Reformulation along
sequential lines would facilitate adaptation to varying parameters, in
which case also it would be logical to replace the "unit delays" indicated
in the examples with a combination of unit delay and weighting (<1)--to
implement an "exponential averaging" concept--or perhaps to fix thé

(local) observation time according a sliding window scheme.

The multidimensional formulation permits treatment of an
important problem: the case of a buoy with omnidirectional and
nominally orthogonal directional sensors in a noise environment which
causes the sensor outputs to be correlated when noise only is present.
In such cases the optimal detector/estimator can be found by the
procedures sketched in this report, although imp]ementation'may require

further "pushing” of the mathematics.

5.3 Recommendations

Under the heading of further study, the following efforts are

recommended:

(a) Complete the unknown mean vector and covariance‘matrix case
by finding the receiver operating characteristics (ROC). At this point,
we can conjecture that the complex data version of the Hotelling T2

statistic (4-37) is analogous to its more familiar form, but with twice

the numbers of degrees of freedom, or




s IS < T

2
n-m T <3
“n 21y ~ Fom,2n-2m(n@*ATm), (5-2)

where F( ) is the noncentral F-statistic, but this needs to be proven.
Once the ROC are found, various numerical tradeoff analyses can be
made in order to determine the amount of advantage a multidimensional
ML processor, for example, may have over "linear" combinations of

single channel processors.

(b) Although the cost formulation associated with the Bayesian
procedures discussed in this study is often difficult to put into
practice, it would be useful to try it out thoroughly for a concrete f

system example. Presumably, system decisions result in actions, and

those actions cost something. Realistic and cost functions, when
formulated, might drive an effective design. For example, cost functions
involving numbers of sensors and computational complexity along with

the usual costs perhaps can be used to quantify system tradeoff

considerations.

(c) Further synthesis of the two basic approaches to combined
D/E--the cost formulation and the sequential--would be very useful in

designing practical, adaptive, multidimensional processors. Interfacing

with Kalman filter procedures would probably be involved. What this
synthesis would offer is an "algorithm" for optimizing ‘the procedures

and making it more a "science", less an "art".

(d) various simulations of multidimensional approaches discussed
in this report would reveal their overall practicality--or not--and

would stimulate refinement in computational aspects of the problem.




[y

(e) Additional research in the mathematical literature will,
it is hoped, uncover more useful information on multidimensional or
matrix-valued functions. A treatment of such functions at the

engineer's level would givé him more power to deal with the increasingly

complex data environment (C3, etc.) that exists now.

There is a well-developed literature concerned with multivariate
statistical analysis (including complex data) that appears to be worth
searching also: For example, Parzen and Newton interpret time series
modeling as having two stages: model identification and parameter
identification; these two stages can be seen as corresponding to what
we have termed detéction and estimation. The notion of an "index |
time series", as explained by these authors, seems likely to have some

apptication in tracking--i.e., when the signal parameters vary in time

because of source motion.
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Appendix A

MULTI-SENSOR DETECTION INTERPRETED AS A
PROBLEM IN THE ANALYSIS OF VARIANCE

A statistical model for experimental data which is used extensively
is the following: the data, subject to "treatments" A and B are denoted by

{xij}, where a priori the data are samples of the MN independent random

variables
2 .
{xij} ~N N(uij, o )‘ 1=1’2.o-0’r1; J=l,2,--’N;
with
‘j.ij=u+°.i+8j; §Qi= gBJ‘:o.

That is, the data are assumed to be samples of a population of normal random
variables with equal (but unknown) variance o2 and with means ¥ij varying
from the equal (but unknown) value u by row parameters {ni] and column para-
meters {Bj} which, respectively, model the effects of two treatments. Thig

model is known as "two-way classification with one observation per cel1.”!

Given this model, statistics can be constructed to test, for example,
the composite hypothesis

Ho:uij =utag, Z“i =0

(treatment B of no effect) against the alternative composite hypothesis

Hytugy =u+ oy + By, lo; = ij = 0.

Because the test statistics based on likelihood functions turn out to be
ratios of quadratic forms in the data, the testing procedure has come to be

known as "analysis of variance (ANOVA)."

1Hogg and Craig, Intra to Math. Stat.
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In this study, a multi-sensor detection problem is modeled as
two-way classification to gain some insight into possible detector configura-

tions. First, the model is exercised for "one-way" classification.

Let a narrowband signal s(t) = S(t)cos[md¢+e(t)] be received at N
sensors which also are subject to independent Gaussian noise, so that the
received waveforms are

2 =5, +n,

uJ(t) sJ(t) nJ(t)

kjS(t-tj)cos[mct+e(t-tj)] + Nj(t)cos[mct+¢(t)]

{kjs(t-tj)cos[e(t-tj)] # njc(t)}COSmct
-{kjs(t-tj)sin[e(tltj)] + njs(t)}sinmct

xj(t)COcht - yj(t)s1nmct.

I1f M independent samples are taken at each sensor, then the information thus
obtaiveé is represented by the MN pairs (xij’ yij) = ‘xj(ti), yj(ti))'
Under this representation, all the random variables are independent, and it
shall be assumed that over the observation interval the noise variances
remain constant, with
4 e
Var(xij) = Var(yij) o5 »

as well as the signal terms

E{XiJ) = LI =pt+ B, , E{.YiJ) = mi

+ e
j j H* oy

J
Thus, the general probability density function (pdf) is given by

M__N 2 i
ey . .-p-B. _y..-m-b.

e e (Zu! s 1 E 1 U_J1 - ;
p(x’y’v’m’o) N 2'.1 exp 22 - [( . + O.

J

where the parameters {u, 02 s Bss bj) are unknown to the observer.

J J

s i s e e i o di s g
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FIRST DETECTION

I1f we wish to discover whether there is significant signal energy

being received by at least one sensor, we may seek to reject thg hypothesis

Ho P M5 =y, mij =m Yij
in favor of the hypothesis
B b.
. = = J'-'- =
Hy gy =ut gy mg=mby, § 3=0= J-5.
J O. J O
: ' J J
To do this, we test the likelihood ratio
- Hl
N L) R
L(w) Ho

where the 1ikelihood functions L(2) and L(w) are the assumed pdf under Hy
and H respectively, and the caret (") signifies that the unknown parameters"

have been estimated in such a way as to maximize the likelihood function.

From the alternative likelihood function, we obtain

e 2 2 = 2
w= Z Z(X.,J/Oj)/]Z g(]»/oj) = § (XJ/Oj)/g(llaj):

LI
using
R
5" § e
and
Bj = xj - ¥
e 2
m = J(7;/03)/](1/53)
J J
by = }3 -m
and

Q
n

-2 _Zlﬁg[ '-X)+(y1JyJ)] 521
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With these estimates,

From the null likelihood function we get the same estimates for

p and m, but for °§ we find

(| 7.1 52 2] 8
Uj 2M ; [(xij ") + (y'ij lll) ] =

resulting in

L(;) = Lgﬂgl:ff! r

i 2M
JJO

L ' Therefore we reject Hj when
L? : or 5 )2]
?[
ks I[ix
i

———

i5 J (’13 y3) ]

S5
J

~2 2

Bs: + b
Hs1+-—‘)———-—l > kllM
J 201

This form is very interesting since Bj estimates

B: = E{xij‘\l}

kJS jcose z(k .COS@ )/2(1/0 £)

= 5Sjc’ a "recognition differential,"
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so that the test statistic may be interpreted as

T an(1 +hd) = J RS >c.

J ¥ g
That is, the test statistic can be seen as the average signal-to-noise ratio
(hz) among the sensors, estimated from the received data. Another interpreta-

tion is given by understanding the statistic as the incoherent sum of the sensor

powers, each normalized by estimates of variance.
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APPENDIX B
VECTOR DATA PROBARILITY MODEL

Formerly we spoke of a "data matrix"

X =] xi(tj) I, i =1,2,...n3 j = 1,2,...m,
made up of n samples from each of m channels. Rather than employing some
kind of tensor notation (i.e., three subscripts) in order to describe
the statistical behavior of the data in matrix form, instead we define
the vector £ created by "stacking" the columns of X to make one big

column vector with dimensions (mn X 1):

E= (xl(tl)’ xz(tl)?""xm(tl);xl(tz)""xm(tz);'"xl(tn)""’xm(tn))’

or --‘

£# where 5 j:th column of X.

S

With this notation we can specify a mean value vector u which corresponds

to £, and a covariance matrix (mn X mn)

f y
Y Sy % Cn-1
Gy Bg By oo Gl
E((g -u)le-uYd= = C.

(%<1 2 Ses i Ky

The given form of C specifies that it is composed of nZ(m X m) submatrices
and that the submatrices on given diagonals the same "distance" from the

main diagona)l are identical. Thus n different submatrices are specified:

7




Ck = E{(li % Ei)(éiik » }iiik) }, k= 0,1,..., n-1;

or

C, ={rﬁ}k = llaij(m)ll, i, 3 =1,2,...m fory= 0.

Here, Rij (1) is the cross-correlation function between waveforms in
channels i and j. This structure presupposes wide-sense stationarity
in the data over the observation interval.

With this notation, then, we can write the probability density
function for the data matrix elements. Assuming that each channel
receives a deterministic signal waveform corrupted by a zero-mean

Gaussian random noise process, the pdf is:

p(e | 6, n) =[(21r)'““ det C (\_‘\_)] % exp {-!5 [_E_-g (g)]' c -1(1) [g— n (g)]},

where 8 and n are signal and noise parameters, respectively. If the

T T R 1 X T PR LI PLRT] Iy Aoy

signal is also from a zero-mean Gaussian random process, the pdf

would be written:

p(e | 0, n) =[(20)™ det € (8, n) Jexp 3!5 g% (g.g)_e_f.
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